WorldWideScience

Sample records for real-time medical dosimetry

  1. Comparison of Real-Time Intraoperative Ultrasound-Based Dosimetry With Postoperative Computed Tomography-Based Dosimetry for Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Nag, Subir; Shi Peipei; Liu Bingren; Gupta, Nilendu; Bahnson, Robert R.; Wang, Jian Z.

    2008-01-01

    Purpose: To evaluate whether real-time intraoperative ultrasound (US)-based dosimetry can replace conventional postoperative computed tomography (CT)-based dosimetry in prostate brachytherapy. Methods and Materials: Between December 2001 and November 2002, 82 patients underwent 103 Pd prostate brachytherapy. An interplant treatment planning system was used for real-time intraoperative transrectal US-guided treatment planning. The dose distribution was updated according to the estimated seed position to obtain the dose-volume histograms. Postoperative CT-based dosimetry was performed a few hours later using the Theraplan-Plus treatment planning system. The dosimetric parameters obtained from the two imaging modalities were compared. Results: The results of this study revealed correlations between the US- and CT-based dosimetry. However, large variations were found in the implant-quality parameters of the two modalities, including the doses covering 100%, 90%, and 80% of the prostate volume and prostate volumes covered by 100%, 150%, and 200% of the prescription dose. The mean relative difference was 38% and 16% for doses covering 100% and 90% of the prostate volume and 10% and 21% for prostate volumes covered by 100% and 150% of the prescription dose, respectively. The CT-based volume covered by 200% of the prescription dose was about 30% greater than the US-based one. Compared with CT-based dosimetry, US-based dosimetry significantly underestimated the dose to normal organs, especially for the rectum. The average US-based maximal dose and volume covered by 100% of the prescription dose for the rectum was 72 Gy and 0.01 cm 3 , respectively, much lower than the 159 Gy and 0.65 cm 3 obtained using CT-based dosimetry. Conclusion: Although dosimetry using intraoperative US-based planning provides preliminary real-time information, it does not accurately reflect the postoperative CT-based dosimetry. Until studies have determined whether US-based dosimetry or

  2. OSL Based Anthropomorphic Phantom and Real-Time Organ Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    David E. Hintenlang, Ph.D

    2009-02-10

    The overall objective of this project was the development of a dosimetry system that provides the direct measurement of organ does in real-time with a sensitivity that makes it an effective tool for applications in a wide variety of health physics applications. The system included the development of a real-time readout system for fiber optic coupled (FOC) dosimeters that is integrated with a state-of-art anthropomorphic phantom to provide instantaneous measures of organ doses throughout the phantom. The small size of the FOC detectors and optical fibers allow the sensitive volume of the detector to be located at organ centroids (or multiple locations distributed through the organ) within a tissue equivalent, anthropomorphic phantom without perturbing the tissue equivalent features of the phantom. The developed phantom/dosimetry system can be used in any environment where personnel may be exposed to gamma or x-ray radiations to provide the most accurate determinations of organ and effective doses possible to date.

  3. OSL Based Anthropomorphic Phantom and Real-Time Organ Dosimetry

    International Nuclear Information System (INIS)

    Hintenlang, David E.

    2009-01-01

    The overall objective of this project was the development of a dosimetry system that provides the direct measurement of organ doses in real-time with a sensitivity that makes it an effective tool for applications in a wide variety of health physics applications. The system included the development of a real-time readout system for fiber optic coupled (FOC) dosimeters that is integrated with a state-of-art anthropomorphic phantom to provide instantaneous measures of organ doses throughout the phantom. The small size of the FOC detectors and optical fibers allow the sensitive volume of the detector to be located at organ centroids (or multiple locations distributed through the organ) within a tissue equivalent, anthropomorphic phantom without perturbing the tissue equivalent features of the phantom. The developed phantom/dosimetry system can be used in any environment where personnel may be exposed to gamma or x-ray radiations to provide the most accurate determinations of organ and effective doses possible to date

  4. Germanium-doped optical fiber for real-time radiation dosimetry

    International Nuclear Information System (INIS)

    Mizanur Rahman, A.K.M.; Zubair, H.T.; Begum, Mahfuza; Abdul-Rashid, H.A.; Yusoff, Z.; Ung, N.M.; Mat-Sharif, K.A.; Wan Abdullah, W.S.; Amouzad Mahdiraji, Ghafour; Amin, Y.M.; Maah, M.J.; Bradley, D.A.

    2015-01-01

    Over the past three decades growing demand for individualized in vivo dosimetry and subsequent dose verification has led to the pursuit of newer, novel and economically feasible materials for dosimeters. These materials are to facilitate features such as real-time sensing and fast readouts. In this paper, purposely composed SiO 2 :Ge optical fiber is presented as a suitable candidate for dosimetry. The optical fiber is meant to take advantage of the RL/OSL technique, providing both online remote monitoring of dose rate, and fast readouts for absorbed dose. A laboratory-assembled OSL reader has been used to acquire the RL/OSL response to LINAC irradiations (6 MV photons). The notable RL characteristics observed include constant level of luminescence for the same dose rate (providing better consistency compared to TLD-500), and linearity of response in the radiotherapy range (1 Gy/min to 6 Gy/min). The OSL curve was found to conform to an exponential decay characteristic (illumination with low LED source). The Ge doping resulted in an effective atomic number, Z eff , of 13.5 (within the bone equivalent range). The SiO 2 :Ge optical fiber sensor, with efficient coupling, can be a viable solution for in vivo dosimetry, besides a broad range of applications. - Highlights: • Purposely fabricated Ge doped silica fiber for real-time dose measurements. • Constant RL response for dose rates in radiotherapy range. • Linearity of RL curve during irradiation using LINAC. • RL response comparison between SiO 2 :Ge optical fiber and TLD-500.

  5. Optimal dose reduction in computed tomography methodologies predicted from real-time dosimetry

    Science.gov (United States)

    Tien, Christopher Jason

    Over the past two decades, computed tomography (CT) has become an increasingly common and useful medical imaging technique. CT is a noninvasive imaging modality with three-dimensional volumetric viewing abilities, all in sub-millimeter resolution. Recent national scrutiny on radiation dose from medical exams has spearheaded an initiative to reduce dose in CT. This work concentrates on dose reduction of individual exams through two recently-innovated dose reduction techniques: organ dose modulation (ODM) and tube current modulation (TCM). ODM and TCM tailor the phase and amplitude of x-ray current, respectively, used by the CT scanner during the scan. These techniques are unique because they can be used to achieve patient dose reduction without any appreciable loss in image quality. This work details the development of the tools and methods featuring real-time dosimetry which were used to provide pioneering measurements of ODM or TCM in dose reduction for CT.

  6. SU-E-T-66: A Prototype for Couch Based Real-Time Dosimetry in External Beam Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, P [Peter MacCallum Cancer Centre, Bendigo (Australia)

    2015-06-15

    Purpose: The main purpose of this study is to design a prototype for couch-based based real time dosimetry system in external beam radiotherapy Methods: A prototype of 100 ionization chambers was designed on a printed circuit board by etching the copper layer and each ionization chamber was wired to a 50 pin connector. The signals from the two 50 pin connectors collected from the ionization chambers were then transferred to a PXI module from National Instruments. The PXI module houses a current amplifier that amplifies the charge collected from the ionization chamber. The amplified signal is then sent to a digital multimeter module for converting the analog signal to digital signal. A software was designed in labview to read and display the signals obtained from the PXI module. A couch attachment frame was designed to house the 100 ionization chamber module. The frame was fixed underneath the treatment couch for measuring the dose during treatment. Resutls: The ionization chamber based prototype dosimetry was tested for simple radiotherapy treatment fields and found to be a useful device for measuring real time dosimetry at the treatment couch plane. This information could be used to assess the delivered dose to a patient during radiotherapy. It could be used as an invivo dosimeter during radiotherapy. Conclusion: In this study, a prototype for couch based real time dosimetry system was designed and tested. The prototype forms a basis for the development of large scale couch based real time dosimetry system that could be used to perform morning QA prior to treatment, assess real time doses delivered to patient and as a device to monitor the output of the treatment beam. Peter MacCallum Cancer Foundation.

  7. SU-E-T-66: A Prototype for Couch Based Real-Time Dosimetry in External Beam Radiotherapy

    International Nuclear Information System (INIS)

    Ramachandran, P

    2015-01-01

    Purpose: The main purpose of this study is to design a prototype for couch-based based real time dosimetry system in external beam radiotherapy Methods: A prototype of 100 ionization chambers was designed on a printed circuit board by etching the copper layer and each ionization chamber was wired to a 50 pin connector. The signals from the two 50 pin connectors collected from the ionization chambers were then transferred to a PXI module from National Instruments. The PXI module houses a current amplifier that amplifies the charge collected from the ionization chamber. The amplified signal is then sent to a digital multimeter module for converting the analog signal to digital signal. A software was designed in labview to read and display the signals obtained from the PXI module. A couch attachment frame was designed to house the 100 ionization chamber module. The frame was fixed underneath the treatment couch for measuring the dose during treatment. Resutls: The ionization chamber based prototype dosimetry was tested for simple radiotherapy treatment fields and found to be a useful device for measuring real time dosimetry at the treatment couch plane. This information could be used to assess the delivered dose to a patient during radiotherapy. It could be used as an invivo dosimeter during radiotherapy. Conclusion: In this study, a prototype for couch based real time dosimetry system was designed and tested. The prototype forms a basis for the development of large scale couch based real time dosimetry system that could be used to perform morning QA prior to treatment, assess real time doses delivered to patient and as a device to monitor the output of the treatment beam. Peter MacCallum Cancer Foundation

  8. Real-time volumetric scintillation dosimetry

    International Nuclear Information System (INIS)

    Beddar, S

    2015-01-01

    The goal of this brief review is to review the current status of real-time 3D scintillation dosimetry and what has been done so far in this area. The basic concept is to use a large volume of a scintillator material (liquid or solid) to measure or image the dose distributions from external radiation therapy (RT) beams in three dimensions. In this configuration, the scintillator material fulfills the dual role of being the detector and the phantom material in which the measurements are being performed. In this case, dose perturbations caused by the introduction of a detector within a phantom will not be at issue. All the detector configurations that have been conceived to date used a Charge-Coupled Device (CCD) camera to measure the light produced within the scintillator. In order to accurately measure the scintillation light, one must correct for various optical artefacts that arise as the light propagates from the scintillating centers through the optical chain to the CCD chip. Quenching, defined in its simplest form as a nonlinear response to high-linear energy transfer (LET) charged particles, is one of the disadvantages when such systems are used to measure the absorbed dose from high-LET particles such protons. However, correction methods that restore the linear dose response through the whole proton range have been proven to be effective for both liquid and plastic scintillators. Volumetric scintillation dosimetry has the potential to provide fast, high-resolution and accurate 3D imaging of RT dose distributions. Further research is warranted to optimize the necessary image reconstruction methods and optical corrections needed to achieve its full potential

  9. On line CALDoseX: real time Monte Carlo calculation via Internet for dosimetry in radiodiagnostic

    International Nuclear Information System (INIS)

    Kramer, Richard; Cassola, Vagner Ferreira; Lira, Carlos Alberto Brayner de Oliveira; Khoury, Helen Jamil; Cavalcanti, Arthur; Lins, Rafael Dueire

    2011-01-01

    The CALDose X 4.1 is a software which uses thr MASH and FASH phantoms. Patient dosimetry with reference phantoms is limited because the results can be applied only for patients which possess the same body mass and right height that the reference phantom. In this paper, the dosimetry of patients for diagnostic with X ray was extended by using a series of 18 phantoms with defined gender, different body masses and heights, in order to cover the real anatomy of the patients. It is possible to calculate absorbed doses in organs and tissues by real time Monte Carlo dosimetry through the Internet through a dosimetric service called CALDose X on line

  10. Adaptive error detection for HDR/PDR brachytherapy: Guidance for decision making during real-time in vivo point dosimetry

    DEFF Research Database (Denmark)

    Kertzscher Schwencke, Gustavo Adolfo Vladimir; Andersen, Claus E.; Tanderup, Kari

    2014-01-01

    Purpose:This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction ......, and the AEDA’s capacity to distinguish between true and false error scenarios. The study further shows that the AEDA can offer guidance in decision making in the event of potential errors detected with real-time in vivo point dosimetry....... of the dosimeter position reconstruction. Given its nearly exclusive dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. Methods:In the event of a measured potential treatment error, the AEDA proposes the most...

  11. MO-DE-BRA-04: Hands-On Fluoroscopy Safety Training with Real-Time Patient and Staff Dosimetry

    International Nuclear Information System (INIS)

    Vanderhoek, M; Bevins, N

    2016-01-01

    Purpose: Fluoroscopically guided interventions (FGI) are routinely performed across many different hospital departments. However, many involved staff members have minimal training regarding safe and optimal use of fluoroscopy systems. We developed and taught a hands-on fluoroscopy safety class incorporating real-time patient and staff dosimetry in order to promote safer and more optimal use of fluoroscopy during FGI. Methods: The hands-on fluoroscopy safety class is taught in an FGI suite, unique to each department. A patient equivalent phantom is set on the patient table with an ion chamber positioned at the x-ray beam entrance to the phantom. This provides a surrogate measure of patient entrance dose. Multiple solid state dosimeters (RaySafe i2 dosimetry systemTM) are deployed at different distances from the phantom (0.1, 1, 3 meters), which provide surrogate measures of staff dose. Instructors direct participating clinical staff to operate the fluoroscopy system as they view live fluoroscopic images, patient entrance dose, and staff doses in real-time. During class, instructors work with clinical staff to investigate how patient entrance dose, staff doses, and image quality are affected by different parameters, including pulse rate, magnification, collimation, beam angulation, imaging mode, system geometry, distance, and shielding. Results: Real-time dose visualization enables clinical staff to directly see and learn how to optimize their use of their own fluoroscopy system to minimize patient and staff dose, yet maintain sufficient image quality for FGI. As a direct result of the class, multiple hospital departments have implemented changes to their imaging protocols, including reduction of the default fluoroscopy pulse rate and increased use of collimation and lower dose fluoroscopy modes. Conclusion: Hands-on fluoroscopy safety training substantially benefits from real-time patient and staff dosimetry incorporated into the class. Real-time dose display helps

  12. MO-DE-BRA-04: Hands-On Fluoroscopy Safety Training with Real-Time Patient and Staff Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vanderhoek, M; Bevins, N [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: Fluoroscopically guided interventions (FGI) are routinely performed across many different hospital departments. However, many involved staff members have minimal training regarding safe and optimal use of fluoroscopy systems. We developed and taught a hands-on fluoroscopy safety class incorporating real-time patient and staff dosimetry in order to promote safer and more optimal use of fluoroscopy during FGI. Methods: The hands-on fluoroscopy safety class is taught in an FGI suite, unique to each department. A patient equivalent phantom is set on the patient table with an ion chamber positioned at the x-ray beam entrance to the phantom. This provides a surrogate measure of patient entrance dose. Multiple solid state dosimeters (RaySafe i2 dosimetry systemTM) are deployed at different distances from the phantom (0.1, 1, 3 meters), which provide surrogate measures of staff dose. Instructors direct participating clinical staff to operate the fluoroscopy system as they view live fluoroscopic images, patient entrance dose, and staff doses in real-time. During class, instructors work with clinical staff to investigate how patient entrance dose, staff doses, and image quality are affected by different parameters, including pulse rate, magnification, collimation, beam angulation, imaging mode, system geometry, distance, and shielding. Results: Real-time dose visualization enables clinical staff to directly see and learn how to optimize their use of their own fluoroscopy system to minimize patient and staff dose, yet maintain sufficient image quality for FGI. As a direct result of the class, multiple hospital departments have implemented changes to their imaging protocols, including reduction of the default fluoroscopy pulse rate and increased use of collimation and lower dose fluoroscopy modes. Conclusion: Hands-on fluoroscopy safety training substantially benefits from real-time patient and staff dosimetry incorporated into the class. Real-time dose display helps

  13. Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams

    DEFF Research Database (Denmark)

    Aznar, M.C.; Andersen, C.E.; Bøtter-Jensen, L.

    2004-01-01

    , real-time read-out and the ability to measure both dose rate and absorbed dose. The measurements describing reproducibility and output dependence on dose rate, field size and energy all had standard deviations smaller than 1%. The signal variation with the angle of incidence was smaller than 2% (1 SD......). Measurements performed in clinical situations suggest the potential of using this real-time system for in vivo dosimetry in radiotherapy....

  14. Teledosimetry: Personal and Area Dosimetry Control in order to evaluate the risk in real time

    International Nuclear Information System (INIS)

    Galan Montenegro, P.; Macias Jaen, J.; Bodineau Gil, C.; Sanchez Hidalgo, M.

    2004-01-01

    Telemedicine is now an essential part of Health care and so, in addition to the scientific programme in the Carlos Haya Hospital in Malaga, Physics Department is involved into a process of change about the vision as a new Health Centre of XXI Century: Knowledge Hospital, by digital architecture and digitally integrated in its world. The Integrating the Health care Enterprise is the model used in order to get a big grade of relationship between medical images and information system. This change must be done in colaboration between some Departments of our centre, because it is a multidisciplinary task. It is understood that Teledosimetry can be considered as an important part of Telemedicine in the Radiological Protection field for workers and general public. In order to get this objective, the first step since 2000 it has been to prepare the internal hospital network with personal dosimetry information. From here workers in our hospital can obtain their dosimetry information data in more than 300 computers and since 2003, from home too. For access, each one of all have got an user identification and a password and so it can be guaranteed the privacy. We transform dose data reported by CND (Dosimetry National Center) in a big and visible database in PHP4 and Javascript format. This process is marked of problems about all due to the big manipulated information. Our intention is to make a better and friendly control, customisable and in real-time of the information dosimetry by a modular monitoring system of electronic dosimeters by the web. These radiation detectors would be located in representatives places. (Author)

  15. Teledosimetry: Personal and Area Dosimetry Control in order to evaluate the risk in real time

    Energy Technology Data Exchange (ETDEWEB)

    Galan Montenegro, P.; Macias Jaen, J.; Bodineau Gil, C.; Sanchez Hidalgo, M.

    2004-07-01

    Telemedicine is now an essential part of Health care and so, in addition to the scientific programme in the Carlos Haya Hospital in Malaga, Physics Department is involved into a process of change about the vision as a new Health Centre of XXI Century: Knowledge Hospital, by digital architecture and digitally integrated in its world. The Integrating the Health care Enterprise is the model used in order to get a big grade of relationship between medical images and information system. This change must be done in colaboration between some Departments of our centre, because it is a multidisciplinary task. It is understood that Teledosimetry can be considered as an important part of Telemedicine in the Radiological Protection field for workers and general public. In order to get this objective, the first step since 2000 it has been to prepare the internal hospital network with personal dosimetry information. From here workers in our hospital can obtain their dosimetry information data in more than 300 computers and since 2003, from home too. For access, each one of all have got an user identification and a password and so it can be guaranteed the privacy. We transform dose data reported by CND (Dosimetry National Center) in a big and visible database in PHP4 and Javascript format. This process is marked of problems about all due to the big manipulated information. Our intention is to make a better and friendly control, customisable and in real-time of the information dosimetry by a modular monitoring system of electronic dosimeters by the web. These radiation detectors would be located in representatives places. (Author)

  16. In vivo real-time rectal wall dosimetry for prostate radiotherapy

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Cutajar, Dean L; Metcalfe, Peter E; Lerch, Michael L F; Tome, Wolfgang A; Rosenfeld, Anatoly B; Perevertaylo, Vladimir L

    2010-01-01

    Rectal balloons are used in external beam prostate radiotherapy to provide reproducible anatomy and rectal dose reductions. This is an investigation into the combination of a MOSFET radiation detector with a rectal balloon for real-time in vivo rectal wall dosimetry. The MOSFET used in the study is a radiation detector that provides a water equivalent depth of measurement of 70 μm. Two MOSFETs were combined in a face-to-face orientation. The reproducibility, sensitivity and angular dependence were measured for the dual MOSFET in a 6 MV photon beam. The dual MOSFET was combined with a rectal balloon and irradiated with hypothetical prostate treatments in a phantom. The anterior rectal wall dose was measured in real time and compared with the planning system calculated dose. The dual MOSFET showed angular dependence within ±2.5% in the azimuth and +2.5%/-4% in the polar axes. When compared with an ion chamber measurement in a phantom, the dual MOSFET agreed within 2.5% for a range of radiation path lengths and incident angles. The dual MOSFET had reproducible sensitivity for fraction sizes of 2-10 Gy. For the hypothetical prostate treatments the measured anterior rectal wall dose was 2.6 and 3.2% lower than the calculated dose for 3DCRT and IMRT plans. This was expected due to limitations of the dose calculation method used at the balloon cavity interface. A dual MOSFET combined with a commercial rectal balloon was shown to provide reproducible measurements of the anterior rectal wall dose in real time. The measured anterior rectal wall dose agreed with the expected dose from the treatment plan for 3DCRT and IMRT plans. The dual MOSFET could be read out in real time during the irradiation, providing the capability for real-time dose monitoring of the rectal wall dose during treatment.

  17. Feasibility study of the real-time IMRT dosimetry using a scintillation screen

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Wook; Yi, Byong Yong; Ko, Young Eun [Asan Medical Center, College of Medicine, University of Ulsan, Seoul (Korea, Republic of)] (and others)

    2004-03-15

    To study the feasibility of verifying real-time 2-D dose distribution measurement system with the scintillation screen for the quality assurance. The water phantom consisted of a scintillation screen (LANEX fast screen, Kodak, USA) that was axially located in the middle of an acrylic cylinder with a diameter of 25 cm. The charge-coupled device (CCD) camera was attached to the phantom in order to capture the visible light from the scintillation screen. To observe the dose distribution in real time, the intensity of the light from the scintillator was converted to a dosage. The isodose contours of the calculations from RTP and those of the measurements using the scintillation screen were compared for the arc therapy and the intensity modulated radiation therapy (IMRT). The kernel, expressed as a multiplication of two error functions, was obtained in order to correct the sensitivity of the CCD of the camera and the scintillation screen. When comparing the calculated isodose and measured isodose, a discrepancy of less than 8 mm in the high dose region was observed. Using the 2-D dosimetry system, the relationship between the light and the dosage could be found, and real-time verification of the dose distribution was feasible.

  18. Feasibility study of the real-time IMRT dosimetry using a scintillation screen

    International Nuclear Information System (INIS)

    Lim, Sang Wook; Yi, Byong Yong; Ko, Young Eun

    2004-01-01

    To study the feasibility of verifying real-time 2-D dose distribution measurement system with the scintillation screen for the quality assurance. The water phantom consisted of a scintillation screen (LANEX fast screen, Kodak, USA) that was axially located in the middle of an acrylic cylinder with a diameter of 25 cm. The charge-coupled device (CCD) camera was attached to the phantom in order to capture the visible light from the scintillation screen. To observe the dose distribution in real time, the intensity of the light from the scintillator was converted to a dosage. The isodose contours of the calculations from RTP and those of the measurements using the scintillation screen were compared for the arc therapy and the intensity modulated radiation therapy (IMRT). The kernel, expressed as a multiplication of two error functions, was obtained in order to correct the sensitivity of the CCD of the camera and the scintillation screen. When comparing the calculated isodose and measured isodose, a discrepancy of less than 8 mm in the high dose region was observed. Using the 2-D dosimetry system, the relationship between the light and the dosage could be found, and real-time verification of the dose distribution was feasible

  19. Development of real-time radiation exposure dosimetry system using synthetic ruby for interventional radiology

    International Nuclear Information System (INIS)

    Hosokai, Yoshiyuki; Win, Thet Pe; Muroi, Kenzo; Matsumoto, Kenki; Takahashi, Kaito; Usui, Akihito; Saito, Haruo; Kozakai, Masataka

    2017-01-01

    Interventional radiology (IVR) tends to involve long procedures, consequently delivering high radiation doses to the patient. Radiation-induced injuries that occur because of the effect of the high radiation doses are a considerable problem for those performing IVR. For example, skin injuries can include skin erythema if the skin is exposed to radiation doses beyond the threshold level of 2 Gy. One of the reasons for this type of injury is that the local skin dose cannot be monitored in real time. Although there are systems employed to measure the exposure dose, some do not work in real time (such as thermoluminescence dosimeters and fluorescent glass dosimeters), while certain real-time measurement systems that enter the field of view (such as patient skin dosimeters and dosimeters using a nontoxic phosphor) interfere with IVR. However, synthetic ruby has been shown to emit light in response to radiation. The luminous wavelength is 693 nm. It is possible to monitor the radiation dose by detecting the emitted light. However, small synthetic rubies emit a tiny amount of light that is difficult to detect using common systems such as photodiodes. A large enough synthetic ruby to increase the quantity of emitted light would however enter the field of view and interfere with the IVR procedure. Additionally, although a photodiode system could reduce the system size, the data is susceptible to effects from the X-rays and outside temperature. Therefore, use of a sensitive photon counting system as used in nuclear medicine could potentially have a beneficial effect in detecting the weak light signal. A real-time radiation exposure dosimetry system for use in IVR should be sufficiently sensitive, not interfere with the IVR procedure, and ideally have the possibility of development into a system that can provide simultaneous multipoint measurements. This article discusses the development of a realtime radiation exposure dosimetry system for use in IVR that employs a small

  20. Thermoluminescence in medical dosimetry

    International Nuclear Information System (INIS)

    Rivera, T.

    2011-10-01

    The dosimetry by thermoluminescence (Tl) is applied in the entire world for the dosimetry of ionizing radiations specially to personal and medical dosimetry. This dosimetry method has been very interesting for measures in vivo because the Tl dosimeters have the advantage of being very sensitive in a very small volume and they are also equivalent to tissue and they do not need additional accessories (for example, cable, electrometer, etc.) The main characteristics of the diverse Tl materials to be used in the radiation measures and practical applications are: the Tl curve, the share homogeneity, the signal stability after the irradiation, precision and exactitude, the response in function with the dose and the energy influence. In this work a brief summary of the advances of the radiations dosimetry is presented by means of the thermally stimulated luminescence and its application to the dosimetry in radiotherapy. (Author)

  1. Radiation protection of medical staff: a coordinated action by EURADOS on extremely dosimetry and the use of active personnel dosemeters (CONRAD)

    International Nuclear Information System (INIS)

    Struelens, L.; Vanhavere, F.

    2009-01-01

    subgroup of WG9 dealt specifically with the use of extremity dosemeters in medical radiation fields. Active personal dosimeters (APDs) are very efficient tools to monitor occupational doses in real time during exposure and provide selectable alarm levels to avoid high doses. Interventional radiology operators belong to a specific worker category, which would benefit from a real time, accurate assessment of their dose. Another subgroup dealt with the adequate dosimetry of scattered photons, using APDs. They must be able to respond to low-energy (10-100 keV) and pulsed radiation with relatively high instantaneous dose rates

  2. On line CALDose{sub X}: real time Monte Carlo calculation via Internet for dosimetry in radiodiagnostic; CALDose{sub X} online: Calculos de Monte Carlo em tempo real via Internet para dosimetria em radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Richard; Cassola, Vagner Ferreira; Lira, Carlos Alberto Brayner de Oliveira; Khoury, Helen Jamil, E-mail: rkramer@uol.com.b, E-mail: vagner.cassola@gmail.co [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Cavalcanti, Arthur; Lins, Rafael Dueire, E-mail: rdl@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Dept. de Eletronica e Sistemas

    2011-10-26

    The CALDose{sub X} 4.1 is a software which uses thr MASH and FASH phantoms. Patient dosimetry with reference phantoms is limited because the results can be applied only for patients which possess the same body mass and right height that the reference phantom. In this paper, the dosimetry of patients for diagnostic with X ray was extended by using a series of 18 phantoms with defined gender, different body masses and heights, in order to cover the real anatomy of the patients. It is possible to calculate absorbed doses in organs and tissues by real time Monte Carlo dosimetry through the Internet through a dosimetric service called CALDose{sub X} on line

  3. Real-time in vivo luminescence dosimetry in radiotherapy and mammography using Al2O3:C

    International Nuclear Information System (INIS)

    Aznar, M.C.

    2005-07-01

    New treatment and clinical imaging techniques have created a need for accurate and practical in vivo dosimeters in radiation medicine. This work describes the development of a new optical-fiber radiation dosimeter system, based on radioluminescence (RL) and optically stimulated luminescence (OSL) from carbon-doped aluminium oxide (Al2O3:C), for applications in radiotherapy and mammography. This system offers several features, such as a small detector, high sensitivity, real-time read-out, and the ability to measure both dose rate and absorbed dose. Measurement protocols and algorithms for the correction of responses were developed to enable a reliable absorbed dose assessment from the RL and OSL signals. At radiotherapy energies, the variation of the signal with beam parameters was smaller than 1% (1 SD). Treatment-like experiments in phantoms, and in vivo measurements during complex patient treatments (such as intensity-modulated radiation therapy) indicate that the RL/OSL dosimetry system can reliably measure the absorbed dose within 2%. The real-time RL signal also enables an individual dose assessment from each field. The RL/OSL dosimetry system was also used during mammography examinations. In such conditions, the reproducibility of the measurements showed to be around 3%. In vivo measurements on three patients showed that the presence of the RL/OSL probes did not degrade the diagnostic quality of the radiograph and that the system could be used to measure exit doses (i.e., absorbed doses on the inferior surface of the breast). A Monte Carlo study proved that the energy dependence of the RL/OSL system at these low energies could be reduced by optimizing the design of the probes. It is concluded that the new RL/OSL dosimetry system shows considerable potential for applications in both radiotherapy and mammography. (au)

  4. Medical radiation dosimetry with radiochromic film

    International Nuclear Information System (INIS)

    Butson, M.J.; Cancer Services, NSW; Cheung, T.; Yu, P.K.N.; Metcalfe, P.

    2004-01-01

    Full text: Photon, electron and proton radiation are used extensively for medical purposes in diagnostic and therapeutic procedures. Dosimetry of these radiation sources can be performed with radiochromic films, devices that have the ability to produce a permanent visible colour change upon irradiation. Within the last ten years, the use of radiochromic films has expanded rapidly in the medical world due to commercial products becoming more readily available, higher sensitivity films and technology advances in imaging which have allowed scientists to use two-dimensional dosimetry more accurately and inexpensively. Radiochromic film dosimeters are now available in formats, which have accurate dose measurement ranges from less than 1 Gy up to many kGy. A relatively energy independent dose response combined with automatic development of radiochromic film products has made these detectors most useful in medical radiation dosimetry. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  5. Medical reference dosimetry using EPR measurements of alanine

    DEFF Research Database (Denmark)

    Helt-Hansen, Jakob; Rosendal, F.; Kofoed, I.M.

    2009-01-01

    Background. Electron spin resonance (EPR) is used to determine the absorbed dose of alanine dosimeters exposed to clinical photon beams in a solid-water phantom. Alanine is potentially suitable for medical reference dosimetry, because of its near water equivalence over a wide energy spectrum, low...... methods the proposed algorithm can be applied without normalisation of phase shifts caused by changes in the g-value of the cavity. The study shows that alanine dosimetry is a suitable candidate for medical reference dosimetry especially for quality control applications.......Background. Electron spin resonance (EPR) is used to determine the absorbed dose of alanine dosimeters exposed to clinical photon beams in a solid-water phantom. Alanine is potentially suitable for medical reference dosimetry, because of its near water equivalence over a wide energy spectrum, low...

  6. Time-gated scintillator imaging for real-time optical surface dosimetry in total skin electron therapy

    Science.gov (United States)

    Bruza, Petr; Gollub, Sarah L.; Andreozzi, Jacqueline M.; Tendler, Irwin I.; Williams, Benjamin B.; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.

    2018-05-01

    The purpose of this study was to measure surface dose by remote time-gated imaging of plastic scintillators. A novel technique for time-gated, intensified camera imaging of scintillator emission was demonstrated, and key parameters influencing the signal were analyzed, including distance, angle and thickness. A set of scintillator samples was calibrated by using thermo-luminescence detector response as reference. Examples of use in total skin electron therapy are described. The data showed excellent room light rejection (signal-to-noise ratio of scintillation SNR  ≈  470), ideal scintillation dose response linearity, and 2% dose rate error. Individual sample scintillation response varied by 7% due to sample preparation. Inverse square distance dependence correction and lens throughput error (8% per meter) correction were needed. At scintillator-to-source angle and observation angle  <50°, the radiant energy fluence error was smaller than 1%. The achieved standard error of the scintillator cumulative dose measurement compared to the TLD dose was 5%. The results from this proof-of-concept study documented the first use of small scintillator targets for remote surface dosimetry in ambient room lighting. The measured dose accuracy renders our method to be comparable to thermo-luminescent detector dosimetry, with the ultimate realization of accuracy likely to be better than shown here. Once optimized, this approach to remote dosimetry may substantially reduce the time and effort required for surface dosimetry.

  7. Dosimetry optimization at COGEMA-La Hague

    International Nuclear Information System (INIS)

    Kalimbadjian, J.

    2000-01-01

    At the present time, the la Hague site strives to apply international recommendations together with national regulations concerning radiation protection, and especially the respect of limitation and optimization principles. The application of these principles is based on the implementation of a passive dosimetry and an active dosimetry. The monthly passive dosimetry is monitored by means of a photographic dosimetry film, completed with lithium fluorine thermoluminescent film badges. This personal dosimetry common to X, β, γ and neutron radiations is carried out in close relationship between the Radiation Protection Department, the Occupational Medical Department and the staff running the Plant. The application or ALARA's principle as well as that of radiation protection optimization implies to implement a complementary active dosimetry enabling to gain in real time, the personal dosimetry of each intervening person, either they be COGEMA's workers or external companies'. This active dosimetry provides with following information: This preventive dosimetry is based on the knowledge of doses integration in real time and is fitted with alarm thresholds according to the total amount of doses and dose rates. Thresholds on the dose rate are also set relatively to the radiological environment. This knowledge of doses and dose rates allows a stricter management of the works, while analyzing them according to the nature of the work, to the location and to the skills of the intervening people. This dosimetry allows to analyze and optimize doses integration according to the works nature for the whole intervening staff. The la Hague Site has developed an active personal dosimetry system, common to every intervening person, COGEMA or external companies. The DOSICARD was thus elaborated, shaped as an electronic dosimeter fitted with an alarm and a smart card. The access to controlled areas is conditioned to information given by the DOSICARD concerning medical aptitudes and

  8. Student Perceptions of an Online Medical Dosimetry Program

    International Nuclear Information System (INIS)

    Lenards, Nishele

    2011-01-01

    The University of Wisconsin-La Crosse offers the first online medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was a need to collect and analyze student perceptions of online learning in medical dosimetry. This research provided a guide for future implementation by other programs as well as validated the University of Wisconsin-La Crosse program. Methodology used consisted of an electronic survey sent to all previous and currently enrolled students in the University of Wisconsin-La Crosse medical dosimetry program. The survey was both quantitative and qualitative in demonstrating attitudinal perceptions of students in the program. Quantitative data was collected and analyzed using a 5-point Likert scale. Qualitative data was gathered based on the open-ended responses and the identifying themes from the responses. The results demonstrated an overall satisfaction with this program, the instructor, and the online courses. Students felt a sense of belonging to the courses and the program. Considering that a majority of the students had never taken an online course previously, the students felt there were no technology issues. Future research should include an evaluation of board exam statistics for students enrolled in the online and face-to-face medical dosimetry programs.

  9. Accuracy Requirements in Medical Radiation Dosimetry

    International Nuclear Information System (INIS)

    Andreo, P.

    2011-01-01

    The need for adopting unambiguous terminology on 'accuracy in medical radiation dosimetry' which is consistent with international recommendations for metrology is emphasized. Uncertainties attainable, or the need for improving their estimates, are analysed for the fields of radiotherapy, diagnostic radiology and nuclear medicine dosimetry. This review centres on uncertainties related to the first step of the dosimetry chain in the three fields, which in all cases involves the use of a detector calibrated by a standards laboratory to determine absorbed dose, air kerma or activity under reference conditions in a clinical environment. (author)

  10. Occupational dosimetry in real time hemodynamic rooms. utility of the system Dose-aware as a training tool

    International Nuclear Information System (INIS)

    Pinto Monedero, M.; Rodriguez Cobo, C.; Pifarre Martinez, X.; Ruiz Martin, J.; Barros Candelero, J. M.; Goicolea Ruigomez, J.; Diaz Blaires, G.; Garcia Lunar

    2014-01-01

    This paper presents the results from a study in a real time dosimetry system used in the catheter laboratory room of our center. The objective was to know the occupational doses per procedure, on the one hand, and, on the other hand, to evaluate its utility as a learning tool for radiation protection purposes with the simultaneous video recording of the interventions. 83 diagnostic and therapeutic procedures were analyzed, and an average dose per procedure of 0,37 μSv and 0,10 μSv for the main cardiologist and nurse were obtained, respectively. 36 of these interventions were also recorded and the images were synchronized with the dosimetric information stored and the dosimetry system. The findings were presented to the interventional cardiology team in a learning session. They showed a high level of satisfaction with this new method of optimizing the occupational doses through a customized learning session. (Author)

  11. Relationship between student selection criteria and learner success for medical dosimetry students

    International Nuclear Information System (INIS)

    Baker, Jamie; Tucker, Debra; Raynes, Edilberto; Aitken, Florence; Allen, Pamela

    2016-01-01

    Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees) and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student's previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant's undergraduate cumulative GPA and increase the weight assigned to previous degrees.

  12. Relationship between student selection criteria and learner success for medical dosimetry students

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Jamie, E-mail: jabaker@mdanderson.org [Medical Dosimetry Program, School of Health Professions, The University of Texas MD Anderson Cancer Center School of Health Professions, Houston, TX (United States); Tucker, Debra [Arizona State University, Phoenix, AZ (United States); Raynes, Edilberto [University of Phoenix, Phoenix, AZ (United States); Aitken, Florence [University of Nevada, Las Vegas, NV (United States); Allen, Pamela [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2016-04-01

    Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees) and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student's previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant's undergraduate cumulative GPA and increase the weight assigned to previous degrees.

  13. Real-time in vivo luminescence dosimetry in radiotherapy and mammography using Al{sub 2}O{sub 3}:C

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.C.

    2005-06-15

    New treatment and clinical imaging techniques have created a need for accurate and practical in vivo dosimeters in radiation medicine. This work describes the development of a new optical-fiber radiation dosimeter system, based on radioluminescence (RL) and optically stimulated luminescence (OSL) from carbon-doped aluminium oxide (Al2O3:C), for applications in radiotherapy and mammography. This system offers several features, such as a small detector, high sensitivity, real-time read-out, and the ability to measure both dose rate and absorbed dose. Measurement protocols and algorithms for the correction of responses were developed to enable a reliable absorbed dose assessment from the RL and OSL signals. At radiotherapy energies, the variation of the signal with beam parameters was smaller than 1% (1 SD). Treatment-like experiments in phantoms, and in vivo measurements during complex patient treatments (such as intensity-modulated radiation therapy) indicate that the RL/OSL dosimetry system can reliably measure the absorbed dose within 2%. The real-time RL signal also enables an individual dose assessment from each field. The RL/OSL dosimetry system was also used during mammography examinations. In such conditions, the reproducibility of the measurements showed to be around 3%. In vivo measurements on three patients showed that the presence of the RL/OSL probes did not degrade the diagnostic quality of the radiograph and that the system could be used to measure exit doses (i.e., absorbed doses on the inferior surface of the breast). A Monte Carlo study proved that the energy dependence of the RL/OSL system at these low energies could be reduced by optimizing the design of the probes. It is concluded that the new RL/OSL dosimetry system shows considerable potential for applications in both radiotherapy and mammography. (au)

  14. Relationship between student selection criteria and learner success for medical dosimetry students.

    Science.gov (United States)

    Baker, Jamie; Tucker, Debra; Raynes, Edilberto; Aitken, Florence; Allen, Pamela

    2016-01-01

    Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees) and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student׳s previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant׳s undergraduate cumulative GPA and increase the weight assigned to previous degrees. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  15. Improved real-time dosimetry using the radioluminescence signal from Al2O3:C

    International Nuclear Information System (INIS)

    Damkjaer, S.M.S.; Andersen, C.E.; Aznar, M.C.

    2008-01-01

    Carbon-doped aluminum oxide (Al 2 O 3 :C) is a highly sensitive luminescence material for ionizing radiation dosimetry, and it is well established that the optically stimulated luminescence (OSL) signal from Al 2 O 3 :C can be used for absorbed-dose measurements. During irradiation, Al 2 O 3 :C also emits prompt radioluminescence (RL) which allows for real-time dose verification. The RL-signal is not linear in the absorbed dose due to sensitivity changes and the presence of shallow traps. Despite this the signal can be processed to obtain a reliable dose rate signal in real time. Previously a simple algorithm for correcting the RL-signal has been published and here we report two improvements: a better and more stable calibration method which is independent of a reference dose rate and a correction for the effect of the shallow traps. Good agreement was found between reference doses and doses derived from the RL-signal using the new algorithm (the standard deviation of the residuals were ∼2% including phantom positioning errors). The RL-algorithm was found to greatly reduce the influence of shallow traps in the range from 0 to 3 Gy and the RL dose-rate measurements with a time resolution of 0.1 s closely matched dose-rate changes monitored with an ionization chamber

  16. Real-Time In Vivo Dosimetry With MOSFET Detectors in Serial Tomotherapy for Head and Neck Cancer Patients

    International Nuclear Information System (INIS)

    Qi Zhenyu; Deng Xiaowu; Huang Shaomin; Shiu, Almon; Lerch, Michael; Metcalfe, Peter; Rosenfeld, Anatoly; Kron, Tomas

    2011-01-01

    Purpose: A real-time dose verification method using a recently designed metal oxide semiconductor field effect transistor (MOSFET) dosimetry system was evaluated for quality assurance (QA) of intensity-modulated radiation therapy (IMRT). Methods and Materials: Following the investigation of key parameters that might affect the accuracy of MOSFET measurements (i.e., source surface distance [SSD], field size, beam incident angles and radiation energy spectrum), the feasibility of this detector in IMRT dose verification was demonstrated by comparison with ion chamber measurements taken in an IMRT QA phantom. Real-time in vivo measurements were also performed with the MOSFET system during serial tomotherapy treatments administered to 8 head and neck cancer patients. Results: MOSFET sensitivity did not change with SSD. For field sizes smaller than 20 x 20 cm 2 , MOFET sensitivity varied within 1.0%. The detector angular response was isotropic within 2% over 360 o , and the observed sensitivity variation due to changes in the energy spectrum was negligible in 6-MV photons. MOSFET system measurements and ion chamber measurements agreed at all points in IMRT phantom plan verification, within 5%. The mean difference between 48 IMRT MOSFET-measured doses and calculated values in 8 patients was 3.33% and ranged from -2.20% to 7.89%. More than 90% of the total measurements had deviations of less than 5% from the planned doses. Conclusion: The MOSFET dosimetry system has been proven to be an effective tool in evaluating the actual dose within individual patients during IMRT treatment.

  17. Real-time in vivo dosimetry with MOSFET detectors in serial tomotherapy for head and neck cancer patients.

    Science.gov (United States)

    Qi, Zhen-Yu; Deng, Xiao-Wu; Huang, Shao-Min; Shiu, Almon; Lerch, Michael; Metcalfe, Peter; Rosenfeld, Anatoly; Kron, Tomas

    2011-08-01

    A real-time dose verification method using a recently designed metal oxide semiconductor field effect transistor (MOSFET) dosimetry system was evaluated for quality assurance (QA) of intensity-modulated radiation therapy (IMRT). Following the investigation of key parameters that might affect the accuracy of MOSFET measurements (i.e., source surface distance [SSD], field size, beam incident angles and radiation energy spectrum), the feasibility of this detector in IMRT dose verification was demonstrated by comparison with ion chamber measurements taken in an IMRT QA phantom. Real-time in vivo measurements were also performed with the MOSFET system during serial tomotherapy treatments administered to 8 head and neck cancer patients. MOSFET sensitivity did not change with SSD. For field sizes smaller than 20 × 20 cm(2), MOFET sensitivity varied within 1.0%. The detector angular response was isotropic within 2% over 360°, and the observed sensitivity variation due to changes in the energy spectrum was negligible in 6-MV photons. MOSFET system measurements and ion chamber measurements agreed at all points in IMRT phantom plan verification, within 5%. The mean difference between 48 IMRT MOSFET-measured doses and calculated values in 8 patients was 3.33% and ranged from -2.20% to 7.89%. More than 90% of the total measurements had deviations of less than 5% from the planned doses. The MOSFET dosimetry system has been proven to be an effective tool in evaluating the actual dose within individual patients during IMRT treatment. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Real time monitoring of electron processors

    International Nuclear Information System (INIS)

    Nablo, S.V.; Kneeland, D.R.; McLaughlin, W.L.

    1995-01-01

    A real time radiation monitor (RTRM) has been developed for monitoring the dose rate (current density) of electron beam processors. The system provides continuous monitoring of processor output, electron beam uniformity, and an independent measure of operating voltage or electron energy. In view of the device's ability to replace labor-intensive dosimetry in verification of machine performance on a real-time basis, its application to providing archival performance data for in-line processing is discussed. (author)

  19. Real-time image mosaicing for medical applications.

    Science.gov (United States)

    Loewke, Kevin E; Camarillo, David B; Jobst, Christopher A; Salisbury, J Kenneth

    2007-01-01

    In this paper we describe the development of a robotically-assisted image mosaicing system for medical applications. The processing occurs in real-time due to a fast initial image alignment provided by robotic position sensing. Near-field imaging, defined by relatively large camera motion, requires translations as well as pan and tilt orientations to be measured. To capture these measurements we use 5-d.o.f. sensing along with a hand-eye calibration to account for sensor offset. This sensor-based approach speeds up the mosaicing, eliminates cumulative errors, and readily handles arbitrary camera motions. Our results have produced visually satisfactory mosaics on a dental model but can be extended to other medical images.

  20. Real-time dosimetry system in catheterisation laboratory: utility as a learning tool in radiation protection

    International Nuclear Information System (INIS)

    Pinto Monedero, M.; Rodriguez Cobo, C.; Pifarre Martinez, X.; Ruiz Martin, J.; Barros Candelero, J.M.; Goicolea Ruigomez, J.; Diaz Blaires, G.; Garcia Lunar, I.

    2015-01-01

    Document available in abstract form only. Full text of publication follows: Workers at the catheter laboratory are among the most exposed to ionising radiation in hospitals. However, it is difficult to be certain of the radiation doses received by the staff, as personal dosemeters are often misused, and thus, the dose history is not reliable. Moreover, the information provided by personal dosemeters corresponds to the monthly accumulated dose, so corrective actions tends to be delayed. The purpose of this work is, on the one hand, to use a real-time dosimetry system to establish the occupational doses per procedure of workers at the catheter laboratories and, on the other hand, to evaluate its utility as a learning tool for radiation protection purposes with the simultaneous video recording of the interventions. (authors)

  1. Thermoluminescence in medical dosimetry; Termoluminiscencia en dosimetria medica

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, T., E-mail: trivera@ipn.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2011-10-15

    The dosimetry by thermoluminescence (Tl) is applied in the entire world for the dosimetry of ionizing radiations specially to personal and medical dosimetry. This dosimetry method has been very interesting for measures in vivo because the Tl dosimeters have the advantage of being very sensitive in a very small volume and they are also equivalent to tissue and they do not need additional accessories (for example, cable, electrometer, etc.) The main characteristics of the diverse Tl materials to be used in the radiation measures and practical applications are: the Tl curve, the share homogeneity, the signal stability after the irradiation, precision and exactitude, the response in function with the dose and the energy influence. In this work a brief summary of the advances of the radiations dosimetry is presented by means of the thermally stimulated luminescence and its application to the dosimetry in radiotherapy. (Author)

  2. Is intraoperative real-time dosimetry in prostate seed brachytherapy predictive of biochemical outcome?

    Directory of Open Access Journals (Sweden)

    Daniel Taussky

    2017-06-01

    Full Text Available Purpose : To analyze intraoperative (IO dosimetry using transrectal ultrasound (TRUS, performed before and after prostate low-dose-rate brachytherapy (LDR-BT, and compare it to dosimetry performed 30 days following the LDR-BT implant (Day 30. Material and methods : A total of 236 patients underwent prostate LDR-BT using 125 I that was performed with a three-dimensional TRUS-guided interactive inverse preplanning system (preimplant dosimetry. After the implant procedure, the TRUS was repeated in the operating room, and the dosimetry was recalculated (postimplant dosimetry and compared to dosimetry on Day 30 computed tomography (CT scans. Area under curve (AUC statistics was used for models predictive of dosimetric parameters at Day 30. Results : The median follow-up for patients without BF was 96 months, the 5-year and 8-year biochemical recurrence (BR-free rate was 96% and 90%, respectively. The postimplant median D 90 was 3.8 Gy lower (interquartile range [IQR], 12.4-0.9, and the V 100 only 1% less (IQR, 2.9-0.2% than the preimplant dosimetry. When comparing the postimplant and the Day 30 dosimetries, the postimplant median D 90 was 9.6 Gy higher (IQR [–] 9.5-30.3 Gy, and the V 100 was 3.2% greater (0.2-8.9% than Day 30 postimplant dosimetry. The variables that best predicted the D 90 of Day 30 was the postimplant D 90 (AUC = 0.62, p = 0.038. None of the analyzed values for IO or Day 30 dosimetry showed any predictive value for BR. Conclusions : Although improving the IO preimplant and postimplant dosimetry improved dosimetry on Day 30, the BR-free rate was not dependent on any dosimetric parameter. Unpredictable factors such as intraprostatic seed migration and IO factors, prevented the accurate prediction of Day 30 dosimetry.

  3. Optical Real-Time Space Radiation Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Real-time dosimetry is needed to provide immediate feedback, so astronauts can minimize their exposure to ionizing radiation during periods of high solar activity....

  4. A real-time intercepting beam-profile monitor for a medical cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Hendriks, C.; Uittenbosch, T.; Cameron, D.; Kellogg, S.; Gray, D.; Buckley, K.; Schaffer, P.; Verzilov, V.; Hoehr, C. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada)

    2013-11-15

    There is a lack of real-time continuous beam-diagnostic tools for medical cyclotrons due to high power deposition during proton irradiation. To overcome this limitation, we have developed a profile monitor that is capable of providing continuous feedback about beam shape and current in real time while it is inserted in the beam path. This enables users to optimize the beam profile and observe fluctuations in the beam over time with periodic insertion of the monitor.

  5. Overview of dosimetry methods used in medical exposure

    International Nuclear Information System (INIS)

    Ninsiima, Lynn

    2016-04-01

    Medical exposure is the highest means of contribution of ionizing radiation to humans. The different modalities in medical exposure present a high risk to the human body as a result of the dose associated with them. However, with the knowledge of the available dosimetry techniques, medical exposure can be highly beneficial to the patients involved. This project provides an overview of the available dosimetry methods in all the medical exposure modalities and the dosimetric quantities required in order to estimate the dose received by the patients in a bid to keep it as low as reasonably achievable yet with the required diagnostic image quality and treatment being availed. With the knowledge about the dosimetric techniques, required qualification and appropriate training of the workers in the medical field together with the principles of justification and optimization of the procedures, both the medical practitioners and the patients are able to achieve the required goal, diagnosis and treatment at the end of the day. (au)

  6. Medical Device Integrated Vital Signs Monitoring Application with Real-Time Clinical Decision Support.

    Science.gov (United States)

    Moqeem, Aasia; Baig, Mirza; Gholamhosseini, Hamid; Mirza, Farhaan; Lindén, Maria

    2018-01-01

    This research involves the design and development of a novel Android smartphone application for real-time vital signs monitoring and decision support. The proposed application integrates market available, wireless and Bluetooth connected medical devices for collecting vital signs. The medical device data collected by the app includes heart rate, oxygen saturation and electrocardiograph (ECG). The collated data is streamed/displayed on the smartphone in real-time. This application was designed by adopting six screens approach (6S) mobile development framework and focused on user-centered approach and considered clinicians-as-a-user. The clinical engagement, consultations, feedback and usability of the application in the everyday practices were considered critical from the initial phase of the design and development. Furthermore, the proposed application is capable to deliver rich clinical decision support in real-time using the integrated medical device data.

  7. Improved real-time dosimetry using the radioluminescence signal from Al2O3:C

    DEFF Research Database (Denmark)

    Damkjær, Sidsel Marie Skov; Andersen, Claus Erik; Aznar, Marianne

    2008-01-01

    15th International Conference on Solid State Dosimetry Location: Delft Univ Technol, Delft, NETHERLANDS Date: JUL 08-13, 2007 Abstract: Carbon-doped aluminum oxide (Al2O3:C) is a highly sensitive luminescence material for ionizing radiation dosimetry, and it is well established that the optically...... to greatly reduce the influence of shallow traps in the range from 0 to 3 Gy and the RL dose-rate measurements with a time resolution of 0. 1 s closely matched dose-rate changes monitored with in ionization chamber. (c) 2007 Elsevier Ltd. All rights reserved....

  8. Application of EGS and ETRAN to Problems in Medical Physics and Dosimetry

    CERN Document Server

    Nelson, W R

    1980-01-01

    The author looks at a few applications of Monte Carlo programs to problems of interest in medical physics and dosimetry. In particular, two areas are considered: 1) bremsstrahlung production from medical accelerators; 2) photon dosimetry at medium to low energies. (16 refs) .

  9. 100 years of solid state dosimetry and radiation protection dosimetry

    International Nuclear Information System (INIS)

    Bartlett, David T.

    2008-01-01

    The use of solid state detectors in radiation dosimetry has passed its 100th anniversary. The major applications of these detectors in radiation dosimetry have been in personal dosimetry, retrospective dosimetry, dating, medical dosimetry, the characterization of radiation fields, and also in microdosimetry and radiobiology research. In this introductory paper for the 15th International Conference, I shall speak of the history of solid state dosimetry and of the radiation measurement quantities that developed at the same time, mention some landmark developments in detectors and applications, speak a bit more about dosimetry and measurement quantities, and briefly look at the past and future

  10. Field dosimetry on sterilization area of medical-hospitable materials

    International Nuclear Information System (INIS)

    Mariano, C.S.T.P.; Campos, L.L.

    1992-01-01

    The calcium sulfate doped with dysprosium, used in high dose dosimetry by electron paramagnetic resonance (EPR), is studied on field dosimetry for medical-hospitable materials sterilization. The calibration curves of EPR signal in function of absorbed dose in air and the thermal decay of EPR signal at room temperature are also presented. (C.G.C)

  11. Radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Xu Zhiyong

    2002-01-01

    Radiochromic film dosimetry was developed to measure ionization irradiation dose for industry and medicine. At this time, there are no comprehensive guideline on the medical application, calibration method and densitometer system for medicine. The review gives update on Radiochromic film dosimetry used for medicine, including principles, film model and material, characteristics, calibration method, scanning densitometer system and medical application

  12. The Future of Medical Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Robert D., E-mail: robert_adams@med.unc.edu

    2015-07-01

    The world of health care delivery is becoming increasingly complex. The purpose of this manuscript is to analyze current metrics and analytically predict future practices and principles of medical dosimetry. The results indicate five potential areas precipitating change factors: a) evolutionary and revolutionary thinking processes, b) social factors, c) economic factors, d) political factors, and e) technological factors. Outcomes indicate that significant changes will occur in the job structure and content of being a practicing medical dosimetrist. Discussion indicates potential variables that can occur within each process and change factor and how the predicted outcomes can deviate from normative values. Finally, based on predicted outcomes, future opportunities for medical dosimetrists are given.

  13. The Real-Time Dose Measurement Scintillating Fiber Array for Brachytherapy Procedures

    Science.gov (United States)

    Tynes, Lawrence

    2007-03-01

    Brachytherapy is a treatment modality that uses tiny radioactive sources (few mm in length) by delivering enough doses to kill cancer tumors or plaque build-up. The type of sources used in hospitals include both gamma and beta emitters. Presently, the technique suffers from not having a single detector with the capability of providing accurate dose distribution information within sub-mm accuracy. The current standard is based primarily on well chambers and film dosimetry. The Center for Advanced Medical Instrumentation (CAMI) at Hampton University is developing a Scintillating Fiber Based Beta Detector prototype in collaboration with the National Institute for Standards and Technology (NIST) to address this problem. The device is composed of an array of 1x1 mm^2 scintillating fibers optically coupled to photo-multiplier tubes for photon-to-current conversion. A CAMAC LabView based data acquisition system is used for real time data collection and histogramming, data analysis. A set of data were collected at the nearby Bon Secours DePaul Medical Center using a GammaMed 12i HDR after-loader housing a 6.62 mCi Ir-192 source. Preliminary comparison between our device and film dosimetry will be discussed.

  14. Real-time in vivo rectal wall dosimetry using plastic scintillation detectors for patients with prostate cancer

    Science.gov (United States)

    Wootton, Landon; Kudchadker, Rajat; Lee, Andrew; Beddar, Sam

    2014-02-01

    We designed and constructed an in vivo dosimetry system using plastic scintillation detectors (PSDs) to monitor dose to the rectal wall in patients undergoing intensity-modulated radiation therapy for prostate cancer. Five patients were enrolled in an Institutional Review Board-approved protocol for twice weekly in vivo dose monitoring with our system, resulting in a total of 142 in vivo dose measurements. PSDs were attached to the surface of endorectal balloons used for prostate immobilization to place the PSDs in contact with the rectal wall. Absorbed dose was measured in real time and the total measured dose was compared with the dose calculated by the treatment planning system on the daily computed tomographic image dataset. The mean difference between measured and calculated doses for the entire patient population was -0.4% (standard deviation 2.8%). The mean difference between daily measured and calculated doses for each patient ranged from -3.3% to 3.3% (standard deviation ranged from 5.6% to 7.1% for four patients and was 14.0% for the last, for whom optimal positioning of the detector was difficult owing to the patient's large size). Patients tolerated the detectors well and the treatment workflow was not compromised. Overall, PSDs performed well as in vivo dosimeters, providing excellent accuracy, real-time measurement and reusability.

  15. A real-time assessment of factors influencing medication events.

    Science.gov (United States)

    Dollarhide, Adrian W; Rutledge, Thomas; Weinger, Matthew B; Fisher, Erin Stucky; Jain, Sonia; Wolfson, Tanya; Dresselhaus, Timothy R

    2014-01-01

    Reducing medical error is critical to improving the safety and quality of healthcare. Physician stress, fatigue, and excessive workload are performance-shaping factors (PSFs) that may influence medical events (actual administration errors and near misses), but direct relationships between these factors and patient safety have not been clearly defined. This study assessed the real-time influence of emotional stress, workload, and sleep deprivation on self-reported medication events by physicians in academic hospitals. During an 18-month study period, 185 physician participants working at four university-affiliated teaching hospitals reported medication events using a confidential reporting application on handheld computers. Emotional stress scores, perceived workload, patient case volume, clinical experience, total sleep, and demographic variables were also captured via the handheld computers. Medication event reports (n = 11) were then correlated with these demographic and PSFs. Medication events were associated with 36.1% higher perceived workload (p sleep (p = .10). These results confirm the effect of factors influencing medication events, and support attention to both provider and hospital environmental characteristics for improving patient safety. © 2013 National Association for Healthcare Quality.

  16. Real-Time Implementation of Medical Ultrasound Strain Imaging System

    International Nuclear Information System (INIS)

    Jeong, Mok Kun; Kwon, Sung Jae; Bae, Moo Ho

    2008-01-01

    Strain imaging in a medical ultrasound imaging system can differentiate the cancer or tumor in a lesion that is stiffer than the surrounding tissue. In this paper, a strain imaging technique using quasistatic compression is implemented that estimates the displacement between pre- and postcompression ultrasound echoes and obtains strain by differentiating it in the spatial direction. Displacements are computed from the phase difference of complex baseband signals obtained using their autocorrelation, and errors associated with converting the phase difference into time or distance are compensated for by taking into the center frequency variation. Also, to reduce the effect of operator's hand motion, the displacements of all scanlines are normalized with the result that satisfactory strain image quality has been obtained. These techniques have been incorporated into implementing a medical ultrasound strain imaging system that operates in real time.

  17. Real-time Medical Emergency Response System: Exploiting IoT and Big Data for Public Health.

    Science.gov (United States)

    Rathore, M Mazhar; Ahmad, Awais; Paul, Anand; Wan, Jiafu; Zhang, Daqiang

    2016-12-01

    Healthy people are important for any nation's development. Use of the Internet of Things (IoT)-based body area networks (BANs) is increasing for continuous monitoring and medical healthcare in order to perform real-time actions in case of emergencies. However, in the case of monitoring the health of all citizens or people in a country, the millions of sensors attached to human bodies generate massive volume of heterogeneous data, called "Big Data." Processing Big Data and performing real-time actions in critical situations is a challenging task. Therefore, in order to address such issues, we propose a Real-time Medical Emergency Response System that involves IoT-based medical sensors deployed on the human body. Moreover, the proposed system consists of the data analysis building, called "Intelligent Building," depicted by the proposed layered architecture and implementation model, and it is responsible for analysis and decision-making. The data collected from millions of body-attached sensors is forwarded to Intelligent Building for processing and for performing necessary actions using various units such as collection, Hadoop Processing (HPU), and analysis and decision. The feasibility and efficiency of the proposed system are evaluated by implementing the system on Hadoop using an UBUNTU 14.04 LTS coreTMi5 machine. Various medical sensory datasets and real-time network traffic are considered for evaluating the efficiency of the system. The results show that the proposed system has the capability of efficiently processing WBAN sensory data from millions of users in order to perform real-time responses in case of emergencies.

  18. Online in vivo dosimetry in conformal radio therapies with MOSkin detectors

    International Nuclear Information System (INIS)

    Gambarini, G.; Tenconi, C.; Mantaut, N.; Carrara, M.; Borroni, M.; Pignoli, E.; Cutajar, D.; Petasecca, M.; Fuduli, I.; Lerch, M.; Rosenfeld, A.

    2012-10-01

    A novel MOSFET based dosimeter, the MOSkin, has been developed at the Centre for Medical Radiation Physics, University of Wollongong (Australia). This dosimeter is designed with suitable packaging that allows skin dose measurements at depths of 0.07 mm, as recommended by the ICRP. Initially proposed for real-time skin dose measurement, it is now studied for real-time in vivo dosimetry during high dose rate (Hdr) brachytherapy and intensity modulated radiotherapy. MOSkin detectors have shown good characteristics of reproducibility and linearity. Experiments performed with the 192 Ir source of a Hdr brachytherapy facility have shown negligible energy response for photons from the Ir-192 source. The angular response is within the experimental error when used in a dual-MOSkin configuration. In this work, urethral dose measurements were performed in a tissue-equivalent phantom reproducing prostate brachytherapy treatments. The obtained urethral doses were compared to the dose values calculated by the treatment planning system and the discrepancy was found to be within 4%, showing that dual-MOSkin detectors can be profitably utilized for real-time in vivo dosimetry during a brachytherapy treatment. (Author)

  19. Developments in physical dosimetry and radiation protection; Entwicklungen in der physikalischen Dosimetrie im Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Fiebich, Martin [Technische Hochschule Mittelhessen, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2017-07-01

    In the frame of physical dosimetry new dose units have been defined: the depth personal dose (equivalent dose in 10 mm depth) and the surface personal dose (equivalent dose in 0.07 mm depth). Physical dosimetry is applied for the determination of occupational radiation exposure, the radiation protected area control, the estimation of radiation exposure of patients during radiotherapy, for quality assurance and in research projects and optimization challenges. Developments have appeared with respect to punctual measuring chambers, eye lens dosimetry, OSL (optically stimulated luminescence) dosimetry, real-time dosimetry and Monte Carlo methods. New detection limits of about 1 micro Gy were reached.

  20. Platform for Automated Real-Time High Performance Analytics on Medical Image Data.

    Science.gov (United States)

    Allen, William J; Gabr, Refaat E; Tefera, Getaneh B; Pednekar, Amol S; Vaughn, Matthew W; Narayana, Ponnada A

    2018-03-01

    Biomedical data are quickly growing in volume and in variety, providing clinicians an opportunity for better clinical decision support. Here, we demonstrate a robust platform that uses software automation and high performance computing (HPC) resources to achieve real-time analytics of clinical data, specifically magnetic resonance imaging (MRI) data. We used the Agave application programming interface to facilitate communication, data transfer, and job control between an MRI scanner and an off-site HPC resource. In this use case, Agave executed the graphical pipeline tool GRAphical Pipeline Environment (GRAPE) to perform automated, real-time, quantitative analysis of MRI scans. Same-session image processing will open the door for adaptive scanning and real-time quality control, potentially accelerating the discovery of pathologies and minimizing patient callbacks. We envision this platform can be adapted to other medical instruments, HPC resources, and analytics tools.

  1. Telepositional portable real time radiation monitoring system

    International Nuclear Information System (INIS)

    Talpalariu, Jeni; Matei, Corina; Popescu, Oana

    2010-01-01

    Technology development for complex portable networks is on going to meet the area dosimetry challenge, improving the basic design using new telepositional GPS satellite methods and GSM terrestrial civil radio transmission networks. The system and devices proposed overcome the limitations of fixed and portable dosimeters, providing wireless real time radiations data and geospatial information's means, using many portable dosimeter stations and a mobile dosimeter computerised central console. (authors)

  2. Online in vivo dosimetry in conformal radio therapies with MOSkin detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Tenconi, C.; Mantaut, N. [Universita degli Studi di Milano, Department of Physics, Via Festa del Perdono 7, 20122 Milano (Italy); Carrara, M.; Borroni, M.; Pignoli, E. [Fondazione IRCCS Istituto Nazionale dei Tumori, Medical Physics Unit, Via Giuseppe Ponzio 44, Milan (Italy); Cutajar, D.; Petasecca, M.; Fuduli, I.; Lerch, M.; Rosenfeld, A. [University of Wollongong, Centre for Medical Radiation Physics, 2522 Wollongong, New South Wales (Australia)

    2012-10-15

    A novel MOSFET based dosimeter, the MOSkin, has been developed at the Centre for Medical Radiation Physics, University of Wollongong (Australia). This dosimeter is designed with suitable packaging that allows skin dose measurements at depths of 0.07 mm, as recommended by the ICRP. Initially proposed for real-time skin dose measurement, it is now studied for real-time in vivo dosimetry during high dose rate (Hdr) brachytherapy and intensity modulated radiotherapy. MOSkin detectors have shown good characteristics of reproducibility and linearity. Experiments performed with the {sup 192}Ir source of a Hdr brachytherapy facility have shown negligible energy response for photons from the Ir-192 source. The angular response is within the experimental error when used in a dual-MOSkin configuration. In this work, urethral dose measurements were performed in a tissue-equivalent phantom reproducing prostate brachytherapy treatments. The obtained urethral doses were compared to the dose values calculated by the treatment planning system and the discrepancy was found to be within 4%, showing that dual-MOSkin detectors can be profitably utilized for real-time in vivo dosimetry during a brachytherapy treatment. (Author)

  3. Fostering a culture of interprofessional education for radiation therapy and medical dosimetry students

    International Nuclear Information System (INIS)

    Lavender, Charlotte; Miller, Seth; Church, Jessica; Chen, Ronald C.; Muresan, Petronella A.; Adams, Robert D.

    2014-01-01

    A less-studied aspect of radiation therapy and medical dosimetry education is experiential learning through attendance at interprofessional conferences. University of North Carolina radiation therapy and medical dosimetry students regularly attended morning conferences and daily pretreatment peer review, including approximately 145 hours of direct interaction with medical attending physicians and residents, medical physicists, and other faculty. We herein assessed the effect of their participation in these interprofessional conferences on knowledge and communication. The students who graduated from our radiation therapy and medical dosimetry programs who were exposed to the interprofessional education initiative were compared with those who graduated in the previous years. The groups were compared with regard to their knowledge (as assessed by grades on end-of-training examinations) and team communication (assessed via survey). The results for the 2 groups were compared via exact tests. There was a trend for the examination scores for the 2012 cohort to be higher than for the 2007 to 2011 groups. Survey results suggested that students who attended the interprofessional education sessions were more comfortable speaking with attending physicians, residents, physicists, and faculty compared with earlier students who did not attend these educational sessions. Interprofessional education, particularly vertical integration, appears to provide an enhanced educational experience both in regard to knowledge (per the examination scores) and in building a sense of communication (via the survey results). Integration of interprofessional education into radiation therapy and medical dosimetry educational programs may represent an opportunity to enrich the learning experience in multiple ways and merits further study

  4. Fostering a culture of interprofessional education for radiation therapy and medical dosimetry students

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, Charlotte, E-mail: charlavender@gmail.com; Miller, Seth; Church, Jessica; Chen, Ronald C.; Muresan, Petronella A.; Adams, Robert D.

    2014-04-01

    A less-studied aspect of radiation therapy and medical dosimetry education is experiential learning through attendance at interprofessional conferences. University of North Carolina radiation therapy and medical dosimetry students regularly attended morning conferences and daily pretreatment peer review, including approximately 145 hours of direct interaction with medical attending physicians and residents, medical physicists, and other faculty. We herein assessed the effect of their participation in these interprofessional conferences on knowledge and communication. The students who graduated from our radiation therapy and medical dosimetry programs who were exposed to the interprofessional education initiative were compared with those who graduated in the previous years. The groups were compared with regard to their knowledge (as assessed by grades on end-of-training examinations) and team communication (assessed via survey). The results for the 2 groups were compared via exact tests. There was a trend for the examination scores for the 2012 cohort to be higher than for the 2007 to 2011 groups. Survey results suggested that students who attended the interprofessional education sessions were more comfortable speaking with attending physicians, residents, physicists, and faculty compared with earlier students who did not attend these educational sessions. Interprofessional education, particularly vertical integration, appears to provide an enhanced educational experience both in regard to knowledge (per the examination scores) and in building a sense of communication (via the survey results). Integration of interprofessional education into radiation therapy and medical dosimetry educational programs may represent an opportunity to enrich the learning experience in multiple ways and merits further study.

  5. Occupational dosimetry in real time hemodynamic rooms. utility of the system Dose-aware as a training tool; Dosimetria ocupacional en tiempo real en salas de hemodinamica. Utilidad del Sistema Dose-Aware como herramienta formativa

    Energy Technology Data Exchange (ETDEWEB)

    Pinto Monedero, M.; Rodriguez Cobo, C.; Pifarre Martinez, X.; Ruiz Martin, J.; Barros Candelero, J. M.; Goicolea Ruigomez, J.; Diaz Blaires, G.; Garcia Lunar

    2014-02-01

    This paper presents the results from a study in a real time dosimetry system used in the catheter laboratory room of our center. The objective was to know the occupational doses per procedure, on the one hand, and, on the other hand, to evaluate its utility as a learning tool for radiation protection purposes with the simultaneous video recording of the interventions. 83 diagnostic and therapeutic procedures were analyzed, and an average dose per procedure of 0,37 {mu}Sv and 0,10 {mu}Sv for the main cardiologist and nurse were obtained, respectively. 36 of these interventions were also recorded and the images were synchronized with the dosimetric information stored and the dosimetry system. The findings were presented to the interventional cardiology team in a learning session. They showed a high level of satisfaction with this new method of optimizing the occupational doses through a customized learning session. (Author)

  6. Radiation dosimetry for medical management in nuclear/radiological disaster

    International Nuclear Information System (INIS)

    Narayan, Pradeep

    2012-01-01

    Medical Management of radiation exposed victims depends on the amount of radiation doses received in their body and individual organs. The severity of radiation sickness; and early/late biological effects of radiation can be judged on the basis of absorbed dose level of the exposed individual. Radiation Dosimetry is a scientific technique for estimating radiation doses in material and living being. It is an important task for managing radiation effects/injuries to the living being in case of radiological accidents/disasters. In such scenario occupational radiation workers as well as public in general may be exposed with ionizing radiations such as; gamma, alpha, beta and neutron. Radiation dosimetric equipment's are available for occupational radiation workers, however, public in general may not have any dosimetry system with them. Therefore, absorbed dose estimation to the public on individual basis is a challenge to the society. The ambient environment materials in close proximity to the exposed individual may be analyzed using scientific techniques to estimate their personal radiation doses. The blood sample from exposed individual can be examined in laboratory using citometry techniques for dose estimation, however these techniques are very time consuming and may not be suitable for quick radiation management. The other human biological material such as; tooth, hair, and bone etc., can be examined using Electron Spin Resonance (ESR) spectrometry techniques. This technique is very efficient and capable in measuring radiation doses of the order of 20-30 mGy in very less time typically 2-3 min. In reality, this technique is costly affair and available mostly in developed countries. Thermoluminescence (TL) technique is very versatile and cost effective for routine personal dose estimation, This technique has been found suitable for measuring TL in many accidentally exposed environmental materials. The radiation exposed natural environmental materials, such as

  7. An overview on extremity dosimetry in medical applications

    International Nuclear Information System (INIS)

    Vanhavere, F.; Carinou, E.; Donadille, L.; Ginjaume, M.; Jankowski, J.; Rimpler, A.; Sans Merce, M.

    2008-01-01

    Some activities of EURADOS Working Group 9 (WG9) are presently funded by the European Commission (CONRAD project). The objective of WG9 is to promote and co-ordinate research activities for the assessment of occupational exposures to staff at workplaces in interventional radiology (IR) and nuclear medicine. For some of these applications, the skin of the fingers is the limiting organ for individual monitoring of external radiation. Therefore, sub-group 1 of WG9 deals with the use of extremity dosemeters in medical radiation fields. The wide variety of radiation field characteristics present in a medical environment together with the difficulties in measuring a local dose that is representative for the maximum skin dose, usually with one single detector, makes it difficult to perform accurate extremity dosimetry. Sub-group 1 worked out a thorough literature review on extremity dosimetry issues in diagnostic and therapeutic nuclear medicine and positron emission tomography, interventional radiology and interventional cardiology and brachytherapy. Some studies showed that the annual dose limits could be exceeded if the required protection measures are not taken, especially in nuclear medicine. The continuous progress in new applications and techniques requires an important effort in radiation protection and training. (authors)

  8. OR.NET RT: how service-oriented medical device architecture meets real-time communication.

    Science.gov (United States)

    Pfeiffer, Jonas H; Kasparick, Martin; Strathen, Benjamin; Dietz, Christian; Dingler, Max E; Lueth, Tim C; Timmermann, Dirk; Radermacher, Klaus; Golatowski, Frank

    2018-02-23

    Today's landscape of medical devices is dominated by stand-alone systems and proprietary interfaces lacking cross-vendor interoperability. This complicates or even impedes the innovation of novel, intelligent assistance systems relying on the collaboration of medical devices. Emerging approaches use the service-oriented architecture (SOA) paradigm based on Internet protocol (IP) to enable communication between medical devices. While this works well for scenarios with no or only soft timing constraints, the underlying best-effort communication scheme is insufficient for time critical data. Real-time (RT) networks are able to reliably guarantee fixed latency boundaries, for example, by using time division multiple access (TDMA) communication patterns. However, deterministic RT networks come with their own limitations such as tedious, inflexible configuration and a more restricted bandwidth allocation. In this contribution we overcome the drawbacks of both approaches by describing and implementing mechanisms that allow the two networks to interact. We introduce the first implementation of a medical device network that offers hard RT guarantees for control and sensor data and integrates into SOA networks. Based on two application examples we show how the flexibility of SOA networks and the reliability of RT networks can be combined to achieve an open network infrastructure for medical devices in the operating room (OR).

  9. WE-AB-BRB-03: Real-Time Volumetric Scintillation Dosimetry for Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Beddar, S. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability of water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558

  10. WE-AB-BRB-03: Real-Time Volumetric Scintillation Dosimetry for Radiation Therapy

    International Nuclear Information System (INIS)

    Beddar, S.

    2016-01-01

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability of water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558

  11. Applications, dosimetry and biological interactions of static and time-varying magnetic fields

    International Nuclear Information System (INIS)

    Tenforde, T.S.

    1988-08-01

    The primary topics of this presentation include: (1) the applications of magnetic fields in research, industry, and medical technologies; (2) mechanisms of interaction of static and time-varying magnetic fields with living systems; (3) human health effects of exposure to static and time-varying magnetic fields in occupational, medical, and residential settings; and (4) recent advances in the dosimetry of extremely-low-frequency electromagnetic fields. The discussion of these topics is centered about two issues of considerable contemporary interest: (1) potential health effects of the fields used in magnetic resonance imaging and in vivo spectroscopy, and (2) the controversial issue of whether exposure to extremely-low-frequency (ELF) electromagnetic fields in the home and workplace leads to an elevated risk of cancer. 11 refs

  12. A real-time positron monitor for the estimation of stack effluent releases from PET medical cyclotron facilities

    International Nuclear Information System (INIS)

    Mukherjee, Bhaskar.

    2002-01-01

    Large activities of short-lived positron emitting radiopharmaceuticals are routinely manufactured by modern Medical Cyclotron facilities for positron emission tomography (PET) applications. During radiochemical processing, a substantial fraction of the volatile positron emitting radiopharmaceuticals are released into the atmosphere. An inexpensive, fast response positron detector using a simple positron-annihilation chamber has been developed for real-time assessment of the stack release of positron emitting effluents at the Australian National Medical Cyclotron. The positron detector was calibrated by using a 3.0 ml (1.50 MBq) aliquot of 18 FDG and interfaced to an industrial standard datalogger for the real-time acquisition of stack release data

  13. Synthetic diamond devices for medical dosimetry applied to radiotherapy

    International Nuclear Information System (INIS)

    Descamps, C.

    2007-06-01

    The aim of this thesis, lead in the framework of an integrated European project entitled M.A.E.S.T.R.O. for ' Methods and Advanced Equipment for Simulation and Treatment in Radio Oncology', was to develop and test synthetic diamond detector in clinical environment for new modalities used in radiotherapy. Diamond is a good candidate for the detection of high energy beams in medical fields. It can be used for passive dosimetry, as thermoluminescent dosimeters or for active dosimetry as ionisation chambers. These two applications are presented here. Concerning the thermoluminescence, several impurities or dopants (boron, phosphorus, and nitrogen) have been incorporated in the diamond films during growth, in order to modify the material dosimetric properties and a detailed study of nitrogen-containing films is proposed. The second part presents the results obtained in active dosimetry. Two guide lines were followed: the measurement set-up optimisation and the material modification. The first dosimetric studies under radiotherapy beams concerning nitrogen-containing polycrystalline diamond as well as high purity single crystal diamond are conclusive. The detectors behaviours are in agreement with the recommendations of the International Atomic Energy Agency (IAEA). (author)

  14. Designing and evaluating an automated system for real-time medication administration error detection in a neonatal intensive care unit.

    Science.gov (United States)

    Ni, Yizhao; Lingren, Todd; Hall, Eric S; Leonard, Matthew; Melton, Kristin; Kirkendall, Eric S

    2018-05-01

    Timely identification of medication administration errors (MAEs) promises great benefits for mitigating medication errors and associated harm. Despite previous efforts utilizing computerized methods to monitor medication errors, sustaining effective and accurate detection of MAEs remains challenging. In this study, we developed a real-time MAE detection system and evaluated its performance prior to system integration into institutional workflows. Our prospective observational study included automated MAE detection of 10 high-risk medications and fluids for patients admitted to the neonatal intensive care unit at Cincinnati Children's Hospital Medical Center during a 4-month period. The automated system extracted real-time medication use information from the institutional electronic health records and identified MAEs using logic-based rules and natural language processing techniques. The MAE summary was delivered via a real-time messaging platform to promote reduction of patient exposure to potential harm. System performance was validated using a physician-generated gold standard of MAE events, and results were compared with those of current practice (incident reporting and trigger tools). Physicians identified 116 MAEs from 10 104 medication administrations during the study period. Compared to current practice, the sensitivity with automated MAE detection was improved significantly from 4.3% to 85.3% (P = .009), with a positive predictive value of 78.0%. Furthermore, the system showed potential to reduce patient exposure to harm, from 256 min to 35 min (P patient exposure to potential harm following MAE events.

  15. Memory effects and systematic errors in the RL signal from fiber coupled Al2O3:C for medical dosimetry

    DEFF Research Database (Denmark)

    Damkjær, Sidsel Marie Skov; Andersen, Claus Erik

    2010-01-01

    This review describes 40 years of experience gained at Risø The radioluminescence (RL) signal from fiber coupled Al2O3:C can be used for real-time in vivo dosimetry during radiotherapy. RL generally provides measurements with a reproducibility of 2% (one standard deviation). However, we have...

  16. Temperature variations as a source of uncertainty in medical fiber-coupled organic plastic scintillator dosimetry

    DEFF Research Database (Denmark)

    Buranurak, Siritorn; Andersen, Claus Erik; Beierholm, Anders Ravnsborg

    2013-01-01

    Fiber-coupled organic plastic scintillators have potential applications in medical dosimetry related to, for example, brachytherapy and external beam radiotherapy with MV photons. As medical dosimetry generally strives for high accuracy, we designed a study to assess if the light yield from...... commonly used scintillating fibers would change with temperature in the clinical range (15–40 °C). The study showed that the light yield in the peak regions of the scintillators studied decreases linearly with increasing temperature. For the blue BCF-12 and the green BCF-60 from Saint-Gobain, France we...

  17. Dosimetry systems for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Desrosiers, M.F.

    1995-01-01

    Dosimetry serves important functions in radiation processing, where large absorbed doses and dose rates from photon and electron sources have to be measured with reasonable accuracy. Proven dosimetry systems are widely used to perform radiation measurements in development of new processes, validation, qualification and verification (quality control) of established processes and archival documentation of day-to-day and plant-to-plant processing uniformity. Proper calibration and traceability of routine dosimetry systems to standards are crucial to the success of many large-volume radiation processes. Recent innovations and advances in performance of systems that enhance radiation measurement assurance and process diagnostics include dose-mapping media (new radiochromic film and solutions), optical waveguide systems for food irradiation, solid-state devices for real-time and passive dosimetry over wide dose-rate and dose ranges, and improved analytical instruments and data acquisition. (author)

  18. Radiation protection and dosimetry issues in the medical applications of ionizing radiation

    International Nuclear Information System (INIS)

    Vaz, Pedro

    2014-01-01

    The technological advances that occurred during the last few decades paved the way to the dissemination of CT-based procedures in radiology, to an increasing number of procedures in interventional radiology and cardiology as well as to new techniques and hybrid modalities in nuclear medicine and in radiotherapy. These technological advances encompass the exposure of patients and medical staff to unprecedentedly high dose values that are a cause for concern due to the potential detrimental effects of ionizing radiation to the human health. As a consequence, new issues and challenges in radiological protection and dosimetry in the medical applications of ionizing radiation have emerged. The scientific knowledge of the radiosensitivity of individuals as a function of age, gender and other factors has also contributed to raising the awareness of scientists, medical staff, regulators, decision makers and other stakeholders (including the patients and the public) for the need to correctly and accurately assess the radiation induced long-term health effects after medical exposure. Pediatric exposures and their late effects became a cause of great concern. The scientific communities of experts involved in the study of the biological effects of ionizing radiation have made a strong case about the need to undertake low dose radiation research and the International System of Radiological Protection is being challenged to address and incorporate issues such as the individual sensitivities, the shape of dose–response relationship and tissue sensitivity for cancer and non-cancer effects. Some of the answers to the radiation protection and dosimetry issues and challenges in the medical applications of ionizing radiation lie in computational studies using Monte Carlo or hybrid methods to model and simulate particle transport in the organs and tissues of the human body. The development of sophisticated Monte Carlo computer programs and voxel phantoms paves the way to an accurate

  19. A methodology for direct quantification of over-ranging length in helical computed tomography with real-time dosimetry.

    Science.gov (United States)

    Tien, Christopher J; Winslow, James F; Hintenlang, David E

    2011-01-31

    In helical computed tomography (CT), reconstruction information from volumes adjacent to the clinical volume of interest (VOI) is required for proper reconstruction. Previous studies have relied upon either operator console readings or indirect extrapolation of measurements in order to determine the over-ranging length of a scan. This paper presents a methodology for the direct quantification of over-ranging dose contributions using real-time dosimetry. A Siemens SOMATOM Sensation 16 multislice helical CT scanner is used with a novel real-time "point" fiber-optic dosimeter system with 10 ms temporal resolution to measure over-ranging length, which is also expressed in dose-length-product (DLP). Film was used to benchmark the exact length of over-ranging. Over-ranging length varied from 4.38 cm at pitch of 0.5 to 6.72 cm at a pitch of 1.5, which corresponds to DLP of 131 to 202 mGy-cm. The dose-extrapolation method of Van der Molen et al. yielded results within 3%, while the console reading method of Tzedakis et al. yielded consistently larger over-ranging lengths. From film measurements, it was determined that Tzedakis et al. overestimated over-ranging lengths by one-half of beam collimation width. Over-ranging length measured as a function of reconstruction slice thicknesses produced two linear regions similar to previous publications. Over-ranging is quantified with both absolute length and DLP, which contributes about 60 mGy-cm or about 10% of DLP for a routine abdominal scan. This paper presents a direct physical measurement of over-ranging length within 10% of previous methodologies. Current uncertainties are less than 1%, in comparison with 5% in other methodologies. Clinical implantation can be increased by using only one dosimeter if codependence with console readings is acceptable, with an uncertainty of 1.1% This methodology will be applied to different vendors, models, and postprocessing methods--which have been shown to produce over-ranging lengths

  20. A SiPM based real time dosimeter for radiotherapic beams

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.it [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11 22100 Como (Italy); Conti, V. [Ospedale Sant' Anna, Servizio di Fisica Sanitaria, Como (Italy); Lietti, D.; Milan, L.; Novati, C. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11 22100 Como (Italy); Ostinelli, A. [Ospedale Sant' Anna, Servizio di Fisica Sanitaria, Como (Italy); Prest, M.; Romanó, C. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11 22100 Como (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2015-02-11

    This paper describes the development of a scintillator dosimeter prototype for radiotherapic applications based on plastic scintillating fibers readout by Silicon PhotoMultipliers. The dosimeter, whose probes are water equivalent, could be used for quality control measurements, beam characterization and in vivo dosimetry, allowing a real time measurement of the dose spatial distribution. This paper describes the preliminary percentual depth dose scan performed with clinical 6 and 18 MV photon beams, comparing the results with a reference curve. The measurements were performed using a Varian Clinac iX linear accelerator at the Radiotherapy Department of the St. Anna Hospital in Como (IT). The prototype has given promising results, allowing real time measurements of relative dose without applying any correction factors.

  1. Patient dosimetry workshop - Scanner in clinical practice: how to optimize one's protocols (acquisition, interpretation, dosimetry)? - Radiation protection in medical environment

    International Nuclear Information System (INIS)

    Valero, M.; Pilleul, F.; Favre, F.; Tack, D.; Etard, C.; Aubert, B.; Roch, P.; Sinno-Tellier, S.; Gevenois, P.A.; Marelle, P.; Noel, A.; Coquel, P.; Museux, E.; Lair, F.; Francois, A.; Lemaire, P.; Delgoffe, C.; Puech, J.L.; Haller Montejo, M.; Rousselle, I.; Noel, A.; Pierrat, N.; Lasalle, S.; Brisse, H.; Guerson, T.; Mertz, L.; Mertz, M.; Wasylczenko, T.; Bietry, J.; Notter, S.; Jahnen, A.; Back, C.; Kohler, S.; Harpes, N.

    2010-01-01

    A selection of eleven brief communications given at the 2010 French days of radiology are compiled here and deal with: 1 - patient's dosimetry in classical radiology (Valero, M.); 2 - Oncology: how to optimize monitoring (dosimetry, new response criteria)? (Pilleul, F.; Favre, F.); 3 - Thorax: how to optimize lecture (MPR - Multi-Planar Reformat, MIP - Maximum Intensity Projection, MinIP - minimum intensity projection) and dosimetry? (Braine-L'Alleud); 4 - Medical exposure of the French population to diagnostic techniques in 2007 (Etard, C.; Aubert, B.; Sinno-Tellier, S.); 5 - Doses delivered to patients in radio-diagnostics: status of a national inquiry in the public sector (Etard, C.; Sinno-Tellier, S.; Aubert, B.); 6 - External help for the dose per section optimization in tomodensitometry (Tack, D.; Jahnen, A.; Back, C.; Kohler, S.; Harpes, N.; Gevenois, P.A.); 7 - Diagnostic reference levels (DRL) in radiology and scanography: status and evolution (Roch, P.; Aubert, B.); 8 - What conclusions can be drawn from the analysis of the DRLs in conventional radiology addressed to the CEPPIM (College for the evaluation of professional practices in medical imaging) (Marelle, P.; Coquel, P.; Museux, E.; Lair, F.; Francois, A.; Lemaire, P.; Delgoffe, C.; Puech, J.L.; Haller Montejo, M.); 9 - DRL analysis in scanography, an optimization tool? (Rousselle, I.; Noel, A.); 10 - Iterative reconstruction in scanography: potential dosimetric benefit and impact on image quality (Pierrat, N.; Lasalle, S.; Guerson, T.; Brisse, H.); 11 - Development of a patient's dose optimisation aided system in medical imaging (Mertz, L.; Mertz, M.; Wasylczenko, T.; Bietry, J.; Notter, S.)

  2. Real-time x-ray response of biocompatible solution gate AlGaN/GaN high electron mobility transistor devices

    International Nuclear Information System (INIS)

    Hofstetter, Markus; Funk, Maren; Paretzke, Herwig G.; Thalhammer, Stefan; Howgate, John; Sharp, Ian D.; Stutzmann, Martin

    2010-01-01

    We present the real-time x-ray irradiation response of charge and pH sensitive solution gate AlGaN/GaN high electron mobility transistors. The devices show stable and reproducible behavior under and following x-ray radiation, including a linear integrated response with dose into the μGy range. Titration measurements of devices in solution reveal that the linear pH response and sensitivity are not only retained under x-ray irradiation, but an irradiation response could also be measured. Since the devices are biocompatible, and can be simultaneously operated in aggressive fluids and under hard radiation, they are well-suited for both medical radiation dosimetry and biosensing applications.

  3. Radiation protection dosimetry in medicine - Report of the working group n.9 of the European radiation dosimetry group (EURADOS) - coordinated network for radiation dosimetry (CONRAD - contract EC N) fp6-12684; Dosimetrie pour la radioprotection en milieu medical - rapport du groupe de travail n. 9 du European radiation dosimetry group (EURADOS) - coordinated netword for radiation dosimetry (CONRAD - contrat CE fp6-12684)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This report present the results achieved within the frame of the work the WP 7 (Radiation Protection Dosimetry of Medical Staff) of the coordination action CONRAD (Coordinated Network for Radiation Dosimetry) funded through the 6. EU Framework Program. This action was coordinated by EURADOS (European Radiation Dosimetry Group). EURADOS is an organization founded in 1981 to advance the scientific understanding and the technical development of the dosimetry of ionising radiation in the fields of radiation protection, radiobiology, radiation therapy and medical diagnosis by promoting collaboration between European laboratories. WP7 coordinates and promotes European research for the assessment of occupational exposures to staff in therapeutic and diagnostic radiology workplaces. Research is coordinated through sub-groups covering three specific areas: 1. Extremity dosimetry in nuclear medicine and interventional radiology: this sub-group coordinates investigations in the specific fields of the hospitals and studies of doses to different parts of the hands, arms, legs and feet; 2. Practice of double dosimetry: this sub-group reviews and evaluates the different methods and algorithms for the use of dosemeters placed above and below lead aprons in large exposure during interventional radiology procedures, especially to determine effective doses to cardiologists during cardiac catheterization; and 3. Use of electronic personal dosemeters in interventional radiology: this sub-group coordinates investigations in laboratories and hospitals, and intercomparisons with passive dosemeters with the aim to enable the formulation of standards. (authors)

  4. Detection of medically important Candida species by absolute quantitation real-time polymerase chain reaction.

    Science.gov (United States)

    Than, Leslie Thian Lung; Chong, Pei Pei; Ng, Kee Peng; Seow, Heng Fong

    2015-01-01

    The number of invasive candidiasis cases has risen especially with an increase in the number of immunosuppressed and immunocom promised patients. The early detection of Candida species which is specific and sensitive is important in determining the correct administration of antifungal drugs to patients. This study aims to develop a method for the detection, identification and quantitation of medically important Candida species through quantitative polymerase chain reaction (qPCR). The isocitrate lyase (ICL) gene which is not found in mammals was chosen as the target gene of real-time PCR. Absolute quantitation of the gene copy number was achieved by constructing the plasmid containing the ICL gene which is used to generate standard curve. Twenty fungal species, two bacterial species and human DNA were tested to check the specificity of the detection method. All eight Candida species were successfully detected, identified and quantitated based on the ICL gene. A seven-log range of the gene copy number and a minimum detection limit of 10(3) copies were achieved. A one-tube absolute quantification real-time PCR that differentiates medically important Candida species via individual unique melting temperature was achieved. Analytical sensitivity and specificity were not compromised.

  5. [Research and implementation of a real-time monitoring system for running status of medical monitors based on the internet of things].

    Science.gov (United States)

    Li, Yiming; Qian, Mingli; Li, Long; Li, Bin

    2014-07-01

    This paper proposed a real-time monitoring system for running status of medical monitors based on the internet of things. In the aspect of hardware, a solution of ZigBee networks plus 470 MHz networks is proposed. In the aspect of software, graphical display of monitoring interface and real-time equipment failure alarm is implemented. The system has the function of remote equipment failure detection and wireless localization, which provides a practical and effective method for medical equipment management.

  6. International Symposium on Standards, Applications and Quality Assurance in Medical Radiation Dosimetry (IDOS). Book of Extended Synopses

    International Nuclear Information System (INIS)

    2010-01-01

    The major goal of the symposium is to provide a forum where advances in radiation dosimetry during the last decade, in radiation medicine and radiation protection can be disseminated and scientific knowledge exchanged. It will include all specialties in radiation medicine and radiation protection dosimetry with a specific focus on those areas where the standardization of dosimetry has improved in the recent years (brachytherapy, diagnostic radiology and nuclear medicine). It will also summarize the present status and outline future trends in medical radiation dosimetry and identify possible areas for improvement. Its conclusions and summaries should lead to the formulation of recommendations for the scientific community

  7. International Symposium on Standards, Applications and Quality Assurance in Medical Radiation Dosimetry (IDOS). Book of Extended Synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The major goal of the symposium is to provide a forum where advances in radiation dosimetry during the last decade, in radiation medicine and radiation protection can be disseminated and scientific knowledge exchanged. It will include all specialties in radiation medicine and radiation protection dosimetry with a specific focus on those areas where the standardization of dosimetry has improved in the recent years (brachytherapy, diagnostic radiology and nuclear medicine). It will also summarize the present status and outline future trends in medical radiation dosimetry and identify possible areas for improvement. Its conclusions and summaries should lead to the formulation of recommendations for the scientific community

  8. Use of computational methods for substitution and numerical dosimetry of real bones

    International Nuclear Information System (INIS)

    Silva, I.C.S.; Gonzalez, K.M.L.; Barbosa, A.J.A.; Lucindo Junior, C.R.; Vieira, J.W.; Lima, F.R.A.

    2017-01-01

    Estimating the dose that ionizing radiation deposits in the soft tissues of the skeleton within the cavities of the trabecular bones represents one of the greatest difficulties faced by numerical dosimetry. The Numerical Dosimetry Group (GDN/CNPq) Brazil, Recife-PE has used a method based on micro-CT images. The problem of the implementation of micro-CT is the difficulty in obtaining samples of real bones (OR). The objective of this work was to evaluate the sample of a virtual block of trabecular bone through the nonparametric method based on the voxel frequencies (VF) and samples of the climbing plant called Luffa aegyptica, whose dry fruit is known as vegetal bush (BV) substitution of OR samples. For this, a theoretical study of the two techniques developed by the GDN was made. The study showed in both techniques, after the dosimetric evaluations, that the actual sample can be replaced by the synthetic samples, since they have shown dose estimates close to the actual one

  9. Real-time signal processing of accelerometer data for wearable medical patient monitoring devices.

    Science.gov (United States)

    Van Wieringen, Matt; Eklund, J

    2008-01-01

    Elderly and other people who live at home but required some physical assistance to do so are often more susceptible injury causing falls in and around their place of residence. In the event that a fall does occur, as a direct result of a previous medical condition or the fall itself, these people are typically less likely to be able to seek timely medical help without assistance. The goal of this research is to develop a wearable sensor device that uses an accelerometer for monitoring the movement of the person to detect falls after they have occurred in order to enable timely medical assistance. The data coming from the accelerometer is processed in real-time in the device and sent to a remote monitoring station where operators can attempt to make contact with the person and/or notify medical personnel of the situation. The ADXL330 accelerometer is contained within a Nintendo WiiMote controller, which forms the basis of the wearable medical sensor. The accelerometer data can then be sent via Bluetooth connection and processed by a local gateway processor. If a fall is detected, the gateway will then contact a remote monitoring station, on a cellular network, for example, via satellite, and/or through a hardwired phone or Internet connection. To detect the occurrence of ta fall, the accelerometer data is passed through a matched filter and the data is compared to benchmark analysis data that will define the conditions that represents the occurrence of a fall.

  10. Radiation processing dosimetry - past, present and future

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1999-01-01

    Since the two United Nations Conferences were held in Geneva in 1955 and 1958 on the Peaceful Uses of Atomic Energy and the concurrent foundation of the International Atomic Energy Agency in 1957, the IAEA has fostered high-dose dosimetry and its applications. This field is represented in industrial radiation processing, agricultural programmes, and therapeutic and preventative medicine. Such dosimetry is needed specifically for pest and quarantine control and in the processing of medical products, pharmaceuticals, blood products, foodstuffs, solid, liquid and gaseous wastes, and a variety of useful commodities, e.g. polymers, composites, natural rubber and elastomers, packaging, electronic, and automotive components, as well as in radiotherapy. Improvements and innovations of dosimetry materials and analytical systems and software continue to be important goals for these applications. Some of the recent advances in high-dose dosimetry include tetrazolium salts and substituted polydiacetylene as radiochromic media, on-line real-time as well as integrating semiconductor and diamond-detector monitors, quantitative label dosimeters, photofluorescent sensors for broad dose range applications, and improved and simplified parametric and computational codes for imaging and simulating 3D radiation dose distributions in model products. The use of certain solid-state devices, e.g. optical quality LiF, at low (down to 4K) and high (up to 500 K) temperatures, is of interest for materials testing. There have also been notable developments in experimental dose mapping procedures, e.g. 2D and 3D dose distribution analyses by flat-bed optical scanners and software applied to radiochromic and photofluorescent images. In addition, less expensive EPR spectrometers and new EPR dosimetry materials and high-resolution semiconductor diode arrays, charge injection devices, and photostimulated storage phosphors have been introduced. (author)

  11. International symposium on standards and codes of practice in medical radiation dosimetry. Book of extended synopses

    International Nuclear Information System (INIS)

    2002-01-01

    The development of radiation measurement standards by National Metrology Institutes (NMIs) and their dissemination to Secondary Standard Dosimetry Laboratories (SSDLs), cancer therapy centres and hospitals represent essential aspects of the radiation dosimetry measurement chain. Although the demands for accuracy in radiotherapy initiated the establishment of such measurement chains, similar traceable dosimetry procedures have been implemented, or are being developed, in other areas of radiation medicine (e.g. diagnostic radiology and nuclear medicine), in radiation protection and in industrial applications of radiation. In the past few years the development of primary standards of absorbed dose to water in 60 Co for radiotherapy dosimetry has made direct calibrations in terms of absorbed dose to water available in many countries for the first time. Some laboratories have extended the development of these standards to high energy photon and electron beams and to low and medium energy x-ray beams. Other countries, however, still base their dosimetry for radiotherapy on air kerma standards. Dosimetry for conventional external beam radiotherapy was probably the field where standardized procedures adopted by medical physicists at hospitals were developed first. Those were related to exposure and air kerma standards. The recent development of Codes of Practice (or protocols) based on the concept of absorbed dose to water has led to changes in calibration procedures at hospitals. The International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water (TRS 398) was sponsored by the International Atomic Energy Agency (IAEA), World Health Organization (WHO), Pan-American Health Organization (PAHO) and the European Society for Therapeutic Radiology and Oncology (ESTRO) and is expected to be adopted in many countries worldwide. It provides recommendations for the dosimetry of all types of beams (except neutrons) used in external radiotherapy and satisfies

  12. International symposium on standards and codes of practice in medical radiation dosimetry. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The development of radiation measurement standards by National Metrology Institutes (NMIs) and their dissemination to Secondary Standard Dosimetry Laboratories (SSDLs), cancer therapy centres and hospitals represent essential aspects of the radiation dosimetry measurement chain. Although the demands for accuracy in radiotherapy initiated the establishment of such measurement chains, similar traceable dosimetry procedures have been implemented, or are being developed, in other areas of radiation medicine (e.g. diagnostic radiology and nuclear medicine), in radiation protection and in industrial applications of radiation. In the past few years the development of primary standards of absorbed dose to water in {sup 60}Co for radiotherapy dosimetry has made direct calibrations in terms of absorbed dose to water available in many countries for the first time. Some laboratories have extended the development of these standards to high energy photon and electron beams and to low and medium energy x-ray beams. Other countries, however, still base their dosimetry for radiotherapy on air kerma standards. Dosimetry for conventional external beam radiotherapy was probably the field where standardized procedures adopted by medical physicists at hospitals were developed first. Those were related to exposure and air kerma standards. The recent development of Codes of Practice (or protocols) based on the concept of absorbed dose to water has led to changes in calibration procedures at hospitals. The International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water (TRS 398) was sponsored by the International Atomic Energy Agency (IAEA), World Health Organization (WHO), Pan-American Health Organization (PAHO) and the European Society for Therapeutic Radiology and Oncology (ESTRO) and is expected to be adopted in many countries worldwide. It provides recommendations for the dosimetry of all types of beams (except neutrons) used in external radiotherapy and

  13. Medical radiation dosimetry theory of charged particle collision energy loss

    CERN Document Server

    McParland, Brian J

    2014-01-01

    Accurate radiation dosimetry is a requirement of radiation oncology, diagnostic radiology and nuclear medicine. It is necessary so as to satisfy the needs of patient safety, therapeutic and diagnostic optimisation, and retrospective epidemiological studies of the biological effects resulting from low absorbed doses of ionising radiation. The radiation absorbed dose received by the patient is the ultimate consequence of the transfer of kinetic energy through collisions between energetic charged particles and atoms of the tissue being traversed. Thus, the ability of the medical physicist to both measure and calculate accurately patient dosimetry demands a deep understanding of the physics of charged particle interactions with matter. Interestingly, the physics of charged particle energy loss has an almost exclusively theoretical basis, thus necessitating an advanced theoretical understanding of the subject in order to apply it appropriately to the clinical regime. ​ Each year, about one-third of the worl...

  14. Tenth DOE workshop on personnel neutron dosimetry

    International Nuclear Information System (INIS)

    1984-06-01

    The purpose of this workshop is to promote the international exchange of information on neutron dosimetry. The development of an accurate real-time dosemeter is an immediate need which must be met. Assessment of the neutron dose equivalent at low doses with a reasonable degree of accuracy must be accomplished to provide validity to exposure records. These and other aspects of personal neutron dosimetry are discussed. Separate abstracts have been prepared for each paper for inclusion in the Energy Data Base

  15. A monolithic 180 nm CMOS dosimeter for wireless In Vivo Dosimetry

    International Nuclear Information System (INIS)

    Villani, E.G.; Crepaldi, M.; DeMarchi, D.; Gabrielli, A.; Khan, A.; Pikhay, E.; Roizin, Y.; Rosenfeld, A.; Zhang, Z.

    2016-01-01

    The design, fabrication and testing of a novel monolithic system-on-chip dosimeter fabricated in a standard 180 nm CMOS technology is described. The device, implementing a radiation sensor and an RF transmitter, is proposed to address the need for real-time In Vivo Dosimetry (IVD) of radiation during Linac radiotherapy sessions. Owing to its small size, of approximately 1 mm"3, such solution could be made in-body implantable and, as such, provide a much-enhanced high-resolution, real-time dose measurement to improve Quality Assurance (QA) in radiation therapy. The device transmits the related information on dose of radiation wirelessly to a remote receiver operating in the Medical Implant Communication Service (MICS) band. Comprehensive description of the various phases of this project, including the development of the radiation sensors and integrated RF transmitter to perform the readout, along with the final test results using a radiation beam, will be given. - Highlights: • A Monolithic Dosimeter for real time dosimetry during radiotherapy is proposed. • The proposed device is 1 mm3 in size and could potentially be body implantable. • The device includes a radiation sensor and RF readout, operating in the MICS band. • Detailed tests have been performed under radiation beam in a clinical environment. • Reported sensitivity is 1 cGy over 50 Gy, with an accuracy of better than 3%.

  16. Shortening of culture time in conventional cytogenetic dosimetry

    International Nuclear Information System (INIS)

    Lamadrid, Ana I.; Gonzalez, Jorge E.; Romero, Ivonne; Garcia, Omar; Roy, Laurence

    2008-01-01

    Conventional cytogenetic dosimetry based on chromosome aberration in metaphases is a 'gold standard' of bio-dosimetry techniques for radiation dose assessment. This method is laborious and time consuming, the culturing process requires about 48 hours to obtain a satisfactory number of lymphocytes in mitosis. The current approach to reduce the dose estimation time by cytogenetic dosimetry is the preliminary estimation of dose counting only 50 metaphases. Another possibility is to reduce the culture time. The possibility of reduce the culture time under 48 hours adding Calyculin A has been suggested recently. In the present study we tested shorter times using Calyculin A and considering the G2/M-PCC index as culture quality indicator. Peripheral blood from healthy individuals was irradiated and then maintained at 37 C degrees for 2 hours allowing to act the cellular reparation mechanisms, lymphocytes were culture in RPMI 1640 supplemented with foetal calf serum and phytohemagglutinin. Colcemid was added 24 hours after cultures started and Calyculin A was added for the last hour. The cells were collected by centrifugation between 30 to 48 hours. The cells were treated with a hypotonic solution and the fixed cells dropped onto slides. The slides were stained with Giemsa. The incidence of metaphases with chromosomes well defined was scored. Two operators participated to the scoring according the same criteria. The results were analyzed to comparing the G2/M-PCC index relatives to achieve the shortest culture duration. The culture time reduction to 40 hours gives enough G2/M-PCC cells for dose estimation analysis. Lower culture times produced very low G2/M-PCC index. (author)

  17. ESR Dosimetry

    International Nuclear Information System (INIS)

    Baffa, Oswaldo; Rossi, Bruno; Graeff, Carlos; Kinoshita, Angela; Chen Abrego, Felipe; Santos, Adevailton Bernardo dos

    2004-01-01

    ESR dosimetry is widely used for several applications such as dose assessment in accidents, medical applications and sterilization of food and other materials. In this work the dosimetric properties of natural and synthetic Hydroxyapatite, Alanine, and 2-Methylalanine are presented. Recent results on the use of a K-Band (24 GHz) ESR spectrometer in dosimetry are also presented

  18. In vivo dosimetry: measurement of entrance and exit dose using MOSFET dosimeter

    International Nuclear Information System (INIS)

    Gopiraj, A.; Billimagga, Ramesh S.; Rekha, M.; Ramasubramaniam, V.

    2007-01-01

    Patient dose verification is an essential part of a Quality Assurance (QA) program in a Radiotherapy Department. As the transition is made from the conventional two-dimensional (2D) to three-dimensional (3D) conformal and intensity modulated therapy, it is recommended that new treatment techniques be checked systematically to guarantee accurate dose delivery by means of a comprehensive in vivo dosimetry program (i.e. real-time dosimetry during patient treatment). The authors conducted a study to assess the clinical utility of in vivo dosimetry in the Dept. of Radiation Oncology using MOSFET dosimetry system

  19. Medical work Assessment in German hospitals: a Real-time Observation study (MAGRO – the study protocol

    Directory of Open Access Journals (Sweden)

    Mache Stefanie

    2009-06-01

    Full Text Available Abstract Background The increasing economic pressure characterizes the current situation in health care and the need to justify medical decisions and organizational processes due to limited financial resources is omnipresent. Physicians tend to interpret this development as a decimation of their own medical influence. This becomes even more obvious after a change in hospital ownership i.e. from a public to a private profit oriented organization. In this case each work procedure is revised. To date, most research studies have focused mainly on differences between hospitals of different ownership regarding financial outcomes and quality of care, leaving important organizational issues unexplored. Little attention has been devoted to the effects of hospital ownership on physicians' working routines. The aim of this observational real time study is to deliver exact data about physicians' work at hospitals of different ownership. Methods The consequences of different management types on the organizational structures of the physicians' work situation and on job satisfaction in the ward situation are monitored by objective real time studies and multi-level psycho diagnostic measurements. Discussion This study is unique in its focus. To date no results have been found for computer-based real time studies on work activity in the clinical field in order to objectively evaluate a physician's work-related stress. After a complete documentation of the physicians' work processes the daily work flow can be estimated and systematically optimized. This can stimulate an overall improvement of health care services in Germany.

  20. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading...

  1. Real Time Conference 2016 Overview

    Science.gov (United States)

    Luchetta, Adriano

    2017-06-01

    This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.

  2. Identifying afterloading PDR and HDR brachytherapy errors using real-time fiber-coupled Al2O3:C dosimetry and a novel statistical error decision criterion

    International Nuclear Information System (INIS)

    Kertzscher, Gustavo; Andersen, Claus E.; Siebert, Frank-Andre; Nielsen, Soren Kynde; Lindegaard, Jacob C.; Tanderup, Kari

    2011-01-01

    Background and purpose: The feasibility of a real-time in vivo dosimeter to detect errors has previously been demonstrated. The purpose of this study was to: (1) quantify the sensitivity of the dosimeter to detect imposed treatment errors under well controlled and clinically relevant experimental conditions, and (2) test a new statistical error decision concept based on full uncertainty analysis. Materials and methods: Phantom studies of two gynecological cancer PDR and one prostate cancer HDR patient treatment plans were performed using tandem ring applicators or interstitial needles. Imposed treatment errors, including interchanged pairs of afterloader guide tubes and 2-20 mm source displacements, were monitored using a real-time fiber-coupled carbon doped aluminum oxide (Al 2 O 3 :C) crystal dosimeter that was positioned in the reconstructed tumor region. The error detection capacity was evaluated at three dose levels: dwell position, source channel, and fraction. The error criterion incorporated the correlated source position uncertainties and other sources of uncertainty, and it was applied both for the specific phantom patient plans and for a general case (source-detector distance 5-90 mm and position uncertainty 1-4 mm). Results: Out of 20 interchanged guide tube errors, time-resolved analysis identified 17 while fraction level analysis identified two. Channel and fraction level comparisons could leave 10 mm dosimeter displacement errors unidentified. Dwell position dose rate comparisons correctly identified displacements ≥5 mm. Conclusion: This phantom study demonstrates that Al 2 O 3 :C real-time dosimetry can identify applicator displacements ≥5 mm and interchanged guide tube errors during PDR and HDR brachytherapy. The study demonstrates the shortcoming of a constant error criterion and the advantage of a statistical error criterion.

  3. Extremity dosimetry in medical applications within Europe: an overview of doses and monitoring practices

    International Nuclear Information System (INIS)

    Donadille, Laurent; Carinou, E.; Ginjaume, M.; Jankowski, J.; Rimpler, A.; Sans Merce, M.; Vanhavere, F.

    2008-01-01

    Full text: Some activities of the EURADOS Working Group 9 (WG9) related to the radiation protection dosimetry of medical staff were funded by the European Commission in the framework of the CONRAD project, Work Package 7. The objective of WG9 was to promote and co-ordinate research activities for the assessment of occupational exposure to staff at workplaces in therapeutic and diagnostic radiology and nuclear medicine. At these workplaces, from the point of view of the individual monitoring for external radiation, the skin of the fingers is generally the limiting organ. Subgroup 1 of WG9 had as main objective the study of the use of extremity dosemeters in medical radiation fields. The wide variety of radiation field characteristics present in medicine together with the difficulties of measuring a local dose which should be representative for the maximum skin dose using one single detector, makes it difficult to perform extremity dosimetry with an accuracy similar to that of whole-body one. A recent intercomparison organised by WG9 showed that some types of dosemeters significantly underestimate or overestimate skin doses. Subgroup 1 carried out a thorough literature review on extremity dosimetry issues. It covered diagnostic and therapeutic nuclear medicine and PET, interventional radiology and cardiology, and brachytherapy. It has notably pointed out the consensus about the requirement of regular extremity dose monitoring for nuclear medicine and PET, and the great difficulty of measuring extremity doses for procedures in interventional radiology and cardiology, activities for which routine extremity dose monitoring has been found to be poor. Furthermore, information on the status of extremity dosimetry in medical applications and associated monitoring practices was gathered from 7 European countries: France, Germany, Greece, Ireland, Poland, Spain and Switzerland. Interpretation of the data was not easy because of the wide range of procedures involved and also

  4. An optimized compression algorithm for real-time ECG data transmission in wireless network of medical information systems.

    Science.gov (United States)

    Cho, Gyoun-Yon; Lee, Seo-Joon; Lee, Tae-Ro

    2015-01-01

    Recent medical information systems are striving towards real-time monitoring models to care patients anytime and anywhere through ECG signals. However, there are several limitations such as data distortion and limited bandwidth in wireless communications. In order to overcome such limitations, this research focuses on compression. Few researches have been made to develop a specialized compression algorithm for ECG data transmission in real-time monitoring wireless network. Not only that, recent researches' algorithm is not appropriate for ECG signals. Therefore this paper presents a more developed algorithm EDLZW for efficient ECG data transmission. Results actually showed that the EDLZW compression ratio was 8.66, which was a performance that was 4 times better than any other recent compression method widely used today.

  5. Advances in Real-Time Systems

    CERN Document Server

    Chakraborty, Samarjit

    2012-01-01

    This volume contains the lectures given in honor to Georg Farber as tribute to his contributions in the area of real-time and embedded systems. The chapters of many leading scientists cover a wide range of aspects, like robot or automotive vision systems or medical aspects.

  6. A comparison of BCF-12 organic scintillators and Al2O3:C crystals for real-time medical dosimetry

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Andersen, Claus Erik; Lindvold, Lars

    2008-01-01

    Radioluminescence (RL) from aluminium oxide (Al2O3:C) crystals and organic scintillators such as the blue-emitting BCF-12 can be used for precise real-time dose rate measurements during radiation therapy of cancer patients. Attaching the dosimeters to thin light-guiding fiber cables enables in vivo...... use. The light signal is detected by a photomultiplier tube (PNIT). Unfortunately Cerenkov light and fluorescence are also generated in the fiber cable itself during irradiation, and this so-called stem effect can be significant compared with the dosimeter signal. In the case of Al2O3:C, this problem...... can be circumvented for pulsed beams due to the long life-time of the main luminescence center. In contrast, chromatic removal seems to be the most effective method for organic scintillators, but is found to yield some experimental complexities. In this paper, we report on dose rate measurements using...

  7. Dosimetry

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The purpose of ionizing radiation dosimetry is the measurement of the physical and biological consequences of exposure to radiation. As these consequences are proportional to the local absorption of energy, the dosimetry of ionizing radiation is based on the measurement of this quantity. Owing to the size of the effects of ionizing radiation on materials in all of these area, dosimetry plays an essential role in the prevention and the control of radiation exposure. Its use is of great importance in two areas in particular where the employment of ionizing radiation relates to human health: radiation protection, and medical applications. Dosimetry is different for various reasons: owing to the diversity of the physical characteristics produced by different kinds of radiation according to their nature (X- and γ-photons, electrons, neutrons,...), their energy (from several keV to several MeV), the orders of magnitude of the doses being estimated (a factor of about 10 5 between diagnostic and therapeutic applications); and the temporal and spatial variation of the biological parameters entering into the calculations. On the practical level, dosimetry poses two distinct yet closely related problems: the determination of the absorbed dose received by a subject exposed to radiation from a source external to his body (external dosimetry); and the determination of the absorbed dose received by a subject owing to the presence within his body of some radioactive substance (internal dosimetry)

  8. Future of medical physics: Real-time MRI-guided proton therapy.

    Science.gov (United States)

    Oborn, Bradley M; Dowdell, Stephen; Metcalfe, Peter E; Crozier, Stuart; Mohan, Radhe; Keall, Paul J

    2017-08-01

    With the recent clinical implementation of real-time MRI-guided x-ray beam therapy (MRXT), attention is turning to the concept of combining real-time MRI guidance with proton beam therapy; MRI-guided proton beam therapy (MRPT). MRI guidance for proton beam therapy is expected to offer a compelling improvement to the current treatment workflow which is warranted arguably more than for x-ray beam therapy. This argument is born out of the fact that proton therapy toxicity outcomes are similar to that of the most advanced IMRT treatments, despite being a fundamentally superior particle for cancer treatment. In this Future of Medical Physics article, we describe the various software and hardware aspects of potential MRPT systems and the corresponding treatment workflow. Significant software developments, particularly focused around adaptive MRI-based planning will be required. The magnetic interaction between the MRI and the proton beamline components will be a key area of focus. For example, the modeling and potential redesign of a magnetically compatible gantry to allow for beam delivery from multiple angles towards a patient located within the bore of an MRI scanner. Further to this, the accuracy of pencil beam scanning and beam monitoring in the presence of an MRI fringe field will require modeling, testing, and potential further development to ensure that the highly targeted radiotherapy is maintained. Looking forward we envisage a clear and accelerated path for hardware development, leveraging from lessons learnt from MRXT development. Within few years, simple prototype systems will likely exist, and in a decade, we could envisage coupled systems with integrated gantries. Such milestones will be key in the development of a more efficient, more accurate, and more successful form of proton beam therapy for many common cancer sites. © 2017 American Association of Physicists in Medicine.

  9. Dosimetry Control: Technic and methods. Proceedings of the international workshop 'Actual problems of dosimetry'

    International Nuclear Information System (INIS)

    Lyutsko, A.M.; Nesterenko, V.B.; Chudakov, V.A.; Konoplya, E.F.; Milyutin, A.A.

    1997-10-01

    There is a number of unsolved problems of both dosimetric and radiometric control, questions of the biological dosimetry, reconstruction of dozes of irradiation of the population at radiation incidents, which require coordination of efforts of scientists in various areas of a science. The submitted materials are grouped on five units: dosimetry engineering, biological dosimetry and markers of radiation impact, dosimetry of a medical irradiation, normative and measurement assurance of the dosimetric control, monitoring and reconstruction of dozes at radiation incidents

  10. Dosimetry standards for radiation processing

    International Nuclear Information System (INIS)

    Farrar, H. IV

    1999-01-01

    For irradiation treatments to be reproducible in the laboratory and then in the commercial environment, and for products to have certified absorbed doses, standardized dosimetry techniques are needed. This need is being satisfied by standards being developed by experts from around the world under the auspices of Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). In the time period since it was formed in 1984, the subcommittee has grown to 150 members from 43 countries, representing a broad cross-section of industry, government and university interests. With cooperation from other international organizations, it has taken the combined part-time effort of all these people more than 13 years to complete 24 dosimetry standards. Four are specifically for food irradiation or agricultural applications, but the majority apply to all forms of gamma, x-ray, Bremsstrahlung and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruits, vegetables, meats, spices, processed foods, plastics, inks, medical wastes and paper. An additional 6 standards are under development. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties. Together, this set of standards covers essentially all aspects of dosimetry for radiation processing. The first 20 of these standards have been adopted in their present form by the International Organization of Standardization (ISO), and will be published by ISO in 1999. (author)

  11. MO-E-BRB-04: Real-Time Exit-Fluence Delivery Validation

    Energy Technology Data Exchange (ETDEWEB)

    Siebers, J. [University of Virginia Health System (United States)

    2015-06-15

    Recent high profile reports of technical failures and human errors causing severe radiation- induced injuries and deaths come in support of the sustained efforts to ensure patient safety in the delivery of radiation treatments. In addition, highly conformal radiation therapies and escalated fraction doses mandate increased and sustained accuracy of the entire radiotherapy process. Consequently, and as a Result of AAPM and ASTRO led efforts patient specific quality assurance for specialized radiation treatments such as IMRT, SRS/SBRT and Arc Therapy had become a three-tier process: Pre-treatment, during treatment, and post treatment patient specific QA. Traditional patient QA consists of pre-treatment data transfer integrity dosimetric verifications and during-treatment geometric verifications. However, as treatment adaptation becomes closer to deployment in the clinics, during treatment validation via exit detectors had become a realistic QA option, permitting plan assessment in near real time. Post-treatment, machine logs allow comparisons of a range of mechanical parameters. A combination of these techniques could be used in evaluating inter-fraction, and intra-fraction delivery over a long time period such as an year, to evaluate the significant errors per site, per treatment technique. This type of data mining over longer periods of time provides the potential to recognize suboptimal radiation treatments, while allowing to identify systematic, possibly significant errors. This would allow creation of a data base of realized errors, small and large in dosimetry that could be for process or equipment improvement. This educational symposium will describe and review patient QA techniques, results, and strategies for patient specific quality assurance. Learning Objectives: review the goals of pre-treatment QA for various specialized procedures review methods and means for pre-treatment QA, limitations and tolerances review the scenarios where Varian/Tomo Log files

  12. MO-E-BRB-04: Real-Time Exit-Fluence Delivery Validation

    International Nuclear Information System (INIS)

    Siebers, J.

    2015-01-01

    Recent high profile reports of technical failures and human errors causing severe radiation- induced injuries and deaths come in support of the sustained efforts to ensure patient safety in the delivery of radiation treatments. In addition, highly conformal radiation therapies and escalated fraction doses mandate increased and sustained accuracy of the entire radiotherapy process. Consequently, and as a Result of AAPM and ASTRO led efforts patient specific quality assurance for specialized radiation treatments such as IMRT, SRS/SBRT and Arc Therapy had become a three-tier process: Pre-treatment, during treatment, and post treatment patient specific QA. Traditional patient QA consists of pre-treatment data transfer integrity dosimetric verifications and during-treatment geometric verifications. However, as treatment adaptation becomes closer to deployment in the clinics, during treatment validation via exit detectors had become a realistic QA option, permitting plan assessment in near real time. Post-treatment, machine logs allow comparisons of a range of mechanical parameters. A combination of these techniques could be used in evaluating inter-fraction, and intra-fraction delivery over a long time period such as an year, to evaluate the significant errors per site, per treatment technique. This type of data mining over longer periods of time provides the potential to recognize suboptimal radiation treatments, while allowing to identify systematic, possibly significant errors. This would allow creation of a data base of realized errors, small and large in dosimetry that could be for process or equipment improvement. This educational symposium will describe and review patient QA techniques, results, and strategies for patient specific quality assurance. Learning Objectives: review the goals of pre-treatment QA for various specialized procedures review methods and means for pre-treatment QA, limitations and tolerances review the scenarios where Varian/Tomo Log files

  13. Real-time systems

    OpenAIRE

    Badr, Salah M.; Bruztman, Donald P.; Nelson, Michael L.; Byrnes, Ronald Benton

    1992-01-01

    This paper presents an introduction to the basic issues involved in real-time systems. Both real-time operating sys and real-time programming languages are explored. Concurrent programming and process synchronization and communication are also discussed. The real-time requirements of the Naval Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real-time operating system, real-time programming language, real-time sy...

  14. Use of personal, real time in-cabin dosimetry on space shuttle flights

    International Nuclear Information System (INIS)

    Angelo, J.A. Jr.; Madonna, R.G.; Quam, W.; Warren, J.; Dockter, M.

    1984-01-01

    The use of real time dosimeters onboard the Space Shuttle is described. Data taken during STS-8 with a small gamma ray counter (HRM-III) and a neutron/proton dosimeter (the Pocket Rem Meter [PRM]) are presented. The data agree with NASA predictions for gamma ray background and neutron-proton dosage received for the STS-8 mission. 1 figure, 1 table

  15. Optically stimulated luminescence in electronic components for emergency dosimetry

    International Nuclear Information System (INIS)

    Geber-Bergstrand, T.; Bernhardsson, C.; Mattsson, S.; Raeaef, C.L.

    2015-01-01

    Document available in abstract form only. Full text of publication follows: Accidents and, luckily more rarely, attacks involving nuclear or radiological material do occur from time to time. A very possible consequence of an accident or attack of this kind is that nearby people might be exposed to ionising radiation. Since these types of exposure situations, unlike the ones occurring in medicine, are unplanned, there are no radiation-monitoring data available. For several reasons, it is nevertheless of value to find out the dose that these people have received. The first and most urgent reason is after-the-event triage, to be able to carry out proper medical treatments and also to focus the available medical assets to the persons needing it the most. This is where different retrospective dosimetry techniques, such as luminescence, can be employed. Various electronic components from mobile phones and other portable devices have been studied using optically stimulated luminescence for their potential use in retrospective dosimetry. Previous investigations have been performed in laboratory conditions and have showed very promising properties for emergency dosimetry. In this study, the more practical parts of using electronic components in retrospective dosimetry have been considered. In a triage situation, one of the key parameters to consider is time; thus, effort has been made to speed up the readout procedure, yet without the loss of too much accuracy. (authors)

  16. The dosimetry of ionizing radiation

    CERN Document Server

    1990-01-01

    A continuation of the treatise The Dosimetry of Ionizing Radiation, Volume III builds upon the foundations of Volumes I and II and the tradition of the preceeding treatise Radiation Dosimetry. Volume III contains three comprehensive chapters on the applications of radiation dosimetry in particular research and medical settings, a chapter on unique and useful detectors, and two chapters on Monte Carlo techniques and their applications.

  17. The use of real time ultrasound scanning as a teaching method of anatomy in an undergraduate sonography and medical imaging degree in an Australian university

    International Nuclear Information System (INIS)

    Bowman, A.; Lawson, C.; McKillup, S.

    2016-01-01

    Background: Real-time ultrasound scanning is increasing in popularity as a teaching tool for human anatomy because it is non-invasive, offers real-time 3-D anatomy and is cheaper than dissections. Aim: To assess real-time ultrasound scanning as a teaching method of human anatomy, and to determine what teaching methods medical imaging and sonography students consider effective for understanding human anatomy. Method: Surveys were distributed to two consecutive cohorts of first year medical imaging and medical sonography students at CQUniversity. Participation was voluntary. Comparisons among teaching methods were made using repeated measures ANOVA. Results: Real-time ultrasound scanning was the most preferred method of delivery for anatomy classes overall especially compared to computer programs, videos, 3-D radiological images and dissection. Specifically, students indicated that ultrasound scanning was the preferred method to encourage learning from experience (F 7,231  = 2.942, p = 0.006), to develop team skills (F 7,231  = 4.550, p < 0.006), to follow complex instructions (F 7,231  = 4.656 p < 0.001) and to appreciate anatomical variation (F 7,231  = 2.067, p = 0.048). Dissection was the least favoured teaching method. Conclusion: Real-time ultrasound scanning is a useful tool for teaching anatomy, and animal dissections are a poor substitute for the use of human cadavers. - Highlights: • Real-time ultrasound scanning is a valid teaching tool for human anatomy. • Real-time ultrasound is preferred by students compared to other teaching methods. • Dissection is the least favoured method to learn anatomy. • Ultrasound encourages learning from experience and develops team skills.

  18. The personal dosimetry in Mexico

    International Nuclear Information System (INIS)

    Salazar, M.A.

    2006-01-01

    The Personal Dosimetry in Mexico, has an approximately 30 year-old history; and it had been and it is at the moment, one of the more important resources with which the personnel that works with ionizing radiation sources counts for its protection. The Personal Dosimetry begins with the film dosimetry, technique that even continues being used at the present time by some users, and the main reason of its use is for economic reasons. At the moment this technique, it has been surpassed, by the Thermoluminescent dosimetry, which has taken a lot of peak, mainly by the technological development with which it is counted at the present time; what has given as a result that this technique becomes tip technology; that supported in the characteristic of the used materials, as the handling and processing of the information associated with the new PC, digitizer cards, software etc, what has allowed increases it potential. In this work the current necessities of the market are presented as well as an analysis of the future real necessities in Mexico, at national level, the companies that provide this service and that they spread to satisfy this necessity of the market, including the different used technologies are also mentioned. The application ranges, at the same time, of the advantages and disadvantages of the different systems of Personal Dosimetry in the market. The companies that at the moment provide the service of Personal Dosimetry, its use materials and equipment in indistinct form, for the monitoring of gamma radiation, beta particles, different qualities of x-ray radiation, and sometimes neutrons. The monitoring of the exposed personnel at the diverse sources of ionizing radiation mentioned is carried out in many occasions without having with the materials (detectors), neither the appropriate infrastructure and therefore without the quality control that guarantees a correct evaluation of the dose equivalent, as a result of the exposure to the ionizing radiations; it

  19. WE-AB-BRB-12: Nanoscintillator Fiber-Optic Detector System for Microbeam Radiation Therapy Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, J [University of North Carolina and North Carolina State University, Chapel Hill, NC (United States); Dooley, J; Chang, S [University of North Carolina School of Medicine, Chapel Hill, NC (United States); Belley, M; Yoshizumi, T [Duke University Medical Center, Durham, NC (United States); Stanton, I; Langloss, B; Therien, M [Duke University, Durham, NC (United States)

    2015-06-15

    Purpose: Microbeam Radiation Therapy (MRT) is an experimental radiation therapy that has demonstrated a higher therapeutic ratio than conventional radiation therapy in animal studies. There are several roadblocks in translating the promising treatment technology to clinical application, one of which is the lack of a real-time, high-resolution dosimeter. Current clinical radiation detectors have poor spatial resolution and, as such, are unsuitable for measuring microbeams with submillimeter-scale widths. Although GafChromic film has high spatial resolution, it lacks the real-time dosimetry capability necessary for MRT preclinical research and potential clinical use. In this work we have demonstrated the feasibility of using a nanoscintillator fiber-optic detector (nanoFOD) system for real-time MRT dosimetry. Methods: A microplanar beam array is generated using a x-ray research irradiator and a custom-made, microbeam-forming collimator. The newest generation nanoFOD has an effective size of 70 µm in the measurement direction and was calibrated against a kV ion chamber (RadCal Accu-Pro) in open field geometry. We have written a computer script that performs automatic data collection with immediate background subtraction. A computer-controlled detector positioning stage is used to precisely measure the microbeam peak dose and beam profile by translating the stage during data collection. We test the new generation nanoFOD system, with increased active scintillation volume, against the previous generation system. Both raw and processed data are time-stamped and recorded to enable future post-processing. Results: The real-time microbeam dosimetry system worked as expected. The new generation dosimeter has approximately double the active volume compared to the previous generation resulting in over 900% increase in signal. The active volume of the dosimeter still provided the spatial resolution that meets the Nyquist criterion for our microbeam widths. Conclusion: We have

  20. Discussions in symposium 'neutron dosimetry in neutron fields - from detection techniques to medical applications'

    International Nuclear Information System (INIS)

    Tanimura, Y.; Sato, T.; Kumada, H.; Terunuma, T.; Sakae, T.; Harano, H.; Matsumoto, T.; Suzuki, T.; Matsufuji, N.

    2008-01-01

    Recently the traceability system (JCSS) of neutron standard based on the Japanese law 'Measurement Act' has been instituted. In addition, importance of the neutron dose evaluation has been increasing in not only the neutron capture medical treatment but also the proton or heavy particle therapy. Against such a background, a symposium 'Neutron dosimetry in neutron fields - From detection techniques to medical applications-' was held on March 29, 2008 and recent topics on the measuring instruments and their calibration, the traceability system, the simulation technique and the medical applications were introduced. This article summarizes the key points in the discussion at the symposium. (author)

  1. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both by international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading to traceable and reliable dosimetry are discussed. (author)

  2. Real-time volume rendering of digital medical images on an iOS device

    Science.gov (United States)

    Noon, Christian; Holub, Joseph; Winer, Eliot

    2013-03-01

    Performing high quality 3D visualizations on mobile devices, while tantalizingly close in many areas, is still a quite difficult task. This is especially true for 3D volume rendering of digital medical images. Allowing this would empower medical personnel a powerful tool to diagnose and treat patients and train the next generation of physicians. This research focuses on performing real time volume rendering of digital medical images on iOS devices using custom developed GPU shaders for orthogonal texture slicing. An interactive volume renderer was designed and developed with several new features including dynamic modification of render resolutions, an incremental render loop, a shader-based clipping algorithm to support OpenGL ES 2.0, and an internal backface culling algorithm for properly sorting rendered geometry with alpha blending. The application was developed using several application programming interfaces (APIs) such as OpenSceneGraph (OSG) as the primary graphics renderer coupled with iOS Cocoa Touch for user interaction, and DCMTK for DICOM I/O. The developed application rendered volume datasets over 450 slices up to 50-60 frames per second, depending on the specific model of the iOS device. All rendering is done locally on the device so no Internet connection is required.

  3. Clinical dosimetry

    International Nuclear Information System (INIS)

    Rassow, J.

    1973-01-01

    The main point of this paper on clinical dosimetry which is to be understood here as application of physical dosimetry on accelerators in medical practice, is based on dosimetric methodics. Following an explanation of the dose parameters and description of the dose distribution important for clinical practice as well as geometric irradiation parameters, the significance of a series of physical parameters such as accelerator energy, surface energy of average stopping power etc. is dealt with in detail. Following a section on field homogenization with bremsstrahlung and electron radiation, details on dosimetry in clinical practice are given. Finally, a few problems of dosemeter or monitor calibration on accelerators are described. The explanations are supplemented by a series of diagrams and tables. (ORU/LH) [de

  4. Reconstructive dosimetry of radiological accidents - a brazilian case study of industrial gammagraphy

    International Nuclear Information System (INIS)

    Silva, Francisco Cesar Augusto da; Hunt, John G.; Ramalho, Adriana; Pinto, Livia M.F. Amalfi

    2001-01-01

    In may 2000, an operator of industrial gammagraphy, during a work of maintenance of a cobalt source irradiator, suffered a radiological accident which caused serious consequences for its left hand. Specialists who work in the Group of Overexposure Analysis (GADE/IRD/CNEN), began the reconstructive dosimetry for estimate the radiation dose. The objective was to determine the real dose received by the operator and to make possible the medical evaluation and to prescribe the medical procedures for the involved victim's treatment. This work presents the reconstructive dosimetry done by theoretical, experimental and computation methods for determining the radiation doses of the operator. Related to the computation method a program was used for external dose calculation based on Monte Carlo's Method and a human body simulator composed by voxels. It is also showed values of the effective and equivalent doses that caused serious lesions in the operator's hand. (author)

  5. Dosimetry of medical proton beams at the JINR phasotron in Dubna

    International Nuclear Information System (INIS)

    Kovar, I.; Spurny, F.; Wagner, R.; Molokanov, A.G.; Mitsyn, G.V.; Zorin, V.P.

    1993-01-01

    The method for determination of the dose rate absorbed by tissue for JINR phasotron medical proton beams on a basis of clinical dosimeter calibration with the 60 Co γ-source, the main parameters of detectors used for measurements of spatial dose distributions, results of ion recombination correction factors in air thimble ionization chambers measurements are described. It is found that the error of JINR phasotron proton beams dosimetry is about 5%. This accuracy meets the international requirements for the therapeutic proton beams. 15 refs.; 4 figs

  6. Use of SMT phototransistors for dosimetry in computerized tomography

    International Nuclear Information System (INIS)

    Magalhaes, C.M.S. de; Silva, J.O. da; Antonio Filho, J.; Santos, L.A.P. dos

    2007-01-01

    A dosimetry system using commercially available SMT (Surface-Mount Technology) phototransistors is evaluated for dose measurements in X-ray computed tomography. First, the phototransistors were characterized at the laboratory using a Pantak X-ray in the standard radiation quality RQR9 from IEC61267. The following tests were realized: energy dependence, response with dose rate and repetitiveness. The phototransistors yielded a real-time readout and a 6430 Sub-femto-ammeter Keithley was used to obtain their electrical current. This methodology allowed the correlating of their results with a standard ionisation chamber, a NE2571 ionization chamber coupled to a NE2670 electrometer that measured the applied dose at the detector position. After the characterization of the phototransistors, free-in-air and in head phantom dose measurements were carried out with the dosimetry system at the Hospital. Phototransistors were used to determine the dose profile measurements along the axis of rotation undergoing CT head examination. A Flip-Flop electrometer was used to obtain these measurements. The results indicated that the current values were reliable when compared with the results of doses of CT ionization chamber under the same conditions. The loss of radiation sensitivity, postirradiation, with time is not significant and the SMT phototransistor brings some features to CT dosimetry including high sensitivity, small size, real-time measurements and linearity. (author)

  7. Alanine EPR dosimetry of therapeutic irradiators

    International Nuclear Information System (INIS)

    Bugay, O.; Bartchuk, V.; Kolesnik, S.; Mazin, M.; Gaponenko, H.

    1999-01-01

    The high-dose alanine EPR dosimetry is a very precise method in the dose range 1-100 kGy. The system is used generally as the standard high-dose transfer dosimetry in many laboratories. This is comparatively expensive technique so it is important to use it as a more universal dosimetry system also in the middle and low dose ranges. The problems of the middle-dose alanine dosimetry are discussed and the solution of several problems is proposed. The alanine EPR dosimetry has been applied to the dose measurements of medical irradiators in the Kiev City Oncology Center. (author)

  8. Dosimetry intercomparisons in European medical device sterilization plants

    DEFF Research Database (Denmark)

    Miller, A.; Sharpe, P.H.G.

    2000-01-01

    Dosimetry intercomparisons have been carried out involving two-thirds of all European radiation sterilization facilities. Dosimeters for the intercomparisons were supplied by two accredited calibration laboratories. The results show good agreement, and indicate overall dosimetry accuracy of the o...... of the order of +/-5% (1 sigma) for both Co-60 and electron beam plants. (C) 2000 Elsevier Science Ltd. All rights reserved....

  9. Temperature dependence of the Al2O3:C response in medical luminescence dosimetry

    International Nuclear Information System (INIS)

    Edmund, Jens M.; Andersen, Claus E.

    2007-01-01

    Over the last years, attention has been given to applications of Al 2 O 3 :C in space and medical dosimetry. One such application is in vivo dose verification in radiotherapy of cancer patients and here we investigate the temperature effects on the radioluminescence (RL) and optically stimulated luminescence (OSL) signals in the room-to-body temperature region. We found that the OSL response changes with both irradiation and stimulation temperatures as well as the OSL integration time. We conclude that temperature effects on the OSL response can be removed by integration if the irradiation temperature is not varied. The RL response only depends on the irradiation temperature. We recommend that calibration should be carried out at the same irradiation temperature at which the measurement is performed (i.e. at body temperature for in vivo measurements). The overall change in the integrated OSL and RL signals with irradiation and stimulation temperature covers an interval from -0.2% to 0.6% per deg. C. This indicates the correction factor one must take into account when performing luminescence dosimetry at different temperatures. The same effects were observed regardless of crystal type, test doses and stimulation and detection wavelengths. The reported temperature dependence seems to be a general property of Al 2 O 3 :C

  10. Monte Carlo validation and optimisation of detector packaging for spectroscopic dosimetry for in vivo urethral dosimetry during low dose rate brachytherapy

    International Nuclear Information System (INIS)

    Nourbehesht, L.K.; Cutajar, D.L.; Guatelli, S.; Rosenfeld, A.B.

    2015-01-01

    The urethral mini-dosimeter, developed by the Centre for Medical Radiation Physics, University of Wollongong, uses spectroscopic dosimetry to provide real time point dose measurements along the urethra during low dose rate prostate brachytherapy. Spectroscopic dosimetry uses the measured spectrum of the treatment isotope to estimate the dose rate at the point of measurement, however, the silicon mini-detectors employed in the urethral mini-dosimeter require water proof encapsulation which must be capable of providing electromagnetic shielding without greatly increasing the size of the probe. The introduction of non-tissue equivalent materials within the encapsulation can change the spectrum of radiation incident on the detector, which may influence the application of spectroscopic dosimetry within the urethral dosimeter. The Monte Carlo code Geant4 was adopted to study the effect of encapsulation on the operation of the urethral mini-dosimeter, as well as to determine whether an appropriate thickness of aluminium shielding was possible for electromagnetic screening. The depth dose response and angular dependence of the urethral mini-dosimeter with three thicknesses of aluminium shielding (20, 50, 100 µm) was compared with the urethral mini-dosimeter without aluminium shielding. The aluminium shielding had the effect of increasing the depth dose response (up to 3 % within 30 mm and up to 5 % within 50 mm), slightly reduced the azimuth angular dependence and slightly increased the polar angular dependence. The 100 µm thick shielding provided the least azimuth angular dependence (±2 %) and provided a polar angular dependence of ±1.4 % within the angles of −45° to 45°.

  11. Medical reference dosimetry using EPR measurements of alanine: Development of an improved method for clinical dose levels

    International Nuclear Information System (INIS)

    Helt-Hansen, Jakob; Andersen, Claus Erik; Rosendal, Flemming; Kofoed, Inger Matilde

    2009-01-01

    Electron spin resonance (EPR) is used to determine the absorbed dose of alanine dosimeters exposed to clinical photon beams in a solid-water phantom. Alanine is potentially suitable for medical reference dosimetry, because of its near water equivalence over a wide energy spectrum, low signal fading, non-destructive measurement and small dosimeter size. Material and Methods. A Bruker EMX-micro EPR spectrometer with a rectangular cavity and a measurement time of two minutes per dosimeter was used for reading of irradiated alanine dosimeters. Under these conditions a new algorithm based on scaling of known spectra was developed to extract the alanine signal. Results. The dose accuracy, including calibration uncertainty, is less than 2% (k=1) above 4 Gy (n=4). The measurement uncertainty is fairly constant in absolute terms (∼30 mGy) and the relative uncertainty therefore rises for dose measurements below 4 Gy. Typical reproducibility is <1% (k=1) above 10 Gy and <2% between 4 and 10 Gy. Below 4 Gy the uncertainty is higher. A depth dose curve measurement was performed in a solid-water phantom irradiated to a dose of 20 Gy at the maximum dose point (dmax) in 6 and 18 MV photon beams. The typical difference between the dose measured with alanine in solid water and the dose measured with an ion chamber in a water tank was about 1%. A difference of 2% between 6 and 18 MV was found, possibly due to non-water equivalence of the applied phantom. Discussion. Compared to previously published methods the proposed algorithm can be applied without normalisation of phase shifts caused by changes in the g-value of the cavity. The study shows that alanine dosimetry is a suitable candidate for medical reference dosimetry especially for quality control applications

  12. Radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Soares, Christopher G.

    2006-01-01

    The object of this paper is to give a new user some practical information on the use of radiochromic films for medical applications. While various aspects of radiochromic film dosimetry for medical applications have been covered in some detail in several other excellent review articles which have appeared in the last few years [Niroomand-Rad, A., Blackwell, C.R., Coursey, B.M., Gall, K.P., McLaughlin, W.L., Meigooni, A.S., Nath, R., Rodgers, J.E., Soares, C.G., 1998. Radiochromic dosimetry: recommendations of the AAPM Radiation Therapy Committee Task Group 55. Med. Phys. 25, 2093-2115; Dempsey, J.F., Low, D.A., Mutic, S., Markman, J., Kirov, A.S., Nussbaum, G.H., Williamson, J.F., 2000. Validation of a precision radiochromic film dosimetry system for quantitative two-dimensional imaging of acute exposure dose distributions. Med. Phys. 27, 2462-2475; Butson, M.J., Yu, P.K.N., Cheung, T., Metcalfe, P., 2003. Radiochromic film for medical radiation dosimetry. Mater. Sci. Eng. R41, 61-120], it is the intent of the present author to present material from a more user-oriented and practical standpoint. That is, how the films work will be stressed much less than how to make the films work well. The strength of radiochromic films is most evident in applications where there is a very high dose gradient and relatively high absorbed dose rates. These conditions are associated with brachytherapy applications, measurement of small fields, and at the edges (penumbra regions) of larger fields

  13. Hybrid 3D pregnant woman and fetus modeling from medical imaging for dosimetry studies

    Energy Technology Data Exchange (ETDEWEB)

    Bibin, Lazar; Anquez, Jeremie; Angelini, Elsa; Bloch, Isabelle [Telecom ParisTech, CNRS UMR 5141 LTCI, Institut TELECOM, Paris (France)

    2010-01-15

    Numerical simulations studying the interactions between radiations and biological tissues require the use of three-dimensional models of the human anatomy at various ages and in various positions. Several detailed and flexible models exist for adults and children and have been extensively used for dosimetry. On the other hand, progress of simulation studies focusing on pregnant women and the fetus have been limited by the fact that only a small number of models exist with rather coarse anatomical details and a poor representation of the anatomical variability of the fetus shape and its position over the entire gestation. In this paper, we propose a new computational framework to generate 3D hybrid models of pregnant women, composed of fetus shapes segmented from medical images and a generic maternal body envelope representing a synthetic woman scaled to the dimension of the uterus. The computational framework includes the following tasks: image segmentation, contour regularization, mesh-based surface reconstruction, and model integration. A series of models was created to represent pregnant women at different gestational stages and with the fetus in different positions, all including detailed tissues of the fetus and the utero-fetal unit, which play an important role in dosimetry. These models were anatomically validated by clinical obstetricians and radiologists who verified the accuracy and representativeness of the anatomical details, and the positioning of the fetus inside the maternal body. The computational framework enables the creation of detailed, realistic, and representative fetus models from medical images, directly exploitable for dosimetry simulations. (orig.)

  14. Hybrid 3D pregnant woman and fetus modeling from medical imaging for dosimetry studies

    International Nuclear Information System (INIS)

    Bibin, Lazar; Anquez, Jeremie; Angelini, Elsa; Bloch, Isabelle

    2010-01-01

    Numerical simulations studying the interactions between radiations and biological tissues require the use of three-dimensional models of the human anatomy at various ages and in various positions. Several detailed and flexible models exist for adults and children and have been extensively used for dosimetry. On the other hand, progress of simulation studies focusing on pregnant women and the fetus have been limited by the fact that only a small number of models exist with rather coarse anatomical details and a poor representation of the anatomical variability of the fetus shape and its position over the entire gestation. In this paper, we propose a new computational framework to generate 3D hybrid models of pregnant women, composed of fetus shapes segmented from medical images and a generic maternal body envelope representing a synthetic woman scaled to the dimension of the uterus. The computational framework includes the following tasks: image segmentation, contour regularization, mesh-based surface reconstruction, and model integration. A series of models was created to represent pregnant women at different gestational stages and with the fetus in different positions, all including detailed tissues of the fetus and the utero-fetal unit, which play an important role in dosimetry. These models were anatomically validated by clinical obstetricians and radiologists who verified the accuracy and representativeness of the anatomical details, and the positioning of the fetus inside the maternal body. The computational framework enables the creation of detailed, realistic, and representative fetus models from medical images, directly exploitable for dosimetry simulations. (orig.)

  15. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Boyd, A.W.; Chadwick, K.H.; McDonald, J.C.; Miller, A.

    1989-01-01

    Radiation processing is a relatively young industry with broad applications and considerable commercial success. Dosimetry provides an independent and effective way of developing and controlling many industrial processes. In the sterilization of medical devices and in food irradiation, where the radiation treatment impacts directly on public health, the measurements of dose provide the official means of regulating and approving its use. In this respect, dosimetry provides the operator with a means of characterizing the facility, of proving that products are treated within acceptable dose limits and of controlling the routine operation. This book presents an up-to-date review of the theory, data and measurement techniques for radiation processing dosimetry in a practical and useful way. It is hoped that this book will lead to improved measurement procedures, more accurate and precise dosimetry and a greater appreciation of the necessity of dosimetry for radiation processing. (author)

  16. Synthetic diamond devices for medical dosimetry applied to radiotherapy; Etude et developpement de dispositifs en diamant synthetique pour la dosimetrie medicale: applications en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Descamps, C

    2007-06-15

    The aim of this thesis, lead in the framework of an integrated European project entitled M.A.E.S.T.R.O. for ' Methods and Advanced Equipment for Simulation and Treatment in Radio Oncology', was to develop and test synthetic diamond detector in clinical environment for new modalities used in radiotherapy. Diamond is a good candidate for the detection of high energy beams in medical fields. It can be used for passive dosimetry, as thermoluminescent dosimeters or for active dosimetry as ionisation chambers. These two applications are presented here. Concerning the thermoluminescence, several impurities or dopants (boron, phosphorus, and nitrogen) have been incorporated in the diamond films during growth, in order to modify the material dosimetric properties and a detailed study of nitrogen-containing films is proposed. The second part presents the results obtained in active dosimetry. Two guide lines were followed: the measurement set-up optimisation and the material modification. The first dosimetric studies under radiotherapy beams concerning nitrogen-containing polycrystalline diamond as well as high purity single crystal diamond are conclusive. The detectors behaviours are in agreement with the recommendations of the International Atomic Energy Agency (IAEA). (author)

  17. Synthetic diamond devices for medical dosimetry applied to radiotherapy; Etude et developpement de dispositifs en diamant synthetique pour la dosimetrie medicale: applications en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Descamps, C

    2007-06-15

    The aim of this thesis, lead in the framework of an integrated European project entitled M.A.E.S.T.R.O. for ' Methods and Advanced Equipment for Simulation and Treatment in Radio Oncology', was to develop and test synthetic diamond detector in clinical environment for new modalities used in radiotherapy. Diamond is a good candidate for the detection of high energy beams in medical fields. It can be used for passive dosimetry, as thermoluminescent dosimeters or for active dosimetry as ionisation chambers. These two applications are presented here. Concerning the thermoluminescence, several impurities or dopants (boron, phosphorus, and nitrogen) have been incorporated in the diamond films during growth, in order to modify the material dosimetric properties and a detailed study of nitrogen-containing films is proposed. The second part presents the results obtained in active dosimetry. Two guide lines were followed: the measurement set-up optimisation and the material modification. The first dosimetric studies under radiotherapy beams concerning nitrogen-containing polycrystalline diamond as well as high purity single crystal diamond are conclusive. The detectors behaviours are in agreement with the recommendations of the International Atomic Energy Agency (IAEA). (author)

  18. Real Time Revisited

    Science.gov (United States)

    Allen, Phillip G.

    1985-12-01

    The call for abolishing photo reconnaissance in favor of real time is once more being heard. Ten years ago the same cries were being heard with the introduction of the Charge Coupled Device (CCD). The real time system problems that existed then and stopped real time proliferation have not been solved. The lack of an organized program by either DoD or industry has hampered any efforts to solve the problems, and as such, very little has happened in real time in the last ten years. Real time is not a replacement for photo, just as photo is not a replacement for infra-red or radar. Operational real time sensors can be designed only after their role has been defined and improvements made to the weak links in the system. Plodding ahead on a real time reconnaissance suite without benefit of evaluation of utility will allow this same paper to be used ten years from now.

  19. Classification and overview of research in real-time imaging

    Science.gov (United States)

    Sinha, Purnendu; Gorinsky, Sergey V.; Laplante, Phillip A.; Stoyenko, Alexander D.; Marlowe, Thomas J.

    1996-10-01

    Real-time imaging has application in areas such as multimedia, virtual reality, medical imaging, and remote sensing and control. Recently, the imaging community has witnessed a tremendous growth in research and new ideas in these areas. To lend structure to this growth, we outline a classification scheme and provide an overview of current research in real-time imaging. For convenience, we have categorized references by research area and application.

  20. Multi-processor system for real-time deconvolution and flow estimation in medical ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jesper Lomborg; Jensen, Jørgen Arendt; Stetson, Paul F.

    1996-01-01

    of the algorithms. Many of the algorithms can only be properly evaluated in a clinical setting with real-time processing, which generally cannot be done with conventional equipment. This paper therefore presents a multi-processor system capable of performing 1.2 billion floating point operations per second on RF...... filter is used with a second time-reversed recursive estimation step. Here it is necessary to perform about 70 arithmetic operations per RF sample or about 1 billion operations per second for real-time deconvolution. Furthermore, these have to be floating point operations due to the adaptive nature...... interfaced to our previously-developed real-time sampling system that can acquire RF data at a rate of 20 MHz and simultaneously transmit the data at 20 MHz to the processing system via several parallel channels. These two systems can, thus, perform real-time processing of ultrasound data. The advantage...

  1. Real-time use of the iPad by third-year medical students for clinical decision support and learning: a mixed methods study

    Science.gov (United States)

    Nuss, Michelle A.; Hill, Janette R.; Cervero, Ronald M.; Gaines, Julie K.; Middendorf, Bruce F.

    2014-01-01

    Purpose Despite widespread use of mobile technology in medical education, medical students’ use of mobile technology for clinical decision support and learning is not well understood. Three key questions were explored in this extensive mixed methods study: 1) how medical students used mobile technology in the care of patients, 2) the mobile applications (apps) used and 3) how expertise and time spent changed overtime. Methods This year-long (July 2012–June 2013) mixed methods study explored the use of the iPad, using four data collection instruments: 1) beginning and end-of-year questionnaires, 2) iPad usage logs, 3) weekly rounding observations, and 4) weekly medical student interviews. Descriptive statistics were generated for the questionnaires and apps reported in the usage logs. The iPad usage logs, observation logs, and weekly interviews were analyzed via inductive thematic analysis. Results Students predominantly used mobile technology to obtain real-time patient data via the electronic health record (EHR), to access medical knowledge resources for learning, and to inform patient care. The top four apps used were Epocrates®, PDF Expert®, VisualDx®, and Micromedex®. The majority of students indicated that their use (71%) and expertise (75%) using mobile technology grew overtime. Conclusions This mixed methods study provides substantial evidence that medical students used mobile technology for clinical decision support and learning. Integrating its use into the medical student's daily workflow was essential for achieving these outcomes. Developing expertise in using mobile technology and various apps was critical for effective and efficient support of real-time clinical decisions. PMID:25317266

  2. Real-time use of the iPad by third-year medical students for clinical decision support and learning: a mixed methods study.

    Science.gov (United States)

    Nuss, Michelle A; Hill, Janette R; Cervero, Ronald M; Gaines, Julie K; Middendorf, Bruce F

    2014-01-01

    Despite widespread use of mobile technology in medical education, medical students' use of mobile technology for clinical decision support and learning is not well understood. Three key questions were explored in this extensive mixed methods study: 1) how medical students used mobile technology in the care of patients, 2) the mobile applications (apps) used and 3) how expertise and time spent changed overtime. This year-long (July 2012-June 2013) mixed methods study explored the use of the iPad, using four data collection instruments: 1) beginning and end-of-year questionnaires, 2) iPad usage logs, 3) weekly rounding observations, and 4) weekly medical student interviews. Descriptive statistics were generated for the questionnaires and apps reported in the usage logs. The iPad usage logs, observation logs, and weekly interviews were analyzed via inductive thematic analysis. Students predominantly used mobile technology to obtain real-time patient data via the electronic health record (EHR), to access medical knowledge resources for learning, and to inform patient care. The top four apps used were Epocrates(®), PDF Expert(®), VisualDx(®), and Micromedex(®). The majority of students indicated that their use (71%) and expertise (75%) using mobile technology grew overtime. This mixed methods study provides substantial evidence that medical students used mobile technology for clinical decision support and learning. Integrating its use into the medical student's daily workflow was essential for achieving these outcomes. Developing expertise in using mobile technology and various apps was critical for effective and efficient support of real-time clinical decisions.

  3. Accuracy of Real-time Couch Tracking During 3-dimensional Conformal Radiation Therapy, Intensity Modulated Radiation Therapy, and Volumetric Modulated Arc Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Wilbert, Juergen; Baier, Kurt; Hermann, Christian; Flentje, Michael; Guckenberger, Matthias

    2013-01-01

    Purpose: To evaluate the accuracy of real-time couch tracking for prostate cancer. Methods and Materials: Intrafractional motion trajectories of 15 prostate cancer patients were the basis for this phantom study; prostate motion had been monitored with the Calypso System. An industrial robot moved a phantom along these trajectories, motion was detected via an infrared camera system, and the robotic HexaPOD couch was used for real-time counter-steering. Residual phantom motion during real-time tracking was measured with the infrared camera system. Film dosimetry was performed during delivery of 3-dimensional conformal radiation therapy (3D-CRT), step-and-shoot intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). Results: Motion of the prostate was largest in the anterior–posterior direction, with systematic (∑) and random (σ) errors of 2.3 mm and 2.9 mm, respectively; the prostate was outside a threshold of 5 mm (3D vector) for 25.0%±19.8% of treatment time. Real-time tracking reduced prostate motion to ∑=0.01 mm and σ = 0.55 mm in the anterior–posterior direction; the prostate remained within a 1-mm and 5-mm threshold for 93.9%±4.6% and 99.7%±0.4% of the time, respectively. Without real-time tracking, pass rates based on a γ index of 2%/2 mm in film dosimetry ranged between 66% and 72% for 3D-CRT, IMRT, and VMAT, on average. Real-time tracking increased pass rates to minimum 98% on average for 3D-CRT, IMRT, and VMAT. Conclusions: Real-time couch tracking resulted in submillimeter accuracy for prostate cancer, which transferred into high dosimetric accuracy independently of whether 3D-CRT, IMRT, or VMAT was used.

  4. Reconstructive dosimetry of radiological accidents - study of a brazilian case of industrial gamma radiography

    International Nuclear Information System (INIS)

    Silva, Francisco Cesar Augusto da; Hunt, John G.; Ramalho, Adriana; Pinto, Livia M.F. Amalfi

    2002-01-01

    On May 2000, an industrial gamma radiography operator, during a maintenance work of a 60 Co irradiator, has suffered a radiological accident with severe consequences to the left hand. The experts of the High Doses Analysis Group (GADE/IRD/CNEN) initiated the reconstructive dosimetry for the radiation dose estimation, in order to determine the real dose received by the operator, and to help the medical evaluation for prescribing the medical procedures for treatment of the involved victim. This paper presents the reconstructive dosimetry performed through the determination of the radiation doses of the operator, based on theoretical, experimental and computational methods. For the computer methods, a program for the calculation of external doses were used, based on the Monte Carlo method, and a human body simulator composed by voxels. The values of effective and equivalent doses are also presented which has caused severe lesions on the operator hand

  5. Evaluation of 3D printing materials for fabrication of a novel multi-functional 3D thyroid phantom for medical dosimetry and image quality

    International Nuclear Information System (INIS)

    Alssabbagh, Moayyad; Tajuddin, Abd Aziz; Abdulmanap, Mahayuddin; Zainon, Rafidah

    2017-01-01

    Recently, the three-dimensional printer has started to be utilized strongly in medical industries. In the human body, many parts or organs can be printed from 3D images to meet accurate organ geometries. In this study, five common 3D printing materials were evaluated in terms of their elementary composition and the mass attenuation coefficients. The online version of XCOM photon cross-section database was used to obtain the attenuation values of each material. The results were compared with the attenuation values of the thyroid listed in the International Commission on Radiation Units and Measurements - ICRU 44. Two original thyroid models (hollow-inside and solid-inside) were designed from scratch to be used in nuclear medicine, diagnostic radiology and radiotherapy for dosimetry and image quality purposes. Both designs have three holes for installation of radiation dosimeters. The hollow-inside model has more two holes in the top for injection the radioactive materials. The attenuation properties of the Polylactic Acid (PLA) material showed a very good match with the thyroid tissue, which it was selected to 3D print the phantom using open source RepRap, Prusa i3 3D printer. The scintigraphy images show that the phantom simulates a real healthy thyroid gland and thus it can be used for image quality purposes. The measured CT numbers of the PA material after the 3D printing show a close match with the human thyroid CT numbers. Furthermore, the phantom shows a good accommodation of the TLD dosimeters inside the holes. The 3D fabricated thyroid phantom simulates the real shape of the human thyroid gland with a changeable geometrical shape-size feature to fit different age groups. By using 3D printing technology, the time required to fabricate the 3D phantom was considerably shortened compared to the longer conventional methods, where it took only 30 min to print out the model. The 3D printing material used in this study is commercially available and cost

  6. A CaS : Ce, Sm-based dosimeter for online dosimetry measurement

    International Nuclear Information System (INIS)

    Sun Yurun; Chen Zhaoyang; Fan Yanwei; Yan Shiyou; He Chengfa

    2011-01-01

    A film dosimeter based on optically stimulated luminescence (OSL) material of CaS : Ce, Sm was developed for online irradiation dosimetry measurement. The stimulation is provided by a laser with a wavelength of 980 nm, and the OSL luminescence is collected by a photodiode. Using 60 Co γ-rays, we investigated the dosimetry characteristic of the dosimeter at different dose rates and total doses. The real-time detection results showed that the OSL signals versus total ionizing dose exhibited a good linearity in a dose range of 0.1-185 Gy. (authors)

  7. Visual simultaneous localization and mapping (VSLAM) methods applied to indoor 3D topographical and radiological mapping in real-time

    International Nuclear Information System (INIS)

    Hautot, F.; Dubart, P.; Chagneau, B.; Bacri, C.O.; Abou-Khalil, R.

    2017-01-01

    New developments in the field of robotics and computer vision enable to merge sensors to allow fast real-time localization of radiological measurements in the space/volume with near real-time radioactive sources identification and characterization. These capabilities lead nuclear investigations to a more efficient way for operators' dosimetry evaluation, intervention scenarios and risks mitigation and simulations, such as accidents in unknown potentially contaminated areas or during dismantling operations. This paper will present new progresses in merging RGB-D camera based on SLAM (Simultaneous Localization and Mapping) systems and nuclear measurement in motion methods in order to detect, locate, and evaluate the activity of radioactive sources in 3-dimensions

  8. Can occupational exposure be optimized for medical workers?

    International Nuclear Information System (INIS)

    Aubert, B.; Lefaure, C.

    1998-01-01

    Implementation of the principle of optimization (ALARA), an essential radiation protection regulations, remains very limited in the medical field, even though 80 % of workers whose exposure exceeds 50 mSv are to be found in this domain. The doses measured by legal dosimetry sometimes underestimate the real exposure of workers. It is therefore necessary to optimize the protection of occupational exposure in the medical field. This paper reviews the steps of the optimization procedure with emphasis on specificity of its application in this domain. Operating dosimetry as well as information on the residual risk due to low exposures and a better estimation of the risk/benefit factor for the patient are needed for satisfactory implementation. (author)

  9. Order of the 30 December 2004 relative to the individual sheet of medical follow-up and to the individual information concerning the dosimetry of workers exposed to ionizing radiations; Arrete du 30 decembre 2004 relatif a la carte individuelle de suivi medical et aux informations individuelles de dosimetrie des travailleurs exposes aux rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-12-15

    This order concerns the content and the modalities of grant of the individual sheet of medical follow-up, the collect and the centralization of dosimetry individual information by the Institute of Radiation Protection and Safety (IRSN), and the access to individual results of external and internal dosimetry. (A.L.B.)

  10. High-dosage dosimetry programme of the IAEA

    International Nuclear Information System (INIS)

    Mehta, K.

    1999-01-01

    The high-dose dosimetry programme was initiated by the International Atomic Energy Agency in 1977. Like any other Agency programme, this one has various activities. These cover: research contracts and research agreements, co-ordinated research projects (CRP), training courses, and laboratory-based activities. The Agency's dose quality audit service (International Dose Assurance Service, IDAS), initiated in 1985, is one of the key elements of the programme. At earlier times, the technical part was operated through a laboratory in Germany. However, after purchasing the Bruker ESR spectrometer, the entire service has been operated from the Agency since 1992. This audit service has served well the needs of various institutes around the world involved with radiation processing. We have had two Co-ordinated Research Projects (the second one is in its last year) over the last several years. Both were/are aimed at standardization of dosimetry for radiation processing. Nine or ten participants of each CRP were about evenly distributed between the developed and developing Member States. In collaboration with the Food and Environmental Protection Section and the Industrial Applications and Chemistry Section, the Dosimetry and Medical Radiation Physics Section has participated in several training courses; these have been mainly regional courses. This collaboration has worked well since such courses combine specific radiation processing applications with the needs of good dosimetry and process control. Also, the Agency has organised several dose intercomparisons in recent time. The activities of the high-dose dosimetry programme since the last symposium (November 1990) are reviewed here. (author)

  11. Transition to life--a sendoff to the real world for graduating medical students.

    Science.gov (United States)

    Coates, Wendy C; Spector, Tahlia S; Uijtdehaage, Sebastian

    2012-01-01

    Graduating medical students will enter the workforce, often for the first time. Many have spent the past 20 years as students, receiving financial support from parents, and have not managed real-life issues such as financial planning, real estate, balancing well-being with employment, and integrating into a new community with stressful working conditions. To address a perceived need, we designed an intervention to introduce graduating medical students to financial planning, real estate choices, physician wellness during relocation/internship, and traits of efficient interns. The objectives of this study are to (a) assess baseline experience, knowledge, and comfort of seniors about "real-life" experiences, and (b) assess the efficacy of a 4-hr educational intervention on perceptions of understanding financial planning, real estate choices, intern preparedness, and physician wellness. Acute Care College seniors (classes of 2009 and 2010) attended the intervention after match day and completed a survey to gather demographic data and assess preexisting knowledge and a postintervention survey (1-7 Likert scale). Forty-nine students (45% male; M age = 25.5 years) participated. Prior experiences: 43% no break in education, 51% no full-time job, 38% never signed a rental lease and 94% had not purchased real estate, 90% did not have (or were not aware of having) disability insurance, and 82% had educational debt exceeding $50,000. Following the workshop, students felt more confident in their understanding of life skills topics (real estate, 83%; financial planning, 94%; well-being, 86%). Our workshop assisted in preparing for life after medical school for 98% of the participants. Graduating medical students can gain knowledge about real-life responsibilities and confidence during an educational session prior to starting residency.

  12. Barriers to Real-Time Medical Direction via Cellular Communication for Prehospital Emergency Care Providers in Gujarat, India.

    Science.gov (United States)

    Lindquist, Benjamin; Strehlow, Matthew C; Rao, G V Ramana; Newberry, Jennifer A

    2016-07-08

    Many low- and middle-income countries depend on emergency medical technicians (EMTs), nurses, midwives, and layperson community health workers with limited training to provide a majority of emergency medical, trauma, and obstetric care in the prehospital setting. To improve timely patient care and expand provider scope of practice, nations leverage cellular phones and call centers for real-time online medical direction. However, there exist several barriers to adequate communication that impact the provision of emergency care. We sought to identify obstacles in the cellular communication process among GVK Emergency Management and Research Institute (GVK EMRI) EMTs in Gujarat, India. A convenience sample of practicing EMTs in Gujarat, India were surveyed regarding the barriers to call initiation and completion. 108 EMTs completed the survey. Overall, ninety-seven (89.8%) EMTs responded that the most common reason they did not initiate a call with the call center physician was insufficient time. Forty-six (42%) EMTs reported that they were unable to call the physician one or more times during a typical workweek (approximately 5-6 twelve-hour shifts/week) due to their hands being occupied performing direct patient care. Fifty-eight (54%) EMTs reported that they were unable to reach the call center physician, despite attempts, at least once a week. This study identified multiple barriers to communication, including insufficient time to call for advice and inability to reach call center physicians. Identification of simple interventions and best practices may improve communication and ensure timely and appropriate prehospital care.

  13. Optical fibre luminescence sensor for real-time LDR brachytherapy dosimetry

    Science.gov (United States)

    Woulfe, P.; O'Keeffe, S.; Sullivan, F. J.

    2018-02-01

    An optical fibre sensor for monitoring low dose radiation is presented. The sensor is based on a scintillation material embedded within the optical fibre core, which emits visible light when exposed to low level ionising radiation. The incident level of ionising radiation can be determined by analysing the optical emission. An optical fibre sensor is developed, based on radioluminescence whereby radiation sensitive scintillation material, terbium doped gadolinium oxysulphide (Gd2O2S:Tb), is embedded in a cavity of 700μm of a 1mm plastic optical fibre. The sensor is designed for in-vivo monitoring of the radiation dose during radio-active seed implantation for low dose rate (LDR) brachytherapy, in prostate cancer treatment, providing radiation oncologists with real-time information of the radiation dose to the target area and/or nearby organs at risk (OARs). The radiation from the brachytherapy seeds causes emission of visible light from the scintillation material through the process of radioluminescence, which penetrates the fibre, propagating along the optical fibre for remote detection using a multi-pixel photon counter. The sensor demonstrates a high sensitivity to 0.397mCi of Iodine125, the radioactive source most commonly used in brachytherapy for treating prostate cancer.

  14. Development of Candida-Specific Real-Time PCR Assays for the Detection and Identification of Eight Medically Important Candida Species.

    Science.gov (United States)

    Zhang, Jing; Hung, Guo-Chiuan; Nagamine, Kenjiro; Li, Bingjie; Tsai, Shien; Lo, Shyh-Ching

    2016-01-01

    Culture-based identification methods have been the gold standard for the diagnosis of fungal infection. Currently, molecular technologies such as real-time PCR assays with short turnaround time can provide desirable alternatives for the rapid detection of Candida microbes. However, most of the published PCR primer sets are not Candida specific and likely to amplify DNA from common environmental contaminants, such as Aspergillus microbes. In this study, we designed pan-Candida primer sets based on the ribosomal DNA-coding regions conserved within Candida but distinct from those of Aspergillus and Penicillium. We demonstrate that the final two selected pan-Candida primer sets would not amplify Aspergillus DNA and could be used to differentiate eight medically important Candida pathogens in real-time PCR assays based on their melting profiles, with a sensitivity of detection as low as 10 fg of Candida genomic DNA. Moreover, we further evaluated and selected species-specific primer sets covering Candida albicans, Candida glabrata, Candida tropicalis, and Candida dubliniensis and show that they had high sensitivity and specificity. These real-time PCR primer sets could potentially be assembled into a single PCR array for the rapid detection of Candida species in various clinical settings, such as corneal transplantation.

  15. Proceedings of the recent developments in radiation dosimetry

    International Nuclear Information System (INIS)

    Bhat, Nagesh; Palani Selvan, T.

    2016-01-01

    Whilst 'Dosimetry' in its original sense deals with methods for a quantitative determination of energy deposited in a given medium by directly or indirectly ionizing radiations, the term is better known as a scientific sub-specialty in the fields of health physics and medical physics, where it is the calculation and assessment of the radiation dose received by the human body. Dosimetry is used extensively for radiation protection and is routinely applied to ensure radiological safety of occupational radiation workers. Internal dosimetry due to the ingestion or inhalation of radioactive materials relies on a variety of physiological or imaging techniques. External dosimetry, due to irradiation from an external source is based on measurements with a dosimeter, or inferred from other radiological protection instruments. Radiation dosimetry is one of the important research areas of Department of Atomic Energy (DAE). This research work is centered on the facilities such as nuclear reactors, reprocessing plants, high energy accelerators (research/industry/medical), radiation standards, food processing, radiation technology development, etc. In each of these facilities, radiation field environment is different and the associated dosimetry concepts are different. Papers relevant to INIS are indexed separately

  16. Diode In-vivo Dosimetry for External Beam Radiotherapy: Patient Data Analysis

    International Nuclear Information System (INIS)

    Mrcela, I.; Bokulic, T.; Budanec, M; Froebe, A.; Soldic, Z.; Kusic, Z.

    2008-01-01

    In-vivo dosimetry is known as simple and reliable method for checking the final accuracy of the dose delivered in external radiotherapy making a supplement to the regular quality control. Entrance dose measurements in the beginning of the treatment assure detection of major errors that can affect the therapy outcome. Silicon diodes are often the detectors of choice for their ability of real time dose measurements and the simplicity of use. There are many publications describing the procedures for the implementation of in-vivo dosimetry. Routine in-vivo dosimetry has been introduced in our department after initial procedures including physical characterization, calibration and determination of correction factors for the detectors in use. This work presents patient data analysis with more than 700 field measurements taken in last 2 years period

  17. Diagnostic radiology dosimetry: status and trends

    International Nuclear Information System (INIS)

    Rivera M, T.

    2015-10-01

    Full text: Medical radiation is by far the largest man-made source of public exposure to ionizing radiation. Since 1970 the expression of protection standards shifted from a dose- to a risk-based approach, with dose limits established to yield risks to radiation workers comparable with those for workers in other safe industries. Another hand, worldwide interest in patient dose measurement was stimulated by the publication of Patient Dose Reduction in Diagnostic Radiology by the UK National Radiological Protection Board (NRPB). In response to heightened awareness of the importance of patient dose contributed by radiology procedures, there has been a general trend to effect control of patient doses by applying the principles of optimization coupled with an increase in regulatory enforcement. In this sense, thermoluminescent dosimetry (TLD) has been actively proposed in the last 3 decades thanks to their successful applications in diagnostic radiology. At the same time, it is emerged as the best radiation dosimetry method. The present work presents advantages of thermoluminescent dosimetry for X-ray beams measurements and its optimization. (Author)

  18. Diagnostic radiology dosimetry: status and trends

    Energy Technology Data Exchange (ETDEWEB)

    Rivera M, T., E-mail: trivera@ipn.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Full text: Medical radiation is by far the largest man-made source of public exposure to ionizing radiation. Since 1970 the expression of protection standards shifted from a dose- to a risk-based approach, with dose limits established to yield risks to radiation workers comparable with those for workers in other safe industries. Another hand, worldwide interest in patient dose measurement was stimulated by the publication of Patient Dose Reduction in Diagnostic Radiology by the UK National Radiological Protection Board (NRPB). In response to heightened awareness of the importance of patient dose contributed by radiology procedures, there has been a general trend to effect control of patient doses by applying the principles of optimization coupled with an increase in regulatory enforcement. In this sense, thermoluminescent dosimetry (TLD) has been actively proposed in the last 3 decades thanks to their successful applications in diagnostic radiology. At the same time, it is emerged as the best radiation dosimetry method. The present work presents advantages of thermoluminescent dosimetry for X-ray beams measurements and its optimization. (Author)

  19. Real-Time Teleguidance of a Non-Surgeon Crew Medical Officer Performing Orthopedic Surgery at the Amundsen-Scott South Pole Station During Winter-Over

    Science.gov (United States)

    Otto, Christian

    2010-01-01

    The Amundsen-Scott South Pole Research station located at the geographic South Pole, is the most isolated, permanently inhabited human outpost on Earth. Medical care is provided to station personnel by a non-surgeon crew medical officer (CMO). During the winter-over period from February to October, the station is isolated, with no incoming or outgoing flights due to severe weather conditions. In late June, four months after the station had closed for the austral winter, a 31 year old meteorologist suffered a complete rupture of his patellar tendon while sliding done an embankment. An evacuation was deemed to be too risky to aircrews due to the extreme cold and darkness. A panel of physicians from Massachusetts General Hospital, Johns Hopkins University and the University of Texas Medical Branch were able to assess the patient remotely via telemedicine and agreed that surgery was the only means to restore mobility and prevent long term disability. The lack of a surgical facility and a trained surgical team were overcome by conversion of the clinic treatment area, and intensive preparation of medical laypersons as surgical assistants. The non-surgeon CMO and CMO assistant at South Pole, were guided through the administration of spinal anesthetic, and the two-hour operative repair by medical consultants at Massachusetts General Hospital. Real-time video of the operative field, directions from the remote consultants and audio communication were provided by videoconferencing equipment, operative cameras, and high bandwidth satellite communications. In real-time, opening incision/exposure, tendon relocation, hemostatsis, and operative closure by the CMO was closely monitored and guided and by the remote consultants. The patient s subsequent physical rehabilitation over the ensuing months of isolation was also monitored remotely via telemedicine. This was the first time in South Pole s history that remote teleguidance had been used for surgery and represents a model for

  20. LBMR: Load-Balanced Multipath Routing for Wireless Data-Intensive Transmission in Real-Time Medical Monitoring.

    Science.gov (United States)

    Tseng, Chinyang Henry

    2016-05-31

    In wireless networks, low-power Zigbee is an excellent network solution for wireless medical monitoring systems. Medical monitoring generally involves transmission of a large amount of data and easily causes bottleneck problems. Although Zigbee's AODV mesh routing provides extensible multi-hop data transmission to extend network coverage, it originally does not, and needs to support some form of load balancing mechanism to avoid bottlenecks. To guarantee a more reliable multi-hop data transmission for life-critical medical applications, we have developed a multipath solution, called Load-Balanced Multipath Routing (LBMR) to replace Zigbee's routing mechanism. LBMR consists of three main parts: Layer Routing Construction (LRC), a Load Estimation Algorithm (LEA), and a Route Maintenance (RM) mechanism. LRC assigns nodes into different layers based on the node's distance to the medical data gateway. Nodes can have multiple next-hops delivering medical data toward the gateway. All neighboring layer-nodes exchange flow information containing current load, which is the used by the LEA to estimate future load of next-hops to the gateway. With LBMR, nodes can choose the neighbors with the least load as the next-hops and thus can achieve load balancing and avoid bottlenecks. Furthermore, RM can detect route failures in real-time and perform route redirection to ensure routing robustness. Since LRC and LEA prevent bottlenecks while RM ensures routing fault tolerance, LBMR provides a highly reliable routing service for medical monitoring. To evaluate these accomplishments, we compare LBMR with Zigbee's AODV and another multipath protocol, AOMDV. The simulation results demonstrate LBMR achieves better load balancing, less unreachable nodes, and better packet delivery ratio than either AODV or AOMDV.

  1. Characterization of commercial MOSFETS electron dosimetry

    International Nuclear Information System (INIS)

    Carvajal, M. A.; Simancas, F.; Guirado, D.; Banqueri, J.; Vilches, M.; Lallena, A. M.; Palma, A. J.

    2011-01-01

    In recent years there have been commercial dosimetry devices based on transistors Metal-Oxide-Semiconductor (MOSFET) having a number of advantages over traditional systems for dosimetry in medical applications. These include the portability of the sensor element and a reading process quick and relatively simple dose, linearity, and so on. The use of electron beams is important in modern radiotherapy include its use in intra-operative radiotherapy (RIO). This paper presents an initial characterization of different business models MOSFET, not specific for radiation detection, to demonstrate their potential as sensors for electron beam dosimetry. (Author)

  2. SU-E-I-24: Design and Fabrication of a Multi-Functional Neck and Thyroid Phantom for Medical Dosimetry and Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Mehdizadeh, S; Sina, S [Radiation Research Center, Shiraz University, Shiraz (Iran, Islamic Republic of); Karimipourfard, M; Lotfalizadeh, F [Nuclear Engineering department, Shiraz University, Shiraz (Iran, Islamic Republic of); Faghihi, R [Radiation Research Center, Shiraz University, Shiraz (Iran, Islamic Republic of); Nuclear Engineering department, Shiraz University, Shiraz (Iran, Islamic Republic of); Babaei, A [Shiraz University of medical sciences, Shiraz (Iran, Islamic Republic of)

    2014-06-01

    Purpose: The purpose of this study is the design and fabrication of a multipurpose anthropomorphic neck and thyroid phantom for use in medical applications (i.e. quality control of images in nuclear medicine, and dosimetry). Methods: The designed neck phantom is composed of seven elliptic cylindrical slices with semi-major axis of 14 and semi-minor axis of 12.5 cm, each having the thickness of 2cm. Thyroid gland, bony part of the neck, and the wind pipe were also built inside the neck phantom. Results: The phantom contains some removable plugs,inside and at its surface to accommodate the TLD chips with different shapes and dimensions, (i.e. rod, cylindrical and cubical TLD chips)for the purpose of medical dosimetry (i.e. in radiology, radiotherapy, and nuclear medicine). For the purpose of quality control of images in nuclear medicine, the removable thyroid gland was built to accommodate the radioactive iodine. The female and male thyroid glands were built in two sizes separately. Conclusion: The designed phantom is a multi-functional phantom which is applicable for dosimetry in diagnostic radiology, radiotherapy, and quality control of images in nuclear medicine.

  3. Individual dosimetry of workers and patients: implementation and perspectives; La dosimetrie individuelle des travailleurs et de patients: mise en oeuvre et perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Rannou, A.; Aubert, B.; Lahaye, Th.; Scaff, P.; Casanova, Ph.; Van Bladel, L.; Queinnec, F.; Valendru, N.; Jehanno, J.; Grude, E.; Berard, Ph.; Desbree, A.; Kafrouni, H.; Paquet, F.; Vanhavere, F.; Bridier, A.; Ginestet, Ch.; Magne, S.; Donadille, L.; Bordy, J.M.; Bottollier-Depois, J.F.; Barrere, J.L.; Ferragut, A.; Metivier, H.; Gaillard-Lecanu, E

    2008-07-01

    These days organised by the section of the technical protection of the S.F.R.P. review the different techniques of dosimetry used in France and Europe, and present the future orientations.The different interventions are as follow: Individual exposures of the workers: historic assessment and perspectives; medical exposure: where are the doses; legal obligations in individual dosimetry: which are the objective and the need on the subject; the dosimetry follow-up of workers by the S.I.S.E.R.I. system: assessment and perspectives; impact of the norm ISO 20553 on the follow-up of internal exposure; the implementation of the patient dose measurement in Belgium; techniques of passive dosimetry used in Europe; Supervision radiation protection at EDF: long term and short term approach; Comparison active and passive dosimetry at Melox; methodology for the choice of new neutron dosemeters; the working group M.E.D.O.R.: guide of internal dosimetry for the use of practitioners; O.E.D.I.P.E.: tool of modeling for the personalized internal dosimetry; the use of the Monte-Carlo method for the planning of the cancer treatment by radiotherapy becomes a reality; the works of the committee 2 of the ICRP; passive dosimetry versus operational dosimetry: situation in Europe; Implementation of the in vivo dosimetry in a radiotherapy department: experience of the Gustave Roussy institute; experience feedback on the in vivo measures in radiotherapy, based on the use of O.S.L. pellets; multi points O.S.L. instrumentation for the radiation dose monitoring in radiotherapy; dosimetry for extremities for medical applications: principle results of the European contract C.O.N.R.A.D.; references and perspectives in dosimetry; what perspectives for numerical dosimetry, an example: Sievert; system of dose management: how to answer to needs; the last technical evolutions in terms of electronic dosimetry in nuclear power plant; the fourth generation type reactors: what dosimetry. (N.C.)

  4. Analysis and Synthesis of Distributed Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    like automotive electronics, real-time multimedia, avionics, medical equipment, and factory systems. The proposed analysis and synthesis techniques derive optimized implementations that fulfill the imposed design constraints. An important part of the implementation process is the synthesis...

  5. Visual Simultaneous Localization And Mapping (VSLAM) methods applied to indoor 3D topographical and radiological mapping in real-time

    Science.gov (United States)

    Hautot, Felix; Dubart, Philippe; Bacri, Charles-Olivier; Chagneau, Benjamin; Abou-Khalil, Roger

    2017-09-01

    New developments in the field of robotics and computer vision enables to merge sensors to allow fast realtime localization of radiological measurements in the space/volume with near-real time radioactive sources identification and characterization. These capabilities lead nuclear investigations to a more efficient way for operators' dosimetry evaluation, intervention scenarii and risks mitigation and simulations, such as accidents in unknown potentially contaminated areas or during dismantling operations

  6. Application of MOSFET detectors for dosimetry in small animal radiography using short exposure times.

    Science.gov (United States)

    De Lin, Ming; Toncheva, Greta; Nguyen, Giao; Kim, Sangroh; Anderson-Evans, Colin; Johnson, G Allan; Yoshizumi, Terry T

    2008-08-01

    Digital subtraction angiography (DSA) X-ray imaging for small animals can be used for functional phenotyping given its ability to capture rapid physiological changes at high spatial and temporal resolution. The higher temporal and spatial requirements for small-animal imaging drive the need for short, high-flux X-ray pulses. However, high doses of ionizing radiation can affect the physiology. The purpose of this study was to verify and apply metal oxide semiconductor field effect transistor (MOSFET) technology to dosimetry for small-animal diagnostic imaging. A tungsten anode X-ray source was used to expose a tissue-equivalent mouse phantom. Dose measurements were made on the phantom surface and interior. The MOSFETs were verified with thermoluminescence dosimeters (TLDs). Bland-Altman analysis showed that the MOSFET results agreed with the TLD results (bias, 0.0625). Using typical small animal DSA scan parameters, the dose ranged from 0.7 to 2.2 cGy. Application of the MOSFETs in the small animal environment provided two main benefits: (1) the availability of results in near real-time instead of the hours needed for TLD processes and (2) the ability to support multiple exposures with different X-ray techniques (various of kVp, mA and ms) using the same MOSFET. This MOSFET technology has proven to be a fast, reliable small animal dosimetry method for DSA imaging and is a good system for dose monitoring for serial and gene expression studies.

  7. Individual dosimetry of workers and patients: implementation and perspectives

    International Nuclear Information System (INIS)

    Rannou, A.; Aubert, B.; Lahaye, Th.; Scaff, P.; Casanova, Ph.; Van Bladel, L.; Queinnec, F.; Valendru, N.; Jehanno, J.; Grude, E.; Berard, Ph.; Desbree, A.; Kafrouni, H.; Paquet, F.; Vanhavere, F.; Bridier, A.; Ginestet, Ch.; Magne, S.; Donadille, L.; Bordy, J.M.; Bottollier-Depois, J.F.; Barrere, J.L.; Ferragut, A.; Metivier, H.; Gaillard-Lecanu, E.

    2008-01-01

    These days organised by the section of the technical protection of the S.F.R.P. review the different techniques of dosimetry used in France and Europe, and present the future orientations.The different interventions are as follow: Individual exposures of the workers: historic assessment and perspectives; medical exposure: where are the doses; legal obligations in individual dosimetry: which are the objective and the need on the subject; the dosimetry follow-up of workers by the S.I.S.E.R.I. system: assessment and perspectives; impact of the norm ISO 20553 on the follow-up of internal exposure; the implementation of the patient dose measurement in Belgium; techniques of passive dosimetry used in Europe; Supervision radiation protection at EDF: long term and short term approach; Comparison active and passive dosimetry at Melox; methodology for the choice of new neutron dosemeters; the working group M.E.D.O.R.: guide of internal dosimetry for the use of practitioners; O.E.D.I.P.E.: tool of modeling for the personalized internal dosimetry; the use of the Monte-Carlo method for the planning of the cancer treatment by radiotherapy becomes a reality; the works of the committee 2 of the ICRP; passive dosimetry versus operational dosimetry: situation in Europe; Implementation of the in vivo dosimetry in a radiotherapy department: experience of the Gustave Roussy institute; experience feedback on the in vivo measures in radiotherapy, based on the use of O.S.L. pellets; multi points O.S.L. instrumentation for the radiation dose monitoring in radiotherapy; dosimetry for extremities for medical applications: principle results of the European contract C.O.N.R.A.D.; references and perspectives in dosimetry; what perspectives for numerical dosimetry, an example: Sievert; system of dose management: how to answer to needs; the last technical evolutions in terms of electronic dosimetry in nuclear power plant; the fourth generation type reactors: what dosimetry. (N.C.)

  8. Real-time personal exposure and health condition monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Saitou, Isamu; Kanda, Hiroaki; Asai, Akio; Takeishi, Naoki; Ota, Yoshito [Hitachi Aloka Medical, Ltd., Measuring Systems Engineering Dept., Tokyo (Japan); Hanawa, Nobuhiro; Ueda, Hisao; Kusunoki, Tsuyoshi; Ishitsuka, Etsuo; Kawamura, Hiroshi [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    JAEA (Japan Atomic Energy Agency) and HAM (Hitachi Aloka Medical, Ltd) have proposed novel monitoring system for workers of nuclear facility. In these facilities, exposure management for workers is mainly used access control and personal exposure recordings. This system is currently only for reports management but is not confirmative for surveillance when work in progress. Therefore, JAEA and HAM integrate access control and personal exposure recordings and two real-time monitoring systems which are position sensing and vital sign monitor. Furthermore change personal exposure management to real-time management, this system integration prevents workers from risk of accidents, and makes possible take appropriate action quickly. This novel system is going to start for tentative operation, using position sensing and real-time personal dosimeter with database in Apr. 2012. (author)

  9. Dosimetry; La dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Le Couteulx, I.; Apretna, D.; Beaugerie, M.F. [Electricite de France (EDF), 75 - Paris (France)] [and others

    2003-07-01

    Eight articles treat the dosimetry. Two articles evaluate the radiation doses in specific cases, dosimetry of patients in radiodiagnosis, three articles are devoted to detectors (neutrons and x and gamma radiations) and a computer code to build up the dosimetry of an accident due to an external exposure. (N.C.)

  10. Fiber-coupled radioluminescence dosimetry with saturated Al2O3:C crystals: Characterization in 6 and 18 MV photon beams

    DEFF Research Database (Denmark)

    Andersen, Claus Erik; Damkjær, Sidsel Marie Skov; Kertzscher Schwencke, Gustavo Adolfo Vladimir

    2011-01-01

    Radioluminescence (RL) and optically stimulated luminescence (OSL) from carbon-doped aluminum oxide crystals can be used for medical dosimetry in external beam radiotherapy and remotely afterloaded brachytherapy. The RL/OSL signals are guided from the treatment room to the readout instrumentation...... using optical fiber cables, and in vivo dosimetry can be carried out in real time while the dosimeter probes are in the patient. The present study proposes a new improved readout protocol based solely on the RL signal from Al2O3:C. The key elements in the protocol are that Al2O3:C is pre-dosed with 20...... ((−0.21 ± 0.01)%/ °C), and dose-delivery rate ((−0.22 ± 0.01)% per 100 MU/min). A temporal gating technique was used for separation of RL and stem signals (i.e. Cerenkov light and fluorescence induced in the optical fiber cable during irradiation). The new readout protocol was a substantial improvement...

  11. Design and fabrication of a multipurpose thyroid phantom for medical dosimetry and calibration

    International Nuclear Information System (INIS)

    Naderi, Simin Mehdizadeh; Sina, Sedigheh; Karimipoorfard, Mehrnoosh; Lotfalizadeh, Fatemeh; Moradi, Hamed; Faghihi, Reza; Entezarmahdi, Mohammad

    2016-01-01

    A multipurpose anthropomorphic neck phantom was designed and fabricated for use in medical applications. The designed neck phantom is composed of seven elliptic cylindrical slices with a semi-major axis of 14 cm and a semi-minor axis of 12.5 cm, each having the thickness of 2 cm. The thyroid gland, bony part of the neck, and the windpipe were also built inside the neck phantom. For the purpose of medical dosimetry, some holes were drilled inside the phantom to accommodate the thermoluminescence dosemeters with different shapes and dimensions. For testing the quality of images in nuclear medicine, the thyroid gland was built separately to accommodate the radioactive iodine. Finally, the nuclear medicine images were obtained by inserting 131 I in both male and female thyroid parts. (authors)

  12. MO-AB-BRA-03: Development of Novel Real Time in Vivo EPID Treatment Verification for Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, G; Podesta, M [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Reniers, B [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Research Group NuTeC, CMK, Hasselt University, Agoralaan Gebouw H, Diepenbeek B-3590 (Belgium); Verhaegen, F [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec H3G 1A4 (Canada)

    2016-06-15

    Purpose: High Dose Rate (HDR) brachytherapy treatments are employed worldwide to treat a wide variety of cancers. However, in vivo dose verification remains a challenge with no commercial dosimetry system available to verify the treatment dose delivered to the patient. We propose a novel dosimetry system that couples an independent Monte Carlo (MC) simulation platform and an amorphous silicon Electronic Portal Imaging Device (EPID) to provide real time treatment verification. Methods: MC calculations predict the EPID response to the photon fluence emitted by the HDR source by simulating the patient, the source dwell positions and times, and treatment complexities such as tissue compositions/densities and different applicators. Simulated results are then compared against EPID measurements acquired with ∼0.14s time resolution which allows dose measurements for each dwell position. The EPID has been calibrated using an Ir-192 HDR source and experiments were performed using different phantoms, including tissue equivalent materials (PMMA, lung and bone). A source positioning accuracy of 0.2 mm, without including the afterloader uncertainty, was ensured using a robotic arm moving the source. Results: An EPID can acquire 3D Cartesian source positions and its response varies significantly due to differences in the material composition/density of the irradiated object, allowing detection of changes in patient geometry. The panel time resolution allows dose rate and dwell time measurements. Moreover, predicted EPID images obtained from clinical treatment plans provide anatomical information that can be related to the patient anatomy, mostly bone and air cavities, localizing the source inside of the patient using its anatomy as reference. Conclusion: Results obtained show the feasibility of the proposed dose verification system that is capable to verify all the brachytherapy treatment steps in real time providing data about treatment delivery quality and also applicator

  13. Real-Time Imaging System for the OpenPET

    Science.gov (United States)

    Tashima, Hideaki; Yoshida, Eiji; Kinouchi, Shoko; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Suga, Mikio; Haneishi, Hideaki; Yamaya, Taiga

    2012-02-01

    The OpenPET and its real-time imaging capability have great potential for real-time tumor tracking in medical procedures such as biopsy and radiation therapy. For the real-time imaging system, we intend to use the one-pass list-mode dynamic row-action maximum likelihood algorithm (DRAMA) and implement it using general-purpose computing on graphics processing units (GPGPU) techniques. However, it is difficult to make consistent reconstructions in real-time because the amount of list-mode data acquired in PET scans may be large depending on the level of radioactivity, and the reconstruction speed depends on the amount of the list-mode data. In this study, we developed a system to control the data used in the reconstruction step while retaining quantitative performance. In the proposed system, the data transfer control system limits the event counts to be used in the reconstruction step according to the reconstruction speed, and the reconstructed images are properly intensified by using the ratio of the used counts to the total counts. We implemented the system on a small OpenPET prototype system and evaluated the performance in terms of the real-time tracking ability by displaying reconstructed images in which the intensity was compensated. The intensity of the displayed images correlated properly with the original count rate and a frame rate of 2 frames per second was achieved with average delay time of 2.1 s.

  14. Dosimetry applied to radiology and radiotherapy

    International Nuclear Information System (INIS)

    Yoshimura, Elisabeth Mateus

    2010-01-01

    Full text. The uses of ionizing radiation in medicine are increasing worldwide, and the population doses increase as well. The actual radiation protection philosophy is based on the balance of risks and benefits related to the practices, and patient dosimetry has an important role in the implementation of this point of view. In radiology the goal is to obtain an image with diagnostic quality with the minimum patient dose. In modern Radiotherapy the cure indexes are higher, giving rise to longer survival times to the patients. Dosimetry in radiotherapy helps the treatment planning systems to get a better protection to critical organs, with higher doses to the tumor, with a guarantee of better life quality to the patient. We will talk about the new trends in dosimetry of medical procedures, including experimental techniques and calculation tools developed to increase reliability and precision of dose determination. In radiology the main concerns of dosimetry are: the transition from film- radiography to digital image, the pediatric patient doses, and the choice of dosimetric quantities to quantify fluoroscopy and tomography patient doses. As far as Radiotherapy is concerned, there is a search for good experimental techniques to quantify doses to tissues adjacent to the target volumes in patients treated with new radiotherapy techniques, as IMRT and heavy particle therapy. (author)

  15. Detection of anatomical changes in lung cancer patients with 2D time-integrated, 2D time-resolved and 3D time-integrated portal dosimetry: a simulation study

    Science.gov (United States)

    Wolfs, Cecile J. A.; Brás, Mariana G.; Schyns, Lotte E. J. R.; Nijsten, Sebastiaan M. J. J. G.; van Elmpt, Wouter; Scheib, Stefan G.; Baltes, Christof; Podesta, Mark; Verhaegen, Frank

    2017-08-01

    The aim of this work is to assess the performance of 2D time-integrated (2D-TI), 2D time-resolved (2D-TR) and 3D time-integrated (3D-TI) portal dosimetry in detecting dose discrepancies between the planned and (simulated) delivered dose caused by simulated changes in the anatomy of lung cancer patients. For six lung cancer patients, tumor shift, tumor regression and pleural effusion are simulated by modifying their CT images. Based on the modified CT images, time-integrated (TI) and time-resolved (TR) portal dose images (PDIs) are simulated and 3D-TI doses are calculated. The modified and original PDIs and 3D doses are compared by a gamma analysis with various gamma criteria. Furthermore, the difference in the D 95% (ΔD 95%) of the GTV is calculated and used as a gold standard. The correlation between the gamma fail rate and the ΔD 95% is investigated, as well the sensitivity and specificity of all combinations of portal dosimetry method, gamma criteria and gamma fail rate threshold. On the individual patient level, there is a correlation between the gamma fail rate and the ΔD 95%, which cannot be found at the group level. The sensitivity and specificity analysis showed that there is not one combination of portal dosimetry method, gamma criteria and gamma fail rate threshold that can detect all simulated anatomical changes. This work shows that it will be more beneficial to relate portal dosimetry and DVH analysis on the patient level, rather than trying to quantify a relationship for a group of patients. With regards to optimizing sensitivity and specificity, different combinations of portal dosimetry method, gamma criteria and gamma fail rate should be used to optimally detect certain types of anatomical changes.

  16. Detection of anatomical changes in lung cancer patients with 2D time-integrated, 2D time-resolved and 3D time-integrated portal dosimetry: a simulation study.

    Science.gov (United States)

    Wolfs, Cecile J A; Brás, Mariana G; Schyns, Lotte E J R; Nijsten, Sebastiaan M J J G; van Elmpt, Wouter; Scheib, Stefan G; Baltes, Christof; Podesta, Mark; Verhaegen, Frank

    2017-07-12

    The aim of this work is to assess the performance of 2D time-integrated (2D-TI), 2D time-resolved (2D-TR) and 3D time-integrated (3D-TI) portal dosimetry in detecting dose discrepancies between the planned and (simulated) delivered dose caused by simulated changes in the anatomy of lung cancer patients. For six lung cancer patients, tumor shift, tumor regression and pleural effusion are simulated by modifying their CT images. Based on the modified CT images, time-integrated (TI) and time-resolved (TR) portal dose images (PDIs) are simulated and 3D-TI doses are calculated. The modified and original PDIs and 3D doses are compared by a gamma analysis with various gamma criteria. Furthermore, the difference in the D 95% (ΔD 95% ) of the GTV is calculated and used as a gold standard. The correlation between the gamma fail rate and the ΔD 95% is investigated, as well the sensitivity and specificity of all combinations of portal dosimetry method, gamma criteria and gamma fail rate threshold. On the individual patient level, there is a correlation between the gamma fail rate and the ΔD 95% , which cannot be found at the group level. The sensitivity and specificity analysis showed that there is not one combination of portal dosimetry method, gamma criteria and gamma fail rate threshold that can detect all simulated anatomical changes. This work shows that it will be more beneficial to relate portal dosimetry and DVH analysis on the patient level, rather than trying to quantify a relationship for a group of patients. With regards to optimizing sensitivity and specificity, different combinations of portal dosimetry method, gamma criteria and gamma fail rate should be used to optimally detect certain types of anatomical changes.

  17. High Energy Electron Dosimetry by Alanine/ESR Spectroscopy

    International Nuclear Information System (INIS)

    Chu, Sung Sil

    1989-01-01

    Dosimetry based on electron spin resonance(ESR) analysis of radiation induced free radicals in amino acids is relevant to biological dosimetry applications. Alanine detectors are without walls and are tissue equivalent. Therefore, alanine ESR dosimetry looks promising for use in the therapy level. The dose range of the alanine/ESR dosimetry system can be extended down to l Gy. In a water phantom the absorbed dose of electrons generated by a medical linear accelerator of different initial energies (6-21 MeV) and therapeutic dose levels(1-60 Gy) was measured. Furthermore, depth dose measurements carried out with alanine dosimeters were compared with ionization chamber measurements. As the results, the measured absorbed doses for shallow depth of initial electron energies above 15 MeV were higher by 2-5% than those calculated by nominal energy CE factors. This seems to be caused by low energy scattered beams generated from the scattering foil and electron cones of beam projecting device in medical linear accelerator

  18. Medical real estate in an age of reform.

    Science.gov (United States)

    Hammond, Laca Wong; Camp, Philip J

    2011-04-01

    The following are four ways healthcare organizations are fulfilling their medical real estate needs in an era of change: Real estate monetization. Renovation of existing facilities. A careful focus on containing materials costs. Joint ventures with real estate organizations.

  19. Real-time shadows

    CERN Document Server

    Eisemann, Elmar; Assarsson, Ulf; Wimmer, Michael

    2011-01-01

    Important elements of games, movies, and other computer-generated content, shadows are crucial for enhancing realism and providing important visual cues. In recent years, there have been notable improvements in visual quality and speed, making high-quality realistic real-time shadows a reachable goal. Real-Time Shadows is a comprehensive guide to the theory and practice of real-time shadow techniques. It covers a large variety of different effects, including hard, soft, volumetric, and semi-transparent shadows.The book explains the basics as well as many advanced aspects related to the domain

  20. Dependable Real-Time Systems

    Science.gov (United States)

    1991-09-30

    0196 or 413 545-0720 PI E-mail Address: krithi@nirvan.cs.umass.edu, stankovic(ocs.umass.edu Grant or Contract Title: Dependable Real - Time Systems Grant...Dependable Real - Time Systems " Grant or Contract Number: N00014-85-k-0398 L " Reporting Period: 1 Oct 87 - 30 Sep 91 , 2. Summary of Accomplishments ’ 2.1 Our...in developing a sound approach to scheduling tasks in complex real - time systems , (2) developed a real-time operating system kernel, a preliminary

  1. Standardization of a two-step real-time polymerase chain reaction based method for species-specific detection of medically important Aspergillus species.

    Science.gov (United States)

    Das, P; Pandey, P; Harishankar, A; Chandy, M; Bhattacharya, S; Chakrabarti, A

    2017-01-01

    Standardization of Aspergillus polymerase chain reaction (PCR) poses two technical challenges (a) standardization of DNA extraction, (b) optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR), the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus), gene and calmodulin gene (for Aspergillus niger). Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.

  2. LabVIEW Real-Time

    CERN Multimedia

    CERN. Geneva; Flockhart, Ronald Bruce; Seppey, P

    2003-01-01

    With LabVIEW Real-Time, you can choose from a variety of RT Series hardware. Add a real-time data acquisition component into a larger measurement and automation system or create a single stand-alone real-time solution with data acquisition, signal conditioning, motion control, RS-232, GPIB instrumentation, and Ethernet connectivity. With the various hardware options, you can create a system to meet your precise needs today, while the modularity of the system means you can add to the solution as your system requirements grow. If you are interested in Reliable and Deterministic systems for Measurement and Automation, you will profit from this seminar. Agenda: Real-Time Overview LabVIEW RT Hardware Platforms - Linux on PXI Programming with LabVIEW RT Real-Time Operating Systems concepts Timing Applications Data Transfer

  3. Concepts of real time and semi-real time material control

    International Nuclear Information System (INIS)

    Lovett, J.E.

    1975-01-01

    After a brief consideration of the traditional material balance accounting on an MBA basis, this paper explores the basic concepts of real time and semi-real time material control, together with some of the major problems to be solved. Three types of short-term material control are discussed: storage, batch processing, and continuous processing. (DLC)

  4. Dosimetry as an integral part of radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1999-01-01

    Different connections between high-dose dosimetry and radiation processing are discussed. Radiation processing cannot be performed without proper dosimetry. Accurate high dose and high dose rate dosimetry exhibits several aspects: first of all it is the preservation of the quality of the product, then fulfillment of legal aspects and last but not the least the safety of processing. Further, seldom discussed topics are as follow: dosimetric problems occurring with double-side EB irradiations, discussed in connection with the deposition of electric charge during electron beam irradiation. Although dosimetry for basic research and for medical purposes are treated here only shortly, some conclusions reached from these fields are considered in dosimetry for radiation processing. High-dose dosimetry of radiation has become a separate field, with many papers published every year, but applied dosimetric projects are usually initiated by a necessity of particular application. (author)

  5. Radiation protection dosimetry in medicine - Report of the working group n.9 of the European radiation dosimetry group (EURADOS) - coordinated network for radiation dosimetry (CONRAD - contract EC N) fp6-12684

    International Nuclear Information System (INIS)

    2009-01-01

    This report present the results achieved within the frame of the work the WP 7 (Radiation Protection Dosimetry of Medical Staff) of the coordination action CONRAD (Coordinated Network for Radiation Dosimetry) funded through the 6. EU Framework Program. This action was coordinated by EURADOS (European Radiation Dosimetry Group). EURADOS is an organization founded in 1981 to advance the scientific understanding and the technical development of the dosimetry of ionising radiation in the fields of radiation protection, radiobiology, radiation therapy and medical diagnosis by promoting collaboration between European laboratories. WP7 coordinates and promotes European research for the assessment of occupational exposures to staff in therapeutic and diagnostic radiology workplaces. Research is coordinated through sub-groups covering three specific areas: 1. Extremity dosimetry in nuclear medicine and interventional radiology: this sub-group coordinates investigations in the specific fields of the hospitals and studies of doses to different parts of the hands, arms, legs and feet; 2. Practice of double dosimetry: this sub-group reviews and evaluates the different methods and algorithms for the use of dosemeters placed above and below lead aprons in large exposure during interventional radiology procedures, especially to determine effective doses to cardiologists during cardiac catheterization; and 3. Use of electronic personal dosemeters in interventional radiology: this sub-group coordinates investigations in laboratories and hospitals, and intercomparisons with passive dosemeters with the aim to enable the formulation of standards. (authors)

  6. Towards real-time remote processing of laparoscopic video

    Science.gov (United States)

    Ronaghi, Zahra; Duffy, Edward B.; Kwartowitz, David M.

    2015-03-01

    Laparoscopic surgery is a minimally invasive surgical technique where surgeons insert a small video camera into the patient's body to visualize internal organs and small tools to perform surgical procedures. However, the benefit of small incisions has a drawback of limited visualization of subsurface tissues, which can lead to navigational challenges in the delivering of therapy. Image-guided surgery (IGS) uses images to map subsurface structures and can reduce the limitations of laparoscopic surgery. One particular laparoscopic camera system of interest is the vision system of the daVinci-Si robotic surgical system (Intuitive Surgical, Sunnyvale, CA, USA). The video streams generate approximately 360 megabytes of data per second, demonstrating a trend towards increased data sizes in medicine, primarily due to higher-resolution video cameras and imaging equipment. Processing this data on a bedside PC has become challenging and a high-performance computing (HPC) environment may not always be available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second (fps) rate, it is required that each 11.9 MB video frame be processed by a server and returned within 1/30th of a second. The ability to acquire, process and visualize data in real-time is essential for performance of complex tasks as well as minimizing risk to the patient. As a result, utilizing high-speed networks to access computing clusters will lead to real-time medical image processing and improve surgical experiences by providing real-time augmented laparoscopic data. We aim to develop a medical video processing system using an OpenFlow software defined network that is capable of connecting to multiple remote medical facilities and HPC servers.

  7. Real Time Systems

    DEFF Research Database (Denmark)

    Christensen, Knud Smed

    2000-01-01

    Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems.......Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems....

  8. Real time expert systems

    International Nuclear Information System (INIS)

    Asami, Tohru; Hashimoto, Kazuo; Yamamoto, Seiichi

    1992-01-01

    Recently, aiming at the application to the plant control for nuclear reactors and traffic and communication control, the research and the practical use of the expert system suitable to real time processing have become conspicuous. In this report, the condition for the required function to control the object that dynamically changes within a limited time is presented, and the technical difference between the real time expert system developed so as to satisfy it and the expert system of conventional type is explained with the actual examples and from theoretical aspect. The expert system of conventional type has the technical base in the problem-solving equipment originating in STRIPS. The real time expert system is applied to the fields accompanied by surveillance and control, to which conventional expert system is hard to be applied. The requirement for the real time expert system, the example of the real time expert system, and as the techniques of realizing real time processing, the realization of interruption processing, dispersion processing, and the mechanism of maintaining the consistency of knowledge are explained. (K.I.)

  9. Real-Time ECG Simulation for Hybrid Mock Circulatory Loops.

    Science.gov (United States)

    Korn, Leonie; Rüschen, Daniel; Zander, Niklas; Leonhardt, Steffen; Walter, Marian

    2018-02-01

    Classically, mock circulatory loops only simulate mechanical properties of the circulation. To connect the hydraulic world with electrophysiology, we present a real-time electrical activity model of the heart and show how to integrate this model into a real-time mock loop simulation. The model incorporates a predefined conduction pathway and a simplified volume conductor to solve the bidomain equations and the forward problem of electrocardiography, resulting in a physiological simulation of the electrocardiogram (ECG) at arbitrary electrode positions. A complete physiological simulation of the heart's excitation would be too CPU intensive. Thus, in our model, complexity was reduced to allow real-time simulation of ECG-triggered medical systems in vitro; this decreases time and cost in the development process. Conversely, the presented model can still be adapted to various pathologies by locally changing the properties of the heart's conduction pathway. To simulate the ECG, the heart is divided into suitable areas, which are innervated by the hierarchically structured conduction system. To distinguish different cardiac regions, a segmentation of the heart was performed. In these regions, Prim's algorithm was applied to identify the directed minimal spanning trees for conduction orientation. Each node of the tree was assigned to a cardiac action potential generated by its hybrid automaton to represent the heart's conduction system by the spatial distribution of action potentials. To generate the ECG output, the bidomain equations were implemented and a simple model of the volume conductor of the body was used to solve the forward problem of electrocardiography. As a result, the model simulates potentials at arbitrary electrode positions in real-time. To verify the developed real-time ECG model, measurements were made within a hybrid mock circulatory loop, including a simple ECG-triggered ventricular assist device control. The model's potential value is to simulate

  10. Advances in biomedical dosimetry

    International Nuclear Information System (INIS)

    1981-01-01

    Full text: Radiation dosimetry, the accurate determination of the absorbed dose within an irradiated body or a piece of material, is a prerequisite for all applications of ionizing radiation. This has been known since the very first radiation applications in medicine and biology, and increasing efforts are being made by radiation researchers to develop more reliable, effective and safe instruments, and to further improve dosimetric accuracy for all types of radiation used. Development of new techniques and instrumentation was particularly fast in the field of both medical diagnostic and therapeutic radiology. Thus, in Paris in October the IAEA held the latest symposium in its continuing series on dosimetry in medicine and biology. The last one was held in Vienna in 1975. High-quality dosimetry is obviously of great importance for human health, whether the objectives lie in the prevention and control of risks associated with the nuclear industry, in medical uses of radioactive substances or X-ray beams for diagnostic purposes, or in the application of photon, electron or neutron beams in radiotherapy. The symposium dealt with the following subjects: General aspects of dosimetry; Special physical and biomedical aspects; Determination of absorbed dose; Standardization and calibration of dosimetric systems; and Development of dosimetric systems. The forty or so papers presented and the discussions that followed them brought out a certain number of dominant themes, among which three deserve particular mention. - The recent generalization of the International System of Units having prompted a fundamental reassessment of the dosimetric quantities to be considered in calibrating measuring instruments, various proposals were advanced by the representatives of national metrology laboratories to replace the quantity 'exposure' (SI unit = coulomb/kg) by 'Kerma' or 'absorbed dose' (unit joule/kg, the special name of which is 'gray'), this latter being closer to the practical

  11. Temporal logics and real time expert systems.

    Science.gov (United States)

    Blom, J A

    1996-10-01

    This paper introduces temporal logics. Due to the eternal compromise between expressive adequacy and reasoning efficiency that must decided upon in any application, full (first order logic or modal logic based) temporal logics are frequently not suitable. This is especially true in real time expert systems, where a fixed (and usually small) response time must be guaranteed. One such expert system, Fagan's VM, is reviewed, and a delineation is given of how to formally describe and reason with time in medical protocols. It is shown that Petri net theory is a useful tool to check the correctness of formalised protocols.

  12. Internal Dosimetry. Chapter 18

    Energy Technology Data Exchange (ETDEWEB)

    Hindorf, C. [Department of Radiation Physics, Skåne University Hospital, Lund (Sweden)

    2014-12-15

    The Committee on Medical Internal Radiation Dose (MIRD) is a committee within the Society of Nuclear Medicine. The MIRD Committee was formed in 1965 with the mission to standardize internal dosimetry calculations, improve the published emission data for radionuclides and enhance the data on pharmacokinetics for radiopharmaceuticals [18.1]. A unified approach to internal dosimetry was published by the MIRD Committee in 1968, MIRD Pamphlet No. 1 [18.2], which was updated several times thereafter. Currently, the most well known version is the MIRD Primer from 1991 [18.3]. The latest publication on the formalism was published in 2009 in MIRD Pamphlet No. 21 [18.4], which provides a notation meant to bridge the differences in the formalism used by the MIRD Committee and the International Commission on Radiological Protection (ICRP) [18.5]. The formalism presented in MIRD Pamphlet No. 21 [18.4] will be used here, although some references to the quantities and parameters used in the MIRD primer [18.3] will be made. All symbols, quantities and units are presented.

  13. Faraday cup: absolute dosimetry for ELIMED beam line

    International Nuclear Information System (INIS)

    Leanza, R.; Romano, F.; Scuderi, V.; Amico, A.G.; Cuttone, G.; Larosa, G.; Milluzzo, G.; Petringa, G.; Pipek, J.; Cirrone, G.A.P.; Margarone, D.; Schillaci, F.

    2017-01-01

    The scientific community has shown a growing interest towards multidisciplinary applications of laser-driven beams. In this framework, the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline will be the first transport beamline dedicated to the medical and multidisciplinary studies with laser-accelerated ion beams. Detectors for dosimetry represent one of key-element of the ELIMED beamline, allowing a dose delivering with good result as required in the clinical applications. In this contribution, a Faraday Cup for absolute dosimetry, designed and realized at INFN-LNS, is described.

  14. Real time curriculum map for internal medicine residency

    Directory of Open Access Journals (Sweden)

    Roberts J Mark

    2007-11-01

    Full Text Available Abstract Background To manage the voluminous formal curriculum content in a limited amount of structured teaching time, we describe the development and evaluation of a curriculum map for academic half days (AHD in a core internal medicine residency program. Methods We created a 3-year cyclical curriculum map (an educational tool combining the content, methodology and timetabling of structured teaching, comprising a matrix of topics under various specialties/themes and corresponding AHD hours. All topics were cross-matched against the ACP-ASIM in-training examination, and all hours were colour coded based on the categories of core competencies. Residents regularly updated the map on a real time basis. Results There were 208 topics covered in 283 AHD hours. All topics represented core competencies with minimal duplication (78% covered once in 3 years. Only 42 hours (15% involved non-didactic teaching, which increased after implementation of the map (18–19 hours/year versus baseline 5 hours/year. Most AHD hours (78% focused on medical expert competencies. Resident satisfaction (90% response was high throughout (range 3.64 ± 0.21, 3.84 ± 0.14 out of 4, which improved after 1 year but returned to baseline after 2 years. Conclusion We developed and implemented an internal medicine curriculum map based on real time resident input, with minimal topic duplication and high resident satisfaction. The map provided an opportunity to balance didactic versus non-didactic teaching, and teaching on medical versus non medical expert topics.

  15. Radiochromic dye film for ionizing and non ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Said, F.I.; Elbahay, A.Z.

    1984-01-01

    During the present study different types of radiochromic dye films have been investigated for γ-ray as well as ultraviolet radiation dosimetry. The technique is based on the change in absorption spectra for dosed samples with special emphasis at optical absorption bands observed at 510nm and 605nm. Dose response of different types of radiochromic dye films was determined in the range between 1 to 40 KGy γ rays. The technique is used for γ-ray dosimetry in processing with high quality. The increasing use of U.V. light in industry and medicine makes it necessary to have simple practical methods for U.V. dosimetry. To this purpose radiochromic dye films are suggested for the first time. The response was investigated for emission consisted mainly of 254 and 366nm photons over the range from 50-700 m W.S. cm -2 . The experimental results indicate that radiochromic dye films are practical and simple technique for γ-ray and U.V. dosimetry for industrial and medical applications

  16. Fiber-coupled Al2O3:C radioluminescence dosimetry for total body irradiations

    DEFF Research Database (Denmark)

    Buranurak, Siritorn; Andersen, Claus E.

    2016-01-01

    in the context of Total Body Irradiations (TBIs) where patients are treated with large fields of 6 or 18 MV photons at an extended source-to-surface distance (SSD). The study shows that Al2O3:C dosimetry using the saturated-RL protocol may be suitable for real-time in vivo dosimetry during TBI treatments from...... the perspective of the good agreement with alanine dosimetry and other critical phantom tests, including the ability to cope with the large stem signal experienced during TBI treatments at extended SSD. In contrast, the chromatic stem removal technique often used for organic plastic scintillators did not work...

  17. A real-time in vivo dosimetric verification method for high-dose rate intracavitary brachytherapy of nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Qi Zhenyu; Deng Xiaowu; Cao Xinping; Huang Shaomin; Lerch, Michael; Rosenfeld, Anatoly [State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060 (China) and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060 (China); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2012-11-15

    Purpose: A real-time in vivo dosimetric verification method using metal-oxide-semiconductor field effect transistor (MOSFET) dosimeters has been developed for patient dosimetry in high-dose rate (HDR) intracavitary brachytherapy of nasopharyngeal carcinoma (NPC). Methods: The necessary calibration and correction factors for MOSFET measurements in {sup 192}Iridium source were determined in a water phantom. With the detector placed inside a custom-made nasopharyngeal applicator, the actual dose delivered to the tumor was measured in vivo and compared to the calculated values using a commercial brachytherapy planning system. Results: Five MOSFETs were independently calibrated with the HDR source, yielding calibration factors of 0.48 {+-} 0.007 cGy/mV. The maximum sensitivity variation was no more than 7% in the clinically relevant distance range of 1-5 cm from the source. A total of 70 in vivo measurements in 11 NPC patients demonstrated good agreement with the treatment planning. The mean differences between the planned and the actually delivered dose within a single treatment fraction were -0.1%{+-} 3.8% and -0.1%{+-} 3.7%, respectively, for right and left side assessments. The maximum dose deviation was less than 8.5%. Conclusions: In vivo measurement using the real-time MOSFET dosimetry system is possible to evaluate the actual dose to the tumor received by the patient during a treatment fraction and thus can offer another line of security to detect and prevent large errors.

  18. Real-time monitoring of ubiquitous wireless ECG sensor node for medical care using ZigBee

    Science.gov (United States)

    Vijayalakshmi, S. R.; Muruganand, S.

    2012-01-01

    Sensor networks have the potential to impact many aspects of medical care greatly. By outfitting patients with wireless, wearable vital sign sensors, collecting detailed real-time data on physiological status can be greatly simplified. In this article, we propose the system architecture for smart sensor platform based on advanced wireless sensor networks. An emerging application for wireless sensor networks involves their use in medical care. In hospitals or clinics, outfitting every patient with tiny, wearable wireless vital sign sensors would allow doctors, nurses and other caregivers to continuously monitor the status of their patients. In an emergency or disaster scenario, the same technology would enable medics to more effectively care for a large number of casualties. First responders could receive immediate notifications on any changes in patient status, such as respiratory failure or cardiac arrest. Wireless sensor network is a set of small, autonomous devices, working together to solve different problems. It is a relatively new technology, experiencing true expansion in the past decade. People have realised that integration of small and cheap microcontrollers with sensors can result in the production of extremely useful devices, which can be used as an integral part of the sensor nets. These devices are called sensor nodes. Today, sensor nets are used in agriculture, ecology and tourism, but medicine is the area where they certainly meet the greatest potential. This article presents a medical smart sensor node platform. This article proposes a wireless two-lead EKG. These devices collect heart rate and EKG data and relay it over a short-range (300 m) wireless network to any number of receiving devices, including PDAs, laptops or ambulance-based terminals.

  19. Dosimetry characteristics of HDPE–SWCNT nanocomposite for real time application

    Energy Technology Data Exchange (ETDEWEB)

    Malekie, Shahryar [Radiation Application Research School, Nuclear Science & Technology Research Institute, P.O. Box 11365-3486, Tehran (Iran, Islamic Republic of); Ziaie, Farhood, E-mail: fziaie@aeoi.org.ir [Radiation Application Research School, Nuclear Science & Technology Research Institute, P.O. Box 11365-3486, Tehran (Iran, Islamic Republic of); Feizi, Shahzad [Radiation Application Research School, Nuclear Science & Technology Research Institute, P.O. Box 11365-3486, Tehran (Iran, Islamic Republic of); Esmaeli, Abdolreza [Plasma and Fusion Research School, Nuclear Science & Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2016-10-11

    In this experimental work, different dosimetric characteristics of high density polyethylene-single wall carbon nanotube nanocomposite were investigated. The nanocomposite samples were prepared with different nanotube contents of 0.22, 0.25, and 0.39 weight percentages which were before, exactly in, and after percolation region of the nanocomposite, respectively. The samples were exposed to {sup 60}Co gamma radiation source over the dose rate of 65–214 mGy/min, while the applied bias was 100 V. A linear response achieved for the sample contained 0.25 nanotube wt% verified that the percolation threshold is the optimum point for dosimetric purposes. The current–voltage characteristics curve measured for 0.25 CNT wt% nanocomposite showed that the behavior of this sample was bias polarity independent. Also, the results showed that the response of this nanocomposite was energy-independent. The maximum discrepancy of photocurrent due to angular variation within 0–90° with respect to beam incidence and the reproducibility of the response were measured as 5.4% and 0.8%, respectively. The stability study showed that this material may be suitable for protection dose level control. Therefore, this kind of nanocomposite requiring calibration can be used as a real-time dosimeter. - Highlights: • HDPE–SWCNT nanocomposite was used in this experiment. • Achieved linear response in EPT region verifying that is optimum point for dosimetric purposes. • The response of this nanocomposite was energy-independent. • The angular dependence and the reproducibility of the response were measured. • The stability study shows that this material is suitable for protection dose level control.

  20. Process algebra with timing : real time and discrete time

    NARCIS (Netherlands)

    Baeten, J.C.M.; Middelburg, C.A.; Bergstra, J.A.; Ponse, A.J.; Smolka, S.A.

    2001-01-01

    We present real time and discrete time versions of ACP with absolute timing and relative timing. The starting-point is a new real time version with absolute timing, called ACPsat, featuring urgent actions and a delay operator. The discrete time versions are conservative extensions of the discrete

  1. Process algebra with timing: Real time and discrete time

    NARCIS (Netherlands)

    Baeten, J.C.M.; Middelburg, C.A.

    1999-01-01

    We present real time and discrete time versions of ACP with absolute timing and relative timing. The startingpoint is a new real time version with absolute timing, called ACPsat , featuring urgent actions and a delay operator. The discrete time versions are conservative extensions of the discrete

  2. Crowdsourcing medical expertise in near real time.

    Science.gov (United States)

    Sims, Max H; Bigham, Jeffrey; Kautz, Henry; Halterman, Marc W

    2014-07-01

    Given the pace of discovery in medicine, accessing the literature to make informed decisions at the point of care has become increasingly difficult. Although the Internet creates unprecedented access to information, gaps in the medical literature and inefficient searches often leave healthcare providers' questions unanswered. Advances in social computation and human computer interactions offer a potential solution to this problem. We developed and piloted the mobile application DocCHIRP, which uses a system of point-to-multipoint push notifications designed to help providers problem solve by crowdsourcing from their peers. Over the 244-day pilot period, 85 registered users logged 1544 page views and sent 45 consult questions. The median initial first response from the crowd occurred within 19 minutes. Review of the transcripts revealed several dominant themes, including complex medical decision making and inquiries related to prescription medication use. Feedback from the post-trial survey identified potential hurdles related to medical crowdsourcing, including a reluctance to expose personal knowledge gaps and the potential risk for "distracted doctoring." Users also suggested program modifications that could support future adoption, including changes to the mobile interface and mechanisms that could expand the crowd of participating healthcare providers. © 2014 Society of Hospital Medicine.

  3. Scientific days on electromagnetic fields: from dosimetry to human health - Conference proceedings; Journees scientifiques - Champs electromagnetiques: de la dosimetrie a la sante humaine - Recueil des resumes et presentations

    Energy Technology Data Exchange (ETDEWEB)

    Wiart, J.; Ghanmi, A.; Picon, O.; Conil, E.; Varsier, N.; Hadjem, A.; Sudret, B.; Magne, I.; Souques, M.; Gaudaire, F.; De Seze, R.; Jawad, O.; Lautru, D.; Dricot, J.M.; Horlin, F.; De Doncker, P.; Drissaoui, A.; Musy, F.; Nicolas, L.; Perrussel, R.; Scorretti, R.; Voyer, D.; Jala, M.; Moulines, E.; Levy-Leduc, C.; Mahfouz, Z.; Gati, A.; Fouad Hanna, V.; Leveque, P.; Arnaud-Cormos, D.; Zhadobov, M.; Jarrige, P.; Gaborit, G.; Kohler, S.; Ticaud, N.; Duvillaret, L.; Guelilia, Z.; Loison, R.; Gillard, R.; Laisne, A.; Favet, D.; Benadhira, R.; Mir, L.; Nadi, M.; Kourtiche, D.; Gazeau, F.; Wilhelm, C.; Delemotte, L.; Breton, M.; Tarek, M.; Marc-Vergnes, J.P.; Yardin, C.; Perrin, A.; Le Drean, Y.; Sauleau, R.; Lambrozo, J.; Selmaoui, B.; Ghosn, R.; Thuroczy, G.; Villegier, A.S.; Loos, N.; Brenet-Dufour, V.; Liabeuf, S.; Bach, V.; Moretti, D.; Lewis, N.; Garenne, A.; Poulletier De Gannes, F.; Haro, E.; Lagroye, I.; Bornat, Y.; Boutaib, Y.; Saighi, S.; Renaud, S.; Veyre, B.; Schuz, J.; Deltour, I.; Van Deventer, E.; Vecchia, P.; Merckel, O.; Bellaouel, A.; Demaret, P.; Donati, P.; Jovanovic, D.; Chauvin, S.; Desreumaux, J.P.; Fouquet, L.; Picard, D.; Massardier-Pilonchery, A.; Hours, M.; Bergeret, A.; Person, C.; Toutain, Y.; Butet, R.; Berrahma, K.; Balderelli, I.; Stelmaszyk, V.; Cretallaz, C.; Lamproglou, I.; Amourette, C.; Diserbo, M.; Fauquette, W.; Martigne, P.; Collin, A.; Lagroye, I.; Ait Aissa, S.; Hurtier, A.; Taxile, M.; Le Montagner, L.; Athane, A.; Duleu, S.; Percherancier, Y.; Geffard, M.; Ruffie, G.; Billaudel, B.; Veyret, B.; Pelletier, A.; Delanaud, S.; Libert, J.P.; Schunck, T.; Bieth, F.; Soubere Mahamoud, Y.; Le Quement, C.; Ferrand, G.; Le Guevel, R.; Carton, P.H.; Luong, M.; Tanvir, S.; Selmaoui, B.; Silva Pires-Antonietti, V.; Sonnet, P.; Pulvin, S.; Kuster, O.; Tetelin, C.

    2012-04-15

    - Electromagnetic interferences and cardiac implants; 24 - RF effects on central nervous system: sleep, cognition, Electro-encephalography, vascularisation; 25 - Specific effects of an exposure to mobile phone RF waves on the autonomous nervous control of the cutaneous vasomotor tone; 26 - The ERNAM project: exposure of neuronal networks to the GSM-1800 signal; 27 - Mobile phones, power lines and cancer: the epidemiological evidence leading to classification as possible carcinogens; 28 - EMF Risk Assessment and Management: A WHO Perspective; 29 - Evolution of ICNIRP guidelines; 30 - Assessment of RF-linked risks at the Anses: from dialogue management recommendations; 31 - Characterization of mobile phone-absorbing medium interactions for non-invasive dosimetry; 32 - Status of electromagnetic radiation exposures and evaluation of prevention means; 33 - General public exposure to RF in France; 34 - Power emitted by a mobile phone in voice communication: from 2G to 3G VoIP; 35 - Digital dosimetry in HF/VHF range; 36 - Professional exposure of mobile phone maintenance technicians; 37 - Robot-less multi-sensors dosimetry for real time SAR measurement; 38 - High performance SAR meter for the characterization of 3G mobile phones exposure; 39 - RF dosemeters and user's body diffraction; 40 - RF waves and health: summary of 2007-2011 scientific publications; 41 - Behaviour of adult male wistar rats during high power pulsed electromagnetic waves (3 GHz); 42 - Wi-Fi effects: results of IMS Lab studies; 43 - Effects on the energy fluxes of young rats homeostasis during a chronic exposure to RF fields; 44 - Biological effects of very-high power and ultra-large range radiations: ISL's research programme; 45 - Study of cell-scale biological effects of pulsed RF fields used in high-resolution NMR-imaging; 46 - Effects of cell phone radiofrequency exposure on the human cytochrome P450 reductase; 47 - CEA's 'electromagnetic safety' working group; 48 - In situ evaluation of

  4. Real-time radiography

    International Nuclear Information System (INIS)

    Bossi, R.H.; Oien, C.T.

    1981-01-01

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components

  5. Some medical aspects of radionuclide intakes

    International Nuclear Information System (INIS)

    Poda, G.A.

    1983-01-01

    In the field of medicine, particularly industrial medicine, the radiation aspect of the practice probably takes about 1/10 of 1% of our time. All the health physicist's tools of principles of internal dosimetry, lung models, mathematics, chemistry, etc. have little meaning until applied to an individual who has had an intake. This article discusses some of the medical aspects of internal dosimetry

  6. Real-time vision systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  7. High-accuracy and real-time 3D positioning, tracking system for medical imaging applications based on 3D digital image correlation

    Science.gov (United States)

    Xue, Yuan; Cheng, Teng; Xu, Xiaohai; Gao, Zeren; Li, Qianqian; Liu, Xiaojing; Wang, Xing; Song, Rui; Ju, Xiangyang; Zhang, Qingchuan

    2017-01-01

    This paper presents a system for positioning markers and tracking the pose of a rigid object with 6 degrees of freedom in real-time using 3D digital image correlation, with two examples for medical imaging applications. Traditional DIC method was improved to meet the requirements of the real-time by simplifying the computations of integral pixel search. Experiments were carried out and the results indicated that the new method improved the computational efficiency by about 4-10 times in comparison with the traditional DIC method. The system was aimed for orthognathic surgery navigation in order to track the maxilla segment after LeFort I osteotomy. Experiments showed noise for the static point was at the level of 10-3 mm and the measurement accuracy was 0.009 mm. The system was demonstrated on skin surface shape evaluation of a hand for finger stretching exercises, which indicated a great potential on tracking muscle and skin movements.

  8. Topics in radiation dosimetry radiation dosimetry

    CERN Document Server

    1972-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  9. New approach to the dosimetry of ionizing radiations by fluorescence measurement, according to the single photon counting technique, correlated in time at the nanosecond scale

    International Nuclear Information System (INIS)

    Sohier, Till

    2011-01-01

    This research thesis reports the first fundamental study of the dosimetry of charged and gamma radiations by measurement of fluorescence resolved in time at a nanosecond scale, in organic matter. This method allows an in-depth and real-time analysis of the deposited dose, while taking ionisation as well as excitation processes into account. The author describes mechanisms of interaction and deposition of energy on dense matter, reports the detailed study of the ion-matter interaction, and the interaction of secondary electrons produced within traces. He addresses mechanisms of energy relaxation, and more particularly the study or organic scintillators. Then, he presents the adopted experimental approach: experimental observation with a statistic reconstitution of the curve representing the intensity of the emitted fluorescence in time and with a nanosecond resolution by using a scintillating sensor for time correlated single photon counting (TCSPC). The next part reports the development of an experimental multi-modal platform for dosimetry by TCSPC aimed at the measurement of fluorescence decays under pulsed excitation (nanosecond pulsed ion beams) and continuous flow excitation (non pulsed beams and radioactive sources). Experimental results are then presented for fluorescence measurements, and compared with measurements obtained by using an ionization chamber under the same irradiation conditions: dose deposited by hellions and carbon ions within polyvinyl toluene and polyethylene terephthalate, use of scintillating optic fibers under gamma irradiation of Caesium 137 and Cobalt 60. A new experimental approach is finally presented to perform dosimetry measurements while experimentally ignoring luminescence produced by Cerenkov effect [fr

  10. Real-time tomosynthesis for radiation therapy guidance.

    Science.gov (United States)

    Hsieh, Scott S; Ng, Lydia W

    2017-11-01

    Fluoroscopy has been a tool of choice for monitoring treatments or interventions because of its extremely fast imaging times. However, the contrast obtained in fluoroscopy may be insufficient for certain clinical applications. In stereotactic ablative radiation therapy of the lung, fluoroscopy often lacks sufficient contrast for gating treatment. The purpose of this work is to describe and assess a real-time tomosynthesis design that can produce sufficient contrast for guidance of lung tumor treatment within a small field of view. Previous tomosynthesis designs in radiation oncology have temporal resolution on the order of seconds. The proposed system design uses parallel acquisition of multiple frames by simultaneously illuminating the field of view with multiple sources, enabling a temporal resolution of up to 30 frames per second. For a small field of view, a single flat-panel detector could be used if different sectors of the detector are assigned to specific sources. Simulated images were generated by forward projection of existing clinical datasets. The authors varied the number of tubes and the power of each tube in order to determine the impact on tumor visualization. Visualization of the tumor was much clearer in tomosynthesis than in fluoroscopy. Contrast generally improved with the number of sources used, and a minimum of four sources should be used. The high contrast of the lung allows very low system power, and in most cases, less than 1 mA was needed. More power is required in the lateral direction than the AP direction. The proposed system produces images adequate for real-time guidance of radiation therapy. The additional hardware requirements are modest, and the system is capable of imaging at high frame rates and low dose. Further development, including a prototype system and a dosimetry study, is needed to further evaluate the feasibility of this device for radiation therapy guidance. © 2017 American Association of Physicists in Medicine.

  11. The personal dosimetry in Mexico; La dosimetria personal en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.A. [Proxtronics/ Asesoria Integral en Dosimetria Termoluminiscente S.A. de C.V., Canal de Miramontes 2030-14, Col. Educacion, 04400 Mexico D.F. (Mexico)]. e-mail: aidtsa@avantel.net

    2006-07-01

    The Personal Dosimetry in Mexico, has an approximately 30 year-old history; and it had been and it is at the moment, one of the more important resources with which the personnel that works with ionizing radiation sources counts for its protection. The Personal Dosimetry begins with the film dosimetry, technique that even continues being used at the present time by some users, and the main reason of its use is for economic reasons. At the moment this technique, it has been surpassed, by the Thermoluminescent dosimetry, which has taken a lot of peak, mainly by the technological development with which it is counted at the present time; what has given as a result that this technique becomes tip technology; that supported in the characteristic of the used materials, as the handling and processing of the information associated with the new PC, digitizer cards, software etc, what has allowed increases it potential. In this work the current necessities of the market are presented as well as an analysis of the future real necessities in Mexico, at national level, the companies that provide this service and that they spread to satisfy this necessity of the market, including the different used technologies are also mentioned. The application ranges, at the same time, of the advantages and disadvantages of the different systems of Personal Dosimetry in the market. The companies that at the moment provide the service of Personal Dosimetry, its use materials and equipment in indistinct form, for the monitoring of gamma radiation, beta particles, different qualities of x-ray radiation, and sometimes neutrons. The monitoring of the exposed personnel at the diverse sources of ionizing radiation mentioned is carried out in many occasions without having with the materials (detectors), neither the appropriate infrastructure and therefore without the quality control that guarantees a correct evaluation of the dose equivalent, as a result of the exposure to the ionizing radiations; it

  12. Scientific days on electromagnetic fields: from dosimetry to human health - Conference proceedings

    International Nuclear Information System (INIS)

    Wiart, J.; Ghanmi, A.; Picon, O.; Conil, E.; Varsier, N.; Hadjem, A.; Sudret, B.; Magne, I.; Souques, M.; Gaudaire, F.; De Seze, R.; Jawad, O.; Lautru, D.; Dricot, J.M.; Horlin, F.; De Doncker, P.; Drissaoui, A.; Musy, F.; Nicolas, L.; Perrussel, R.; Scorretti, R.; Voyer, D.; Jala, M.; Moulines, E.; Levy-Leduc, C.; Mahfouz, Z.; Gati, A.; Fouad Hanna, V.; Leveque, P.; Arnaud-Cormos, D.; Zhadobov, M.; Jarrige, P.; Gaborit, G.; Kohler, S.; Ticaud, N.; Duvillaret, L.; Guelilia, Z.; Loison, R.; Gillard, R.; Laisne, A.; Favet, D.; Benadhira, R.; Mir, L.; Nadi, M.; Kourtiche, D.; Gazeau, F.; Wilhelm, C.; Delemotte, L.; Breton, M.; Tarek, M.; Marc-Vergnes, J.P.; Yardin, C.; Perrin, A.; Le Drean, Y.; Sauleau, R.; Lambrozo, J.; Selmaoui, B.; Ghosn, R.; Thuroczy, G.; Villegier, A.S.; Loos, N.; Brenet-Dufour, V.; Liabeuf, S.; Bach, V.; Moretti, D.; Lewis, N.; Garenne, A.; Poulletier De Gannes, F.; Haro, E.; Lagroye, I.; Bornat, Y.; Boutaib, Y.; Saighi, S.; Renaud, S.; Veyre, B.; Schuz, J.; Deltour, I.; Van Deventer, E.; Vecchia, P.; Merckel, O.; Bellaouel, A.; Demaret, P.; Donati, P.; Jovanovic, D.; Chauvin, S.; Desreumaux, J.P.; Fouquet, L.; Picard, D.; Massardier-Pilonchery, A.; Hours, M.; Bergeret, A.; Person, C.; Toutain, Y.; Butet, R.; Berrahma, K.; Balderelli, I.; Stelmaszyk, V.; Cretallaz, C.; Lamproglou, I.; Amourette, C.; Diserbo, M.; Fauquette, W.; Martigne, P.; Collin, A.; Lagroye, I.; Ait Aissa, S.; Hurtier, A.; Taxile, M.; Le Montagner, L.; Athane, A.; Duleu, S.; Percherancier, Y.; Geffard, M.; Ruffie, G.; Billaudel, B.; Veyret, B.; Pelletier, A.; Delanaud, S.; Libert, J.P.; Schunck, T.; Bieth, F.; Soubere Mahamoud, Y.; Le Quement, C.; Ferrand, G.; Le Guevel, R.; Carton, P.H.; Luong, M.; Tanvir, S.; Selmaoui, B.; Silva Pires-Antonietti, V.; Sonnet, P.; Pulvin, S.; Kuster, O.; Tetelin, C.

    2012-04-01

    - Electromagnetic interferences and cardiac implants; 24 - RF effects on central nervous system: sleep, cognition, Electro-encephalography, vascularisation; 25 - Specific effects of an exposure to mobile phone RF waves on the autonomous nervous control of the cutaneous vasomotor tone; 26 - The ERNAM project: exposure of neuronal networks to the GSM-1800 signal; 27 - Mobile phones, power lines and cancer: the epidemiological evidence leading to classification as possible carcinogens; 28 - EMF Risk Assessment and Management: A WHO Perspective; 29 - Evolution of ICNIRP guidelines; 30 - Assessment of RF-linked risks at the Anses: from dialogue management recommendations; 31 - Characterization of mobile phone-absorbing medium interactions for non-invasive dosimetry; 32 - Status of electromagnetic radiation exposures and evaluation of prevention means; 33 - General public exposure to RF in France; 34 - Power emitted by a mobile phone in voice communication: from 2G to 3G VoIP; 35 - Digital dosimetry in HF/VHF range; 36 - Professional exposure of mobile phone maintenance technicians; 37 - Robot-less multi-sensors dosimetry for real time SAR measurement; 38 - High performance SAR meter for the characterization of 3G mobile phones exposure; 39 - RF dosemeters and user's body diffraction; 40 - RF waves and health: summary of 2007-2011 scientific publications; 41 - Behaviour of adult male wistar rats during high power pulsed electromagnetic waves (3 GHz); 42 - Wi-Fi effects: results of IMS Lab studies; 43 - Effects on the energy fluxes of young rats homeostasis during a chronic exposure to RF fields; 44 - Biological effects of very-high power and ultra-large range radiations: ISL's research programme; 45 - Study of cell-scale biological effects of pulsed RF fields used in high-resolution NMR-imaging; 46 - Effects of cell phone radiofrequency exposure on the human cytochrome P450 reductase; 47 - CEA's 'electromagnetic safety' working group; 48 - In situ evaluation of electromagnetic fields

  13. Order of the 30 December 2004 relative to the individual sheet of medical follow-up and to the individual information concerning the dosimetry of workers exposed to ionizing radiations

    International Nuclear Information System (INIS)

    2004-12-01

    This order concerns the content and the modalities of grant of the individual sheet of medical follow-up, the collect and the centralization of dosimetry individual information by the Institute of Radiation Protection and Safety (IRSN), and the access to individual results of external and internal dosimetry. (A.L.B.)

  14. Memory controllers for real-time embedded systems predictable and composable real-time systems

    CERN Document Server

    Akesson, Benny

    2012-01-01

      Verification of real-time requirements in systems-on-chip becomes more complex as more applications are integrated. Predictable and composable systems can manage the increasing complexity using formal verification and simulation.  This book explains the concepts of predictability and composability and shows how to apply them to the design and analysis of a memory controller, which is a key component in any real-time system. This book is generally intended for readers interested in Systems-on-Chips with real-time applications.   It is especially well-suited for readers looking to use SDRAM memories in systems with hard or firm real-time requirements. There is a strong focus on real-time concepts, such as predictability and composability, as well as a brief discussion about memory controller architectures for high-performance computing. Readers will learn step-by-step how to go from an unpredictable SDRAM memory, offering highly variable bandwidth and latency, to a predictable and composable shared memory...

  15. Develop real-time dosimetry concepts and instrumentation for long-term missions

    International Nuclear Information System (INIS)

    Braby, L.A.; Ratcliffe, C.A.; Metting, N.F.; Lien, M.K.

    1984-06-01

    The objective was to develop a small, self-contained system to measure dose and evaluate dose equivalent in real time in the complex radiation environment encountered in space. The device utilizes a microdosimetric approach. The instrument consists of two propane filled proportional counters, one of which measures energy deposition by penetrating radiations with LET between 0.24 and 200 keV/μm. The second detector is intended for particles with LET greater than or equal to 200 keV/μm for a minimum of 100 μm. This detector is physically larger in order to obtain reasonable counting statistics on these infrequent micro lesion-forming events. The detectors are combined with an electronic system which consists of three multi-channel analyzers with independent analog to digital converters, computer controlled detector bias supplies, signal conditioning amplifiers, data recording and display devices and a microcomputer which controls the system and calculates dose and dose equivalent. This report includes a brief discussion of microdosimetry as it applies to health physics, an evaluation of different methods for calculating dose equivalent, descriptions of the hardware and software making up the prototype instrument and the results of evaluations of the instrument when exposed to a variety of radiations. Included are operating instructions, software listings, and circuit diagrams. 18 references, 9 figures, 8 tables

  16. Real-Time Cloud-Based Health Tracking and Monitoring System in Designed Boundary for Cardiology Patients

    Directory of Open Access Journals (Sweden)

    Aamir Shahzad

    2018-01-01

    Full Text Available Telemonitoring is not a new term, in information technology (IT, which has been employed to remotely monitor the health of patients that are located not in common places, such hospitals or medical centers. For that, wearable medical sensors, such as electrocardiography sensors, blood pressure sensors, and glucometer, have commonly been used to make possible to acquire the real-time information from the remotely located patients; therefore, the medical information is further carried, via the Internet, to perform medical diagnosis and the corresponding treatments. Like in other IT sectors, there has been tremendous progress accounted in medical sectors (and in telemonitoring systems that changes the human life protection against several chronic diseases, and the patient’s medical information can be accessed wirelessly via Wi-Fi and cellular systems. Further, with the advents of cloud computing technology, medical systems are now more efficient and scalable in processing, such as storage and access, the medical information with minimal development costs. This study is also a piece of enhancement made to track and monitor the real-time medical information, bounded in authorized area, through the modeling of private cloud computing. The private cloud-based environment is designed, for patient health monitoring called bounded telemonitoring system, to acquire the real-time medical information of patients that resided in the boundary, inside medical wards and outside medical wards, of the medical center. A new wireless sensor network scenario is designed and modeled to keep or monitor the patients’ health information whole day, 24 hours. This research is a new secured sight towards medical information access and gives directions for future developments in the medical systems.

  17. Radiation dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.; Tagesson, M.; Ljungberg, M.; Strand, S.E.; Thomas, S.R.

    1999-01-01

    Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. A knowledge of the radiation dose received by different organs in the body is essential to an evaluation of the risks and benefits of any procedure. In this paper, current methods for internal dosimetry are reviewed, as they are applied in nuclear medicine. Particularly, the Medical Internal Radiation Dose (MIRD) system for dosimetry is explained, and many of its published resources discussed. Available models representing individuals of different age and gender, including those representing the pregnant woman are described; current trends in establishing models for individual patients are also evaluated. The proper design of kinetic studies for establishing radiation doses for radiopharmaceuticals is discussed. An overview of how to use information obtained in a dosimetry study, including that of the effective dose equivalent (ICRP 30) and effective dose (ICRP 60), is given. Current trends and issues in internal dosimetry, including the calculation of patient-specific doses and in the use of small scale and microdosimetry techniques, are also reviewed

  18. The work programme of EURADOS on internal and external dosimetry.

    Science.gov (United States)

    Rühm, W; Bottollier-Depois, J F; Gilvin, P; Harrison, R; Knežević, Ž; Lopez, M A; Tanner, R; Vargas, A; Woda, C

    2018-01-01

    Since the early 1980s, the European Radiation Dosimetry Group (EURADOS) has been maintaining a network of institutions interested in the dosimetry of ionising radiation. As of 2017, this network includes more than 70 institutions (research centres, dosimetry services, university institutes, etc.), and the EURADOS database lists more than 500 scientists who contribute to the EURADOS mission, which is to promote research and technical development in dosimetry and its implementation into practice, and to contribute to harmonisation of dosimetry in Europe and its conformance with international practices. The EURADOS working programme is organised into eight working groups dealing with environmental, computational, internal, and retrospective dosimetry; dosimetry in medical imaging; dosimetry in radiotherapy; dosimetry in high-energy radiation fields; and harmonisation of individual monitoring. Results are published as freely available EURADOS reports and in the peer-reviewed scientific literature. Moreover, EURADOS organises winter schools and training courses on various aspects relevant for radiation dosimetry, and formulates the strategic research needs in dosimetry important for Europe. This paper gives an overview on the most important EURADOS activities. More details can be found at www.eurados.org .

  19. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg

    scintillators and can be perceived as a well characterized, independent alternative to the methods that are in clinical use today. The dosimeter itself does not require a voltage supply, and is composed of water equivalent materials. The dosimeter can be fabricated with a sensitive volume smaller than a cubic...... millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising...... for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy....

  20. Comparison of intraoperative dosimetric implant representation with postimplant dosimetry in patients receiving prostate brachytherapy.

    Science.gov (United States)

    Stone, Nelson N; Hong, Suzanne; Lo, Yeh-Chi; Howard, Victor; Stock, Richard G

    2003-01-01

    To compare the results of intraoperative dosimetry with those of CT-based postimplant dosimetry in patients undergoing prostate seed implantation. Seventy-seven patients with T1-T3 prostate cancer received an ultrasound-guided permanent seed implant (36 received (125)I, 7 (103)Pd, and 34 a partial (103)Pd implant plus external beam radiation therapy). The implantation was augmented with an intraoperative dosimetric planning system. After the peripheral needles were placed, 5-mm axial images were acquired into the treatment planning system. Soft tissue structures (prostate, urethra, and rectum) were contoured, and exact needle positions were registered. Seeds were placed with an applicator, and their positions were entered into the planning system. The dose distributions for the implant were calculated after interior needle and seed placement. Postimplant dosimetry was performed 1 month later on the basis of CT imaging. Prostate and urethral doses were compared, by using paired t tests, for the real-time dosimetry in the operating room (OR) and the postimplant dosimetry. The mean preimplant prostate volume was 39.8 cm(3), the postneedle planning volume was 41.5 cm(3) (psystem provides a close match to the actual delivered doses. These data support the use of this system to modify the implant during surgery to achieve more consistent dosimetry results.

  1. Hybrid automata models of cardiac ventricular electrophysiology for real-time computational applications.

    Science.gov (United States)

    Andalam, Sidharta; Ramanna, Harshavardhan; Malik, Avinash; Roop, Parthasarathi; Patel, Nitish; Trew, Mark L

    2016-08-01

    Virtual heart models have been proposed for closed loop validation of safety-critical embedded medical devices, such as pacemakers. These models must react in real-time to off-the-shelf medical devices. Real-time performance can be obtained by implementing models in computer hardware, and methods of compiling classes of Hybrid Automata (HA) onto FPGA have been developed. Models of ventricular cardiac cell electrophysiology have been described using HA which capture the complex nonlinear behavior of biological systems. However, many models that have been used for closed-loop validation of pacemakers are highly abstract and do not capture important characteristics of the dynamic rate response. We developed a new HA model of cardiac cells which captures dynamic behavior and we implemented the model in hardware. This potentially enables modeling the heart with over 1 million dynamic cells, making the approach ideal for closed loop testing of medical devices.

  2. A multi-GPU real-time dose simulation software framework for lung radiotherapy.

    Science.gov (United States)

    Santhanam, A P; Min, Y; Neelakkantan, H; Papp, N; Meeks, S L; Kupelian, P A

    2012-09-01

    Medical simulation frameworks facilitate both the preoperative and postoperative analysis of the patient's pathophysical condition. Of particular importance is the simulation of radiation dose delivery for real-time radiotherapy monitoring and retrospective analyses of the patient's treatment. In this paper, a software framework tailored for the development of simulation-based real-time radiation dose monitoring medical applications is discussed. A multi-GPU-based computational framework coupled with inter-process communication methods is introduced for simulating the radiation dose delivery on a deformable 3D volumetric lung model and its real-time visualization. The model deformation and the corresponding dose calculation are allocated among the GPUs in a task-specific manner and is performed in a pipelined manner. Radiation dose calculations are computed on two different GPU hardware architectures. The integration of this computational framework with a front-end software layer and back-end patient database repository is also discussed. Real-time simulation of the dose delivered is achieved at once every 120 ms using the proposed framework. With a linear increase in the number of GPU cores, the computational time of the simulation was linearly decreased. The inter-process communication time also improved with an increase in the hardware memory. Variations in the delivered dose and computational speedup for variations in the data dimensions are investigated using D70 and D90 as well as gEUD as metrics for a set of 14 patients. Computational speed-up increased with an increase in the beam dimensions when compared with a CPU-based commercial software while the error in the dose calculation was lung model-based radiotherapy is an effective tool for performing both real-time and retrospective analyses.

  3. Essays in real-time forecasting

    OpenAIRE

    Liebermann, Joelle

    2012-01-01

    This thesis contains three essays in the field of real-time econometrics, and more particularlyforecasting.The issue of using data as available in real-time to forecasters, policymakers or financialmarkets is an important one which has only recently been taken on board in the empiricalliterature. Data available and used in real-time are preliminary and differ from ex-postrevised data, and given that data revisions may be quite substantial, the use of latestavailable instead of real-time can s...

  4. Characterising an aluminium oxide dosimetry system.

    Science.gov (United States)

    Conheady, Clement F; Gagliardi, Frank M; Ackerly, Trevor

    2015-09-01

    In vivo dosimetry is recommended as a defence-in-depth strategy in radiotherapy treatments and is currently employed by clinics around the world. The characteristics of a new optically stimulated luminescence dosimetry system were investigated for the purpose of replacing an aging thermoluminescence dosimetry system for in vivo dosimetry. The stability of the system was not sufficient to satisfy commissioning requirements and therefore it has not been released into clinical service at this time.

  5. Ovation Prime Real-Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ovation Prime Real-Time (OPRT) product is a real-time forecast and nowcast model of auroral power and is an operational implementation of the work by Newell et...

  6. Uncertainties in real-world decisions on medical technologies.

    Science.gov (United States)

    Lu, C Y

    2014-08-01

    Patients, clinicians, payers and policy makers face substantial uncertainties in their respective healthcare decisions as they attempt to achieve maximum value, or the greatest level of benefit possible at a given cost. Uncertainties largely come from incomplete information at the time that decisions must be made. This is true in all areas of medicine because evidence from clinical trials is often incongruent with real-world patient care. This article highlights key uncertainties around the (comparative) benefits and harms of medical technologies. Initiatives and strategies such as comparative effectiveness research and coverage with evidence development may help to generate reliable and relevant evidence for decisions on coverage and treatment. These efforts could result in better decisions that improve patient outcomes and better use of scarce medical resources. © 2014 John Wiley & Sons Ltd.

  7. SFPM opinion on the so-called 'transit' in vivo dosimetry in external radiotherapy

    International Nuclear Information System (INIS)

    Berger, Lucie; Dupuis, Pauline; Marchesi, Vincent; Boutry, Christine; Francois, Pascal; Crespin, Sylvain

    2014-01-01

    Written to the demand of the ASN to the SFPM (the French professional body in medical physics), this report states the opinion of these professionals regarding the use of the so-called 'transit' dosimetry for the control of the in vivo dose received during radiotherapy. After an overview of the use of in vivo dosimetry in medical practices, the authors outline the main benefits and drawbacks of point conventional detectors used for this dosimetry. They propose an overview of the state-of-the-art in transit in vivo dosimetry by briefly describing the different developed methodologies: the prediction-based methodology and the rear projection methodology. They also propose a literature review on transit in vivo dosimetry. Based on expert experience and on this review they give lists of technical benefits and drawbacks of techniques of in vivo dosimetry by EPID transit imagery. They finally indicate some commercially available technical solutions to transit in vivo dosimetry

  8. A platform for real-time online health analytics during spaceflight

    Science.gov (United States)

    McGregor, Carolyn

    Monitoring the health and wellbeing of astronauts during spaceflight is an important aspect of any manned mission. To date the monitoring has been based on a sequential set of discontinuous samplings of physiological data to support initial studies on aspects such as weightlessness, and its impact on the cardiovascular system and to perform proactive monitoring for health status. The research performed and the real-time monitoring has been hampered by the lack of a platform to enable a more continuous approach to real-time monitoring. While any spaceflight is monitored heavily by Mission Control, an important requirement within the context of any spaceflight setting and in particular where there are extended periods with a lack of communication with Mission Control, is the ability for the mission to operate in an autonomous manner. This paper presents a platform to enable real-time astronaut monitoring for prognostics and health management within space medicine using online health analytics. The platform is based on extending previous online health analytics research known as the Artemis and Artemis Cloud platforms which have demonstrated their relevance for multi-patient, multi-diagnosis and multi-stream temporal analysis in real-time for clinical management and research within Neonatal Intensive Care. Artemis and Artemis Cloud source data from a range of medical devices capable of transmission of the signal via wired or wireless connectivity and hence are well suited to process real-time data acquired from astronauts. A key benefit of this platform is its ability to monitor their health and wellbeing onboard the mission as well as enabling the astronaut's physiological data, and other clinical data, to be sent to the platform components at Mission Control at each stage when that communication is available. As a result, researchers at Mission Control would be able to simulate, deploy and tailor predictive analytics and diagnostics during the same spaceflight for

  9. Dosimetry in occupational exposure workers of the medical institutes of the University San Francisco Xavier de Chuquisaca

    International Nuclear Information System (INIS)

    Zambrana Z, A. J.; Castro S, O.; Huanca S, E.; Torrez C, M.; Villca Q, I.

    2014-08-01

    In this work is made a retrospective analysis of the record, of the dosimetric control readings processed by the Dosimetry Laboratory of the Instituto Boliviano de Ciencia y Tecnologia Nuclear, as regulator entity at national level for Occupational Exposed Workers (OEWs) to ionizing radiations, of the Medical Institutes of the Universidad Mayor, Real y Pontificia de San Francisco Xavier de Chuquisaca, by a period of 10 and 15 years. The results showed that in the Nuclear Medicine Institute of Sucre, the Accumulated Occupational Exposure of a total of 393 readings of 15 OEWs was of 20.4 mSv, identifying as maximum value 10.2 mSv, in the official that develops the Radio-pharmacy activities (elution, fractionation, preparation and management). In the Instituto Nacional de Cancerologia Dr. Jose Cupertino Arteaga the dosimetric background registered an Accumulated Occupational Exposure of a total of 1319 readings of 50 OEWs of 309.69 mSv, with a maximum value of 62.30 mSv, corresponding to the worker of the technical area (maintenance, adjustment and calibration). Comparison that allows to infer that the difference is due mainly to the radio-active source type 99m Tc Vs 60 Co utilized in these health centers. (Author)

  10. VERSE - Virtual Equivalent Real-time Simulation

    Science.gov (United States)

    Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel

    2005-01-01

    Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.

  11. 20th IEEE-NPSS Real Time Conference

    CERN Document Server

    2016-01-01

    We invite you at the Centro Congressi “A. Luciani” in Padova for the 2016 Real Time Conference (RT2016). It will take place Monday 6 through Friday 10 June 2016, with optional pre-conference tutorials Sunday, June 5. Like the previous editions, RT2016 will be a multidisciplinary conference devoted to the latest developments on realtime techniques in the fields of Plasma and Nuclear Fusion, particle physics, nuclear physics and astrophysics, space science, accelerators, medical physics, nuclear power instrumentation and other radiation instrumentation.

  12. ISTTOK real-time architecture

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ivo S., E-mail: ivoc@ipfn.ist.utl.pt; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.

    2014-03-15

    Highlights: • All real-time diagnostics and actuators were integrated in the same control platform. • A 100 μs control cycle was achieved under the MARTe framework. • Time-windows based control with several event-driven control strategies implemented. • AC discharges with exception handling on iron core flux saturation. • An HTML discharge configuration was developed for configuring the MARTe system. - Abstract: The ISTTOK tokamak was upgraded with a plasma control system based on the Advanced Telecommunications Computing Architecture (ATCA) standard. This control system was designed to improve the discharge stability and to extend the operational space to the alternate plasma current (AC) discharges as part of the ISTTOK scientific program. In order to accomplish these objectives all ISTTOK diagnostics and actuators relevant for real-time operation were integrated in the control system. The control system was programmed in C++ over the Multi-threaded Application Real-Time executor (MARTe) which provides, among other features, a real-time scheduler, an interrupt handler, an intercommunications interface between code blocks and a clearly bounded interface with the external devices. As a complement to the MARTe framework, the BaseLib2 library provides the foundations for the data, code introspection and also a Hypertext Transfer Protocol (HTTP) server service. Taking advantage of the modular nature of MARTe, the algorithms of each diagnostic data processing, discharge timing, context switch, control and actuators output reference generation, run on well-defined blocks of code named Generic Application Module (GAM). This approach allows reusability of the code, simplified simulation, replacement or editing without changing the remaining GAMs. The ISTTOK control system GAMs run sequentially each 100 μs cycle on an Intel{sup ®} Q8200 4-core processor running at 2.33 GHz located in the ATCA crate. Two boards (inside the ATCA crate) with 32 analog

  13. ISTTOK real-time architecture

    International Nuclear Information System (INIS)

    Carvalho, Ivo S.; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.

    2014-01-01

    Highlights: • All real-time diagnostics and actuators were integrated in the same control platform. • A 100 μs control cycle was achieved under the MARTe framework. • Time-windows based control with several event-driven control strategies implemented. • AC discharges with exception handling on iron core flux saturation. • An HTML discharge configuration was developed for configuring the MARTe system. - Abstract: The ISTTOK tokamak was upgraded with a plasma control system based on the Advanced Telecommunications Computing Architecture (ATCA) standard. This control system was designed to improve the discharge stability and to extend the operational space to the alternate plasma current (AC) discharges as part of the ISTTOK scientific program. In order to accomplish these objectives all ISTTOK diagnostics and actuators relevant for real-time operation were integrated in the control system. The control system was programmed in C++ over the Multi-threaded Application Real-Time executor (MARTe) which provides, among other features, a real-time scheduler, an interrupt handler, an intercommunications interface between code blocks and a clearly bounded interface with the external devices. As a complement to the MARTe framework, the BaseLib2 library provides the foundations for the data, code introspection and also a Hypertext Transfer Protocol (HTTP) server service. Taking advantage of the modular nature of MARTe, the algorithms of each diagnostic data processing, discharge timing, context switch, control and actuators output reference generation, run on well-defined blocks of code named Generic Application Module (GAM). This approach allows reusability of the code, simplified simulation, replacement or editing without changing the remaining GAMs. The ISTTOK control system GAMs run sequentially each 100 μs cycle on an Intel ® Q8200 4-core processor running at 2.33 GHz located in the ATCA crate. Two boards (inside the ATCA crate) with 32 analog

  14. Space Shuttle dosimetry measurements with RME-III

    International Nuclear Information System (INIS)

    Hardy, K.A.; Golightly, M.J.; Hardy, A.C.; Atwell, W.; Quam, W.

    1991-10-01

    A description of the radiation monitoring equipment (RME-III) dosimetry instrument and the results obtained from six Space Shuttle flights are presented. The RME-III is a self-contained, active (real-time), portable dosimeter system developed for the USAF and adapted for utilization in measuring the ionizing radiation environment on the Space Shuttle. This instrument was developed to incorporate the capabilities of two earlier radiation instruments into a single unit and to minimize crew interaction times with longer battery life and expanded memory capacity. Flight data has demonstrated that the RME-III can be used to accurately assess dose from various sources of exposure, such as that encountered in the complex radiation environment of space

  15. Multi-processor system for real-time flow estimation in medical ultrasound imaging

    DEFF Research Database (Denmark)

    Stetson, Paul F.; Jensen, Jesper Lomborg; Antonius, Peter

    1997-01-01

    the processed data. The generous bandwidth of the links makes it easy to balance the computational load among the processors.In order to manage the shared system memory and to make use of the parallel processing capabilities of the system, a real-time multitasking kernel has been developed. The kernel uses...

  16. Activity Of EURADOS In Environmental Solid State Dosimetry

    International Nuclear Information System (INIS)

    Ranogajec-Komor, M.; Duch, M. A.; Haninger, T.

    2015-01-01

    Working Group 3 (WG3) of the European Radiation Dosimetry Group (EURADOS) carries out research projects and coordinated activities to advance the scientific understanding of environmental dosimetry and especially to promote the technical development of new methods in environmental monitoring. In this field of dosimetry, the measurement of small additional doses caused by artificial radiation on top of the natural environmental radiation is a challenge. Further, WG3 stimulates the organisation of intercomparison programmes and the definition of standards and recommendations in the field of environmental radiation monitoring (ERM). WG3 has played a significant role in the harmonisation of early warning dosimetry network stations in Europe and has organised 6 EURADOS intercomparison exercises; in which 42 institutions from 19 countries have participated. Today, about 5000 stations provide real-time dose rate data to a database run by the European Commission. Within WG3 a subgroup (S1) on spectrometry system was formed in 2013. Since then, WG3 has been involved in the field of spectrometry systems used both for dosimetric and spectrometric monitoring in the environment. A remarkable result of the WG3 - S1 is that many members contributed to the new European Joint Research Project 'Metrology for radiological early warning networks in Europe' which started in 2014. A second subgroup WG3 - S2 on passive dosimetry in ERM was inaugurated in 2014. To gain an overview of the passive dosimetry practice in ERM, WG3 - S2 decided to collect information by means of a questionnaire which has been send to European dosimetry services. One of the results was the identification of some open questions, problems in ERM (for example terminology, protocol of routine dosimetry, uncertainty assessment) which require clarification for harmonisation of ERM using passive dosimeters. Another result was that there exists a need for intercomparisons. The first intercomparison for passive

  17. Retrospective dosimetry of Chernobyl liquidators

    International Nuclear Information System (INIS)

    Chumak, V.V.; Bakhanova, E.V.; Sholom, S.V.; Pasalskaya, L.F.; Bouville, A.; Krjuchkov, V.P.

    2000-01-01

    The numerous cohort of Chernobyl liquidators is a very attractive subject for epidemiological follow up due to high levels of exposure, age-gender distribution and availability of patients for medical examination. However, dosimetric information related to this population is incomplete, in many cases the quality of available dose records is doubtful and uncertainties of all dose values are not determined. Naive attempts to evaluate average doses on the basis of such factors as 'distance from the reactor' obviously fail due to large variation of tasks and workplace contamination. Therefore, prior to any sensible consideration of liquidators as a subject of epidemiological study, their doses should be evaluated (reevaluated) using the methods of retrospective dosimetry. Retrospective dosimetry in general got significant development over the last decade. However, most of the retrospective dosimetry techniques are time consuming, expensive and possess sensitivity threshold. Therefore, application of retrospective dosimetry for the needs of epidemiological follow up studies requires development of certain strategy. This strategy depends, of coarse, on the epidemiological design of the study, availability of resources and dosimetric information related to the time of clean up. One of the strategies of application of retrospective dosimetry may be demonstrated on the example of a cohort study with occasional nested case control consideration. In this case, the tools are needed for validation of existing dose records (of not always known quality), screening of the study cohort with express dosimetric method called to determine possible dose ranges, and 'state-of-the-art' assessment of individual doses for selected subjects (cases and controls). Verification of dose records involves analysis of the statistical regularities of dose distributions and detection of possible extraneous admixtures (presumably falsified dose records). This work is performed on impersonified data

  18. Use of the Real Time xCelligence System for Purposes of Medical Microbiology.

    Science.gov (United States)

    Junka, Adam Feliks; Janczura, Adriana; Smutnicka, Danuta; Mączyńska, Beata; Anna, Secewicz; Nowicka, Joanna; Bartoszewicz, Marzenna; Gościniak, Grażyna

    2012-09-28

    Roche's xCelligence impedance-measuring instrument is one of a few commercially available systems of such type. According to the best knowledge of authors, instrument was tested so far only for eukaryotic cell research. The aim of this work was to estimate xCELLigence suitability for the microbiological tests, including (i) measurement of morphological changes in eukaryotic cells as a result of bacterial toxin activity, (ii) measurement of bacterial biofilm formation and (iii) impact of antiseptics on the biofilm structure. To test the infuence of bacterial LT enterotoxin on eukaryotic cell lines, Chinese Hamster Ovary (CHO) cell line and reference strain Escherichia coli ATTC 35401 were used. To investigate Roche's instrument ability to measure biofilm formation and impact of antiseptics on its development, Staphylococcus aureus ATTC6538 reference strain was used. The data generated during the experiments indicate excellent ability of xCelligence instrument to detect cytopathic effect caused by bacterial LT endotoxin and to detect staphylococcal biofilm formation. However, interpretation of the results obtained during real-time measurement of antiseptic's bactericidal activity against staphylococcal biofilm, caused many difficulties. xCelligence instrument can be used for real-time monitoring of morphological changes in CHO cells treated with bacterial LT enterotoxin and for real-time measurement of staphylococcal biofilm formation in vitro. Further investigation is necessary to confirm suitability of system to analyze antiseptic's antimicrobial activity against biofilm in vitro.

  19. Fiber-coupled Al_2O_3:C radioluminescence dosimetry for total body irradiations

    International Nuclear Information System (INIS)

    Buranurak, S.; Andersen, C.E.

    2016-01-01

    In vivo dosimetry can be important and relevant in radiotherapy, especially when commissioning new treatment techniques at hospitals. This study investigates the potential use of fiber-coupled radioluminescence (RL) dosimetry based on Al_2O_3:C or organic plastic scintillators for this purpose in the context of Total Body Irradiations (TBIs) where patients are treated with large fields of 6 or 18 MV photons at an extended source-to-surface distance (SSD). The study shows that Al_2O_3:C dosimetry using the saturated-RL protocol may be suitable for real-time in vivo dosimetry during TBI treatments from the perspective of the good agreement with alanine dosimetry and other critical phantom tests, including the ability to cope with the large stem signal experienced during TBI treatments at extended SSD. In contrast, the chromatic stem removal technique often used for organic plastic scintillators did not work well in large fields with the tested calibration procedure and instrumentation. An apparent dose-rate effect discussed in a previous study of the RL properties of Al_2O_3:C (Andersen et al., 2011) was found to have resulted from an overlooked dead time problem in the counting system, and this potential caveat can therefore be removed from the list of potential problems associated with fiber-coupled Al_2O_3:C dosimetry using the saturated-RL protocol. This further has implications for TBI dosimetry using the RL Al_2O_3:C system due to large dose-rate differences between calibrations at the iso-center and in vivo measurements at extended source-to-surface distances. - Highlights: • Fiber-coupled dosimetry can be used for measurements during total body irradiations. • An apparent dose-effect associated with radioluminescence from Al2O3:C was resolved. • The gated-counting stem removal procedure worked well for Al2O3:C in pulsed accelerator beams. • The chromatic stem removal procedure did not work well with the tested instrumentation and organic plastic

  20. Recent developments in detectors/phantoms for dosimetry, X-ray quality assurance and imaging

    International Nuclear Information System (INIS)

    Sankaran, A.

    2009-01-01

    During the past years, many new developments have taken place in detectors/phantoms for high energy photon and electron dosimetry (for radiotherapy), protection monitoring, X-ray quality assurance and X-ray imaging (for radiodiagnosis). A variety of detectors and systems, quality assurance (QA) gadgets and special phantoms have been developed for diverse applications. This paper discusses the important developments with some of which the author was actively associated in the past. For dosimetry and QA of 60 Co and high energy X-ray units, state-of-the-art radiation field analyzers, matrix ion chambers, MOSFET devices and Gafchromic films are described. OSL detectors find wide use in radiotherapy dosimetry and provide a good alternative for personnel monitoring. New systems introduced for QA/dosimetry of X-ray units and CT scanners include: multi-function instruments for simultaneous measurement of kVp, dose, time, X-ray waveform and HVT on diagnostic X-ray units; pencil chamber with head and body phantoms for CTDI check on CT scanners. Examples of phantoms used for dosimetry and imaging are given. Advancements in the field of diagnostic X-ray imaging (with applications in portal imaging/dosimetry of megavoltage X-ray units) have led to emergence of: film-replacement systems employing CCD-scintillator arrays, computed radiography (CR) using storage phosphor plate; digital radiography (DR), using a pixel-matrix of amorphous selenium, or amorphous silicon diode coupled to scintillator. All these provide (a) in radiotherapy, accurate dose delivery to tumour, saving the surrounding tissues and (b) in radiodiagnosis, superior image quality with low patient exposure. Lastly, iPODs and flash drives are utilized for storage of gigabyte-size images encountered in medical and allied fields. Although oriented towards medical applications, some of these have been of great utility in other fields, such as industrial radiography as well as a host of other research areas. (author)

  1. Suitability of Israeli Household Salt for Retrospective Dosimetry

    International Nuclear Information System (INIS)

    Datz, H.; Druzhyna, S.; Oster, L.; Orion, I.; Darras, I.; Hershkovich, D.; Horowitz, Y.

    2014-01-01

    Following a nuclear accident or a terror attack involving the dispersal of radioactive material, radiation dose assessment to first responders and the members of the public is essential. This information may be used by medical personnel to decide whether to refer the exposed individual for medical treatment or not. Few people, if any, will be wearing standard dosimeters at the exposure scene, so the need for a retrospective assessment of the radiation dose is an acute necessity. Previously developed methods for retrospective dosimetry (RD) have suggested various types of materials such as tiles, bricks, CDs, electronic components, mobile phones, electron paramagnetic resonance of tooth enamel, hair, nails, biological dosimetry techniques etc. These techniques involve significant disadvantages such as: the long time required to prepare the samples for measurement the considerable expense of the measuring equipment, invasive procedure and others. The need for an RD technique which will be fast, inexpensive, reliable, non-invasive and, if possible, portable, remains an on-going challenge. The ideal retrospective dosimeter must fulfill the following basic criteria: a) Availability in the contaminated area, b) Adequate dose measurement capability in the relevant range of dose levels, c) Negligible or known fading between exposure and measurement

  2. Optical fiber detectors as in-vivo dosimetry method of quality assurance in radiation therapy

    International Nuclear Information System (INIS)

    Plazas, M.C.; Justus, B.L.; Falkenstein, P.; Huston, A.L.; Ning, H.; Miller, R.

    2004-01-01

    A new in-vivo dosimetry system has been under development for some time using radio luminescent phosphors. These phosphors are activated, metal ion doped glasses (Ex: Cu 1± doped quartz fiber), have excellent optical transparency and offer several potential advantages for radiation dosimetry; including: small size, high sensitivity, linearity of dose response insensitivity to electromagnetic interference. The utility of these phosphors as a detection modality has been limited in real-time dosimetry applications due to the production of Cerenkov radiation in the carrier fiber, which produces a contaminant signal proportional to dose rate as well as the size of the radiation field. One possible method for eliminating this signal is using an electronic gating signal from the accelerator to delay data acquisition during the actual beam pulse, when Cerenkov radiation is produced. Due to the intrinsic properties of our particular scintillator, this method offers the best mechanism for eliminating Cerenkov noise, while retaining the ability to detect individual beam pulses. The dosimeter was tested using an external beam radiotherapy machine that provided pulses of 6 MeV x-rays. Gated detection was used to discriminate the signal collected during the radiation pulses, which included contributions from Cerenkov radiation and native fiber fluorescence, from the signal collected between the radiation pulses, which contained only the long-lived phosphorescence from the Cu 1± doped fused quartz detector. Gated detection of the phosphorescence provided accurate, real-time dose measurements that were linear with absorbed dose, independent of dose rate and that were accurate for all field sizes studied. (author)

  3. Tissue equivalence in neutron dosimetry

    International Nuclear Information System (INIS)

    Nutton, D.H.; Harris, S.J.

    1980-01-01

    A brief review is presented of the essential features of neutron tissue equivalence for radiotherapy and gives the results of a computation of relative absorbed dose for 14 MeV neutrons, using various tissue models. It is concluded that for the Bragg-Gray equation for ionometric dosimetry it is not sufficient to define the value of W to high accuracy and that it is essential that, for dosimetric measurements to be applicable to real body tissue to an accuracy of better than several per cent, a correction to the total absorbed dose must be made according to the test and tissue atomic composition, although variations in patient anatomy and other radiotherapy parameters will often limit the benefits of such detailed dosimetry. (U.K.)

  4. Dosimetry in life sciences

    International Nuclear Information System (INIS)

    1975-01-01

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  5. Dosimetry in life sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-06-15

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  6. Real-Time, Interactive Echocardiography Over High-Speed Networks: Feasibility and Functional Requirements

    Science.gov (United States)

    Bobinsky, Eric A.

    1998-01-01

    Real-time, Interactive Echocardiography Over High Speed Networks: Feasibility and Functional Requirements is an experiment in advanced telemedicine being conducted jointly by the NASA Lewis Research Center, the NASA Ames Research Center, and the Cleveland Clinic Foundation. In this project, a patient undergoes an echocardiographic examination in Cleveland while being diagnosed remotely by a cardiologist in California viewing a real-time display of echocardiographic video images transmitted over the broadband NASA Research and Education Network (NREN). The remote cardiologist interactively guides the sonographer administering the procedure through a two-way voice link between the two sites. Echocardiography is a noninvasive medical technique that applies ultrasound imaging to the heart, providing a "motion picture" of the heart in action. Normally, echocardiographic examinations are performed by a sonographer and cardiologist who are located in the same medical facility as the patient. The goal of telemedicine is to allow medical specialists to examine patients located elsewhere, typically in remote or medically underserved geographic areas. For example, a small, rural clinic might have access to an echocardiograph machine but not a cardiologist. By connecting this clinic to a major metropolitan medical facility through a communications network, a minimally trained technician would be able to carry out the procedure under the supervision and guidance of a qualified cardiologist.

  7. Radiation physics for medical physicists

    CERN Document Server

    Podgorsak, Ervin B

    2016-01-01

    This textbook summarizes the basic knowledge of atomic, nuclear, and radiation physics that professionals working in medical physics and biomedical engineering need for efficient and safe use of ionizing radiation in medicine. Concentrating on the underlying principles of radiation physics, the textbook covers the prerequisite knowledge for medical physics courses on the graduate and post-graduate levels in radiotherapy physics, radiation dosimetry, imaging physics, and health physics, thus providing the link between elementary undergraduate physics and the intricacies of four medical physics specialties: diagnostic radiology physics, nuclear medicine physics, radiation oncology physics, and health physics. To recognize the importance of radiation dosimetry to medical physics three new chapters have been added to the 14 chapters of the previous edition. Chapter 15 provides a general introduction to radiation dosimetry. Chapter 16 deals with absolute radiation dosimetry systems that establish absorbed dose or ...

  8. Study of Optically Stimulated Luminescence of LiF:Mg,Ti for beta and gamma dosimetry

    International Nuclear Information System (INIS)

    Matsushima, Luciana C.; Veneziani, Glauco R.; Campos, Letícia L.

    2013-01-01

    Modern advances in radiation medicine – radiodiagnosis, radiotherapy and interventional radiography – each present dosimetry challenges for the medical physicist that did not exist previously. In all of these areas a constant balance has to be made between the treatment necessary to destroy the tumor and the unnecessary exposure of healthy tissue. Innovative applications of OSL dosimetry are now appearing in each of these areas to help the medical physicist and oncologist design the most effective, and least deleterious, treatment for their patients. High sensitivity, precise delivery of light, fast readout times, simpler readers and easier automation are the main advantages of OSL in comparison with TLD. This work aimed to study the application of OSL technique using lithium fluoride dosimeters doped with magnesium and titanium (LiF:Mg,Ti) for application in beta and gamma dosimetry. -- Highlights: •Study of Optically Stimulated Luminescence of LiF:Mg,Ti and microLiF:Mg,Ti. •OSL response of TLD-100 dosimeters to beta and gamma radiation. •Analysis of repeatability and lowest levels of detection of detectors LiF:Mg,Ti

  9. Why is a high accuracy needed in dosimetry

    International Nuclear Information System (INIS)

    Lanzl, L.H.

    1976-01-01

    Dose and exposure intercomparisons on a national or international basis have become an important component of quality assurance in the practice of good radiotherapy. A high degree of accuracy of γ and x radiation dosimetry is essential in our international society, where medical information is so readily exchanged and used. The value of accurate dosimetry lies mainly in the avoidance of complications in normal tissue and an optimal degree of tumor control

  10. Status of computed tomography dosimetry for wide cone beam scanners

    International Nuclear Information System (INIS)

    2011-01-01

    International standardization in dosimetry is essential for the successful exploitation of radiation technology. To provide such standardization in diagnostic radiology, the IAEA published Code of Practice entitled Dosimetry in Diagnostic Radiology: An International Code of Practice (IAEA Technical Reports Series No. 457; 2007), which recommends procedures for calibration and dosimetric measurement both in standards dosimetry laboratories, especially Secondary Standards Dosimetry Laboratories (SSDLs), and in clinical centres for radiology, as found in most hospitals. These standards address the main dosimetric methodologies needed in clinical diagnostic radiology, with the calibration of associated dosimetric equipment, including the measurement methodologies for computed tomography (CT). For some time now there has been a growing awareness that radiation dose originating from medical diagnostic procedures in radiology, is contributing an increasing proportion to the total population dose, with a large component coming from CT examinations. This is accompanied by rapid developments in CT technology, including the use of increasingly wide X ray scanning beams, which are presenting problems in dosimetry that currently cannot be adequately addressed by existing standards. This situation has received attention from a number of professional bodies, and institutions have proposed and are investigating new and adapted dosimetric models in order to find robust solutions to these problems that are critically affecting clinical application of CT dosimetry. In view of these concerns, and as a response to a recommendation from a coordinated research project that reviewed the implementation of IAEA Technical Reports Series No. 457, a meeting was held to review current dosimetric methodologies and to determine if a practical solution for dosimetry for wide X ray beam CT scanners was currently available. The meeting rapidly formed the view that there was an interim solution that

  11. A real-time architecture for time-aware agents.

    Science.gov (United States)

    Prouskas, Konstantinos-Vassileios; Pitt, Jeremy V

    2004-06-01

    This paper describes the specification and implementation of a new three-layer time-aware agent architecture. This architecture is designed for applications and environments where societies of humans and agents play equally active roles, but interact and operate in completely different time frames. The architecture consists of three layers: the April real-time run-time (ART) layer, the time aware layer (TAL), and the application agents layer (AAL). The ART layer forms the underlying real-time agent platform. An original online, real-time, dynamic priority-based scheduling algorithm is described for scheduling the computation time of agent processes, and it is shown that the algorithm's O(n) complexity and scalable performance are sufficient for application in real-time domains. The TAL layer forms an abstraction layer through which human and agent interactions are temporally unified, that is, handled in a common way irrespective of their temporal representation and scale. A novel O(n2) interaction scheduling algorithm is described for predicting and guaranteeing interactions' initiation and completion times. The time-aware predicting component of a workflow management system is also presented as an instance of the AAL layer. The described time-aware architecture addresses two key challenges in enabling agents to be effectively configured and applied in environments where humans and agents play equally active roles. It provides flexibility and adaptability in its real-time mechanisms while placing them under direct agent control, and it temporally unifies human and agent interactions.

  12. A combined experimental and numerical study on upper airway dosimetry of inhaled nanoparticles from an electrical discharge machine shop.

    Science.gov (United States)

    Tian, Lin; Shang, Yidan; Chen, Rui; Bai, Ru; Chen, Chunying; Inthavong, Kiao; Tu, Jiyuan

    2017-07-12

    Exposure to nanoparticles in the workplace is a health concern to occupational workers with increased risk of developing respiratory, cardiovascular, and neurological disorders. Based on animal inhalation study and human lung tumor risk extrapolation, current authoritative recommendations on exposure limits are either on total mass or number concentrations. Effects of particle size distribution and the implication to regional airway dosages are not elaborated. Real time production of particle concentration and size distribution in the range from 5.52 to 98.2 nm were recorded in a wire-cut electrical discharge machine shop (WEDM) during a typical working day. Under the realistic exposure condition, human inhalation simulations were performed in a physiologically realistic nasal and upper airway replica. The combined experimental and numerical study is the first to establish a realistic exposure condition, and under which, detailed dose metric studies can be performed. In addition to mass concentration guided exposure limit, inhalation risks to nano-pollutant were reexamined accounting for the actual particle size distribution and deposition statistics. Detailed dosimetries of the inhaled nano-pollutants in human nasal and upper airways with respect to particle number, mass and surface area were discussed, and empirical equations were developed. An astonishing enhancement of human airway dosages were detected by current combined experimental and numerical study in the WEDM machine shop. Up to 33 folds in mass, 27 folds in surface area and 8 folds in number dosages were detected during working hours in comparison to the background dosimetry measured at midnight. The real time particle concentration measurement showed substantial emission of nano-pollutants by WEDM machining activity, and the combined experimental and numerical study provided extraordinary details on human inhalation dosimetry. It was found out that human inhalation dosimetry was extremely sensitive

  13. Real-time tumor ablation simulation based on the dynamic mode decomposition method

    KAUST Repository

    Bourantas, George C.; Ghommem, Mehdi; Kagadis, George C.; Katsanos, Konstantinos H.; Loukopoulos, Vassilios C.; Burganos, Vasilis N.; Nikiforidis, George C.

    2014-01-01

    Purpose: The dynamic mode decomposition (DMD) method is used to provide a reliable forecasting of tumor ablation treatment simulation in real time, which is quite needed in medical practice. To achieve this, an extended Pennes bioheat model must

  14. General guidelines for safe and expeditious international transport of samples subjected to biological dosimetry assessment.

    Science.gov (United States)

    Di Giorgio, Marina; Radl, Analía; Taja, María R; Bubniak, Ruth; Deminge, Mayra; Sapienza, Carla; Vázquez, Marina; Baciu, Florian; Kenny, Pat

    2014-06-01

    It has been observed that victims of accidental overexposures show better chance of survival if they receive medical treatment early. The increased risk of scenarios involving mass casualties has stimulated the scientific community to develop tools that would help the medical doctors to treat victims. The biological dosimetry has become a routine test to estimate the dose, supplementing physical and clinical dosimetry. In case of radiation emergencies, in order to provide timely and effectively biological dosimetry assistance it is essential to guarantee an adequate transport of blood samples in principal, for providing support to countries that do not have biodosimetry laboratories. The objective of the present paper is to provide general guidelines, summarised in 10 points, for timely and proper receiving and sending of blood samples under National and International regulations, for safe and expeditious international transport. These guidelines cover the classification, packaging, marking, labelling, refrigeration and documentation requirements for the international shipping of blood samples and pellets, to provide assistance missions with a tool that would contribute with the preparedness for an effective biodosimetric response in cases of radiological or nuclear emergencies. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Dosimetry in diagnostic and interventional radiology - ICRU and IAEA activities

    International Nuclear Information System (INIS)

    Zoetelief, J.; Pernicka, F.

    2002-01-01

    Full text: Main aims of patient dosimetry in diagnostic and interventional radiology are to determine dosimetric quantities for establishment and use of guidance levels or diagnostic reference levels and for comparative risk assessment. In the latter case, the average doses to the organs and tissues at risk should be assessed. Only limited number of measurements serve to potential risk assessment of the examination and intervention. An additional objective of dosimetry in diagnostic and interventional radiology is the assessment of equipment performance. Ionization chambers are the main devices used for dosimetric measurements in diagnostic and interventional radiology but other devices with special properties are also used. Important examples are thermoluminescent detectors (TLDs) and semiconductor detectors. For most dosemeters used in x-ray medical imaging the desired quantity for calibration of dosemeters is the air kerma free-in-air. Calibrations should be made at appropriate radiation qualities, for which recommendations are available for conventional radiology. It is important that the calibrations are traceable to the international measurement system. The uncertainty of dose measurements in medical x-ray imaging, for comparative risk assessments as well as for quality assurance, should not exceed about 7 per cent in terms of the expanded uncertainty using a coverage factor of 2. The dosimetric approaches in general diagnostic radiology, mammography and computed tomography are slightly different, resulting in application specific dosimetric quantities. Consequently, different protocols for patient dosimetry are available for these different purposes. In general diagnostic radiology, various quantities and terminologies have been used for the specification of dose on the central beam axis at the point where the x-ray beam enters the patient (or a phantom representing the patient). These include the exposure at skin entrance (ESE), the input radiation exposure

  16. Towards Real-Time Argumentation

    Directory of Open Access Journals (Sweden)

    Vicente JULIÁN

    2016-07-01

    Full Text Available In this paper, we deal with the problem of real-time coordination with the more general approach of reaching real-time agreements in MAS. Concretely, this work proposes a real-time argumentation framework in an attempt to provide agents with the ability of engaging in argumentative dialogues and come with a solution for their underlying agreement process within a bounded period of time. The framework has been implemented and evaluated in the domain of a customer support application. Concretely, we consider a society of agents that act on behalf of a group of technicians that must solve problems in a Technology Management Centre (TMC within a bounded time. This centre controls every process implicated in the provision of technological and customer support services to private or public organisations by means of a call centre. The contract signed between the TCM and the customer establishes penalties if the specified time is exceeded.

  17. Dosimetry, clinical factors and medication intake influencing urinary symptoms after prostate radiotherapy: An analysis of data from the RADAR prostate radiotherapy trial

    International Nuclear Information System (INIS)

    Yahya, Noorazrul; Ebert, Martin A.; Bulsara, Max; Haworth, Annette; Kennedy, Angel; Joseph, David J.; Denham, Jim W.

    2015-01-01

    Purpose/objective: To identify dosimetry, clinical factors and medication intake impacting urinary symptoms after prostate radiotherapy. Material and methods: Data describing clinical factors and bladder dosimetry (reduced with principal component (PC) analysis) for 754 patients treated with external beam radiotherapy accrued by TROG 03.04 RADAR prostate radiotherapy trial were available for analysis. Urinary symptoms (frequency, incontinence, dysuria and haematuria) were prospectively assessed using LENT-SOMA to a median of 72 months. The endpoints assessed were prevalence (grade ⩾1) at the end of radiotherapy (representing acute symptoms), at 18-, 36- and 54-month follow-ups (representing late symptoms) and peak late incidence including only grade ⩾2. Impact of factors was assessed using multivariate logistic regression models with correction for over-optimism. Results: Baseline symptoms, non-insulin dependent diabetes mellitus, age and PC1 (correlated to the mean dose) impact symptoms at >1 timepoints. Associations at a single timepoint were found for cerebrovascular condition, ECOG status and non-steroidal anti-inflammatory drug intake. Peak incidence analysis shows the impact of baseline, bowel and cerebrovascular condition and smoking status. Conclusions: The prevalence and incidence analysis provide a complementary view for urinary symptom prediction. Sustained impacts across time points were found for several factors while some associations were not repeated at different time points suggesting poorer or transient impact

  18. Chemical dosimetry principles in high dose dosimetry

    International Nuclear Information System (INIS)

    Mhatre, Sachin G.V.

    2016-01-01

    In radiation processing, activities of principal concern are process validation and process control. The objective of such formalized procedures is to establish documentary evidence that the irradiation process has achieved the desired results. The key element of such activities is inevitably a well characterized reliable dosimetry system that is traceable to recognized national and international dosimetry standards. Only such dosimetry systems can help establish the required documentary evidence. In addition, industrial radiation processing such as irradiation of foodstuffs and sterilization of health careproducts are both highly regulated, in particular with regard to dose. Besides, dosimetry is necessary for scaling up processes from the research level to the industrial level. Thus, accurate dosimetry is indispensable

  19. EPR-dosimetry of ionizing radiation

    Science.gov (United States)

    Popova, Mariia; Vakhnin, Dmitrii; Tyshchenko, Igor

    2017-09-01

    This article discusses the problems that arise during the radiation sterilization of medical products. It is propose the solution based on alanine EPR-dosimetry. The parameters of spectrometer and methods of absorbed dose calculation are given. In addition, the problems that arise during heavy particles irradiation are investigated.

  20. Real-time PCR in virology.

    Science.gov (United States)

    Mackay, Ian M; Arden, Katherine E; Nitsche, Andreas

    2002-03-15

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.

  1. An algorithm for real-time dosimetry in intensity-modulated radiation therapy using the radioluminescence signal from Al2O3:C

    DEFF Research Database (Denmark)

    Andersen, C.E.; Marckmann, C.J.; Aznar, Marianne

    2006-01-01

    radiation beams. The dosimetry system has been used for dose measurements in a phantom during an intensity-modulated radiation therapy (IMRT) treatment with 6 MV photons. The RL measurement results are in excellent agreement (i.e. within 1%) with both the OSL results and the dose delivered according...

  2. Real time programming environment for Windows

    Energy Technology Data Exchange (ETDEWEB)

    LaBelle, D.R. [LaBelle (Dennis R.), Clifton Park, NY (United States)

    1998-04-01

    This document provides a description of the Real Time Programming Environment (RTProE). RTProE tools allow a programmer to create soft real time projects under general, multi-purpose operating systems. The basic features necessary for real time applications are provided by RTProE, leaving the programmer free to concentrate efforts on his specific project. The current version supports Microsoft Windows{trademark} 95 and NT. The tasks of real time synchronization and communication with other programs are handled by RTProE. RTProE includes a generic method for connecting a graphical user interface (GUI) to allow real time control and interaction with the programmer`s product. Topics covered in this paper include real time performance issues, portability, details of shared memory management, code scheduling, application control, Operating System specific concerns and the use of Computer Aided Software Engineering (CASE) tools. The development of RTProE is an important step in the expansion of the real time programming community. The financial costs associated with using the system are minimal. All source code for RTProE has been made publicly available. Any person with access to a personal computer, Windows 95 or NT, and C or FORTRAN compilers can quickly enter the world of real time modeling and simulation.

  3. The EURADOS/CONRAD activities on radiation protection dosimetry in medicine

    International Nuclear Information System (INIS)

    Vanhavere, F.; Struelens, L.; Bordy, J.M.; Daures, J.; Denozieres, M.; Buls, N.; Clerinx, P.; Carinou, E.; Clairand, I.; Debroas, J.; Donadille, L.; Itie, C.; Ginjaume, M.; Jansen, J.; Jaervinen, H.; Miljanic, S.; Ranogajec-Komor, M.; Nikodemova, D.; Rimpler, A.; Sans Merce, M.; D'Errico, F.

    2008-01-01

    Full text: This presentation gives an overview on the research activities that EURADOS coordinates in the field of radiation protection dosimetry in medicine. EURADOS is an organization founded in 1981 to advance the scientific understanding and the technical development of the dosimetry of ionising radiation in the fields of radiation protection, radiobiology, radiation therapy and medical diagnosis by promoting collaboration between European laboratories. EURADOS operates by setting up Working Groups dealing with particular topics. Currently funded through the CONRAD project of the 6th EU Framework Programme, EURADOS has working groups on Computational Dosimetry, Internal Dosimetry, Complex mixed radiation fields at workplaces, and Radiation protection dosimetry of medical staff. The latter working group coordinates and promotes European research for the assessment of occupational exposures to staff in therapeutic and diagnostic radiology workplaces. Research is coordinated by sub-groups covering three specific areas: 1: Extremity dosimetry in nuclear medicine and interventional radiology: this sub-group coordinates investigations in the specific fields of the hospitals and studies of doses to different parts of the hands, arms, legs and feet; 2: Practice of double dosimetry: this sub-group reviews and evaluates the different methods and algorithms for the use of dosemeters placed above and below lead aprons, especially to determine personal doses to cardiologists during cardiac catheterisation, but also in CT-fluoroscopy and some nuclear medicine developments (e.g. use of Re-188); and 3: Use of electronic personal dosemeters in interventional radiology: this sub-group coordinates investigations in laboratories and hospitals, and intercomparisons with passive dosemeters with the aim to enable the formulation of standards. (author)

  4. An In-Home Digital Network Architecture for Real-Time and Non-Real-Time Communication

    NARCIS (Netherlands)

    Scholten, Johan; Jansen, P.G.; Hanssen, F.T.Y.; Hattink, Tjalling

    2002-01-01

    This paper describes an in-home digital network architecture that supports both real-time and non-real-time communication. The architecture deploys a distributed token mechanism to schedule communication streams and to offer guaranteed quality-ofservice. Essentially, the token mechanism prevents

  5. MARTe: A Multiplatform Real-Time Framework

    Science.gov (United States)

    Neto, André C.; Sartori, Filippo; Piccolo, Fabio; Vitelli, Riccardo; De Tommasi, Gianmaria; Zabeo, Luca; Barbalace, Antonio; Fernandes, Horacio; Valcarcel, Daniel F.; Batista, Antonio J. N.

    2010-04-01

    Development of real-time applications is usually associated with nonportable code targeted at specific real-time operating systems. The boundary between hardware drivers, system services, and user code is commonly not well defined, making the development in the target host significantly difficult. The Multithreaded Application Real-Time executor (MARTe) is a framework built over a multiplatform library that allows the execution of the same code in different operating systems. The framework provides the high-level interfaces with hardware, external configuration programs, and user interfaces, assuring at the same time hard real-time performances. End-users of the framework are required to define and implement algorithms inside a well-defined block of software, named Generic Application Module (GAM), that is executed by the real-time scheduler. Each GAM is reconfigurable with a set of predefined configuration meta-parameters and interchanges information using a set of data pipes that are provided as inputs and required as output. Using these connections, different GAMs can be chained either in series or parallel. GAMs can be developed and debugged in a non-real-time system and, only once the robustness of the code and correctness of the algorithm are verified, deployed to the real-time system. The software also supplies a large set of utilities that greatly ease the interaction and debugging of a running system. Among the most useful are a highly efficient real-time logger, HTTP introspection of real-time objects, and HTTP remote configuration. MARTe is currently being used to successfully drive the plasma vertical stabilization controller on the largest magnetic confinement fusion device in the world, with a control loop cycle of 50 ?s and a jitter under 1 ?s. In this particular project, MARTe is used with the Real-Time Application Interface (RTAI)/Linux operating system exploiting the new ?86 multicore processors technology.

  6. Real-Time and Real-Fast Performance of General-Purpose and Real-Time Operating Systems in Multithreaded Physical Simulation of Complex Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Carlos Garre

    2014-01-01

    Full Text Available Physical simulation is a valuable tool in many fields of engineering for the tasks of design, prototyping, and testing. General-purpose operating systems (GPOS are designed for real-fast tasks, such as offline simulation of complex physical models that should finish as soon as possible. Interfacing hardware at a given rate (as in a hardware-in-the-loop test requires instead maximizing time determinism, for which real-time operating systems (RTOS are designed. In this paper, real-fast and real-time performance of RTOS and GPOS are compared when simulating models of high complexity with large time steps. This type of applications is usually present in the automotive industry and requires a good trade-off between real-fast and real-time performance. The performance of an RTOS and a GPOS is compared by running a tire model scalable on the number of degrees-of-freedom and parallel threads. The benchmark shows that the GPOS present better performance in real-fast runs but worse in real-time due to nonexplicit task switches and to the latency associated with interprocess communication (IPC and task switch.

  7. GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis

    Science.gov (United States)

    Chen, Liang; Zhao, Qile; Hu, Zhigang; Jiang, Xinyuan; Geng, Changjiang; Ge, Maorong; Shi, Chuang

    2018-01-01

    Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm

  8. Scalable Real-Time Negotiation Toolkit

    National Research Council Canada - National Science Library

    Lesser, Victor

    2004-01-01

    ... to implement an adaptive distributed sensor network. These activities involved the development of a distributed soft, real-time heuristic resource allocation protocol, the development of a domain-independent soft, real time agent architecture...

  9. Reliable 5-min real-time MR technique for left-ventricular-wall motion analysis

    International Nuclear Information System (INIS)

    Katoh, Marcus; Spuentrup, Elmar; Guenther, Rolf W.; Buecker, Arno; Kuehl, Harald P.; Lipke, Claudia S.A.

    2007-01-01

    The aim of this study was to investigate the value of a real-time magnetic resonance imaging (MRI) approach for the assessment of left-ventricular-wall motion in patients with insufficient transthoracic echocardiography in terms of accuracy and temporal expenditure. Twenty-five consecutive patients were examined on a 1.5-Tesla whole-body MR system (ACS-NT, Philips Medical Systems, Best, NL) using a real-time and ECG-gated (the current gold standard) steady-state free-precession (SSFP) sequence. Wall motion was analyzed by three observers by consensus interpretation. In addition, the preparation, scanning, and overall examination times were measured. The assessment of the wall motion demonstrated a close agreement between the two modalities resulting in a mean κ coefficient of 0.8. At the same time, each stage of the examination was significantly shortened using the real-time MR approach. Real-time imaging allows for accurate assessment of left-ventricular-wall motion with the added benefit of decreased examination time. Therefore, it may serve as a cost-efficient alternative in patients with insufficient echocardiography. (orig.)

  10. Online dosimetry for temoporfin-mediated interstitial photodynamic therapy using the canine prostate as model

    Science.gov (United States)

    Swartling, Johannes; Höglund, Odd V.; Hansson, Kerstin; Södersten, Fredrik; Axelsson, Johan; Lagerstedt, Anne-Sofie

    2016-02-01

    Online light dosimetry with real-time feedback was applied for temoporfin-mediated interstitial photodynamic therapy (PDT) of dog prostate. The aim was to investigate the performance of online dosimetry by studying the correlation between light dose plans and the tissue response, i.e., extent of induced tissue necrosis and damage to surrounding organs at risk. Light-dose planning software provided dose plans, including light source positions and light doses, based on ultrasound images. A laser instrument provided therapeutic light and dosimetric measurements. The procedure was designed to closely emulate the procedure for whole-prostate PDT in humans with prostate cancer. Nine healthy dogs were subjected to the procedure according to a light-dose escalation plan. About 0.15 mg/kg temoporfin was administered 72 h before the procedure. The results of the procedure were assessed by magnetic resonance imaging, and gross pathology and histopathology of excised tissue. Light dose planning and online dosimetry clearly resulted in more focused effect and less damage to surrounding tissue than interstitial PDT without dosimetry. A light energy dose-response relationship was established where the threshold dose to induce prostate gland necrosis was estimated from 20 to 30 J/cm2.

  11. Ubiquitous health monitoring and real-time cardiac arrhythmias detection: a case study.

    Science.gov (United States)

    Li, Jian; Zhou, Haiying; Zuo, Decheng; Hou, Kun-Mean; De Vaulx, Christophe

    2014-01-01

    As the symptoms and signs of heart diseases that cause sudden cardiac death, cardiac arrhythmia has attracted great attention. Due to limitations in time and space, traditional approaches to cardiac arrhythmias detection fail to provide a real-time continuous monitoring and testing service applicable in different environmental conditions. Integrated with the latest technologies in ECG (electrocardiograph) analysis and medical care, the pervasive computing technology makes possible the ubiquitous cardiac care services, and thus brings about new technical challenges, especially in the formation of cardiac care architecture and realization of the real-time automatic ECG detection algorithm dedicated to care devices. In this paper, a ubiquitous cardiac care prototype system is presented with its architecture framework well elaborated. This prototype system has been tested and evaluated in all the clinical-/home-/outdoor-care modes with a satisfactory performance in providing real-time continuous cardiac arrhythmias monitoring service unlimitedly adaptable in time and space.

  12. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data

    NARCIS (Netherlands)

    Ramakers, Christian; Ruijter, Jan M.; Deprez, Ronald H. Lekanne; Moorman, Antoon F. M.

    2003-01-01

    Quantification of mRNAs using real-time polymerase chain reaction (PCR) by monitoring the product formation with the fluorescent dye SYBR Green I is being extensively used in neurosciences, developmental biology, and medical diagnostics. Most PCR data analysis procedures assume that the PCR

  13. Mobile medical device connectivity: real world solutions.

    Science.gov (United States)

    Pettus, Dan

    2004-01-01

    Mobile medical devices, such as infusion pumps, provide an important therapeutic function. They are also valuable sources of information about treatment patterns at the point of care. However, these mobile devices have been independent islands of valuable information, unable to share the data they gather with other hospital information resources on a real time basis. Although data from these devices can provide significant improvements for medical safety and vital information needed for clinical best practice development, gathering that data poses significant challenges when interfacing with hospital information systems. Mobile medical devices move from place to place as independent actors, raising a series of security and identification issues when they need to be disconnected and reconnected using traditional tethered cable connections. The continuing lack of accepted communications protocol standards, in spite of the concentrated efforts of organizations like the IEEE and the Medical Information Bus (IEEE 1073) to establish them, has made integration into the hospital information system a complex and non-standard task. The rapid spread in availability and adoption of high-speed 802.11 wireless systems in hospitals offers a realistic connectivity solution for mobile medical devices. Inspite of this, the 802.11 standard is still evolving, and current security methods designed for user-based products like PDAs and laptop computers are not ideal for unmanned mobile medical devices because they assume the availability of a human operator to authenticate a wireless session. In the absence of accepted standards, manufacturers have created practical and innovative solutions to support the collection of clinical data from mobile medical devices and the integration of that data with hospital information systems. This paper will explore the potential benefits of integrating mobile medical devices into the hospital information system, and describe the challenges in

  14. Model Checking Real-Time Systems

    DEFF Research Database (Denmark)

    Bouyer, Patricia; Fahrenberg, Uli; Larsen, Kim Guldstrand

    2018-01-01

    This chapter surveys timed automata as a formalism for model checking real-time systems. We begin with introducing the model, as an extension of finite-state automata with real-valued variables for measuring time. We then present the main model-checking results in this framework, and give a hint...

  15. Modular specification of real-time systems

    DEFF Research Database (Denmark)

    Inal, Recep

    1994-01-01

    Duration Calculus, a real-time interval logic, has been embedded in the Z specification language to provide a notation for real-time systems that combines the modularisation and abstraction facilities of Z with a logic suitable for reasoning about real-time properties. In this article the notation...

  16. Hard Real-Time Networking on Firewire

    NARCIS (Netherlands)

    Zhang, Yuchen; Orlic, Bojan; Visser, Peter; Broenink, Jan

    2005-01-01

    This paper investigates the possibility of using standard, low-cost, widely used FireWire as a new generation fieldbus medium for real-time distributed control applications. A real-time software subsys- tem, RT-FireWire was designed that can, in combination with Linux-based real-time operating

  17. A better understanding of ambulance personnel's attitude towards real-time resuscitation feedback.

    Science.gov (United States)

    Brinkrolf, Peter; Lukas, Roman; Harding, Ulf; Thies, Sebastian; Gerss, Joachim; Van Aken, Hugo; Lemke, Hans; Schniedermeier, Udo; Bohn, Andreas

    2018-03-01

    High-quality chest compressions during cardiopulmonary resuscitation (CPR) play a significant role in surviving cardiac arrest. Chest-compression quality can be measured and corrected by real-time CPR feedback devices, which are not yet commonly used. This article looks at the acceptance of such systems in comparison of equipped and unequipped personnel. Two groups of emergency medical services' (EMS) personnel were interviewed using standardized questionnaires. The survey was conducted in the German cities Dortmund and Münster. Overall, 205 persons participated in the survey: 103 paramedics and emergency physicians from the Dortmund fire service and 102 personnel from the Münster service. The staff of the Dortmund service were not equipped with real-time feedback systems. The test group of equipped personnel of the ambulance service of Münster Fire brigade uses real-time feedback systems since 2007. What is the acceptance level of real-time feedback systems? Are there differences between equipped and unequipped personnel? The total sample is receptive towards real-time feedback systems. More than 80% deem the system useful. However, this study revealed concerns and prejudices by unequipped personnel. Negative ratings are significantly lower at the Münster site that is experienced with the use of the real-time feedback system in contrast to the Dortmund site where no such experience exists-the system's use in daily routine results in better evaluation than the expectations of unequipped personnel. Real-time feedback systems receive overall positive ratings. Prejudices and concerns seem to decrease with continued use of the system.

  18. Multiprocessor scheduling for real-time systems

    CERN Document Server

    Baruah, Sanjoy; Buttazzo, Giorgio

    2015-01-01

    This book provides a comprehensive overview of both theoretical and pragmatic aspects of resource-allocation and scheduling in multiprocessor and multicore hard-real-time systems.  The authors derive new, abstract models of real-time tasks that capture accurately the salient features of real application systems that are to be implemented on multiprocessor platforms, and identify rules for mapping application systems onto the most appropriate models.  New run-time multiprocessor scheduling algorithms are presented, which are demonstrably better than those currently used, both in terms of run-time efficiency and tractability of off-line analysis.  Readers will benefit from a new design and analysis framework for multiprocessor real-time systems, which will translate into a significantly enhanced ability to provide formally verified, safety-critical real-time systems at a significantly lower cost.

  19. Applied physics of external radiation exposure dosimetry and radiation protection

    CERN Document Server

    Antoni, Rodolphe

    2017-01-01

    This book describes the interaction of living matter with photons, neutrons, charged particles, electrons and ions. The authors are specialists in the field of radiation protection. The book synthesizes many years of experiments with external radiation exposure in the fields of dosimetry and radiation shielding in medical, industrial and research fields. It presents the basic physical concepts including dosimetry and offers a number of tools to be used by students, engineers and technicians to assess the radiological risk and the means to avoid them by calculating the appropriate shields. The theory of radiation interaction in matter is presented together with empirical formulas and abacus. Numerous numerical applications are treated to illustrate the different topics. The state of the art in radiation protection and dosimetry is presented in detail, especially in the field of simulation codes for external exposure to radiation, medical projects and advanced research. Moreover, important data spread in differ...

  20. Prototyping real-time systems

    OpenAIRE

    Clynch, Gary

    1994-01-01

    The traditional software development paradigm, the waterfall life cycle model, is defective when used for developing real-time systems. This thesis puts forward an executable prototyping approach for the development of real-time systems. A prototyping system is proposed which uses ESML (Extended Systems Modelling Language) as a prototype specification language. The prototyping system advocates the translation of non-executable ESML specifications into executable LOOPN (Language of Object ...

  1. TH-A-BRC-02: AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Goetsch, S. [San Diego Medical Physics (United States)

    2016-06-15

    AAPM TG-135U1 QA for Robotic Radiosurgery - Sonja Dieterich Since the publication of AAPM TG-135 in 2011, the technology of robotic radiosurgery has rapidly developed. AAPM TG-135U1 will provide recommendations on the clinical practice for using the IRIS collimator, fiducial-less real-time motion tracking, and Monte Carlo based treatment planning. In addition, it will summarize currently available literature about uncertainties. Learning Objectives: Understand the progression of technology since the first TG publication Learn which new QA procedures should be implemented for new technologies Be familiar with updates to clinical practice guidelines AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance - Steven Goetsch Purpose: AAPM Task Group 178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance was formed in August, 2008. The Task Group has 12 medical physicists, two physicians and two consultants. Methods: A round robin dosimetry intercomparison of proposed ionization chambers, electrometer and dosimetry phantoms was conducted over a 15 month period in 2011 and 2012 (Med Phys 42, 11, Nov, 2015). The data obtained at 9 institutions (with ten different Elekta Gamma Knife units) was analyzed by the lead author using several protocols. Results: The most consistent results were obtained using the Elekta ABS 16cm diameter phantom, with the TG-51 protocol modified as recommended by Alfonso et al (Med Phys 35, 11, Nov 2008). A key white paper (Med Phys, in press) sponsored by Elekta Corporation, was used to obtain correction factors for the ionization chambers and phantoms used in this intercomparison. Consistent results were obtained for both Elekta Gamma Knife Model 4C and Gamma Knife Perfexion units as measured with each of two miniature ionization chambers. Conclusion: The full report gives clinical history and background of gamma stereotactic radiosurgery, clinical examples and history, quality assurance recommendations and outline

  2. TH-A-BRC-02: AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance

    International Nuclear Information System (INIS)

    Goetsch, S.

    2016-01-01

    AAPM TG-135U1 QA for Robotic Radiosurgery - Sonja Dieterich Since the publication of AAPM TG-135 in 2011, the technology of robotic radiosurgery has rapidly developed. AAPM TG-135U1 will provide recommendations on the clinical practice for using the IRIS collimator, fiducial-less real-time motion tracking, and Monte Carlo based treatment planning. In addition, it will summarize currently available literature about uncertainties. Learning Objectives: Understand the progression of technology since the first TG publication Learn which new QA procedures should be implemented for new technologies Be familiar with updates to clinical practice guidelines AAPM TG-178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance - Steven Goetsch Purpose: AAPM Task Group 178 Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance was formed in August, 2008. The Task Group has 12 medical physicists, two physicians and two consultants. Methods: A round robin dosimetry intercomparison of proposed ionization chambers, electrometer and dosimetry phantoms was conducted over a 15 month period in 2011 and 2012 (Med Phys 42, 11, Nov, 2015). The data obtained at 9 institutions (with ten different Elekta Gamma Knife units) was analyzed by the lead author using several protocols. Results: The most consistent results were obtained using the Elekta ABS 16cm diameter phantom, with the TG-51 protocol modified as recommended by Alfonso et al (Med Phys 35, 11, Nov 2008). A key white paper (Med Phys, in press) sponsored by Elekta Corporation, was used to obtain correction factors for the ionization chambers and phantoms used in this intercomparison. Consistent results were obtained for both Elekta Gamma Knife Model 4C and Gamma Knife Perfexion units as measured with each of two miniature ionization chambers. Conclusion: The full report gives clinical history and background of gamma stereotactic radiosurgery, clinical examples and history, quality assurance recommendations and outline

  3. The future of new calculation concepts in dosimetry based on the Monte Carlo Methods

    International Nuclear Information System (INIS)

    Makovicka, L.; Vasseur, A.; Sauget, M.; Martin, E.; Gschwind, R.; Henriet, J.; Vasseur, A.; Sauget, M.; Martin, E.; Gschwind, R.; Henriet, J.; Salomon, M.

    2009-01-01

    Monte Carlo codes, precise but slow, are very important tools in the vast majority of specialities connected to Radiation Physics, Radiation Protection and Dosimetry. A discussion about some other computing solutions is carried out; solutions not only based on the enhancement of computer power, or on the 'biasing'used for relative acceleration of these codes (in the case of photons), but on more efficient methods (A.N.N. - artificial neural network, C.B.R. - case-based reasoning - or other computer science techniques) already and successfully used for a long time in other scientific or industrial applications and not only Radiation Protection or Medical Dosimetry. (authors)

  4. Software Design Methods for Real-Time Systems

    Science.gov (United States)

    1989-12-01

    This module describes the concepts and methods used in the software design of real time systems . It outlines the characteristics of real time systems , describes...the role of software design in real time system development, surveys and compares some software design methods for real - time systems , and

  5. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    We examine welfare e ects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...... to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  6. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    We examine welfare eects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...... to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  7. Distributed, Embedded and Real-time Java Systems

    CERN Document Server

    Wellings, Andy

    2012-01-01

    Research on real-time Java technology has been prolific over the past decade, leading to a large number of corresponding hardware and software solutions, and frameworks for distributed and embedded real-time Java systems.  This book is aimed primarily at researchers in real-time embedded systems, particularly those who wish to understand the current state of the art in using Java in this domain.  Much of the work in real-time distributed, embedded and real-time Java has focused on the Real-time Specification for Java (RTSJ) as the underlying base technology, and consequently many of the Chapters in this book address issues with, or solve problems using, this framework. Describes innovative techniques in: scheduling, memory management, quality of service and communication systems supporting real-time Java applications; Includes coverage of multiprocessor embedded systems and parallel programming; Discusses state-of-the-art resource management for embedded systems, including Java’s real-time garbage collect...

  8. Dosimetry services for internal and external radiation sources

    International Nuclear Information System (INIS)

    1988-01-01

    The Canadian Atomic Energy Control Board (AECB) sets radiation dose limits for the operation of nuclear facilities and the possession of prescribed substances within Canada. To administer these regulations the AECB must be satisfied that the dosimetry services used by a licensee meet adequate standards. Licensees are required to use the Occupational Dosimetry Service operated by the Bureau of Radiation and Medical Devices, Department of National Health and Welfare (BRMD) to determine doses from external sources of radiation, except where a detailed rationale is given for using another service. No national dosimetry service exists for internal sources of radiation. Licensees who operate or use a dosimetry service other than the BRMD must provide the AECB with evidence of the competence of the staff and adequacy of the equipment, techniques and procedures; provide the AECB with evidence that a quality assurance program has been implemented; and send individual dose or exposure data to the National Dose Registry. (L.L.)

  9. Research of real-time communication software

    Science.gov (United States)

    Li, Maotang; Guo, Jingbo; Liu, Yuzhong; Li, Jiahong

    2003-11-01

    Real-time communication has been playing an increasingly important role in our work, life and ocean monitor. With the rapid progress of computer and communication technique as well as the miniaturization of communication system, it is needed to develop the adaptable and reliable real-time communication software in the ocean monitor system. This paper involves the real-time communication software research based on the point-to-point satellite intercommunication system. The object-oriented design method is adopted, which can transmit and receive video data and audio data as well as engineering data by satellite channel. In the real-time communication software, some software modules are developed, which can realize the point-to-point satellite intercommunication in the ocean monitor system. There are three advantages for the real-time communication software. One is that the real-time communication software increases the reliability of the point-to-point satellite intercommunication system working. Second is that some optional parameters are intercalated, which greatly increases the flexibility of the system working. Third is that some hardware is substituted by the real-time communication software, which not only decrease the expense of the system and promotes the miniaturization of communication system, but also aggrandizes the agility of the system.

  10. Occupational exposure from external radiation used in medical practices in Pakistan by film badge dosimetry

    International Nuclear Information System (INIS)

    Jabeen, A.; Munir, M.; Khalil, A.; Masood, M.; Akhter, P.

    2010-01-01

    Occupational exposure data of workers due to external sources of radiation in various medical practices such as nuclear medicine (NM), radiotherapy and diagnostic radiology (DR) in Pakistan were collected and analysed. Whole-body doses of workers were measured by film badge dosimetry technique during 2003-2007. Annual average effective dose in NM, radio-therapy and DR varied in the range of 1.39-1.80, 1.05-1.45 and 1.22-1.71 mSv, respectively, during 2003-2007. These values are quite low and well below the annual limit of 20 mSv averaged over a period of 5 consecutive years. Nobody received the radiation dose >50 mSv in any single year over a period of 5 consecutive years; therefore, no overexposure case has been detected. Decreasing trend of annual average dose values in aforementioned categories of work during 2003-2007 indicates the improvement of radiation protection status in medical field in Pakistan. (authors)

  11. Experiences with alanine dosimetry in afterloading brachytherapy

    International Nuclear Information System (INIS)

    Eberhardt, H.-J.; Gohs, U.

    1996-01-01

    At the present, the most commonly used dosimetry for radiotherapy applications are ionisation chambers and thermoluminescent dosimeters (TLD). However, there are some undesirable characteristics of these dosimetry systems, such as large detection volume (ionisation chamber) as well as fading of the radiation induced signal with time and destructive readout (TLG). The present study is an investigation into the use of the alanine/ESR dosimetry in fractionated afterloading brachytherapy during the whole radiotherapy course. There are some qualities which make alanine dosimetry attractive. These are the linear energy response, low fading under standard conditions, and the nondestructive readout. Thus the alanine dosimetry makes possible cumulative dose measurements during the radiotherapy course and an archival storage. By ionizing radiation (gamma, e, n, p, charged particles) free radicals (unpaired electrons) are produced in the amino acid alanine. The continuous wave electron spin resonance (ESR) spectroscopy is used to determine the number of free radicals, which is proportional to the absorbed dose and the alanine content of the dosimeter. The ESR measurements were made at room temperature using a Bruker EPR analyzer EMS-104. The dosimeters used in the test are alanine pellets (23.72 mg weight, 4.9 mm diameter, 1 mm height) as well as flexible alanine film dosimeters (thickness about 500 μm). The dosimeters consist of a blend of L-alpha-alanine and a binder. The alanine content of the pellets and the film dosimeters is about 88 % and 50 % by weight, respectively. The dosimeters for the calculation of the dose-effect-relationship were irradiated at the Physical-Technical Bundesanstalt in Braunschweig by a standard 60Co source. The maximum deviation from the calculated linear function is about 0.12 Gy in the dose range up to 80 Gy. The goal of medical applications was the superficial dose measurement in afterloading brachytherapy during the radiotherapy course in

  12. Integration of MDSplus in real-time systems

    International Nuclear Information System (INIS)

    Luchetta, A.; Manduchi, G.; Taliercio, C.

    2006-01-01

    RFX-mod makes extensive usage of real-time systems for feedback control and uses MDSplus to interface them to the main Data Acquisition system. For this purpose, the core of MDSplus has been ported to VxWorks, the operating system used for real-time control in RFX. Using this approach, it is possible to integrate real-time systems, but MDSplus is used only for non-real-time tasks, i.e. those tasks which are executed before and after the pulse and whose performance does not affect the system time constraints. More extensive use of MDSplus in real-time systems is foreseen, and a real-time layer for MDSplus is under development, which will provide access to memory-mapped pulse files, shared by the tasks running on the same CPU. Real-time communication will also be integrated in the MDSplus core to provide support for distributed memory-mapped pulse files

  13. Invited review, recent developments in brachytherapy source dosimetry

    International Nuclear Information System (INIS)

    Meigooni, A.S.

    2004-01-01

    Application of radioactive isotopes is the treatment of choice around the globe for many cancer sites. In this technique, the accuracy of the radiation delivery is highly dependent on the accuracy of radiation dosimetry around individual brachytherapy sources. Moreover, in order to have compatible clinical results, an identical method of source dosimetry must be employed across the world. This problem has been recently addressed by task group 43 from the American Association of Medical Physics with a protocol for dosimetric characterization of brachytherapy sources. This new protocol has been further updated using published data from international sources, by a new Task Group from the American Association of Medical Physics. This has resulted in an updated protocol known as TG43U1 that has been published in March 2004 issue of Medical Physics. The goal of this presentation is to review the original Task Group 43 protocol and associated algorithms for brachytherapy source dosimetry. In addition, the shortcomings of the original protocol that has been resolved in the updated recommendation will be highlighted. I am sure that this is not the end of the line and more work is needed to complete this task. I invite the scientists to join this task and complete the project, with the hope of much better clinical results for cancer patients

  14. Development of a Real-time Hand Dose Monitor for Personnel in Interventional Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Ban, N.; Nakaoka, H.; Haruta, R.; Murakami, Y.; Kubo, T.; Maeda, T.; Kusama, T

    2001-07-01

    Medical procedures denoted as interventional radiology require operation near an X ray beam, which brings high dose exposures to the operators' hands. For the effectual control of their extremity doses, a prototype of a real-time wrist dosemeter has been developed, hand dose monitor (HDM), based on a single silicon detector. Experiments were performed to test its response to diagnostic X rays. The HDM was highly sensitive and showed a linear response down to doses of a few tens of microsieverts. Though dose rate, energy and angular dependence of the response were observed in some extreme conditions, the HDM was proved to be of practical use if it was appropriately calibrated. Since an HDM enables personnel to check their hand doses on a real-time basis, it would enable medical staff to control the exposure themselves. (author)

  15. Reconstructive dosimetry for cutaneous radiation syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lima, C.M.A.; Lima, A.R.; Degenhardt, Ä.L.; Da Silva, F.C.A., E-mail: dasilva@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Valverde, N.J. [Fundacao Eletronuclear de Assistencia Medica, Rio de Janeiro, RJ (Brazil)

    2015-10-15

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry. (author)

  16. State of art: Optically stimulated luminescence dosimetry – Frontiers of future research

    International Nuclear Information System (INIS)

    Yukihara, Eduardo G.; McKeever, Stephen W.S.; Akselrod, Mark S.

    2014-01-01

    Since the commercial adoption of the optically stimulated luminescence (OSL) technique in dosimetry, almost 20 years ago, we have seen major advances in the deployment of OSL dosimeters in different areas, including personal, medical, and space dosimetry. The objective of this paper is to provide a critical overlook at the OSL technique from three different points of view: strengths, challenges and opportunities. We discuss factors that made the OSL technique successful: its simplicity, accuracy, wide dynamic range of measured dose, ease for automation, re-read capability, ability to perform imaging, and the availability of diverse instruments and materials. We look into problems that were overcome and others that remain in several areas of new applications into which OSL has expanded in the past 10 years, such as medical, space, neutron and accident dosimetry. Finally, we discuss unexplored possibilities, new driving forces, and open questions. We hope the broad overview presented here will encourage more discussion and stimulate the research that will advance our fundamental understanding of the OSL process. - Highlights: • Critical overlook of the OSL technique is presented. • Factors that made the OSL technique successful are discussed. • New applications in medical, space and accident dosimetry are discussed. • Unexplored possibilities, new driving forces, and open questions are presented

  17. Dense time discretization technique for verification of real time systems

    International Nuclear Information System (INIS)

    Makackas, Dalius; Miseviciene, Regina

    2016-01-01

    Verifying the real-time system there are two different models to control the time: discrete and dense time based models. This paper argues a novel verification technique, which calculates discrete time intervals from dense time in order to create all the system states that can be reached from the initial system state. The technique is designed for real-time systems specified by a piece-linear aggregate approach. Key words: real-time system, dense time, verification, model checking, piece-linear aggregate

  18. EURADOS strategic research agenda: vision for dosimetry of ionising radiation

    International Nuclear Information System (INIS)

    Ruehm, W.; Woda, C.; Fantuzzi, E.; Harrison, R.; Schuhmacher, H.; Neumaier, S.; Vanhavere, F.; Alves, J.; Bottollier Depois, J.F.; Fattibene, P.; Knezevic, Z.; Miljanic, S.; Lopez, M. A.; Mayer, S.; Olko, P.; Stadtmann, H.; Tanner, R.

    2016-01-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS web site (www.eurados.org). (authors)

  19. Radioluminescence of red-emitting Eu-doped phosphors for fiberoptic dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Molina, P.; Santiago, M.; Marcazzo, J.; Caselli, E. [Universidad Nacional del Centro de la Provincia de Buenos Aires, Instituto de Fisica Arroyo Seco, Pinto 399, 7000 Tandil (Argentina); Spano, F. [Autoridad Regulatoria Nuclear, Av. del Libertador 8250, 1429 Buenos Aires (Argentina); Henniger, J. [Institut fur Kern-und Teilchenphysik, Zellescher Weg 19, 01069 Dresden (Germany); Cravero, W., E-mail: pmolina@exa.unicen.edu.ar [Universidad Nacional del Sur, Departamento de Fisica, Av. Colon 80, 8000FTN Bahia Blanca, Buenos Aires (Argentina)

    2011-10-15

    The fiberoptic dosimetry technique (FOD) has become an attractive method for in-vivo real-time dosimetry in radiotherapy. It is based on the use of a tiny piece of scintillator coupled to the end of an optical fiber, which collects the light emitted by the scintillator during irradiation (radioluminescence). Carbon-doped aluminum oxide (Al{sub 2}O{sub 3}:C) is one of the most radioluminescence materials for FOD due to its high efficiency but it presents the drawback of emitting in the spectral region, where spurious luminescence is also important. Spurious luminescence from optical fiber, termed stem effect, is the main problem afflicting FOD. Several techniques have been applied to remove the stem effect. Optical filtering, which consists in using long-pass filters, is the simplest one. This technique is useful when red-emitting scintillators are employed. In this work, the feasibility of using red-emitting Eu-doped phosphors as FOD scintillators has been investigated. (Author)

  20. Reconstructive dosimetry of radiological accidents - study of a brazilian case of industrial gamma radiography; Dosimetria reconstrutiva de acidentes radiologicos - estudo de um caso brasileiro de gamagrafia industrial

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Francisco Cesar Augusto da; Hunt, John G.; Ramalho, Adriana [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Pinto, Livia M.F. Amalfi [ARCtest - Servicos Tecnicos de Inspecao e Manutencao Industrial Ltda., Paulinia, SP (Brazil)]. E-mail: protecao@arctest.com.br

    2002-07-01

    On May 2000, an industrial gamma radiography operator, during a maintenance work of a {sup 60}Co irradiator, has suffered a radiological accident with severe consequences to the left hand. The experts of the High Doses Analysis Group (GADE/IRD/CNEN) initiated the reconstructive dosimetry for the radiation dose estimation, in order to determine the real dose received by the operator, and to help the medical evaluation for prescribing the medical procedures for treatment of the involved victim. This paper presents the reconstructive dosimetry performed through the determination of the radiation doses of the operator, based on theoretical, experimental and computational methods. For the computer methods, a program for the calculation of external doses were used, based on the Monte Carlo method, and a human body simulator composed by voxels. The values of effective and equivalent doses are also presented which has caused severe lesions on the operator hand.

  1. Development of 3D Slicer based film dosimetry analysis

    International Nuclear Information System (INIS)

    Alexander, K M; Schreiner, L J; Robinson, A; Pinter, C; Fichtinger, G

    2017-01-01

    Radiochromic film dosimetry has been widely adopted in the clinic as it is a convenient option for dose measurement and verification. Film dosimetry analysis is typically performed using expensive commercial software, or custom made scripts in Matlab. However, common clinical film analysis software is not transparent regarding what corrections/optimizations are running behind the scenes. In this work, an extension to the open-source medical imaging platform 3D Slicer was developed and implemented in our centre for film dosimetry analysis. This extension streamlines importing treatment planning system dose and film imaging data, film calibration, registration, and comparison of 2D dose distributions, enabling greater accessibility to film analysis and higher reliability. (paper)

  2. Real-Time Clinical Decision Support System with Data Stream Mining

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2012-01-01

    Full Text Available This research aims to describe a new design of data stream mining system that can analyze medical data stream and make real-time prediction. The motivation of the research is due to a growing concern of combining software technology and medical functions for the development of software application that can be used in medical field of chronic disease prognosis and diagnosis, children healthcare, diabetes diagnosis, and so forth. Most of the existing software technologies are case-based data mining systems. They only can analyze finite and structured data set and can only work well in their early years and can hardly meet today's medical requirement. In this paper, we describe a clinical-support-system based data stream mining technology; the design has taken into account all the shortcomings of the existing clinical support systems.

  3. Storm real-time processing cookbook

    CERN Document Server

    Anderson, Quinton

    2013-01-01

    A Cookbook with plenty of practical recipes for different uses of Storm.If you are a Java developer with basic knowledge of real-time processing and would like to learn Storm to process unbounded streams of data in real time, then this book is for you.

  4. Dosimetry Service

    CERN Multimedia

    2006-01-01

    Cern Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry Dosimetry Service is open every morning from 8.30 - 12.00. Closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after the use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel. 7 2155 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  5. Mixed - mode Operating System for Real - time Performance

    Directory of Open Access Journals (Sweden)

    Hasan M. M.

    2017-11-01

    Full Text Available The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface(GUIoperating system which is typicallynon-real-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time events. In this research an i8751 microcontroller-based hardware was used to measure the performance of the system in real-time-only as well as non-real-time-only configurations. The real-time portion is an 486DX-40 IBM PC system running under DOS-based real-time kernel and the non-real-time portion is a Pentium IIIbased system running under Windows NT. It was found that mixed-mode systems performed as good as a typical real-time system and in fact, gave many additional benefits such as simplified/modular programming and load tolerance.

  6. Dosimetry and process control for radiation processing

    International Nuclear Information System (INIS)

    Mod Ali, N.

    2002-01-01

    Complete text of publication follows. Accurate radiation dosimetry can provide quality assurance in radiation processing. Considerable relevant experiences in dosimetry by the SSDL-MINT has necessitate the development of methods making measurement at gamma plant traceable to the national standard. It involves the establishment of proper calibration procedure and selection of appropriate transfer system/technique to assure adequate traceability to a primary radiation standard. The effort forms the basis for irradiation process control, the legal approval of the process by the public health authorities (medical product sterilization and food preservation) and the safety and acceptance of the product

  7. Research in Distributed Real-Time Systems

    Science.gov (United States)

    Mukkamala, R.

    1997-01-01

    This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.

  8. Real-time data access layer for MDSplus

    International Nuclear Information System (INIS)

    Manduchi, G.; Luchetta, A.; Taliercio, C.; Fredian, T.; Stillerman, J.

    2008-01-01

    Recent extensions to MDSplus allow data handling in long discharges and provide a real-time data access and communication layer. The real-time data access layer is an additional component of MDSplus: it is possible to use the traditional MDSplus API during normal operation, and to select a subset of data items to be used in real time. Real-time notification is provided by a communication layer using a publish-subscribe pattern. The notification covers processes sharing the same data items even running on different machines, thus allowing the implementation of distributed control systems. The real-time data access layer has been developed for Windows, Linux, and VxWorks; it is currently being ported to Linux RTAI. In order to quantify the fingerprint of the presented system, the performance of the real-time access layer approach is compared with that of an ad hoc, manually optimized program in a sample real-time application

  9. Quality control through dosimetry at a contract radiation processing facility

    International Nuclear Information System (INIS)

    Du Plessis, T.A.; Roediger, A.H.A.

    1985-01-01

    Reliable dosimetry procedures constitute a very important part of process control and quality assurance at a contract gamma radiation processing facility that caters for a large variety of different radiation applications. The choice, calibration and routine intercalibration of the dosimetry systems employed form the basis of a sound dosimetry policy in radiation processing. With the dosimetric procedures established, detailed dosimetric mapping of the irradiator upon commissioning (and whenever source modifications take place) is carried out to determine the radiation processing characteristics and peformance of the plant. Having established the irradiator parameters, routine dosimetry procedures, being part of the overall quality control measures, are employed. In addition to routine dosimetry, independent monitoring of routine dosimetry is performed on a bi-monthly basis and the results indicate a variation of better than 3%. On an annaul basis the dosimetry systems are intercalibrated through at least one primary standard dosimetry laboratory and to date a variation of better than 5% has been experienced. The company also participates in the Pilot Dose Assurance Service of the International Atomic Energy Agency, using the alanine/ESR dosimetry system. Routine calibration of the instrumentation employed is carried out on a regular basis. Detailed permanent records are compiled on all dosimetric and instrumentation calibrations, and the routine dosimetry employed at the plant. Certificates indicating the measured absorbed radiation doses are issued on request and in many cases are used for the dosimetric release of sterilized medical and pharmaceutical products. These procedures, used by Iso-Ster at its industrial gamma radiation facility, as well as the experience built up over a number of years using radiation dosimetry for process control and quality assurance are discussed. (author)

  10. A Real-Time Systems Symposium Preprint.

    Science.gov (United States)

    1983-09-01

    Real - Time Systems Symposium Preprint Interim Tech...estimate of the occurence of the error. Unclassii ledSECUqITY CLASSIF’ICA T" NO MI*IA If’ inDI /’rrd erter for~~ble. ’Corrputnqg A REAL - TIME SYSTEMS SYMPOSIUM...ABSTRACT This technical report contains a preprint of a paper accepted for presentation at the REAL - TIME SYSTEMS SYMPOSIUM, Arlington,

  11. Benefits of real-time gas management

    International Nuclear Information System (INIS)

    Nolty, R.; Dolezalek, D. Jr.

    1994-01-01

    In today's competitive gas gathering, processing, storage and transportation business environment, the requirements to do business are continually changing. These changes arise from government regulations such as the amendments to the Clean Air Act concerning the environment and FERC Order 636 concerning business practices. Other changes are due to advances in technology such as electronic flow measurement (EFM) and real-time communications capabilities within the gas industry. Gas gathering, processing, storage and transportation companies must be flexible in adapting to these changes to remain competitive. These dynamic requirements can be met with an open, real-time gas management computer information system. Such a system provides flexible services with a variety of software applications. Allocations, nominations management and gas dispatching are examples of applications that are provided on a real-time basis. By providing real-time services, the gas management system enables operations personnel to make timely adjustments within the current accounting period. Benefits realized from implementing a real-time gas management system include reduced unaccountable gas, reduced imbalance penalties, reduced regulatory violations, improved facility operations and better service to customers. These benefits give a company the competitive edge. This article discusses the applications provided, the benefits from implementing a real-time gas management system, and the definition of such a system

  12. Characterization of MOSFET detectors for in vivo dosimetry in interventional radiology and for dose reconstruction in case of overexposure.

    Science.gov (United States)

    Bassinet, Céline; Huet, Christelle; Baumann, Marion; Etard, Cécile; Réhel, Jean-Luc; Boisserie, Gilbert; Debroas, Jacques; Aubert, Bernard; Clairand, Isabelle

    2013-04-01

    As MOSFET (Metal Oxide Semiconductor Field Effect Transistor) detectors allow dose measurements in real time, the interest in these dosimeters is growing. The aim of this study was to investigate the dosimetric properties of commercially available TN-502RD-H MOSFET silicon detectors (Best Medical Canada, Ottawa, Canada) in order to use them for in vivo dosimetry in interventional radiology and for dose reconstruction in case of overexposure. Reproducibility of the measurements, dose rate dependence, and dose response of the MOSFET detectors have been studied with a Co source. Influence of the dose rate, frequency, and pulse duration on MOSFET responses has also been studied in pulsed x-ray fields. Finally, in order to validate the integrated dose given by MOSFET detectors, MOSFETs and TLDs (LiF:Mg,Cu,P) were fixed on an Alderson-Rando phantom in the conditions of an interventional neuroradiology procedure, and their responses have been compared. The results of this study show the suitability of MOSFET detectors for in vivo dosimetry in interventional radiology and for dose reconstruction in case of accident, provided a well-corrected energy dependence, a pulse duration equal to or higher than 10 ms, and an optimized contact between the detector and the skin of the patient are achieved.

  13. Dosimetry system 1986

    International Nuclear Information System (INIS)

    Woolson, William A.; Egbert, Stephen D.; Gritzner, Michael L.

    1987-01-01

    In May 1983, the authors proposed a dosimetry system for use by the Radiation Effects Research Foundation (RERF) that would incorporate the new findings and calculations of the joint United States - Japan working groups on the reassessment of A-bomb dosimetry. The proposed dosimetry system evolved from extensive discussions with RERF personnel, numerous meetings of the scientists from Japan and the United States involved in the dosimetry reassessment research, and requirements expressed by epidemiologists and radiobiologists on the various review panels. The dosimetry system proposed was based on considerations of the dosimetry requirements for the normal work of RERF and for future research in radiobiology, the computerized input data on A-bomb survivors available in the RERF data base, the level of detail, precision, and accuracy of various components of the dosimetric estimates, and the computer resources available at RERF in Hiroshima. These discussions and our own experience indicated that, in light of the expansion of computer and radiation technologies and the desire for more detail in the dosimetry, an entirely new approach to the dosimetry system was appropriate. This resulted in a complete replacement of the T65D system as distinguished from a simpler approach involving a renormalization of T65D parameters to reflect the new dosimetry. The proposed dosimetry system for RERF and the plan for implementation was accepted by the Department of Energy (DOE) Working Group on A-bomb Dosimetry chaired by Dr. R.F. Christy. The dosimetry system plan was also presented to the binational A-bomb dosimetry review groups for critical comment and was discussed at joint US-Japan workshop. A prototype dosimetry system incorporating preliminary dosimetry estimates and applicable to only a limited set of A-bomb survivors was installed on the RERF computer system in the fall of 1984. This system was successfully operated at RERF and provided an initial look at the impact of

  14. Comparing personal alpha dosimetry with the conventional area monitoring-time weighting methods of exposure estimation: a Canadian assessment

    International Nuclear Information System (INIS)

    Balint, A.B.; Viljoen, J.

    1988-01-01

    An experimental personal alpha dosimetry program for monitoring exposures of uranium mining facility workers in Canada has been completed. All licenced operating mining facilities were participating. Dosimetry techniques, description of dosimeters used by licences, performance and problems associated with the implementation of the programme as well as technical and administrative advantages and difficulties experienced are discussed. Area monitoring-time weighting methods used and results obtained to determine individual radon and thoron daughter exposure and exposure results generated by using dosimeters are assessed and compared

  15. Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success

    Science.gov (United States)

    Pogue, Brian W.; Elliott, Jonathan T.; Kanick, Stephen C.; Davis, Scott C.; Samkoe, Kimberley S.; Maytin, Edward V.; Pereira, Stephen P.; Hasan, Tayyaba

    2016-04-01

    based upon each patients measured bleaching needs to be attempted. In the case of ALA, lack of PpIX is more likely an indicator that alternative PpIX production methods must be implemented. Parsimonious dosimetry, using surrogate measurements that are clinically acceptable, might strategically help to advance PDT in a medical world that is increasingly cost and time sensitive. Careful attention to methodologies that can identify and advance the most critical dosimetric measurements, either direct or surrogate, are needed to ensure successful incorporation of PDT into niche clinical procedures.

  16. Making real-time reactive systems reliable

    Science.gov (United States)

    Marzullo, Keith; Wood, Mark

    1990-01-01

    A reactive system is characterized by a control program that interacts with an environment (or controlled program). The control program monitors the environment and reacts to significant events by sending commands to the environment. This structure is quite general. Not only are most embedded real time systems reactive systems, but so are monitoring and debugging systems and distributed application management systems. Since reactive systems are usually long running and may control physical equipment, fault tolerance is vital. The research tries to understand the principal issues of fault tolerance in real time reactive systems and to build tools that allow a programmer to design reliable, real time reactive systems. In order to make real time reactive systems reliable, several issues must be addressed: (1) How can a control program be built to tolerate failures of sensors and actuators. To achieve this, a methodology was developed for transforming a control program that references physical value into one that tolerates sensors that can fail and can return inaccurate values; (2) How can the real time reactive system be built to tolerate failures of the control program. Towards this goal, whether the techniques presented can be extended to real time reactive systems is investigated; and (3) How can the environment be specified in a way that is useful for writing a control program. Towards this goal, whether a system with real time constraints can be expressed as an equivalent system without such constraints is also investigated.

  17. IoT real time data acquisition using MQTT protocol

    Science.gov (United States)

    Atmoko, R. A.; Riantini, R.; Hasin, M. K.

    2017-05-01

    The Internet of Things (IoT) provides ease to monitor and to gain sensor data through the Internet [1]. The need of high quality data is increasing to the extent that data monitoring and acquisition system in real time is required, such as smart city or telediagnostic in medical areas [2]. Therefore, an appropriate communication protocol is required to resolve these problems. Lately, researchers have developed a lot of communication protocols for IoT, of which each has advantages and disadvantages. This study proposes the utilization of MQTT as a communication protocol, which is one of data communication protocols for IoT. This study used temperature and humidity sensors because the physical parameters are often needed as parameters of environment condition [3]. Data acquisition was done in real-time and stored in MySQL database. This study is also completed by interface web-based and mobile for online monitoring. This result of this study is the enhancement of data quality and reliability using MQTT protocol.

  18. WE-A-17A-09: Exploiting Electromagnetic Technologies for Real-Time Seed Drop Position Validation in Permanent Implant Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Racine, E [Departement de Radio-Oncologie et Centre de Recherche du CHU de Quebec, Quebec, QC (Canada); Hautvast, G [Biomedical Systems, Philips Group Innovation, Eindhoven, North Brabant (Netherlands); Binnekamp, D [Integrated Clinical Solutions and Marketing, Philips Healthcare, Best, DA (Netherlands); Beaulieu, L [Centre Hospitalier University de Quebec, Quebec, QC (Canada)

    2014-06-15

    Purpose: To report on preliminary results validating the performance of a specially designed LDR brachytherapy needle prototype possessing both electromagnetic (EM) tracking and seed drop detection abilities. Methods: An EM hollow needle prototype has been designed and constructed in collaboration with research partner Philips Healthcare. The needle possesses conventional 3D tracking capabilities, along with a novel seed drop detection mechanism exploiting local changes of electromagnetic properties generated by the passage of seeds in the needle's embedded sensor coils. These two capabilities are exploited by proprietary engineering and signal processing techniques to generate seed drop position estimates in real-time treatment delivery. The electromagnetic tracking system (EMTS) used for the experiment is the NDI Aurora Planar Field Generator. The experiment consisted of dropping a total of 35 seeds in a prismatic agarose phantom, and comparing the 3D seed drop positions of the EMTS to those obtained by an image analysis of subsequent micro-CT scans. Drop position error computations and statistical analysis were performed after a 3D registration of the two seed distributions. Results: Of the 35 seeds dropped in the phantom, 32 were properly detected by the needle prototype. Absolute drop position errors among the detected seeds ranged from 0.5 to 4.8 mm with mean and standard deviation values of 1.6 and 0.9 mm, respectively. Error measurements also include undesirable and uncontrollable effects such as seed motion upon deposition. The true accuracy performance of the needle prototype is therefore underestimated. Conclusion: This preliminary study demonstrates the potential benefits of EM technologies in detecting the passage of seeds in a hollow needle as a means of generating drop position estimates in real-time treatment delivery. Such tools could therefore represent a potentially interesting addition to existing brachytherapy protocols for rapid dosimetry

  19. WE-A-17A-09: Exploiting Electromagnetic Technologies for Real-Time Seed Drop Position Validation in Permanent Implant Brachytherapy

    International Nuclear Information System (INIS)

    Racine, E; Hautvast, G; Binnekamp, D; Beaulieu, L

    2014-01-01

    Purpose: To report on preliminary results validating the performance of a specially designed LDR brachytherapy needle prototype possessing both electromagnetic (EM) tracking and seed drop detection abilities. Methods: An EM hollow needle prototype has been designed and constructed in collaboration with research partner Philips Healthcare. The needle possesses conventional 3D tracking capabilities, along with a novel seed drop detection mechanism exploiting local changes of electromagnetic properties generated by the passage of seeds in the needle's embedded sensor coils. These two capabilities are exploited by proprietary engineering and signal processing techniques to generate seed drop position estimates in real-time treatment delivery. The electromagnetic tracking system (EMTS) used for the experiment is the NDI Aurora Planar Field Generator. The experiment consisted of dropping a total of 35 seeds in a prismatic agarose phantom, and comparing the 3D seed drop positions of the EMTS to those obtained by an image analysis of subsequent micro-CT scans. Drop position error computations and statistical analysis were performed after a 3D registration of the two seed distributions. Results: Of the 35 seeds dropped in the phantom, 32 were properly detected by the needle prototype. Absolute drop position errors among the detected seeds ranged from 0.5 to 4.8 mm with mean and standard deviation values of 1.6 and 0.9 mm, respectively. Error measurements also include undesirable and uncontrollable effects such as seed motion upon deposition. The true accuracy performance of the needle prototype is therefore underestimated. Conclusion: This preliminary study demonstrates the potential benefits of EM technologies in detecting the passage of seeds in a hollow needle as a means of generating drop position estimates in real-time treatment delivery. Such tools could therefore represent a potentially interesting addition to existing brachytherapy protocols for rapid dosimetry

  20. Space Weather and Real-Time Monitoring

    Directory of Open Access Journals (Sweden)

    S Watari

    2009-04-01

    Full Text Available Recent advance of information and communications technology enables to collect a large amount of ground-based and space-based observation data in real-time. The real-time data realize nowcast of space weather. This paper reports a history of space weather by the International Space Environment Service (ISES in association with the International Geophysical Year (IGY and importance of real-time monitoring in space weather.

  1. Research Directions in Real-Time Systems.

    Science.gov (United States)

    1996-09-01

    This report summarizes a survey of published research in real time systems . Material is presented that provides an overview of the topic, focusing on...communications protocols and scheduling techniques. It is noted that real - time systems deserve special attention separate from other areas because of...formal tools for design and analysis of real - time systems . The early work on applications as well as notable theoretical advances are summarized

  2. Achieving Real-Time Tracking Mobile Wireless Sensors Using SE-KFA

    Science.gov (United States)

    Kadhim Hoomod, Haider, Dr.; Al-Chalabi, Sadeem Marouf M.

    2018-05-01

    Nowadays, Real-Time Achievement is very important in different fields, like: Auto transport control, some medical applications, celestial body tracking, controlling agent movements, detections and monitoring, etc. This can be tested by different kinds of detection devices, which named "sensors" as such as: infrared sensors, ultrasonic sensor, radars in general, laser light sensor, and so like. Ultrasonic Sensor is the most fundamental one and it has great impact and challenges comparing with others especially when navigating (as an agent). In this paper, concerning to the ultrasonic sensor, sensor(s) detecting and delimitation by themselves then navigate inside a limited area to estimating Real-Time using Speed Equation with Kalman Filter Algorithm as an intelligent estimation algorithm. Then trying to calculate the error comparing to the factual rate of tracking. This paper used Ultrasonic Sensor HC-SR04 with Arduino-UNO as Microcontroller.

  3. Dosimetry in Interventional Radiology - Effective Dose Estimation

    International Nuclear Information System (INIS)

    Miljanic, S.; Buls, N.; Clerinx, P.; Jarvinen, H.; Nikodemova, D.; Ranogajec-Komor, M; D'Errico, F.

    2008-01-01

    Interventional radiological procedures can lead to significant radiation doses to patients and to staff members. In order to evaluate the personal doses with respect to the regulatory dose limits, doses measured by dosimeters have to be converted to effective doses (E). Measurement of personal dose equivalent Hp(10) using a single unshielded dosimeter above the lead apron can lead to significant overestimation of the effective dose, while the measurement with dosimeter under the apron can lead to underestimation. To improve the accuracy, measurements with two dosimeters, one above and the other under the apron have been suggested ( d ouble dosimetry ) . The ICRP has recommended that interventional radiology departments develop a policy that staff should wear two dosimeters. The aim of this study was to review the double dosimetry algorithms for the calculation of effective dose in high dose interventional radiology procedures. The results will be used to develop general guidelines for personal dosimetry in interventional radiology procedures. This work has been carried out by Working Group 9 (Radiation protection dosimetry of medical staff) of the CONRAD project, which is a Coordination Action supported by the European Commission within its 6th Framework Program.(author)

  4. Advances in kilovoltage x-ray beam dosimetry

    Science.gov (United States)

    Hill, Robin; Healy, Brendan; Holloway, Lois; Kuncic, Zdenka; Thwaites, David; Baldock, Clive

    2014-03-01

    This topical review provides an up-to-date overview of the theoretical and practical aspects of therapeutic kilovoltage x-ray beam dosimetry. Kilovoltage x-ray beams have the property that the maximum dose occurs very close to the surface and thus, they are predominantly used in the treatment of skin cancers but also have applications for the treatment of other cancers. In addition, kilovoltage x-ray beams are used in intra operative units, within animal irradiators and in on-board imagers on linear accelerators and kilovoltage dosimetry is important in these applications as well. This review covers both reference and relative dosimetry of kilovoltage x-ray beams and provides recommendations for clinical measurements based on the literature to date. In particular, practical aspects for the selection of dosimeter and phantom material are reviewed to provide suitable advice for medical physicists. An overview is also presented of dosimeters other than ionization chambers which can be used for both relative and in vivo dosimetry. Finally, issues related to the treatment planning and the use of Monte Carlo codes for solving radiation transport problems in kilovoltage x-ray beams are presented.

  5. Gamma Radiation Dosimetry Using Tellurium Dioxide Thin Film Structures

    Directory of Open Access Journals (Sweden)

    Olga Korostynska

    2002-08-01

    Full Text Available Thin films of Tellurium dioxide (TeO2 were investigated for γ-radiation dosimetry purposes. Samples were fabricated using thin film vapour deposition technique. Thin films of TeO2 were exposed to a 60Co γ-radiation source at a dose rate of 6 Gy/min at room temperature. Absorption spectra for TeO2 films were recorded and the values of the optical band gap and energies of the localized states for as-deposited and γ-irradiated samples were calculated. It was found that the optical band gap values were decreased as the radiation dose was increased. Samples with electrical contacts having a planar structure showed a linear increase in current values with the increase in radiation dose up to a certain dose level. The observed changes in both the optical and the electrical properties suggest that TeO2 thin film may be considered as an effective material for room temperature real time γ-radiation dosimetry.

  6. Real-Time MENTAT programming language and architecture

    Science.gov (United States)

    Grimshaw, Andrew S.; Silberman, Ami; Liu, Jane W. S.

    1989-01-01

    Real-time MENTAT, a programming environment designed to simplify the task of programming real-time applications in distributed and parallel environments, is described. It is based on the same data-driven computation model and object-oriented programming paradigm as MENTAT. It provides an easy-to-use mechanism to exploit parallelism, language constructs for the expression and enforcement of timing constraints, and run-time support for scheduling and exciting real-time programs. The real-time MENTAT programming language is an extended C++. The extensions are added to facilitate automatic detection of data flow and generation of data flow graphs, to express the timing constraints of individual granules of computation, and to provide scheduling directives for the runtime system. A high-level view of the real-time MENTAT system architecture and programming language constructs is provided.

  7. Run-time middleware to support real-time system scenarios

    NARCIS (Netherlands)

    Goossens, K.; Koedam, M.; Sinha, S.; Nelson, A.; Geilen, M.

    2015-01-01

    Systems on Chip (SOC) are powerful multiprocessor systems capable of running multiple independent applications, often with both real-time and non-real-time requirements. Scenarios exist at two levels: first, combinations of independent applications, and second, different states of a single

  8. Advanced real-time manipulation of video streams

    CERN Document Server

    Herling, Jan

    2014-01-01

    Diminished Reality is a new fascinating technology that removes real-world content from live video streams. This sensational live video manipulation actually removes real objects and generates a coherent video stream in real-time. Viewers cannot detect modified content. Existing approaches are restricted to moving objects and static or almost static cameras and do not allow real-time manipulation of video content. Jan Herling presents a new and innovative approach for real-time object removal with arbitrary camera movements.

  9. Electron paramagnetic resonance (EPR) in medical dosimetry

    International Nuclear Information System (INIS)

    Schauer, David A.; Iwasaki, Akinori; Romanyukha, Alexander A.; Swartz, Harold M.; Onori, Sandro

    2006-01-01

    This paper describes the fundamentals of electron paramagnetic resonance (EPR) and its application to retrospective measurements of clinically significant doses of ionizing radiation. X-band is the most widely used in EPR dosimetry because it represents a good compromise between sensitivity, sample size and water content in the sample. Higher frequency bands (e.g., W and Q) provide higher sensitivity, but they are also greatly influenced by water content. L and S bands can be used for EPR measurements in samples with high water content but they are less sensitive than X-band. Quality control for therapeutic radiation facilities using X-band EPR spectrometry of alanine is also presented

  10. The MCART radiation physics core: the quest for radiation dosimetry standardization.

    Science.gov (United States)

    Kazi, Abdul M; MacVittie, Thomas J; Lasio, Giovanni; Lu, Wei; Prado, Karl L

    2014-01-01

    Dose-related radiobiological research results can only be compared meaningfully when radiation dosimetry is standardized. To this purpose, the National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Medical Countermeasures Against Radiological Threats (MCART) consortium recently created a Radiation Physics Core (RPC) as an entity to assume responsibility of standardizing radiation dosimetry practices among its member laboratories. The animal research activities in these laboratories use a variety of ionizing photon beams from several irradiators such as 250-320 kVp x-ray generators, Cs irradiators, Co teletherapy machines, and medical linear accelerators (LINACs). In addition to this variety of sources, these centers use a range of irradiation techniques and make use of different dose calculation schemes to conduct their experiments. An extremely important objective in these research activities is to obtain a Dose Response Relationship (DRR) appropriate to their respective organ-specific models of acute and delayed radiation effects. A clear and unambiguous definition of the DRR is essential for the development of medical countermeasures. It is imperative that these DRRs are transparent between centers. The MCART RPC has initiated the establishment of standard dosimetry practices among member centers and is introducing a Remote Dosimetry Monitoring Service (RDMS) to ascertain ongoing quality assurance. This paper will describe the initial activities of the MCART RPC toward implementing these standardization goals. It is appropriate to report a summary of initial activities with the intent of reporting the full implementation at a later date.

  11. Archtecture of distributed real-time systems

    OpenAIRE

    Wing Leung, Cheuk

    2013-01-01

    CRAFTERS (Constraint and Application Driven Framework for Tailoring Embedded Real-time System) project aims to address the problem of uncertainty and heterogeneity in a distributed system by providing seamless, portable connectivity and middleware. This thesis contributes to the project by investigating the techniques that can be used in a distributed real-time embedded system. The conclusion is that, there is a list of specifications to be meet in order to provide a transparent and real-time...

  12. Real-time imaging of subarachnoid hemorrhage in piglets with electrical impedance tomography.

    Science.gov (United States)

    Dai, Meng; Wang, Liang; Xu, Canhua; Li, Lianfeng; Gao, Guodong; Dong, Xiuzhen

    2010-09-01

    Subarachnoid hemorrhage (SAH) is one of the most severe medical emergencies in neurosurgery. Early detection or diagnosis would significantly reduce the rate of disability and mortality, and improve the prognosis of the patients. Although the present medical imaging techniques generally have high sensitivity to identify bleeding, the use of an additional, non-invasive imaging technique capable of continuously monitoring SAH is required to prevent contingent bleeding or re-bleeding. In this study, electrical impedance tomography (EIT) was applied to detect the onset of SAH modeled on eight piglets in real time, with the subsequent process being monitored continuously. The experimental SAH model was introduced by one-time injection of 5 ml fresh autologous arterial blood into the cisterna magna. Results showed that resistivity variations within the brain caused by the added blood could be detected using the EIT method and may be associated not only with the resistivity difference among brain tissues, but also with variations of cerebrospinal fluid dynamics. In conclusion, EIT has unique potential for use in clinical practice to provide invaluable real-time neuroimaging data for SAH after the improvement of electrode design, anisotropic realistic modeling and instrumentation.

  13. The real-time price elasticity of electricity

    NARCIS (Netherlands)

    Lijesen, M.G.

    2007-01-01

    The real-time price elasticity of electricity contains important information on the demand response of consumers to the volatility of peak prices. Despite the importance, empirical estimates of the real-time elasticity are hardly available. This paper provides a quantification of the real-time

  14. EURADOS strategic research agenda: vision for dosimetry of ionising radiation.

    Science.gov (United States)

    Rühm, W; Fantuzzi, E; Harrison, R; Schuhmacher, H; Vanhavere, F; Alves, J; Bottollier Depois, J F; Fattibene, P; Knežević, Ž; Lopez, M A; Mayer, S; Miljanić, S; Neumaier, S; Olko, P; Stadtmann, H; Tanner, R; Woda, C

    2016-02-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Short- and long-term effects of real-time medication monitoring with short message service (SMS) reminders for missed doses on the refill adherence of people with Type 2 diabetes: evidence from a randomised controlled trial.

    NARCIS (Netherlands)

    Vervloet, M.; Dijk, L. van; Bakker, D.H. de; Souverein, P.C.; Santen-Reestman, J.; Vlijmen, B. van; Aarle, M.C.W. van; Hoek, L.S. van der; Bouvy, M.L.

    2014-01-01

    Aims: To investigate short- and long-term effects of real-time monitoring medication use combined with short message service (SMS) reminders for missed doses on refill adherence to oral anti-diabetic medication. Methods: A randomized controlled trial with two intervention groups and one control

  16. Implementing Run-Time Evaluation of Distributed Timing Constraints in a Real-Time Environment

    DEFF Research Database (Denmark)

    Kristensen, C. H.; Drejer, N.

    1994-01-01

    In this paper we describe a solution to the problem of implementing run-time evaluation of timing constraints in distributed real-time environments......In this paper we describe a solution to the problem of implementing run-time evaluation of timing constraints in distributed real-time environments...

  17. Internal dosimetry, past and future

    International Nuclear Information System (INIS)

    Johnson, J.R.

    1989-03-01

    This paper is a review of the progress in the dosimetry of internally deposited radionuclides (internal dosimetry) since World War II. Previous to that, only naturally occurring radionuclides were available and only a limited number of studies of biokinetics and dosimetry were done. The main radionuclides studied were 226 Ra, 228 Ra, and 224 Ra but natural uranium was also studied mainly because of its toxic effect as a heavy metal, and not because it was radioactive. The effects of 226 Ra in bone, mainly from the radium dial painters, also formed the only bases for the radiotoxicity of radionuclides in bone for many years, and it is still, along with 224 Ra, the main source of information on the effects of alpha emitters in bone. The publications of the International Commission on Radiological Protection that have an impact on internal dosimetry are used as mileposts for this review. These series of publications, more than any other, represent a broad consensus of opinion within the radiation protection community at the time of their publication, and have formed the bases for radiation protection practice throughout the world. This review is not meant to be exhaustive; it is meant to be a personnel view of the evolution of internal dosimetry, and to present the author's opinion of what the future directions in internal dosimetry will be. 39 refs., 2 tabs

  18. REAL TIME SYSTEM OPERATIONS 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  19. A study of real-time content marketing : formulating real-time content marketing based on content, search and social media

    OpenAIRE

    Nguyen, Thi Kim Duyen

    2015-01-01

    The primary objective of this research is to understand profoundly the new concept of content marketing – real-time content marketing on the aspect of the digital marketing experts. Particularly, the research will focus on the real-time content marketing theories and how to build real-time content marketing strategy based on content, search and social media. It also finds out how marketers measure and keep track of conversion rates of their real-time content marketing plan. Practically, th...

  20. Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method

    Science.gov (United States)

    Yu, Wei; Tian, Xiaolin; He, Xiaoliang; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-08-01

    Microscopy based on transport of intensity equation provides quantitative phase distributions which opens another perspective for cellular observations. However, it requires multi-focal image capturing while mechanical and electrical scanning limits its real time capacity in sample detections. Here, in order to break through this restriction, real time quantitative phase microscopy based on single-shot transport of the intensity equation method is proposed. A programmed phase mask is designed to realize simultaneous multi-focal image recording without any scanning; thus, phase distributions can be quantitatively retrieved in real time. It is believed the proposed method can be potentially applied in various biological and medical applications, especially for live cell imaging.

  1. Application of RADPOS in Vivo Dosimetry for QA of High Dose Rate Brachytherapy

    DEFF Research Database (Denmark)

    Cherpak, A.; Kertzscher Schwencke, Gustavo Adolfo Vladimir; Cygler, J.

    2012-01-01

    cancer, where high dose gradients and movement of the prostate gland can present unique in vivo dosimetry challenges. Financial and technical support has been received from Best Medical Canada and Ascension Technology Corporation. © 2012 American Association of Physicists in Medicine......Purpose: The RADPOS in vivo dosimetry system combines an electromagnetic positioning sensor with MOSFET dosimetry, allowing for simultaneous online measurements of dose and spatial position. In this work, we assess the potential use of RADPOS for measurements of motion and dose during prostate HDR...

  2. Advanced Beta Dosimetry Techniques.Final Scientific/Technical Report

    International Nuclear Information System (INIS)

    David M. Hamby, PhD

    2006-01-01

    Final report describing NEER research on Advanced Beta Dosimetry Techniques. The research funded by this NEER grant establishes the framework for a detailed understanding of the challenges in beta dosimetry, especially in the presence of a mixed radiation field. The work also stimulated the thinking of the research group which will lead to new concepts in digital signal processing to allow collection of detection signals and real-time analysis such that simultaneous beta and gamma spectroscopy can take place. The work described herein (with detail in the many publications that came out of this research) was conducted in a manner that provided dissertation and thesis topics for three students, one of which was completely funded by this grant. The overall benefit of the work came in the form of a dramatic shift in signal processing that is normally conducted in pulse shape analysis. Analog signal processing was shown not to be feasible for this type of work and that digital signal processing was a must. This, in turn, led the research team to a new understanding of pulse analysis, one in which expands the state-of-the-art in simultaneous beta and gamma spectroscopy with a single detector

  3. Application of XML in real-time data warehouse

    Science.gov (United States)

    Zhao, Yanhong; Wang, Beizhan; Liu, Lizhao; Ye, Su

    2009-07-01

    At present, XML is one of the most widely-used technologies of data-describing and data-exchanging, and the needs for real-time data make real-time data warehouse a popular area in the research of data warehouse. What effects can we have if we apply XML technology to the research of real-time data warehouse? XML technology solves many technologic problems which are impossible to be addressed in traditional real-time data warehouse, and realize the integration of OLAP (On-line Analytical Processing) and OLTP (Online transaction processing) environment. Then real-time data warehouse can truly be called "real time".

  4. Mixed - mode Operating System for Real - time Performance

    OpenAIRE

    Hasan M. M.; Sultana S.; Foo C.K.

    2017-01-01

    The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface(GUI)operating system which is typicallynon-real-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time e...

  5. Revisiting photodynamic therapy dosimetry: reductionist and surrogate approaches to facilitate clinical success

    International Nuclear Information System (INIS)

    Pogue, Brian W; Elliott, Jonathan T; Kanick, Stephen C; Davis, Scott C; Samkoe, Kimberley S; Maytin, Edward V; Pereira, Stephen P; Hasan, Tayyaba

    2016-01-01

    based upon each patients measured bleaching needs to be attempted. In the case of ALA, lack of PpIX is more likely an indicator that alternative PpIX production methods must be implemented. Parsimonious dosimetry, using surrogate measurements that are clinically acceptable, might strategically help to advance PDT in a medical world that is increasingly cost and time sensitive. Careful attention to methodologies that can identify and advance the most critical dosimetric measurements, either direct or surrogate, are needed to ensure successful incorporation of PDT into niche clinical procedures. (topical review)

  6. Mixed-mode Operating System for Real-time Performance

    Directory of Open Access Journals (Sweden)

    M.M. Hasan

    2017-11-01

    Full Text Available The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface (GUI operating system which is typically nonreal-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time events. In this research an i8751 microcontroller-based hardware was used to measure the performance of the system in real-time-only as well as non-real-time-only configurations. The real-time portion is an 486DX-40 IBM PC system running under DOS-based realtime kernel and the non-real-time portion is a Pentium III based system running under Windows NT. It was found that mixed-mode systems performed as good as a typical realtime system and in fact, gave many additional benefits such as simplified/modular programming and load tolerance.

  7. SU-F-T-562: Validation of EPID-Based Dosimetry for FSRS Commissioning

    International Nuclear Information System (INIS)

    Song, Y; Saleh, Z; Obcemea, C; Chan, M; Tang, X; Lim, S; Lovelock, D; Ballangrud, A; Mueller, B; Zinovoy, M; Gelblum, D; Mychalczak, B; Both, S

    2016-01-01

    Purpose: The prevailing approach to frameless SRS (fSRS) small field dosimetry is Gafchromic film. Though providing continuous information, its intrinsic uncertainties in fabrication, response, scan, and calibration often make film dosimetry subject to different interpretations. In this study, we explored the feasibility of using EPID portal dosimetry as a viable alternative to film for small field dosimetry. Methods: Plans prescribed a dose of 21 Gy were created on a flat solid water phantom with Eclipse V11 and iPlan for small static square fields (1.0 to 3.0 cm). In addition, two clinical test plans were computed by employing iPlan on a CIRS Kesler head phantom for target dimensions of 1.2cm and 2.0cm. Corresponding portal dosimetry plans were computed using the Eclipse TPS and delivered on a Varian TrueBeam machine. EBT-XD film dosimetry was performed as a reference. The isocenter doses were measured using EPID, OSLD, stereotactic diode, and CC01 ion chamber. Results: EPID doses at the center of the square field were higher than Eclipse TPS predicted portal doses, with the mean difference being 2.42±0.65%. Doses measured by EBT-XD film, OSLD, stereotactic diode, and CC01 ion chamber revealed smaller differences (except OSLDs), with mean differences being 0.36±3.11%, 4.12±4.13%, 1.7±2.76%, 1.45±2.37% for Eclipse and −1.36±0.85%, 2.38±4.2%, −0.03±0.50%, −0.27±0.78% for iPlan. The profiles measured by EPID and EBT-XD film resembled TPS (Eclipse and iPlan) predicted ones within 3.0%. For the two clinical test plans, the EPID mean doses at the center of field were 2.66±0.68% and 2.33±0.32% higher than TPS predicted doses. Conclusion: We found that results obtained with EPID portal dosimetry were slightly higher (∼2%) than those obtained with EBT-XD film, diode, and CC01 ion chamber with the exception of OSLDs, but well within IROC tolerance (5.0%). Therefore, EPID has the potential to become a viable real-time alternative method to film dosimetry.

  8. SU-F-T-562: Validation of EPID-Based Dosimetry for FSRS Commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y; Saleh, Z; Obcemea, C; Chan, M; Tang, X; Lim, S; Lovelock, D; Ballangrud, A; Mueller, B; Zinovoy, M; Gelblum, D; Mychalczak, B; Both, S [Memorial Sloan Kettering Cancer Center, NY (United States)

    2016-06-15

    Purpose: The prevailing approach to frameless SRS (fSRS) small field dosimetry is Gafchromic film. Though providing continuous information, its intrinsic uncertainties in fabrication, response, scan, and calibration often make film dosimetry subject to different interpretations. In this study, we explored the feasibility of using EPID portal dosimetry as a viable alternative to film for small field dosimetry. Methods: Plans prescribed a dose of 21 Gy were created on a flat solid water phantom with Eclipse V11 and iPlan for small static square fields (1.0 to 3.0 cm). In addition, two clinical test plans were computed by employing iPlan on a CIRS Kesler head phantom for target dimensions of 1.2cm and 2.0cm. Corresponding portal dosimetry plans were computed using the Eclipse TPS and delivered on a Varian TrueBeam machine. EBT-XD film dosimetry was performed as a reference. The isocenter doses were measured using EPID, OSLD, stereotactic diode, and CC01 ion chamber. Results: EPID doses at the center of the square field were higher than Eclipse TPS predicted portal doses, with the mean difference being 2.42±0.65%. Doses measured by EBT-XD film, OSLD, stereotactic diode, and CC01 ion chamber revealed smaller differences (except OSLDs), with mean differences being 0.36±3.11%, 4.12±4.13%, 1.7±2.76%, 1.45±2.37% for Eclipse and −1.36±0.85%, 2.38±4.2%, −0.03±0.50%, −0.27±0.78% for iPlan. The profiles measured by EPID and EBT-XD film resembled TPS (Eclipse and iPlan) predicted ones within 3.0%. For the two clinical test plans, the EPID mean doses at the center of field were 2.66±0.68% and 2.33±0.32% higher than TPS predicted doses. Conclusion: We found that results obtained with EPID portal dosimetry were slightly higher (∼2%) than those obtained with EBT-XD film, diode, and CC01 ion chamber with the exception of OSLDs, but well within IROC tolerance (5.0%). Therefore, EPID has the potential to become a viable real-time alternative method to film dosimetry.

  9. Neutron personnel dosimetry

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1981-01-01

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments

  10. In vivo dosimetry in radiation therapy in Sweden; In vivo-dosimetri inom straalbehandling i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Jacob; Blomquist, Michael (Norrlands universitetssjukhus, Umeaa (Sweden))

    2010-07-15

    A prerequisite for achieving high radiation safety for patients receiving external beam radiation therapy is that the hospitals have a quality assurance program. The program should include include monitoring of the radiation dose given to the patient. Control measurements are performed both at the system level and at the individual level. Control measurement is normally performed using in vivo dosimetry, e.g. a method to measure the radiation dose at the individual level during the actual radiation treatment time. In vivo dosimetry has proven to be an important tool to detect and prevent serious errors in patient treatment. The purpose of this research project was to identify the extent to which vivo dosimetry is used and the methods available for this at Swedish radiation therapy clinics. The authority also wanted to get an overall picture of how hospitals manage results of in vivo dosimetry, and how clinics control radiation dose when using modern treatment techniques. The report reflects the situation in Swedish radiotherapy clinics 2007. The report shows that all hospitals use some form of in vivo dosimetry. The instruments used are mainly diodes and termoluminiscence dosimeters

  11. Worldwide QA networks for radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Izewska, J.; Svensson, H.; Ibbott, G.

    2002-01-01

    institutions participating in the U.S. National Cancer Institute's (NCI's) co-operative clinical trials. The RPC currently monitors approximately 1300 centres throughout the USA, Canada and several other countries. The audit tools include, in addition to mailed TLD, review of the institution's dosimetry data, the treatment records of patients entered into trials, and the institution's QA programme. Anthropomorphic phantoms have been developed to evaluate specific treatment techniques. Other currently operating external audit programmes have been either associated with national and international clinical trial groups, similarly to RPC, e.g. EORTC (European Organisation for Research in Treatment of Cancer) in Europe, MRC (Medical Research Council) in the UK, or have been one-off national dosimetry intercomparison exercises, carried out to test various levels of radiotherapy dosimetry, e.g. in Sweden, the Netherlands, Belgium, Switzerland, Australia. Some individual countries have set up comprehensive regular audits of radiotherapy centres, including QA programmes, equipment and dosimetry, e.g. Finland, New Zealand. The IAEA supports its Member States in developing national programmes for TLD based QA audits in radiotherapy dosimetry and whenever possible, establishes links between the national programmes and the IAEA's Dosimetry Laboratory. It disseminates its standardised TLD methodology and provides technical back up to national TLD networks assuring at the same time traceability to primary dosimetry standards. There are several countries (Argentina, Algeria, Brazil, China, Colombia, Cuba, Czech Republic, India, Israel, Malaysia, Philippines, Poland and Vietnam) that have established TLD programmes to audit radiotherapy beams in their countries with assistance of the IAEA. Recently a new IAEA project has been initiated for national TLD audits in non-reference conditions as significant numbers of deviations in non-reference situations, as used clinically on patients, have been

  12. Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy

    Science.gov (United States)

    Glaser, Adam Kenneth

    Since its discovery in the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. To advance this application, several novel techniques were implemented to realize the maximum potential of the signal, such as time-gating for maximizing the signal to noise ratio (SNR) and Cherenkov-excited fluorescence for generating isotropic light release in water. Proof of concept experiments were conducted in water tanks to demonstrate the feasibility of the proposed method for two-dimensional (2D) projection imaging, three-dimensional (3D) parallel beam tomography, large field of view 3D cone beam tomography, and video-rate dynamic imaging of treatment plans for a number of common radiotherapy applications. The proposed dosimetry method was found to have a number of unique advantages, including but not limited to its non-invasive nature, water-equivalence, speed, high-resolution, ability to provide full 3D data, and potential to yield data in-vivo. Based on

  13. Dosimetry of hands and human factor

    International Nuclear Information System (INIS)

    Harr, R.

    2008-12-01

    The human factor in facilities where open radioactive sources are managed it can be controlled through the use of the ring dosimetry, however, that these devices only provide qualitative information that is not extrapolated to legislative limits. lt is present the case analysis of hands dosimetry of female person with responsibility for professional standards and a very high profile with ratings that allow her to have a high level of knowledge of the basic standards, and because with an attitude and a culture rooted of radiation protection, among other qualities. Their records reveal a trend in which monthly doses are below the 7 mSv, and only occasionally are between 7 and 12 mSv per month and hand. The other case correspond to a technician, trained in radiological techniques, also with a high profile, with two courses for occupationally exposed personnel more than 10 annual retraining, and work experience of over 10 years as occupationally exposed personnel, in which knowledge of standards and because of the entrenched culture of radiation protection and their interest degree in the care of their exposure is still in a phase half, in this case also shows a trend in the monthly dose where found registers between 7 and 11 mSv per month and hand. The third case is of a second technician with less experience and most basic knowledge, his dose register not show a real trend, sometimes be found reads of irregular values as if the dosimeter is not used and some other times as if misused by exposing to purpose (was observed at least one reading above the monthly 30 mSv). By way of conclusion, it is noted that the hands dosimetry is a useful tool to monitor transactions through the data compilation susceptible to analysis with variations which can be placed in the context of the human factor. (Author)

  14. Creation of voxel-based models for paediatric dosimetry from automatic segmentation methods

    International Nuclear Information System (INIS)

    Acosta, O.; Li, R.; Ourselin, S.; Caon, M.

    2006-01-01

    Full text: The first computational models representing human anatomy were mathematical phantoms, but still far from accurate representations of human body. These models have been used with radiation transport codes (Monte Carlo) to estimate organ doses from radiological procedures. Although new medical imaging techniques have recently allowed the construction of voxel-based models based on the real anatomy, few children models from individual CT or MRI data have been reported [1,3]. For pediatric dosimetry purposes, a large range of voxel models by ages is required since scaling the anatomy from existing models is not sufficiently accurate. The small number of models available arises from the small number of CT or MRI data sets of children available and the long amount of time required to segment the data sets. The existing models have been constructed by manual segmentation slice by slice and using simple thresholding techniques. In medical image segmentation, considerable difficulties appear when applying classical techniques like thresholding or simple edge detection. Until now, any evidence of more accurate or near-automatic methods used in construction of child voxel models exists. We aim to construct a range of pediatric voxel models, integrating automatic or semi-automatic 3D segmentation techniques. In this paper we present the first stage of this work using pediatric CT data.

  15. In vivo thermoluminescent dosimetry in studies of helicoid computed tomography and excretory urogram

    International Nuclear Information System (INIS)

    Cruz C, D.; Azorin N, J.; Saucedo A, V.M.; Barajas O, J.L.

    2005-01-01

    The dosimetry is the field of measurement of the ionizing radiations. It final objective is to determine the 'absorbed dose' for people. The dosimetry is vital in the radiotherapy, the radiological protection and the treatment technologies by irradiation. Presently work, we develop 'In vivo' dosimetry, in exposed patients to studies of helical computed tomography and excretory urogram. The dosimetry 'in vivo' was carried out in 20 patients selected aleatorily, for each medical study. The absorbed dose was measured in points of interest located in crystalline, thyroid, chest and abdomen of each patient, by means of thermoluminescent dosemeters (TLD) LiF: Mg,Cu,P + Ptfe of national fabrication. Also it was quantified the dose in the working area. (Author)

  16. Testing of real-time-software

    International Nuclear Information System (INIS)

    Friesland, G.; Ovenhausen, H.

    1975-05-01

    The situation in the area of testing real-time-software is unsatisfactory. During the first phase of the project PROMOTE (prozessorientiertes Modul- und Gesamttestsystem) an analysis of the momentary situation took place, results of which are summarized in the following study about some user interviews and an analysis of relevant literature. 22 users (industry, software-houses, hardware-manufacturers, and institutes) have been interviewed. Discussions were held about reliability of real-time software with special interest to error avoidance, testing, and debugging. Main aims of the analysis of the literature were elaboration of standard terms, comparison of existing test methods and -systems, and the definition of boundaries to related areas. During the further steps of this project some means and techniques will be worked out to systematically test real-time software. (orig.) [de

  17. Validation and Assessment of Multi-GNSS Real-Time Precise Point Positioning in Simulated Kinematic Mode Using IGS Real-Time Service

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2018-02-01

    Full Text Available Precise Point Positioning (PPP is a popular technology for precise applications based on the Global Navigation Satellite System (GNSS. Multi-GNSS combined PPP has become a hot topic in recent years with the development of multiple GNSSs. Meanwhile, with the operation of the real-time service (RTS of the International GNSS Service (IGS agency that provides satellite orbit and clock corrections to broadcast ephemeris, it is possible to obtain the real-time precise products of satellite orbits and clocks and to conduct real-time PPP. In this contribution, the real-time multi-GNSS orbit and clock corrections of the CLK93 product are applied for real-time multi-GNSS PPP processing, and its orbit and clock qualities are investigated, first with a seven-day experiment by comparing them with the final multi-GNSS precise product ‘GBM’ from GFZ. Then, an experiment involving real-time PPP processing for three stations in the Multi-GNSS Experiment (MGEX network with a testing period of two weeks is conducted in order to evaluate the convergence performance of real-time PPP in a simulated kinematic mode. The experimental result shows that real-time PPP can achieve a convergence performance of less than 15 min for an accuracy level of 20 cm. Finally, the real-time data streams from 12 globally distributed IGS/MGEX stations for one month are used to assess and validate the positioning accuracy of real-time multi-GNSS PPP. The results show that the simulated kinematic positioning accuracy achieved by real-time PPP on different stations is about 3.0 to 4.0 cm for the horizontal direction and 5.0 to 7.0 cm for the three-dimensional (3D direction.

  18. The FERMI-Elettra distributed real-time framework

    International Nuclear Information System (INIS)

    Pivetta, L.; Gaio, G.; Passuello, R.; Scalamera, G.

    2012-01-01

    FERMI-Elettra is a Free Electron Laser (FEL) based on a 1.5 GeV linac. The pulsed operation of the accelerator and the necessity to characterize and control each electron bunch requires synchronous acquisition of the beam diagnostics together with the ability to drive actuators in real-time at the linac repetition rate. The Adeos/Xenomai real-time extensions have been adopted in order to add real-time capabilities to the Linux based control system computers running the Tango software. A software communication protocol based on Gigabit Ethernet and known as Network Reflective Memory (NRM) has been developed to implement a shared memory across the whole control system, allowing computers to communicate in real-time. The NRM architecture, the real-time performance and the integration in the control system are described. (authors)

  19. Estimating medication stopping fraction and real-time prevalence of drug use in pharmaco-epidemiologic databases. An application of the reverse waiting time distribution

    DEFF Research Database (Denmark)

    Støvring, Henrik; Pottegård, Anton; Hallas, Jesper

    2017-01-01

    Purpose: To introduce the reverse waiting time distribution (WTD) and show how it can be used to estimate stopping fractions and real-time prevalence of treatment in pharmacoepidemiological studies. Methods: The reverse WTD is the distribution of time from the last dispensed prescription of each......-hoc decision rules for automated implementations, and it yields estimates of real-time prevalence....... patient within a time window to the end of it. It is a mirrored version of the ordinary WTD, which considers the first dispensed prescription of patients within a time window. Based on renewal process theory, the reverse WTD can be analyzed as an ordinary WTD with maximum likelihood estimation. Based...

  20. Personal dosimetry service of VF, a.s. company

    International Nuclear Information System (INIS)

    Prasek, P.

    2009-01-01

    The VF, a.s. Company will extend its services in the area of personal dosimetry at the end of 2008, which is fully in compliance with the requirements of the Atomic Act, section 9 paragraph (1) letter r) and Decree on Radiation Protection, section 59 paragraph (1) letter a). Optically stimulated luminescence was selected in VF .a.s. as the most advantageous and the most advanced technology for the integral personal dosimetry. Optically stimulated luminescence (OSL) has been using in dosimetry for more than ten years. Although it is relatively new technology , its indisputable advantages predetermine that technology has significantly benefited in personal dosimetry services within a short time all over the advanced world. The VF, a.s. personal dosimetry service is based on the licensed products of LANDAUER, the US company, which is the world leader in OSL dosimetry. Crystalline Al 2 O 3 :C was selected as the detection material. All equipment of personal dosimetry service is installed in the VF Centre of Technology in Cerna Hora. The personal dosimetry service is incorporated in the International LANDAUER Dosimetry Service Network, and in the European Union, it is directly linked to the LANDAUER European Headquarters with its office in Paris. As a part of the OSL technology licence, the VF personal dosimetry service was included in the inter-laboratory comparison programme of the LANDAUER syndicate. (author)

  1. Personal dosimetry service of VF, a.s. company

    International Nuclear Information System (INIS)

    Prasek, P.

    2008-01-01

    The VF, a.s. Company will extend its services in the area of personal dosimetry at the end of 2008, which is fully in compliance with the requirements of the Atomic Act, section 9 paragraph (1) letter r) and Decree on Radiation Protection, section 59 paragraph (1) letter a). Optically stimulated luminescence was selected in VF .a.s. as the most advantageous and the most advanced technology for the integral personal dosimetry . Optically stimulated luminescence (OSL) has been using in dosimetry for more than ten years. Although it is relatively new technology , its indisputable advantages predetermine that technology has significantly benefited in personal dosimetry services within a short time all over the advanced world. The VF, a.s. personal dosimetry service is based on the licensed products of LANDAUER, the US company, which is the world leader in OSL dosimetry. Crystalline Al 2 O 3 :C was selected as the detection material. All equipment of personal dosimetry service is installed in the VF Centre of Technology in Cerna Hora. The personal dosimetry service is incorporated in the International LANDAUER Dosimetry Service Network, and in the European Union, it is directly linked to the LANDAUER European Headquarters with its office in Paris. As a part of the OSL technology licence, the VF personal dosimetry service was included in the inter-laboratory comparison programme of the LANDAUER syndicate. (author)

  2. Real-time video quality monitoring

    Science.gov (United States)

    Liu, Tao; Narvekar, Niranjan; Wang, Beibei; Ding, Ran; Zou, Dekun; Cash, Glenn; Bhagavathy, Sitaram; Bloom, Jeffrey

    2011-12-01

    The ITU-T Recommendation G.1070 is a standardized opinion model for video telephony applications that uses video bitrate, frame rate, and packet-loss rate to measure the video quality. However, this model was original designed as an offline quality planning tool. It cannot be directly used for quality monitoring since the above three input parameters are not readily available within a network or at the decoder. And there is a great room for the performance improvement of this quality metric. In this article, we present a real-time video quality monitoring solution based on this Recommendation. We first propose a scheme to efficiently estimate the three parameters from video bitstreams, so that it can be used as a real-time video quality monitoring tool. Furthermore, an enhanced algorithm based on the G.1070 model that provides more accurate quality prediction is proposed. Finally, to use this metric in real-world applications, we present an example emerging application of real-time quality measurement to the management of transmitted videos, especially those delivered to mobile devices.

  3. Design and implementation of real-time multi-sensor vision systems

    CERN Document Server

    Popovic, Vladan; Cogal, Ömer; Akin, Abdulkadir; Leblebici, Yusuf

    2017-01-01

    This book discusses the design of multi-camera systems and their application to fields such as the virtual reality, gaming, film industry, medicine, automotive industry, drones, etc.The authors cover the basics of image formation, algorithms for stitching a panoramic image from multiple cameras, and multiple real-time hardware system architectures, in order to have panoramic videos. Several specific applications of multi-camera systems are presented, such as depth estimation, high dynamic range imaging, and medical imaging.

  4. Real-Time Vision-Based Stiffness Mapping †.

    Science.gov (United States)

    Faragasso, Angela; Bimbo, João; Stilli, Agostino; Wurdemann, Helge Arne; Althoefer, Kaspar; Asama, Hajime

    2018-04-26

    This paper presents new findings concerning a hand-held stiffness probe for the medical diagnosis of abnormalities during palpation of soft-tissue. Palpation is recognized by the medical community as an essential and low-cost method to detect and diagnose disease in soft-tissue. However, differences are often subtle and clinicians need to train for many years before they can conduct a reliable diagnosis. The probe presented here fills this gap providing a means to easily obtain stiffness values of soft tissue during a palpation procedure. Our stiffness sensor is equipped with a multi degree of freedom (DoF) Aurora magnetic tracker, allowing us to track and record the 3D position of the probe whilst examining a tissue area, and generate a 3D stiffness map in real-time. The stiffness probe was integrated in a robotic arm and tested in an artificial environment representing a good model of soft tissue organs; the results show that the sensor can accurately measure and map the stiffness of a silicon phantom embedded with areas of varying stiffness.

  5. Real-Time Vision-Based Stiffness Mapping †

    Directory of Open Access Journals (Sweden)

    Angela Faragasso

    2018-04-01

    Full Text Available This paper presents new findings concerning a hand-held stiffness probe for the medical diagnosis of abnormalities during palpation of soft-tissue. Palpation is recognized by the medical community as an essential and low-cost method to detect and diagnose disease in soft-tissue. However, differences are often subtle and clinicians need to train for many years before they can conduct a reliable diagnosis. The probe presented here fills this gap providing a means to easily obtain stiffness values of soft tissue during a palpation procedure. Our stiffness sensor is equipped with a multi degree of freedom (DoF Aurora magnetic tracker, allowing us to track and record the 3D position of the probe whilst examining a tissue area, and generate a 3D stiffness map in real-time. The stiffness probe was integrated in a robotic arm and tested in an artificial environment representing a good model of soft tissue organs; the results show that the sensor can accurately measure and map the stiffness of a silicon phantom embedded with areas of varying stiffness.

  6. Heterogeneous Embedded Real-Time Systems Environment

    Science.gov (United States)

    2003-12-01

    AFRL-IF-RS-TR-2003-290 Final Technical Report December 2003 HETEROGENEOUS EMBEDDED REAL - TIME SYSTEMS ENVIRONMENT Integrated...HETEROGENEOUS EMBEDDED REAL - TIME SYSTEMS ENVIRONMENT 6. AUTHOR(S) Cosmo Castellano and James Graham 5. FUNDING NUMBERS C - F30602-97-C-0259

  7. Dosimetry

    International Nuclear Information System (INIS)

    Rezende, D.A.O. de

    1976-01-01

    The fundamental units of dosimetry are defined, such as exposure rate, absorbed dose and equivalent dose. A table is given of relative biological effectiveness values for the different types of radiation. The relation between the roentgen and rad units is calculated and the concepts of physical half-life, biological half-life and effective half-life are discussed. Referring to internal dosimetry, a mathematical treatment is given to β particle-and γ radiation dosimetry. The absorbed dose is calculated and a practical example is given of the calculation of the exposure and of the dose rate for a gama source [pt

  8. Development of a Real-time Personal Dosimeter System and its Application to Hanul Unit-4

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kidoo; Cho, Moonhyung; Son, Jungkwon [Korea Hydro Nuclear Power Co., Seoul (Korea, Republic of)

    2013-10-15

    The main reasons to adopt the system are to minimize unnecessary exposure, to calculate one's dose faster, to provide a possible alternatives of personnel such as radiation safety manager. The KHNP's Remote radiation Monitoring System (KRMS) is characterized as integrated, less bulky, lighter comparing to existing instrument although it have multifunction of real-time dosimetry and voice communication. After laboratory test in Central Research Institute (CRI) and field test in Hanbit unit-3 and 4, KRMS was applied to main radiation works in Hanul unit-4. KHNP-CRI has developed real-time personal dose monitoring system and applied to Hanul overhaul which include steam generator replacement. It took 5 days to install the system in reactor building and the optimal location for the repeater was 3 points at 122ft and 3 points at 100ft. Owing to the optimization of repeater and high sensitivity antenna, there was no shaded area of wireless network and no loss of dose data in spite of wearing lead jacket. The average deviation of personal dose received by KRMS and existing ADR is about 2%, which tell us it matches well. The lessons learned in Hanul unit-4 are it needs simplification of operating system and it requires a function to be able to check battery level at remote area.

  9. Evolution of the Regular monitoring of workers using ionizing radiations in medical field in France

    International Nuclear Information System (INIS)

    Biau, A.; Valero, M.; Dubuquoy, E.; Crescini, D.

    2002-01-01

    Among the 260000 workers surveyed by individual monitoring dosimetry in France, about 140000 work in medical field, in Radiodiagnostic. Radiotherapy or Nuclear Medicine. For the twenty last years the global exposure of these workers has decreased continuously like the number of doses over the regular limits of 50 millisieverts per year or even 20 millisieverts which will be included in the new regulations according to the European Directive 96/29 of 13 may 1996. To reinforce this evolution to lower exposures (ALARA) the french regulations have been completed in 1998 and 1999. These new regular prescriptions consist essentially in. - possibility of using another system of passive dosimetry than firm dosimeter (TLD, OSL, RPL...) - obligation of active dosimeter (real time reading) associated with the passive dosimeter for the workers affected in controlled area. - gathering of all the dosimetric results on a data base called SISERI accessible by computer only to the health physicians and the competent person specially authorized. This work is showing from statistical data on the levels of exposure in medical field: - which are the working conditions for which the two system of dosimetry are really necessary - how to delimit the controlled area on realistic basic rather than theoretical assumptions - how the data base SISERI is actually functioning and how it will evaluate from now to 2003. Finally, we propose a schedule to define the different forms of survey for internal and external risks of exposure and to select the best type of monitoring according to the working conditions. (Author)

  10. Temporal Proof Methodologies for Real-Time Systems,

    Science.gov (United States)

    1990-09-01

    real time systems that communicate either through shared variables or by message passing and real time issues such as time-outs, process priorities (interrupts) and process scheduling. The authors exhibit two styles for the specification of real - time systems . While the first approach uses bounded versions of temporal operators the second approach allows explicit references to time through a special clock variable. Corresponding to two styles of specification the authors present and compare two fundamentally different proof

  11. Dosimetry practices at the Radiation Technology Centre (Ghana)

    International Nuclear Information System (INIS)

    Emi-Reynolds, G.; Banini, G.K.; Ennison, I.

    1997-01-01

    Dosimetry practices undertaken to support research and pilot scale gamma irradiation activities at the Radiation Technology Centre of the Ghana Atomic Energy Commission are presented. The Fricke dosemeter was used for calibrating the gamma field of the gammacell-220. The Fricke system and the gammacell-220 were then used to calibrate the ethanol chlorobenzene (ECB) dosemeter. The Fricke and ECB dosemeter systems have become routine dosemeters at the centre. Dosimetry work has covered a wide range of research specimens and pilot scale products to establish the relevant irradiation protocol and parameters for routine treatment. These include yams, pineapple explants, blood for feeding tsetseflies, cocoa bud wood and cassava sticks. Pilot scale dosimetry studies on maize, medical devices like intravenous infusion sets and surgical gauze have also been completed. The results and observations made on some of these products are reported. (author). 4 refs., 5 figs

  12. Real-time communication protocols: an overview

    NARCIS (Netherlands)

    Hanssen, F.T.Y.; Jansen, P.G.

    2003-01-01

    This paper describes several existing data link layer protocols that provide real-time capabilities on wired networks, focusing on token-ring and Carrier Sense Multiple Access based networks. Existing modifications to provide better real-time capabilities and performance are also described. Finally

  13. Self-Organization in Embedded Real-Time Systems

    CERN Document Server

    Brinkschulte, Uwe; Rettberg, Achim

    2013-01-01

    This book describes the emerging field of self-organizing, multicore, distributed and real-time embedded systems.  Self-organization of both hardware and software can be a key technique to handle the growing complexity of modern computing systems. Distributed systems running hundreds of tasks on dozens of processors, each equipped with multiple cores, requires self-organization principles to ensure efficient and reliable operation. This book addresses various, so-called Self-X features such as self-configuration, self-optimization, self-adaptation, self-healing and self-protection. Presents open components for embedded real-time adaptive and self-organizing applications; Describes innovative techniques in: scheduling, memory management, quality of service, communications supporting organic real-time applications; Covers multi-/many-core embedded systems supporting real-time adaptive systems and power-aware, adaptive hardware and software systems; Includes case studies of open embedded real-time self-organizi...

  14. Real-time systems scheduling fundamentals

    CERN Document Server

    Chetto, Maryline

    2014-01-01

    Real-time systems are used in a wide range of applications, including control, sensing, multimedia, etc.  Scheduling is a central problem for these computing/communication systems since responsible of software execution in a timely manner. This book provides state of knowledge in this domain with special emphasis on the key results obtained within the last decade. This book addresses foundations as well as the latest advances and findings in Real-Time Scheduling, giving all references to important papers. But nevertheless the chapters will be short and not overloaded with confusing details.

  15. The Need for New Dosimetric Approach in CT Dosimetry

    International Nuclear Information System (INIS)

    Ben-Shlomo, A.; Iacobovici, E.

    2004-01-01

    Three decades after the invention of the first CT in 1972, it became a major tool in diagnostic radiology. The use of CT for various applications is getting wider every year. The quantity of CT procedures performed in Israel every year is estimated as 500,000. About 10% of those are pediatric procedures, for children under age 10. CT procedures increase is estimated at 5-10 % per annum. In spite the fact that CT contributes to about 1/8 of the total number of diagnostic X-ray procedures in Israel, the CT collective dosage is about 40% of the total collective dosage in the said procedures (about 3,500 Man*Sv per year). Medical radiation dosage is the first contributor to population dosage, resulting from artificial radiation sources. Diagnostic X-ray radiation dosage is the first contributor to medical radiation dose (including radiation dose from diagnostic X-ray, nuclear medicine and radiotherapy with exclusion of the target organ dose). Among medical X-ray different applications, CT procedure is the first cause to radiation dose of the population according to X-ray diagnostic procedures. The above facts emphasize the need to focus on CT in order to reduce the medical collective dose of the public. Several dosimetric units have appeared in recent years in order to comply with the need for CT Dosimetry. The CTDI Unit that served so well during the first CT years is no longer sufficient, as is, for modern instruments. This basic unit has become a complex concept that covers new units: CTDI W , CTDI VOL , CTDI 100 , MSAD and DLP. The search for a simple way to apply these units in order to calculate effective dosage during CT examinations is not straightforward. Modern equipment is simultaneously using 4 and 16 slices. Manufacturers are endeavoring to develop the next generation equipment with 256 slices used simultaneously (expected on the market in the next 1-2 years). This situation sets technology one step forward regarding the dosimetry methods used for organ

  16. Digital dosimetry and personal and environmental monitoring assembly

    International Nuclear Information System (INIS)

    Cerovac, Z.; Radalj, Z.; Prlic, I.; Cerovac, H.

    1996-01-01

    Film+TLD and film or TLD Dosimetry have a certain delay in dose reporting, since the reports on occupational doses are usually available to the users within 40 days after the actual exposure. This is particularly important when the dose is received within the short-time interval or when the radiation source has some technical failures. For this reason, the additional monitoring is recommendable. The common Dosimetry service in Croatia is well established and the data available shows that over 80% of occupationally exposed persons are working in medical facilities, mainly with x-ray sources. Dosimetry services in the country are providing three types of dosemeters, film dosemeter badge, film+TLD dosemeter badge or plane TLD badge. We have decided to introduce the palette of digital pocket dosemeters to be used at different workplaces occupationally exposed to ionizing radiation. After the first experience with the ALARA 1G digital dosemeter it came out that this type of ionizing radiation measuring device is suitable for the various non-occupational purposes. After some technical improvement and with some telecommunication electronics this device is usable as a point environmental measuring station. This means that the probe of the record any change in normal environmental radiation field, send the data to the central station and to raise alarm if necessary. That is why we have made a prototype for environmental monitoring able to be connected to any kind of telecommunication net. (author)

  17. Real-time specifications

    DEFF Research Database (Denmark)

    David, A.; Larsen, K.G.; Legay, A.

    2015-01-01

    A specification theory combines notions of specifications and implementations with a satisfaction relation, a refinement relation, and a set of operators supporting stepwise design. We develop a specification framework for real-time systems using Timed I/O Automata as the specification formalism......, with the semantics expressed in terms of Timed I/O Transition Systems. We provide constructs for refinement, consistency checking, logical and structural composition, and quotient of specifications-all indispensable ingredients of a compositional design methodology. The theory is implemented in the new tool Ecdar...

  18. Difficult cases for chromosomal dosimetry: Statistical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Vinnikov, Volodymyr A., E-mail: vlad.vinnikov@mail.ru [Grigoriev Institute for Medical Radiology of the National Academy of Medical Science of Ukraine, Pushkinskaya Street 82, Kharkiv 61024 (Ukraine); Ainsbury, Elizabeth A., E-mail: liz.ainsbury@hpa.org.uk [Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom); Lloyd, David C., E-mail: david.lloyd@hpa.org.uk [Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom); Maznyk, Nataliya A., E-mail: maznik.cytogen@mail.ru [Grigoriev Institute for Medical Radiology of the National Academy of Medical Science of Ukraine, Pushkinskaya Street 82, Kharkiv 61024 (Ukraine); Rothkamm, Kai, E-mail: kai.rothkamm@hpa.org.uk [Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom)

    2011-09-15

    Several examples are selected from the literature in order to illustrate combinations of complicating factors, which may occur in real-life radiation exposure scenarios that affect the accuracy of cytogenetic dose estimates. An analysis of limitations in the current statistical methods used in biodosimetry was carried out. Possible directions for further improvement of the statistical basis of chromosomal dosimetry by specific mathematical procedures are outlined.

  19. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Ravnsborg Beierholm, A.

    2011-05-15

    This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic scintillators and can be perceived as a well characterized, independent alternative to the methods that are in clinical use today. The dosimeter itself does not require a voltage supply, and is composed of water equivalent materials. The dosimeter can be fabricated with a sensitive volume smaller than a cubic millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising fiber-coupled organic scintillators and data acquisition hardware, was developed at the Radiation Research Division at Risoe DTU and tested using clinical x-ray beams at hospitals in Denmark and abroad. Measurements of output factors and percentage depth dose were performed and compared with reference values and Monte Carlo simulations for static square radiation fields for standard (4 cm x 4 cm to 20 cm x 20 cm) and small (down to 0.6 cm x 0.6 cm) field sizes. The accuracy of most of the obtained measurements was good, agreeing with reference and simulated dose values to within 2 % standard deviation for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy. (Author)

  20. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    International Nuclear Information System (INIS)

    Ravnsborg Beierholm, A.

    2011-05-01

    This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic scintillators and can be perceived as a well characterized, independent alternative to the methods that are in clinical use today. The dosimeter itself does not require a voltage supply, and is composed of water equivalent materials. The dosimeter can be fabricated with a sensitive volume smaller than a cubic millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising fiber-coupled organic scintillators and data acquisition hardware, was developed at the Radiation Research Division at Risoe DTU and tested using clinical x-ray beams at hospitals in Denmark and abroad. Measurements of output factors and percentage depth dose were performed and compared with reference values and Monte Carlo simulations for static square radiation fields for standard (4 cm x 4 cm to 20 cm x 20 cm) and small (down to 0.6 cm x 0.6 cm) field sizes. The accuracy of most of the obtained measurements was good, agreeing with reference and simulated dose values to within 2 % standard deviation for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy. (Author)

  1. Dosimetry techniques applied to thermoluminescent age estimation

    International Nuclear Information System (INIS)

    Erramli, H.

    1986-12-01

    The reliability and the ease of the field application of the measuring techniques of natural radioactivity dosimetry are studied. The natural radioactivity in minerals in composed of the internal dose deposited by alpha and beta radiations issued from the sample itself and the external dose deposited by gamma and cosmic radiations issued from the surroundings of the sample. Two technics for external dosimetry are examined in details. TL Dosimetry and field gamma dosimetry. Calibration and experimental conditions are presented. A new integrated dosimetric method for internal and external dose measure is proposed: the TL dosimeter is placed in the soil in exactly the same conditions as the sample ones, during a time long enough for the total dose evaluation [fr

  2. International Standardization of the Clinical Dosimetry of Beta Radiation Brachytherapy Sources: Progress of an ISO Standard

    Science.gov (United States)

    Soares, Christopher

    2006-03-01

    In 2004 a new work item proposal (NWIP) was accepted by the International Organization for Standardization (ISO) Technical Committee 85 (TC85 -- Nuclear Energy), Subcommittee 2 (Radiation Protection) for the development of a standard for the clinical dosimetry of beta radiation sources used for brachytherapy. To develop this standard, a new Working Group (WG 22 - Ionizing Radiation Dosimetry and Protocols in Medical Applications) was formed. The standard is based on the work of an ad-hoc working group initiated by the Dosimetry task group of the Deutsches Insitiut für Normung (DIN). Initially the work was geared mainly towards the needs of intravascular brachytherapy, but with the decline of this application, more focus has been placed on the challenges of accurate dosimetry for the concave eye plaques used to treat ocular melanoma. Guidance is given for dosimetry formalisms, reference data to be used, calibrations, measurement methods, modeling, uncertainty determinations, treatment planning and reporting, and clinical quality control. The document is currently undergoing review by the ISO member bodies for acceptance as a Committee Draft (CD) with publication of the final standard expected by 2007. There are opportunities for other ISO standards for medical dosimetry within the framework of WG22.

  3. On Real-Time Systems Using Local Area Networks.

    Science.gov (United States)

    1987-07-01

    87-35 July, 1987 CS-TR-1892 On Real - Time Systems Using Local Area Networks*I VShem-Tov Levi Department of Computer Science Satish K. Tripathit...1892 On Real - Time Systems Using Local Area Networks* Shem-Tov Levi Department of Computer Science Satish K. Tripathit Department of Computer Science...constraints and the clock systems that feed the time to real - time systems . A model for real-time system based on LAN communication is presented in

  4. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection.

    Science.gov (United States)

    Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania

    2015-04-15

    In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Mixed-mode Operating System for Real-time Performance

    OpenAIRE

    M.M. Hasan; S. Sultana; C.K. Foo

    2017-01-01

    The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface (GUI) operating system which is typically nonreal-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time...

  6. Linux real-time framework for fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Andre [Associacao Euratom-IST, Instituto de Plasmas e Fusao Nuclear, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)], E-mail: andre.neto@cfn.ist.utl.pt; Sartori, Filippo; Piccolo, Fabio [Euratom-UKAEA, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Barbalace, Antonio [Euratom-ENEA Association, Consorzio RFX, 35127 Padova (Italy); Vitelli, Riccardo [Dipartimento di Informatica, Sistemi e Produzione, Universita di Roma, Tor Vergata, Via del Politecnico 1-00133, Roma (Italy); Fernandes, Horacio [Associacao Euratom-IST, Instituto de Plasmas e Fusao Nuclear, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2009-06-15

    A new framework for the development and execution of real-time codes is currently being developed and commissioned at JET. The foundations of the system are Linux, the Real Time Application Interface (RTAI) and a wise exploitation of the new i386 multi-core processors technology. The driving motivation was the need to find a real-time operating system for the i386 platform able to satisfy JET Vertical Stabilisation Enhancement project requirements: 50 {mu}s cycle time. Even if the initial choice was the VxWorks operating system, it was decided to explore an open source alternative, mostly because of the costs involved in the commercial product. The work started with the definition of a precise set of requirements and milestones to achieve: Linux distribution and kernel versions to be used for the real-time operating system; complete characterization of the Linux/RTAI real-time capabilities; exploitation of the multi-core technology; implementation of all the required and missing features; commissioning of the system. Latency and jitter measurements were compared for Linux and RTAI in both user and kernel-space. The best results were attained using the RTAI kernel solution where the time to reschedule a real-time task after an external interrupt is of 2.35 {+-} 0.35 {mu}s. In order to run the real-time codes in the kernel-space, a solution to provide user-space functionalities to the kernel modules had to be designed. This novel work provided the most common functions from the standard C library and transparent interaction with files and sockets to the kernel real-time modules. Kernel C++ support was also tested, further developed and integrated in the framework. The work has produced very convincing results so far: complete isolation of the processors assigned to real-time from the Linux non real-time activities, high level of stability over several days of benchmarking operations and values well below 3 {mu}s for task rescheduling after external interrupt. From

  7. Linux real-time framework for fusion devices

    International Nuclear Information System (INIS)

    Neto, Andre; Sartori, Filippo; Piccolo, Fabio; Barbalace, Antonio; Vitelli, Riccardo; Fernandes, Horacio

    2009-01-01

    A new framework for the development and execution of real-time codes is currently being developed and commissioned at JET. The foundations of the system are Linux, the Real Time Application Interface (RTAI) and a wise exploitation of the new i386 multi-core processors technology. The driving motivation was the need to find a real-time operating system for the i386 platform able to satisfy JET Vertical Stabilisation Enhancement project requirements: 50 μs cycle time. Even if the initial choice was the VxWorks operating system, it was decided to explore an open source alternative, mostly because of the costs involved in the commercial product. The work started with the definition of a precise set of requirements and milestones to achieve: Linux distribution and kernel versions to be used for the real-time operating system; complete characterization of the Linux/RTAI real-time capabilities; exploitation of the multi-core technology; implementation of all the required and missing features; commissioning of the system. Latency and jitter measurements were compared for Linux and RTAI in both user and kernel-space. The best results were attained using the RTAI kernel solution where the time to reschedule a real-time task after an external interrupt is of 2.35 ± 0.35 μs. In order to run the real-time codes in the kernel-space, a solution to provide user-space functionalities to the kernel modules had to be designed. This novel work provided the most common functions from the standard C library and transparent interaction with files and sockets to the kernel real-time modules. Kernel C++ support was also tested, further developed and integrated in the framework. The work has produced very convincing results so far: complete isolation of the processors assigned to real-time from the Linux non real-time activities, high level of stability over several days of benchmarking operations and values well below 3 μs for task rescheduling after external interrupt. From being the

  8. Static Schedulers for Embedded Real-Time Systems

    Science.gov (United States)

    1989-12-01

    Because of the need for having efficient scheduling algorithms in large scale real time systems , software engineers put a lot of effort on developing...provide static schedulers for he Embedded Real Time Systems with single processor using Ada programming language. The independent nonpreemptable...support the Computer Aided Rapid Prototyping for Embedded Real Time Systems so that we determine whether the system, as designed, meets the required

  9. Real-time motional Stark effect in jet

    International Nuclear Information System (INIS)

    Alves, D.; Stephen, A.; Hawkes, N.; Dalley, S.; Goodyear, A.; Felton, R.; Joffrin, E.; Fernandes, H.

    2004-01-01

    The increasing importance of real-time measurements and control systems in JET experiments, regarding e.g. Internal Transport Barrier (ITB) and q-profile control, has motivated the development of a real-time motional Stark effect (MSE) system. The MSE diagnostic allows the measurement of local magnetic fields in different locations along the neutral beam path providing, therefore, local measurement of the current and q-profiles. Recently in JET, an upgrade of the MSE diagnostic has been implemented, incorporating a totally new system which allows the use of this diagnostic as a real-time control tool as well as an extended data source for off-line analysis. This paper will briefly describe the technical features of the real-time diagnostic with main focus on the system architecture, which consists of a VME crate hosting three PowerPC processor boards and a fast ADC, all connected via Front Panel Data Port (FPDP). The DSP algorithm implements a lockin-amplifier required to demodulate the JET MSE signals. Some applications for the system will be covered such as: feeding the real-time equilibrium reconstruction code (EQUINOX) and allowing the full coverage analysis of the Neutral Beam time window. A brief comparison between the real-time MSE analysis and the off-line analysis will also be presented

  10. Design of a Real-Time and Continua-Based Framework for Care Guideline Recommendations

    Directory of Open Access Journals (Sweden)

    Yu-Feng Lin

    2014-04-01

    Full Text Available Telehealth is an important issue in the medical and healthcare domains. Although a number of systems have been developed to meet the demands of emerging telehealth services, the following problems still remain to be addressed: (1 most systems do not monitor/predict the vital signs states so that they are able to send alarms to caregivers in real-time; (2 most systems do not focus on reducing the amount of work that caregivers need to do, and provide patients with remote care; and (3 most systems do not recommend guidelines for caregivers. This study thus proposes a framework for a real-time and Continua-based Care Guideline Recommendation System (Cagurs which utilizes mobile device platforms to provide caregivers of chronic patients with real-time care guideline recommendations, and that enables vital signs data to be transmitted between different devices automatically, using the Continua standard. Moreover, the proposed system adopts the episode mining approach to monitor/predict anomalous conditions of patients, and then offers related recommended care guidelines to caregivers so that they can offer preventive care in a timely manner.

  11. Scala for Real-Time Systems?

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2015-01-01

    Java served well as a general-purpose language. However, during its two decades of constant change it has gotten some weight and legacy in the language syntax and the libraries. Furthermore, Java's success for real-time systems is mediocre. Scala is a modern object-oriented and functional language...... with interesting new features. Although a new language, it executes on a Java virtual machine, reusing that technology. This paper explores Scala as language for future real-time systems....

  12. Towards exascale real-time RFI mitigation

    NARCIS (Netherlands)

    van Nieuwpoort, R.V.

    2016-01-01

    We describe the design and implementation of an extremely scalable real-time RFI mitigation method, based on the offline AOFlagger. All algorithms scale linearly in the number of samples. We describe how we implemented the flagger in the LOFAR real-time pipeline, on both CPUs and GPUs. Additionally,

  13. Time-Optimal Real-Time Test Case Generation using UPPAAL

    DEFF Research Database (Denmark)

    Hessel, Anders; Larsen, Kim Guldstrand; Nielsen, Brian

    2004-01-01

    Testing is the primary software validation technique used by industry today, but remains ad hoc, error prone, and very expensive. A promising improvement is to automatically generate test cases from formal models of the system under test. We demonstrate how to automatically generate real...... test purposes or generated automatically from various coverage criteria of the model.......-time conformance test cases from timed automata specifications. Specifically we demonstrate how to fficiently generate real-time test cases with optimal execution time i.e test cases that are the fastest possible to execute. Our technique allows time optimal test cases to be generated using manually formulated...

  14. Performance evaluation of near-real-time accounting systems

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Examples are given illustrating the application of near-real-time accounting concepts and principles to actual nuclear facilities. Experience with prototypical systems at the AGNS reprocessing plant and the Los Alamos plutonium facility is described using examples of actual data to illustrate the performance and effectiveness of near-real-time systems. The purpose of the session is to enable participants to: (1) identify the major components of near-real-time accounting systems; (2) describe qualitatively the advantages, limitations, and performance of such systems in real nuclear facilities; (3) identify process and facility design characteristics that affect the performance of near-real-time systems; and (4) describe qualitatively the steps necessary to implement a near-real-time accounting and control system in a nuclear facility

  15. Dosimetry study for electron beam irradiation in radiation processing

    International Nuclear Information System (INIS)

    Sunaga, Hiromi; Haruyama, Yasuyuki; Takizawa, Haruki; Kojima, Takuji; Yotsumoto, Keiichi

    1995-01-01

    For certain critical applications such as medical device sterilization and food irradiation, accurate calibration of electron energy and absorbed dose is required to assure the quality of irradiated products. To meet this requirement, TRCRE, JAERI has carried out research and development on high dose radiation dosimetry for electron beams in the energy range used in radiation processing (0.15 - 3.0 MeV). JAERI has developed a simultaneous electron beam energy and dosimeter calibration system that consist of a total absorption calorimeter, an electron current density meter, and a stacked thin-film dosimeter set. For low energy electrons, where it is important to measure the depth-dose profile in materials with high depth resolution, we studied the feasibility of a method using Gafchromic film dosimeters. This film, which has an 8-μm thick sensitive layer, is combined with a stepped array of absorber films of the same thickness to produce a high-resolution depth-dose profile on the Gafchromic film. The depth-dose profile obtained in this manner has about five times greater resolution than conventional radiochromic film dosimetry. (author)

  16. Distributed Issues for Ada Real-Time Systems

    Science.gov (United States)

    1990-07-23

    NUMBERS Distributed Issues for Ada Real - Time Systems MDA 903-87- C- 0056 S. AUTHOR(S) Thomas E. Griest 7. PERFORMING ORGANiZATION NAME(S) AND ADORESS(ES) 8...considerations. I Adding to the problem of distributed real - time systems is the issue of maintaining a common sense of time among all of the processors...because -omeone is waiting for the final output of a very large set of computations. However in real - time systems , consistent meeting of short-term

  17. Design Specifications for Adaptive Real-Time Systems

    Science.gov (United States)

    1991-12-01

    TICfl \\ E CT E Design Specifications for JAN’\\ 1992 Adaptive Real - Time Systems fl Randall W. Lichota U, Alice H. Muntz - December 1991 \\ \\\\/ 0 / r...268-2056 Technical Report CMU/SEI-91-TR-20 ESD-91-TR-20 December 1991 Design Specifications for Adaptive Real - Time Systems Randall W. Lichota Hughes...Design Specifications for Adaptive Real - Time Systems Abstract: The design specification method described in this report treats a software

  18. Design Recovery Technology for Real-Time Systems.

    Science.gov (United States)

    1995-10-01

    RL-TR-95-208 Final Technical Report October 1995 DESIGN RECOVERY TECHNOLOGY FOR REAL TIME SYSTEMS The MITRE Corporation Lester J. Holtzblatt...92 - Jan 95 4. TTTLE AND SUBTITLE DESIGN RECOVERY TECHNOLOGY FOR REAL - TIME SYSTEMS 6. AUTHOR(S) Lester J. Holtzblatt, Richard Piazza, and Susan...behavior of real - time systems in general, our initial efforts have centered on recovering this information from one system in particular, the Modular

  19. Polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baldock, C [Institute of Medical Physics, School of Physics, University of Sydney (Australia); De Deene, Y [Radiotherapy and Nuclear Medicine, Ghent University Hospital (Belgium); Doran, S [CRUK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Surrey (United Kingdom); Ibbott, G [Radiation Physics, UT M D Anderson Cancer Center, Houston, TX (United States); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Lepage, M [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et de radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, ON (Canada); Oldham, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Schreiner, L J [Cancer Centre of South Eastern Ontario, Kingston, ON (Canada)], E-mail: c.baldock@physics.usyd.edu.au, E-mail: yves.dedeene@ugent.be

    2010-03-07

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. (topical review)

  20. [Real time 3D echocardiography

    Science.gov (United States)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  1. Real-time communication for distributed plasma control systems

    Energy Technology Data Exchange (ETDEWEB)

    Luchetta, A. [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Corso Stati Uniti 4, Padova 35127 (Italy)], E-mail: adriano.luchetta@igi.cnr.it; Barbalace, A.; Manduchi, G.; Soppelsa, A.; Taliercio, C. [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Corso Stati Uniti 4, Padova 35127 (Italy)

    2008-04-15

    Real-time control applications will benefit in the near future from the enhanced performance provided by multi-core processor architectures. Nevertheless real-time communication will continue to be critical in distributed plasma control systems where the plant under control typically is distributed over a wide area. At RFX-mod real-time communication is crucial for hard real-time plasma control, due to the distributed architecture of the system, which consists of several VMEbus stations. The system runs under VxWorks and uses Gigabit Ethernet for sub-millisecond real-time communication. To optimize communication in the system, a set of detailed measurements has been carried out on the target platforms (Motorola MVME5100 and MVME5500) using either the VxWorks User Datagram Protocol (UDP) stack or raw communication based on the data link layer. Measurements have been carried out also under Linux, using its UDP stack or, in alternative, RTnet, an open source hard real-time network protocol stack. RTnet runs under Xenomai or RTAI, two popular real-time extensions based on the Linux kernel. The paper reports on the measurements carried out and compares the results, showing that the performance obtained by using open source code is suitable for sub-millisecond real-time communication in plasma control.

  2. New developments in radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Soares, C. G.

    2006-01-01

    NIST has been a pioneer in the use of radiochromic film for medical dosimetry applications. Beginning in 1988 with experiments with 90 Sr/Y ophthalmic applicators, this work has continued into the present. A review of the latest applications is presented, which include high activity low-energy photon source dosimetry and ultra-high resolution film densitometry for dose enhancement near stents and microbeam radiation therapy dosimetry. An exciting recent development is the availability of a new radiochromic emulsion which has been developed for IMRT dosimetry. This emulsion is an order of magnitude more sensitive than was previously available. Measurements of the sensitivity and uniformity of samples of this new film are reported, using a spectrophotometer and two scanning laser densitometers. A unique feature of the new emulsion is that the peak of the absorbance spectrum falls at the wavelength of the HeNe lasers used in the densitometer, maximising sensitivity. When read at a wavelength of 633 nm, sensitivities on the order of 900 mAU Gy -1 were determined for this new film type, compared with about 40 mAU Gy -1 for type HS film, 20 mAU Gy -1 for type MD-55-2 film, and 3 mAU Gy -1 for type HD-810. Film uniformities were found to be good, on the order of 6% peak to peak. However, there is a strong polarisation effect in the samples examined, requiring care in film orientation during readout. (authors)

  3. Development of A-bomb survivor dosimetry

    International Nuclear Information System (INIS)

    Kerr, G.D.

    1995-01-01

    An all important datum in risk assessment is the radiation dose to individual survivors of the bombings in Hiroshima and Nagasaki. The first set of dose estimates for survivors was based on a dosimetry system developed in 1957 by the Oak Ridge National Laboratory (ORNL). These Tentative 1957 Doses (T57D) were later replaced by a more extensive and refined set of Tentative 1965 Doses (T65D). The T65D system of dose estimation for survivors was also developed at ORNL and served as a basis for risk assessment throughout the 1970s. In the late 1970s, it was suggested that there were serious inadequacies with the T65D system, and these inadequacies were the topic of discussion at two symposia held in 1981. In early 1983, joint US- Japan research programs were established to conduct a thorough review of all aspects of the radiation dosimetry for the Hiroshima and Nagasaki A-bomb survivors. A number of important contributions to this review were made by ORNL staff members. The review was completed in 1986 and a new Dosimetry System 1986 (DS86) was adopted for use. This paper discusses the development of the various systems of A-bomb survivor dosimetry, and the status of the current DS86 system as it is being applied in the medical follow-up studies of the A-bomb survivors and their offspring

  4. Development of A-bomb survivor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, G.D.

    1995-12-31

    An all important datum in risk assessment is the radiation dose to individual survivors of the bombings in Hiroshima and Nagasaki. The first set of dose estimates for survivors was based on a dosimetry system developed in 1957 by the Oak Ridge National Laboratory (ORNL). These Tentative 1957 Doses (T57D) were later replaced by a more extensive and refined set of Tentative 1965 Doses (T65D). The T65D system of dose estimation for survivors was also developed at ORNL and served as a basis for risk assessment throughout the 1970s. In the late 1970s, it was suggested that there were serious inadequacies with the T65D system, and these inadequacies were the topic of discussion at two symposia held in 1981. In early 1983, joint US- Japan research programs were established to conduct a thorough review of all aspects of the radiation dosimetry for the Hiroshima and Nagasaki A-bomb survivors. A number of important contributions to this review were made by ORNL staff members. The review was completed in 1986 and a new Dosimetry System 1986 (DS86) was adopted for use. This paper discusses the development of the various systems of A-bomb survivor dosimetry, and the status of the current DS86 system as it is being applied in the medical follow-up studies of the A-bomb survivors and their offspring.

  5. Evaluation of 3D printing materials for fabrication of a novel multi-functional 3D thyroid phantom for medical dosimetry and image quality

    Science.gov (United States)

    Alssabbagh, Moayyad; Tajuddin, Abd Aziz; Abdulmanap, Mahayuddin; Zainon, Rafidah

    2017-06-01

    Recently, the three-dimensional printer has started to be utilized strongly in medical industries. In the human body, many parts or organs can be printed from 3D images to meet accurate organ geometries. In this study, five common 3D printing materials were evaluated in terms of their elementary composition and the mass attenuation coefficients. The online version of XCOM photon cross-section database was used to obtain the attenuation values of each material. The results were compared with the attenuation values of the thyroid listed in the International Commission on Radiation Units and Measurements - ICRU 44. Two original thyroid models (hollow-inside and solid-inside) were designed from scratch to be used in nuclear medicine, diagnostic radiology and radiotherapy for dosimetry and image quality purposes. Both designs have three holes for installation of radiation dosimeters. The hollow-inside model has more two holes in the top for injection the radioactive materials. The attenuation properties of the Polylactic Acid (PLA) material showed a very good match with the thyroid tissue, which it was selected to 3D print the phantom using open source RepRap, Prusa i3 3D printer. The scintigraphy images show that the phantom simulates a real healthy thyroid gland and thus it can be used for image quality purposes. The measured CT numbers of the PA material after the 3D printing show a close match with the human thyroid CT numbers. Furthermore, the phantom shows a good accommodation of the TLD dosimeters inside the holes. The 3D fabricated thyroid phantom simulates the real shape of the human thyroid gland with a changeable geometrical shape-size feature to fit different age groups. By using 3D printing technology, the time required to fabricate the 3D phantom was considerably shortened compared to the longer conventional methods, where it took only 30 min to print out the model. The 3D printing material used in this study is commercially available and cost

  6. Canadian space agency discipline working group for space dosimetry and radiation science

    International Nuclear Information System (INIS)

    Waker, Anthony; Waller, Edward; Lewis, Brent; Bennett, Leslie; Conroy, Thomas

    2008-01-01

    Full text: One of the great technical challenges in the human and robotic exploration of space is the deleterious effect of radiation on humans and physical systems. The magnitude of this challenge is broadly understood in terms of the sources of radiation, however, a great deal remains to be done in the development of instrumentation, suitable for the space environment, which can provide real-time monitoring of the complex radiation fields encountered in space and a quantitative measure of potential biological risk. In order to meet these research requirements collaboration is needed between experimental nuclear instrumentation scientists, theoretical scientists working on numerical modeling techniques and radiation biologists. Under the auspices of the Canadian Space Agency such a collaborative body has been established as one of a number of Discipline Working Groups. Members of the Space Dosimetry and Radiation Science working group form a collaborative network across Canada including universities, government laboratories and the industrial sector. Three central activities form the core of the Space Dosimetry and Radiation Science DWG. An instrument sub-group is engaged in the development of instruments capable of gamma ray, energetic charged particle and neutron dosimetry including the ability to provide dosimetric information in real-time. A second sub-group is focused on computer modeling of space radiation fields in order to assess the performance of conceptual designs of detectors and dosimeters or the impact of radiation on cellular and sub-cellular biological targets and a third sub-group is engaged in the study of the biological effects of space radiation and the potential of biomarkers as a method of assessing radiation impact on humans. Many working group members are active in more than one sub-group facilitating communication throughout the whole network. A summary progress-report will be given of the activities of the Discipline Working Group and the

  7. Quality assurance in radiotherapy dosimetry in China

    International Nuclear Information System (INIS)

    Li Kaibao; Luo Suming; Cheng Jinsheng; He Zhijian; An Jinggang; Hu Yimin; Feng Ningyuan

    2002-01-01

    In 1995, the SSDL in the Laboratory of Industrial Hygiene cooperated with Beijing Cancer Hospital, Chinese Academy of Medical science joined the IAEA Co-ordinated Research Programme (NO.8769/RO). According to the requirements of the project, an External Audit Group (EAG) in China was established in 1996 with the responsibilities of operating TLD-based quality audit for radiotherapy dosimetry. Since then. The national TLD dose quality audit services have been carried out in 7 provinces in China. Besides this, the national programmes for brachytherapy and stereostatic radiosurgery (SRS) treatment dosimetry were initiated in 2001. The activity measurement intercomparison between the SSDL and some hospitals for Ir-192 HDR brachytherapy sources has been performed using a HDR well-type ionization chamber (Model HDR 1000 plus) and CDX-2000A Charge Digitizer, which were calibrated in Accredited Dosimetry Calibration Laboratory, University of Wisconsin, USA. The preliminary results indicated that the agreement between SSDL measured activity and hospital stated activity was within ±5% for more than 80% of total participants

  8. Time-resolved diode dosimetry calibration through Monte Carlo modeling for in vivo passive scattered proton therapy range verification.

    Science.gov (United States)

    Toltz, Allison; Hoesl, Michaela; Schuemann, Jan; Seuntjens, Jan; Lu, Hsiao-Ming; Paganetti, Harald

    2017-11-01

    Our group previously introduced an in vivo proton range verification methodology in which a silicon diode array system is used to correlate the dose rate profile per range modulation wheel cycle of the detector signal to the water-equivalent path length (WEPL) for passively scattered proton beam delivery. The implementation of this system requires a set of calibration data to establish a beam-specific response to WEPL fit for the selected 'scout' beam (a 1 cm overshoot of the predicted detector depth with a dose of 4 cGy) in water-equivalent plastic. This necessitates a separate set of measurements for every 'scout' beam that may be appropriate to the clinical case. The current study demonstrates the use of Monte Carlo simulations for calibration of the time-resolved diode dosimetry technique. Measurements for three 'scout' beams were compared against simulated detector response with Monte Carlo methods using the Tool for Particle Simulation (TOPAS). The 'scout' beams were then applied in the simulation environment to simulated water-equivalent plastic, a CT of water-equivalent plastic, and a patient CT data set to assess uncertainty. Simulated detector response in water-equivalent plastic was validated against measurements for 'scout' spread out Bragg peaks of range 10 cm, 15 cm, and 21 cm (168 MeV, 177 MeV, and 210 MeV) to within 3.4 mm for all beams, and to within 1 mm in the region where the detector is expected to lie. Feasibility has been shown for performing the calibration of the detector response for three 'scout' beams through simulation for the time-resolved diode dosimetry technique in passive scattered proton delivery. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  9. Real-time quasi-3D tomographic reconstruction

    Science.gov (United States)

    Buurlage, Jan-Willem; Kohr, Holger; Palenstijn, Willem Jan; Joost Batenburg, K.

    2018-06-01

    Developments in acquisition technology and a growing need for time-resolved experiments pose great computational challenges in tomography. In addition, access to reconstructions in real time is a highly demanded feature but has so far been out of reach. We show that by exploiting the mathematical properties of filtered backprojection-type methods, having access to real-time reconstructions of arbitrarily oriented slices becomes feasible. Furthermore, we present , software for visualization and on-demand reconstruction of slices. A user of can interactively shift and rotate slices in a GUI, while the software updates the slice in real time. For certain use cases, the possibility to study arbitrarily oriented slices in real time directly from the measured data provides sufficient visual and quantitative insight. Two such applications are discussed in this article.

  10. Dosimetry of β extensive sources

    International Nuclear Information System (INIS)

    Rojas C, E.L.; Lallena R, A.M.

    2002-01-01

    In this work, we have been studied, making use of the Penelope Monte Carlo simulation code, the dosimetry of β extensive sources in situations of spherical geometry including interfaces. These configurations are of interest in the treatment of the called cranealfaringyomes of some synovia leisure of knee and other problems of interest in medical physics. Therefore, its application can be extended toward problems of another areas with similar geometric situation and beta sources. (Author)

  11. First steps towards real-time radiography at the NECTAR facility

    Science.gov (United States)

    Bücherl, T.; Wagner, F. M.; v. Gostomski, Ch. Lierse

    2009-06-01

    The beam tube SR10 at Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) provides an intense beam of fission neutrons for medical application (MEDAPP) and for radiography and tomography of technical and other objects (NECTAR). The high neutron flux of up to 9.8E+07 cm -2 s -1 (depending on filters and collimation) with a mean energy of about 1.9 MeV at the sample position at the NECTAR facility prompted an experimental feasibility study to investigate the potential for real-time (RT) radiography.

  12. First steps towards real-time radiography at the NECTAR facility

    International Nuclear Information System (INIS)

    Buecherl, T.; Wagner, F.M.; Lierse von Gostomski, Ch.

    2009-01-01

    The beam tube SR10 at Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) provides an intense beam of fission neutrons for medical application (MEDAPP) and for radiography and tomography of technical and other objects (NECTAR). The high neutron flux of up to 9.8E+07 cm -2 s -1 (depending on filters and collimation) with a mean energy of about 1.9 MeV at the sample position at the NECTAR facility prompted an experimental feasibility study to investigate the potential for real-time (RT) radiography.

  13. Personnel Dosimetry for Radiation Accidents. Proceedings of a Symposium on Personnel Dosimetry for Accidental High-Level Exposure to External and Internal Radiation

    International Nuclear Information System (INIS)

    1965-01-01

    Accidents involving the exposure of persons to high levels of radiation have been few in number and meticulous precautions are taken in an effort to maintain this good record. When, however, such an accident does occur, a timely estimate of the dose received can be of considerable help to the physician in deciding whether a particular person requires medical treatment, and in selecting the most appropriate treatment. Individual dosimetry provides the physical basis for relating the observed effects to those in other accident cases, to other human data, and to data from animal experiments, thus providing an important aid to rational treatment and to the accumulation of a meaningful body of knowledge on the subject. It is most important therefore that, where there is a possibility of receiving high-level exposure, methods of personnel dosimetry should be available that would provide the dosimetric information most useful to the physician. Provision of good personnel dosimetry for accidental high-level exposure is in many cases an essential part of emergency planning because the information provided may influence emergency and rescue operations, and can lead to improved accident preparedness. Accordingly, the International Atomic Energy Agency and the World Health Organization jointly organized the Symposium on Personnel Dosimetry for Accidental High-Level Exposure to External and Internal Radiation for the discussion of such methods and for a critical review of the procedures adopted in some of the radiation accidents that have already occurred. The meeting was attended by 179 participants from 34 countries and from five other international organizations. The papers presented and the ensuing discussions are published in these Proceedings. It is hoped that the Proceedings will be of help to those concerned with the organization and development of wide-range personnel monitoring systems, and with the interpretation of the results provided

  14. An algorithm for learning real-time automata

    NARCIS (Netherlands)

    Verwer, S.E.; De Weerdt, M.M.; Witteveen, C.

    2007-01-01

    We describe an algorithm for learning simple timed automata, known as real-time automata. The transitions of real-time automata can have a temporal constraint on the time of occurrence of the current symbol relative to the previous symbol. The learning algorithm is similar to the redblue fringe

  15. Database to manage personal dosimetry Hospital Universitario de La Ribera

    International Nuclear Information System (INIS)

    Melchor, M.; Martinez, D.; Asensio, M.; Candela, F.; Camara, A.

    2011-01-01

    For the management of professionally exposed personnel dosimetry, da La are required for the use and return of dosimeters. in the Department of Radio Physics and Radiation Protection have designed and implemented a database management staff dosimetry Hospital and Area Health Centers. The specific objectives were easily import data from the National Center dosimetric dosimetry, consulting records in a simple dosimetry, dosimeters allow rotary handle, and also get reports from different periods of time to know the return data for users, services, etc.

  16. Real-Time Dosimetry and Optimization of Prostate Photodynamic Therapy

    Science.gov (United States)

    2005-05-01

    85cm’ 0:k -" l)=O5.0O25,=0.10cnf’ Ps4 ൱ crm’ 0 cik)=5.012p 5,4=5.45c,1’. G~cff’* - 0~n) .012,P. 0.49cff’,0:=3.56c-0 cink) = - 1,00 c ’", V-= 1.75 ccml...tissue to make a measurement. This limits the resolution of absorption spectroscopy, and makes it more time- consuming than fluorescence spectroscopy...photobleaching versus those that do not. Further research into the photobleaching behavior and in vivo vascular effects of MLu is needed to resolve the

  17. Internal radiation dosimetry using nuclear medicine imaging in radionuclide therapy

    International Nuclear Information System (INIS)

    Kim, Kyeong Min; Byun, Byun Hyun; Cheon, Gi Jeong; Lim, Sang Moo

    2007-01-01

    Radionuclide therapy has been an important field in nuclear medicine. In radionuclide therapy, relevant evaluation of internally absorbed dose is essential for the achievement of efficient and sufficient treatment of incurable disease, and can be accomplished by means of accurate measurement of radioactivity in body and its changes with time. Recently, the advances of nuclear medicine imaging and multi modality imaging processing techniques can provide chance of more accurate and easier measurement of the measures commented above, in cooperation of conventional imaging based approaches. In this review, basic concept for internal dosimetry using nuclear medicine imaging is summarized with several check points which should be considered in real practice

  18. De toekomst van Real Time Intelligence

    NARCIS (Netherlands)

    Broek, J. van den; Berg, C.H. van den

    2013-01-01

    Al direct vanaf de start van de Nationale Politie is gewerkt aan het opzetten van tien real-time intelligence centra in Nederland. Van daaruit worden 24 uur per dag en zeven dagen in de week agenten op straat actief ondersteund met real-time informatie bij de melding waar ze op af gaan. In de visie

  19. Real-Time Parameter Identification

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers have implemented in the control room a technique for estimating in real time the aerodynamic parameters that describe the stability and control...

  20. Real time process algebra with time-dependent conditions

    NARCIS (Netherlands)

    Baeten, J.C.M.; Middelburg, C.A.

    We extend the main real time version of ACP presented in [6] with conditionals in which the condition depends on time. This extension facilitates flexible dependence of proccess behaviour on initialization time. We show that the conditions concerned generalize the conditions introduced earlier

  1. EURADOS intercomparison 2006 to harmonise European early warning dosimetry systems

    International Nuclear Information System (INIS)

    Dombrowski, H.; Neumaier, S.; Thompson, I. M. G.; Wissmann, F.

    2009-01-01

    In 2006, the European Radiation Dosimetry (EURADOS) Working Group on Environmental Radiation Monitoring (WG3) organised a third European intercomparison of dosimetry systems operated in national early warning networks. Similar to the intercomparisons in 1999 and 2002, the main aim of this exercise was to support the process of harmonisation of area monitoring in Europe by providing the network operators with basic information on the calibration and performance of their dosimetry systems. In order to characterise these systems, their following basic parameters were investigated: the response to terrestrial and cosmic radiation, the detectors' inherent background, the response at low dose rates, the energy dependence of the response as well as the sensitivity of the detector systems to small changes of the dose rate in a natural environmental radiation field. In the 2006 EURADOS intercomparison, scientists from seven countries participated to study the characteristics of 11 detector systems. All results are presented in terms of the operational quantity ambient dose equivalent, H * (10). The advent of this quantity has caused the development of new detector systems for area monitoring. Some of these new systems participated in a EURADOS intercomparison for the first time. The results are consistently presented together with uncertainties so that statistical effects can be distinguished from real detector features, which improves the interpretation of the results. By using the results of this intercomparison, some detectors were re-calibrated. The achievable improvements concerning harmonisation in dose-rate measurements in the natural environment are discussed. (authors)

  2. Compiling models into real-time systems

    International Nuclear Information System (INIS)

    Dormoy, J.L.; Cherriaux, F.; Ancelin, J.

    1992-08-01

    This paper presents an architecture for building real-time systems from models, and model-compiling techniques. This has been applied for building a real-time model-based monitoring system for nuclear plants, called KSE, which is currently being used in two plants in France. We describe how we used various artificial intelligence techniques for building it: a model-based approach, a logical model of its operation, a declarative implementation of these models, and original knowledge-compiling techniques for automatically generating the real-time expert system from those models. Some of those techniques have just been borrowed from the literature, but we had to modify or invent other techniques which simply did not exist. We also discuss two important problems, which are often underestimated in the artificial intelligence literature: size, and errors. Our architecture, which could be used in other applications, combines the advantages of the model-based approach with the efficiency requirements of real-time applications, while in general model-based approaches present serious drawbacks on this point

  3. Compiling models into real-time systems

    International Nuclear Information System (INIS)

    Dormoy, J.L.; Cherriaux, F.; Ancelin, J.

    1992-08-01

    This paper presents an architecture for building real-time systems from models, and model-compiling techniques. This has been applied for building a real-time model-base monitoring system for nuclear plants, called KSE, which is currently being used in two plants in France. We describe how we used various artificial intelligence techniques for building it: a model-based approach, a logical model of its operation, a declarative implementation of these models, and original knowledge-compiling techniques for automatically generating the real-time expert system from those models. Some of those techniques have just been borrowed from the literature, but we had to modify or invent other techniques which simply did not exist. We also discuss two important problems, which are often underestimated in the artificial intelligence literature: size, and errors. Our architecture, which could be used in other applications, combines the advantages of the model-based approach with the efficiency requirements of real-time applications, while in general model-based approaches present serious drawbacks on this point

  4. Medical Science Liaisons in Real-World Evidence Studies: Experience of AstraZeneca Russia.

    Science.gov (United States)

    Suvorov, Nikolay; Karaseva, Vera; Stukalina, Ekaterina; Sanay, Elkhan; Petrakovskaya, Vera; Bulatov, Vladimir

    2018-01-01

    There is no doubt that real-world evidence studies have the potential to improve and accelerate the development and delivery of safe and cost-effective innovative medicines to patients as well as influence the way we approach health and health care. Real-world evidence studies are a great challenge in terms of development and conduct, so there should be a good collaboration between the study team and clinical sites at all times, resulting eventually in timely and efficient enrollment. Engaging the sites and key external experts as early as possible during feasibility and routine visits, as well as highlighting the science rationale behind AstraZeneca's portfolio at investigator meetings and during medical science liaison (MSL) interactions, can create a positive impact on physician perception of a particular study and prioritization of patient recruitment in such studies. Therefore, we would like to underline the important role of MSLs in the risk-based monitoring setting of real-world evidence studies, with special attention to the studies with complicated patient profiles, tough timelines, and/or seasonal factors. This approach will be used further for other real world evidence projects of AstraZeneca Russia MC to ensure timelines and budget deliverables are met for the generation of high-quality evidence and eventually better health care for all of us.

  5. Real Time Linux - The RTOS for Astronomy?

    Science.gov (United States)

    Daly, P. N.

    The BoF was attended by about 30 participants and a free CD of real time Linux-based upon RedHat 5.2-was available. There was a detailed presentation on the nature of real time Linux and the variants for hard real time: New Mexico Tech's RTL and DIAPM's RTAI. Comparison tables between standard Linux and real time Linux responses to time interval generation and interrupt response latency were presented (see elsewhere in these proceedings). The present recommendations are to use RTL for UP machines running the 2.0.x kernels and RTAI for SMP machines running the 2.2.x kernel. Support, both academically and commercially, is available. Some known limitations were presented and the solutions reported e.g., debugging and hardware support. The features of RTAI (scheduler, fifos, shared memory, semaphores, message queues and RPCs) were described. Typical performance statistics were presented: Pentium-based oneshot tasks running > 30kHz, 486-based oneshot tasks running at ~ 10 kHz, periodic timer tasks running in excess of 90 kHz with average zero jitter peaking to ~ 13 mus (UP) and ~ 30 mus (SMP). Some detail on kernel module programming, including coding examples, were presented showing a typical data acquisition system generating simulated (random) data writing to a shared memory buffer and a fifo buffer to communicate between real time Linux and user space. All coding examples were complete and tested under RTAI v0.6 and the 2.2.12 kernel. Finally, arguments were raised in support of real time Linux: it's open source, free under GPL, enables rapid prototyping, has good support and the ability to have a fully functioning workstation capable of co-existing hard real time performance. The counter weight-the negatives-of lack of platforms (x86 and PowerPC only at present), lack of board support, promiscuous root access and the danger of ignorance of real time programming issues were also discussed. See ftp://orion.tuc.noao.edu/pub/pnd/rtlbof.tgz for the StarOffice overheads

  6. Management system of personnel dosimetry based on ISO 9001:2008 for medical diagnostic

    International Nuclear Information System (INIS)

    Queiroz, Carlos E.B.; Gerber Junior, Walmoli; Jahn, Tiago R.; Hahn, Tiago T.; Fontana, Thiago S.; Bolzan, Vagner

    2013-01-01

    MDose is a computer management system of personal dosimetry in diagnostic radiology services physician based on ISO 9001:9008 management system. According to Brazilian law all service radiology should implement a control of personal dosimetry in addition to radiation doses greater than 1.5 mSv/year service should do research of high dose, which is to identify the causes the resulting dose increase professional. This work is based on the use of the PDCA cycle in a JAVA software developed as a management method in the analysis of high doses in order to promote systematic and continuous improvement within the organization of radiological protection of workers

  7. The real-time price elasticity of electricity

    International Nuclear Information System (INIS)

    Lijesen, Mark G.

    2007-01-01

    The real-time price elasticity of electricity contains important information on the demand response of consumers to the volatility of peak prices. Despite the importance, empirical estimates of the real-time elasticity are hardly available. This paper provides a quantification of the real-time relationship between total peak demand and spot market prices. We find a low value for the real-time price elasticity, which may partly be explained from the fact that not all users observe the spot market price. If we correct for this phenomenon, we find the elasticity to be fairly low for consumers currently active in the spot market. If this conclusion applies to all users, this would imply a limited scope for government intervention in supply security issues. (Author)

  8. Internal sources dosimetry

    International Nuclear Information System (INIS)

    Savio, Eduardo

    1994-01-01

    The absorbed dose, need of estimation in risk evaluation in the application of radiopharmaceuticals in Nuclear Medicine practice,internal dosimetry,internal and external sources. Calculation methodology,Marinelli model,MIRD system for absorbed dose calculation based on biological parameters of radiopharmaceutical in human body or individual,energy of emitted radiations by administered radionuclide, fraction of emitted energy that is absorbed by target body.Limitation of the MIRD calculation model. A explanation of Marinelli method of dosimetry calculation,β dosimetry. Y dosimetry, effective dose, calculation in organs and tissues, examples. Bibliography .

  9. Real-time multi-function entry / exit management system

    International Nuclear Information System (INIS)

    Hiyama, Kazuhisa; Kurosawa, Akihiko; Asano, Norikazu; Onoue, Ryuji; Eguchi, Shohei; Hanawa, Nobuhiro; Hori, Naohiko; Ueda, Hisao; Kanda, Hiroaki

    2012-01-01

    In order to prevent radiation accident and its expansion, more integrated management system is required to safety management for radiation workers in the nuclear facilities. Therefore, JAEA (Japan Atomic Energy Agency) and HAM (Hitachi Aloka Medical, Ltd) have developed innovative real-time multi-function entry/exit management system which managed worker's exposed dose and position under the joint developed patent. This system is sharing worker's data among workers and server manager who is inside of or outside of building, such as worker's positing, health condition and exposed dose. It consists of mobile equipments, receivers, LAN, and servers system. This report summarizes the system to be installed in the JMTR. (author)

  10. AI based HealthCare Platform for Real Time, Predictive and Prescriptive Analytics using Reactive Programming

    Science.gov (United States)

    Kaur, Jagreet; Singh Mann, Kulwinder, Dr.

    2018-01-01

    AI in Healthcare needed to bring real, actionable insights and Individualized insights in real time for patients and Doctors to support treatment decisions., We need a Patient Centred Platform for integrating EHR Data, Patient Data, Prescriptions, Monitoring, Clinical research and Data. This paper proposes a generic architecture for enabling AI based healthcare analytics Platform by using open sources Technologies Apache beam, Apache Flink Apache Spark, Apache NiFi, Kafka, Tachyon, Gluster FS, NoSQL- Elasticsearch, Cassandra. This paper will show the importance of applying AI based predictive and prescriptive analytics techniques in Health sector. The system will be able to extract useful knowledge that helps in decision making and medical monitoring in real-time through an intelligent process analysis and big data processing.

  11. A Programmable Microkernel for Real-Time Systems

    Science.gov (United States)

    2003-06-01

    A Programmable Microkernel for Real - Time Systems Christoph M. Kirsch Thomas A. Henzinger Marco A.A. Sanvido Report No. UCB/CSD-3-1250 June 2003...TITLE AND SUBTITLE A Programmable Microkernel for Real - Time Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 A Programmable Microkernel for Real - Time Systems ∗ Christoph M

  12. Real-time object-oriented programming: studies and proposals

    International Nuclear Information System (INIS)

    Fouquier, Gilles

    1996-01-01

    This thesis contributes to the introduction of real-time features in object-oriented programming. Object-oriented programming favours modularity and reusability. Therefore, its application to real-time introduces many theoretical and conceptual problems. To deal with these problems, a new real-time object-oriented programming model is presented. This model is based on the active object model which allows concurrence and maintains the encapsulation property. The real-time aspect is treated by replacing the concept of task by the concept of method processing and by associating a real-time constraint to each message (priority or deadline). The set of all the running methods is scheduled. This model, called ATOME, contains several sub-models to deal with the usual concurrence control integrating their priority and deadline processing. The classical HPF and EDF scheduling avoid priority or deadline inversion. This model and its variants are new proposals to program real-time applications in the object-oriented way, therefore easing reusability and code writing. The feasibility of this approach is demonstrated by extending and existing active object-based language to real-time, in using the rules defined in the ATOME model. (author) [fr

  13. Real-time simulation of large-scale floods

    Science.gov (United States)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  14. Thermoluminescence dosimetry: State-of-the-art and frontiers of future research

    International Nuclear Information System (INIS)

    Horowitz, Y.S.

    2014-01-01

    The state-of-the-art in the use of thermoluminescence for the measurement of energy imparted by ionizing radiation is discussed. Emphasis is on the advantages obtainable by the use of computerized glow curve analysis in (i) quality control, (ii) low dose environmental dosimetry, (iii) medical applications (especially precision) and microdosimetric applications, and (iv) mixed field ionization-density–dosimetry. Possible frontiers of future research are highlighted: (i) vector representation in glow curve analysis, (ii) combined OSL/TL measurements, (iii) detection of sub-ionization electrons, (iv) requirements for new TL materials and (v) theoretical subjects involving kinetic modeling invoking localized/delocalized recombination applied to dose response and track structure theory including creation of defects. - Highlights:: • State of the art in thermoluminescence dosimetry. • Benefits of computerized glow curve deconvolution. • Frontiers of future research:new materials, mixed-field dosimetry. • Localized/delocalized kinetic theory:ionization density dependence. • Kinetic theory:creation of defects:track structure theory

  15. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    International Nuclear Information System (INIS)

    Min Yugang; Santhanam, Anand; Ruddy, Bari H; Neelakkantan, Harini; Meeks, Sanford L; Kupelian, Patrick A

    2010-01-01

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  16. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    Energy Technology Data Exchange (ETDEWEB)

    Min Yugang; Santhanam, Anand; Ruddy, Bari H [University of Central Florida, FL (United States); Neelakkantan, Harini; Meeks, Sanford L [M D Anderson Cancer Center Orlando, FL (United States); Kupelian, Patrick A, E-mail: anand.santhanam@orlandohealth.co [Department of Radiation Oncology, University of California, Los Angeles, CA (United States)

    2010-09-07

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  17. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion.

    Science.gov (United States)

    Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H; Meeks, Sanford L; Kupelian, Patrick A

    2010-09-07

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  18. Mechatronic modeling of real-time wheel-rail contact

    CERN Document Server

    Bosso, Nicola; Gugliotta, Antonio; Somà, Aurelio

    2013-01-01

    Real-time simulations of the behaviour of a rail vehicle require realistic solutions of the wheel-rail contact problem which can work in a real-time mode. Examples of such solutions for the online mode have been well known and are implemented within standard and commercial tools for the simulation codes for rail vehicle dynamics. This book is the result of the research activities carried out by the Railway Technology Lab of the Department of Mechanical and Aerospace Engineering at Politecnico di Torino. This book presents work on the project for the development of a real-time wheel-rail contact model and provides the simulation results obtained with dSpace real-time hardware. Besides this, the implementation of the contact model for the development of a real-time model for the complex mechatronic system of a scaled test rig is presented in this book and may be useful for the further validation of the real-time contact model with experiments on a full scale test rig.

  19. Fourth conference on radiation protection and dosimetry: Proceedings, program, and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Casson, W.H.; Thein, C.M.; Bogard, J.S. [eds.

    1994-10-01

    This Conference is the fourth in a series of conferences organized by staff members of Oak Ridge National Laboratory in an effort to improve communication in the field of radiation protection and dosimetry. Scientists, regulators, managers, professionals, technologists, and vendors from the United States and countries around the world have taken advantage of this opportunity to meet with their contemporaries and peers in order to exchange information and ideas. The program includes over 100 papers in 9 sessions, plus an additional session for works in progress. Papers are presented in external dosimetry, internal dosimetry, radiation protection programs and assessments, developments in instrumentation and materials, environmental and medical applications, and on topics related to standards, accreditation, and calibration. Individual papers are indexed separately on EDB.

  20. Monitoring external beam radiotherapy using real-time beam visualization

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Cesare H. [Department of Mechanical Engineering and Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Naczynski, Dominik J.; Yu, Shu-Jung S.; Xing, Lei, E-mail: lei@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States)

    2015-01-15

    Purpose: To characterize the performance of a novel radiation therapy monitoring technique that utilizes a flexible scintillating film, common optical detectors, and image processing algorithms for real-time beam visualization (RT-BV). Methods: Scintillating films were formed by mixing Gd{sub 2}O{sub 2}S:Tb (GOS) with silicone and casting the mixture at room temperature. The films were placed in the path of therapeutic beams generated by medical linear accelerators (LINAC). The emitted light was subsequently captured using a CMOS digital camera. Image processing algorithms were used to extract the intensity, shape, and location of the radiation field at various beam energies, dose rates, and collimator locations. The measurement results were compared with known collimator settings to validate the performance of the imaging system. Results: The RT-BV system achieved a sufficient contrast-to-noise ratio to enable real-time monitoring of the LINAC beam at 20 fps with normal ambient lighting in the LINAC room. The RT-BV system successfully identified collimator movements with sub-millimeter resolution. Conclusions: The RT-BV system is capable of localizing radiation therapy beams with sub-millimeter precision and tracking beam movement at video-rate exposure.

  1. Implementation of the International Code of Practice on Dosimetry in Diagnostic Radiology (TRS 457): Review of Test Results

    International Nuclear Information System (INIS)

    2011-01-01

    In 2007, the IAEA published Dosimetry in Diagnostic Radiology: An International Code of Practice (IAEA Technical Reports Series No. 457). This publication recommends procedures for calibration and dosimetric measurement for the attainment of standardized dosimetry. It also addresses requirements both in standards dosimetry laboratories, especially Secondary Standards Dosimetry Laboratories (SSDLs), and in clinical centres for radiology, as found in most hospitals. The implementation of TRS No. 457 decreases the uncertainty in the dosimetry of diagnostic radiology beams and provides Member States with a unified and consistent framework for dosimetry in diagnostic radiology, which previously did not exist. A coordinated research project (CRP E2.10.06) was established in order to provide practical guidance to professionals at SSDLs and to clinical medical physicists on the implementation of TRS No. 457. This includes the calibration of radiological dosimetry instrumentation, the dissemination of calibration coefficients to clinical centres and the establishment of dosimetric measurement processes in clinical settings. The main goals of the CRP were to: Test the procedures recommended in TRS No. 457 for calibration of radiation detectors in different types of diagnostic beams and measuring instruments for varying diagnostic X ray modalities; Test the clinical dosimetry procedures, including the use of phantoms and patient dose surveys; Report on the practical implementation of TRS No. 457 at both SSDLs and hospital sites. Testing of TRS No. 457 was performed by a group of medical physicists from hospitals and SSDLs from various institutions worldwide

  2. Low-cost flexible thin-film detector for medical dosimetry applications.

    Science.gov (United States)

    Zygmanski, P; Abkai, C; Han, Z; Shulevich, Y; Menichelli, D; Hesser, J

    2014-03-06

    -film detector sensors in a Solid Water phantom under various irradiation conditions. Different factors are considered in characterization of the device attributes: energies (80 kVp, 130 kVp, 6 MV, 15 MV), dose rates (different ms × mA, 100-600 MU/min), total doses (0.1 cGy-500 cGy), depths (0.5 cm-20 cm), irradiation angles with respect to the detector surface (0°-180°), and IMRT tests (closed MLC, sweeping gap). The detector response to MV radiation is both linear with total dose (~1-400 cGy) and independent of dose rate (100-600 Mu/min). The sensitivity per unit area of thin-film sensors is lower than for aSi flat-panel detectors, but sufficient to acquire stable and accurate signals during irradiations. The proposed thin-film photodiode system has properties which make it promising for clinical dosimetry. Due to the mechanical flexibility of each sensor and readout electronics, low-cost, and wireless data acquisition, it could be considered for quality assurance (e.g., IMRT, mechanical linac QA), as well as real-time dose monitoring in challenging setup configurations, including large area and 3D detection (multiple planes or curved surfaces).

  3. Internet-accessible real-time weather information system

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.; Desa, E.; Mehra, P.; Desa, E.; Gouveia, A.D.

    An internet-accessible real-time weather information system has been developed. This system provides real-time accessibility to weather information from a multitude of spatially distributed weather stations. The Internet connectivity also offers...

  4. Automated real-time software development

    Science.gov (United States)

    Jones, Denise R.; Walker, Carrie K.; Turkovich, John J.

    1993-01-01

    A Computer-Aided Software Engineering (CASE) system has been developed at the Charles Stark Draper Laboratory (CSDL) under the direction of the NASA Langley Research Center. The CSDL CASE tool provides an automated method of generating source code and hard copy documentation from functional application engineering specifications. The goal is to significantly reduce the cost of developing and maintaining real-time scientific and engineering software while increasing system reliability. This paper describes CSDL CASE and discusses demonstrations that used the tool to automatically generate real-time application code.

  5. Real-time analysis of total, elemental, and total speciated mercury

    International Nuclear Information System (INIS)

    Schlager, R.J.; Wilson, K.G.; Sappey, A.D.

    1995-01-01

    ADA Technologies, Inc., is developing a continuous emissions monitoring system that measures the concentrations of mercury in flue gas. Mercury is emitted as an air pollutant from a number of industrial processes. The largest contributors of these emissions are coal and oil combustion, municipal waste combustion, medical waste combustion, and the thermal treatment of hazardous materials. It is difficult, time consuming, and expensive to measure mercury emissions using current testing methods. Part of the difficulty lies in the fact that mercury is emitted from sources in several different forms, such as elemental mercury and mercuric chloride. The ADA analyzer measures these emissions in real time, thus providing a number of advantages over existing test methods: (1) it will provide a real-time measure of emission rates, (2) it will assure facility operators, regulators, and the public that emissions control systems are working at peak efficiency, and (3) it will provide information as to the nature of the emitted mercury (elemental mercury or speciated compounds). This update presents an overview of the CEM and describes features of key components of the monitoring system--the mercury detector, a mercury species converter, and the analyzer calibration system

  6. Real-time analysis of total, elemental, and total speciated mercury

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, R.J.; Wilson, K.G.; Sappey, A.D. [ADA Technologies, Inc., Englewood, CO (United States)

    1995-11-01

    ADA Technologies, Inc., is developing a continuous emissions monitoring system that measures the concentrations of mercury in flue gas. Mercury is emitted as an air pollutant from a number of industrial processes. The largest contributors of these emissions are coal and oil combustion, municipal waste combustion, medical waste combustion, and the thermal treatment of hazardous materials. It is difficult, time consuming, and expensive to measure mercury emissions using current testing methods. Part of the difficulty lies in the fact that mercury is emitted from sources in several different forms, such as elemental mercury and mercuric chloride. The ADA analyzer measures these emissions in real time, thus providing a number of advantages over existing test methods: (1) it will provide a real-time measure of emission rates, (2) it will assure facility operators, regulators, and the public that emissions control systems are working at peak efficiency, and (3) it will provide information as to the nature of the emitted mercury (elemental mercury or speciated compounds). This update presents an overview of the CEM and describes features of key components of the monitoring system--the mercury detector, a mercury species converter, and the analyzer calibration system.

  7. Geomagnetic Observatory Data for Real-Time Applications

    Science.gov (United States)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  8. Real-time image processing and control interface for remote operation of a microscope

    Science.gov (United States)

    Leng, Hesong; Wilder, Joseph

    1999-08-01

    A real-time image processing and control interface for remote operation of a microscope is presented in this paper. The system has achieved real-time color image display for 640 X 480 pixel images. Multi-resolution image representation can be provided for efficient transmission through the network. Through the control interface the computer can communicate with the programmable microscope via the RS232 serial ports. By choosing one of three scanning patterns, a sequence of images can be saved as BMP or PGM files to record information on an entire microscope slide. The system will be used by medical and graduate students at the University of Medicine and Dentistry of New Jersey for distance learning. It can be used in many network-based telepathology applications.

  9. Real-time earthquake data feasible

    Science.gov (United States)

    Bush, Susan

    Scientists agree that early warning devices and monitoring of both Hurricane Hugo and the Mt. Pinatubo volcanic eruption saved thousands of lives. What would it take to develop this sort of early warning and monitoring system for earthquake activity?Not all that much, claims a panel assigned to study the feasibility, costs, and technology needed to establish a real-time earthquake monitoring (RTEM) system. The panel, drafted by the National Academy of Science's Committee on Seismology, has presented its findings in Real-Time Earthquake Monitoring. The recently released report states that “present technology is entirely capable of recording and processing data so as to provide real-time information, enabling people to mitigate somewhat the earthquake disaster.” RTEM systems would consist of two parts—an early warning system that would give a few seconds warning before severe shaking, and immediate postquake information within minutes of the quake that would give actual measurements of the magnitude. At this time, however, this type of warning system has not been addressed at the national level for the United States and is not included in the National Earthquake Hazard Reduction Program, according to the report.

  10. Verifying real-time systems against scenario-based requirements

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Li, Shuhao; Nielsen, Brian

    2009-01-01

    We propose an approach to automatic verification of real-time systems against scenario-based requirements. A real-time system is modeled as a network of Timed Automata (TA), and a scenario-based requirement is specified as a Live Sequence Chart (LSC). We define a trace-based semantics for a kernel...... subset of the LSC language. By equivalently translating an LSC chart into an observer TA and then non-intrusively composing this observer with the original system model, the problem of verifying a real-time system against a scenario-based requirement reduces to a classical real-time model checking...

  11. Real-time UNIX in HEP data acquisition

    International Nuclear Information System (INIS)

    Buono, S.; Gaponenko, I.; Jones, R.; Mapelli, L.; Mornacchi, G.; Prigent, D.; Sanchez-Corral, E.; Skiadelli, M.; Toppers, A.; Duval, P.Y.; Ferrato, D.; Le Van Suu, A.; Qian, Z.; Rondot, C.; Ambrosini, G.; Fumagalli, G.; Aguer, M.; Huet, M.

    1994-01-01

    Today's experimentation in high energy physics is characterized by an increasing need for sensitivity to rare phenomena and complex physics signatures, which require the use of huge and sophisticated detectors and consequently a high performance readout and data acquisition. Multi-level triggering, hierarchical data collection and an always increasing amount of processing power, distributed throughout the data acquisition layers, will impose a number of features on the software environment, especially the need for a high level of standardization. Real-time UNIX seems, today, the best solution for the platform independence, operating system interface standards and real-time features necessary for data acquisition in HEP experiments. We present the results of the evaluation, in a realistic application environment, of a Real-Time UNIX operating system: the EP/LX real-time UNIX system. ((orig.))

  12. Temporal Specification and Verification of Real-Time Systems.

    Science.gov (United States)

    1991-08-30

    of concrete real - time systems can be modeled adequately. Specification: We present two conservative extensions of temporal logic that allow for the...logic. We present both model-checking algorithms for the automatic verification of finite-state real - time systems and proof methods for the deductive verification of real - time systems .

  13. ClockWork: a Real-Time Feasibility Analysis Tool

    NARCIS (Netherlands)

    Jansen, P.G.; Hanssen, F.T.Y.; Mullender, Sape J.

    ClockWork shows that we can improve the flexibility and efficiency of real-time kernels. We do this by proposing methods for scheduling based on so-called Real-Time Transactions. ClockWork uses Real-Time Transactions which allow scheduling decisions to be taken by the system. A programmer does not

  14. First steps towards real-time radiography at the NECTAR facility

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T. [Lehrstuhl fuer Radiochemie (RCM), Technische Universitaet Muenchen (TUM) (Germany)], E-mail: thomas.buecherl@radiochemie.de; Wagner, F.M. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universitaet Muenchen (Germany); Lierse von Gostomski, Ch. [Lehrstuhl fuer Radiochemie (RCM), Technische Universitaet Muenchen (TUM) (Germany)

    2009-06-21

    The beam tube SR10 at Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) provides an intense beam of fission neutrons for medical application (MEDAPP) and for radiography and tomography of technical and other objects (NECTAR). The high neutron flux of up to 9.8E+07 cm{sup -2} s{sup -1} (depending on filters and collimation) with a mean energy of about 1.9 MeV at the sample position at the NECTAR facility prompted an experimental feasibility study to investigate the potential for real-time (RT) radiography.

  15. Failure analysis of real-time systems

    International Nuclear Information System (INIS)

    Jalashgar, A.; Stoelen, K.

    1998-01-01

    This paper highlights essential aspects of real-time software systems that are strongly related to the failures and their course of propagation. The significant influence of means-oriented and goal-oriented system views in the description, understanding and analysing of those aspects is elaborated. The importance of performing failure analysis prior to reliability analysis of real-time systems is equally addressed. Problems of software reliability growth models taking the properties of such systems into account are discussed. Finally, the paper presents a preliminary study of a goal-oriented approach to model the static and dynamic characteristics of real-time systems, so that the corresponding analysis can be based on a more descriptive and informative picture of failures, their effects and the possibility of their occurrence. (author)

  16. Can Real-Time Data Also Be Climate Quality?

    Science.gov (United States)

    Brewer, M.; Wentz, F. J.

    2015-12-01

    GMI, AMSR-2 and WindSat herald a new era of highly accurate and timely microwave data products. Traditionally, there has been a large divide between real-time and re-analysis data products. What if these completely separate processing systems could be merged? Through advanced modeling and physically based algorithms, Remote Sensing Systems (RSS) has narrowed the gap between real-time and research-quality. Satellite microwave ocean products have proven useful for a wide array of timely Earth science applications. Through cloud SST capabilities have enormously benefited tropical cyclone forecasting and day to day fisheries management, to name a few. Oceanic wind vectors enhance operational safety of shipping and recreational boating. Atmospheric rivers are of import to many human endeavors, as are cloud cover and knowledge of precipitation events. Some activities benefit from both climate and real-time operational data used in conjunction. RSS has been consistently improving microwave Earth Science Data Records (ESDRs) for several decades, while making near real-time data publicly available for semi-operational use. These data streams have often been produced in 2 stages: near real-time, followed by research quality final files. Over the years, we have seen this time delay shrink from months or weeks to mere hours. As well, we have seen the quality of near real-time data improve to the point where the distinction starts to blur. We continue to work towards better and faster RFI filtering, adaptive algorithms and improved real-time validation statistics for earlier detection of problems. Can it be possible to produce climate quality data in real-time, and what would the advantages be? We will try to answer these questions…

  17. Integration of multidisciplinary technologies for real time target visualization and verification for radiotherapy

    Directory of Open Access Journals (Sweden)

    Chang WC

    2014-06-01

    Full Text Available Wen-Chung Chang,1,* Chin-Sheng Chen,2,* Hung-Chi Tai,3 Chia-Yuan Liu,4,5 Yu-Jen Chen3 1Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan; 2Graduate Institute of Automation Technology, National Taipei University of Technology, Taipei, Taiwan; 3Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan; 4Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan; 5Department of Medicine, Mackay Medical College, New Taipei City, Taiwan  *These authors contributed equally to this work Abstract: The current practice of radiotherapy examines target coverage solely from digitally reconstructed beam's eye view (BEV in a way that is indirectly accessible and that is not in real time. We aimed to visualize treatment targets in real time from each BEV. The image data of phantom or patients from ultrasound (US and computed tomography (CT scans were captured to perform image registration. We integrated US, CT, US/CT image registration, robotic manipulation of US, a radiation treatment planning system, and a linear accelerator to constitute an innovative target visualization system. The performance of this algorithm segmented the target organ in CT images, transformed and reconstructed US images to match each orientation, and generated image registration in real time mode with acceptable accuracy. This image transformation allowed physicians to visualize the CT image-reconstructed target via a US probe outside the BEV that was non-coplanar to the beam's plane. It allowed the physicians to remotely control the US probe that was equipped on a robotic arm to dynamically trace and real time monitor the coverage of the target within the BEV during a simulated beam-on situation. This target visualization system may provide a direct remotely accessible and real time way to visualize, verify, and ensure tumor targeting during radiotherapy. Keywords: ultrasound, computerized tomography

  18. Techniques for radiation measurements: Micro-dosimetry and dosimetry

    International Nuclear Information System (INIS)

    Waker, A. J.

    2006-01-01

    Experimental Micro-dosimetry is concerned with the determination of radiation quality and how this can be specified in terms of the distribution of energy deposition arising from the interaction of a radiation field with a particular target site. This paper discusses various techniques that have been developed to measure radiation energy deposition over the three orders of magnitude of site-size; nano-meter, micrometer and millimetre, which radiation biology suggests is required to fully account for radiation quality. Inevitably, much of the discussion will concern the use of tissue-equivalent proportional counters and variants of this device, but other technologies that have been studied, or are under development, for their potential in experimental Micro-dosimetry are also covered. Through an examination of some of the quantities used in radiation metrology and dosimetry the natural link with Micro-dosimetric techniques will be shown and the particular benefits of using Micro-dosimetric methods for dosimetry illustrated. (authors)

  19. Academic Training: Real Time Process Control - Lecture series

    CERN Multimedia

    Françoise Benz

    2004-01-01

    ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 7, 8 and 9 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Real Time Process Control T. Riesco / CERN-TS What exactly is meant by Real-time? There are several definitions of real-time, most of them contradictory. Unfortunately the topic is controversial, and there does not seem to be 100% agreement over the terminology. Real-time applications are becoming increasingly important in our daily lives and can be found in diverse environments such as the automatic braking system on an automobile, a lottery ticket system, or robotic environmental samplers on a space station. These lectures will introduce concepts and theory like basic concepts timing constraints, task scheduling, periodic server mechanisms, hard and soft real-time.ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch

  20. The role of the IAEA codes of practice in the radiation dosimetry dissemination chain

    International Nuclear Information System (INIS)

    Andreo, P.

    2002-01-01

    Full text: More than 30 years ago the International Atomic Energy Agency (IAEA) published on behalf of IAEA, WHO and PAHO its first Code of Practice (CoP) for radiotherapy dosimetry, TRS-110. Aimed at kV x-rays, 60 Co and 137 Cs therapy in developing countries, and based on roentgens and rads, 'old book' readers will still find interesting practical recommendations like QA procedures that include radiographs of the ionization chamber to check that the internal electrode construction has not moved. TRS-110 was also the first and only CoP with the distinction of including the name of the author in its cover, John B Massey, recognizing that IAEA acted solely as a publisher. For the following almost 20 years IAEA dosimetry activities have prioritized the development of a Network of Secondary Standard Dosimetry Laboratories (SSDLs). In addition to disseminating traceable radiation metrology standards, in some countries the SSDLs have played the important role of compensating the lack of qualified medical physicists. The balance between radiation metrology and medical physics has now shifted towards the first area and the IAEA recommends that SSDLs should not perform the duties of medical physicists except in dire situations. During this long period, there were no updates of TRS-110 or a new IAEA CoP published, even if different generations of national dosimetry protocols had emerged. The absence of IAEA recommendations favoured the arbitrary use of such national protocols, mostly issued in UK and USA, with the result that multiple protocols were used within a given country and there were no practical links between medical physics and SSDLs except for detector calibrations. The publication in 1987 of the TRS-277 Code of Practice established a quantum leap with regard to the Agency's role in harmonizing international radiotherapy dosimetry. A new generation of N K -based national protocols had emerged in the early eighties, and the authors of TRS-277 were chosen among

  1. Detection of Histoplasma capsulatum from clinical specimens by cycling probe-based real-time PCR and nested real-time PCR.

    Science.gov (United States)

    Muraosa, Yasunori; Toyotome, Takahito; Yahiro, Maki; Watanabe, Akira; Shikanai-Yasuda, Maria Aparecida; Kamei, Katsuhiko

    2016-05-01

    We developed new cycling probe-based real-time PCR and nested real-time PCR assays for the detection of Histoplasma capsulatum that were designed to detect the gene encoding N-acetylated α-linked acidic dipeptidase (NAALADase), which we previously identified as an H. capsulatum antigen reacting with sera from patients with histoplasmosis. Both assays specifically detected the DNAs of all H. capsulatum strains but not those of other fungi or human DNA. The limited of detection (LOD) of the real-time PCR assay was 10 DNA copies when using 10-fold serial dilutions of the standard plasmid DNA and 50 DNA copies when using human serum spiked with standard plasmid DNA. The nested real-time PCR improved the LOD to 5 DNA copies when using human serum spiked with standard plasmid DNA, which represents a 10-fold higher than that observed with the real-time PCR assay. To assess the ability of the two assays to diagnose histoplasmosis, we analyzed a small number of clinical specimens collected from five patients with histoplasmosis, such as sera (n = 4), formalin-fixed paraffin-embedded (FFPE) tissue (n = 4), and bronchoalveolar lavage fluid (BALF) (n = 1). Although clinical sensitivity of the real-time PCR assay was insufficiently sensitive (33%), the nested real-time PCR assay increased the clinical sensitivity (77%), suggesting it has a potential to be a useful method for detecting H. capsulatum DNA in clinical specimens. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Reviewing real-time performance of nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Preckshot, G.G.

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems

  3. Reviewing real-time performance of nuclear reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Preckshot, G.G. [Lawrence Livermore National Lab., CA (United States)

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems.

  4. Robotic 4D ultrasound solution for real-time visualization and teleoperation

    Directory of Open Access Journals (Sweden)

    Al-Badri Mohammed

    2017-09-01

    Full Text Available Automation of the image acquisition process via robotic solutions offer a large leap towards resolving ultrasound’s user-dependency. This paper, as part of a larger project aimed to develop a multipurpose 4d-ultrasonic force-sensitive robot for medical applications, focuses on achieving real-time remote visualisation for 4d ultrasound image transfer. This was possible through implementing our software modification on a GE Vivid 7 Dimension workstation, which operates a matrix array probe controlled by a KUKA LBR iiwa 7 7-DOF robotic arm. With the help of robotic positioning and the matrix array probe, fast volumetric imaging of target regions was feasible. By testing ultrasound volumes, which were roughly 880 kB in size, while using gigabit Ethernet connection, a latency of ∼57 ms was achievable for volume transfer between the ultrasound station and a remote client application, which as a result allows a frame count of 17.4 fps. Our modification thus offers for the first time real-time remote visualization, recording and control of 4d ultrasound data, which can be implemented in teleoperation.

  5. Connecting real-time data to algorithms and databases: EarthCube's Cloud-Hosted Real-time Data Services for the Geosciences (CHORDS)

    Science.gov (United States)

    Daniels, M. D.; Graves, S. J.; Kerkez, B.; Chandrasekar, V.; Vernon, F.; Martin, C. L.; Maskey, M.; Keiser, K.; Dye, M. J.

    2015-12-01

    The Cloud-Hosted Real-time Data Services for the Geosciences (CHORDS) project was funded under the National Science Foundation's EarthCube initiative. CHORDS addresses the ever-increasing importance of real-time scientific data in the geosciences, particularly in mission critical scenarios, where informed decisions must be made rapidly. Access to constant streams of real-time data also allow many new transient phenomena in space-time to be observed, however, much of these streaming data are either completely inaccessible or only available to proprietary in-house tools or displays. Small research teams do not have the resources to develop tools for the broad dissemination of their unique real-time data and require an easy to use, scalable, cloud-based solution to facilitate this access. CHORDS will make these diverse streams of real-time data available to the broader geosciences community. This talk will highlight a recently developed CHORDS portal tools and processing systems which address some of the gaps in handling real-time data, particularly in the provisioning of data from the "long-tail" scientific community through a simple interface that is deployed in the cloud, is scalable and is able to be customized by research teams. A running portal, with operational data feeds from across the nation, will be presented. The processing within the CHORDS system will expose these real-time streams via standard services from the Open Geospatial Consortium (OGC) in a way that is simple and transparent to the data provider, while maximizing the usage of these investments. The ingestion of high velocity, high volume and diverse data has allowed the project to explore a NoSQL database implementation. Broad use of the CHORDS framework by geoscientists will help to facilitate adaptive experimentation, model assimilation and real-time hypothesis testing.

  6. Time Series Discord Detection in Medical Data using a Parallel Relational Database

    Energy Technology Data Exchange (ETDEWEB)

    Woodbridge, Diane; Rintoul, Mark Daniel; Wilson, Andrew T.; Goldstein, Richard

    2015-10-01

    Recent advances in sensor technology have made continuous real-time health monitoring available in both hospital and non-hospital settings. Since data collected from high frequency medical sensors includes a huge amount of data, storing and processing continuous medical data is an emerging big data area. Especially detecting anomaly in real time is important for patients’ emergency detection and prevention. A time series discord indicates a subsequence that has the maximum difference to the rest of the time series subsequences, meaning that it has abnormal or unusual data trends. In this study, we implemented two versions of time series discord detection algorithms on a high performance parallel database management system (DBMS) and applied them to 240 Hz waveform data collected from 9,723 patients. The initial brute force version of the discord detection algorithm takes each possible subsequence and calculates a distance to the nearest non-self match to find the biggest discords in time series. For the heuristic version of the algorithm, a combination of an array and a trie structure was applied to order time series data for enhancing time efficiency. The study results showed efficient data loading, decoding and discord searches in a large amount of data, benefiting from the time series discord detection algorithm and the architectural characteristics of the parallel DBMS including data compression, data pipe-lining, and task scheduling.

  7. Thermoluminescence albedo-neutron dosimetry

    International Nuclear Information System (INIS)

    Strand, T.; Storruste, A.

    1986-10-01

    The report discusses neutron detection with respect to dosimetry and compares different thermoluminescent dosimetry materials for neutron dosimetry. Construction and calibration of a thermoluminescence albedo neutron dosemeter, developed by the authors, is described

  8. An IAEA Survey of Dosimetry Audit Networks for Radiotherapy

    International Nuclear Information System (INIS)

    Grochowska, Paulina; Izewska, Joanna

    2013-01-01

    A Survey: In 2010, the IAEA undertook a task to investigate and review the coverage and operations of national and international dosimetry audit programmes for radiotherapy. The aim was to organize the global database describing the activities of dosimetry audit networks in radiotherapy. A dosimetry audit questionnaire has been designed at an IAEA consultants' meeting held in 2010 for organizations conducting various levels of dosimetry audits for radiotherapy. Using this questionnaire, a survey was conducted for the first time in 2010 and repeated in 2011. Request for information on different aspects of the dosimetry audit was included, such as the audit framework and resources, its coverage and scope, the dosimetry system used and the modes of audit operation, i.e. remotely and through on-site visits. The IAEA questionnaire was sent to over 80 organizations, members of the IAEA/WHO Network of Secondary Standards Dosimetry Laboratories (SSDLs) and other organizations known for having operated dosimetry audits for radiotherapy in their countries or internationally. Survey results and discussion: In response to the IAEA survey, 53 organizations in 45 countries confirmed that they operate dosimetry audit services for radiotherapy. Mostly, audits are conducted nationally, however there are five organizations offering audits abroad, with two of them operating in various parts of the world and three of them at the regional level, auditing radiotherapy centres in neighbouring countries. The distribution of dosimetry audit services in the world is given. (author)

  9. Applications of gel dosimetry

    International Nuclear Information System (INIS)

    Ibbott, Geoffrey S

    2004-01-01

    Gel dosimetry has been examined as a clinical dosimeter since the 1950s. During the last two decades, however, a rapid increase in the number of investigators has been seen, and the body of knowledge regarding gel dosimetry has expanded considerably. Gel dosimetry is still considered a research project, and the introduction of this tool into clinical use is proceeding slowly. This paper will review the characteristics of gel dosimetry that make it desirable for clinical use, the postulated and demonstrated applications of gel dosimetry, and some complications, set-backs, and failures that have contributed to the slow introduction into routine clinical use

  10. NRPB patient dosimetry service

    International Nuclear Information System (INIS)

    Shrimpton, P.; Hillier, M.; Bungay, D.; Wall, B.

    1994-01-01

    For nearly 20 years, thermoluminescent dosemeters (TLDs) have been used by NRPB to investigate the doses received by patients undergoing diagnostic examinations with x-rays, and these measurements have formed the basis for national recommendations on patient protection. Monitoring typical levels of patient dose should represent an essential element of routine quality assurance in x-ray departments. In order to promote more widespread measurements in hospitals, NRPB has drawn on a wealth of experience to establish a high-quality service providing TLDs for medical dosimetry by post. (author)

  11. Real-time monitoring of drowsiness through wireless nanosensor systems

    Science.gov (United States)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Detection of sleepiness and drowsiness in human beings has been a daunting task for both engineering and medical technologies. Accuracy, precision and promptness of detection have always been an issue that has to be dealt by technologists. Generally, the bio potential signals - ECG, EOG, EEG and EMG are used to classify and discriminate sleep from being awake. However, the potential drawbacks may be high false detections, low precision, obtrusiveness, aftermath analysis, etc. To overcome the disadvantages, this paper reviews the design aspects of a wireless and a real time monitoring system to track sleep and detect fatigue. This concept involves the use of EOG and EEG to measure the blink rate and asses the person's condition. In this user friendly and intuitive approach, EOG and EEG signals are obtained by the textile based nanosensors mounted on the inner side of a flexible headband. The acquired signals are then electrically transmitted to the data processing and transmission unit, which transmits the processed data to the receiver/monitoring module through ZigBee communication. This system is equipped with a software program to process, feature extract, analyze, display and store the information. Thereby, immediate detection of a person falling asleep is made feasible and, tracking the sleep cycle continuously provides an insight about the fatigue level. This approach of using a wireless, real time, dry sensor on a flexible substrate mitigates obtrusiveness that is expected from a wearable system. We have previously presented the results of the aforementioned wearable systems. This paper aims to extend our work conceptually through a review of engineering and medical techniques involved in wearable systems to detect drowsiness.

  12. Virtual timers in hierarchical real-time systems

    NARCIS (Netherlands)

    Heuvel, van den M.M.H.P.; Holenderski, M.J.; Cools, W.A.; Bril, R.J.; Lukkien, J.J.; Zhu, D.

    2009-01-01

    Hierarchical scheduling frameworks (HSFs) provide means for composing complex real-time systems from welldefined subsystems. This paper describes an approach to provide hierarchically scheduled real-time applications with virtual event timers, motivated by the need for integrating priority

  13. Real-time video compressing under DSP/BIOS

    Science.gov (United States)

    Chen, Qiu-ping; Li, Gui-ju

    2009-10-01

    This paper presents real-time MPEG-4 Simple Profile video compressing based on the DSP processor. The programming framework of video compressing is constructed using TMS320C6416 Microprocessor, TDS510 simulator and PC. It uses embedded real-time operating system DSP/BIOS and the API functions to build periodic function, tasks and interruptions etcs. Realize real-time video compressing. To the questions of data transferring among the system. Based on the architecture of the C64x DSP, utilized double buffer switched and EDMA data transfer controller to transit data from external memory to internal, and realize data transition and processing at the same time; the architecture level optimizations are used to improve software pipeline. The system used DSP/BIOS to realize multi-thread scheduling. The whole system realizes high speed transition of a great deal of data. Experimental results show the encoder can realize real-time encoding of 768*576, 25 frame/s video images.

  14. Real-time ISEE data system

    Science.gov (United States)

    Tsurutani, B. T.; Baker, D. N.

    1979-01-01

    A real-time ISEE data system directed toward predicting geomagnetic substorms and storms is discussed. Such a system may allow up to 60+ minutes advance warning of magnetospheric substorms and up to 30 minute warnings of geomagnetic storms (and other disturbances) induced by high-speed streams and solar flares. The proposed system utilizes existing capabilities of several agencies (NASA, NOAA, USAF), and thereby minimizes costs. This same concept may be applicable to data from other spacecraft, and other NASA centers; thus, each individual experimenter can receive quick-look data in real time at his or her base institution.

  15. Noninvasive Strategy Based on Real-Time in Vivo Cataluminescence Monitoring for Clinical Breath Analysis.

    Science.gov (United States)

    Zhang, Runkun; Huang, Wanting; Li, Gongke; Hu, Yufei

    2017-03-21

    The development of noninvasive methods for real-time in vivo analysis is of great significant, which provides powerful tools for medical research and clinical diagnosis. In the present work, we described a new strategy based on cataluminescence (CTL) for real-time in vivo clinical breath analysis. To illustrate such strategy, a homemade real-time CTL monitoring system characterized by coupling an online sampling device with a CTL sensor for sevoflurane (SVF) was designed, and a real-time in vivo method for the monitoring of SVF in exhaled breath was proposed. The accuracy of the method was evaluated by analyzing the real exhaled breath samples, and the results were compared with those obtained by GC/MS. The measured data obtained by the two methods were in good agreement. Subsequently, the method was applied to real-time monitoring of SVF in exhaled breath from rat models of the control group to investigate elimination pharmacokinetics. In order to further probe the potential of the method for clinical application, the elimination pharmacokinetics of SVF from rat models of control group, liver fibrosis group alcohol liver group, and nonalcoholic fatty liver group were monitored by the method. The raw data of pharmacokinetics of different groups were normalized and subsequently subjected to linear discriminant analysis (LDA). These data were transformed to canonical scores which were visualized as well-clustered with the classification accuracy of 100%, and the overall accuracy of leave-one-out cross-validation procedure is 88%, thereby indicating the utility of the potential of the method for liver disease diagnosis. Our strategy undoubtedly opens up a new door for real-time clinical analysis in a pain-free and noninvasive way and also guides a promising development direction for CTL.

  16. Interactive-cut: Real-time feedback segmentation for translational research.

    Science.gov (United States)

    Egger, Jan; Lüddemann, Tobias; Schwarzenberg, Robert; Freisleben, Bernd; Nimsky, Christopher

    2014-06-01

    In this contribution, a scale-invariant image segmentation algorithm is introduced that "wraps" the algorithm's parameters for the user by its interactive behavior, avoiding the definition of "arbitrary" numbers that the user cannot really understand. Therefore, we designed a specific graph-based segmentation method that only requires a single seed-point inside the target-structure from the user and is thus particularly suitable for immediate processing and interactive, real-time adjustments by the user. In addition, color or gray value information that is needed for the approach can be automatically extracted around the user-defined seed point. Furthermore, the graph is constructed in such a way, so that a polynomial-time mincut computation can provide the segmentation result within a second on an up-to-date computer. The algorithm presented here has been evaluated with fixed seed points on 2D and 3D medical image data, such as brain tumors, cerebral aneurysms and vertebral bodies. Direct comparison of the obtained automatic segmentation results with costlier, manual slice-by-slice segmentations performed by trained physicians, suggest a strong medical relevance of this interactive approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A distributed agent architecture for real-time knowledge-based systems: Real-time expert systems project, phase 1

    Science.gov (United States)

    Lee, S. Daniel

    1990-01-01

    We propose a distributed agent architecture (DAA) that can support a variety of paradigms based on both traditional real-time computing and artificial intelligence. DAA consists of distributed agents that are classified into two categories: reactive and cognitive. Reactive agents can be implemented directly in Ada to meet hard real-time requirements and be deployed on on-board embedded processors. A traditional real-time computing methodology under consideration is the rate monotonic theory that can guarantee schedulability based on analytical methods. AI techniques under consideration for reactive agents are approximate or anytime reasoning that can be implemented using Bayesian belief networks as in Guardian. Cognitive agents are traditional expert systems that can be implemented in ART-Ada to meet soft real-time requirements. During the initial design of cognitive agents, it is critical to consider the migration path that would allow initial deployment on ground-based workstations with eventual deployment on on-board processors. ART-Ada technology enables this migration while Lisp-based technologies make it difficult if not impossible. In addition to reactive and cognitive agents, a meta-level agent would be needed to coordinate multiple agents and to provide meta-level control.

  18. MO-B-BRB-04: 3D Dosimetry in End-To-End Dosimetry QA

    Energy Technology Data Exchange (ETDEWEB)

    Ibbott, G. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by the development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an

  19. GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method

    Science.gov (United States)

    Kim, Byungyeon; Park, Byungjun; Lee, Seungrag; Won, Youngjae

    2016-01-01

    We demonstrated GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method. Our algorithm was verified for various fluorescence lifetimes and photon numbers. The GPU processing time was faster than the physical scanning time for images up to 800 × 800, and more than 149 times faster than a single core CPU. The frame rate of our system was demonstrated to be 13 fps for a 200 × 200 pixel image when observing maize vascular tissue. This system can be utilized for observing dynamic biological reactions, medical diagnosis, and real-time industrial inspection. PMID:28018724

  20. A Process For Performance Evaluation Of Real-Time Systems

    Directory of Open Access Journals (Sweden)

    Andrew J. Kornecki

    2003-12-01

    Full Text Available Real-time developers and engineers must not only meet the system functional requirements, but also the stringent timing requirements. One of the critical decisions leading to meeting these timing requirements is the selection of an operating system under which the software will be developed and run. Although there is ample documentation on real-time systems performance and evaluation, little can be found that combines such information into an efficient process for use by developers. As the software industry moves towards clearly defined processes, creation of appropriate guidelines describing a process for performance evaluation of real-time system would greatly benefit real-time developers. This technology transition research focuses on developing such a process. PROPERT (PROcess for Performance Evaluation of Real Time systems - the process described in this paper - is based upon established techniques for evaluating real-time systems. It organizes already existing real-time performance criteria and assessment techniques in a manner consistent with a well-formed process, based on the Personal Software Process concepts.

  1. Quantitative (real-time) PCR

    International Nuclear Information System (INIS)

    Denman, S.E.; McSweeney, C.S.

    2005-01-01

    Many nucleic acid-based probe and PCR assays have been developed for the detection tracking of specific microbes within the rumen ecosystem. Conventional PCR assays detect PCR products at the end stage of each PCR reaction, where exponential amplification is no longer being achieved. This approach can result in different end product (amplicon) quantities being generated. In contrast, using quantitative, or real-time PCR, quantification of the amplicon is performed not at the end of the reaction, but rather during exponential amplification, where theoretically each cycle will result in a doubling of product being created. For real-time PCR, the cycle at which fluorescence is deemed to be detectable above the background during the exponential phase is termed the cycle threshold (Ct). The Ct values obtained are then used for quantitation, which will be discussed later

  2. Real-time heart rate measurement for multi-people using compressive tracking

    Science.gov (United States)

    Liu, Lingling; Zhao, Yuejin; Liu, Ming; Kong, Lingqin; Dong, Liquan; Ma, Feilong; Pang, Zongguang; Cai, Zhi; Zhang, Yachu; Hua, Peng; Yuan, Ruifeng

    2017-09-01

    The rise of aging population has created a demand for inexpensive, unobtrusive, automated health care solutions. Image PhotoPlethysmoGraphy(IPPG) aids in the development of these solutions by allowing for the extraction of physiological signals from video data. However, the main deficiencies of the recent IPPG methods are non-automated, non-real-time and susceptible to motion artifacts(MA). In this paper, a real-time heart rate(HR) detection method for multiple subjects simultaneously was proposed and realized using the open computer vision(openCV) library, which consists of getting multiple subjects' facial video automatically through a Webcam, detecting the region of interest (ROI) in the video, reducing the false detection rate by our improved Adaboost algorithm, reducing the MA by our improved compress tracking(CT) algorithm, wavelet noise-suppression algorithm for denoising and multi-threads for higher detection speed. For comparison, HR was measured simultaneously using a medical pulse oximetry device for every subject during all sessions. Experimental results on a data set of 30 subjects show that the max average absolute error of heart rate estimation is less than 8 beats per minute (BPM), and the processing speed of every frame has almost reached real-time: the experiments with video recordings of ten subjects under the condition of the pixel resolution of 600× 800 pixels show that the average HR detection time of 10 subjects was about 17 frames per second (fps).

  3. Poster - 16: Time-resolved diode dosimetry for in vivo proton therapy range verification: calibration through numerical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Toltz, Allison; Hoesl, Michaela; Schuemann, Jan; Seuntjens, Jan; Lu, Hsiao-Ming; Paganetti, Harald [McGill University, Harvard University, Massachusetts General Hospital, McGill University, Massachusetts General Hospital, Massachusetts General Hospital (United States)

    2016-08-15

    Purpose: A method to refine the implementation of an in vivo, adaptive proton therapy range verification methodology was investigated. Simulation experiments and in-phantom measurements were compared to validate the calibration procedure of a time-resolved diode dosimetry technique. Methods: A silicon diode array system has been developed and experimentally tested in phantom for passively scattered proton beam range verification by correlating properties of the detector signal to the water equivalent path length (WEPL). The implementation of this system requires a set of calibration measurements to establish a beam-specific diode response to WEPL fit for the selected ‘scout’ beam in a solid water phantom. This process is both tedious, as it necessitates a separate set of measurements for every ‘scout’ beam that may be appropriate to the clinical case, as well as inconvenient due to limited access to the clinical beamline. The diode response to WEPL relationship for a given ‘scout’ beam may be determined within a simulation environment, facilitating the applicability of this dosimetry technique. Measurements for three ‘scout’ beams were compared against simulated detector response with Monte Carlo methods using the Tool for Particle Simulation (TOPAS). Results: Detector response in water equivalent plastic was successfully validated against simulation for spread out Bragg peaks of range 10 cm, 15 cm, and 21 cm (168 MeV, 177 MeV, and 210 MeV) with adjusted R{sup 2} of 0.998. Conclusion: Feasibility has been shown for performing calibration of detector response for a given ‘scout’ beam through simulation for the time resolved diode dosimetry technique.

  4. Quantification of complex blood flow using real-time in vivo vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per

    2010-01-01

    A quantitative method for distinguishing complex from non-complex flow patterns in ultrasound is presented. A new commercial BK Medical ultrasound scanner uses the Transverse Oscillation vector flow technique for visualising flow patterns in real-time. In vivo vector flow data of the blood flow...... patterns of the common carotid artery and the carotid bulb were obtained simultaneously as the basis for quantifying complex flow. The carotid bifurcation of two healthy volunteers were scanned. The presence of complex flow patterns from eight cardiac cycles were evaluated by three experts in medical...... for automatic detection of complex flow patterns....

  5. Real-time holographic endoscopy

    Science.gov (United States)

    Smigielski, Paul; Albe, Felix; Dischli, Bernard

    1992-08-01

    Some new experiments concerning holographic endoscopy are presented. The quantitative measurements of deformations of objects are obtained by the double-exposure and double- reference beam method, using either a cw-laser or a pulsed laser. Qualitative experiments using an argon laser with time-average holographic endoscopy are also presented. A video film on real-time endoscopic holographic interferometry was recorded with the help of a frequency-doubled YAG-laser working at 25 Hz for the first time.

  6. Improvement of Accuracy in Environmental Dosimetry by TLD Cards Using Three-dimensional Calibration Method

    Directory of Open Access Journals (Sweden)

    HosseiniAliabadi S. J.

    2015-06-01

    Full Text Available Background: The angular dependency of response for TLD cards may cause deviation from its true value on the results of environmental dosimetry, since TLDs may be exposed to radiation at different angles of incidence from the surrounding area. Objective: A 3D setting of TLD cards has been calibrated isotropically in a standard radiation field to evaluate the improvement of the accuracy of measurement for environmental dosimetry. Method: Three personal TLD cards were rectangularly placed in a cylindrical holder, and calibrated using 1D and 3D calibration methods. Then, the dosimeter has been used simultaneously with a reference instrument in a real radiation field measuring the accumulated dose within a time interval. Result: The results show that the accuracy of measurement has been improved by 6.5% using 3D calibration factor in comparison with that of normal 1D calibration method. Conclusion: This system can be utilized in large scale environmental monitoring with a higher accuracy

  7. Working conditions analysis according T.L. personal dosimetry results

    International Nuclear Information System (INIS)

    Marinkovic, O.; Jovanovic, S.

    2006-01-01

    Laboratory for personal dosimetry in the Institute of Occupational and Radiological Health, Belgrade, used TLD more than twenty years. Before that, film dosimetry was main method in external monitoring. T.L. dosimetry was started with Reader Toledo 654 and crystals Mg B 4 O 7 . Finally, from 1992 laboratory has Harshaw TLD Reader Model 6600. Dosimeters are crystals LiF type 100, card packed, worn in standard filtrated holders. Personal dosimetry data are keeping 30 years for each worker according to regulations. The data from 1990 are in electronic form. Long experience enables conclusion that new technique means more advantages in practice. Recommendation from this laboratory practice refers to TLD read-out cycle. The longest period should be one month. LiF is recommended crystal. Glow curve deconvolution gives information about chronological irradiation. It is very important to conclude was dosimetry irradiated by 'one-shot' or continuously. Preparing calibration for determination the time since accident laboratory has to define adequate dose calibration methodology including low temperature peaks. Possibility to follow working conditions analyzing TLD glow curve is much more important than low decrease of dose severity. Time depend analyze is not possible if TLD would be read-out more than (approximately) six weeks after irradiation. If ionizing sources produce such low dose and has negligible probability of accidental exposure (according nowadays regulation read-out frequency could be once in three month), the recommendation is not to use external personal monitoring. Reading personal dosimeters once in three months deemed not useful. Complete and successful personal dosimetry dictates using system that enables glow curve shape representation to be sure that signal is ionizing irradiation result or not. Time depend analyze imparts information about protection permanence. In special circumstance, it is possible to estimate the time of exposure. This is extremely

  8. Real-time computational photon-counting LiDAR

    Science.gov (United States)

    Edgar, Matthew; Johnson, Steven; Phillips, David; Padgett, Miles

    2018-03-01

    The availability of compact, low-cost, and high-speed MEMS-based spatial light modulators has generated widespread interest in alternative sampling strategies for imaging systems utilizing single-pixel detectors. The development of compressed sensing schemes for real-time computational imaging may have promising commercial applications for high-performance detectors, where the availability of focal plane arrays is expensive or otherwise limited. We discuss the research and development of a prototype light detection and ranging (LiDAR) system via direct time of flight, which utilizes a single high-sensitivity photon-counting detector and fast-timing electronics to recover millimeter accuracy three-dimensional images in real time. The development of low-cost real time computational LiDAR systems could have importance for applications in security, defense, and autonomous vehicles.

  9. Holographic method coupled with an optoelectronic interface applied in the ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Nicolau-Rebigan, S.; Sporea, D.; Niculescu, V.I.R.

    2000-01-01

    The paper presents a holographic method applied in the ionizing radiation dosimetry. It is possible to use two types of holographic interferometry like as double exposure holographic interferometry, or fast real time holographic interferometry. In this paper the applications of holographic interferometry to ionizing radiation dosimetry are presented. The determination of the accurate value of dose delivered by an ionizing radiation source (released energy per mass unit) is a complex problem which imposes different solutions depending on experimental parameters and it is solved with a double exposure holographic interferometric method associated with an optoelectronic interface and Z80 microprocessor. The method can determine the absorbed integral dose as well as the three-dimensional distribution of dose in given volume. The paper presents some results obtained in radiation dosimetry. Original mathematical relations for integral absorbed dose in irreversible radiolyzing liquids where derived. Irradiation effects can be estimated from the holographic fringes displacement and density. To measure these parameters, the obtained holographic interferograms were picked-up by a closed TV circuit system in such a way that a selected TV line explores the picture along the direction of interest using a special designed interface, a Z80 and our microprocessor system captures data along the selected TV line. When the integral dose is to be measured the microprocessor computes it from the information contained in the fringes distribution, according to the proposed formulae. Integral absorbed dose and spatial dose distribution can be estimated with an accuracy better than 4%. Some advantages of this method are outlined comparatively with conventional method in radiation dosimetry. The paper presents an original holographic set-up with an electronic interface, assisted by a Z80 microprocessor and used for nondestructive testing of transparent objects at the laser wave length

  10. An image-based approach to the rendering of crowds in real-time

    OpenAIRE

    Tecchia, Franco

    2007-01-01

    The wide use of computer graphics in games, entertainment, medical, architectural and cultural applications, has led it to becoming a prevalent area of research. Games and entertainment in general have become one of the driving forces of the real-time computer graphics industry, bringing reasonably realistic, complex and appealing virtual worlds to the mass-market. At the current stage of technology, an user can interactively navigate through complex, polygon-based scenes rendered with sophis...

  11. Time-resolved plastic scintillator dosimetry in a dynamic thorax phantom

    DEFF Research Database (Denmark)

    Sibolt, Patrik; Andersen, Claus E.; Ottosson, Wiviann

    2017-01-01

    in a lung. The phantom motion was controlled by a script in-house developed using LabVIEW (National Instruments) and synchronized with the in-house developed ME40 scintillator dosimetry system (DTU Nutech). The dose in the center of the tumor was measured, using a BCF-60 plastic scintillator detector (Saint...

  12. Real time magnetic resonance guided endomyocardial local delivery

    Science.gov (United States)

    Corti, R; Badimon, J; Mizsei, G; Macaluso, F; Lee, M; Licato, P; Viles-Gonzalez, J F; Fuster, V; Sherman, W

    2005-01-01

    Objective: To investigate the feasibility of targeting various areas of left ventricle myocardium under real time magnetic resonance (MR) imaging with a customised injection catheter equipped with a miniaturised coil. Design: A needle injection catheter with a mounted resonant solenoid circuit (coil) at its tip was designed and constructed. A 1.5 T MR scanner with customised real time sequence combined with in-room scan running capabilities was used. With this system, various myocardial areas within the left ventricle were targeted and injected with a gadolinium-diethylenetriaminepentaacetic acid (DTPA) and Indian ink mixture. Results: Real time sequencing at 10 frames/s allowed clear visualisation of the moving catheter and its transit through the aorta into the ventricle, as well as targeting of all ventricle wall segments without further image enhancement techniques. All injections were visualised by real time MR imaging and verified by gross pathology. Conclusion: The tracking device allowed real time in vivo visualisation of catheters in the aorta and left ventricle as well as precise targeting of myocardial areas. The use of this real time catheter tracking may enable precise and adequate delivery of agents for tissue regeneration. PMID:15710717

  13. Prototyping Real-Time Control in the SPS

    CERN Document Server

    Andersson, J; Jensen, L; Jones, R; Lamont, M; Wenninger, J; Wijnands, Thijs; CERN. Geneva. AB Department

    2003-01-01

    Real-time control of beam related parameters will be required in the LHC. In order to gain experience of the issues involved in implementing distributed real-time control over large distances, a prototype local orbit feedback system is being developed in the SPS. This will use 6 pickups, each equipped with the full LHC acquisition electronics chain and linked to a real-time communication and feedback system. This reports summarises the .rst tests performed with this system in October 2002, where the data from four pickups was successfully acquired and displayed at 10 Hz in the control room.

  14. Formal methods for dependable real-time systems

    Science.gov (United States)

    Rushby, John

    1993-01-01

    The motivation for using formal methods to specify and reason about real time properties is outlined and approaches that were proposed and used are sketched. The formal verifications of clock synchronization algorithms are concluded as showing that mechanically supported reasoning about complex real time behavior is feasible. However, there was significant increase in the effectiveness of verification systems since those verifications were performed, at it is to be expected that verifications of comparable difficulty will become fairly routine. The current challenge lies in developing perspicuous and economical approaches to the formalization and specification of real time properties.

  15. Real time detecting system for turning force

    Energy Technology Data Exchange (ETDEWEB)

    Xiaobin, Yue [China Academy of Engineering Physics, Mianyang (China). Inst. of Machinery Manufacturing Technology

    2001-07-01

    How to get the real-time value of forces dropped on the tool in the course of processing by piezoelectric sensors is introduced. First, the analog signals of the cutting force were achieved by these sensors, amplified and transferred into digital signals by A/D transferring card. Then real-time software reads the information, put it into its own coordinate, drew the curve of forces, displayed it on the screen by the real time and saved it for the technicians to analyze the situation of the tool. So the cutting parameter can be optimized to improve surface quality of the pieces.

  16. Semiconductor dosimetry system for gamma and neutron radiation

    International Nuclear Information System (INIS)

    Savic, Z.; Pavlovic, Z.

    1995-01-01

    The semiconductor dosimetry system for gamma and neutron radiation based on pMOS transistor and PIN diode is described. It is intended for tactical or accidental personal dosimetry. The production steps are given. The temperature, dose and time (fading) response are reported. Hardware and software requirements which are needed for obtaining the desired measurement error are pointed. (author)

  17. Real Time Grid Reliability Management 2005

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

    2008-07-07

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

  18. Real-time systems scheduling 2 focuses

    CERN Document Server

    Chetto, Maryline

    2014-01-01

    Real-time systems are used in a wide range of applications, including control, sensing, multimedia, etc. Scheduling is a central problem for these computing/communication systems since it is responsible for software execution in a timely manner. This book, the second of two volumes on the subject, brings together knowledge on specific topics and discusses the recent advances for some of them.  It addresses foundations as well as the latest advances and findings in real-time scheduling, giving comprehensive references to important papers, but the chapters are short and not overloaded with co

  19. Real-time Avatar Animation from a Single Image.

    Science.gov (United States)

    Saragih, Jason M; Lucey, Simon; Cohn, Jeffrey F

    2011-01-01

    A real time facial puppetry system is presented. Compared with existing systems, the proposed method requires no special hardware, runs in real time (23 frames-per-second), and requires only a single image of the avatar and user. The user's facial expression is captured through a real-time 3D non-rigid tracking system. Expression transfer is achieved by combining a generic expression model with synthetically generated examples that better capture person specific characteristics. Performance of the system is evaluated on avatars of real people as well as masks and cartoon characters.

  20. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 72155 http://cern.ch/rp-dosimetry