WorldWideScience

Sample records for real-time computed tomography

  1. Axial Tomography from Digitized Real Time Radiography

    Science.gov (United States)

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  2. Data acquisition and real-time bolometer tomography using LabVIEW RT

    International Nuclear Information System (INIS)

    Giannone, L.; Eich, T.; Fuchs, J.C.; Ravindran, M.; Ruan, Q.; Wenzel, L.; Cerna, M.; Concezzi, S.

    2011-01-01

    The currently available multi-core PCI Express systems running LabVIEW RT (real-time), equipped with FPGA cards for data acquisition and real-time parallel signal processing, greatly shorten the design and implementation cycles of large-scale, real-time data acquisition and control systems. This paper details a data acquisition and real-time tomography system using LabVIEW RT for the bolometer diagnostic on the ASDEX Upgrade tokamak (Max Planck Institute for Plasma Physics, Garching, Germany). The transformation matrix for tomography is pre-computed based on the geometry of distributed radiation sources and sensors. A parallelized iterative algorithm is adapted to solve a constrained linear system for the reconstruction of the radiated power density. Real-time bolometer tomography is performed with LabVIEW RT. Using multi-core machines to execute the parallelized algorithm, a cycle time well below 1 ms is reached.

  3. Quantification of Artifact Reduction With Real-Time Cine Four-Dimensional Computed Tomography Acquisition Methods

    International Nuclear Information System (INIS)

    Langner, Ulrich W.; Keall, Paul J.

    2010-01-01

    Purpose: To quantify the magnitude and frequency of artifacts in simulated four-dimensional computed tomography (4D CT) images using three real-time acquisition methods- direction-dependent displacement acquisition, simultaneous displacement and phase acquisition, and simultaneous displacement and velocity acquisition- and to compare these methods with commonly used retrospective phase sorting. Methods and Materials: Image acquisition for the four 4D CT methods was simulated with different displacement and velocity tolerances for spheres with radii of 0.5 cm, 1.5 cm, and 2.5 cm, using 58 patient-measured tumors and respiratory motion traces. The magnitude and frequency of artifacts, CT doses, and acquisition times were computed for each method. Results: The mean artifact magnitude was 50% smaller for the three real-time methods than for retrospective phase sorting. The dose was ∼50% lower, but the acquisition time was 20% to 100% longer for the real-time methods than for retrospective phase sorting. Conclusions: Real-time acquisition methods can reduce the frequency and magnitude of artifacts in 4D CT images, as well as the imaging dose, but they increase the image acquisition time. The results suggest that direction-dependent displacement acquisition is the preferred real-time 4D CT acquisition method, because on average, the lowest dose is delivered to the patient and the acquisition time is the shortest for the resulting number and magnitude of artifacts.

  4. Optimal dose reduction in computed tomography methodologies predicted from real-time dosimetry

    Science.gov (United States)

    Tien, Christopher Jason

    Over the past two decades, computed tomography (CT) has become an increasingly common and useful medical imaging technique. CT is a noninvasive imaging modality with three-dimensional volumetric viewing abilities, all in sub-millimeter resolution. Recent national scrutiny on radiation dose from medical exams has spearheaded an initiative to reduce dose in CT. This work concentrates on dose reduction of individual exams through two recently-innovated dose reduction techniques: organ dose modulation (ODM) and tube current modulation (TCM). ODM and TCM tailor the phase and amplitude of x-ray current, respectively, used by the CT scanner during the scan. These techniques are unique because they can be used to achieve patient dose reduction without any appreciable loss in image quality. This work details the development of the tools and methods featuring real-time dosimetry which were used to provide pioneering measurements of ODM or TCM in dose reduction for CT.

  5. Real-time temperature field measurement based on acoustic tomography

    International Nuclear Information System (INIS)

    Bao, Yong; Jia, Jiabin; Polydorides, Nick

    2017-01-01

    Acoustic tomography can be used to measure the temperature field from the time-of-flight (TOF). In order to capture real-time temperature field changes and accurately yield quantitative temperature images, two improvements to the conventional acoustic tomography system are studied: simultaneous acoustic transmission and TOF collection along multiple ray paths, and an offline iteration reconstruction algorithm. During system operation, all the acoustic transceivers send modulated and filtered wideband Kasami sequences simultaneously to facilitate fast and accurate TOF measurements using cross-correlation detection. For image reconstruction, the iteration process is separated and executed offline beforehand to shorten computation time for online temperature field reconstruction. The feasibility and effectiveness of the developed methods are validated in the simulation study. The simulation results demonstrate that the proposed method can reduce the processing time per frame from 160 ms to 20 ms, while the reconstruction error remains less than 5%. Hence, the proposed method has great potential in the measurement of rapid temperature change with good temporal and spatial resolution. (paper)

  6. [Fluoroscopy dose reduction of computed tomography guided chest interventional radiology using real-time iterative reconstruction].

    Science.gov (United States)

    Hasegawa, Hiroaki; Mihara, Yoshiyuki; Ino, Kenji; Sato, Jiro

    2014-11-01

    The purpose of this study was to evaluate the radiation dose reduction to patients and radiologists in computed tomography (CT) guided examinations for the thoracic region using CT fluoroscopy. Image quality evaluation of the real-time filtered back-projection (RT-FBP) images and the real-time adaptive iterative dose reduction (RT-AIDR) images was carried out on noise and artifacts that were considered to affect the CT fluoroscopy. The image standard deviation was improved in the fluoroscopy setting with less than 30 mA on 120 kV. With regard to the evaluation of artifact visibility and the amount generated by the needle attached to the chest phantom, there was no significant difference between the RT-FBP images with 120 kV, 20 mA and the RT-AIDR images with low-dose conditions (greater than 80 kV, 30 mA and less than 120 kV, 20 mA). The results suggest that it is possible to reduce the radiation dose by approximately 34% at the maximum using RT-AIDR while maintaining image quality equivalent to the RT-FBP images with 120 V, 20 mA.

  7. Real-time axial motion detection and correction for single photon emission computed tomography using a linear prediction filter

    International Nuclear Information System (INIS)

    Saba, V.; Setayeshi, S.; Ghannadi-Maragheh, M.

    2011-01-01

    We have developed an algorithm for real-time detection and complete correction of the patient motion effects during single photon emission computed tomography. The algorithm is based on a linear prediction filter (LPC). The new prediction of projection data algorithm (PPDA) detects most motions-such as those of the head, legs, and hands-using comparison of the predicted and measured frame data. When the data acquisition for a specific frame is completed, the accuracy of the acquired data is evaluated by the PPDA. If patient motion is detected, the scanning procedure is stopped. After the patient rests in his or her true position, data acquisition is repeated only for the corrupted frame and the scanning procedure is continued. Various experimental data were used to validate the motion detection algorithm; on the whole, the proposed method was tested with approximately 100 test cases. The PPDA shows promising results. Using the PPDA enables us to prevent the scanner from collecting disturbed data during the scan and replaces them with motion-free data by real-time rescanning for the corrupted frames. As a result, the effects of patient motion is corrected in real time. (author)

  8. Real-time radiography, digital radiography, and computed tomography for nonintrusive waste drum characterization

    International Nuclear Information System (INIS)

    Martz, H.E.; Schneberk, D.J.; Roberson, G.P.

    1994-07-01

    We are investigating and developing the application of x-ray nondestructive evaluation (NDE) and gamma-ray nondestructive assay (NDA) methods to nonintrusively characterize 208-liter (55-gallon) mixed waste drums. Mixed wastes contain both hazardous and radioactive materials. We are investigating the use of x-ray NDE methods to verify the content of documented waste drums and determine if they can be used to identify hazardous and nonconforming materials. These NDE methods are also being used to help waste certification and hazardous waste management personnel at LLNL to verify/confirm and/or determine the contents of waste. The gamma-ray NDA method is used to identify the intrinsic radioactive source(s) and to accurately quantify its strength. The NDA method may also be able to identify some hazardous materials such as heavy metals. Also, we are exploring techniques to combine both NDE and NDA data sets to yield the maximum information from these nonintrusive, waste-drum characterization methods. In this paper, we report an our x-ray NDE R ampersand D activities, while our gamma-ray NDA activities are reported elsewhere in the proceedings. We have developed a data, acquisition scanner for x-ray NDE real-time radiography (RTR), as well as digital radiography transmission computed tomography (TCT) along with associated computational techniques for image reconstruction, analysis, and display. We are using this scanner and real-waste drums at Lawrence Livermore National Laboratory (LLNL). In this paper, we discuss some issues associated with x-ray imaging, describe the design construction of an inexpensive NDE drum scanner, provide representative DR and TCT results of both mock- and real-waste drums, and end with a summary of our efforts and future directions. The results of these scans reveal that RTR, DR, and CT imaging techniques can be used in concert to provide valuable information about the interior of low-level-, transuranic-, and mock-waste drums without

  9. Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on GPU and CPU

    Science.gov (United States)

    Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid

    2017-12-01

    Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ˜600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ˜0.25 s/excitation source.

  10. Lung Hot Spot Without Corresponding Computed Tomography Abnormality on Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: Artifactual or Real, Iatrogenic or Pathologic?

    Science.gov (United States)

    Liu, Yiyan

    Focal lung uptake without corresponding lesions or abnormalities on computed tomography (CT) scan poses a dilemma in the interpretation of fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT). A limited number of case reports have previously suggested an artifactual or iatrogenic nature of the uptake. In the present study, 8 relevant cases were included within a retrospective search of the database. Medical records were reviewed for follow-up radiological and pathologic information. In 7 of 8 cases with focal increased FDG uptake but no corresponding lesions or abnormalities on CT scan, the lung hot spots were artifactual or iatrogenic upon follow-up diagnostic chest CT or repeated PET/CT or both the scans. Microemboli were most likely a potential cause of the pulmonary uptake, with or without partial paravenous injection. One case in the series had a real pulmonary lesion demonstrated on follow-up PET/CT scans and on surgical pathology, although the initial integrated CT and follow-up diagnostic chest CT scans revealed negative findings to demonstrate pulmonary abnormalities corresponding to the hot spot on the PET scan. In conclusion, the finding of a lung hot spot in the absence of anatomical abnormality on FDG PET/CT was most likely artifactual or iatrogenic, but it might also represent a real pulmonary lesion. Nonvisualization of anatomical abnormality could be because of its small size and position directly overlying a segmental vessel. Further image follow-up is necessary and important to clarify the nature of the uptake. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on GPU and CPU.

    Science.gov (United States)

    Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid

    2017-12-01

    Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ∼600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ∼0.25  s/excitation source. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. Minimum Fisher Tikhonov Regularization Adapted to Real-Time Tomography

    Czech Academy of Sciences Publication Activity Database

    Löffelmann, Viktor; Mlynář, Jan; Imríšek, Martin; Mazon, D.; Jardin, A.; Weinzettl, Vladimír; Hron, Martin

    2016-01-01

    Roč. 69, č. 2 (2016), s. 505-513 ISSN 1536-1055 R&D Projects: GA MŠk LG14002; GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : tokamak * tomography * real - time Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.578, year: 2016

  13. Advanced real time radioscopy and computed tomography

    International Nuclear Information System (INIS)

    Sauerwein, Ch.; Nuding, W.; Grimm, R.; Wiacker, H.

    1996-01-01

    The paper describes three x-ray inspection systems. One radioscopic system is designed for the inspection of castings. The next integrates a radioscopic and a tomographic mode. The radioscopy has a high resolution camera and real time image processor. Radiation sources are a 450 kV industrial and a 200 kV microfocus tube. The third system is a tomographic system with 30 scintillation detectors for the inspection of nuclear waste containers. (author)

  14. Real-Time Laser Ultrasound Tomography for Profilometry of Solids

    Science.gov (United States)

    Zarubin, V. P.; Bychkov, A. S.; Karabutov, A. A.; Simonova, V. A.; Kudinov, I. A.; Cherepetskaya, E. B.

    2018-01-01

    We studied the possibility of applying laser ultrasound tomography for profilometry of solids. The proposed approach provides high spatial resolution and efficiency, as well as profilometry of contaminated objects or objects submerged in liquids. The algorithms for the construction of tomograms and recognition of the profiles of studied objects using the parallel programming technology NDIVIA CUDA are proposed. A prototype of the real-time laser ultrasound profilometer was used to obtain the profiles of solid surfaces of revolution. The proposed method allows the real-time determination of the surface position for cylindrical objects with an approximation accuracy of up to 16 μm.

  15. Recent achievements in real-time computational seismology in Taiwan

    Science.gov (United States)

    Lee, S.; Liang, W.; Huang, B.

    2012-12-01

    Real-time computational seismology is currently possible to be achieved which needs highly connection between seismic database and high performance computing. We have developed a real-time moment tensor monitoring system (RMT) by using continuous BATS records and moment tensor inversion (CMT) technique. The real-time online earthquake simulation service is also ready to open for researchers and public earthquake science education (ROS). Combine RMT with ROS, the earthquake report based on computational seismology can provide within 5 minutes after an earthquake occurred (RMT obtains point source information ROS completes a 3D simulation real-time now. For more information, welcome to visit real-time computational seismology earthquake report webpage (RCS).

  16. Real-time computational photon-counting LiDAR

    Science.gov (United States)

    Edgar, Matthew; Johnson, Steven; Phillips, David; Padgett, Miles

    2018-03-01

    The availability of compact, low-cost, and high-speed MEMS-based spatial light modulators has generated widespread interest in alternative sampling strategies for imaging systems utilizing single-pixel detectors. The development of compressed sensing schemes for real-time computational imaging may have promising commercial applications for high-performance detectors, where the availability of focal plane arrays is expensive or otherwise limited. We discuss the research and development of a prototype light detection and ranging (LiDAR) system via direct time of flight, which utilizes a single high-sensitivity photon-counting detector and fast-timing electronics to recover millimeter accuracy three-dimensional images in real time. The development of low-cost real time computational LiDAR systems could have importance for applications in security, defense, and autonomous vehicles.

  17. Cluster Computing for Embedded/Real-Time Systems

    Science.gov (United States)

    Katz, D.; Kepner, J.

    1999-01-01

    Embedded and real-time systems, like other computing systems, seek to maximize computing power for a given price, and thus can significantly benefit from the advancing capabilities of cluster computing.

  18. Comparison of Real-Time Intraoperative Ultrasound-Based Dosimetry With Postoperative Computed Tomography-Based Dosimetry for Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Nag, Subir; Shi Peipei; Liu Bingren; Gupta, Nilendu; Bahnson, Robert R.; Wang, Jian Z.

    2008-01-01

    Purpose: To evaluate whether real-time intraoperative ultrasound (US)-based dosimetry can replace conventional postoperative computed tomography (CT)-based dosimetry in prostate brachytherapy. Methods and Materials: Between December 2001 and November 2002, 82 patients underwent 103 Pd prostate brachytherapy. An interplant treatment planning system was used for real-time intraoperative transrectal US-guided treatment planning. The dose distribution was updated according to the estimated seed position to obtain the dose-volume histograms. Postoperative CT-based dosimetry was performed a few hours later using the Theraplan-Plus treatment planning system. The dosimetric parameters obtained from the two imaging modalities were compared. Results: The results of this study revealed correlations between the US- and CT-based dosimetry. However, large variations were found in the implant-quality parameters of the two modalities, including the doses covering 100%, 90%, and 80% of the prostate volume and prostate volumes covered by 100%, 150%, and 200% of the prescription dose. The mean relative difference was 38% and 16% for doses covering 100% and 90% of the prostate volume and 10% and 21% for prostate volumes covered by 100% and 150% of the prescription dose, respectively. The CT-based volume covered by 200% of the prescription dose was about 30% greater than the US-based one. Compared with CT-based dosimetry, US-based dosimetry significantly underestimated the dose to normal organs, especially for the rectum. The average US-based maximal dose and volume covered by 100% of the prescription dose for the rectum was 72 Gy and 0.01 cm 3 , respectively, much lower than the 159 Gy and 0.65 cm 3 obtained using CT-based dosimetry. Conclusion: Although dosimetry using intraoperative US-based planning provides preliminary real-time information, it does not accurately reflect the postoperative CT-based dosimetry. Until studies have determined whether US-based dosimetry or

  19. Spying on real-time computers to improve performance

    International Nuclear Information System (INIS)

    Taff, L.M.

    1975-01-01

    The sampled program-counter histogram, an established technique for shortening the execution times of programs, is described for a real-time computer. The use of a real-time clock allows particularly easy implementation. (Auth.)

  20. A Distributed Computing Network for Real-Time Systems.

    Science.gov (United States)

    1980-11-03

    7 ) AU2 o NAVA TUNDEWATER SY$TEMS CENTER NEWPORT RI F/G 9/2 UIS RIBUT E 0 COMPUTIN G N LTWORK FOR REAL - TIME SYSTEMS .(U) UASSIFIED NOV Al 6 1...MORAIS - UT 92 dLEVEL c A Distributed Computing Network for Real - Time Systems . 11 𔃺-1 Gordon E/Morson I7 y tm- ,r - t "en t As J 2 -p .. - 7 I’ cNaval...NUMBER TD 5932 / N 4. TITLE mand SubotI. S. TYPE OF REPORT & PERIOD COVERED A DISTRIBUTED COMPUTING NETWORK FOR REAL - TIME SYSTEMS 6. PERFORMING ORG

  1. SU-G-JeP1-01: A Combination of Real Time Electromagnetic Localization and Tracking with Cone Beam Computed Tomography in Stereotactic Radiosurgery for Brain Tumors

    International Nuclear Information System (INIS)

    Muralidhar, K Raja; Pangam, Suresh; Ponaganti, Srinivas; Krishna, Jayarama; Sujana, Kolla V; Komanduri, Priya K

    2016-01-01

    Purpose: 1. online verification of patient position during treatment using calypso electromagnetic localization and tracking system. 2. Verification and comparison of positional accuracy between cone beam computed tomography and calypso system. 3. Presenting the advantage of continuation localization in Stereotactic radiosurgery treatments. Methods: Ten brain tumor cases were taken for this study. Patients with head mask were under gone Computed Tomography (CT). Before scanning, mask was cut on the fore head area to keep surface beacons on the skin. Slice thickness of 0.65 mm were taken for this study. x, y, z coordinates of these beacons in TPS were entered into tracking station. Varian True Beam accelerator, equipped with On Board Imager was used to take Cone beam Computed Tomography (CBCT) to localize the patient. Simultaneously Surface beacons were used to localize and track the patient throughout the treatment. The localization values were compared in both systems. For localization CBCT considered as reference. Tracking was done throughout the treatment using Calypso tracking system using electromagnetic array. This array was in tracking position during imaging and treatment. Flattening Filter free beams of 6MV photons along with Volumetric Modulated Arc Therapy was used for the treatment. The patient movement was observed throughout the treatment ranging from 2 min to 4 min. Results: The average variation observed between calypso system and CBCT localization was less than 0.5 mm. These variations were due to manual errors while keeping beacon on the patient. Less than 0.05 cm intra-fraction motion was observed throughout the treatment with the help of continuous tracking. Conclusion: Calypso target localization system is one of the finest tools to perform radiosurgery in combination with CBCT. This non radiographic method of tracking is a real beneficial method to treat patients confidently while observing real-time motion information of the patient.

  2. SU-G-JeP1-01: A Combination of Real Time Electromagnetic Localization and Tracking with Cone Beam Computed Tomography in Stereotactic Radiosurgery for Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, K Raja; Pangam, Suresh; Ponaganti, Srinivas; Krishna, Jayarama; Sujana, Kolla V; Komanduri, Priya K [American Oncology Institute, Hyderabad, Telangana (India)

    2016-06-15

    Purpose: 1. online verification of patient position during treatment using calypso electromagnetic localization and tracking system. 2. Verification and comparison of positional accuracy between cone beam computed tomography and calypso system. 3. Presenting the advantage of continuation localization in Stereotactic radiosurgery treatments. Methods: Ten brain tumor cases were taken for this study. Patients with head mask were under gone Computed Tomography (CT). Before scanning, mask was cut on the fore head area to keep surface beacons on the skin. Slice thickness of 0.65 mm were taken for this study. x, y, z coordinates of these beacons in TPS were entered into tracking station. Varian True Beam accelerator, equipped with On Board Imager was used to take Cone beam Computed Tomography (CBCT) to localize the patient. Simultaneously Surface beacons were used to localize and track the patient throughout the treatment. The localization values were compared in both systems. For localization CBCT considered as reference. Tracking was done throughout the treatment using Calypso tracking system using electromagnetic array. This array was in tracking position during imaging and treatment. Flattening Filter free beams of 6MV photons along with Volumetric Modulated Arc Therapy was used for the treatment. The patient movement was observed throughout the treatment ranging from 2 min to 4 min. Results: The average variation observed between calypso system and CBCT localization was less than 0.5 mm. These variations were due to manual errors while keeping beacon on the patient. Less than 0.05 cm intra-fraction motion was observed throughout the treatment with the help of continuous tracking. Conclusion: Calypso target localization system is one of the finest tools to perform radiosurgery in combination with CBCT. This non radiographic method of tracking is a real beneficial method to treat patients confidently while observing real-time motion information of the patient.

  3. Effects of computing time delay on real-time control systems

    Science.gov (United States)

    Shin, Kang G.; Cui, Xianzhong

    1988-01-01

    The reliability of a real-time digital control system depends not only on the reliability of the hardware and software used, but also on the speed in executing control algorithms. The latter is due to the negative effects of computing time delay on control system performance. For a given sampling interval, the effects of computing time delay are classified into the delay problem and the loss problem. Analysis of these two problems is presented as a means of evaluating real-time control systems. As an example, both the self-tuning predicted (STP) control and Proportional-Integral-Derivative (PID) control are applied to the problem of tracking robot trajectories, and their respective effects of computing time delay on control performance are comparatively evaluated. For this example, the STP (PID) controller is shown to outperform the PID (STP) controller in coping with the delay (loss) problem.

  4. Real-time Optical Coherence Tomography Incorporated in the Operating Microscope during Cataract Surgery.

    Science.gov (United States)

    Almutlak, Mohammed A; Aloniazan, Turki; May, William

    2017-01-01

    A 55-year-old male presented with reduced vision due to senile cataract. The patient consented to undergo real-time intraoperative anterior segment-optical coherence tomography (AS-OCT) during phacoemulsification with intraocular lens (IOL) implantation. Images were captured at various points during the surgery. The use of AS-OCT incorporated into the surgical microscope was evaluated as an adjunct to cataract surgery. We were able to successfully evaluate, in real-time, wound architecture, the attachment of Descemet's membrane, the posterior capsule, and IOL position. Real-time AS-OCT can be used to proactively address potential complications and verify IOL placement intraoperatively.

  5. Cone-beam computed tomography fusion and navigation for real-time positron emission tomography-guided biopsies and ablations: a feasibility study.

    Science.gov (United States)

    Abi-Jaoudeh, Nadine; Mielekamp, Peter; Noordhoek, Niels; Venkatesan, Aradhana M; Millo, Corina; Radaelli, Alessandro; Carelsen, Bart; Wood, Bradford J

    2012-06-01

    To describe a novel technique for multimodality positron emission tomography (PET) fusion-guided interventions that combines cone-beam computed tomography (CT) with PET/CT before the procedure. Subjects were selected among patients scheduled for a biopsy or ablation procedure. The lesions were not visible with conventional imaging methods or did not have uniform uptake on PET. Clinical success was defined by adequate histopathologic specimens for molecular profiling or diagnosis and by lack of enhancement on follow-up imaging for ablation procedures. Time to target (time elapsed between the completion of the initial cone-beam CT scan and first tissue sample or treatment), total procedure time (time from the moment the patient was on the table until the patient was off the table), and number of times the needle was repositioned were recorded. Seven patients underwent eight procedures (two ablations and six biopsies). Registration and procedures were completed successfully in all cases. Clinical success was achieved in all biopsy procedures and in one of the two ablation procedures. The needle was repositioned once in one biopsy procedure only. On average, the time to target was 38 minutes (range 13-54 min). Total procedure time was 95 minutes (range 51-240 min, which includes composite ablation). On average, fluoroscopy time was 2.5 minutes (range 1.3-6.2 min). An integrated cone-beam CT software platform can enable PET-guided biopsies and ablation procedures without the need for additional specialized hardware. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  6. General purpose computers in real time

    International Nuclear Information System (INIS)

    Biel, J.R.

    1989-01-01

    I see three main trends in the use of general purpose computers in real time. The first is more processing power. The second is the use of higher speed interconnects between computers (allowing more data to be delivered to the processors). The third is the use of larger programs running in the computers. Although there is still work that needs to be done, I believe that all indications are that the online need for general purpose computers should be available for the SCC and LHC machines. 2 figs

  7. Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit.

    Science.gov (United States)

    Lee, Kenneth K C; Mariampillai, Adrian; Yu, Joe X Z; Cadotte, David W; Wilson, Brian C; Standish, Beau A; Yang, Victor X D

    2012-07-01

    Advances in swept source laser technology continues to increase the imaging speed of swept-source optical coherence tomography (SS-OCT) systems. These fast imaging speeds are ideal for microvascular detection schemes, such as speckle variance (SV), where interframe motion can cause severe imaging artifacts and loss of vascular contrast. However, full utilization of the laser scan speed has been hindered by the computationally intensive signal processing required by SS-OCT and SV calculations. Using a commercial graphics processing unit that has been optimized for parallel data processing, we report a complete high-speed SS-OCT platform capable of real-time data acquisition, processing, display, and saving at 108,000 lines per second. Subpixel image registration of structural images was performed in real-time prior to SV calculations in order to reduce decorrelation from stationary structures induced by the bulk tissue motion. The viability of the system was successfully demonstrated in a high bulk tissue motion scenario of human fingernail root imaging where SV images (512 × 512 pixels, n = 4) were displayed at 54 frames per second.

  8. Automatic image fusion of real-time ultrasound with computed tomography images: a prospective comparison between two auto-registration methods.

    Science.gov (United States)

    Cha, Dong Ik; Lee, Min Woo; Kim, Ah Yeong; Kang, Tae Wook; Oh, Young-Taek; Jeong, Ja-Yeon; Chang, Jung-Woo; Ryu, Jiwon; Lee, Kyong Joon; Kim, Jaeil; Bang, Won-Chul; Shin, Dong Kuk; Choi, Sung Jin; Koh, Dalkwon; Seo, Bong Koo; Kim, Kyunga

    2017-11-01

    Background A major drawback of conventional manual image fusion is that the process may be complex, especially for less-experienced operators. Recently, two automatic image fusion techniques called Positioning and Sweeping auto-registration have been developed. Purpose To compare the accuracy and required time for image fusion of real-time ultrasonography (US) and computed tomography (CT) images between Positioning and Sweeping auto-registration. Material and Methods Eighteen consecutive patients referred for planning US for radiofrequency ablation or biopsy for focal hepatic lesions were enrolled. Image fusion using both auto-registration methods was performed for each patient. Registration error, time required for image fusion, and number of point locks used were compared using the Wilcoxon signed rank test. Results Image fusion was successful in all patients. Positioning auto-registration was significantly faster than Sweeping auto-registration for both initial (median, 11 s [range, 3-16 s] vs. 32 s [range, 21-38 s]; P auto-registration was significantly higher for initial image fusion (median, 38.8 mm [range, 16.0-84.6 mm] vs. 18.2 mm [6.7-73.4 mm]; P = 0.029), but not for complete image fusion (median, 4.75 mm [range, 1.7-9.9 mm] vs. 5.8 mm [range, 2.0-13.0 mm]; P = 0.338]. Number of point locks required to refine the initially fused images was significantly higher with Positioning auto-registration (median, 2 [range, 2-3] vs. 1 [range, 1-2]; P = 0.012]. Conclusion Positioning auto-registration offers faster image fusion between real-time US and pre-procedural CT images than Sweeping auto-registration. The final registration error is similar between the two methods.

  9. Development of real-time visualization system for Computational Fluid Dynamics on parallel computers

    International Nuclear Information System (INIS)

    Muramatsu, Kazuhiro; Otani, Takayuki; Matsumoto, Hideki; Takei, Toshifumi; Doi, Shun

    1998-03-01

    A real-time visualization system for computational fluid dynamics in a network connecting between a parallel computing server and the client terminal was developed. Using the system, a user can visualize the results of a CFD (Computational Fluid Dynamics) simulation on the parallel computer as a client terminal during the actual computation on a server. Using GUI (Graphical User Interface) on the client terminal, to user is also able to change parameters of the analysis and visualization during the real-time of the calculation. The system carries out both of CFD simulation and generation of a pixel image data on the parallel computer, and compresses the data. Therefore, the amount of data from the parallel computer to the client is so small in comparison with no compression that the user can enjoy the swift image appearance comfortably. Parallelization of image data generation is based on Owner Computation Rule. GUI on the client is built on Java applet. A real-time visualization is thus possible on the client PC only if Web browser is implemented on it. (author)

  10. Real-time Tsunami Inundation Prediction Using High Performance Computers

    Science.gov (United States)

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2014-12-01

    Recently off-shore tsunami observation stations based on cabled ocean bottom pressure gauges are actively being deployed especially in Japan. These cabled systems are designed to provide real-time tsunami data before tsunamis reach coastlines for disaster mitigation purposes. To receive real benefits of these observations, real-time analysis techniques to make an effective use of these data are necessary. A representative study was made by Tsushima et al. (2009) that proposed a method to provide instant tsunami source prediction based on achieving tsunami waveform data. As time passes, the prediction is improved by using updated waveform data. After a tsunami source is predicted, tsunami waveforms are synthesized from pre-computed tsunami Green functions of linear long wave equations. Tsushima et al. (2014) updated the method by combining the tsunami waveform inversion with an instant inversion of coseismic crustal deformation and improved the prediction accuracy and speed in the early stages. For disaster mitigation purposes, real-time predictions of tsunami inundation are also important. In this study, we discuss the possibility of real-time tsunami inundation predictions, which require faster-than-real-time tsunami inundation simulation in addition to instant tsunami source analysis. Although the computational amount is large to solve non-linear shallow water equations for inundation predictions, it has become executable through the recent developments of high performance computing technologies. We conducted parallel computations of tsunami inundation and achieved 6.0 TFLOPS by using 19,000 CPU cores. We employed a leap-frog finite difference method with nested staggered grids of which resolution range from 405 m to 5 m. The resolution ratio of each nested domain was 1/3. Total number of grid points were 13 million, and the time step was 0.1 seconds. Tsunami sources of 2011 Tohoku-oki earthquake were tested. The inundation prediction up to 2 hours after the

  11. Real-Time Thevenin Impedance Computation

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Jóhannsson, Hjörtur

    2013-01-01

    operating state, and strict time constraints are difficult to adhere to as the complexity of the grid increases. Several suggested approaches for real-time stability assessment require Thevenin impedances to be determined for the observed system conditions. By combining matrix factorization, graph reduction......, and parallelization, we develop an algorithm for computing Thevenin impedances an order of magnitude faster than previous approaches. We test the factor-and-solve algorithm with data from several power grids of varying complexity, and we show how the algorithm allows realtime stability assessment of complex power...

  12. Real-time three-dimensional imaging of epidermal splitting and removal by high-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, Marc; Draye, Jean Pierre; Verween, Gunther

    2014-01-01

    While real-time 3-D evaluation of human skin constructs is needed, only 2-D non-invasive imaging techniques are available. The aim of this paper is to evaluate the potential of high-definition optical coherence tomography (HD-OCT) for real-time 3-D assessment of the epidermal splitting and decell......While real-time 3-D evaluation of human skin constructs is needed, only 2-D non-invasive imaging techniques are available. The aim of this paper is to evaluate the potential of high-definition optical coherence tomography (HD-OCT) for real-time 3-D assessment of the epidermal splitting...... before and after incubation. Real-time 3-D HD-OCT assessment was compared with 2-D en face assessment by reflectance confocal microscopy (RCM). (Immuno) histopathology was used as control. HD-OCT imaging allowed real-time 3-D visualization of the impact of selected agents on epidermal splitting, dermo......-epidermal junction, dermal architecture, vascular spaces and cellularity. RCM has a better resolution (1 μm) than HD-OCT (3 μm), permitting differentiation of different collagen fibres, but HD-OCT imaging has deeper penetration (570 μm) than RCM imaging (200 μm). Dispase II and NaCl treatments were found...

  13. Ultrasonic divergent-beam scanner for time-of-flight tomography with computer evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Glover, G H

    1978-03-02

    The rotatable ultrasonic divergent-beam scanner is designed for time-of-flight tomography with computer evaluation. With it there can be measured parameters that are of importance for the structure of soft tissues, e.g. time as a function of the velocity distribution along a certain path of flight(the method is analogous to the transaxial X-ray tomography). Moreover it permits to perform the quantitative measurement of two-dimensional velocity distributions and may therefore be applied to serial examinations for detecting cancer of the breast. As computers digital memories as well as analog-digital-hybrid systems are suitable.

  14. A methodology for direct quantification of over-ranging length in helical computed tomography with real-time dosimetry.

    Science.gov (United States)

    Tien, Christopher J; Winslow, James F; Hintenlang, David E

    2011-01-31

    In helical computed tomography (CT), reconstruction information from volumes adjacent to the clinical volume of interest (VOI) is required for proper reconstruction. Previous studies have relied upon either operator console readings or indirect extrapolation of measurements in order to determine the over-ranging length of a scan. This paper presents a methodology for the direct quantification of over-ranging dose contributions using real-time dosimetry. A Siemens SOMATOM Sensation 16 multislice helical CT scanner is used with a novel real-time "point" fiber-optic dosimeter system with 10 ms temporal resolution to measure over-ranging length, which is also expressed in dose-length-product (DLP). Film was used to benchmark the exact length of over-ranging. Over-ranging length varied from 4.38 cm at pitch of 0.5 to 6.72 cm at a pitch of 1.5, which corresponds to DLP of 131 to 202 mGy-cm. The dose-extrapolation method of Van der Molen et al. yielded results within 3%, while the console reading method of Tzedakis et al. yielded consistently larger over-ranging lengths. From film measurements, it was determined that Tzedakis et al. overestimated over-ranging lengths by one-half of beam collimation width. Over-ranging length measured as a function of reconstruction slice thicknesses produced two linear regions similar to previous publications. Over-ranging is quantified with both absolute length and DLP, which contributes about 60 mGy-cm or about 10% of DLP for a routine abdominal scan. This paper presents a direct physical measurement of over-ranging length within 10% of previous methodologies. Current uncertainties are less than 1%, in comparison with 5% in other methodologies. Clinical implantation can be increased by using only one dosimeter if codependence with console readings is acceptable, with an uncertainty of 1.1% This methodology will be applied to different vendors, models, and postprocessing methods--which have been shown to produce over-ranging lengths

  15. Real-time quasi-3D tomographic reconstruction

    Science.gov (United States)

    Buurlage, Jan-Willem; Kohr, Holger; Palenstijn, Willem Jan; Joost Batenburg, K.

    2018-06-01

    Developments in acquisition technology and a growing need for time-resolved experiments pose great computational challenges in tomography. In addition, access to reconstructions in real time is a highly demanded feature but has so far been out of reach. We show that by exploiting the mathematical properties of filtered backprojection-type methods, having access to real-time reconstructions of arbitrarily oriented slices becomes feasible. Furthermore, we present , software for visualization and on-demand reconstruction of slices. A user of can interactively shift and rotate slices in a GUI, while the software updates the slice in real time. For certain use cases, the possibility to study arbitrarily oriented slices in real time directly from the measured data provides sufficient visual and quantitative insight. Two such applications are discussed in this article.

  16. Real-time data acquisition and feedback control using Linux Intel computers

    International Nuclear Information System (INIS)

    Penaflor, B.G.; Ferron, J.R.; Piglowski, D.A.; Johnson, R.D.; Walker, M.L.

    2006-01-01

    This paper describes the experiences of the DIII-D programming staff in adapting Linux based Intel computing hardware for use in real-time data acquisition and feedback control systems. Due to the highly dynamic and unstable nature of magnetically confined plasmas in tokamak fusion experiments, real-time data acquisition and feedback control systems are in routine use with all major tokamaks. At DIII-D, plasmas are created and sustained using a real-time application known as the digital plasma control system (PCS). During each experiment, the PCS periodically samples data from hundreds of diagnostic signals and provides these data to control algorithms implemented in software. These algorithms compute the necessary commands to send to various actuators that affect plasma performance. The PCS consists of a group of rack mounted Intel Xeon computer systems running an in-house customized version of the Linux operating system tailored specifically to meet the real-time performance needs of the plasma experiments. This paper provides a more detailed description of the real-time computing hardware and custom developed software, including recent work to utilize dual Intel Xeon equipped computers within the PCS

  17. Illustrated computer tomography

    International Nuclear Information System (INIS)

    Takahashi, S.

    1983-01-01

    This book provides the following information: basic aspects of computed tomography; atlas of computed tomography of the normal adult; clinical application of computed tomography; and radiotherapy planning and computed tomography

  18. Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate key elements of feasibility for a high speed automated time domain terahertz computed axial tomography (TD-THz CT) non destructive...

  19. Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase 2 project, we propose to develop, construct, and deliver to NASA a computed axial tomography time-domain terahertz (CT TD-THz) non destructive...

  20. Computer tomography urography assisted real-time ultrasound-guided percutaneous nephrolithotomy on renal calculus.

    Science.gov (United States)

    Fang, You-Qiang; Wu, Jie-Ying; Li, Teng-Cheng; Zheng, Hao-Feng; Liang, Guan-Can; Chen, Yan-Xiong; Hong, Xiao-Bin; Cai, Wei-Zhong; Zang, Zhi-Jun; Di, Jin-Ming

    2017-06-01

    This study aimed to assess the role of pre-designed route on computer tomography urography (CTU) in the ultrasound-guided percutaneous nephrolithotomy (PCNL) for renal calculus.From August 2013 to May 2016, a total of 100 patients diagnosed with complex renal calculus in our hospital were randomly divided into CTU group and control group (without CTU assistance). CTU was used to design a rational route for puncturing in CTU group. Ultrasound was used in both groups to establish a working trace in the operation areas. Patients' perioperative parameters and postoperative complications were recorded.All operations were successfully performed, without transferring to open surgery. Time of channel establishment in CTU group (6.5 ± 4.3 minutes) was shorter than the control group (10.0 ± 6.7 minutes) (P = .002). In addition, there was shorter operation time, lower rates of blood transfusion, secondary operation, and less establishing channels. The incidence of postoperative complications including residual stones, sepsis, severe hemorrhage, and perirenal hematoma was lower in CTU group than in control group.Pre-designing puncture route on CTU images would improve the puncturing accuracy, lessen establishing channels as well as improve the security in the ultrasound-guided PCNL for complex renal calculus, but at the cost of increased radiation exposure.

  1. An Implementation of Parallel and Networked Computing Schemes for the Real-Time Image Reconstruction Based on Electrical Tomography

    International Nuclear Information System (INIS)

    Park, Sook Hee

    2001-02-01

    This thesis implements and analyzes the parallel and networked computing libraries based on the multiprocessor computer architecture as well as networked computers, aiming at improving the computation speed of ET(Electrical Tomography) system which requires enormous CPU time in reconstructing the unknown internal state of the target object. As an instance of the typical tomography technology, ET partitions the cross-section of the target object into the tiny elements and calculates the resistivity of them with signal values measured at the boundary electrodes surrounding the surface of the object after injecting the predetermined current pattern through the object. The number of elements is determined considering the trade-off between the accuracy of the reconstructed image and the computation time. As the elements become more finer, the number of element increases, and the system can get the better image. However, the reconstruction time increases polynomially with the number of partitioned elements since the procedure consists of a number of time consuming matrix operations such as multiplication, inverse, pseudo inverse, Jacobian and so on. Consequently, the demand for improving computation speed via multiple processor grows indispensably. Moreover, currently released PCs can be stuffed with up to 4 CPUs interconnected to the shared memory while some operating systems enable the application process to benefit from such computer by allocating the threaded job to each CPU, resulting in concurrent processing. In addition, a networked computing or cluster computing environment is commonly available to almost every computer which contains communication protocol and is connected to local or global network. After partitioning the given job(numerical operation), each CPU or computer calculates the partial result independently, and the results are merged via common memory to produce the final result. It is desirable to adopt the commonly used library such as Matlab to

  2. Real Time Animation of Trees Based on BBSC in Computer Games

    Directory of Open Access Journals (Sweden)

    Xuefeng Ao

    2009-01-01

    Full Text Available That researchers in the field of computer games usually find it is difficult to simulate the motion of actual 3D model trees lies in the fact that the tree model itself has very complicated structure, and many sophisticated factors need to be considered during the simulation. Though there are some works on simulating 3D tree and its motion, few of them are used in computer games due to the high demand for real-time in computer games. In this paper, an approach of animating trees in computer games based on a novel tree model representation—Ball B-Spline Curves (BBSCs are proposed. By taking advantage of the good features of the BBSC-based model, physical simulation of the motion of leafless trees with wind blowing becomes easier and more efficient. The method can generate realistic 3D tree animation in real-time, which meets the high requirement for real time in computer games.

  3. Soft Real-Time PID Control on a VME Computer

    Science.gov (United States)

    Karayan, Vahag; Sander, Stanley; Cageao, Richard

    2007-01-01

    microPID (uPID) is a computer program for real-time proportional + integral + derivative (PID) control of a translation stage in a Fourier-transform ultraviolet spectrometer. microPID implements a PID control loop over a position profile at sampling rate of 8 kHz (sampling period 125microseconds). The software runs in a strippeddown Linux operating system on a VersaModule Eurocard (VME) computer operating in real-time priority queue using an embedded controller, a 16-bit digital-to-analog converter (D/A) board, and a laser-positioning board (LPB). microPID consists of three main parts: (1) VME device-driver routines, (2) software that administers a custom protocol for serial communication with a control computer, and (3) a loop section that obtains the current position from an LPB-driver routine, calculates the ideal position from the profile, and calculates a new voltage command by use of an embedded PID routine all within each sampling period. The voltage command is sent to the D/A board to control the stage. microPID uses special kernel headers to obtain microsecond timing resolution. Inasmuch as microPID implements a single-threaded process and all other processes are disabled, the Linux operating system acts as a soft real-time system.

  4. A heterogeneous hierarchical architecture for real-time computing

    Energy Technology Data Exchange (ETDEWEB)

    Skroch, D.A.; Fornaro, R.J.

    1988-12-01

    The need for high-speed data acquisition and control algorithms has prompted continued research in the area of multiprocessor systems and related programming techniques. The result presented here is a unique hardware and software architecture for high-speed real-time computer systems. The implementation of a prototype of this architecture has required the integration of architecture, operating systems and programming languages into a cohesive unit. This report describes a Heterogeneous Hierarchial Architecture for Real-Time (H{sup 2} ART) and system software for program loading and interprocessor communication.

  5. Near real-time digital holographic microscope based on GPU parallel computing

    Science.gov (United States)

    Zhu, Gang; Zhao, Zhixiong; Wang, Huarui; Yang, Yan

    2018-01-01

    A transmission near real-time digital holographic microscope with in-line and off-axis light path is presented, in which the parallel computing technology based on compute unified device architecture (CUDA) and digital holographic microscopy are combined. Compared to other holographic microscopes, which have to implement reconstruction in multiple focal planes and are time-consuming the reconstruction speed of the near real-time digital holographic microscope can be greatly improved with the parallel computing technology based on CUDA, so it is especially suitable for measurements of particle field in micrometer and nanometer scale. Simulations and experiments show that the proposed transmission digital holographic microscope can accurately measure and display the velocity of particle field in micrometer scale, and the average velocity error is lower than 10%.With the graphic processing units(GPU), the computing time of the 100 reconstruction planes(512×512 grids) is lower than 120ms, while it is 4.9s using traditional reconstruction method by CPU. The reconstruction speed has been raised by 40 times. In other words, it can handle holograms at 8.3 frames per second and the near real-time measurement and display of particle velocity field are realized. The real-time three-dimensional reconstruction of particle velocity field is expected to achieve by further optimization of software and hardware. Keywords: digital holographic microscope,

  6. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Sinuses Computed tomography (CT) of the sinuses ... CT of the Sinuses? What is CT (Computed Tomography) of the Sinuses? Computed tomography, more commonly known ...

  7. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    Science.gov (United States)

    Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.

    2016-02-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

  8. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    International Nuclear Information System (INIS)

    Cho, Y; Chang, C-C; Zou, J; Wang, L V

    2016-01-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT. (paper)

  9. Reduced computational cost in the calculation of worst case response time for real time systems

    OpenAIRE

    Urriza, José M.; Schorb, Lucas; Orozco, Javier D.; Cayssials, Ricardo

    2009-01-01

    Modern Real Time Operating Systems require reducing computational costs even though the microprocessors become more powerful each day. It is usual that Real Time Operating Systems for embedded systems have advance features to administrate the resources of the applications that they support. In order to guarantee either the schedulability of the system or the schedulability of a new task in a dynamic Real Time System, it is necessary to know the Worst Case Response Time of the Real Time tasks ...

  10. Real-time computing platform for spiking neurons (RT-spike).

    Science.gov (United States)

    Ros, Eduardo; Ortigosa, Eva M; Agís, Rodrigo; Carrillo, Richard; Arnold, Michael

    2006-07-01

    A computing platform is described for simulating arbitrary networks of spiking neurons in real time. A hybrid computing scheme is adopted that uses both software and hardware components to manage the tradeoff between flexibility and computational power; the neuron model is implemented in hardware and the network model and the learning are implemented in software. The incremental transition of the software components into hardware is supported. We focus on a spike response model (SRM) for a neuron where the synapses are modeled as input-driven conductances. The temporal dynamics of the synaptic integration process are modeled with a synaptic time constant that results in a gradual injection of charge. This type of model is computationally expensive and is not easily amenable to existing software-based event-driven approaches. As an alternative we have designed an efficient time-based computing architecture in hardware, where the different stages of the neuron model are processed in parallel. Further improvements occur by computing multiple neurons in parallel using multiple processing units. This design is tested using reconfigurable hardware and its scalability and performance evaluated. Our overall goal is to investigate biologically realistic models for the real-time control of robots operating within closed action-perception loops, and so we evaluate the performance of the system on simulating a model of the cerebellum where the emulation of the temporal dynamics of the synaptic integration process is important.

  11. Real-time brain computer interface using imaginary movements

    DEFF Research Database (Denmark)

    El-Madani, Ahmad; Sørensen, Helge Bjarup Dissing; Kjær, Troels W.

    2015-01-01

    Background: Brain Computer Interface (BCI) is the method of transforming mental thoughts and imagination into actions. A real-time BCI system can improve the quality of life of patients with severe neuromuscular disorders by enabling them to communicate with the outside world. In this paper...

  12. Computation Offloading for Frame-Based Real-Time Tasks under Given Server Response Time Guarantees

    Directory of Open Access Journals (Sweden)

    Anas S. M. Toma

    2014-11-01

    Full Text Available Computation offloading has been adopted to improve the performance of embedded systems by offloading the computation of some tasks, especially computation-intensive tasks, to servers or clouds. This paper explores computation offloading for real-time tasks in embedded systems, provided given response time guarantees from the servers, to decide which tasks should be offloaded to get the results in time. We consider frame-based real-time tasks with the same period and relative deadline. When the execution order of the tasks is given, the problem can be solved in linear time. However, when the execution order is not specified, we prove that the problem is NP-complete. We develop a pseudo-polynomial-time algorithm for deriving feasible schedules, if they exist.  An approximation scheme is also developed to trade the error made from the algorithm and the complexity. Our algorithms are extended to minimize the period/relative deadline of the tasks for performance maximization. The algorithms are evaluated with a case study for a surveillance system and synthesized benchmarks.

  13. Real-time data-intensive computing

    Energy Technology Data Exchange (ETDEWEB)

    Parkinson, Dilworth Y., E-mail: dyparkinson@lbl.gov; Chen, Xian; Hexemer, Alexander; MacDowell, Alastair A.; Padmore, Howard A.; Shapiro, David; Tamura, Nobumichi [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Beattie, Keith; Krishnan, Harinarayan; Patton, Simon J.; Perciano, Talita; Stromsness, Rune; Tull, Craig E.; Ushizima, Daniela [Computational Research Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 (United States); Correa, Joaquin; Deslippe, Jack R. [National Energy Research Scientific Computing Center, Berkeley, CA 94720 (United States); Dart, Eli; Tierney, Brian L. [Energy Sciences Network, Berkeley, CA 94720 (United States); Daurer, Benedikt J.; Maia, Filipe R. N. C. [Uppsala University, Uppsala (Sweden); and others

    2016-07-27

    Today users visit synchrotrons as sources of understanding and discovery—not as sources of just light, and not as sources of data. To achieve this, the synchrotron facilities frequently provide not just light but often the entire end station and increasingly, advanced computational facilities that can reduce terabytes of data into a form that can reveal a new key insight. The Advanced Light Source (ALS) has partnered with high performance computing, fast networking, and applied mathematics groups to create a “super-facility”, giving users simultaneous access to the experimental, computational, and algorithmic resources to make this possible. This combination forms an efficient closed loop, where data—despite its high rate and volume—is transferred and processed immediately and automatically on appropriate computing resources, and results are extracted, visualized, and presented to users or to the experimental control system, both to provide immediate insight and to guide decisions about subsequent experiments during beamtime. We will describe our work at the ALS ptychography, scattering, micro-diffraction, and micro-tomography beamlines.

  14. Emission computed tomography

    International Nuclear Information System (INIS)

    Ott, R.J.

    1986-01-01

    Emission Computed Tomography is a technique used for producing single or multiple cross-sectional images of the distribution of radionuclide labelled agents in vivo. The techniques of Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) are described with particular regard to the function of the detectors used to produce images and the computer techniques used to build up images. (UK)

  15. Six-dimensional real and reciprocal space small-angle X-ray scattering tomography.

    Science.gov (United States)

    Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz

    2015-11-19

    When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.

  16. A method for improved 4D-computed tomography data acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Kupper, Martin; Sprengel, Wolfgang [Technische Univ. Graz (Austria). Inst. fuer Materialphysik; Winkler, Peter; Zurl, Brigitte [Medizinische Univ. Graz (Austria). Comprehensive Cancer Center

    2017-05-01

    In four-dimensional time-dependent computed tomography (4D-CT) of the lungs, irregularities in breathing movements can cause errors in data acquisition, or even data loss. We present a method based on sending a synthetic, regular breathing signal to the CT instead of the real signal, which ensures 4D-CT data sets without data loss. Subsequent correction of the signal based on the real breathing curve enables an accurate reconstruction of the size and movement of the target volume. This makes it possible to plan radiation treatment based on the obtained data. The method was tested with dynamic thorax phantom measurements using synthetic and real breathing patterns.

  17. Measuring techniques in emission computed tomography

    International Nuclear Information System (INIS)

    Jordan, K.; Knoop, B.

    1988-01-01

    The chapter reviews the historical development of the emission computed tomography and its basic principles, proceeds to SPECT and PET, special techniques of emission tomography, and concludes with a comprehensive discussion of the mathematical fundamentals of the reconstruction and the quantitative activity determination in vivo, dealing with radon transformation and the projection slice theorem, methods of image reconstruction such as analytical and algebraic methods, limiting conditions in real systems such as limited number of measured data, noise enhancement, absorption, stray radiation, and random coincidence. (orig./HP) With 111 figs., 6 tabs [de

  18. Real-time management of faulty electrodes in electrical impedance tomography.

    Science.gov (United States)

    Hartinger, Alzbeta E; Guardo, Robert; Adler, Andy; Gagnon, Hervé

    2009-02-01

    Completely or partially disconnected electrodes are a fairly common occurrence in many electrical impedance tomography (EIT) clinical applications. Several factors can contribute to electrode disconnection: patient movement, perspiration, manipulations by clinical staff, and defective electrode leads or electronics. By corrupting several measurements, faulty electrodes introduce significant image artifacts. In order to properly manage faulty electrodes, it is necessary to: 1) account for invalid data in image reconstruction algorithms and 2) automatically detect faulty electrodes. This paper presents a two-part approach for real-time management of faulty electrodes based on the principle of voltage-current reciprocity. The first part allows accounting for faulty electrodes in EIT image reconstruction without a priori knowledge of which electrodes are at fault. The method properly weights each measurement according to its compliance with the principle of voltage-current reciprocity. Results show that the algorithm is able to automatically determine the valid portion of the data and use it to calculate high-quality images. The second part of the approach allows automatic real-time detection of at least one faulty electrode with 100% sensitivity and two faulty electrodes with 80% sensitivity enabling the clinical staff to fix the problem as soon as possible to minimize data loss.

  19. Ground-glass opacity: High-resolution computed tomography and 64-multi-slice computed tomography findings comparison

    International Nuclear Information System (INIS)

    Sergiacomi, Gianluigi; Ciccio, Carmelo; Boi, Luca; Velari, Luca; Crusco, Sonia; Orlacchio, Antonio; Simonetti, Giovanni

    2010-01-01

    Objective: Comparative evaluation of ground-glass opacity using conventional high-resolution computed tomography technique and volumetric computed tomography by 64-row multi-slice scanner, verifying advantage of volumetric acquisition and post-processing technique allowed by 64-row CT scanner. Methods: Thirty-four patients, in which was assessed ground-glass opacity pattern by previous high-resolution computed tomography during a clinical-radiological follow-up for their lung disease, were studied by means of 64-row multi-slice computed tomography. Comparative evaluation of image quality was done by both CT modalities. Results: It was reported good inter-observer agreement (k value 0.78-0.90) in detection of ground-glass opacity with high-resolution computed tomography technique and volumetric Computed Tomography acquisition with moderate increasing of intra-observer agreement (k value 0.46) using volumetric computed tomography than high-resolution computed tomography. Conclusions: In our experience, volumetric computed tomography with 64-row scanner shows good accuracy in detection of ground-glass opacity, providing a better spatial and temporal resolution and advanced post-processing technique than high-resolution computed tomography.

  20. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Head Computed tomography (CT) of the head uses special x-ray ... What is CT Scanning of the Head? Computed tomography, more commonly known as a CT or CAT ...

  1. Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques

    International Nuclear Information System (INIS)

    Harvel, G.D.; Hori, K.; Kawanishi, K.

    1995-01-01

    A Real-Time Neutron Radiography (RTNR) system and a high speed X-ray Computed tomography (X-CT) system are compared for measurement of two-phase flow. Each system is used to determine the flow regime, and the void fraction distribution in a vertical annulus flow channel. A standard optical video system is also used to observe the flow regime. The annulus flow channel is operated as a bubble column and measurements obtained for gas flow rates from 0.0 to 30.01/min. The flow regimes observed by all three measurement systems through image analysis shows that the two-dimensional void fraction distribution can be obtained. The X-CT system is shown to have a superior temporal resolution capable of resolving the void fraction distribution in an (r,θ) plane in 33.0 ms. Void fraction distribution for bubbly flow and slug flow is determined

  2. Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques

    Energy Technology Data Exchange (ETDEWEB)

    Harvel, G.D. [McMaster Univ., Ontario (Canada)]|[Combustion and Heat Transfer Lab., Takasago (Japan); Hori, K.; Kawanishi, K. [Combustion and Heat Transfer Lab., Takasago (Japan)] [and others

    1995-09-01

    A Real-Time Neutron Radiography (RTNR) system and a high speed X-ray Computed tomography (X-CT) system are compared for measurement of two-phase flow. Each system is used to determine the flow regime, and the void fraction distribution in a vertical annulus flow channel. A standard optical video system is also used to observe the flow regime. The annulus flow channel is operated as a bubble column and measurements obtained for gas flow rates from 0.0 to 30.01/min. The flow regimes observed by all three measurement systems through image analysis shows that the two-dimensional void fraction distribution can be obtained. The X-CT system is shown to have a superior temporal resolution capable of resolving the void fraction distribution in an (r,{theta}) plane in 33.0 ms. Void fraction distribution for bubbly flow and slug flow is determined.

  3. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Sinuses Computed tomography (CT) of the sinuses uses special x-ray equipment ... story here Images × Image Gallery Patient undergoing computed tomography (CT) scan. View full size with caption Pediatric Content ...

  4. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Head Computed tomography (CT) of the head uses special x-ray equipment ... story here Images × Image Gallery Patient undergoing computed tomography (CT) scan. View full size with caption Pediatric Content ...

  5. Development of three-dimensional computed tomography system using TNRF2 of JRR-3M

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Yutaka; Mochiki, Koh-ichi [Musashi Inst. of Tech., Tokyo (Japan); Matsubayashi, Masahito

    1998-01-01

    A three-dimensional filtering engine, a convolution engine, and a back projection engine were developed for real-time signal processing of three-dimensional computed tomography. The performance of the system was measured and through-put of 0.5 second per one cross sectional data processing was attained. (author)

  6. Imprecise results: Utilizing partial computations in real-time systems

    Science.gov (United States)

    Lin, Kwei-Jay; Natarajan, Swaminathan; Liu, Jane W.-S.

    1987-01-01

    In real-time systems, a computation may not have time to complete its execution because of deadline requirements. In such cases, no result except the approximate results produced by the computations up to that point will be available. It is desirable to utilize these imprecise results if possible. Two approaches are proposed to enable computations to return imprecise results when executions cannot be completed normally. The milestone approach records results periodically, and if a deadline is reached, returns the last recorded result. The sieve approach demarcates sections of code which can be skipped if the time available is insufficient. By using these approaches, the system is able to produce imprecise results when deadlines are reached. The design of the Concord project is described which supports imprecise computations using these techniques. Also presented is a general model of imprecise computations using these techniques, as well as one which takes into account the influence of the environment, showing where the latter approach fits into this model.

  7. Applications of X-ray Computed Tomography and Emission Computed Tomography

    International Nuclear Information System (INIS)

    Seletchi, Emilia Dana; Sutac, Victor

    2005-01-01

    Computed Tomography is a non-destructive imaging method that allows visualization of internal features within non-transparent objects such as sedimentary rocks. Filtering techniques have been applied to circumvent the artifacts and achieve high-quality images for quantitative analysis. High-resolution X-ray computed tomography (HRXCT) can be used to identify the position of the growth axis in speleothems by detecting subtle changes in calcite density between growth bands. HRXCT imagery reveals the three-dimensional variability of coral banding providing information on coral growth and climate over the past several centuries. The Nuclear Medicine imaging technique uses a radioactive tracer, several radiation detectors, and sophisticated computer technologies to understand the biochemical basis of normal and abnormal functions within the brain. The goal of Emission Computed Tomography (ECT) is to accurately determine the three-dimensional radioactivity distribution resulting from the radiopharmaceutical uptake inside the patient instead of the attenuation coefficient distribution from different tissues as obtained from X-ray Computer Tomography. ECT is a very useful tool for investigating the cognitive functions. Because of the low radiation doses associated with Positron Emission Tomography (PET), this technique has been applied in clinical research, allowing the direct study of human neurological diseases. (authors)

  8. A multi-frequency electrical impedance tomography system for real-time 2D and 3D imaging

    Science.gov (United States)

    Yang, Yunjie; Jia, Jiabin

    2017-08-01

    This paper presents the design and evaluation of a configurable, fast multi-frequency Electrical Impedance Tomography (mfEIT) system for real-time 2D and 3D imaging, particularly for biomedical imaging. The system integrates 32 electrode interfaces and the current frequency ranges from 10 kHz to 1 MHz. The system incorporates the following novel features. First, a fully adjustable multi-frequency current source with current monitoring function is designed. Second, a flexible switching scheme is developed for arbitrary sensing configuration and a semi-parallel data acquisition architecture is implemented for high-frame-rate data acquisition. Furthermore, multi-frequency digital quadrature demodulation is accomplished in a high-capacity Field Programmable Gate Array. At last, a 3D imaging software, visual tomography, is developed for real-time 2D and 3D image reconstruction, data analysis, and visualization. The mfEIT system is systematically tested and evaluated from the aspects of signal to noise ratio (SNR), frame rate, and 2D and 3D multi-frequency phantom imaging. The highest SNR is 82.82 dB on a 16-electrode sensor. The frame rate is up to 546 fps at serial mode and 1014 fps at semi-parallel mode. The evaluation results indicate that the presented mfEIT system is a powerful tool for real-time 2D and 3D imaging.

  9. Measuring Weld Profiles By Computer Tomography

    Science.gov (United States)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Noncontacting, nondestructive computer tomography system determines internal and external contours of welded objects. System makes it unnecessary to take metallurgical sections (destructive technique) or to take silicone impressions of hidden surfaces (technique that contaminates) to inspect them. Measurements of contours via tomography performed 10 times as fast as measurements via impression molds, and tomography does not contaminate inspected parts.

  10. Real-time imaging of subarachnoid hemorrhage in piglets with electrical impedance tomography.

    Science.gov (United States)

    Dai, Meng; Wang, Liang; Xu, Canhua; Li, Lianfeng; Gao, Guodong; Dong, Xiuzhen

    2010-09-01

    Subarachnoid hemorrhage (SAH) is one of the most severe medical emergencies in neurosurgery. Early detection or diagnosis would significantly reduce the rate of disability and mortality, and improve the prognosis of the patients. Although the present medical imaging techniques generally have high sensitivity to identify bleeding, the use of an additional, non-invasive imaging technique capable of continuously monitoring SAH is required to prevent contingent bleeding or re-bleeding. In this study, electrical impedance tomography (EIT) was applied to detect the onset of SAH modeled on eight piglets in real time, with the subsequent process being monitored continuously. The experimental SAH model was introduced by one-time injection of 5 ml fresh autologous arterial blood into the cisterna magna. Results showed that resistivity variations within the brain caused by the added blood could be detected using the EIT method and may be associated not only with the resistivity difference among brain tissues, but also with variations of cerebrospinal fluid dynamics. In conclusion, EIT has unique potential for use in clinical practice to provide invaluable real-time neuroimaging data for SAH after the improvement of electrode design, anisotropic realistic modeling and instrumentation.

  11. Comparison of radiation absorbed dose in target organs in maxillofacial imaging with panoramic, conventional linear tomography, cone beam computed tomography and computed tomography

    Directory of Open Access Journals (Sweden)

    Panjnoush M.

    2009-12-01

    Full Text Available "nBackground and Aim: The objective of this study was to measure and compare the tissue absorbed dose in thyroid gland, salivary glands, eye and skin in maxillofacial imaging with panoramic, conventional linear tomography, cone beam computed tomography (CBCT and computed tomography (CT."nMaterials and Methods: Thermoluminescent dosimeters (TLD were implanted in 14 sites of RANDO phantom to measure average tissue absorbed dose in thyroid gland, parotid glands, submandibular glands, sublingual gland, lenses and buccal skin. The Promax (PLANMECA, Helsinki, Finland unit was selected for Panoramic, conventional linear tomography and cone beam computed tomography examinations and spiral Hispeed/Fxi (General Electric,USA was selected for CT examination. The average tissue absorbed doses were used for the calculation of the equivalent and effective doses in each organ."nResults: The average absorbed dose for Panoramic ranged from 0.038 mGY (Buccal skin to 0.308 mGY (submandibular gland, linear tomography ranged from 0.048 mGY (Lens to 0.510 mGY (submandibular gland,CBCT ranged from 0.322 mGY (thyroid glad to 1.144 mGY (Parotid gland and in CT ranged from 2.495 mGY (sublingual gland to 3.424 mGY (submandibular gland. Total effective dose in CBCT is 5 times greater than Panoramic and 4 times greater than linear tomography, and in CT, 30 and 22 times greater than Panoramic and linear tomography, respectively. Total effective dose in CT is 6 times greater than CBCT."nConclusion: For obtaining 3-dimensional (3D information in maxillofacial region, CBCT delivers the lower dose than CT, and should be preferred over a medical CT imaging. Furthermore, during maxillofacial imaging, salivary glands receive the highest dose of radiation.

  12. Towards real-time diffuse optical tomography for imaging brain functions cooperated with Kalman estimator

    Science.gov (United States)

    Wang, Bingyuan; Zhang, Yao; Liu, Dongyuan; Ding, Xuemei; Dan, Mai; Pan, Tiantian; Wang, Yihan; Li, Jiao; Zhou, Zhongxing; Zhang, Limin; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging method to monitor the cerebral hemodynamic through the optical changes measured at the scalp surface. It has played a more and more important role in psychology and medical imaging communities. Real-time imaging of brain function using NIRS makes it possible to explore some sophisticated human brain functions unexplored before. Kalman estimator has been frequently used in combination with modified Beer-Lamber Law (MBLL) based optical topology (OT), for real-time brain function imaging. However, the spatial resolution of the OT is low, hampering the application of OT in exploring some complicated brain functions. In this paper, we develop a real-time imaging method combining diffuse optical tomography (DOT) and Kalman estimator, much improving the spatial resolution. Instead of only presenting one spatially distributed image indicating the changes of the absorption coefficients at each time point during the recording process, one real-time updated image using the Kalman estimator is provided. Its each voxel represents the amplitude of the hemodynamic response function (HRF) associated with this voxel. We evaluate this method using some simulation experiments, demonstrating that this method can obtain more reliable spatial resolution images. Furthermore, a statistical analysis is also conducted to help to decide whether a voxel in the field of view is activated or not.

  13. Alternative majority-voting methods for real-time computing systems

    Science.gov (United States)

    Shin, Kang G.; Dolter, James W.

    1989-01-01

    Two techniques that provide a compromise between the high time overhead in maintaining synchronous voting and the difficulty of combining results in asynchronous voting are proposed. These techniques are specifically suited for real-time applications with a single-source/single-sink structure that need instantaneous error masking. They provide a compromise between a tightly synchronized system in which the synchronization overhead can be quite high, and an asynchronous system which lacks suitable algorithms for combining the output data. Both quorum-majority voting (QMV) and compare-majority voting (CMV) are most applicable to distributed real-time systems with single-source/single-sink tasks. All real-time systems eventually have to resolve their outputs into a single action at some stage. The development of the advanced information processing system (AIPS) and other similar systems serve to emphasize the importance of these techniques. Time bounds suggest that it is possible to reduce the overhead for quorum-majority voting to below that for synchronous voting. All the bounds assume that the computation phase is nonpreemptive and that there is no multitasking.

  14. Time-Domain Terahertz Computed Axial Tomography NDE System

    Science.gov (United States)

    Zimdars, David

    2012-01-01

    NASA has identified the need for advanced non-destructive evaluation (NDE) methods to characterize aging and durability in aircraft materials to improve the safety of the nation's airline fleet. 3D THz tomography can play a major role in detection and characterization of flaws and degradation in aircraft materials, including Kevlar-based composites and Kevlar and Zylon fabric covers for soft-shell fan containment where aging and durability issues are critical. A prototype computed tomography (CT) time-domain (TD) THz imaging system has been used to generate 3D images of several test objects including a TUFI tile (a thermal protection system tile used on the Space Shuttle and possibly the Orion or similar capsules). This TUFI tile had simulated impact damage that was located and the depth of damage determined. The CT motion control gan try was designed and constructed, and then integrated with a T-Ray 4000 control unit and motion controller to create a complete CT TD-THz imaging system prototype. A data collection software script was developed that takes multiple z-axis slices in sequence and saves the data for batch processing. The data collection software was integrated with the ability to batch process the slice data with the CT TD-THz image reconstruction software. The time required to take a single CT slice was decreased from six minutes to approximately one minute by replacing the 320 ps, 100-Hz waveform acquisition system with an 80 ps, 1,000-Hz waveform acquisition system. The TD-THZ computed tomography system was built from pre-existing commercial off-the-shelf subsystems. A CT motion control gantry was constructed from COTS components that can handle larger samples. The motion control gantry allows inspection of sample sizes of up to approximately one cubic foot (.0.03 cubic meters). The system reduced to practice a CT-TDTHz system incorporating a COTS 80- ps/l-kHz waveform scanner. The incorporation of this scanner in the system allows acquisition of 3D

  15. Fast neutron tomography with real-time pulse-shape discrimination in organic scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Malcolm J., E-mail: m.joyce@lancaster.ac.uk [Department of Engineering, Lancaster University, Lancaster, Lancashire LA1 4YW (United Kingdom); Agar, Stewart [Department of Engineering, Lancaster University, Lancaster, Lancashire LA1 4YW (United Kingdom); Aspinall, Michael D. [Hybrid Instruments Ltd., Gordon Manley Building, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YW (United Kingdom); Beaumont, Jonathan S.; Colley, Edmund; Colling, Miriam; Dykes, Joseph; Kardasopoulos, Phoevos; Mitton, Katie [Department of Engineering, Lancaster University, Lancaster, Lancashire LA1 4YW (United Kingdom)

    2016-10-21

    A fast neutron tomography system based on the use of real-time pulse-shape discrimination in 7 organic liquid scintillation detectors is described. The system has been tested with a californium-252 source of dose rate 163 μSv/h at 1 m and neutron emission rate of 1.5×10{sup 7} per second into 4π and a maximum acquisition time of 2 h, to characterize two 100×100×100 mm{sup 3} concrete samples. The first of these was a solid sample and the second has a vertical, cylindrical void. The experimental data, supported by simulations with both Monte Carlo methods and MATLAB®, indicate that the presence of the internal cylindrical void, corners and inhomogeneities in the samples can be discerned. The potential for fast neutron assay of this type with the capability to probe hydrogenous features in large low-Z samples is discussed. Neutron tomography of bulk porous samples is achieved that combines effective penetration not possible with thermal neutrons in the absence of beam hardening.

  16. Computed tomography for radiographers

    International Nuclear Information System (INIS)

    Brooker, M.

    1986-01-01

    Computed tomography is regarded by many as a complicated union of sophisticated x-ray equipment and computer technology. This book overcomes these complexities. The rigid technicalities of the machinery and the clinical aspects of computed tomography are discussed including the preparation of patients, both physically and mentally, for scanning. Furthermore, the author also explains how to set up and run a computed tomography department, including advice on how the room should be designed

  17. Computer tomography in otolaryngology

    International Nuclear Information System (INIS)

    Gradzki, J.

    1981-01-01

    The principles of design and the action of computer tomography which was applied also for the diagnosis of nose, ear and throat diseases are discussed. Computer tomography makes possible visualization of the structures of the nose, nasal sinuses and facial skeleton in transverse and eoronal planes. The method enables an accurate evaluation of the position and size of neoplasms in these regions and differentiation of inflammatory exudates against malignant masses. In otology computer tomography is used particularly in the diagnosis of pontocerebellar angle tumours and otogenic brain abscesses. Computer tomography of the larynx and pharynx provides new diagnostic data owing to the possibility of obtaining transverse sections and visualization of cartilage. Computer tomograms of some cases are presented. (author)

  18. A real-time computer simulation of nuclear simulator software using standard PC hardware and linux environments

    International Nuclear Information System (INIS)

    Cha, K. H.; Kweon, K. C.

    2001-01-01

    A feasibility study, which standard PC hardware and Real-Time Linux are applied to real-time computer simulation of software for a nuclear simulator, is presented in this paper. The feasibility prototype was established with the existing software in the Compact Nuclear Simulator (CNS). Throughout the real-time implementation in the feasibility prototype, we has identified that the approach can enable the computer-based predictive simulation to be approached, due to both the remarkable improvement in real-time performance and the less efforts for real-time implementation under standard PC hardware and Real-Time Linux envrionments

  19. Real-Time Accumulative Computation Motion Detectors

    Directory of Open Access Journals (Sweden)

    Saturnino Maldonado-Bascón

    2009-12-01

    Full Text Available The neurally inspired accumulative computation (AC method and its application to motion detection have been introduced in the past years. This paper revisits the fact that many researchers have explored the relationship between neural networks and finite state machines. Indeed, finite state machines constitute the best characterized computational model, whereas artificial neural networks have become a very successful tool for modeling and problem solving. The article shows how to reach real-time performance after using a model described as a finite state machine. This paper introduces two steps towards that direction: (a A simplification of the general AC method is performed by formally transforming it into a finite state machine. (b A hardware implementation in FPGA of such a designed AC module, as well as an 8-AC motion detector, providing promising performance results. We also offer two case studies of the use of AC motion detectors in surveillance applications, namely infrared-based people segmentation and color-based people tracking, respectively.

  20. Cranial computed tomography and real-time sonography in full-term neonates and infants

    International Nuclear Information System (INIS)

    Siegel, M.J.; Patel, J.; Gado, M.H.; Shackelford, G.D.

    1983-01-01

    The results of cranial ultrasonography (US) and computed tomography (CT) were compared in 52 full-term neonates and young infants. The chief indications for examination included: increasing head size, dysmorphic features, myelomeningocele, inflammatory disease, and asphyxia. Disorders detected included hydrocephalus, parenchymal abnormalities, intracranial hemorrhage, extraparenchymal fluid collections, and vascular and other developmental malformations. CT and US essentially were equivalent in detecting hydrocephalus, moderate to large intraventricular hemorrhages or subdural collections, and large focal parenchymal lesions, although CT was somewhat better in determining the level and cause of obstruction in patients with hydrocephalus and characterizing parenchymal abnormalities. CT was more sensitive than ultrasound in detecting subarachnoid hemorrhage (100% vs. 0%), diffuse parenchymal abnormality (100% vs. 33%), and small intraventricular hemorrhages (100% vs. 0%) but these lesions often were not clinically significant. The results suggest that US should be used as the primary neuroradiological examination in term infants; CT probably should be reserved for further investigation after US in those patients with a history of hypoxia and progressive clinical deterioration

  1. Real-time three-dimensional echocardiographic left ventricular ejection fraction and volumes assessment: comparison with cardiac computed tomography; Comparacao entre a afericao da fracao de ejecao e dos volumes do ventriculo esquerdo, medidos com ecocardiografia tridimensional em tempo real e com tomografia computadorizada ultra-rapida

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Marcelo L.C.; Nomura, Cesar H.; Tranchesi Junior, Bernardino; Oliveira, Wercules A. de; Naccarato, Gustavo; Serpa, Bruna S.; Cury, Alexandre; Passos, Rodrigo B.D.; Nobrega, Marcel V. da; Funari, Marcelo B.G.; Pfefermam, Abhaham; Makdisse, Marcia; Fischer, Claudio H.; Morhy, Samira S., E-mail: luiz766@terra.com.br [Hospital Israelita Albert Einstein, Sao Paulo, SP (Brazil)

    2008-10-15

    Background and objective: Few studies addressed the comparison between real-time 3D echocardiography (RT3DE) and cardiac computed tomography (CCT) concerning left ventricular ejection fraction and volumes assessment. We sought to compare both techniques regarding left ventricle (LV) ejection fraction function and volumes analysis. Methods: we studied by RT3DE (Philips IE 33, And, MA, USA) and by CCT (Toshiba, 64-slice, Otawara, Japan) 41 consecutive patients (29 males, 58 ± 11 yrs). We analysed by both techniques LVEF, LVEDV, LVESV. RT3DE and CCT data were compared by coefficients of determination (r: Pearson), Bland and Altman test and linear regression, 95% CI. Results: RT3DE data: LVEF ranged from 56.7 to 78.9 % (65.3 + 5.7 ); LVEDV ranged from 49.6 to 178.2 (88 + 27.5) mL; LVESV from 11.4 to 78 ( 33.9 + 13.7) mL. CCT data: LVEF ranged from 53 to 86 % (67.3 + 7.9 ); LVEDV ranged from 51 to 186 (106.4 + 30.7) mL; LVESV from 7 to 72 ( 35.1 + 13.8) mL. Correlations relative to RT3DE and CCT were: LVEF (r: 0. 7877, p<0.0001, 95 % CI 0.6327 to 0.8853 ); LVEDV (r:0.7671, p<0.0001, 95 % CI 0.5974 to 0.8745); LVESV (r: 0.8121, p<0.0001, 95 % CI 0.6659 to 0.8957). Conclusions: it was observed adequate correlation between real-time 3D echocardiography and cardiac computed tomography concerning ejection fraction and volumes assessment. (author)

  2. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... When the image slices are reassembled by computer software, the result is a very detailed multidimensional view ... Safety Images related to Computed Tomography (CT) - Head Videos related to Computed Tomography (CT) - Head Sponsored by ...

  3. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children's (Pediatric) CT (Computed Tomography) Pediatric computed tomography (CT) ... are the limitations of Children's CT? What is Children's CT? Computed tomography, more commonly known as a ...

  4. Heterogeneous real-time computing in radio astronomy

    Science.gov (United States)

    Ford, John M.; Demorest, Paul; Ransom, Scott

    2010-07-01

    Modern computer architectures suited for general purpose computing are often not the best choice for either I/O-bound or compute-bound problems. Sometimes the best choice is not to choose a single architecture, but to take advantage of the best characteristics of different computer architectures to solve your problems. This paper examines the tradeoffs between using computer systems based on the ubiquitous X86 Central Processing Units (CPU's), Field Programmable Gate Array (FPGA) based signal processors, and Graphical Processing Units (GPU's). We will show how a heterogeneous system can be produced that blends the best of each of these technologies into a real-time signal processing system. FPGA's tightly coupled to analog-to-digital converters connect the instrument to the telescope and supply the first level of computing to the system. These FPGA's are coupled to other FPGA's to continue to provide highly efficient processing power. Data is then packaged up and shipped over fast networks to a cluster of general purpose computers equipped with GPU's, which are used for floating-point intensive computation. Finally, the data is handled by the CPU and written to disk, or further processed. Each of the elements in the system has been chosen for its specific characteristics and the role it can play in creating a system that does the most for the least, in terms of power, space, and money.

  5. Mesenteric panniculitis: computed tomography aspects

    International Nuclear Information System (INIS)

    Moreira, Luiza Beatriz Melo; Alves, Jose Ricardo Duarte; Marchiori, Edson; Pinheiro, Ricardo Andrade; Melo, Alessandro Severo Alves de; Noro, Fabio

    2001-01-01

    Mesenteric panniculitis is an inflammatory process that represents the second stage of a rare progressive disease involving the adipose tissue of the mesentery. Imaging methods used in the diagnosis of mesenteric panniculitis include barium studies, ultrasonography, computed tomography and magnetic resonance imaging. Computed tomography is important for both, diagnosis and evaluation of the extension of the disease and treatment monitoring. Computed tomography findings may vary according to the stage of the disease and the amount of inflammatory material or fibrosis. There is also good correlation between the computed tomography and anatomical pathology findings. The authors studied 10 patients with mesenteric panniculitis submitted to computed tomography. Magnetic resonance imaging was also performed in one patient. In all patients, computed tomography revealed a heterogeneous mass in the mesentery with density of fat, interspersed with areas of soft tissue density and dilated vessels. (author)

  6. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... Site Index A-Z Children's (Pediatric) CT (Computed Tomography) Pediatric computed tomography (CT) is a fast, painless exam that uses ... of Children's CT? What is Children's CT? Computed tomography, more commonly known as a CT or CAT ...

  7. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... Z Children's (Pediatric) CT (Computed Tomography) Pediatric computed tomography (CT) is a fast, painless exam that uses special ... the limitations of Children's CT? What is Children's CT? Computed tomography, more commonly known as a CT or CAT ...

  8. Distributed computing for real-time petroleum reservoir monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ayodele, O. R. [University of Alberta, Edmonton, AB (Canada)

    2004-05-01

    Computer software architecture is presented to illustrate how the concept of distributed computing can be applied to real-time reservoir monitoring processes, permitting the continuous monitoring of the dynamic behaviour of petroleum reservoirs at much shorter intervals. The paper describes the fundamental technologies driving distributed computing, namely Java 2 Platform Enterprise edition (J2EE) by Sun Microsystems, and the Microsoft Dot-Net (Microsoft.Net) initiative, and explains the challenges involved in distributed computing. These are: (1) availability of permanently placed downhole equipment to acquire and transmit seismic data; (2) availability of high bandwidth to transmit the data; (3) security considerations; (4) adaptation of existing legacy codes to run on networks as downloads on demand; and (5) credibility issues concerning data security over the Internet. Other applications of distributed computing in the petroleum industry are also considered, specifically MWD, LWD and SWD (measurement-while-drilling, logging-while-drilling, and simulation-while-drilling), and drill-string vibration monitoring. 23 refs., 1 fig.

  9. The role of computed tomography in the laryngeal injury

    International Nuclear Information System (INIS)

    Bae, Hoon Sik

    1984-01-01

    Computed tomography of the larynx represents a major advance in laryngology. Even in severe injury the larynx can be examined easily and conveniently by CT at the same time as the brain and facial structures without moving the patient, who need only lie down and breathe quietly during the study. Computed tomography permitted a much more detailed appraisal of laryngeal dysfunction in patients with blunt laryngeal trauma (3 cases) and strangulation injury (2 cases). Computed tomography of the larynx undoubtedly played a determinant role in patient management. Computed tomography was helpful in evaluating the laryngeal cartilages and deep spaces of the larynx which was difficult to examine by the laryngoscope. Follow-up computed tomography made it possible to evaluate the postoperative results

  10. Flexible structure control experiments using a real-time workstation for computer-aided control engineering

    Science.gov (United States)

    Stieber, Michael E.

    1989-01-01

    A Real-Time Workstation for Computer-Aided Control Engineering has been developed jointly by the Communications Research Centre (CRC) and Ruhr-Universitaet Bochum (RUB), West Germany. The system is presently used for the development and experimental verification of control techniques for large space systems with significant structural flexibility. The Real-Time Workstation essentially is an implementation of RUB's extensive Computer-Aided Control Engineering package KEDDC on an INTEL micro-computer running under the RMS real-time operating system. The portable system supports system identification, analysis, control design and simulation, as well as the immediate implementation and test of control systems. The Real-Time Workstation is currently being used by CRC to study control/structure interaction on a ground-based structure called DAISY, whose design was inspired by a reflector antenna. DAISY emulates the dynamics of a large flexible spacecraft with the following characteristics: rigid body modes, many clustered vibration modes with low frequencies and extremely low damping. The Real-Time Workstation was found to be a very powerful tool for experimental studies, supporting control design and simulation, and conducting and evaluating tests withn one integrated environment.

  11. Real-time computation of parameter fitting and image reconstruction using graphical processing units

    Science.gov (United States)

    Locans, Uldis; Adelmann, Andreas; Suter, Andreas; Fischer, Jannis; Lustermann, Werner; Dissertori, Günther; Wang, Qiulin

    2017-06-01

    In recent years graphical processing units (GPUs) have become a powerful tool in scientific computing. Their potential to speed up highly parallel applications brings the power of high performance computing to a wider range of users. However, programming these devices and integrating their use in existing applications is still a challenging task. In this paper we examined the potential of GPUs for two different applications. The first application, created at Paul Scherrer Institut (PSI), is used for parameter fitting during data analysis of μSR (muon spin rotation, relaxation and resonance) experiments. The second application, developed at ETH, is used for PET (Positron Emission Tomography) image reconstruction and analysis. Applications currently in use were examined to identify parts of the algorithms in need of optimization. Efficient GPU kernels were created in order to allow applications to use a GPU, to speed up the previously identified parts. Benchmarking tests were performed in order to measure the achieved speedup. During this work, we focused on single GPU systems to show that real time data analysis of these problems can be achieved without the need for large computing clusters. The results show that the currently used application for parameter fitting, which uses OpenMP to parallelize calculations over multiple CPU cores, can be accelerated around 40 times through the use of a GPU. The speedup may vary depending on the size and complexity of the problem. For PET image analysis, the obtained speedups of the GPU version were more than × 40 larger compared to a single core CPU implementation. The achieved results show that it is possible to improve the execution time by orders of magnitude.

  12. Real-Time Tomography of Gas-Jets with a Wollaston Interferometer

    Directory of Open Access Journals (Sweden)

    Andreas Adelmann

    2018-03-01

    Full Text Available A tomographic gas-density diagnostic using a Single-Beam Wollaston Interferometer able to characterize non-symmetric density distributions in gas jets is presented. A real-time tomographic algorithm is able to reconstruct three-dimensional density distributions. A Maximum Likelihood-Expectation Maximization algorithm, an iterative method with good convergence properties compared to simple back projection, is used. With the use of graphical processing units, real-time computation and high resolution are achieved. Two different gas jets are characterized: a kHz, piezo-driven jet for lower densities and a solenoid valve-based jet producing higher densities. While the first jet is used for free electron laser photon beam characterization, the second jet is used in laser wake field acceleration experiments. In this latter application, well-tailored and non-symmetric density distributions produced by a supersonic shock front generated by a razor blade inserted laterally to the gas flow, which breaks cylindrical symmetry, need to be characterized.

  13. Noninvasive coronary angioscopy using electron beam computed tomography and multidetector computed tomography

    NARCIS (Netherlands)

    van Ooijen, PMA; Nieman, K; de Feyter, PJ; Oudkerk, M

    2002-01-01

    With the advent of noninvasive coronary imaging techniques like multidetector computed tomography and electron beam computed tomography, new representation methods such as intracoronary visualization. have been introduced. We explore the possibilities of these novel visualization techniques and

  14. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Stroke Brain Tumors Computer Tomography (CT) Safety During Pregnancy Head and Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Computed Tomography (CT) - ...

  15. Highly reliable computer network for real time system

    International Nuclear Information System (INIS)

    Mohammed, F.A.; Omar, A.A.; Ayad, N.M.A.; Madkour, M.A.I.; Ibrahim, M.K.

    1988-01-01

    Many of computer networks have been studied different trends regarding the network architecture and the various protocols that govern data transfers and guarantee a reliable communication among all a hierarchical network structure has been proposed to provide a simple and inexpensive way for the realization of a reliable real-time computer network. In such architecture all computers in the same level are connected to a common serial channel through intelligent nodes that collectively control data transfers over the serial channel. This level of computer network can be considered as a local area computer network (LACN) that can be used in nuclear power plant control system since it has geographically dispersed subsystems. network expansion would be straight the common channel for each added computer (HOST). All the nodes are designed around a microprocessor chip to provide the required intelligence. The node can be divided into two sections namely a common section that interfaces with serial data channel and a private section to interface with the host computer. This part would naturally tend to have some variations in the hardware details to match the requirements of individual host computers. fig 7

  16. Computing moment to moment BOLD activation for real-time neurofeedback

    Science.gov (United States)

    Hinds, Oliver; Ghosh, Satrajit; Thompson, Todd W.; Yoo, Julie J.; Whitfield-Gabrieli, Susan; Triantafyllou, Christina; Gabrieli, John D.E.

    2013-01-01

    Estimating moment to moment changes in blood oxygenation level dependent (BOLD) activation levels from functional magnetic resonance imaging (fMRI) data has applications for learned regulation of regional activation, brain state monitoring, and brain-machine interfaces. In each of these contexts, accurate estimation of the BOLD signal in as little time as possible is desired. This is a challenging problem due to the low signal-to-noise ratio of fMRI data. Previous methods for real-time fMRI analysis have either sacrificed the ability to compute moment to moment activation changes by averaging several acquisitions into a single activation estimate or have sacrificed accuracy by failing to account for prominent sources of noise in the fMRI signal. Here we present a new method for computing the amount of activation present in a single fMRI acquisition that separates moment to moment changes in the fMRI signal intensity attributable to neural sources from those due to noise, resulting in a feedback signal more reflective of neural activation. This method computes an incremental general linear model fit to the fMRI timeseries, which is used to calculate the expected signal intensity at each new acquisition. The difference between the measured intensity and the expected intensity is scaled by the variance of the estimator in order to transform this residual difference into a statistic. Both synthetic and real data were used to validate this method and compare it to the only other published real-time fMRI method. PMID:20682350

  17. Emission computed tomography

    International Nuclear Information System (INIS)

    Budinger, T.F.; Gullberg, G.T.; Huesman, R.H.

    1979-01-01

    This chapter is devoted to the methods of computer assisted tomography for determination of the three-dimensional distribution of gamma-emitting radionuclides in the human body. The major applications of emission computed tomography are in biological research and medical diagnostic procedures. The objectives of these procedures are to make quantitative measurements of in vivo biochemical and hemodynamic functions

  18. Computationally determining the salience of decision points for real-time wayfinding support

    Directory of Open Access Journals (Sweden)

    Makoto Takemiya

    2012-06-01

    Full Text Available This study introduces the concept of computational salience to explain the discriminatory efficacy of decision points, which in turn may have applications to providing real-time assistance to users of navigational aids. This research compared algorithms for calculating the computational salience of decision points and validated the results via three methods: high-salience decision points were used to classify wayfinders; salience scores were used to weight a conditional probabilistic scoring function for real-time wayfinder performance classification; and salience scores were correlated with wayfinding-performance metrics. As an exploratory step to linking computational and cognitive salience, a photograph-recognition experiment was conducted. Results reveal a distinction between algorithms useful for determining computational and cognitive saliences. For computational salience, information about the structural integration of decision points is effective, while information about the probability of decision-point traversal shows promise for determining cognitive salience. Limitations from only using structural information and motivations for future work that include non-structural information are elicited.

  19. What is Computed Tomography?

    Science.gov (United States)

    ... Imaging Medical X-ray Imaging What is Computed Tomography? Share Tweet Linkedin Pin it More sharing options ... Chest X ray Image back to top Computed Tomography (CT) Although also based on the variable absorption ...

  20. Real-time three-dimensional temperature mapping in photothermal therapy with optoacoustic tomography

    Science.gov (United States)

    Oyaga Landa, Francisco Javier; Deán-Ben, Xosé Luís.; Sroka, Ronald; Razansky, Daniel

    2017-07-01

    Ablation and photothermal therapy are widely employed medical protocols where the selective destruction of tissue is a necessity as in cancerous tissue removal or vascular and brain abnormalities. Tissue denaturation takes place when the temperature reaches a threshold value while the time of exposure determines the lesion size. Therefore, the spatio-temporal distribution of temperature plays a crucial role in the outcome of these clinical interventions. We demonstrate fast volumetric temperature mapping with optoacoustic tomography based on real-time optoacoustic readings from the treated region. The performance of the method was investigated in tissue-mimicking phantom experiments. The new ability to non-invasively measure temperature volumetrically in an entire treated region with high spatial and temporal resolutions holds potential for improving safety and efficacy of thermal ablation and to advance the general applicability of laser-based therapy.

  1. Cloud computing platform for real-time measurement and verification of energy performance

    International Nuclear Information System (INIS)

    Ke, Ming-Tsun; Yeh, Chia-Hung; Su, Cheng-Jie

    2017-01-01

    Highlights: • Application of PSO algorithm can improve the accuracy of the baseline model. • M&V cloud platform automatically calculates energy performance. • M&V cloud platform can be applied in all energy conservation measures. • Real-time operational performance can be monitored through the proposed platform. • M&V cloud platform facilitates the development of EE programs and ESCO industries. - Abstract: Nations worldwide are vigorously promoting policies to improve energy efficiency. The use of measurement and verification (M&V) procedures to quantify energy performance is an essential topic in this field. Currently, energy performance M&V is accomplished via a combination of short-term on-site measurements and engineering calculations. This requires extensive amounts of time and labor and can result in a discrepancy between actual energy savings and calculated results. In addition, the M&V period typically lasts for periods as long as several months or up to a year, the failure to immediately detect abnormal energy performance not only decreases energy performance, results in the inability to make timely correction, and misses the best opportunity to adjust or repair equipment and systems. In this study, a cloud computing platform for the real-time M&V of energy performance is developed. On this platform, particle swarm optimization and multivariate regression analysis are used to construct accurate baseline models. Instantaneous and automatic calculations of the energy performance and access to long-term, cumulative information about the energy performance are provided via a feature that allows direct uploads of the energy consumption data. Finally, the feasibility of this real-time M&V cloud platform is tested for a case study involving improvements to a cold storage system in a hypermarket. Cloud computing platform for real-time energy performance M&V is applicable to any industry and energy conservation measure. With the M&V cloud platform, real-time

  2. Real-time three-dimensional imaging of epidermal splitting and removal by high-definition optical coherence tomography.

    Science.gov (United States)

    Boone, Marc; Draye, Jean Pierre; Verween, Gunther; Pirnay, Jean-Paul; Verbeken, Gilbert; De Vos, Daniel; Rose, Thomas; Jennes, Serge; Jemec, Gregor B E; Del Marmol, Véronique

    2014-10-01

    While real-time 3-D evaluation of human skin constructs is needed, only 2-D non-invasive imaging techniques are available. The aim of this paper is to evaluate the potential of high-definition optical coherence tomography (HD-OCT) for real-time 3-D assessment of the epidermal splitting and decellularization. Human skin samples were incubated with four different agents: Dispase II, NaCl 1 M, sodium dodecyl sulphate (SDS) and Triton X-100. Epidermal splitting, dermo-epidermal junction, acellularity and 3-D architecture of dermal matrices were evaluated by High-definition optical coherence tomography before and after incubation. Real-time 3-D HD-OCT assessment was compared with 2-D en face assessment by reflectance confocal microscopy (RCM). (Immuno) histopathology was used as control. HD-OCT imaging allowed real-time 3-D visualization of the impact of selected agents on epidermal splitting, dermo-epidermal junction, dermal architecture, vascular spaces and cellularity. RCM has a better resolution (1 μm) than HD-OCT (3 μm), permitting differentiation of different collagen fibres, but HD-OCT imaging has deeper penetration (570 μm) than RCM imaging (200 μm). Dispase II and NaCl treatments were found to be equally efficient in the removal of the epidermis from human split-thickness skin allografts. However, a different epidermal splitting level at the dermo-epidermal junction could be observed and confirmed by immunolabelling of collagen type IV and type VII. Epidermal splitting occurred at the level of the lamina densa with dispase II and above the lamina densa (in the lamina lucida) with NaCl. The 3-D architecture of dermal papillae and dermis was more affected by Dispase II on HD-OCT which corresponded with histopathologic (orcein staining) fragmentation of elastic fibres. With SDS treatment, the epidermal removal was incomplete as remnants of the epidermal basal cell layer remained attached to the basement membrane on the dermis. With Triton X-100 treatment

  3. Multislice computed tomography coronary angiography

    NARCIS (Netherlands)

    F. Cademartiri (Filippo)

    2005-01-01

    markdownabstract__Abstract__ Computed Tomography (CT) imaging is also known as "CAT scanning" (Computed Axial Tomography). Tomography is from the Greek word "tomos" meaning "slice" or "section" and "graphia" meaning "describing". CT was invented in 1972 by British engineer Godfrey Hounsfield

  4. Computed tomography

    International Nuclear Information System (INIS)

    Wells, P.; Davis, J.; Morgan, M.

    1994-01-01

    X-ray or gamma-ray transmission computed tomography (CT) is a powerful non-destructive evaluation (NDE) technique that produces two-dimensional cross-sectional images of an object without the need to physically section it. CT is also known by the acronym CAT, for computerised axial tomography. This review article presents a brief historical perspective on CT, its current status and the underlying physics. The mathematical fundamentals of computed tomography are developed for the simplest transmission CT modality. A description of CT scanner instrumentation is provided with an emphasis on radiation sources and systems. Examples of CT images are shown indicating the range of materials that can be scanned and the spatial and contrast resolutions that may be achieved. Attention is also given to the occurrence, interpretation and minimisation of various image artefacts that may arise. A final brief section is devoted to the principles and potential of a range of more recently developed tomographic modalities including diffraction CT, positron emission CT and seismic tomography. 57 refs., 2 tabs., 14 figs

  5. Real time computer control of a nonlinear Multivariable System via Linearization and Stability Analysis

    International Nuclear Information System (INIS)

    Raza, K.S.M.

    2004-01-01

    This paper demonstrates that if a complicated nonlinear, non-square, state-coupled multi variable system is smartly linearized and subjected to a thorough stability analysis then we can achieve our design objectives via a controller which will be quite simple (in term of resource usage and execution time) and very efficient (in terms of robustness). Further the aim is to implement this controller via computer in a real time environment. Therefore first a nonlinear mathematical model of the system is achieved. An intelligent work is done to decouple the multivariable system. Linearization and stability analysis techniques are employed for the development of a linearized and mathematically sound control law. Nonlinearities like the saturation in actuators are also been catered. The controller is then discretized using Runge-Kutta integration. Finally the discretized control law is programmed in a computer in a real time environment. The programme is done in RT -Linux using GNU C for the real time realization of the control scheme. The real time processes, like sampling and controlled actuation, and the non real time processes, like graphical user interface and display, are programmed as different tasks. The issue of inter process communication, between real time and non real time task is addressed quite carefully. The results of this research pursuit are presented graphically. (author)

  6. Computed tomography device

    International Nuclear Information System (INIS)

    Ohhashi, A.

    1985-01-01

    A computed tomography device comprising a subtraction unit which obtains differential data strings representing the difference between each time-serial projection data string of a group of projection data strings corresponding to a prospective reconstruction image generated by projection data strings acquired by a data acquisition system, a convolution unit which convolves each time-serial projection data string of the group of projection data strings corresponding to the prospective reconstruction image, and a back-projection unit which back-projects the convolved data strings

  7. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    Science.gov (United States)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  8. Applications of parallel computer architectures to the real-time simulation of nuclear power systems

    International Nuclear Information System (INIS)

    Doster, J.M.; Sills, E.D.

    1988-01-01

    In this paper the authors report on efforts to utilize parallel computer architectures for the thermal-hydraulic simulation of nuclear power systems and current research efforts toward the development of advanced reactor operator aids and control systems based on this new technology. Many aspects of reactor thermal-hydraulic calculations are inherently parallel, and the computationally intensive portions of these calculations can be effectively implemented on modern computers. Timing studies indicate faster-than-real-time, high-fidelity physics models can be developed when the computational algorithms are designed to take advantage of the computer's architecture. These capabilities allow for the development of novel control systems and advanced reactor operator aids. Coupled with an integral real-time data acquisition system, evolving parallel computer architectures can provide operators and control room designers improved control and protection capabilities. Current research efforts are currently under way in this area

  9. A real-time computational model for estimating kinematics of ankle ligaments.

    Science.gov (United States)

    Zhang, Mingming; Davies, T Claire; Zhang, Yanxin; Xie, Sheng Quan

    2016-01-01

    An accurate assessment of ankle ligament kinematics is crucial in understanding the injury mechanisms and can help to improve the treatment of an injured ankle, especially when used in conjunction with robot-assisted therapy. A number of computational models have been developed and validated for assessing the kinematics of ankle ligaments. However, few of them can do real-time assessment to allow for an input into robotic rehabilitation programs. An ankle computational model was proposed and validated to quantify the kinematics of ankle ligaments as the foot moves in real-time. This model consists of three bone segments with three rotational degrees of freedom (DOFs) and 12 ankle ligaments. This model uses inputs for three position variables that can be measured from sensors in many ankle robotic devices that detect postures within the foot-ankle environment and outputs the kinematics of ankle ligaments. Validation of this model in terms of ligament length and strain was conducted by comparing it with published data on cadaver anatomy and magnetic resonance imaging. The model based on ligament lengths and strains is in concurrence with those from the published studies but is sensitive to ligament attachment positions. This ankle computational model has the potential to be used in robot-assisted therapy for real-time assessment of ligament kinematics. The results provide information regarding the quantification of kinematics associated with ankle ligaments related to the disability level and can be used for optimizing the robotic training trajectory.

  10. Hard Real-Time Task Scheduling in Cloud Computing Using an Adaptive Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Amjad Mahmood

    2017-04-01

    Full Text Available In the Infrastructure-as-a-Service cloud computing model, virtualized computing resources in the form of virtual machines are provided over the Internet. A user can rent an arbitrary number of computing resources to meet their requirements, making cloud computing an attractive choice for executing real-time tasks. Economical task allocation and scheduling on a set of leased virtual machines is an important problem in the cloud computing environment. This paper proposes a greedy and a genetic algorithm with an adaptive selection of suitable crossover and mutation operations (named as AGA to allocate and schedule real-time tasks with precedence constraint on heterogamous virtual machines. A comprehensive simulation study has been done to evaluate the performance of the proposed algorithms in terms of their solution quality and efficiency. The simulation results show that AGA outperforms the greedy algorithm and non-adaptive genetic algorithm in terms of solution quality.

  11. Modeling of requirement specification for safety critical real time computer system using formal mathematical specifications

    International Nuclear Information System (INIS)

    Sankar, Bindu; Sasidhar Rao, B.; Ilango Sambasivam, S.; Swaminathan, P.

    2002-01-01

    Full text: Real time computer systems are increasingly used for safety critical supervision and control of nuclear reactors. Typical application areas are supervision of reactor core against coolant flow blockage, supervision of clad hot spot, supervision of undesirable power excursion, power control and control logic for fuel handling systems. The most frequent cause of fault in safety critical real time computer system is traced to fuzziness in requirement specification. To ensure the specified safety, it is necessary to model the requirement specification of safety critical real time computer systems using formal mathematical methods. Modeling eliminates the fuzziness in the requirement specification and also helps to prepare the verification and validation schemes. Test data can be easily designed from the model of the requirement specification. Z and B are the popular languages used for modeling the requirement specification. A typical safety critical real time computer system for supervising the reactor core of prototype fast breeder reactor (PFBR) against flow blockage is taken as case study. Modeling techniques and the actual model are explained in detail. The advantages of modeling for ensuring the safety are summarized

  12. Diagnostic accuracy of coronary angiography with multislice computed tomography applied to 'the Real World'

    International Nuclear Information System (INIS)

    Rodriguez Granillo, Gaston A.; Rosales, Miguel A.; Llaurado, Claudio; Fernandez Pereira, Carlos; Garcia Carcia, Hector M.

    2006-01-01

    Objective: To assess the diagnostic accuracy of Coronary Angiography with Multislice Computed Tomography (MSCT) for the detection of significant coronary artery stenoses. Material and methods: Patients studied had an indication for diagnostic coronary angiography and no history of contrast allergies, renal failure or arrhythmias. A multislice tomography equipment (Brilliance 40, Philips, The Netherlands) with ECG gating was used for image acquisition. A total of 90-125 mI of iodinated contrast was administered by IV route. Obesity, diabetes, diffusely calcified segments with a diameter < 2.0 mm, and segments treated with stents were not considered exclusion criteria. Lesions were defined as significant when the decrease in Iumen was ≥ 50% by MSCT and quantitative coronary angiography (QCA). Results: A total of 38 patients were scanned before the intervention. Of them, one (3%) was excluded because of inadequate image quality. The remaining 37 patients (444 segments), with an adequate quality image, were included in the study (81% men, mean age 62.43 ± 12.5 years, 13.5% diabetics). Mean scan time was 15.12 ± 2.6 seconds, and 444 segments were assessed with both techniques. The number of lesions deemed significant by QCA and MSCT were 88 (17%) and 93 (18%), respectively. Sensitivity, specificity, positive and negative predictive values of MSCT to detect significant stenoses were 82%, 93%, 72% and 96%, respectively. Conclusion: In non-selected patients, coronary angiography by multislice computed tomography exhibits a high negative predictive value for the detection of obstructive coronary disease. (author)

  13. Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units.

    Science.gov (United States)

    Watanabe, Yuuki; Maeno, Seiya; Aoshima, Kenji; Hasegawa, Haruyuki; Koseki, Hitoshi

    2010-09-01

    The real-time display of full-range, 2048?axial pixelx1024?lateral pixel, Fourier-domain optical-coherence tomography (FD-OCT) images is demonstrated. The required speed was achieved by using dual graphic processing units (GPUs) with many stream processors to realize highly parallel processing. We used a zero-filling technique, including a forward Fourier transform, a zero padding to increase the axial data-array size to 8192, an inverse-Fourier transform back to the spectral domain, a linear interpolation from wavelength to wavenumber, a lateral Hilbert transform to obtain the complex spectrum, a Fourier transform to obtain the axial profiles, and a log scaling. The data-transfer time of the frame grabber was 15.73?ms, and the processing time, which includes the data transfer between the GPU memory and the host computer, was 14.75?ms, for a total time shorter than the 36.70?ms frame-interval time using a line-scan CCD camera operated at 27.9?kHz. That is, our OCT system achieved a processed-image display rate of 27.23 frames/s.

  14. Analysis of the computed tomography in the acute abdomen

    International Nuclear Information System (INIS)

    Hochhegger, Bruno; Moraes, Everton; Haygert, Carlos Jesus Pereira; Antunes, Paulo Sergio Pase; Gazzoni, Fernando; Lopes, Luis Felipe Dias

    2007-01-01

    Introduction: This study tends to test the capacity of the computed tomography in assist in the diagnosis and the approach of the acute abdomen. Material and method: This is a longitudinal and prospective study, in which were analyzed the patients with the diagnosis of acute abdomen. There were obtained 105 cases of acute abdomen and after the application of the exclusions criteria were included 28 patients in the study. Results: Computed tomography changed the diagnostic hypothesis of the physicians in 50% of the cases (p 0.05), where 78.57% of the patients had surgical indication before computed tomography and 67.86% after computed tomography (p = 0.0546). The index of accurate diagnosis of computed tomography, when compared to the anatomopathologic examination and the final diagnosis, was observed in 82.14% of the cases (p = 0.013). When the analysis was done dividing the patients in surgical and nonsurgical group, were obtained an accuracy of 89.28% (p 0.0001). The difference of 7.2 days of hospitalization (p = 0.003) was obtained compared with the mean of the acute abdomen without use the computed tomography. Conclusion: The computed tomography is correlative with the anatomopathology and has great accuracy in the surgical indication, associated with the capacity of increase the confident index of the physicians, reduces the hospitalization time, reduces the number of surgeries and is cost-effective. (author)

  15. A Real-Time Plagiarism Detection Tool for Computer-Based Assessments

    Science.gov (United States)

    Jeske, Heimo J.; Lall, Manoj; Kogeda, Okuthe P.

    2018-01-01

    Aim/Purpose: The aim of this article is to develop a tool to detect plagiarism in real time amongst students being evaluated for learning in a computer-based assessment setting. Background: Cheating or copying all or part of source code of a program is a serious concern to academic institutions. Many academic institutions apply a combination of…

  16. Computed tomography and/or ventriculography

    International Nuclear Information System (INIS)

    Wende, S.; Kishikawa, T.; Huewel, N.; Kazner, E.; Grumme, T.; Lanksch, W.

    1982-01-01

    It is discussed if in intracranial tumors, especially in tumors of the posterior cranial fossa, a CT and/or a ventriculography should be practiced. We have made investigations of 134 patients, 93 of whom were children up to 14 years of age. Each case was undertaken computed tomography as well as ventriculography. The results are clearly demonstrating the superiority of computed tomography compared with ventriculography. Ventriculography is a surgical intervention stressing the patients, side-effects may occur, and sometimes serious complications are caused. Modern computed tomography is producing pictures of high quality, which are highly sufficient for neurosurgical intervention. Very rarely additional angiography has to be performed. The diagnosis of intracranial tumors can fully be established by computed tomography, whereas ventriculography is no longer necessary. (orig.) [de

  17. Multidimensional Space-Time Methodology for Development of Planetary and Space Sciences, S-T Data Management and S-T Computational Tomography

    Science.gov (United States)

    Andonov, Zdravko

    This R&D represent innovative multidimensional 6D-N(6n)D Space-Time (S-T) Methodology, 6D-6nD Coordinate Systems, 6D Equations, new 6D strategy and technology for development of Planetary Space Sciences, S-T Data Management and S-T Computational To-mography. . . The Methodology is actual for brain new RS Microwaves' Satellites and Compu-tational Tomography Systems development, aimed to defense sustainable Earth, Moon, & Sun System evolution. Especially, extremely important are innovations for monitoring and protec-tion of strategic threelateral system H-OH-H2O Hydrogen, Hydroxyl and Water), correspond-ing to RS VHRS (Very High Resolution Systems) of 1.420-1.657-22.089GHz microwaves. . . One of the Greatest Paradox and Challenge of World Science is the "transformation" of J. L. Lagrange 4D Space-Time (S-T) System to H. Minkovski 4D S-T System (O-X,Y,Z,icT) for Einstein's "Theory of Relativity". As a global result: -In contemporary Advanced Space Sciences there is not real adequate 4D-6D Space-Time Coordinate System and 6D Advanced Cosmos Strategy & Methodology for Multidimensional and Multitemporal Space-Time Data Management and Tomography. . . That's one of the top actual S-T Problems. Simple and optimal nD S-T Methodology discovery is extremely important for all Universities' Space Sci-ences' Education Programs, for advances in space research and especially -for all young Space Scientists R&D!... The top ten 21-Century Challenges ahead of Planetary and Space Sciences, Space Data Management and Computational Space Tomography, important for successfully de-velopment of Young Scientist Generations, are following: 1. R&D of W. R. Hamilton General Idea for transformation all Space Sciences to Time Sciences, beginning with 6D Eukonal for 6D anisotropic mediums & velocities. Development of IERS Earth & Space Systems (VLBI; LLR; GPS; SLR; DORIS Etc.) for Planetary-Space Data Management & Computational Planetary & Space Tomography. 2. R&D of S. W. Hawking Paradigm for 2D

  18. Computational model for real-time determination of tritium inventory in a detritiation installation

    International Nuclear Information System (INIS)

    Bornea, Anisia; Stefanescu, Ioan; Zamfirache, Marius; Stefan, Iuliana; Sofalca, Nicolae; Bidica, Nicolae

    2008-01-01

    Full text: At ICIT Rm.Valcea an experimental pilot plant was built having as main objective the development of a technology for detritiation of heavy water processed in the CANDU-type reactors of the nuclear power plant at Cernavoda, Romania. The aspects related to safeguards and safety for such a detritiation installation being of great importance, a complex computational model has been developed. The model allows real-time calculation of tritium inventory in a working installation. The applied detritiation technology is catalyzed isotopic exchange coupled with cryogenic distillation. Computational models for non-steady working conditions have been developed for each process of isotopic exchange. By coupling these processes tritium inventory can be determined in real-time. The computational model was developed based on the experience gained on the pilot installation. The model uses a set of parameters specific to isotopic exchange processes. These parameters were experimentally determined in the pilot installation. The model is included in the monitoring system and uses as input data the parameters acquired in real-time from automation system of the pilot installation. A friendly interface has been created to visualize the final results as data or graphs. (authors)

  19. Inversion techniques in the Soft X-Ray tomography of fusion plasmas: towards real-time applications

    Czech Academy of Sciences Publication Activity Database

    Mlynář, Jan; Weinzettl, Vladimír; Bonheure, G.; Murari, A.

    2010-01-01

    Roč. 58, č. 3 (2010), s. 733-741 ISSN 1536-1055. [Workshop on Fusion Data Processing, Validation and Ananlyses/6th./. Madrid, 25.01.2010-27.01.2010] R&D Projects: GA ČR GAP205/10/2055; GA ČR GA202/09/1467; GA MŠk LA08048 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma tomography * real - time control * soft-X-ray diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.654, year: 2010 http://www.new.ans.org/store/j_10922

  20. Event Based Simulator for Parallel Computing over the Wide Area Network for Real Time Visualization

    Science.gov (United States)

    Sundararajan, Elankovan; Harwood, Aaron; Kotagiri, Ramamohanarao; Satria Prabuwono, Anton

    As the computational requirement of applications in computational science continues to grow tremendously, the use of computational resources distributed across the Wide Area Network (WAN) becomes advantageous. However, not all applications can be executed over the WAN due to communication overhead that can drastically slowdown the computation. In this paper, we introduce an event based simulator to investigate the performance of parallel algorithms executed over the WAN. The event based simulator known as SIMPAR (SIMulator for PARallel computation), simulates the actual computations and communications involved in parallel computation over the WAN using time stamps. Visualization of real time applications require steady stream of processed data flow for visualization purposes. Hence, SIMPAR may prove to be a valuable tool to investigate types of applications and computing resource requirements to provide uninterrupted flow of processed data for real time visualization purposes. The results obtained from the simulation show concurrence with the expected performance using the L-BSP model.

  1. RELIABILITY OF POSITRON EMISSION TOMOGRAPHY-COMPUTED TOMOGRAPHY IN EVALUATION OF TESTICULAR CARCINOMA PATIENTS.

    Science.gov (United States)

    Nikoletić, Katarina; Mihailović, Jasna; Matovina, Emil; Žeravica, Radmila; Srbovan, Dolores

    2015-01-01

    The study was aimed at assessing the reliability of 18F-fluorodeoxyglucose positron emission tomography-computed tomography scan in evaluation of testicular carcinoma patients. The study sample consisted of 26 scans performed in 23 patients with testicular carcinoma. According to the pathohistological finding, 14 patients had seminomas, 7 had nonseminomas and 2 patients had a mixed histological type. In 17 patients, the initial treatment was orchiectomy+chemotherapy, 2 patients had orchiectomy+chemotherapy+retroperitoneal lymph node dissection, 3 patients had orchiectomy only and one patient was treated with chemotherapy only. Abnormal computed tomography was the main cause for the oncologist to refer the patient to positron emission tomography-computed tomography scan (in 19 scans), magnetic resonance imaging abnormalities in 1 scan, high level oftumor markers in 3 and 3 scans were perforned for follow-up. Positron emission tomography-computed tomography imaging results were compared with histological results, other imaging modalities or the clinical follow-up of the patients. Positron emission tomography-computed tomography scans were positive in 6 and negative in 20 patients. In two patients, positron emission tomography-computed tomography was false positive. There were 20 negative positron emission omography-computed tomography scans perforned in 18 patients, one patient was lost for data analysis. Clinically stable disease was confirmed in 18 follow-up scans performed in 16 patients. The values of sensitivty, specificity, accuracy, and positive- and negative predictive value were 60%, 95%, 75%, 88% and 90.5%, respectively. A hgh negative predictive value obtained in our study (90.5%) suggests that there is a small possibility for a patient to have future relapse after normal positron emission tomography-computed tomography study. However, since the sensitivity and positive predictive value of the study ire rather low, there are limitations of positive

  2. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children's (Pediatric) CT (Computed Tomography) Pediatric computed tomography (CT) is ... a CT scan. View full size with caption Pediatric Content Some imaging tests and treatments have special ...

  3. Batch Computed Tomography Analysis of Projectiles

    Science.gov (United States)

    2016-05-01

    ARL-TR-7681 ● MAY 2016 US Army Research Laboratory Batch Computed Tomography Analysis of Projectiles by Michael C Golt, Chris M...Laboratory Batch Computed Tomography Analysis of Projectiles by Michael C Golt and Matthew S Bratcher Weapons and Materials Research...values to account for projectile variability in the ballistic evaluation of armor. 15. SUBJECT TERMS computed tomography , CT, BS41, projectiles

  4. Motion-compensated cone beam computed tomography using a conjugate gradient least-squares algorithm and electrical impedance tomography imaging motion data.

    Science.gov (United States)

    Pengpen, T; Soleimani, M

    2015-06-13

    Cone beam computed tomography (CBCT) is an imaging modality that has been used in image-guided radiation therapy (IGRT). For applications such as lung radiation therapy, CBCT images are greatly affected by the motion artefacts. This is mainly due to low temporal resolution of CBCT. Recently, a dual modality of electrical impedance tomography (EIT) and CBCT has been proposed, in which the high temporal resolution EIT imaging system provides motion data to a motion-compensated algebraic reconstruction technique (ART)-based CBCT reconstruction software. High computational time associated with ART and indeed other variations of ART make it less practical for real applications. This paper develops a motion-compensated conjugate gradient least-squares (CGLS) algorithm for CBCT. A motion-compensated CGLS offers several advantages over ART-based methods, including possibilities for explicit regularization, rapid convergence and parallel computations. This paper for the first time demonstrates motion-compensated CBCT reconstruction using CGLS and reconstruction results are shown in limited data CBCT considering only a quarter of the full dataset. The proposed algorithm is tested using simulated motion data in generic motion-compensated CBCT as well as measured EIT data in dual EIT-CBCT imaging. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Comparison between conventional tomography and computer tomography in diseases of the sacroiliac joints

    International Nuclear Information System (INIS)

    Moritz, J.D.; Ganter, H.; Winter, C.; Evangelisches Krankenhaus, Giessen

    1990-01-01

    16 patients with diseases of the sacroiliac joints were examined both with computer tomography and with conventional tomography. Both techniques were characterized by a high sensitivity. Computer tomography was superior in exactly delineating the extent of the pathologic changes. In conventional tomography the joint surface was more blurred, erosions were larger, and signs of ankylosis were more expanded, so that the joints seemed to be more altered in 8 cases than demonstrated by computer tomography. Very accurate changes like subchondral cysts were recognized only in the computer tomograms. In all cases in which anteroposterior radiographs revealed no clear result, the authors recommend to additionally employ computer tomography. (orig.) [de

  6. Comparative evaluation of computed tomography for dental implants on the mandibular edentulous area

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kyung Hoon; Jeong, Ho Gul; Park, Hyok; Park, Chang Seo; Kim, Kee Deog [Department of Oral and Maxillofacial Radiology, Oral Science Research Center, College of Dentistry, Yonsei University, Seoul (Korea, Republic of)

    2009-03-15

    The purpose of this study was to evaluate the clinical usefulness of the recently developed multi-detector computed tomography and cone beam computed tomography in pre-operative implant evaluation, by comparing them with the single detector computed tomography, already confirmed for accuracy in this area. Five partially edentulous dry human mandibles, with 1 X 1 mm gutta percha cones, placed in 5 mm intervals posterior to the mental foramen on each side of the buccal part of the mandible, were used in this study. They were scanned as follows: 1) Single detector computed tomography: slice thickness 1 mm, 200 mA, 120 kV 2) Multi-detector computed tomography: slice thickness 0.75 mm, 250 mA, 120 kV 3) Cone beam computed tomography: 15 mAs, 120 kV Axial images acquired from three computed tomographs were transferred to personal computer, and then reformatted cross-sectional images were generated using V-Implant 2.0 (CyberMed Inc., Seoul, Korea) software. Among the cross-sectional images of the gutta percha cone, placed in the buccal body of the mandible, the most precise cross section was selected as the measuring point and the distance from the most superior border of the mandibular canal to the alveolar crest was measured and analyzed 10 times by a dentist. There were no significant intraobserver differences in the distance from the most superior border of the mandibular canal to the alveolar crest (p>0.05). There were no significant differences among single detector computed tomography, multi-detector computed tomography and cone beam computed tomography in the distance from the most superior border of the mandibular canal to the alveolar crest (p>0.05). Multi-detector computed tomography and cone beam computed tomography are clinically useful in the evaluation of pre-operative site for mandibular dental implants, with consideration for radiation exposure dose and scanning time.

  7. Comparative evaluation of computed tomography for dental implants on the mandibular edentulous area

    International Nuclear Information System (INIS)

    Sun, Kyung Hoon; Jeong, Ho Gul; Park, Hyok; Park, Chang Seo; Kim, Kee Deog

    2009-01-01

    The purpose of this study was to evaluate the clinical usefulness of the recently developed multi-detector computed tomography and cone beam computed tomography in pre-operative implant evaluation, by comparing them with the single detector computed tomography, already confirmed for accuracy in this area. Five partially edentulous dry human mandibles, with 1 X 1 mm gutta percha cones, placed in 5 mm intervals posterior to the mental foramen on each side of the buccal part of the mandible, were used in this study. They were scanned as follows: 1) Single detector computed tomography: slice thickness 1 mm, 200 mA, 120 kV 2) Multi-detector computed tomography: slice thickness 0.75 mm, 250 mA, 120 kV 3) Cone beam computed tomography: 15 mAs, 120 kV Axial images acquired from three computed tomographs were transferred to personal computer, and then reformatted cross-sectional images were generated using V-Implant 2.0 (CyberMed Inc., Seoul, Korea) software. Among the cross-sectional images of the gutta percha cone, placed in the buccal body of the mandible, the most precise cross section was selected as the measuring point and the distance from the most superior border of the mandibular canal to the alveolar crest was measured and analyzed 10 times by a dentist. There were no significant intraobserver differences in the distance from the most superior border of the mandibular canal to the alveolar crest (p>0.05). There were no significant differences among single detector computed tomography, multi-detector computed tomography and cone beam computed tomography in the distance from the most superior border of the mandibular canal to the alveolar crest (p>0.05). Multi-detector computed tomography and cone beam computed tomography are clinically useful in the evaluation of pre-operative site for mandibular dental implants, with consideration for radiation exposure dose and scanning time.

  8. Maximal thickness of the normal human pericardium assessed by electron-beam computed tomography

    International Nuclear Information System (INIS)

    Delille, J.P.; Hernigou, A.; Sene, V.; Chatellier, G.; Boudeville, J.C.; Challande, P.; Plainfosse, M.C.

    1999-01-01

    The purpose of this study was to determine the maximal value of normal pericardial thickness with an electron-beam computed tomography unit allowing fast scan times of 100 ms to reduce cardiac motion artifacts. Electron-beam computed tomography was performed in 260 patients with hypercholesterolemia and/or hypertension, as these pathologies have no effect on pericardial thickness. The pixel size was 0.5 mm. Measurements could be performed in front of the right ventricle, the right atrioventricular groove, the right atrium, the left ventricle, and the interventricular groove. Maximal thickness of normal pericardium was defined at the 95th percentile. Inter-observer and intra-observer reproducibility studies were assessed from additional CT scans by the Bland and Altman method [24]. The maximal thickness of the normal pericardium was 2 mm for 95 % of cases. For the reproducibility studies, there was no significant relationship between the inter-observer and intra-observer measurements, but all pericardial thickness measurements were ≤ 1.6 mm. Using electron-beam computed tomography, which assists in decreasing substantially cardiac motion artifacts, the threshold of detection of thickened pericardium is statistically established as being 2 mm for 95 % of the patients with hypercholesterolemia and/or hypertension. However, the spatial resolution available prevents a reproducible measure of the real thickness of thin pericardium. (orig.)

  9. Real-time shadows

    CERN Document Server

    Eisemann, Elmar; Assarsson, Ulf; Wimmer, Michael

    2011-01-01

    Important elements of games, movies, and other computer-generated content, shadows are crucial for enhancing realism and providing important visual cues. In recent years, there have been notable improvements in visual quality and speed, making high-quality realistic real-time shadows a reachable goal. Real-Time Shadows is a comprehensive guide to the theory and practice of real-time shadow techniques. It covers a large variety of different effects, including hard, soft, volumetric, and semi-transparent shadows.The book explains the basics as well as many advanced aspects related to the domain

  10. Self-motion perception: assessment by real-time computer-generated animations

    Science.gov (United States)

    Parker, D. E.; Phillips, J. O.

    2001-01-01

    We report a new procedure for assessing complex self-motion perception. In three experiments, subjects manipulated a 6 degree-of-freedom magnetic-field tracker which controlled the motion of a virtual avatar so that its motion corresponded to the subjects' perceived self-motion. The real-time animation created by this procedure was stored using a virtual video recorder for subsequent analysis. Combined real and illusory self-motion and vestibulo-ocular reflex eye movements were evoked by cross-coupled angular accelerations produced by roll and pitch head movements during passive yaw rotation in a chair. Contrary to previous reports, illusory self-motion did not correspond to expectations based on semicircular canal stimulation. Illusory pitch head-motion directions were as predicted for only 37% of trials; whereas, slow-phase eye movements were in the predicted direction for 98% of the trials. The real-time computer-generated animations procedure permits use of naive, untrained subjects who lack a vocabulary for reporting motion perception and is applicable to basic self-motion perception studies, evaluation of motion simulators, assessment of balance disorders and so on.

  11. Field programmable gate array-based real-time optical Doppler tomography system for in vivo imaging of cardiac dynamics in the chick embryo

    DEFF Research Database (Denmark)

    Thrane, Lars; Larsen, Henning Engelbrecht; Norozi, Kambiz

    2009-01-01

    efficient and compact implementation by combining the conversion to an analytic signal with a pulse shaping function without the need for extra resources as compared to the Hilbert transform method. The conversion of the analytic signal to amplitude and phase is done by use of the coordinate rotation......We demonstrate a field programmable gate-array-based real-time optical Doppler tomography system. A complex-valued bandpass filter is used for the first time in optical coherence tomography signal processing to create the analytic signal. This method simplifies the filter design, and allows...

  12. Online Operation Guidance of Computer System Used in Real-Time Distance Education Environment

    Science.gov (United States)

    He, Aiguo

    2011-01-01

    Computer system is useful for improving real time and interactive distance education activities. Especially in the case that a large number of students participate in one distance lecture together and every student uses their own computer to share teaching materials or control discussions over the virtual classrooms. The problem is that within…

  13. Computed tomography of the pancreas

    International Nuclear Information System (INIS)

    Kolmannskog, F.; Kolbenstvedt, A.; Aakhus, T.; Bergan, A.; Fausa, O.; Elgjo, K.

    1980-01-01

    The findings by computed tomography in 203 cases of suspected pancreatic tumours, pancreatitis or peripancreatic abnormalities were evaluated. The appearances of the normal and the diseased pancreas are described. Computed tomography is highly accurate in detecting pancreatic masses, but can not differentiate neoplastic from inflammatory disease. The only reliable signs of pancreatic carcinoma are a focal mass in the pancreas, together with liver metastasis. When a pancreatic mass is revealed by computed tomography, CT-guided fine-needle aspiration biopsy of the pancreas is recommended. Thus the need for more invasive diagnostic procedures and explorative laparotomy may be avoided in some patients. (Auth.)

  14. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    Science.gov (United States)

    Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-01

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  15. Frozen Gaussian approximation for 3D seismic tomography

    Science.gov (United States)

    Chai, Lihui; Tong, Ping; Yang, Xu

    2018-05-01

    Three-dimensional (3D) wave-equation-based seismic tomography is computationally challenging in large scales and high-frequency regime. In this paper, we apply the frozen Gaussian approximation (FGA) method to compute 3D sensitivity kernels and seismic tomography of high-frequency. Rather than standard ray theory used in seismic inversion (e.g. Kirchhoff migration and Gaussian beam migration), FGA is used to compute the 3D high-frequency sensitivity kernels for travel-time or full waveform inversions. Specifically, we reformulate the equations of the forward and adjoint wavefields for the purpose of convenience to apply FGA, and with this reformulation, one can efficiently compute the Green’s functions whose convolutions with source time function produce wavefields needed for the construction of 3D kernels. Moreover, a fast summation method is proposed based on local fast Fourier transform which greatly improves the speed of reconstruction as the last step of FGA algorithm. We apply FGA to both the travel-time adjoint tomography and full waveform inversion (FWI) on synthetic crosswell seismic data with dominant frequencies as high as those of real crosswell data, and confirm again that FWI requires a more sophisticated initial velocity model for the convergence than travel-time adjoint tomography. We also numerically test the accuracy of applying FGA to local earthquake tomography. This study paves the way to directly apply wave-equation-based seismic tomography methods into real data around their dominant frequencies.

  16. Design considerations for computationally constrained two-way real-time video communication

    Science.gov (United States)

    Bivolarski, Lazar M.; Saunders, Steven E.; Ralston, John D.

    2009-08-01

    Today's video codecs have evolved primarily to meet the requirements of the motion picture and broadcast industries, where high-complexity studio encoding can be utilized to create highly-compressed master copies that are then broadcast one-way for playback using less-expensive, lower-complexity consumer devices for decoding and playback. Related standards activities have largely ignored the computational complexity and bandwidth constraints of wireless or Internet based real-time video communications using devices such as cell phones or webcams. Telecommunications industry efforts to develop and standardize video codecs for applications such as video telephony and video conferencing have not yielded image size, quality, and frame-rate performance that match today's consumer expectations and market requirements for Internet and mobile video services. This paper reviews the constraints and the corresponding video codec requirements imposed by real-time, 2-way mobile video applications. Several promising elements of a new mobile video codec architecture are identified, and more comprehensive computational complexity metrics and video quality metrics are proposed in order to support the design, testing, and standardization of these new mobile video codecs.

  17. Motion artifacts in computed tomography

    International Nuclear Information System (INIS)

    Yang, C.K.

    1979-01-01

    In the year 1972, the first Computed Tomography Scanner (or CT) was introduced and caused a revolution in the field of Diagnostic Radiology. A tomogram is a cross-sectional image of a three-dimensional object obtained through non-invasive measurements. The image that is presented is very similar to what would be seen if a thin cross-sectional slice of the patient was examined. In Computed Tomography, x-rays are passed through the body of a patient in many different directions and their attenuation is detected. By using some mathematical theorems, the attenuation information can be converted into the density of the patient along the x-ray path. Combined with modern sophisticated computer signal processing technology, a cross-sectional image can be generated and displayed on a TV monitor. Usually a good CT image relies on the patient not moving during the x-ray scanning. However, for some unconscious or severely ill patients, this is very difficult to achieve. Thus, the motion during the scan causes the so-called motion artifacts which distort the displayed image and sometimes these motion artifacts make diagnosis impossible. Today, to remove or avoid motion artifacts is one of the major efforts in developing new scanner systems. In this thesis, a better understanding of the motion artifacts problem in CT scaning is gained through computer simulations, real scanner experiments and theoretical analyses. The methods by which the distorted image can be improved are simulated also. In particular, it is assumed that perfect knowledge of the patient motion is known since this represents the theoretical limit on how well the distorted image can be improved

  18. On Real-Time Systems Using Local Area Networks.

    Science.gov (United States)

    1987-07-01

    87-35 July, 1987 CS-TR-1892 On Real - Time Systems Using Local Area Networks*I VShem-Tov Levi Department of Computer Science Satish K. Tripathit...1892 On Real - Time Systems Using Local Area Networks* Shem-Tov Levi Department of Computer Science Satish K. Tripathit Department of Computer Science...constraints and the clock systems that feed the time to real - time systems . A model for real-time system based on LAN communication is presented in

  19. Clinical value of whole body fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of metastatic bladder cancer.

    Science.gov (United States)

    Yang, Zhongyi; Pan, Lingling; Cheng, Jingyi; Hu, Silong; Xu, Junyan; Ye, Dingwei; Zhang, Yingjian

    2012-07-01

    To investigate the value of whole-body fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography for the detection of metastatic bladder cancer. From December 2006 to August 2010, 60 bladder cancer patients (median age 60.5 years old, range 32-96) underwent whole body positron emission tomography/computed tomography positron emission tomography/computed tomography. The diagnostic accuracy was assessed by performing both organ-based and patient-based analyses. Identified lesions were further studied by biopsy or clinically followed for at least 6 months. One hundred and thirty-four suspicious lesions were identified. Among them, 4 primary cancers (2 pancreatic cancers, 1 colonic and 1 nasopharyngeal cancer) were incidentally detected, and the patients could be treated on time. For the remaining 130 lesions, positron emission tomography/computed tomography detected 118 true positive lesions (sensitivity = 95.9%). On the patient-based analysis, the overall sensitivity and specificity resulted to be 87.1% and 89.7%, respectively. There was no difference of sensitivity and specificity in patients with or without adjuvant treatment in terms of detection of metastatic sites by positron emission tomography/computed tomography. Compared with conventional imaging modality, positron emission tomography/computed tomography correctly changed the management in 15 patients (25.0%). Positron emission tomography/computed tomography has excellent sensitivity and specificity in the detection of metastatic bladder cancer and it provides additional diagnostic information compared to standard imaging techniques. © 2012 The Japanese Urological Association.

  20. Clinical value of whole body fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of metastatic bladder cancer

    International Nuclear Information System (INIS)

    Yang Zhongyi; Pan Lingling; Cheng Jingyi; Hu Silong; Xu Junyan; Zhang Yingjian; Ye Dingwei

    2012-01-01

    The objective of this study was to investigate the value of whole-body fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography for the detection of metastatic bladder cancer. From December 2006 to August 2010, 60 bladder cancer patients (median age 60.5 years old, range 32-96) underwent whole body positron emission tomography/computed tomography positron emission tomography/computed tomography. The diagnostic accuracy was assessed by performing both organ-based and patient-based analyses. Identified lesions were further studied by biopsy or clinically followed for at least 6 months. One hundred and thirty-four suspicious lesions were identified. Among them, 4 primary cancers (2 pancreatic cancers, 1 colonic and 1 nasopharyngeal cancer) were incidentally detected, and the patients could be treated on time. For the remaining 130 lesions, positron emission tomography/computed tomography detected 118 true positive lesions (sensitivity=95.9%). On the patient-based analysis, the overall sensitivity and specificity resulted to be 87.1% and 89.7%, respectively. There was no difference of sensitivity and specificity in patients with or without adjuvant treatment in terms of detection of metastatic sites by positron emission tomography/computed tomography. Compared with conventional imaging modality, positron emission tomography/computed tomography correctly changed the management in 15 patients (25.0%). Positron emission tomography/computed tomography has excellent sensitivity and specificity in the detection of metastatic bladder cancer and it provides additional diagnostic information compared to standard imaging techniques. (author)

  1. An atomic orbital based real-time time-dependent density functional theory for computing electronic circular dichroism band spectra

    Energy Technology Data Exchange (ETDEWEB)

    Goings, Joshua J.; Li, Xiaosong, E-mail: xsli@uw.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States)

    2016-06-21

    One of the challenges of interpreting electronic circular dichroism (ECD) band spectra is that different states may have different rotatory strength signs, determined by their absolute configuration. If the states are closely spaced and opposite in sign, observed transitions may be washed out by nearby states, unlike absorption spectra where transitions are always positive additive. To accurately compute ECD bands, it is necessary to compute a large number of excited states, which may be prohibitively costly if one uses the linear-response time-dependent density functional theory (TDDFT) framework. Here we implement a real-time, atomic-orbital based TDDFT method for computing the entire ECD spectrum simultaneously. The method is advantageous for large systems with a high density of states. In contrast to previous implementations based on real-space grids, the method is variational, independent of nuclear orientation, and does not rely on pseudopotential approximations, making it suitable for computation of chiroptical properties well into the X-ray regime.

  2. Real-time vision systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  3. Computer-Aided Software Engineering - An approach to real-time software development

    Science.gov (United States)

    Walker, Carrie K.; Turkovich, John J.

    1989-01-01

    A new software engineering discipline is Computer-Aided Software Engineering (CASE), a technology aimed at automating the software development process. This paper explores the development of CASE technology, particularly in the area of real-time/scientific/engineering software, and a history of CASE is given. The proposed software development environment for the Advanced Launch System (ALS CASE) is described as an example of an advanced software development system for real-time/scientific/engineering (RT/SE) software. The Automated Programming Subsystem of ALS CASE automatically generates executable code and corresponding documentation from a suitably formatted specification of the software requirements. Software requirements are interactively specified in the form of engineering block diagrams. Several demonstrations of the Automated Programming Subsystem are discussed.

  4. Computer tomography of the neurocranium.

    Science.gov (United States)

    Liliequist, B; Forssell, A

    1976-07-01

    The experience with computer tomography of the neurocranium in 300 patients submitted for computer tomography of the brain is reported. The more appropriate projections which may be obtained with the second generation of scanners in combination with an elaborated reconstruction technique seem to constitute a replacement of conventional skull films.

  5. Protean appearance of craniopharyngioma on computed tomography

    International Nuclear Information System (INIS)

    Danziger, A.; Price, H.I.

    1979-01-01

    Craniopharyngiomas present a diverse appearance on computed tomography. Histological diagnosis is not always possible, but computed tomography is of great assistance in the delineation of the tumour as well as of the degree of associated hydrocephalus. Computed tomography also enables rapid non-invasive follow-up after surgery or radiotherapy, or both

  6. Real time simulation of large systems on mini-computer

    International Nuclear Information System (INIS)

    Nakhle, Michel; Roux, Pierre.

    1979-01-01

    Most simulation languages will only accept an explicit formulation of differential equations, and logical variables hold no special status therein. The pace of the suggested methods of integration is limited by the smallest time constant of the model submitted. The NEPTUNIX 2 simulation software has a language that will take implicit equations and an integration method of which the variable pace is not limited by the time constants of the model. This, together with high time and memory ressources optimization of the code generated, makes NEPTUNIX 2 a basic tool for simulation on mini-computers. Since the logical variables are specific entities under centralized control, correct processing of discontinuities and synchronization with a real process are feasible. The NEPTUNIX 2 is the industrial version of NEPTUNIX 1 [fr

  7. Real time 3D structural and Doppler OCT imaging on graphics processing units

    Science.gov (United States)

    Sylwestrzak, Marcin; Szlag, Daniel; Szkulmowski, Maciej; Gorczyńska, Iwona; Bukowska, Danuta; Wojtkowski, Maciej; Targowski, Piotr

    2013-03-01

    In this report the application of graphics processing unit (GPU) programming for real-time 3D Fourier domain Optical Coherence Tomography (FdOCT) imaging with implementation of Doppler algorithms for visualization of the flows in capillary vessels is presented. Generally, the time of the data processing of the FdOCT data on the main processor of the computer (CPU) constitute a main limitation for real-time imaging. Employing additional algorithms, such as Doppler OCT analysis, makes this processing even more time consuming. Lately developed GPUs, which offers a very high computational power, give a solution to this problem. Taking advantages of them for massively parallel data processing, allow for real-time imaging in FdOCT. The presented software for structural and Doppler OCT allow for the whole processing with visualization of 2D data consisting of 2000 A-scans generated from 2048 pixels spectra with frame rate about 120 fps. The 3D imaging in the same mode of the volume data build of 220 × 100 A-scans is performed at a rate of about 8 frames per second. In this paper a software architecture, organization of the threads and optimization applied is shown. For illustration the screen shots recorded during real time imaging of the phantom (homogeneous water solution of Intralipid in glass capillary) and the human eye in-vivo is presented.

  8. Real-time system for respiratory-cardiac gating in positron tomography

    International Nuclear Information System (INIS)

    Klein, G.J.; Reutter, B.W.; Ho, M.H.; Huesman, R.H.; Reed, J.H.

    1998-01-01

    A Macintosh-based signal processing system has been developed to support simultaneous respiratory and cardiac gating on the ECAT EXACT HR PET scanner. Using the Lab-View real-time software environment, the system reads analog inputs from a pneumatic respiratory bellows and an EGG monitor to compute an appropriate histogram memory location for the PET data. Respiratory state is determined by the bellows signal amplitude; cardiac state is based on the time since the last R-wave. These two states are used in a 2D lookup table to determine a combined respiratory-cardiac state. A 4-bit address encoding the selected histogram is directed from the system to the ECAT scanner, which dynamically switches the destination of tomograph events as respiratory-cardiac state changes. to Test the switching efficiency of the combined Macintosh/ECAT system, a rotating emission phantom was built. Acquisitions with 25 msec states while the phantom was rotating at 240 rpm demonstrate the system could effectively stop motion at this rate, with approximately 5 msec switching time between states

  9. Computed tomography in renal trauma

    International Nuclear Information System (INIS)

    Brueck, W.; Eisenberger, F.; Buck, J.

    1981-01-01

    In a group of 19 patients suffering from flank trauma and gross hematuria the diagnostic value of angiography was compared with that of computed tomography. The cases that underwent both tests were found to have the some diagnosis of rupture of the kidney. Typical CT-findings in kidney rupture are demonstrated. Whereas angiography presents an exact picture of the arterial system of the kidney, including its injures computed tomography reveals the extent of organ lesons by showing extra- and intrarenal hematomas. If surgery is planned angiography is still mandatory, whereby the indication is largely determined by the clinical findings. Computed tomography as a non-invasive method is equally suitable for follow-ups. (orig.) [de

  10. Multislice helical computed tomography in the evaluation of lumbar spine diseases

    International Nuclear Information System (INIS)

    Rosemberg, Laercio Alberto; Rios, Adriana Martins; Almeida, Milena Oliveira; Garbaccio, Viviane Ladeira; Kim, Nelson Ji Tae; Daniel, Mauro Miguel; Funari, Marcelo Buarque de Gusmao

    2003-01-01

    Multislice computed tomography has advantages in comparison to conventional computer tomography such as reduction in study time, lower radiation dose, fewer metal artifacts and high quality multiplanar reformatting and three-dimensional reconstructions. We reviewed approximately 300 lumbar spine examinations and selected the most illustrative cases including congenital anomalies, degenerative lesions, spinal infections, neoplasms traumatic injuries, spondylolysis and postoperative changes. In the majority of the cases the high quality multiplanar reformatted and volume reconstructions of multislice computed tomography allowed better evaluation of the lesions, particularly in the cases of complex anatomy (author)

  11. [Computed tomography of the heart

    DEFF Research Database (Denmark)

    Kristensen, T.S.; Kofoed, K.F.; der, Recke P. von

    2009-01-01

    Noninvasive evaluation of the coronary arteries by multi-detector row computed tomography is a promising new alternative to conventional invasive coronary angiography. This article describes the technical background, methods, limitations and clinical applications and reviews current literature...... that compares the diagnostic accuracy of multi-detector row computed tomography with that of coronary angiography Udgivelsesdato: 2009/4/6...

  12. Maximal thickness of the normal human pericardium assessed by electron-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Delille, J.P.; Hernigou, A.; Sene, V.; Chatellier, G.; Boudeville, J.C.; Challande, P.; Plainfosse, M.C. [Service de Radiologie Centrale, Hopital Broussais, Paris (France)

    1999-08-01

    The purpose of this study was to determine the maximal value of normal pericardial thickness with an electron-beam computed tomography unit allowing fast scan times of 100 ms to reduce cardiac motion artifacts. Electron-beam computed tomography was performed in 260 patients with hypercholesterolemia and/or hypertension, as these pathologies have no effect on pericardial thickness. The pixel size was 0.5 mm. Measurements could be performed in front of the right ventricle, the right atrioventricular groove, the right atrium, the left ventricle, and the interventricular groove. Maximal thickness of normal pericardium was defined at the 95th percentile. Inter-observer and intra-observer reproducibility studies were assessed from additional CT scans by the Bland and Altman method [24]. The maximal thickness of the normal pericardium was 2 mm for 95 % of cases. For the reproducibility studies, there was no significant relationship between the inter-observer and intra-observer measurements, but all pericardial thickness measurements were {<=} 1.6 mm. Using electron-beam computed tomography, which assists in decreasing substantially cardiac motion artifacts, the threshold of detection of thickened pericardium is statistically established as being 2 mm for 95 % of the patients with hypercholesterolemia and/or hypertension. However, the spatial resolution available prevents a reproducible measure of the real thickness of thin pericardium. (orig.) With 6 figs., 1 tab., 31 refs.

  13. The value of computed tomography in ''sciatica''

    International Nuclear Information System (INIS)

    Boehm-Jurkovic, H.; Hammer, B.

    1981-01-01

    13 cases of therapy-resistant lumboischialgia without herniated disk, caused in 12 cases by a tumour and in 1 case by an abscess, were examined by computed tomography of the lumbar and pelvic region. This method is indicated immediately after insufficient results of conventional X-ray methods (including tomography) and of lumbosacral radiculography. The computed tomography is indispensable also in patients with ''sciatica'' with a known malignoma. The information given by computed tomography is essential for the therapy planning. (author)

  14. Integration of multidisciplinary technologies for real time target visualization and verification for radiotherapy

    Directory of Open Access Journals (Sweden)

    Chang WC

    2014-06-01

    Full Text Available Wen-Chung Chang,1,* Chin-Sheng Chen,2,* Hung-Chi Tai,3 Chia-Yuan Liu,4,5 Yu-Jen Chen3 1Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan; 2Graduate Institute of Automation Technology, National Taipei University of Technology, Taipei, Taiwan; 3Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan; 4Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan; 5Department of Medicine, Mackay Medical College, New Taipei City, Taiwan  *These authors contributed equally to this work Abstract: The current practice of radiotherapy examines target coverage solely from digitally reconstructed beam's eye view (BEV in a way that is indirectly accessible and that is not in real time. We aimed to visualize treatment targets in real time from each BEV. The image data of phantom or patients from ultrasound (US and computed tomography (CT scans were captured to perform image registration. We integrated US, CT, US/CT image registration, robotic manipulation of US, a radiation treatment planning system, and a linear accelerator to constitute an innovative target visualization system. The performance of this algorithm segmented the target organ in CT images, transformed and reconstructed US images to match each orientation, and generated image registration in real time mode with acceptable accuracy. This image transformation allowed physicians to visualize the CT image-reconstructed target via a US probe outside the BEV that was non-coplanar to the beam's plane. It allowed the physicians to remotely control the US probe that was equipped on a robotic arm to dynamically trace and real time monitor the coverage of the target within the BEV during a simulated beam-on situation. This target visualization system may provide a direct remotely accessible and real time way to visualize, verify, and ensure tumor targeting during radiotherapy. Keywords: ultrasound, computerized tomography

  15. Application of a real-time three-dimensional navigation system to various oral and maxillofacial surgical procedures.

    Science.gov (United States)

    Ohba, Seigo; Yoshimura, Hitoshi; Ishimaru, Kyoko; Awara, Kousuke; Sano, Kazuo

    2015-09-01

    The aim of this study was to confirm the effectiveness of a real-time three-dimensional navigation system for use during various oral and maxillofacial surgeries. Five surgeries were performed with this real-time three-dimensional navigation system. For mandibular surgery, patients wore acrylic surgical splints when they underwent computed tomography examinations and the operation to maintain the mandibular position. The incidence of complications during and after surgery was assessed. No connection with the nasal cavity or maxillary sinus was observed at the maxilla during the operation. The inferior alveolar nerve was not injured directly, and any paresthesia around the lower lip and mental region had disappeared within several days after the surgery. In both maxillary and mandibular cases, there was no abnormal hemorrhage during or after the operation. Real-time three-dimensional computer-navigated surgery allows minimally invasive, safe procedures to be performed with precision. It results in minimal complications and early recovery.

  16. Computed tomography and three-dimensional imaging

    International Nuclear Information System (INIS)

    Harris, L.D.; Ritman, E.L.; Robb, R.A.

    1987-01-01

    Presented here is a brief introduction to two-, three-, and four-dimensional computed tomography. More detailed descriptions of the mathematics of reconstruction and of CT scanner operation are presented elsewhere. The complementary tomographic imaging methods of single-photon-emission tomography (SPECT) positron-emission tomography (PET), nuclear magnetic resonance (NMR) imaging, ulltrasound sector scanning, and ulltrasound computer-assisted tomography [UCAT] are only named here. Each imaging modality ''probes'' the body with a different energy form, yielding unique and useful information about tomographic sections through the body

  17. The history of computed tomography

    International Nuclear Information System (INIS)

    Bull, J.

    1980-01-01

    New scientific discoveries are often made by the synthetising of other discoveries. Computed tomography is such an example. The three necessary elements were: 1/ the fact that certain simple crystals scintillate when exposed to X-rays, 2/ the advent of electronics and 3/ that of computers. The fact that X-rays cause crystals to scintillate was learnt very shortly after Roentgen's discovery, electronics and computers coming very much later. To put all these together and apply them to diagnostic radiology, and at the same time dismiss the concept so firmly ingrained in everyone's mind that an X-ray picture must be produced on photographic film, required a genius. (orig./VJ) [de

  18. Emission computed tomography: methodology and applications

    International Nuclear Information System (INIS)

    Reivich, M.; Alavi, A.; Greenberg, J.; Fowler, J.; Christman, D.; Rosenquist, A.; Rintelmann, W.; Hand, P.; MacGregor, R.; Wolf, A.

    1980-01-01

    A technique for the determination of local cerebral glucose metabolism using positron emission computed tomography is described as an example of the development of use of this methodology for the study of these parameters in man. The method for the determination of local cerebral glucose metabolism utilizes 18 F-2-fluoro-2-deoxyglucose ([ 18 F]-FDG). In this method [ 18 F]-FDG is used as a tracer for the exchange of glucose between plasma and brain and its phosphorylation by hexokinase in the tissue. The labelled product of metabolism, [ 18 F]-FDG phosphate, is essentially trapped in the tissue over the time course of the measurement. The studies demonstrate the potential usefulness of emission computed tomography for the measurement of various biochemical and physiological parameters in man. (Auth.)

  19. Computed tomography in facial trauma

    International Nuclear Information System (INIS)

    Zilkha, A.

    1982-01-01

    Computed tomography (CT), plain radiography, and conventional tomography were performed on 30 patients with facial trauma. CT demonstrated bone and soft-tissue involvement. In all cases, CT was superior to tomography in the assessment of facial injury. It is suggested that CT follow plain radiography in the evaluation of facial trauma

  20. Infrared Tomography: Data Distribution System for Real-time Mass Flow Rate Measurement

    Directory of Open Access Journals (Sweden)

    Ruzairi Abdul Rahim

    2007-06-01

    Full Text Available The system developed in this research has the objective of measuring mass flow rate in an online mode. If a single computer is used as data processing unit, a longer time is needed to produce a measurement result. In the research carried out by previous researcher shows about 11.2 seconds is needed to obtain one mass flow rate result in the offline mode (using offline data. This insufficient real-time result will cause problems in a feedback control process when applying the system on industrial plants. To increase the refreshing rate of the measurement result, an investigation on a data distribution system is performed to replace the existing data processing unit.

  1. Attenuation Correction Strategies for Positron Emission Tomography/Computed Tomography and 4-Dimensional Positron Emission Tomography/Computed Tomography

    OpenAIRE

    Pan, Tinsu; Zaidi, Habib

    2013-01-01

    This article discusses attenuation correction strategies in positron emission tomography/computed tomography (PET/CT) and 4 dimensional PET/CT imaging. Average CT scan derived from averaging the high temporal resolution CT images is effective in improving the registration of the CT and the PET images and quantification of the PET data. It underscores list mode data acquisition in 4 dimensional PET and introduces 4 dimensional CT popular in thoracic treatment planning to 4 dimensional PET/CT. ...

  2. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    International Nuclear Information System (INIS)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    Highlights: • An in-situ and real-time electrochemical monitoring of flow-induced corrosion of Mg alloy is designed in a vascular bioreactor. • Effect of hydrodynamics on corrosion kinetics, types, rates and products is analyzed. • Flow accelerates mass and electron transfer, leading to an increase in uniform and localized corrosions. • Flow increases not only the thickness of uniform corrosion product layer, but the removal rate of localized corrosion products. • Electrochemical impedance spectroscopy and linear polarization-measured polarization resistances provide a consistent correlation to corrosion rate calculated by computed tomography. - Abstract: An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

  3. The role of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in resectable pancreatic cancer.

    Science.gov (United States)

    Crippa, Stefano; Salgarello, Matteo; Laiti, Silvia; Partelli, Stefano; Castelli, Paola; Spinelli, Antonello E; Tamburrino, Domenico; Zamboni, Giuseppe; Falconi, Massimo

    2014-08-01

    The role of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in pancreatic ductal adenocarcinoma is debated. We retrospectively assessed the value of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in addition to conventional imaging as a staging modality in pancreatic cancer. (18)Fluoro-deoxyglucose positron emission tomography/computed tomography was performed in 72 patients with resectable pancreatic carcinoma after multi-detector computed tomography positron emission tomography was considered positive for a maximum standardized uptake value >3. Overall, 21% of patients had a maximum standardized uptake value ≤ 3, and 60% of those had undergone neoadjuvant treatment (P=0.0001). Furthermore, 11% of patients were spared unwarranted surgery since positron emission tomography/computed tomography detected metastatic disease. All liver metastases were subsequently identified with contrast-enhanced ultrasound. Sensitivity and specificity of positron emission tomography/computed tomography for distant metastases were 78% and 100%. The median CA19.9 concentration was 48.8 U/mL for the entire cohort and 292 U/mL for metastatic patients (P=0.112). The widespread application of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in patients with resectable pancreatic carcinoma seems not justified. It should be considered in selected patients at higher risk of metastatic disease (i.e. CA19.9>200 U/mL) after undergoing other imaging tests. Neoadjuvant treatment is significantly associated with low metabolic activity, limiting the value of positron emission tomography in this setting. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  4. Promising role of single photon emission computed tomography/computed tomography in Meckel's scan

    International Nuclear Information System (INIS)

    Jain, Anurag; Chauhan, MS; Pandit, AG; Kumar, Rajeev; Sharma, Amit

    2012-01-01

    Meckel's scan is a common procedure performed in nuclear medicine. Single-photon emission computed tomography/computed tomography (SPECT/CT) in a suspected case of heterotopic location of gastric mucosa can increase the accuracy of its anatomic localization. We present two suspected cases of Meckel's diverticulum in, which SPECT/CT co-registration has helped in better localization of the pathology

  5. Paradoxical emboli: demonstration using helical computed tomography of the pulmonary artery associated with abdominal computed tomography

    International Nuclear Information System (INIS)

    Delalu, P.; Ferretti, G.R.; Bricault, I.; Ayanian, D.; Coulomb, M.

    2000-01-01

    We report the case of a 60-year-old woman with a recent history of a cerebrovascular accident. Because of clinical suspicion of pulmonary embolism and negative Doppler ultrasound findings of the lower limbs, spiral computed tomography of the pulmonary artery was performed and demonstrated pulmonary emboli. We emphasize the role of computed tomography of the abdomen, performed 3 min after the thoracic acquisition, which showed an unsuspected thrombus within the abdominal aorta and the left renal artery with infarction of the left kidney. Paradoxical embolism was highly suspected on computed tomography data and confirmed by echocardiography which demonstrated a patent foramen ovale. (orig.)

  6. Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration.

    Science.gov (United States)

    Su, Li-Ming; Vagvolgyi, Balazs P; Agarwal, Rahul; Reiley, Carol E; Taylor, Russell H; Hager, Gregory D

    2009-04-01

    To investigate a markerless tracking system for real-time stereo-endoscopic visualization of preoperative computed tomographic imaging as an augmented display during robot-assisted laparoscopic partial nephrectomy. Stereoscopic video segments of a patient undergoing robot-assisted laparoscopic partial nephrectomy for tumor and another for a partial staghorn renal calculus were processed to evaluate the performance of a three-dimensional (3D)-to-3D registration algorithm. After both cases, we registered a segment of the video recording to the corresponding preoperative 3D-computed tomography image. After calibrating the camera and overlay, 3D-to-3D registration was created between the model and the surgical recording using a modified iterative closest point technique. Image-based tracking technology tracked selected fixed points on the kidney surface to augment the image-to-model registration. Our investigation has demonstrated that we can identify and track the kidney surface in real time when applied to intraoperative video recordings and overlay the 3D models of the kidney, tumor (or stone), and collecting system semitransparently. Using a basic computer research platform, we achieved an update rate of 10 Hz and an overlay latency of 4 frames. The accuracy of the 3D registration was 1 mm. Augmented reality overlay of reconstructed 3D-computed tomography images onto real-time stereo video footage is possible using iterative closest point and image-based surface tracking technology that does not use external navigation tracking systems or preplaced surface markers. Additional studies are needed to assess the precision and to achieve fully automated registration and display for intraoperative use.

  7. Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit.

    Science.gov (United States)

    Xu, Jing; Wong, Kevin; Jian, Yifan; Sarunic, Marinko V

    2014-02-01

    In this report, we describe a graphics processing unit (GPU)-accelerated processing platform for real-time acquisition and display of flow contrast images with Fourier domain optical coherence tomography (FDOCT) in mouse and human eyes in vivo. Motion contrast from blood flow is processed using the speckle variance OCT (svOCT) technique, which relies on the acquisition of multiple B-scan frames at the same location and tracking the change of the speckle pattern. Real-time mouse and human retinal imaging using two different custom-built OCT systems with processing and display performed on GPU are presented with an in-depth analysis of performance metrics. The display output included structural OCT data, en face projections of the intensity data, and the svOCT en face projections of retinal microvasculature; these results compare projections with and without speckle variance in the different retinal layers to reveal significant contrast improvements. As a demonstration, videos of real-time svOCT for in vivo human and mouse retinal imaging are included in our results. The capability of performing real-time svOCT imaging of the retinal vasculature may be a useful tool in a clinical environment for monitoring disease-related pathological changes in the microcirculation such as diabetic retinopathy.

  8. 21 CFR 892.1200 - Emission computed tomography system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Emission computed tomography system. 892.1200... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1200 Emission computed tomography system. (a) Identification. An emission computed tomography system is a device intended to detect the...

  9. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... are the limitations of CT of the Sinuses? What is CT (Computed Tomography) of the Sinuses? Computed ... nasal cavity by small openings. top of page What are some common uses of the procedure? CT ...

  10. Time reversal imaging, Inverse problems and Adjoint Tomography}

    Science.gov (United States)

    Montagner, J.; Larmat, C. S.; Capdeville, Y.; Kawakatsu, H.; Fink, M.

    2010-12-01

    With the increasing power of computers and numerical techniques (such as spectral element methods), it is possible to address a new class of seismological problems. The propagation of seismic waves in heterogeneous media is simulated more and more accurately and new applications developed, in particular time reversal methods and adjoint tomography in the three-dimensional Earth. Since the pioneering work of J. Claerbout, theorized by A. Tarantola, many similarities were found between time-reversal methods, cross-correlations techniques, inverse problems and adjoint tomography. By using normal mode theory, we generalize the scalar approach of Draeger and Fink (1999) and Lobkis and Weaver (2001) to the 3D- elastic Earth, for theoretically understanding time-reversal method on global scale. It is shown how to relate time-reversal methods on one hand, with auto-correlations of seismograms for source imaging and on the other hand, with cross-correlations between receivers for structural imaging and retrieving Green function. Time-reversal methods were successfully applied in the past to acoustic waves in many fields such as medical imaging, underwater acoustics, non destructive testing and to seismic waves in seismology for earthquake imaging. In the case of source imaging, time reversal techniques make it possible an automatic location in time and space as well as the retrieval of focal mechanism of earthquakes or unknown environmental sources . We present here some applications at the global scale of these techniques on synthetic tests and on real data, such as Sumatra-Andaman (Dec. 2004), Haiti (Jan. 2010), as well as glacial earthquakes and seismic hum.

  11. Real-Time MENTAT programming language and architecture

    Science.gov (United States)

    Grimshaw, Andrew S.; Silberman, Ami; Liu, Jane W. S.

    1989-01-01

    Real-time MENTAT, a programming environment designed to simplify the task of programming real-time applications in distributed and parallel environments, is described. It is based on the same data-driven computation model and object-oriented programming paradigm as MENTAT. It provides an easy-to-use mechanism to exploit parallelism, language constructs for the expression and enforcement of timing constraints, and run-time support for scheduling and exciting real-time programs. The real-time MENTAT programming language is an extended C++. The extensions are added to facilitate automatic detection of data flow and generation of data flow graphs, to express the timing constraints of individual granules of computation, and to provide scheduling directives for the runtime system. A high-level view of the real-time MENTAT system architecture and programming language constructs is provided.

  12. Computed tomography of the facial canal

    International Nuclear Information System (INIS)

    Kiuchi, Sousuke

    1983-01-01

    The radiological details of the facial canal was investigated by computed tomography. In the first part of this study, dry skulls were used to delineate the full course of the facial canal by computed tomography. In the second part of this study, the patients with chronic otitis media and secondary cholesteatoma were evaluated. The labyrinthine and tympanic parts of the canal were well demonstrated with the axial scanning, and the mastoid part with the coronal scanning. Moreover, computed tomography showed excellent delineation of the middle ear contents. In patients with secondary cholesteatoma, the destructions of the intratympanic course of the bony facial canal were also assessed preoperatively. (author)

  13. 3D histomorphometric quantification from 3D computed tomography

    International Nuclear Information System (INIS)

    Oliveira, L.F. de; Lopes, R.T.

    2004-01-01

    The histomorphometric analysis is based on stereologic concepts and was originally applied to biologic samples. This technique has been used to evaluate different complex structures such as ceramic filters, net structures and cancellous objects that are objects with inner connected structures. The measured histomorphometric parameters of structure are: sample volume to total reconstructed volume (BV/TV), sample surface to sample volume (BS/BV), connection thickness (Tb Th ), connection number (Tb N ) and connection separation (Tb Sp ). The anisotropy was evaluated as well. These parameters constitute the base of histomorphometric analysis. The quantification is realized over cross-sections recovered by cone beam reconstruction, where a real-time microfocus radiographic system is used as tomographic system. The three-dimensional (3D) histomorphometry, obtained from tomography, corresponds to an evolution of conventional method that is based on 2D analysis. It is more coherent with morphologic and topologic context of the sample. This work shows result from 3D histomorphometric quantification to characterize objects examined by 3D computer tomography. The results, which characterizes the internal structures of ceramic foams with different porous density, are compared to results from conventional methods

  14. Real time programming environment for Windows

    Energy Technology Data Exchange (ETDEWEB)

    LaBelle, D.R. [LaBelle (Dennis R.), Clifton Park, NY (United States)

    1998-04-01

    This document provides a description of the Real Time Programming Environment (RTProE). RTProE tools allow a programmer to create soft real time projects under general, multi-purpose operating systems. The basic features necessary for real time applications are provided by RTProE, leaving the programmer free to concentrate efforts on his specific project. The current version supports Microsoft Windows{trademark} 95 and NT. The tasks of real time synchronization and communication with other programs are handled by RTProE. RTProE includes a generic method for connecting a graphical user interface (GUI) to allow real time control and interaction with the programmer`s product. Topics covered in this paper include real time performance issues, portability, details of shared memory management, code scheduling, application control, Operating System specific concerns and the use of Computer Aided Software Engineering (CASE) tools. The development of RTProE is an important step in the expansion of the real time programming community. The financial costs associated with using the system are minimal. All source code for RTProE has been made publicly available. Any person with access to a personal computer, Windows 95 or NT, and C or FORTRAN compilers can quickly enter the world of real time modeling and simulation.

  15. Value of computed tomography for evaluating the sub glottis in laryngeal and hypopharyngeal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Souza, Ricardo Pires de; Barros, Nestor de; Paes Junior, Ademar Jose de Oliveira; Tornin, Olger de Souza; Rapoport, Abrao; Cerri, Giovanni Guido

    2007-01-01

    Context And Objective: Sub glottic involvement in squamous cell carcinoma is a determining factor for contraindicating conservative partial surgery. The subglottis is easily identified by axial computed tomography sections. The present study aimed to evaluate the occurrence of false-negative and false-positive results, and the overall accuracy of staging by computed tomography, in order to detect the involvement of the subglottic laryngeal compartment, in cases of laryngeal and hypopharyngeal squamous cell carcinoma. Design And Setting: Retrospective, non-randomized study of patients treated at Hospital Heliopolis, Sao Paulo, Brazil. Methods: Computed tomography scans were performed on third-generation equipment with 5-mm slice thickness. Afterwards, all patients underwent surgical and anatomopathological examinations as the gold standard procedures. Results: Among 60 patients, 14 were diagnosed with subglottic extension by surgical and histopathological examination. There were three false-negative and no false-positive results from computed tomography scans. The sensitivity and negative predictive value were 100.0%. Accuracy was 95.0%, specificity was 93.5% and positive predictive value was 82.4%. Conclusions: Computed tomography could serve as a powerful auxiliary method for staging laryngeal and hypopharyngeal cancer. However, precautions should be taken in analyzing computed tomography scan data, because vegetating lesions may also be projected into the subglottic compartment, without real involvement of the subglottis, which may cause a false-positive result. (author)

  16. Value of computed tomography for evaluating the sub glottis in laryngeal and hypopharyngeal squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Ricardo Pires de; Barros, Nestor de; Paes Junior, Ademar Jose de Oliveira; Tornin, Olger de Souza; Rapoport, Abrao; Cerri, Giovanni Guido [Hospital Heliopolis, Sao Paulo, SP (Brazil). Dept. de Cirurgia de Cabeca e Pescoco, Otorrinolaringologia e Imagem]. E-mail: ricapires@ig.com.br; olger1@uol.com.br

    2007-03-15

    Context And Objective: Sub glottic involvement in squamous cell carcinoma is a determining factor for contraindicating conservative partial surgery. The subglottis is easily identified by axial computed tomography sections. The present study aimed to evaluate the occurrence of false-negative and false-positive results, and the overall accuracy of staging by computed tomography, in order to detect the involvement of the subglottic laryngeal compartment, in cases of laryngeal and hypopharyngeal squamous cell carcinoma. Design And Setting: Retrospective, non-randomized study of patients treated at Hospital Heliopolis, Sao Paulo, Brazil. Methods: Computed tomography scans were performed on third-generation equipment with 5-mm slice thickness. Afterwards, all patients underwent surgical and anatomopathological examinations as the gold standard procedures. Results: Among 60 patients, 14 were diagnosed with subglottic extension by surgical and histopathological examination. There were three false-negative and no false-positive results from computed tomography scans. The sensitivity and negative predictive value were 100.0%. Accuracy was 95.0%, specificity was 93.5% and positive predictive value was 82.4%. Conclusions: Computed tomography could serve as a powerful auxiliary method for staging laryngeal and hypopharyngeal cancer. However, precautions should be taken in analyzing computed tomography scan data, because vegetating lesions may also be projected into the subglottic compartment, without real involvement of the subglottis, which may cause a false-positive result. (author)

  17. Real-Time Control of an Articulatory-Based Speech Synthesizer for Brain Computer Interfaces.

    Directory of Open Access Journals (Sweden)

    Florent Bocquelet

    2016-11-01

    Full Text Available Restoring natural speech in paralyzed and aphasic people could be achieved using a Brain-Computer Interface (BCI controlling a speech synthesizer in real-time. To reach this goal, a prerequisite is to develop a speech synthesizer producing intelligible speech in real-time with a reasonable number of control parameters. We present here an articulatory-based speech synthesizer that can be controlled in real-time for future BCI applications. This synthesizer converts movements of the main speech articulators (tongue, jaw, velum, and lips into intelligible speech. The articulatory-to-acoustic mapping is performed using a deep neural network (DNN trained on electromagnetic articulography (EMA data recorded on a reference speaker synchronously with the produced speech signal. This DNN is then used in both offline and online modes to map the position of sensors glued on different speech articulators into acoustic parameters that are further converted into an audio signal using a vocoder. In offline mode, highly intelligible speech could be obtained as assessed by perceptual evaluation performed by 12 listeners. Then, to anticipate future BCI applications, we further assessed the real-time control of the synthesizer by both the reference speaker and new speakers, in a closed-loop paradigm using EMA data recorded in real time. A short calibration period was used to compensate for differences in sensor positions and articulatory differences between new speakers and the reference speaker. We found that real-time synthesis of vowels and consonants was possible with good intelligibility. In conclusion, these results open to future speech BCI applications using such articulatory-based speech synthesizer.

  18. Computed Tomography evaluation of maxillofacial injuries

    Directory of Open Access Journals (Sweden)

    V Natraj Prasad

    2017-01-01

    Full Text Available Background & Objectives: The maxillofacial region, a complex anatomical structure, can be evaluated by conventional (plain films, Tomography, Multidetector Computed Tomography, Three-Dimensional Computed Tomography, Orthopantomogram and Magnetic Resonance Imaging. The study was conducted with objective of describing various forms of maxillofacial injuries, imaging features of different types of maxillofacial fractures and the advantage of using Three- Dimensional Computed Tomography reconstructed image. Materials & Methods: A hospital based cross-sectional study was conducted among 50 patients during April 2014 to September 2016 using Toshiba Aquilion Prime 160 slice Multi Detector Computed Tomography scanner.Results: The maxillofacial fractures were significantly higher in male population (88% than female population (12 %. Road traffic accidents were the most common cause of injury others being physical assault and fall from height. It was most common in 31-40 years (26% and 21-30 (24% years age group. Maxillary sinus was the commonest fracture (36% followed by nasal bone and zygomatic bone (30%, mandible and orbital bones (28%. Soft tissue swelling was the commonest associated finding. Three dimensional images (3 D compared to the axial scans missed some fractures. However, the extension of the complex fracture lines and degree of displacement were more accurately assessed. Complex fractures found were Le fort (6% and naso-orbito-ethmoid (4% fractures.Conclusion: The proper evaluation of complex anatomy of the facial bones requires Multidetector Computed Tomography which offers excellent spatial resolution enabling multiplanar reformations and three dimensional reconstructions for enhanced diagnostic accuracy and surgical planning.

  19. Positron emission tomography of malignant tumours at head and neck. Evaluation of the diagnostic value of positron emission tomography by comparison with computed tomography

    International Nuclear Information System (INIS)

    Kettler, Nele

    2011-01-01

    Imaging methods for early, accurate diagnosis and aftercare of malignant growths is currently one of the most important research topics. The objective of this thesis is to evaluate the diagnostic value of FDG-positron emission tomography by comparison with computed tomography for patients with squamous cell carcinoma, malignant melanoma or sarcoma at head and neck. Measurement criteria are sensitivity and specificity. A retrospective evaluation of 100 examinations on 85 patients of University clinic Aachen was performed. The examination reports were supported by reports from histology, positron emission tomography and computed tomography. In each case, the histological results were assumed to provide a reliable benchmark. Sensitivity and specificity for the primary tumour site, metastatic lymphatic nodes and defined anatomic structures were compared across all patients. Comparisons were also performed on sub groups separated by gender, cancer type and the time and frequency at which tumours arose. The statistic analysis was done with MedCalc. Results: The results for sensitivity and specificity of the primary tumour site were 86.42% and 42.86%, and 64.71% and 66.07%, for positron emission tomography and computed tomography respectively. The results for the lymphatic nodes were 51.52% and 92.86% and 64.71% and 66.07%. When the constituent anatomic structures were evaluated separately, the specificity was significantly higher. The separation by gender showed no difference. Because the classification by tumor type resulted in samples that were of varying size, a comparison was difficult. For the diagnosis of primary tumours, the examination with positron emission tomography was superior, whereas computed tomography proved more effective for the diagnosis of recurrent tumours. For the diagnosis of the main tumour site, both methods were shown to be equally suitable. For the assessment of lymphatic nodes, positron emission tomography was superior to computed tomography

  20. Real-time computing in environmental monitoring of a nuclear power plant

    International Nuclear Information System (INIS)

    Deme, S.; Lang, E.; Nagy, Gy.

    1987-06-01

    A real-time computing method is described for calculating the environmental radiation exposure due to a nuclear power plant both at normal operation and at accident. The effects of the Gaussian plume are recalculated in every ten minutes based on meteorological parameters measured at a height of 20 and 120 m as well as on emission data. At normal operation the quantity of radioactive materials released through the stacks is measured and registered while, at an accident, the source strength is unknown and the calculated relative data are normalized to the values measured at the eight environmental monitoring stations. The doses due to noble gases and to dry and wet deposition as well as the time integral of 131 I concentration are calculated and stored by a professional personal computer for 720 points of the environment of 11 km radius. (author)

  1. Timing organization of a real-time multicore processor

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Sparsø, Jens

    2017-01-01

    Real-time systems need a time-predictable computing platform. Computation, communication, and access to shared resources needs to be time-predictable. We use time division multiplexing to statically schedule all computation and communication resources, such as access to main memory or message...... passing over a network-on-chip. We use time-driven communication over an asynchronous network-on-chip to enable time division multiplexing even in a globally asynchronous, locally synchronous multicore architecture. Using time division multiplexing at all levels of the architecture yields in a time...

  2. Kajian dan Implementasi Real TIME Operating System pada Single Board Computer Berbasis Arm

    OpenAIRE

    A, Wiedjaja; M, Handi; L, Jonathan; Christian, Benyamin; Kristofel, Luis

    2014-01-01

    Operating System is an important software in computer system. For personal and office use the operating system is sufficient. However, to critical mission applications such as nuclear power plants and braking system on the car (auto braking system) which need a high level of reliability, it requires operating system which operates in real time. The study aims to assess the implementation of the Linux-based operating system on a Single Board Computer (SBC) ARM-based, namely Pandaboard ES with ...

  3. Computed tomography of post-traumatic orbito-palpebral emphysema

    International Nuclear Information System (INIS)

    Nose, Harumi; Kohno, Keiko

    1981-01-01

    Two cases of orbito-palpebral emphysema are described. Both having a history of recent facial trauma, emphysema occurred after blowing the nose. They were studied by computed tomography and plain x-ray film, including tomograms of the orbit. The emphysema was revealed by computed tomography and x-ray film, but more clearly by the former technique. The fracture lines of the orbit were revealed in only one case by x-ray film, but in both cases by computed tomography. The authors stress that computed tomography is the best technique for the study of orbital emphysema. (author)

  4. Radiological management of blunt polytrauma with computed tomography and angiography: an integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Kurdziel, J.C.; Dondelinger, R.F.; Hemmer, M.

    1987-01-01

    107 polytraumatized patients, who had experienced blunt trauma have been worked up at admission with computed tomography of the thorax, abdomen and pelvis following computed tomography study of the brain: significant lesions were revealed in 98 (90%) patients. 79 (74%) patients showed trauma to the thorax, in 69 (64%) patients abdominal or pelvic trauma was evidenced. No false positive diagnosis was established. 5 traumatic findings were missed. Emergency angiography was indicated in 3 (3%) patients, following computed tomography examination. 3 other trauma patients were submitted directly to angiography without computed tomography examination during the time period this study was completed. Embolization was carried out in 5/6 patients. No thoracotomy was needed. 13 (12%) patients underwent laparotomy following computed tomography. Overall mortality during hospital stay was 14% (15/107). No patient died from visceral bleeding. Conservative management of blunt polytrauma patients can be advocated in almost 90% of visceral lesions. Computed tomography coupled with angiography and embolization represent an adequate integrated approach to the management of blunt polytrauma patients.

  5. Radiological management of blunt polytrauma with computed tomography and angiography: an integrated approach

    International Nuclear Information System (INIS)

    Kurdziel, J.C.; Dondelinger, R.F.; Hemmer, M.

    1987-01-01

    107 polytraumatized patients, who had experienced blunt trauma have been worked up at admission with computed tomography of the thorax, abdomen and pelvis following computed tomography study of the brain: significant lesions were revealed in 98 (90%) patients. 79 (74%) patients showed trauma to the thorax, in 69 (64%) patients abdominal or pelvic trauma was evidenced. No false positive diagnosis was established. 5 traumatic findings were missed. Emergency angiography was indicated in 3 (3%) patients, following computed tomography examination. 3 other trauma patients were submitted directly to angiography without computed tomography examination during the time period this study was completed. Embolization was carried out in 5/6 patients. No thoracotomy was needed. 13 (12%) patients underwent laparotomy following computed tomography. Overall mortality during hospital stay was 14% (15/107). No patient died from visceral bleeding. Conservative management of blunt polytrauma patients can be advocated in almost 90% of visceral lesions. Computed tomography coupled with angiography and embolization represent an adequate integrated approach to the management of blunt polytrauma patients

  6. Development of a real-time monitoring system and integration of different computer system in LHD experiments using IP multicast

    International Nuclear Information System (INIS)

    Emoto, Masahiko; Nakamura, Yukio; Teramachi, Yasuaki; Okumura, Haruhiko; Yamaguchi, Satarou

    2002-01-01

    There are several different computer systems in LHD (Large Helical Device) experiment, and therefore the coalition of these computers is a key to perform the experiment. Real-time monitoring system is also important because the long discharge is needed in the LHD experiment. In order to achieve these two requirements, the technique of IP multicast is adopted. The authors have developed three new systems, the first one is the real-time monitoring system, the next one is the delivery system of the shot number and the last one is the real-time notification system of the plasma data registration. The first system can deliver the real-time monitoring data to the LHD experimental LAN through the firewall of the LHD control LAN in NIFS. The other two systems are used to realize high coalition of the different computers in the LHD plasma experiment. We can conclude that IP multicast is very useful both in the LHD experiment and a future large plasma experiment from various experiences. (author)

  7. Effects of damping-off caused by Rhizoctonia solani anastomosis group 2-1 on roots of wheat and oil seed rape quantified using X-ray Computed Tomography and real-time PCR

    Directory of Open Access Journals (Sweden)

    Craig J. Sturrock

    2015-06-01

    Full Text Available Rhizoctonia solani is a plant pathogenic fungus that causes significant establishment and yield losses to several important food crops globally. This is the first application of high resolution X-ray micro Computed Tomography (X-ray µCT and real-time PCR to study host-pathogen interactions in situ and elucidate the mechanism of Rhizoctonia damping-off disease over a 6-day period caused by R. solani, anastomosis group (AG 2-1 in wheat (Triticum aestivum cv. Gallant and oil seed rape (OSR, Brassica napus cv. Marinka. Temporal, non-destructive analysis of root system architectures was performed using RooTrak and validated by the destructive method of root washing. Disease was assessed visually and related to pathogen DNA quantification in soil using real-time PCR. R. solani AG2-1 at similar initial DNA concentrations in soil was capable of causing significant damage to the developing root systems of both wheat and OSR. Disease caused reductions in primary root number, root volume, root surface area and convex hull which were affected less in the monocotyledonous host. Wheat was more tolerant to the pathogen, exhibited fewer symptoms and developed more complex root system. In contrast, R. solani caused earlier damage and maceration of the taproot of the dicot, OSR. Disease severity was related to pathogen DNA accumulation in soil only for OSR, however reductions in root traits were significantly associated with both disease and pathogen DNA. The method offers the first steps in advancing current understanding of soil-borne pathogen behaviour in situ at the pore scale, which may lead to the development of mitigation measures to combat disease influence in the field.

  8. Computed tomography of intussusception in adult

    International Nuclear Information System (INIS)

    Jeon, Hae Jeong; Ahn, Byeong Yeob; Cha, Soon Joo; Seol, Hae Young; Chung, Kyoo Byung; Suh, Won Hyuck

    1984-01-01

    Intussusception is rare in adult and usually caused by organic lesions, although there is a significant number of so-called idiopathic cases. The diagnosis of intussusception have been made by plain abdomen, barium enema and small bowel series. But recently ultrasound and computed tomography make a contribution to diagnose intussusception. Computed tomography is not the primary means for evaluating a gastrointestinal tract abnormality but also provides valuable information in evaluating disorders affecting the hollow viscera of the alimentary tract. Computed tomography image of intussusception demonstrates a whirl like pattern of bowel loops separated by fatty stripe correlating of the intestinal walls. Abdominal ultrasonogram was used as the initial diagnostic test in 2 cases out of total 4 cases, with abdominal mass of unknown cause. It revealed a typical pattern, composed of a round or oval mass with central dense echoes and peripheral poor echoes. We report 4 all cases of intussusception in adult who were performed by computed tomography and/or ultrasound. All cases were correlated with barium enema examination and/or surgical reports.

  9. The role of real-time in biomedical science: a meta-analysis on computational complexity, delay and speedup.

    Science.gov (United States)

    Faust, Oliver; Yu, Wenwei; Rajendra Acharya, U

    2015-03-01

    The concept of real-time is very important, as it deals with the realizability of computer based health care systems. In this paper we review biomedical real-time systems with a meta-analysis on computational complexity (CC), delay (Δ) and speedup (Sp). During the review we found that, in the majority of papers, the term real-time is part of the thesis indicating that a proposed system or algorithm is practical. However, these papers were not considered for detailed scrutiny. Our detailed analysis focused on papers which support their claim of achieving real-time, with a discussion on CC or Sp. These papers were analyzed in terms of processing system used, application area (AA), CC, Δ, Sp, implementation/algorithm (I/A) and competition. The results show that the ideas of parallel processing and algorithm delay were only recently introduced and journal papers focus more on Algorithm (A) development than on implementation (I). Most authors compete on big O notation (O) and processing time (PT). Based on these results, we adopt the position that the concept of real-time will continue to play an important role in biomedical systems design. We predict that parallel processing considerations, such as Sp and algorithm scaling, will become more important. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Long-range, wide-field swept-source optical coherence tomography with GPU accelerated digital lock-in Doppler vibrography for real-time, in vivo middle ear diagnostics.

    Science.gov (United States)

    MacDougall, Dan; Farrell, Joshua; Brown, Jeremy; Bance, Manohar; Adamson, Robert

    2016-11-01

    We present the design, implementation and validation of a swept-source optical coherence tomography (OCT) system for real-time imaging of the human middle ear in live patients. Our system consists of a highly phase-stable Vernier-tuned distributed Bragg-reflector laser along with a real-time processing engine implemented on a graphics processing unit. We use the system to demonstrate, for the first time in live subjects, real-time Doppler measurements of middle ear vibration in response to sound, video rate 2D B-mode imaging of the middle ear and 3D volumetric B-mode imaging. All measurements were performed non-invasively through the intact tympanic membrane demonstrating that the technology is readily translatable to the clinic.

  11. Integration of multidisciplinary technologies for real time target visualization and verification for radiotherapy.

    Science.gov (United States)

    Chang, Wen-Chung; Chen, Chin-Sheng; Tai, Hung-Chi; Liu, Chia-Yuan; Chen, Yu-Jen

    2014-01-01

    The current practice of radiotherapy examines target coverage solely from digitally reconstructed beam's eye view (BEV) in a way that is indirectly accessible and that is not in real time. We aimed to visualize treatment targets in real time from each BEV. The image data of phantom or patients from ultrasound (US) and computed tomography (CT) scans were captured to perform image registration. We integrated US, CT, US/CT image registration, robotic manipulation of US, a radiation treatment planning system, and a linear accelerator to constitute an innovative target visualization system. The performance of this algorithm segmented the target organ in CT images, transformed and reconstructed US images to match each orientation, and generated image registration in real time mode with acceptable accuracy. This image transformation allowed physicians to visualize the CT image-reconstructed target via a US probe outside the BEV that was non-coplanar to the beam's plane. It allowed the physicians to remotely control the US probe that was equipped on a robotic arm to dynamically trace and real time monitor the coverage of the target within the BEV during a simulated beam-on situation. This target visualization system may provide a direct remotely accessible and real time way to visualize, verify, and ensure tumor targeting during radiotherapy.

  12. Computed tomography of surface related radionuclide distributions ('BONN'-tomography)

    International Nuclear Information System (INIS)

    Bockisch, A.; Koenig, R.

    1989-01-01

    A method called the 'BONN' tomography is described to produce planar projections of circular activity distributions using standard single photon emission computed tomography. The clinical value of the method is demonstrated for bone scans of the jaw, thorax, and pelvis. Numerical or projection-related problems are discussed. (orig.) [de

  13. [Construction and analysis of a monitoring system with remote real-time multiple physiological parameters based on cloud computing].

    Science.gov (United States)

    Zhu, Lingyun; Li, Lianjie; Meng, Chunyan

    2014-12-01

    There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.

  14. Computed tomography apparatus

    International Nuclear Information System (INIS)

    Fairbairn, I.A.

    1984-01-01

    In fan-beam computed tomography apparatus, timing reference pulses, normally occurring at intervals t, for data transfer and reset of approx. 500 integrators in the signal path from the detector array, are generated from the scan displacement, e.g. using a graticule and optical sensor to relate the measurement paths geometrically to the body section. Sometimes, a slow scan rate is required to provide a time-averaged density image, e.g. for planning irradiation therapy, and then the sensed impulses will occur at extended intervals and can cause integrator overload. An improvement is described which provides a pulse generator which responds to a reduced scan rate by generating a succession of further transfer and reset pulses at intervals approximately equal to t starting a time t after each timing reference pulse. Then, using an adding device and RAM, all the transferred signals integrated in the interval t' between two successive slow scan reference pulses are accumulated in order to form a corresponding measurement signal. (author)

  15. What is the real role of the equilibrium phase in abdominal computed tomography?

    Energy Technology Data Exchange (ETDEWEB)

    Salvadori, Priscila Silveira [Universidade Federal de Sao Paulo (EPM-Unifesp), Sao Paulo, SP (Brazil). Escola Paulista de Medicina; Costa, Danilo Manuel Cerqueira; Romano, Ricardo Francisco Tavares; Galvao, Breno Vitor Tomaz; Monjardim, Rodrigo da Fonseca; Bretas, Elisa Almeida Sathler; Rios, Lucas Torres; Shigueoka, David Carlos; Caldana, Rogerio Pedreschi; D' Ippolito, Giuseppe, E-mail: giuseppe_dr@uol.com.br [Universidade Federal de Sao Paulo (EPM-Unifesp), Sao Paulo, SP (Brazil). Escola Paulista de Medicina. Department of Diagnostic Imaging

    2013-03-15

    Objective: To evaluate the role of the equilibrium phase in abdominal computed tomography. Materials and Methods: A retrospective, cross-sectional, observational study reviewed 219 consecutive contrast-enhanced abdominal computed tomography images acquired in a three-month period, for different clinical indications. For each study, two reports were issued - one based on the initial analysis of non-contrast-enhanced, arterial and portal phases only (first analysis), and a second reading of these phases added to the equilibrium phase (second analysis). At the end of both readings, differences between primary and secondary diagnoses were pointed out and recorded, in order to measure the impact of suppressing the equilibrium phase on the clinical outcome for each of the patients. The extension of the exact Fisher's test was utilized to evaluate the changes in the primary diagnosis (p < 0.05 as significant). Results: Among the 219 cases reviewed, the absence of the equilibrium phase determined change in the primary diagnosis in only one case (0.46%; p > 0.999). As regards secondary diagnoses, changes after the second analysis were observed in five cases (2.3%). Conclusion: For clinical scenarios such as cancer staging, acute abdomen and investigation for abdominal collections, the equilibrium phase is dispensable and does not offer any significant diagnostic contribution. (author)

  16. Evaluation of computed tomography for obstructive jaundice

    International Nuclear Information System (INIS)

    Matsuoka, Shoji; Toda, Hiroshi; Suzuki, Toshihiko

    1980-01-01

    Findings of computed tomography were reviewed in 54 cases where obstructive jaundice was suggested by liver function studies and computed tomography was done with the diagnosis subsequently confirmed by surgery. Dilatation of the intrahepatic bile duct was found in 49 (91%) of the cases and the site of obstruction was determined in 44 cases (82%). The cause was shown in 28 cases (52%). By disease, the cause was correctly diagnosed with gallbladder in 40%, bile duct cancer in 46%, pancreas cancer in 71%, and choledocal cyst in 100%, but cholelithiasis was diagnosed correctly in only 17%. Further, non-calcium cholelithiasis is very difficult to diagnose by computed tomography. Computed tomography is a useful tool for diagnosis of obstructive jaundice as a noninvasive means of evaluating the patient; however, concomitand use of other diagnostic studies is essential for greater accuracy of diagnosis. (author)

  17. The FERMI-Elettra distributed real-time framework

    International Nuclear Information System (INIS)

    Pivetta, L.; Gaio, G.; Passuello, R.; Scalamera, G.

    2012-01-01

    FERMI-Elettra is a Free Electron Laser (FEL) based on a 1.5 GeV linac. The pulsed operation of the accelerator and the necessity to characterize and control each electron bunch requires synchronous acquisition of the beam diagnostics together with the ability to drive actuators in real-time at the linac repetition rate. The Adeos/Xenomai real-time extensions have been adopted in order to add real-time capabilities to the Linux based control system computers running the Tango software. A software communication protocol based on Gigabit Ethernet and known as Network Reflective Memory (NRM) has been developed to implement a shared memory across the whole control system, allowing computers to communicate in real-time. The NRM architecture, the real-time performance and the integration in the control system are described. (authors)

  18. Difficulties encountered managing nodules detected during a computed tomography lung cancer screening program.

    Science.gov (United States)

    Veronesi, Giulia; Bellomi, Massimo; Scanagatta, Paolo; Preda, Lorenzo; Rampinelli, Cristiano; Guarize, Juliana; Pelosi, Giuseppe; Maisonneuve, Patrick; Leo, Francesco; Solli, Piergiorgio; Masullo, Michele; Spaggiari, Lorenzo

    2008-09-01

    The main challenge of screening a healthy population with low-dose computed tomography is to balance the excessive use of diagnostic procedures with the risk of delayed cancer detection. We evaluated the pitfalls, difficulties, and sources of mistakes in the management of lung nodules detected in volunteers in the Cosmos single-center screening trial. A total of 5201 asymptomatic high-risk volunteers underwent screening with multidetector low-dose computed tomography. Nodules detected at baseline or new nodules at annual screening received repeat low-dose computed tomography at 1 year if less than 5 mm, repeat low-dose computed tomography 3 to 6 months later if between 5 and 8 mm, and fluorodeoxyglucose positron emission tomography if more than 8 mm. Growing nodules at the annual screening received low-dose computed tomography at 6 months and computed tomography-positron emission tomography or surgical biopsy according to doubling time, type, and size. During the first year of screening, 106 patients underwent lung biopsy and 91 lung cancers were identified (70% were stage I). Diagnosis was delayed (false-negative) in 6 patients (stage IIB in 1 patient, stage IIIA in 3 patients, and stage IV in 2 patients), including 2 small cell cancers and 1 central lesion. Surgical biopsy revealed benign disease (false-positives) in 15 cases (14%). Positron emission tomography sensitivity was 88% for prevalent cancers and 70% for cancers diagnosed after first annual screening. No needle biopsy procedures were performed in this cohort of patients. Low-dose computed tomography screening is effective for the early detection of lung cancers, but nodule management remains a challenge. Computed tomography-positron emission tomography is useful at baseline, but its sensitivity decreases significantly the subsequent year. Multidisciplinary management and experience are crucial for minimizing misdiagnoses.

  19. Development of real-time x-ray microtomography system

    International Nuclear Information System (INIS)

    Takano, H; Morikawa, M; Konishi, S; Azuma, H; Shimomura, S; Tsusaka, Y; Kagoshima, Y; Nakano, S; Kosaka, N; Yamamoto, K

    2013-01-01

    We have developed a four-dimensional (4D) x-ray microcomputed tomography (CT) system that can obtain time-lapse CT volumes in real time. The system consists of a high-speed sample rotation system and a high-frame-rate x-ray imager, which are installed at a synchrotron radiation x-ray beamline. As a result of system optimization and introduction of a 'zoom resolution' procedure, a real-time 4D CT movie with a frame rate of 30 was obtained with a voxel size of 2.5 μm using 10 keV x-rays

  20. A Clinical Evaluation Of Cone Beam Computed Tomography

    Science.gov (United States)

    2016-06-01

    A CLINICAL EVALUATION OF CONE BEAM COMPUTED TOMOGRAPHY by Bryan James Behm, D.D.S. Lieutenant, Dental Corps United States Navy A thesis... COMPUTED TOMOGRAPHY " is appropriately acknowledged and, beyond brief excerpts, is with the permission of the copyright owner. ~mes Behm Endodontic...printed without the expressed written permission of the author. IV ABSTRACT A CLINICAL EVALUATION OF CONE BEAM COMPUTED TOMOGRAPHY BRYAN JAMES

  1. Self-Motion Perception: Assessment by Real-Time Computer Generated Animations

    Science.gov (United States)

    Parker, Donald E.

    1999-01-01

    Our overall goal is to develop materials and procedures for assessing vestibular contributions to spatial cognition. The specific objective of the research described in this paper is to evaluate computer-generated animations as potential tools for studying self-orientation and self-motion perception. Specific questions addressed in this study included the following. First, does a non- verbal perceptual reporting procedure using real-time animations improve assessment of spatial orientation? Are reports reliable? Second, do reports confirm expectations based on stimuli to vestibular apparatus? Third, can reliable reports be obtained when self-motion description vocabulary training is omitted?

  2. Memory controllers for real-time embedded systems predictable and composable real-time systems

    CERN Document Server

    Akesson, Benny

    2012-01-01

      Verification of real-time requirements in systems-on-chip becomes more complex as more applications are integrated. Predictable and composable systems can manage the increasing complexity using formal verification and simulation.  This book explains the concepts of predictability and composability and shows how to apply them to the design and analysis of a memory controller, which is a key component in any real-time system. This book is generally intended for readers interested in Systems-on-Chips with real-time applications.   It is especially well-suited for readers looking to use SDRAM memories in systems with hard or firm real-time requirements. There is a strong focus on real-time concepts, such as predictability and composability, as well as a brief discussion about memory controller architectures for high-performance computing. Readers will learn step-by-step how to go from an unpredictable SDRAM memory, offering highly variable bandwidth and latency, to a predictable and composable shared memory...

  3. A Computational Model for Real-Time Calculation of Electric Field due to Transcranial Magnetic Stimulation in Clinics

    Directory of Open Access Journals (Sweden)

    Alessandra Paffi

    2015-01-01

    Full Text Available The aim of this paper is to propose an approach for an accurate and fast (real-time computation of the electric field induced inside the whole brain volume during a transcranial magnetic stimulation (TMS procedure. The numerical solution implements the admittance method for a discretized realistic brain model derived from Magnetic Resonance Imaging (MRI. Results are in a good agreement with those obtained using commercial codes and require much less computational time. An integration of the developed code with neuronavigation tools will permit real-time evaluation of the stimulated brain regions during the TMS delivery, thus improving the efficacy of clinical applications.

  4. Absorbed and effective dose from spiral and computed tomography for the dental implant planning

    International Nuclear Information System (INIS)

    Hong, Beong Hee; Han, Won Jeong; Kim, Eun Kyung

    2001-01-01

    To evaluate the absorbed and effective doses of spiral and computed tomography for the dental implant planning. For radiographic projection. TLD chips were placed in 22 sites of humanoid phantom to record the exposure to skin and the mean absorbed dose to bone marrow, thyroid, pituitary, parotid and submandibular glands and nesophages. Effective dose was calculated, using the method suggested by Frederiksen at al.. Patient situations of a single tooth gap in upper and lower midline region, edentulous maxilla and mandible were simulated for spiral tomography. 35 axial slices (maxilla) and 40 axial slices (mandible) with low and standard dose setting were used for computed tomography. All the radiographic procedures were repeated three times. The mean effective dose in case of maxilla was 0.865 mSv, 0.452 mSv, 0.136 mSv and 0.025 mSv, in spiral tomography of complete edentulous maxilla, computed tomography with standard mAs, computed tomography with low mAs and spiral tomography of a single tooth gap (p<0.05). That in case of mandible was 0.614 mSv, 0.448 mSv, 0.137 mSv and 0.036 mSv, in spiral tomography of complete edentulous mandible, computed tomography with standard mAs, computed tomography with low mAs and spiral tomography of a single tooth gap (p<0.05). Based on these results, it can be concluded that low mAs computed tomography is recommended instead of spiral tomography for the complete edentulous maxilla and mandible dental implant treatment planning

  5. Computed tomography in the diagnosis of pericardial heart disease

    International Nuclear Information System (INIS)

    Isner, J.M.; Carter, B.L.; Bankoff, M.S.; Konstam, M.A.; Salem, D.N.

    1982-01-01

    To evaluate the use of computed tomography (CT) in the diagnosis of pericardial heart disease, 53 patients were prospectively studied by computed tomography of the chest and cardiac ultrasound. A diagnostic-quality CT study was done for all patients; a technically satisfactory ultrasound examination was not possible in six patients. Of 47 patients in whom both chest scans and satisfactory ultrasound studies were obtained, computed tomography showed pericardial thickening not shown by ultrasound in five patients. Estimated size of pericardial effusion was the same for both computed tomography and ultrasound. Computed tomography provided quantifiable evaluation of the composition of pericardial fluid in seven patients with either hemopericardium or purulent pericarditis. Neoplastic pericardial heart disease was detected by CT scan in four of the 53 patients. Computed tomography of the chest provides a sensitive evaluation of the pericardium and quality of pericardial effusion, and is a valuable adjunct in patients in whom cardiac ultrasound is technically unsatisfactory

  6. Math modeling and computer mechanization for real time simulation of rotary-wing aircraft

    Science.gov (United States)

    Howe, R. M.

    1979-01-01

    Mathematical modeling and computer mechanization for real time simulation of rotary wing aircraft is discussed. Error analysis in the digital simulation of dynamic systems, such as rotary wing aircraft is described. The method for digital simulation of nonlinearities with discontinuities, such as exist in typical flight control systems and rotor blade hinges, is discussed.

  7. An assessment of the real-time application capabilities of the SIFT computer system

    Science.gov (United States)

    Butler, R. W.

    1982-01-01

    The real-time capabilities of the SIFT computer system, a highly reliable multicomputer architecture developed to support the flight controls of a relaxed static stability aircraft, are discussed. The SIFT computer system was designed to meet extremely high reliability requirements and to facilitate a formal proof of its correctness. Although SIFT represents a significant achievement in fault-tolerant system research it presents an unusual and restrictive interface to its users. The characteristics of the user interface and its impact on application system design are assessed.

  8. Design of an EEG-based brain-computer interface (BCI) from standard components running in real-time under Windows.

    Science.gov (United States)

    Guger, C; Schlögl, A; Walterspacher, D; Pfurtscheller, G

    1999-01-01

    An EEG-based brain-computer interface (BCI) is a direct connection between the human brain and the computer. Such a communication system is needed by patients with severe motor impairments (e.g. late stage of Amyotrophic Lateral Sclerosis) and has to operate in real-time. This paper describes the selection of the appropriate components to construct such a BCI and focuses also on the selection of a suitable programming language and operating system. The multichannel system runs under Windows 95, equipped with a real-time Kernel expansion to obtain reasonable real-time operations on a standard PC. Matlab controls the data acquisition and the presentation of the experimental paradigm, while Simulink is used to calculate the recursive least square (RLS) algorithm that describes the current state of the EEG in real-time. First results of the new low-cost BCI show that the accuracy of differentiating imagination of left and right hand movement is around 95%.

  9. Time-dependent seismic tomography

    Science.gov (United States)

    Julian, B.R.; Foulger, G.R.

    2010-01-01

    Of methods for measuring temporal changes in seismic-wave speeds in the Earth, seismic tomography is among those that offer the highest spatial resolution. 3-D tomographic methods are commonly applied in this context by inverting seismic wave arrival time data sets from different epochs independently and assuming that differences in the derived structures represent real temporal variations. This assumption is dangerous because the results of independent inversions would differ even if the structure in the Earth did not change, due to observational errors and differences in the seismic ray distributions. The latter effect may be especially severe when data sets include earthquake swarms or aftershock sequences, and may produce the appearance of correlation between structural changes and seismicity when the wave speeds are actually temporally invariant. A better approach, which makes it possible to assess what changes are truly required by the data, is to invert multiple data sets simultaneously, minimizing the difference between models for different epochs as well as the rms arrival-time residuals. This problem leads, in the case of two epochs, to a system of normal equations whose order is twice as great as for a single epoch. The direct solution of this system would require twice as much memory and four times as much computational effort as would independent inversions. We present an algorithm, tomo4d, that takes advantage of the structure and sparseness of the system to obtain the solution with essentially no more effort than independent inversions require. No claim to original US government works Journal compilation ?? 2010 RAS.

  10. Clinical utility of dental cone-beam computed tomography: current perspectives

    Directory of Open Access Journals (Sweden)

    Jaju PP

    2014-04-01

    Full Text Available Prashant P Jaju,1 Sushma P Jaju21Oral Medicine and Radiology, 2Conservative Dentistry and Endodontics, Rishiraj College of Dental Sciences and Research Center, Bhopal, IndiaAbstract: Panoramic radiography and computed tomography were the pillars of maxillofacial diagnosis. With the advent of cone-beam computed tomography, dental practice has seen a paradigm shift. This review article highlights the potential applications of cone-beam computed tomography in the fields of dental implantology and forensic dentistry, and its limitations in maxillofacial diagnosis.Keywords: dental implants, cone-beam computed tomography, panoramic radiography, computed tomography

  11. Efficient Buffer Capacity and Scheduler Setting Computation for Soft Real-Time Stream Processing Applications

    NARCIS (Netherlands)

    Bekooij, Marco; Bekooij, Marco Jan Gerrit; Wiggers, M.H.; van Meerbergen, Jef

    2007-01-01

    Soft real-time applications that process data streams can often be intuitively described as dataflow process networks. In this paper we present a novel analysis technique to compute conservative estimates of the required buffer capacities in such process networks. With the same analysis technique

  12. Hypertensive disease and renal hypertensions: renal structural and functional studies by using dynamic computed tomography

    International Nuclear Information System (INIS)

    Arabidze, G.G.; Pogrebnaya, G.N.; Todua, F.I.; Sokolova, R.I.; Kozdoba, O.A.

    1989-01-01

    Dynamic computed tomography was conducted by the original methods; the findings were analyzed by taking into account time-density curves which made it possible to gain an insight into the status of blood flow and filtration in each individual kidney. Computed tomography and dynamic computed tomography revealed that hypertensive disease was characterized by normal volume and thickness of the renal cortical layer and symmetric time-density curves, whereas a hypertensive type of chronic glomerulonephritis featured lower renal cartical layer thickness, reduced renal volume, symmetrically decrease amplitudes of the first and second peaks of the time-density curve, chronic pyelonephritis showed asymmetric time-density diagrams due to the lower density areas in the afflicted kidney

  13. Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy

    Science.gov (United States)

    Pablico-Lansigan, Michele H.; Situ, Shu F.; Samia, Anna Cristina S.

    2013-05-01

    Magnetic particle imaging (MPI) is an emerging biomedical imaging technology that allows the direct quantitative mapping of the spatial distribution of superparamagnetic iron oxide nanoparticles. MPI's increased sensitivity and short image acquisition times foster the creation of tomographic images with high temporal and spatial resolution. The contrast and sensitivity of MPI is envisioned to transcend those of other medical imaging modalities presently used, such as magnetic resonance imaging (MRI), X-ray scans, ultrasound, computed tomography (CT), positron emission tomography (PET) and single photon emission computed tomography (SPECT). In this review, we present an overview of the recent advances in the rapidly developing field of MPI. We begin with a basic introduction of the fundamentals of MPI, followed by some highlights over the past decade of the evolution of strategies and approaches used to improve this new imaging technique. We also examine the optimization of iron oxide nanoparticle tracers used for imaging, underscoring the importance of size homogeneity and surface engineering. Finally, we present some future research directions for MPI, emphasizing the novel and exciting opportunities that it offers as an important tool for real-time in vivo monitoring. All these opportunities and capabilities that MPI presents are now seen as potential breakthrough innovations in timely disease diagnosis, implant monitoring, and image-guided therapeutics.

  14. An analysis of true- and false-positive results of vocal fold uptake in positron emission tomography-computed tomography imaging.

    Science.gov (United States)

    Seymour, N; Burkill, G; Harries, M

    2018-03-01

    Positron emission tomography-computed tomography with fluorine-18 fluorodeoxy-D-glucose has a major role in the investigation of head and neck cancers. Fluorine-18 fluorodeoxy-D-glucose is not a tumour-specific tracer and can also accumulate in benign pathology. Therefore, positron emission tomography-computed tomography scan interpretation difficulties are common in the head and neck, which can produce false-positive results. This study aimed to investigate patients detected as having abnormal vocal fold uptake on fluorine-18 fluorodeoxy-D-glucose positron emission tomography-computed tomography. Positron emission tomography-computed tomography scans were identified over a 15-month period where reports contained evidence of unilateral vocal fold uptake or vocal fold pathology. Patients' notes and laryngoscopy results were analysed. Forty-six patients were identified as having abnormal vocal fold uptake on positron emission tomography-computed tomography. Twenty-three patients underwent positron emission tomography-computed tomography and flexible laryngoscopy: 61 per cent of patients had true-positive positron emission tomography-computed tomography scans and 39 per cent had false-positive scan results. Most patients referred to ENT for abnormal findings on positron emission tomography-computed tomography scans had true-positive findings. Asymmetrical fluorine-18 fluorodeoxy-D-glucose uptake should raise suspicion of vocal fold pathology, accepting a false-positive rate of approximately 40 per cent.

  15. 21 CFR 892.1750 - Computed tomography x-ray system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Computed tomography x-ray system. 892.1750 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1750 Computed tomography x-ray system. (a) Identification. A computed tomography x-ray system is a diagnostic x-ray system intended to...

  16. Turbo-Satori: a neurofeedback and brain-computer interface toolbox for real-time functional near-infrared spectroscopy.

    Science.gov (United States)

    Lührs, Michael; Goebel, Rainer

    2017-10-01

    Turbo-Satori is a neurofeedback and brain-computer interface (BCI) toolbox for real-time functional near-infrared spectroscopy (fNIRS). It incorporates multiple pipelines from real-time preprocessing and analysis to neurofeedback and BCI applications. The toolbox is designed with a focus in usability, enabling a fast setup and execution of real-time experiments. Turbo-Satori uses an incremental recursive least-squares procedure for real-time general linear model calculation and support vector machine classifiers for advanced BCI applications. It communicates directly with common NIRx fNIRS hardware and was tested extensively ensuring that the calculations can be performed in real time without a significant change in calculation times for all sampling intervals during ongoing experiments of up to 6 h of recording. Enabling immediate access to advanced processing features also allows the use of this toolbox for students and nonexperts in the field of fNIRS data acquisition and processing. Flexible network interfaces allow third party stimulus applications to access the processed data and calculated statistics in real time so that this information can be easily incorporated in neurofeedback or BCI presentations.

  17. Quo vadis? : persuasive computing using real time queue information

    NARCIS (Netherlands)

    Meys, Wouter; Groen, Maarten

    2014-01-01

    By presenting tourists with real-time information an increase in efficiency and satisfaction of their day planning can be achieved. At the same time, real-time information services can offer the municipality the opportunity to spread the tourists throughout the city centre. An important factor for

  18. Non-real-time computed tomography-guided percutaneous ethanol injection therapy for heapocellular carcinoma undetectable by ultrasonography

    International Nuclear Information System (INIS)

    Ueda, Kazushige; Ohkawara, Tohru; Minami, Masahito; Sawa, Yoshihiko; Morinaga, Osamu; Kohli, Yoshihiro; Ohkawara, Yasuo

    1998-01-01

    The purpose of this study was to evaluate the feasibility of non-real-time CT-guided percutaneous ethanol injection therapy (PEIT) for hepatocellular carcinoma (HCC, 37 lesions) untreatable by ultrasonography-guided (US)-PEIT. The HCC lesion was localized on the lipiodol CT image with a graduated grid system. We advanced a 21 G or 22 G needle in a stepwise fashion with intermittent localization scans using a tandem method to position the tip of the needle in the lesion. Ethanol containing contrast medium was injected with monitoring scans obtained after incremental volumes of injection, until perfusion of the lesion was judged to be complete. A total of 44 CT-PEIT procedures were performed. The average number of needle passes from the skin to the liver in each CT-PEIT procedure was 2.3, the average amount of ethanol injected was 14.4 ml, and the average time required was 49.3 minutes. Complete perfusion of the lesion by ethanol on monitoring CT images was achieved in all lesions with only a single or double CT-PEIT procedure without severe complication. Local recurrence was detected only in 5 lesions. At present, it is more time-consuming to perform CT-PEIT than US-PEIT because conventional CT guidance is not real-time imaging. However, it is expected that this limitation of CT-PEIT will be overcome in the near future with the introduction of CT fluoroscopy. In conclusion, CT-PEIT should prove to be a feasible, acceptable treatment for challenging cases of HCC undetectable by US. (author)

  19. Computed tomography system

    International Nuclear Information System (INIS)

    Lambert, T.W.; Blake, J.E.

    1981-01-01

    This invention relates to computed tomography and is particularly concerned with determining the CT numbers of zones of interest in an image displayed on a cathode ray tube which zones lie in the so-called level or center of the gray scale window. (author)

  20. Computed tomography

    International Nuclear Information System (INIS)

    Andre, M.; Resnick, D.

    1988-01-01

    Computed tomography (CT) has matured into a reliable and prominent tool for study of the muscoloskeletal system. When it was introduced in 1973, it was unique in many ways and posed a challenge to interpretation. It is in these unique features, however, that its advantages lie in comparison with conventional techniques. These advantages will be described in a spectrum of important applications in orthopedics and rheumatology

  1. Application verification research of cloud computing technology in the field of real time aerospace experiment

    Science.gov (United States)

    Wan, Junwei; Chen, Hongyan; Zhao, Jing

    2017-08-01

    According to the requirements of real-time, reliability and safety for aerospace experiment, the single center cloud computing technology application verification platform is constructed. At the IAAS level, the feasibility of the cloud computing technology be applied to the field of aerospace experiment is tested and verified. Based on the analysis of the test results, a preliminary conclusion is obtained: Cloud computing platform can be applied to the aerospace experiment computing intensive business. For I/O intensive business, it is recommended to use the traditional physical machine.

  2. Utility of the computed tomography indices on cone beam computed tomography images in the diagnosis of osteoporosis in women

    International Nuclear Information System (INIS)

    Koh, Kwang Joon; Kim, Kyung A

    2011-01-01

    This study evaluated the potential use of the computed tomography indices (CTI) on cone beam CT (CBCT) images for an assessment of the bone mineral density (BMD) in postmenopausal osteoporotic women. Twenty-one postmenopausal osteoporotic women and 21 postmenopausal healthy women were enrolled as the subjects. The BMD of the lumbar vertebrae and femur were calculated by dual energy X-ray absorptiometry (DXA) using a DXA scanner. The CBCT images were obtained from the unilateral mental foramen region using a PSR-9000N Dental CT system. The axial, sagittal, and coronal images were reconstructed from the block images using OnDemend3D. The new term 'CTI' on CBCT images was proposed. The relationship between the CT measurements and BMDs were assessed and the intra-observer agreement was determined. There were significant differences between the normal and osteoporotic groups in the computed tomography mandibular index superior (CTI(S)), computed tomography mandibular index inferior (CTI(I)), and computed tomography cortical index (CTCI). On the other hand, there was no difference between the groups in the computed tomography mental index (CTMI: inferior cortical width). CTI(S), CTI(I), and CTCI on the CBCT images can be used to assess the osteoporotic women.

  3. Proton computed tomography images with algebraic reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzi, M. [Physics and Astronomy Department, University of Florence, Florence (Italy); Civinini, C.; Scaringella, M. [INFN - Florence Division, Florence (Italy); Bonanno, D. [INFN - Catania Division, Catania (Italy); Brianzi, M. [INFN - Florence Division, Florence (Italy); Carpinelli, M. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Chemistry and Pharmacy Department, University of Sassari, Sassari (Italy); Cirrone, G.A.P.; Cuttone, G. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Presti, D. Lo [INFN - Catania Division, Catania (Italy); Physics and Astronomy Department, University of Catania, Catania (Italy); Maccioni, G. [INFN – Cagliari Division, Cagliari (Italy); Pallotta, S. [INFN - Florence Division, Florence (Italy); Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence (Italy); SOD Fisica Medica, Azienda Ospedaliero-Universitaria Careggi, Firenze (Italy); Randazzo, N. [INFN - Catania Division, Catania (Italy); Romano, F. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Sipala, V. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Chemistry and Pharmacy Department, University of Sassari, Sassari (Italy); Talamonti, C. [INFN - Florence Division, Florence (Italy); Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence (Italy); SOD Fisica Medica, Azienda Ospedaliero-Universitaria Careggi, Firenze (Italy); Vanzi, E. [Fisica Sanitaria, Azienda Ospedaliero-Universitaria Senese, Siena (Italy)

    2017-02-11

    A prototype of proton Computed Tomography (pCT) system for hadron-therapy has been manufactured and tested in a 175 MeV proton beam with a non-homogeneous phantom designed to simulate high-contrast material. BI-SART reconstruction algorithms have been implemented with GPU parallelism, taking into account of most likely paths of protons in matter. Reconstructed tomography images with density resolutions r.m.s. down to ~1% and spatial resolutions <1 mm, achieved within processing times of ~15′ for a 512×512 pixels image prove that this technique will be beneficial if used instead of X-CT in hadron-therapy.

  4. An introduction to emission computed tomography

    International Nuclear Information System (INIS)

    Williams, E.D.

    1985-01-01

    This report includes salient features of the theory and an examination of practical considerations for someone who is using or introducing tomography, selecting equipment for it or wishing to develop a clinical application. Emphasis is on gamma camera tomography. The subject is dealt with under the following headings: emission computed and gamma camera tomography and the relationship to other medical imaging techniques, the tomographic reconstruction technique theory, rotating gamma camera tomography, attenuation correction and quantitative reconstruction, other single photon tomographic techniques, positron tomography, image display, clinical application of single photon and positron tomography, and commercial systems for SPECT. Substantial bibliography. (U.K.)

  5. A new stereotactic apparatus guided by computed tomography

    International Nuclear Information System (INIS)

    Huk, W.J.

    1981-01-01

    The accurate information provided by computer tomography about existence, shape, and localization of intracranial neoplasms in an early phase and in inaccessible regions have improved the diagnostics greatly, so that these lie far ahead of the therapeutic possibilities for brain tumors. To reduce this wide margin we have developed a new targeting device which makes a stereotactic approach to central lesions under sight-control by computed tomography within the computed tomography-scanner possible. With the help of this simple device we are now able to perform stereotactic procedures for tumor biopsy guided by computed tomography, needling and drainage of abscesses and cysts, and finally for the implantation of radioactive material for the interstitial radiotherapy of inoperable cysts and tumors. (orig.) [de

  6. Hybrid automata models of cardiac ventricular electrophysiology for real-time computational applications.

    Science.gov (United States)

    Andalam, Sidharta; Ramanna, Harshavardhan; Malik, Avinash; Roop, Parthasarathi; Patel, Nitish; Trew, Mark L

    2016-08-01

    Virtual heart models have been proposed for closed loop validation of safety-critical embedded medical devices, such as pacemakers. These models must react in real-time to off-the-shelf medical devices. Real-time performance can be obtained by implementing models in computer hardware, and methods of compiling classes of Hybrid Automata (HA) onto FPGA have been developed. Models of ventricular cardiac cell electrophysiology have been described using HA which capture the complex nonlinear behavior of biological systems. However, many models that have been used for closed-loop validation of pacemakers are highly abstract and do not capture important characteristics of the dynamic rate response. We developed a new HA model of cardiac cells which captures dynamic behavior and we implemented the model in hardware. This potentially enables modeling the heart with over 1 million dynamic cells, making the approach ideal for closed loop testing of medical devices.

  7. Computed Tomography diagnosis of skeletal involvement in multiple myeloma

    International Nuclear Information System (INIS)

    Scutellari, Pier Nuccio; Galeotti, Roberto; Leprotti, Stefano; Piva, Nadia; Spanedda, Romedio

    1997-01-01

    The authors assess the role of Computed Topography in the diagnosis and management of multiple myeloma (MM) and investigate if Computed Tomography findings can influence the clinical approach, prognosis and treatment. 273 multiple myeloma patients submitted to Computed Tomography June 1994, to December, 1996. The patients were 143 men and 130 women (mean age: 65 years): 143 were stage I, 38 stage II and 92 stage III according to Durie and Salomon's clinical classification. All patients were submitted to blood tests, spinal radiography and Computed Tomography, the latter with serial 5-mm scans on several vertebral bodies. Computed Tomography despicted vertebral arch and process involvement in 3 cases with the vertebral pedicle sign. Moreover, Computed Tomography proved superior to radiography in showing the spread of myelomatous masses into the soft tissues in a case with solitary permeative lesion in the left public bone, which facilitated subsequent biopsy. As for extraosseous localizations, Computed Tomography demonstrated thoracic soft tissue (1 woman) and pelvic (1 man) involvement by myelomtous masses penetrating into surrounding tissues. In our series, only a case of osteosclerotic bone myeloma was observed in the pelvis, associated with lytic abnormalities. Computed Tomography findings do not seem to improve the clinical approach and therapeutic management of the disease. Nevertheless, the authors reccommend Computed Tomography for some myelomatous conditions, namely: a) in the patients with focal bone pain but normal skeletal radiographs; b) in the patients with M protein, bone marrow plasmocytosis and back pain, but with an incoclusive multiple myeloma diagnosis; c) to asses bone spread in the regions which are anatomically complex or difficult to study with radiography and to depict soft tissue involvement; d) for bone biopsy

  8. The role of 18F-fluoro-2-deoxyglucose positron emission tomography/computed tomography in the management of patients with carcinoma of unknown primary.

    Science.gov (United States)

    Deonarine, P; Han, S; Poon, F W; de Wet, C

    2013-08-01

    Carcinoma of unknown primary is one of the ten most frequent cancers worldwide. Its median survival time is less than 10 months. Detecting primary tumour locations and/or occult metastatic lesions may inform definitive treatment and improve patients' prognosis. We aimed to determine: (1) the sensitivity, specificity and accuracy of (18)F-fluoro-2-deoxyglucose positron emission tomography/computed tomography; (2) its detection rate of primary tumour locations and occult metastases and (3) factors associated with improved survival times. We retrospectively reviewed all cases in the West of Scotland for the period 1 December 2007 to 31 May 2011 that met all our selection criteria: (1) diagnosis of carcinoma of unknown primary; (2) a thorough but negative 'work-up' and (3) (18)F-fluoro-2-deoxyglucose positron emission tomography/computed tomography report. Statistical methods included frequencies, Kaplan-Meier graphs and log-rank tests to compare survival times. (18)F-fluoro-2-deoxyglucose positron emission tomography/computed tomography detected primary tumour sites in 19/51 (37.3%) and occult metastases in 28/51 (54.9%) of eligible patients. Its sensitivity, specificity and accuracy were 79.2%, 70.4% and 74.5%, respectively; 20/51 (39.2%) patients died during the study period with a median survival of 8.4 months (range 21.4, SD ± 6.2). The number of metastatic locations was strongly associated with survival (p = 0.002), but detection of a primary tumour site (p = 0.174) or histopathology (p = 0.301) was not. (18)F-fluoro-2-deoxyglucose positron emission tomography/computed tomography detected occult metastatic sites in the majority and a primary cancer location in a substantial minority of patients. Our results were comparable with international literature and may indicate that (18)F-fluoro-2-deoxyglucose positron emission tomography/computed tomography have an early role to improve the accuracy of cancer staging and to optimise carcinoma of unknown

  9. Basic technological aspects and optimization problems in X-ray computed tomography (C.T.)

    International Nuclear Information System (INIS)

    Allemand, R.

    1987-01-01

    The current status and future prospects of physical performance are analysed and the optimization problems are approached for X-ray computed tomography. It is concluded that as long as clinical interest in computed tomography continues, technical advances can be expected in the near future to improve the density resolution, the spatial resolution and the X-ray exposure time. (Auth.)

  10. Control bandwidth improvements in GRAVITY fringe tracker by switching to a synchronous real time computer architecture

    Science.gov (United States)

    Abuter, Roberto; Dembet, Roderick; Lacour, Sylvestre; di Lieto, Nicola; Woillez, Julien; Eisenhauer, Frank; Fedou, Pierre; Phan Duc, Than

    2016-08-01

    The new VLTI (Very Large Telescope Interferometer) 1 instrument GRAVITY5, 22, 23 is equipped with a fringe tracker16 able to stabilize the K-band fringes on six baselines at the same time. It has been designed to achieve a performance for average seeing conditions of a residual OPD (Optical Path Difference) lower than 300 nm with objects brighter than K = 10. The control loop implementing the tracking is composed of a four stage real time computer system compromising: a sensor where the detector pixels are read in and the OPD and GD (Group Delay) are calculated; a controller receiving the computed sensor quantities and producing commands for the piezo actuators; a concentrator which combines both the OPD commands with the real time tip/tilt corrections offloading them to the piezo actuator; and finally a Kalman15 parameter estimator. This last stage is used to monitor current measurements over a window of few seconds and estimate new values for the main Kalman15 control loop parameters. The hardware and software implementation of this design runs asynchronously and communicates the four computers for data transfer via the Reflective Memory Network3. With the purpose of improving the performance of the GRAVITY5, 23 fringe tracking16, 22 control loop, a deviation from the standard asynchronous communication mechanism has been proposed and implemented. This new scheme operates the four independent real time computers involved in the tracking loop synchronously using the Reflective Memory Interrupts2 as the coordination signal. This synchronous mechanism had the effect of reducing the total pure delay of the loop from 3.5 [ms] to 2.0 [ms] which then translates on a better stabilization of the fringes as the bandwidth of the system is substantially improved. This paper will explain in detail the real time architecture of the fringe tracker in both is synchronous and synchronous implementation. The achieved improvements on reducing the delay via this mechanism will be

  11. Abdominal alterations in disseminated paracoccidioidomycosis: computed tomography findings

    Energy Technology Data Exchange (ETDEWEB)

    Vermelho, Marli Batista Fernandes; Correia, Ademir Silva; Michailowsky, Tania Cibele de Almeida; Suzart, Elizete Kazumi Kuniyoshi; Ibanes, Aline Santos; Almeida, Lanamar Aparecida; Khoury, Zarifa; Barba, Mario Flores, E-mail: marlivermelho@globo.com [Instituto de Infectologia Emilio Ribas (IIER), Sao Paulo, SP (Brazil)

    2015-03-15

    Objective: to evaluate the incidence and spectrum of abdominal computed tomography imaging findings in patients with paracoccidioidomycosis. Materials and methods: retrospective analysis of abdominal computed tomography images of 26 patients with disseminated paracoccidioidomycosis. Results: abnormal abdominal tomographic findings were observed in 18 patients (69.2%), while no significant finding was observed in the other 8 (30.8%) patients. Conclusion: computed tomography has demonstrated to play a relevant role in the screening and detection of abdominal abnormalities in patients with disseminated paracoccidioidomycosis. (author)

  12. The neutron computer tomography

    International Nuclear Information System (INIS)

    Matsumoto, G.; Krata, S.

    1983-01-01

    The method of computer tomography (CT) was applied for neutrons instead of X-rays. The neutron radiography image of samples was scanned by microphotometer to get the transmission data. This process was so time-consuming that the number of incident angles to samples could not be increased. The transmission data was processed by FACOM computer and CT image was gained. In the experiment at the Japan Research Reactor No. 4 at Tokai-mura with 18 projection angles, the resolution of paraffin in the aluminum block was less than 0.8 mm. In the experiment at Van de Graaf accelerator of Nagoya University, this same resolution was 1.2 mm because of the angle distribution of neutron beam. This experiment is the preliminary one, the facility which utilizes neutron television and video-recorder will be necessary for the next stage. (Auth.)

  13. Automated selection of brain regions for real-time fMRI brain-computer interfaces

    Science.gov (United States)

    Lührs, Michael; Sorger, Bettina; Goebel, Rainer; Esposito, Fabrizio

    2017-02-01

    Objective. Brain-computer interfaces (BCIs) implemented with real-time functional magnetic resonance imaging (rt-fMRI) use fMRI time-courses from predefined regions of interest (ROIs). To reach best performances, localizer experiments and on-site expert supervision are required for ROI definition. To automate this step, we developed two unsupervised computational techniques based on the general linear model (GLM) and independent component analysis (ICA) of rt-fMRI data, and compared their performances on a communication BCI. Approach. 3 T fMRI data of six volunteers were re-analyzed in simulated real-time. During a localizer run, participants performed three mental tasks following visual cues. During two communication runs, a letter-spelling display guided the subjects to freely encode letters by performing one of the mental tasks with a specific timing. GLM- and ICA-based procedures were used to decode each letter, respectively using compact ROIs and whole-brain distributed spatio-temporal patterns of fMRI activity, automatically defined from subject-specific or group-level maps. Main results. Letter-decoding performances were comparable to supervised methods. In combination with a similarity-based criterion, GLM- and ICA-based approaches successfully decoded more than 80% (average) of the letters. Subject-specific maps yielded optimal performances. Significance. Automated solutions for ROI selection may help accelerating the translation of rt-fMRI BCIs from research to clinical applications.

  14. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info About Us News Physician Resources Professions Site Index A-Z Computed Tomography ( ...

  15. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info About Us News Physician Resources Professions Site Index A-Z Computed Tomography ( ...

  16. A curriculum for real-time computer and control systems engineering

    Science.gov (United States)

    Halang, Wolfgang A.

    1990-01-01

    An outline of a syllabus for the education of real-time-systems engineers is given. This comprises the treatment of basic concepts, real-time software engineering, and programming in high-level real-time languages, real-time operating systems with special emphasis on such topics as task scheduling, hardware architectures, and especially distributed automation structures, process interfacing, system reliability and fault-tolerance, and integrated project development support systems. Accompanying course material and laboratory work are outlined, and suggestions for establishing a laboratory with advanced, but low-cost, hardware and software are provided. How the curriculum can be extended into a second semester is discussed, and areas for possible graduate research are listed. The suitable selection of a high-level real-time language and supporting operating system for teaching purposes is considered.

  17. The capabilities of computed tomography in diagnosis of purulent destructive lung diseases

    International Nuclear Information System (INIS)

    Churilyin, R.Yu.

    2012-01-01

    Simultaneous use of traditional tomography and CT increased the efficacy of the diagnosis and allowed to limit the use of invasive methods of investigations. Computed tomography of purulent destructive lung diseases allows timely diagnosis and differential diagnosis using characteristic signs in some case

  18. Real-time image reconstruction and display system for MRI using a high-speed personal computer.

    Science.gov (United States)

    Haishi, T; Kose, K

    1998-09-01

    A real-time NMR image reconstruction and display system was developed using a high-speed personal computer and optimized for the 32-bit multitasking Microsoft Windows 95 operating system. The system was operated at various CPU clock frequencies by changing the motherboard clock frequency and the processor/bus frequency ratio. When the Pentium CPU was used at the 200 MHz clock frequency, the reconstruction time for one 128 x 128 pixel image was 48 ms and that for the image display on the enlarged 256 x 256 pixel window was about 8 ms. NMR imaging experiments were performed with three fast imaging sequences (FLASH, multishot EPI, and one-shot EPI) to demonstrate the ability of the real-time system. It was concluded that in most cases, high-speed PC would be the best choice for the image reconstruction and display system for real-time MRI. Copyright 1998 Academic Press.

  19. Real-time FPGA architectures for computer vision

    Science.gov (United States)

    Arias-Estrada, Miguel; Torres-Huitzil, Cesar

    2000-03-01

    This paper presents an architecture for real-time generic convolution of a mask and an image. The architecture is intended for fast low level image processing. The FPGA-based architecture takes advantage of the availability of registers in FPGAs to implement an efficient and compact module to process the convolutions. The architecture is designed to minimize the number of accesses to the image memory and is based on parallel modules with internal pipeline operation in order to improve its performance. The architecture is prototyped in a FPGA, but it can be implemented on a dedicated VLSI to reach higher clock frequencies. Complexity issues, FPGA resources utilization, FPGA limitations, and real time performance are discussed. Some results are presented and discussed.

  20. Computed tomography in diagnostics of effluent otitis media

    International Nuclear Information System (INIS)

    Imomova, L.S.; Norboev, Z.; Kalandarov, S.Ch.

    2011-01-01

    This article is devoted to computed tomography in diagnostics of effluent otitis media. The purpose of present work is to assess the possibilities of computed tomography method of temporal bone in the diagnostics of otitis media.

  1. Cluster Computing For Real Time Seismic Array Analysis.

    Science.gov (United States)

    Martini, M.; Giudicepietro, F.

    A seismic array is an instrument composed by a dense distribution of seismic sen- sors that allow to measure the directional properties of the wavefield (slowness or wavenumber vector) radiated by a seismic source. Over the last years arrays have been widely used in different fields of seismological researches. In particular they are applied in the investigation of seismic sources on volcanoes where they can be suc- cessfully used for studying the volcanic microtremor and long period events which are critical for getting information on the volcanic systems evolution. For this reason arrays could be usefully employed for the volcanoes monitoring, however the huge amount of data produced by this type of instruments and the processing techniques which are quite time consuming limited their potentiality for this application. In order to favor a direct application of arrays techniques to continuous volcano monitoring we designed and built a small PC cluster able to near real time computing the kinematics properties of the wavefield (slowness or wavenumber vector) produced by local seis- mic source. The cluster is composed of 8 Intel Pentium-III bi-processors PC working at 550 MHz, and has 4 Gigabytes of RAM memory. It runs under Linux operating system. The developed analysis software package is based on the Multiple SIgnal Classification (MUSIC) algorithm and is written in Fortran. The message-passing part is based upon the LAM programming environment package, an open-source imple- mentation of the Message Passing Interface (MPI). The developed software system includes modules devote to receiving date by internet and graphical applications for the continuous displaying of the processing results. The system has been tested with a data set collected during a seismic experiment conducted on Etna in 1999 when two dense seismic arrays have been deployed on the northeast and the southeast flanks of this volcano. A real time continuous acquisition system has been simulated by

  2. Developments in architecture for real-time data systems

    International Nuclear Information System (INIS)

    Heath, R.L.; Myers, W.R.

    1975-01-01

    Real-time data systems typically operate at two levels: a fast-response instrument-oriented level for data acquisition and control, and a slow human-oriented level for interaction and computation. Traditional minicomputer data systems support real-time applications by implementation of background/foreground software. Recent developments in computer technology including microprocessors enable the functional organization of hardware in distributed or hierarchical form to provide new system structures for real-time requirements. Examples of systems with distributed architecture will be discussed in detail

  3. Fluorodeoxyglucose-positron emission tomography/computed tomography imaging features of colloid adenocarcinoma of the lung: a case report.

    Science.gov (United States)

    Wang, ZhenGuang; Yu, MingMing; Chen, YueHua; Kong, Yan

    2017-07-27

    Colloid adenocarcinoma of the lung is a rare subtype of variants of invasive adenocarcinomas. We report the appearance of this unusual entity on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography. A 60-year-old man of Chinese Han nationality coughed with a little white sputum for 1 month. Chest computed tomography showed multiple bilateral subpleural nodules and plaques accompanied by air bronchograms, which were most concentrated in the lower lobe of his right lung. Positron emission tomography indicated increased radioactivity uptake with a maximum standardized uptake value of 3.5. Positron emission tomography/computed tomography showed a soft tissue density lesion in his left adrenal gland with a maximum standardized uptake value of 4.1. The positron emission tomography/computed tomography appearance suggested a primary colloid adenocarcinoma in the lower lobe of his right lung accompanied by intrapulmonary and left adrenal gland metastases. The diagnostic rate of colloid adenocarcinoma can be increased by combining the anatomic and metabolic information of lesions. The advantage of positron emission tomography/computed tomography in the diagnosis of colloid adenocarcinoma, as with other cancers, is the ability to locate extrapulmonary disease, facilitating clinical staging.

  4. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... Computed tomography (CT) of the sinuses uses special x-ray equipment to evaluate the paranasal sinus cavities – hollow, air-filled spaces within the bones of the face surrounding the ...

  5. X-ray computed tomography using curvelet sparse regularization.

    Science.gov (United States)

    Wieczorek, Matthias; Frikel, Jürgen; Vogel, Jakob; Eggl, Elena; Kopp, Felix; Noël, Peter B; Pfeiffer, Franz; Demaret, Laurent; Lasser, Tobias

    2015-04-01

    Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method's strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.

  6. Computer architecture for efficient algorithmic executions in real-time systems: New technology for avionics systems and advanced space vehicles

    Science.gov (United States)

    Carroll, Chester C.; Youngblood, John N.; Saha, Aindam

    1987-01-01

    Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processing elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.

  7. Y2K issues for real time computer systems for fast breeder test reactor

    International Nuclear Information System (INIS)

    Swaminathan, P.

    1999-01-01

    Presentation shows the classification of real time systems related to operation, control and monitoring of the fast breeder test reactor. Software life cycle includes software requirement specification, software design description, coding, commissioning, operation and management. A software scheme in supervisory computer of fast breeder test rector is described with the twenty years of experience in design, development, installation, commissioning, operation and maintenance of computer based supervision control system for nuclear installation with a particular emphasis on solving the Y2K problem

  8. Positron emission tomography/computed tomography scanning for ...

    African Journals Online (AJOL)

    Background: Although the site of nosocomial sepsis in the critically ill ventilated patient is usually identifiable, it may remain occult, despite numerous investigations. The rapid results and precise anatomical location of the septic source using positron emission tomography (PET) scanning, in combination with computed ...

  9. Hybrid Single Photon Emission Computed Tomography/Computed Tomography Sulphur Colloid Scintigraphy in Focal Nodular Hyperplasia

    International Nuclear Information System (INIS)

    Bhoil, Amit; Gayana, Shankramurthy; Sood, Ashwani; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2013-01-01

    It is important to differentiate focal nodular hyperplasia (FNH), a benign condition of liver most commonly affecting women, from other neoplasm such as hepatic adenoma and metastasis. The functional reticuloendothelial features of FNH can be demonstrated by scintigraphy. We present a case of breast cancer in whom fluorodeoxyglucose positron emission tomography/computerized tomography (CT) showed a homogenous hyperdense lesion in liver, which on Tc99m sulfur colloid single-photon emission computed tomography/CT was found to have increased focal tracer uptake suggestive of FNH

  10. Utility of screening computed tomography of chest, abdomen and pelvis in patients after heart transplantation

    International Nuclear Information System (INIS)

    Dasari, Tarun W.; Pavlovic-Surjancev, Biljana; Dusek, Linda; Patel, Nilamkumar; Heroux, Alain L.

    2011-01-01

    Introduction: Malignancy is a late cause of mortality in heart transplant recipients. It is unknown if screening computed tomography scan would lead to early detection of such malignancies or serious vascular anomalies post heart transplantation. Methods: This is a single center observational study of patients undergoing surveillance computed tomography of chest, abdomen and pelvis atleast 5 years after transplantation. Abnormal findings, included pulmonary nodules, lymphadenopathy and intra-thoracic and intra-abdominal masses and vascular anomalies such as abdominal aortic aneurysm. The clinical follow up of each of these major abnormal findings is summarized. Results: A total of 63 patients underwent computed tomography scan of chest, abdomen and pelvis at least 5 years after transplantation. Of these, 54 (86%) were male and 9 (14%) were female. Mean age was 52 ± 9.2 years. Computed tomography revealed 1 lung cancer (squamous cell) only. Non specific pulmonary nodules were seen in 6 patients (9.5%). The most common incidental finding was abdominal aortic aneurysms (N = 6 (9.5%)), which necessitated follow up computed tomography (N = 5) or surgery (N = 1). Mean time to detection of abdominal aortic aneurysms from transplantation was 14.6 ± 4.2 years. Mean age at the time of detection of abdominal aortic aneurysms was 74.5 ± 3.2 years. Conclusion: Screening computed tomography scan in patients 5 years from transplantation revealed only one malignancy but lead to increased detection of abdominal aortic aneurysms. Thus the utility is low in terms of detection of malignancy. Based on this study we do not recommend routine computed tomography post heart transplantation.

  11. Confabulation Based Real-time Anomaly Detection for Wide-area Surveillance Using Heterogeneous High Performance Computing Architecture

    Science.gov (United States)

    2015-06-01

    CONFABULATION BASED REAL-TIME ANOMALY DETECTION FOR WIDE-AREA SURVEILLANCE USING HETEROGENEOUS HIGH PERFORMANCE COMPUTING ARCHITECTURE SYRACUSE...DETECTION FOR WIDE-AREA SURVEILLANCE USING HETEROGENEOUS HIGH PERFORMANCE COMPUTING ARCHITECTURE 5a. CONTRACT NUMBER FA8750-12-1-0251 5b. GRANT...processors including graphic processor units (GPUs) and Intel Xeon Phi processors. Experimental results showed significant speedups, which can enable

  12. Incidental head and neck findings on 18F-fluoro-deoxy-glucose positron emission tomography computed tomography.

    Science.gov (United States)

    Williams, S P; Kinshuck, A J; Williams, C; Dwivedi, R; Wieshmann, H; Jones, T M

    2015-09-01

    The overlapping risk factors for lung and head and neck cancer present a definite risk of synchronous malignant pathology. This is the first study to specifically review incidental positron emission tomography computed tomography findings in the head and neck region in lung carcinoma patients. A retrospective review was performed of all lung cancer patients who underwent positron emission tomography computed tomography imaging over a five-year period (January 2008 - December 2012), identified from the Liverpool thoracic multidisciplinary team database. Six hundred and nine patients underwent positron emission tomography computed tomography imaging over this period. In 76 (12.5 per cent) scans, incidental regions of avid 18F-fluoro-deoxy-glucose uptake were reported in the head and neck region. In the 28 patients who were fully investigated, there were 4 incidental findings of malignancy. In lung cancer patients undergoing investigative positron emission tomography computed tomography scanning, a significant number will also present with areas of clinically significant 18F-fluoro-deoxy-glucose uptake in the head and neck region. Of these, at least 5 per cent may have an undiagnosed malignancy.

  13. Computed tomography diagnosis of hepatocellular carcinoma rupture haemorrhage

    International Nuclear Information System (INIS)

    Zhi Weike; Jiang Bin; Liu Jinquan; Li Sixia; Zhu Zhichang

    2004-01-01

    Objective: To evaluate the diagnostic value of hepatocellular carcinoma rupture hemorrhage using Computed Tomography. Methods: Six cases diagnosed hepatocellular carcinoma rupture hemorrhage were analyzed by morphic and histologic method and investigated the key point of scan in diagnosis. Result: The correct rate of hepatocellular carcinoma rupture hemorrhage by Computed Tomography is above 83 percent, it characteristic representation is strip and would high-density shadow after enhancement. Conclusion: The characteristic representation of hepatocellular carcinoma rupture hemorrhage is attain by Computed Tomography, which provides effective operation evidences for clinical operation. (authors)

  14. Computer tomography in complex diagnosis of laryngeal cancer

    International Nuclear Information System (INIS)

    Savin, A.A.

    1999-01-01

    To specify the role of computer tomography in the diagnosis of malignant of the larynx. Forty-two patients with suspected laryngeal tumors were examined: 38 men and 4 women aged 41-68 years. X-ray examinations included traditional immediate tomography of the larynx. Main X-ray and computer tomographic symptoms of laryngeal tumors of different localizations are described. It is shown that the use of computer tomography in complex diagnosis of laryngeal cancer permits an objective assessment of the tumor, its structure and dissemination, and of the regional lymph nodes [ru

  15. Computed Tomography Observer Agreement in Staging Malignant Lymphoma

    NARCIS (Netherlands)

    de Jong, Antoinette; Kwee, Thomas C.; Quarles van Ufford, Henriëtte M. E.; Beek, Frederik J. A.; Quekel, Lorentz G. B. A.; de Klerk, John M. H.; Zijlstra, Josée M.; Fijnheer, Rob; Ludwig, Inge; Kersten, Marie José; Stoker, Jaap; Nievelstein, Rutger A. J.

    2016-01-01

    To determine pretreatment computed tomography observer agreement in patients with newly diagnosed lymphoma. Forty-nine computed tomography scans were reviewed by 3 experienced radiologists, with each scan assessed twice by 1 observer. Predefined nodal and extranodal regions were assessed, and Ann

  16. Evaluation of valvular heart diseases with computed tomography

    International Nuclear Information System (INIS)

    Tomoda, Haruo; Hoshiai, Mitsumoto; Matsuyama, Seiya

    1982-01-01

    Forty-two patients with valvular heart diseases were studied with a third-generation computed tomographic system. The cardiac chambers (the atria and ventricles) were evaluated semiquantitatively, and valvular calcification was easily detected with computed tomography. Computed tomography was most valuable in revealing left atrial thrombi which were not identified by other diagnostic procedures in some cases. (author)

  17. Could We Realize the Fully Flexible System by Real-Time Computing with Thin-Film Transistors?

    Directory of Open Access Journals (Sweden)

    Qin Li

    2017-11-01

    Full Text Available Flexible electronic devices, such as the typical thin-film transistors, are widely adopted in the area of sensors, displayers, wearable equipment, and such large-area applications, for their features of bending and stretching; additionally, in some applications of lower-resolution data converters recently, where a trend appears that implementing more parts of system with flexible devices to realize the fully flexible system. Nevertheless, relatively fewer works on the computation parts with flexible electronic devices are reported, due to their poor carrier mobility, which blocks the way to realize the fully flexible systems with uniform manufacturing process. In this paper, a novel circuit architecture for image processing accelerator using Oxide Thin-film transistor (TFT, which could realize real-time image pre-processing and classification in the analog domain, is proposed, where the performance and fault-tolerance of image signal processing is exploited. All of the computation is done in the analog signal domain and no clock signal is needed. Therefore, certain weaknesses of flexible electronic devices, such as low carrier mobility, could be remedied dramatically. In this paper, Simulations based on Oxide TFT device model have demonstrated that the flexible computing parts could perform 5 × 5 Gaussian convolution operation at a speed of 3.3 MOPS/s with the energy efficiency of 1.83 TOPS/J, and realize image classification at a speed of 10 k fps, with the energy efficiency of 5.25 GOPS/J, which means that the potential applications to realize real-time computing parts of complex algorithms with flexible electronic devices, as well as the future fully flexible systems containing sensors, data converters, energy suppliers, and real-time signal processing modules, all with flexible devices.

  18. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Head ...

  19. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Sinuses ...

  20. Accessible high performance computing solutions for near real-time image processing for time critical applications

    Science.gov (United States)

    Bielski, Conrad; Lemoine, Guido; Syryczynski, Jacek

    2009-09-01

    High Performance Computing (HPC) hardware solutions such as grid computing and General Processing on a Graphics Processing Unit (GPGPU) are now accessible to users with general computing needs. Grid computing infrastructures in the form of computing clusters or blades are becoming common place and GPGPU solutions that leverage the processing power of the video card are quickly being integrated into personal workstations. Our interest in these HPC technologies stems from the need to produce near real-time maps from a combination of pre- and post-event satellite imagery in support of post-disaster management. Faster processing provides a twofold gain in this situation: 1. critical information can be provided faster and 2. more elaborate automated processing can be performed prior to providing the critical information. In our particular case, we test the use of the PANTEX index which is based on analysis of image textural measures extracted using anisotropic, rotation-invariant GLCM statistics. The use of this index, applied in a moving window, has been shown to successfully identify built-up areas in remotely sensed imagery. Built-up index image masks are important input to the structuring of damage assessment interpretation because they help optimise the workload. The performance of computing the PANTEX workflow is compared on two different HPC hardware architectures: (1) a blade server with 4 blades, each having dual quad-core CPUs and (2) a CUDA enabled GPU workstation. The reference platform is a dual CPU-quad core workstation and the PANTEX workflow total computing time is measured. Furthermore, as part of a qualitative evaluation, the differences in setting up and configuring various hardware solutions and the related software coding effort is presented.

  1. Physics of x-ray computed tomography

    International Nuclear Information System (INIS)

    Akutagawa, W.M.; Huth, G.C.

    1976-01-01

    Sections are included on theoretical limits of x-ray computed tomography and the relationship of these limits to human organ imaging and specific disease diagnosis; potential of x-ray computed tomography in detection of small calcified particles in early breast cancer detection; early lung cancer measurement and detection; advanced materials for ionizing radiation detection; positron system with circular ring transaxial tomographic camera; contrast mechanism of transmission scanner and algorithms; and status of design on a 200 keV scanning proton microprobe

  2. Chest computed tomography

    DEFF Research Database (Denmark)

    Loeve, Martine; Krestin, Gabriel P.; Rosenfeld, Margaret

    2013-01-01

    are not suitable to study CF lung disease in young children. Chest computed tomography (CT) holds great promise for use as a sensitive surrogate endpoint in CF. A large body of evidence has been produced to validate the use of chest CT as primary endpoint to study CF lung disease. However, before chest CT can...

  3. Cone beam computed tomography in Endodontics - a review

    NARCIS (Netherlands)

    Patel, S.; Durack, C.; Abella, F.; Shemesh, H.; Roig, M.; Lemberg, K.

    2015-01-01

    Cone beam computed tomography (CBCT) produces undistorted three-dimensional information of the maxillofacial skeleton, including the teeth and their surrounding tissues with a lower effective radiation dose than computed tomography. The aim of this paper is to: (i) review the current literature on

  4. Cardiac Computed Tomography (Multidetector CT, or MDCT)

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More Cardiac Computed Tomography (Multidetector CT, or MDCT) Updated:Sep 19,2016 What is Computerized Tomography (CT)? CT is a noninvasive test that uses ...

  5. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... the limitations of CT Scanning of the Head? What is CT Scanning of the Head? Computed tomography, ... than regular radiographs (x-rays). top of page What are some common uses of the procedure? CT ...

  6. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... for Brain Tumors Radiation Therapy for Head and Neck Cancer Others American Stroke Association National Stroke Association ... Computer Tomography (CT) Safety During Pregnancy Head and Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine ...

  7. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... other medical conditions and whether you have a history of heart disease, asthma, diabetes, kidney disease or ... Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Computed Tomography (CT) - ...

  8. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... other medical conditions and whether you have a history of heart disease, asthma, diabetes, kidney disease or ... Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Computed Tomography (CT) - ...

  9. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... of the Head? Computed tomography, more commonly known as a CT or CAT scan, is a diagnostic ... white on the x-ray; soft tissue, such as organs like the heart or liver, shows up ...

  10. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... of the Sinuses? Computed tomography, more commonly known as a CT or CAT scan, is a diagnostic ... white on the x-ray; soft tissue, such as organs like the heart or liver, shows up ...

  11. Static Schedulers for Embedded Real-Time Systems

    Science.gov (United States)

    1989-12-01

    Because of the need for having efficient scheduling algorithms in large scale real time systems , software engineers put a lot of effort on developing...provide static schedulers for he Embedded Real Time Systems with single processor using Ada programming language. The independent nonpreemptable...support the Computer Aided Rapid Prototyping for Embedded Real Time Systems so that we determine whether the system, as designed, meets the required

  12. Toward real-time virtual biopsy of oral lesions using confocal laser endomicroscopy interfaced with embedded computing.

    Science.gov (United States)

    Thong, Patricia S P; Tandjung, Stephanus S; Movania, Muhammad Mobeen; Chiew, Wei-Ming; Olivo, Malini; Bhuvaneswari, Ramaswamy; Seah, Hock-Soon; Lin, Feng; Qian, Kemao; Soo, Khee-Chee

    2012-05-01

    Oral lesions are conventionally diagnosed using white light endoscopy and histopathology. This can pose a challenge because the lesions may be difficult to visualise under white light illumination. Confocal laser endomicroscopy can be used for confocal fluorescence imaging of surface and subsurface cellular and tissue structures. To move toward real-time "virtual" biopsy of oral lesions, we interfaced an embedded computing system to a confocal laser endomicroscope to achieve a prototype three-dimensional (3-D) fluorescence imaging system. A field-programmable gated array computing platform was programmed to enable synchronization of cross-sectional image grabbing and Z-depth scanning, automate the acquisition of confocal image stacks and perform volume rendering. Fluorescence imaging of the human and murine oral cavities was carried out using the fluorescent dyes fluorescein sodium and hypericin. Volume rendering of cellular and tissue structures from the oral cavity demonstrate the potential of the system for 3-D fluorescence visualization of the oral cavity in real-time. We aim toward achieving a real-time virtual biopsy technique that can complement current diagnostic techniques and aid in targeted biopsy for better clinical outcomes.

  13. High-resolution computed tomography and histopathological findings in hypersensitivity pneumonitis: a pictorial essay

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Pedro Paulo Teixeira e Silva; Moreira, Marise Amaral Reboucas; Silva, Daniela Graner Schuwartz Tannus; Moreira, Maria Auxiliadora do Carmo [Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Gama, Roberta Rodrigues Monteiro da [Hospital do Cancer de Barretos, Barretos, SP (Brazil); Sugita, Denis Masashi, E-mail: pedroptstorres@yahoo.com.br [Anapolis Unievangelica, Anapolis, GO (Brazil)

    2016-03-15

    Hypersensitivity pneumonitis is a diffuse interstitial and granulomatous lung disease caused by the inhalation of any one of a number of antigens. The objective of this study was to illustrate the spectrum of abnormalities in high-resolution computed tomography and histopathological findings related to hypersensitivity pneumonitis. We retrospectively evaluated patients who had been diagnosed with hypersensitivity pneumonitis (on the basis of clinical-radiological or clinical-radiological-pathological correlations) and had undergone lung biopsy. Hypersensitivity pneumonitis is clinically divided into acute, subacute, and chronic forms; high-resolution computed tomography findings correlate with the time of exposure; and the two occasionally overlap. In the subacute form, centrilobular micronodules, ground glass opacities, and air trapping are characteristic high-resolution computed tomography findings, whereas histopathology shows lymphocytic inflammatory infiltrates, bronchiolitis, variable degrees of organizing pneumonia, and giant cells. In the chronic form, high-resolution computed tomography shows traction bronchiectasis, honeycombing, and lung fibrosis, the last also being seen in the biopsy sample. A definitive diagnosis of hypersensitivity pneumonitis can be made only through a multidisciplinary approach, by correlating clinical findings, exposure history, high-resolution computed tomography findings, and lung biopsy findings. (author)

  14. Reviewing real-time performance of nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Preckshot, G.G.

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems

  15. Reviewing real-time performance of nuclear reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Preckshot, G.G. [Lawrence Livermore National Lab., CA (United States)

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems.

  16. Accuracy of measurement of pulmonary emphysema with computed tomography: relevant points

    International Nuclear Information System (INIS)

    Hochhegger, Bruno; Marchiori, Edson; Oliveira, Hugo

    2010-01-01

    Some technical aspects should be taken into consideration in order to guarantee the reliability of the assessment of pulmonary emphysema with lung computed tomography densitometry. Changes in lung density associated with variations in lungs inspiratory and expiratory levels, computed tomography slice thickness, reconstruction algorithm and type of computed tomography apparatus make tomographic comparisons more difficult in follow-up studies of pulmonary emphysema. Nevertheless, quantitative computed tomography has replaced the visual assessment competing with pulmonary function tests as a sensitive method to measure pulmonary emphysema. The present review discusses technical variables of lung computed tomography and their influence on measurements of pulmonary emphysema. (author)

  17. Accuracy of measurement of pulmonary emphysema with computed tomography: relevant points

    Energy Technology Data Exchange (ETDEWEB)

    Hochhegger, Bruno, E-mail: brunohochhegger@googlemail.co [Hospital Moinhos de Vento, Porto Alegre, RS (Brazil); Marchiori, Edson [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Radiologia; Irion, Klaus L. [Liverpool Heart and Chest Hospital, Liverpool (United Kingdom); Oliveira, Hugo [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2010-07-15

    Some technical aspects should be taken into consideration in order to guarantee the reliability of the assessment of pulmonary emphysema with lung computed tomography densitometry. Changes in lung density associated with variations in lungs inspiratory and expiratory levels, computed tomography slice thickness, reconstruction algorithm and type of computed tomography apparatus make tomographic comparisons more difficult in follow-up studies of pulmonary emphysema. Nevertheless, quantitative computed tomography has replaced the visual assessment competing with pulmonary function tests as a sensitive method to measure pulmonary emphysema. The present review discusses technical variables of lung computed tomography and their influence on measurements of pulmonary emphysema. (author)

  18. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Computed tomography (CT) of the head uses special x-ray equipment to help assess head injuries, severe headaches, ... is a diagnostic medical test that, like traditional x-rays, produces multiple images or pictures of the inside ...

  19. Multiscale Methods, Parallel Computation, and Neural Networks for Real-Time Computer Vision.

    Science.gov (United States)

    Battiti, Roberto

    1990-01-01

    This thesis presents new algorithms for low and intermediate level computer vision. The guiding ideas in the presented approach are those of hierarchical and adaptive processing, concurrent computation, and supervised learning. Processing of the visual data at different resolutions is used not only to reduce the amount of computation necessary to reach the fixed point, but also to produce a more accurate estimation of the desired parameters. The presented adaptive multiple scale technique is applied to the problem of motion field estimation. Different parts of the image are analyzed at a resolution that is chosen in order to minimize the error in the coefficients of the differential equations to be solved. Tests with video-acquired images show that velocity estimation is more accurate over a wide range of motion with respect to the homogeneous scheme. In some cases introduction of explicit discontinuities coupled to the continuous variables can be used to avoid propagation of visual information from areas corresponding to objects with different physical and/or kinematic properties. The human visual system uses concurrent computation in order to process the vast amount of visual data in "real -time." Although with different technological constraints, parallel computation can be used efficiently for computer vision. All the presented algorithms have been implemented on medium grain distributed memory multicomputers with a speed-up approximately proportional to the number of processors used. A simple two-dimensional domain decomposition assigns regions of the multiresolution pyramid to the different processors. The inter-processor communication needed during the solution process is proportional to the linear dimension of the assigned domain, so that efficiency is close to 100% if a large region is assigned to each processor. Finally, learning algorithms are shown to be a viable technique to engineer computer vision systems for different applications starting from

  20. Computed tomography versus invasive coronary angiography

    DEFF Research Database (Denmark)

    Napp, Adriane E.; Haase, Robert; Laule, Michael

    2017-01-01

    Objectives: More than 3.5 million invasive coronary angiographies (ICA) are performed in Europe annually. Approximately 2 million of these invasive procedures might be reduced by noninvasive tests because no coronary intervention is performed. Computed tomography (CT) is the most accurate...... angiography (ICA) is the reference standard for detection of CAD.• Noninvasive computed tomography angiography excludes CAD with high sensitivity.• CT may effectively reduce the approximately 2 million negative ICAs in Europe.• DISCHARGE addresses this hypothesis in patients with low-to-intermediate pretest...

  1. Real time computer controlled weld skate

    Science.gov (United States)

    Wall, W. A., Jr.

    1977-01-01

    A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.

  2. Development of Real-Time Dual-Display Handheld and Bench-Top Hybrid-Mode SD-OCTs

    Directory of Open Access Journals (Sweden)

    Nam Hyun Cho

    2014-01-01

    Full Text Available Development of a dual-display handheld optical coherence tomography (OCT system for retina and optic-nerve-head diagnosis beyond the volunteer motion constraints is reported. The developed system is portable and easily movable, containing the compact portable OCT system that includes the handheld probe and computer. Eye posterior chambers were diagnosed using the handheld probe, and the probe could be fixed to the bench-top cradle depending on the volunteers’ physical condition. The images obtained using this handheld probe were displayed in real time on the computer monitor and on a small secondary built-in monitor; the displayed images were saved using the handheld probe’s built-in button. Large-scale signal-processing procedures such as k-domain linearization, fast Fourier transform (FFT, and log-scaling signal processing can be rapidly applied using graphics-processing-unit (GPU accelerated processing rather than central-processing-unit (CPU processing. The Labview-based system resolution is 1,024 × 512 pixels, and the frame rate is 56 frames/s, useful for real-time display. The 3D images of the posterior chambers including the retina, optic-nerve head, blood vessels, and optic nerve were composed using real-time displayed images with 500 × 500 × 500 pixel resolution. A handheld and bench-top hybrid mode with a dual-display handheld OCT was developed to overcome the drawbacks of the conventional method.

  3. Feasibility of the left ventricular volume measurement by acoustic quantification method. Comparison with ultrafast computed tomography

    International Nuclear Information System (INIS)

    Tomimoto, Shigehiro; Nakatani, Satoshi; Tanaka, Norio; Uematsu, Masaaki; Beppu, Shintaro; Nagata, Seiki; Hamada, Seiki; Takamiya, Makoto; Miyatake, Kunio

    1995-01-01

    Acoustic quantification (AQ: the real-time automated boundary detection system) allows instantaneous measurement of cardiac chamber volumes. The feasibility of this method was evaluated by comparing the left ventricular (LV) volumes obtained with AQ to those derived from ultrafast computed tomography (UFCT), which enables accurate measurements of LV volumes even in the presence of LV asynergy, in 23 patients (8 with ischemic heart disease, 5 with cardiomyopathy, 3 with valvular heart disease). Both LV end-diastolic and end-systolic volumes obtained with the AQ method were in good agreement with those obtained with UFCT (y=1.04χ-16.9, r=0.95; y=0.87χ+15.7, r=0.91; respectively). AQ was reliable even in the presence of LV asynergy. Interobserver variability for the AQ measurement was 10.2%. AQ provides a new, clinically useful method for real-time accurate estimation of the left ventricular volume. (author)

  4. Feasibility of the left ventricular volume measurement by acoustic quantification method. Comparison with ultrafast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tomimoto, Shigehiro; Nakatani, Satoshi; Tanaka, Norio; Uematsu, Masaaki; Beppu, Shintaro; Nagata, Seiki; Hamada, Seiki; Takamiya, Makoto; Miyatake, Kunio [National Cardiovascular Center, Suita, Osaka (Japan)

    1995-01-01

    Acoustic quantification (AQ: the real-time automated boundary detection system) allows instantaneous measurement of cardiac chamber volumes. The feasibility of this method was evaluated by comparing the left ventricular (LV) volumes obtained with AQ to those derived from ultrafast computed tomography (UFCT), which enables accurate measurements of LV volumes even in the presence of LV asynergy, in 23 patients (8 with ischemic heart disease, 5 with cardiomyopathy, 3 with valvular heart disease). Both LV end-diastolic and end-systolic volumes obtained with the AQ method were in good agreement with those obtained with UFCT (y=1.04{chi}-16.9, r=0.95; y=0.87{chi}+15.7, r=0.91; respectively). AQ was reliable even in the presence of LV asynergy. Interobserver variability for the AQ measurement was 10.2%. AQ provides a new, clinically useful method for real-time accurate estimation of the left ventricular volume. (author).

  5. Examination of weld defects by computed tomography

    Directory of Open Access Journals (Sweden)

    M. Jovanović

    2012-04-01

    Full Text Available Defects in metal arc gas (MAG welds made in S235JR low carbon steel of 6 mm thickness were examined. A sample containing lack of fusion (LOF and pores was examined by computed tomography – CT. The computed tomography examination was performed in order to define LOF size and position as well as dimensions and distribution of accompanying pores in the weld metal.

  6. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... Computed tomography (CT) of the sinuses uses special x-ray equipment to evaluate the paranasal sinus cavities – hollow, ... is a diagnostic medical test that, like traditional x-rays, produces multiple images or pictures of the inside ...

  7. Automated Predicate Abstraction for Real-Time Models

    Directory of Open Access Journals (Sweden)

    Bahareh Badban

    2009-11-01

    Full Text Available We present a technique designed to automatically compute predicate abstractions for dense real-timed models represented as networks of timed automata. We use the CIPM algorithm in our previous work which computes new invariants for timed automata control locations and prunes the model, to compute a predicate abstraction of the model. We do so by taking information regarding control locations and their newly computed invariants into account.

  8. Hard real-time quick EXAFS data acquisition with all open source software on a commodity personal computer

    International Nuclear Information System (INIS)

    So, I.; Siddons, D.P.; Caliebe, W.A.; Khalid, S.

    2007-01-01

    We describe here the data acquisition subsystem of the Quick EXAFS (QEXAFS) experiment at the National Synchrotron Light Source of Brookhaven National Laboratory. For ease of future growth and flexibility, almost all software components are open source with very active maintainers. Among them, Linux running on x86 desktop computer, RTAI for real-time response, COMEDI driver for the data acquisition hardware, Qt and PyQt for graphical user interface, PyQwt for plotting, and Python for scripting. The signal (A/D) and energy-reading (IK220 encoder) devices in the PCI computer are also EPICS enabled. The control system scans the monochromator energy through a networked EPICS motor. With the real-time kernel, the system is capable of deterministic data-sampling period of tens of micro-seconds with typical timing-jitter of several micro-seconds. At the same time, Linux is running in other non-real-time processes handling the user-interface. A modern Qt-based controls-frontend enhances productivity. The fast plotting and zooming of data in time or energy coordinates let the experimenters verify the quality of the data before detailed analysis. Python scripting is built-in for automation. The typical data-rate for continuous runs are around 10 M bytes/min

  9. Computed tomography of the skeletal system

    International Nuclear Information System (INIS)

    Maas, R.; Heller, M.

    1990-01-01

    Patients showing severe multiple injuries, require special care and attention in the hospital. In these cases, the range of the diagnostic measures taken subsequent to computed tomography of the cranium must be broadened to include examinations of the vertebral column and pelvic ring for traumatic lesions. Radiological routine procedures are discussed wit hthe view of throwing some light on the problems involved incomputed tomography of the vertebral disks. In degenerative processes associated with spinal stenosis and hypertrophic facets it has been found that angular-sagittal-reconstruction may be quite useful. Computed tomography provides valuable information on morphological factors and has great discriminating power in the diagnosis of skeletal tumours of the extremities. Quantitative computed tomography offers unprecedented possibilities in the diagnosis and treatment of osteoporosis. Here, particular care must be taken to avoid inaccuracies of measurement as a result of incorrectly performed examinations. In malignant bone tumours the method of dynamic scanning permits the success or failure of any radiotherapeutic or chemical measures taken to be evaluated at an early stage. The success or failure of any radiotherapeutic or chemical measures taken to to treat malignant bone tumours can be evaluated at an early stage using the method on dynamic scanning. (orig.) [de

  10. Neuroanatomy of cranial computed tomography

    International Nuclear Information System (INIS)

    Kretschmann, H.J.; Weinrich, W.

    1985-01-01

    Based on the fundamental structures visualized by means of computed tomography, the authors present the functional systems which are relevant in neurology by means of axial cross-sections. All drawings were prepared from original preparations by means of a new technique which is similar to the grey values of X-ray CT and nuclear magnetic resonance tomography. A detailed description is given of the topics of neurofunctional lesions

  11. Indication for dental computed tomography. Case reports

    International Nuclear Information System (INIS)

    Schom, C.; Engelke, W.; Kopka, L.; Fischer, U.; Grabbe, E.

    1996-01-01

    Based on case reports, common indications for dental computed tomography are demonstrated and typical findings are analysed. From a group of 110 patients who had a reformatted computed tomography of the maxilla and mandibula, 10 typical cases were chosen as examples and are presented with a detailed description of the findings. The most important indication was the analysis of the morphology of the alveolar ridge needed in presurgical planning for osseointegrated implants as well as in special cases of postsurgical control. Apart from implantology, the method could be used in cases of mandibular cysts and bony destructions. In conclusion, dental computed tomography has become established mainly in implantology. It can provide valuable results in cases where a demonstration of the bone in all dimensions and free of overlappings and distortions is needed. (orig.) [de

  12. VERSE - Virtual Equivalent Real-time Simulation

    Science.gov (United States)

    Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel

    2005-01-01

    Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.

  13. Real time animation of space plasma phenomena

    International Nuclear Information System (INIS)

    Jordan, K.F.; Greenstadt, E.W.

    1987-01-01

    In pursuit of real time animation of computer simulated space plasma phenomena, the code was rewritten for the Massively Parallel Processor (MPP). The program creates a dynamic representation of the global bowshock which is based on actual spacecraft data and designed for three dimensional graphic output. This output consists of time slice sequences which make up the frames of the animation. With the MPP, 16384, 512 or 4 frames can be calculated simultaneously depending upon which characteristic is being computed. The run time was greatly reduced which promotes the rapid sequence of images and makes real time animation a foreseeable goal. The addition of more complex phenomenology in the constructed computer images is now possible and work proceeds to generate these images

  14. Computed tomography of sacro-iliac joints

    International Nuclear Information System (INIS)

    Miquel, A.; Laredo, J.D.

    1995-01-01

    Actual technologies to explore sacro-iliac joints are conventional radiography, computed tomography , scintigraphy and nuclear magnetic resonance imaging. Standards films are sufficient, except in beginning sacro-iliac septic inflammations where the computed tomography is superior. Two problems are generally posed for the radiologist, to differentiate a septic arthritis from a rheumatic pathology An other problem in diagnosis is to make the difference between a degenerative arthropathy (which does not need a further investigation) and an infectious rheumatic pathology where more exploration is necessary. 28 refs., 3 tabs., 13 figs

  15. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... Share your patient story here Images × Image Gallery Patient undergoing computed tomography (CT) scan. View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related ...

  16. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Share your patient story here Images × Image Gallery Patient undergoing computed tomography (CT) scan. View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related ...

  17. Reproducibility in the assessment of acute pancreatitis with computed tomography

    International Nuclear Information System (INIS)

    Freire Filho, Edison de Oliveira; Vieira, Renata La Rocca; Yamada, Andre Fukunishi; Shigueoka, David Carlos; Bekhor, Daniel; Freire, Maxime Figueiredo de Oliveira; Ajzen, Sergio; D'Ippolito, Giuseppe

    2007-01-01

    Objective: To evaluate the reproducibility of unenhanced and contrast-enhanced computed tomography in the assessment of patients with acute pancreatitis. Materials and methods: Fifty-one unenhanced and contrast-enhanced abdominal computed tomography studies of patients with acute pancreatitis were blindly reviewed by two radiologists (observers 1 and 2). The morphological index was separately calculated for unenhanced and contrast-enhanced computed tomography and the disease severity index was established. Intraobserver and interobserver reproducibility of computed tomography was measured by means of the kappa index (κ). Results: Interobserver agreement was κ 0.666, 0.705, 0.648, 0.547 and 0.631, respectively for unenhanced and contrast-enhanced morphological index, presence of pancreatic necrosis, pancreatic necrosis extension, and disease severity index. Intraobserver agreement (observers 1 and 2, respectively) was κ = 0.796 and 0.732 for unenhanced morphological index; κ 0.725 and 0.802 for contrast- enhanced morphological index; κ = 0.674 and 0.849 for presence of pancreatic necrosis; κ = 0.606 and 0.770 for pancreatic necrosis extension; and κ = 0.801 and 0.687 for disease severity index at computed tomography. Conclusion: Computed tomography for determination of morphological index and disease severity index in the staging of acute pancreatitis is a quite reproducible method. The absence of contrast- enhancement does not affect the computed tomography morphological index reproducibility. (author)

  18. A Distributed Computing Framework for Real-Time Detection of Stress and of Its Propagation in a Team.

    Science.gov (United States)

    Pandey, Parul; Lee, Eun Kyung; Pompili, Dario

    2016-11-01

    Stress is one of the key factor that impacts the quality of our daily life: From the productivity and efficiency in the production processes to the ability of (civilian and military) individuals in making rational decisions. Also, stress can propagate from one individual to other working in a close proximity or toward a common goal, e.g., in a military operation or workforce. Real-time assessment of the stress of individuals alone is, however, not sufficient, as understanding its source and direction in which it propagates in a group of people is equally-if not more-important. A continuous near real-time in situ personal stress monitoring system to quantify level of stress of individuals and its direction of propagation in a team is envisioned. However, stress monitoring of an individual via his/her mobile device may not always be possible for extended periods of time due to limited battery capacity of these devices. To overcome this challenge a novel distributed mobile computing framework is proposed to organize the resources in the vicinity and form a mobile device cloud that enables offloading of computation tasks in stress detection algorithm from resource constrained devices (low residual battery, limited CPU cycles) to resource rich devices. Our framework also supports computing parallelization and workflows, defining how the data and tasks divided/assigned among the entities of the framework are designed. The direction of propagation and magnitude of influence of stress in a group of individuals are studied by applying real-time, in situ analysis of Granger Causality. Tangible benefits (in terms of energy expenditure and execution time) of the proposed framework in comparison to a centralized framework are presented via thorough simulations and real experiments.

  19. Diffuse abnormalities of the trachea: computed tomography findings

    International Nuclear Information System (INIS)

    Marchiori, Edson; Araujo Neto, Cesar de

    2008-01-01

    The aim of this pictorial essay was to present the main computed tomography findings seen in diffuse diseases of the trachea. The diseases studied included amyloidosis, tracheobronchopathia osteochondroplastica, tracheobronchomegaly, laryngotracheobronchial papillomatosis, lymphoma, neurofibromatosis, relapsing polychondritis, Wegener's granulomatosis, tuberculosis, paracoccidioidomycosis, and tracheobronchomalacia. The most common computed tomography finding was thickening of the walls of the trachea, with or without nodules, parietal calcifications, or involvement of the posterior wall. Although computed tomography allows the detection and characterization of diseases of the central airways, and the correlation with clinical data reduces the diagnostic possibilities, bronchoscopy with biopsy remains the most useful procedure for the diagnosis of diffuse lesions of the trachea. (author)

  20. Computed tomography in abnormalities of the hip

    Energy Technology Data Exchange (ETDEWEB)

    Visser, J.D.; Jonkers, A.; Klasen, H.J. (Rijksuniversiteit Groningen (Netherlands). Academisch Ziekenhuis); Hillen, B. (Rijksuniversiteit Groningen (Netherlands). Lab. voor Anatomie en Embryologie)

    1982-06-26

    The value of computed tomography in the assessment of abnormalities of the hip is demonstrated with the aid of an anatomical preparation and in patients with, respectively, congenital dislocation of a hip, dislocation of the hip in spina bifida, an acetabular fracture and a Ewing tumour. The anteversion of the acetabulum and femur and the instability index of the hip joint can be measured by means of computed tomography.

  1. Quantitative computed tomography evaluation of pulmonary disease

    DEFF Research Database (Denmark)

    McEvoy, Fintan; Buelund, Lene Elisabeth; Strathe, Anders Bjerring

    2009-01-01

    Objective assessment of pulmonary disease from computed tomography (CT) examinations is desirable but difficult. When such assessments can be made, it is important that they are related to some part of the pathophysiologic process present.......Objective assessment of pulmonary disease from computed tomography (CT) examinations is desirable but difficult. When such assessments can be made, it is important that they are related to some part of the pathophysiologic process present....

  2. Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography in Disseminated Cryptococcosis.

    Science.gov (United States)

    Tripathy, Sarthak; Parida, Girish Kumar; Roy, Shambo Guha; Singhal, Abhinav; Mallick, Saumya Ranjan; Tripathi, Madhavi; Shamim, Shamim Ahmed

    2017-01-01

    Disseminated cryptococcosis without pulmonary involvement is a very rare phenomenon. Patterns of organ involvement in cryptococcosis resemble various other infective conditions as well as malignant conditions on fluorodeoxyglucose positron emission tomography-computed tomography. We present a case of a 43-year-old male patient who had disseminated cryptococcosis. The rarity of the case being noninvolvement of lungs and meninges and resembling more like lymphoma due to the diffuse involvement of the lymph nodes on both sides of the diaphragm.

  3. Real-time systems scheduling fundamentals

    CERN Document Server

    Chetto, Maryline

    2014-01-01

    Real-time systems are used in a wide range of applications, including control, sensing, multimedia, etc.  Scheduling is a central problem for these computing/communication systems since responsible of software execution in a timely manner. This book provides state of knowledge in this domain with special emphasis on the key results obtained within the last decade. This book addresses foundations as well as the latest advances and findings in Real-Time Scheduling, giving all references to important papers. But nevertheless the chapters will be short and not overloaded with confusing details.

  4. Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography

    DEFF Research Database (Denmark)

    Rochitte, Carlos E; George, Richard T; Chen, Marcus Y

    2014-01-01

    AIMS: To evaluate the diagnostic power of integrating the results of computed tomography angiography (CTA) and CT myocardial perfusion (CTP) to identify coronary artery disease (CAD) defined as a flow limiting coronary artery stenosis causing a perfusion defect by single photon emission computed...... emission computed tomography (SPECT/MPI). Sixteen centres enroled 381 patients who underwent combined CTA-CTP and SPECT/MPI prior to conventional coronary angiography. All four image modalities were analysed in blinded independent core laboratories. The prevalence of obstructive CAD defined by combined ICA...... tomography (SPECT). METHODS AND RESULTS: We conducted a multicentre study to evaluate the accuracy of integrated CTA-CTP for the identification of patients with flow-limiting CAD defined by ≥50% stenosis by invasive coronary angiography (ICA) with a corresponding perfusion deficit on stress single photon...

  5. A State-of-the-Art Review of the Real-Time Computer-Aided Study of the Writing Process

    Science.gov (United States)

    Abdel Latif, Muhammad M.

    2008-01-01

    Writing researchers have developed various methods for investigating the writing process since the 1970s. The early 1980s saw the occurrence of the real-time computer-aided study of the writing process that relies on the protocols generated by recording the computer screen activities as writers compose using the word processor. This article…

  6. Industrial Computed Tomography using Proximal Algorithm

    KAUST Repository

    Zang, Guangming

    2016-01-01

    fewer projections. We compare our framework to state-of-the-art methods and existing popular software tomography reconstruction packages, on both synthetic and real datasets, and show superior reconstruction quality, especially from noisy data and a

  7. Mathematics of Computed Tomography

    Science.gov (United States)

    Hawkins, William Grant

    A review of the applications of the Radon transform is presented, with emphasis on emission computed tomography and transmission computed tomography. The theory of the 2D and 3D Radon transforms, and the effects of attenuation for emission computed tomography are presented. The algebraic iterative methods, their importance and limitations are reviewed. Analytic solutions of the 2D problem the convolution and frequency filtering methods based on linear shift invariant theory, and the solution of the circular harmonic decomposition by integral transform theory--are reviewed. The relation between the invisible kernels, the inverse circular harmonic transform, and the consistency conditions are demonstrated. The discussion and review are extended to the 3D problem-convolution, frequency filtering, spherical harmonic transform solutions, and consistency conditions. The Cormack algorithm based on reconstruction with Zernike polynomials is reviewed. An analogous algorithm and set of reconstruction polynomials is developed for the spherical harmonic transform. The relations between the consistency conditions, boundary conditions and orthogonal basis functions for the 2D projection harmonics are delineated and extended to the 3D case. The equivalence of the inverse circular harmonic transform, the inverse Radon transform, and the inverse Cormack transform is presented. The use of the number of nodes of a projection harmonic as a filter is discussed. Numerical methods for the efficient implementation of angular harmonic algorithms based on orthogonal functions and stable recursion are presented. The derivation of a lower bound for the signal-to-noise ratio of the Cormack algorithm is derived.

  8. Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction.

    Science.gov (United States)

    Watanabe, Yuuki; Takahashi, Yuhei; Numazawa, Hiroshi

    2014-02-01

    We demonstrate intensity-based optical coherence tomography (OCT) angiography using the squared difference of two sequential frames with bulk-tissue-motion (BTM) correction. This motion correction was performed by minimization of the sum of the pixel values using axial- and lateral-pixel-shifted structural OCT images. We extract the BTM-corrected image from a total of 25 calculated OCT angiographic images. Image processing was accelerated by a graphics processing unit (GPU) with many stream processors to optimize the parallel processing procedure. The GPU processing rate was faster than that of a line scan camera (46.9 kHz). Our OCT system provides the means of displaying structural OCT images and BTM-corrected OCT angiographic images in real time.

  9. Distributed Issues for Ada Real-Time Systems

    Science.gov (United States)

    1990-07-23

    NUMBERS Distributed Issues for Ada Real - Time Systems MDA 903-87- C- 0056 S. AUTHOR(S) Thomas E. Griest 7. PERFORMING ORGANiZATION NAME(S) AND ADORESS(ES) 8...considerations. I Adding to the problem of distributed real - time systems is the issue of maintaining a common sense of time among all of the processors...because -omeone is waiting for the final output of a very large set of computations. However in real - time systems , consistent meeting of short-term

  10. Real-time calibration-free C-scan images of the eye fundus using Master Slave swept source optical coherence tomography

    Science.gov (United States)

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Fred; Garway-Heath, David F.; Rajendram, Ranjan; Keane, Pearce; Podoleanu, Adrian G.

    2015-03-01

    Recently, we introduced a novel Optical Coherence Tomography (OCT) method, termed as Master Slave OCT (MS-OCT), specialized for delivering en-face images. This method uses principles of spectral domain interfereometry in two stages. MS-OCT operates like a time domain OCT, selecting only signals from a chosen depth only while scanning the laser beam across the eye. Time domain OCT allows real time production of an en-face image, although relatively slowly. As a major advance, the Master Slave method allows collection of signals from any number of depths, as required by the user. The tremendous advantage in terms of parallel provision of data from numerous depths could not be fully employed by using multi core processors only. The data processing required to generate images at multiple depths simultaneously is not achievable with commodity multicore processors only. We compare here the major improvement in processing and display, brought about by using graphic cards. We demonstrate images obtained with a swept source at 100 kHz (which determines an acquisition time [Ta] for a frame of 200×200 pixels2 of Ta =1.6 s). By the end of the acquired frame being scanned, using our computing capacity, 4 simultaneous en-face images could be created in T = 0.8 s. We demonstrate that by using graphic cards, 32 en-face images can be displayed in Td 0.3 s. Other faster swept source engines can be used with no difference in terms of Td. With 32 images (or more), volumes can be created for 3D display, using en-face images, as opposed to the current technology where volumes are created using cross section OCT images.

  11. Large holographic displays for real-time applications

    Science.gov (United States)

    Schwerdtner, A.; Häussler, R.; Leister, N.

    2008-02-01

    Holography is generally accepted as the ultimate approach to display three-dimensional scenes or objects. Principally, the reconstruction of an object from a perfect hologram would appear indistinguishable from viewing the corresponding real-world object. Up to now two main obstacles have prevented large-screen Computer-Generated Holograms (CGH) from achieving a satisfactory laboratory prototype not to mention a marketable one. The reason is a small cell pitch CGH resulting in a huge number of hologram cells and a very high computational load for encoding the CGH. These seemingly inevitable technological hurdles for a long time have not been cleared limiting the use of holography to special applications, such as optical filtering, interference, beam forming, digital holography for capturing the 3-D shape of objects, and others. SeeReal Technologies has developed a new approach for real-time capable CGH using the socalled Tracked Viewing Windows technology to overcome these problems. The paper will show that today's state of the art reconfigurable Spatial Light Modulators (SLM), especially today's feasible LCD panels are suited for reconstructing large 3-D scenes which can be observed from large viewing angles. For this to achieve the original holographic concept of containing information from the entire scene in each part of the CGH has been abandoned. This substantially reduces the hologram resolution and thus the computational load by several orders of magnitude making thus real-time computation possible. A monochrome real-time prototype measuring 20 inches has been built and demonstrated at last year's SID conference and exhibition 2007 and at several other events.

  12. Diagnosis of lumbar disc hernia with computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizumi, Atsuro; Ohira, Nobuhiro; Ojima, Tadashi; Oshida, Midori; Horaguchi, Mitsuru (Tohoku Rosai Hospital, Sendai (Japan))

    1982-07-01

    Results of computed tomography performed on patients with clinically diagnosed hernia were compared with those of myelography and operative findings. This comparative study suggested that computed tomography is quite different from other methods and very useful in diagnosis of hernia. Some cases of hernia were shown, and the characteristics of CT were reviewed.

  13. Sacrococcygeal chordoma: increased 99mTc methylene diphosphonate uptake on single photon emission computed tomography/computed tomography bone scintigraphy

    International Nuclear Information System (INIS)

    Kamaleshwaran, Koramadai Karuppuswamy; Bhattacharya, Anish; Harisankar, Chidambaram Natarajan Balasubramaniam; Mittal, Bhagwant Rai; Goni, Vijay

    2012-01-01

    Chordoma is a malignant tumor arising from the remnants of the notochord, and is the most frequent primitive tumor of the sacrum. While most sacral tumors show increased concentration of bone-seeking radiopharmaceuticals, chordomas usually exhibit decreased uptake. The authors present an image of a sacrococcygeal chordoma with osteolysis and increased uptake of 99m Tc methylene diphosphonate on planar and single photon emission computed tomography/computed tomography bone scintigraphy. (author)

  14. Quantitative cardiac computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Thelen, M.; Dueber, C.; Wolff, P.; Erbel, R.; Hoffmann, T.

    1985-06-01

    The scope and limitations of quantitative cardiac CT have been evaluated in a series of experimental and clinical studies. The left ventricular muscle mass was estimated by computed tomography in 19 dogs (using volumetric methods, measurements in two axes and planes and reference volume). There was good correlation with anatomical findings. The enddiastolic volume of the left ventricle was estimated in 22 patients with cardiomyopathies; using angiography as a reference, CT led to systematic under-estimation. It is also shown that ECG-triggered magnetic resonance tomography results in improved visualisation and may be expected to improve measurements of cardiac morphology.

  15. System Matrix Analysis for Computed Tomography Imaging

    Science.gov (United States)

    Flores, Liubov; Vidal, Vicent; Verdú, Gumersindo

    2015-01-01

    In practical applications of computed tomography imaging (CT), it is often the case that the set of projection data is incomplete owing to the physical conditions of the data acquisition process. On the other hand, the high radiation dose imposed on patients is also undesired. These issues demand that high quality CT images can be reconstructed from limited projection data. For this reason, iterative methods of image reconstruction have become a topic of increased research interest. Several algorithms have been proposed for few-view CT. We consider that the accurate solution of the reconstruction problem also depends on the system matrix that simulates the scanning process. In this work, we analyze the application of the Siddon method to generate elements of the matrix and we present results based on real projection data. PMID:26575482

  16. Cloud Computing: A model Construct of Real-Time Monitoring for Big Dataset Analytics Using Apache Spark

    Science.gov (United States)

    Alkasem, Ameen; Liu, Hongwei; Zuo, Decheng; Algarash, Basheer

    2018-01-01

    The volume of data being collected, analyzed, and stored has exploded in recent years, in particular in relation to the activity on the cloud computing. While large-scale data processing, analysis, storage, and platform model such as cloud computing were previously and currently are increasingly. Today, the major challenge is it address how to monitor and control these massive amounts of data and perform analysis in real-time at scale. The traditional methods and model systems are unable to cope with these quantities of data in real-time. Here we present a new methodology for constructing a model for optimizing the performance of real-time monitoring of big datasets, which includes a machine learning algorithms and Apache Spark Streaming to accomplish fine-grained fault diagnosis and repair of big dataset. As a case study, we use the failure of Virtual Machines (VMs) to start-up. The methodology proposition ensures that the most sensible action is carried out during the procedure of fine-grained monitoring and generates the highest efficacy and cost-saving fault repair through three construction control steps: (I) data collection; (II) analysis engine and (III) decision engine. We found that running this novel methodology can save a considerate amount of time compared to the Hadoop model, without sacrificing the classification accuracy or optimization of performance. The accuracy of the proposed method (92.13%) is an improvement on traditional approaches.

  17. The Role of Computed Tomography in Monitoring Patients with Cystic Fibrosis

    International Nuclear Information System (INIS)

    Rybacka, Anna; Karmelita-Katulska, Katarzyna

    2016-01-01

    Cystic fibrosis is the most common lethal autosomal recessive disorder in the Caucasian population. Although the survival rate in patients constantly improves, lung damage is still the major cause of morbidity and mortality in patients with cystic fibrosis. In clinical practice, evaluation of patients’ pulmonary state is made by combination of monitoring of lung function and more directly by assessing the lung structure in imaging studies. Studies showed that computed tomography findings are more sensitive as compared to the pulmonary function tests. Computed tomography can identify a wide range of morphological abnormalities in patients with cystic fibrosis, such as bronchiectasis (which is progressive, irreversible and probably the most relevant structural change in cystic fibrosis) peribronchial thickening, mucous plugging and many other disorders that occur in the course of the disease. Computed tomography has a crucial role in the assessment of pulmonary damage over time, detecting complications and monitoring treatment effects in patients with cystic fibrosis

  18. Fatty kidney diagnosed by mortem computed tomography

    DEFF Research Database (Denmark)

    Leth, P. M.

    2016-01-01

    Subnuclear vacuolization of the renal tubular epithelium is indicative of diabetic and alcoholic ketoacidosis and has also been proposed as a postmortem marker for hypothermia. We present for the first time a fatal case of ketoacidosis in combination with exposure where a suspicion of these diagn...... of these diagnoses was raised by a marked radiolucency of the kidneys at post-mortem computed tomography (PMCT). © 2015 Elsevier Ltd....

  19. Pulmonary lobar volumetry using novel volumetric computer-aided diagnosis and computed tomography

    Science.gov (United States)

    Iwano, Shingo; Kitano, Mariko; Matsuo, Keiji; Kawakami, Kenichi; Koike, Wataru; Kishimoto, Mariko; Inoue, Tsutomu; Li, Yuanzhong; Naganawa, Shinji

    2013-01-01

    OBJECTIVES To compare the accuracy of pulmonary lobar volumetry using the conventional number of segments method and novel volumetric computer-aided diagnosis using 3D computed tomography images. METHODS We acquired 50 consecutive preoperative 3D computed tomography examinations for lung tumours reconstructed at 1-mm slice thicknesses. We calculated the lobar volume and the emphysematous lobar volume volumetry computer-aided diagnosis system could more precisely measure lobar volumes than the conventional number of segments method. Because semi-automatic computer-aided diagnosis and automatic computer-aided diagnosis were complementary, in clinical use, it would be more practical to first measure volumes by automatic computer-aided diagnosis, and then use semi-automatic measurements if automatic computer-aided diagnosis failed. PMID:23526418

  20. On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system.

    Science.gov (United States)

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian

    2015-07-01

    In a previous report, we demonstrated master-slave optical coherence tomography (MS-OCT), an OCT method that does not need resampling of data and can be used to deliver en face images from several depths simultaneously. In a separate report, we have also demonstrated MS-OCT's capability of producing cross-sectional images of a quality similar to those provided by the traditional Fourier domain (FD) OCT technique, but at a much slower rate. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real time. We analyze the conditions that ensure a true real-time B-scan imaging operation and demonstrate in vivo real-time images from human fovea and the optic nerve, with resolution and sensitivity comparable to those produced using the traditional FD-based method, however, without the need of data resampling.

  1. Dose optimization in computed tomography: ICRP 87

    International Nuclear Information System (INIS)

    2007-01-01

    The doses given in the use of computed tomography scans are studied, aiming to calibrate the limits of irradiation in patients who need these tests. Furthermore, a good value of computed tomography should be guaranteed by physicians and radiologists for people not being irradiated unfairly, reducing doses and unnecessary tests. A critical evaluation by an ethics committee is suggested for cases where the test is performed for medical research without a cause [es

  2. Development of emission computed tomography in Japan

    International Nuclear Information System (INIS)

    Tanaka, E.

    1984-01-01

    Two positron emission computed tomography (PCT) devices developed in Japan are described. One is for head and the other for wholebody. The devices show fairly quantitative images with slight modifications of the existing algorithms because they were developed based on filtered back-projection. The PCT device seems to be better than the single photon emission computed tomography (SPECT) since it provides adequade compensation for photon attenuation in patients. (M.A.C.) [pt

  3. Dual-Modality Imaging of the Human Finger Joint Systems by Using Combined Multispectral Photoacoustic Computed Tomography and Ultrasound Computed Tomography

    Directory of Open Access Journals (Sweden)

    Yubin Liu

    2016-01-01

    Full Text Available We developed a homemade dual-modality imaging system that combines multispectral photoacoustic computed tomography and ultrasound computed tomography for reconstructing the structural and functional information of human finger joint systems. The fused multispectral photoacoustic-ultrasound computed tomography (MPAUCT system was examined by the phantom and in vivo experimental tests. The imaging results indicate that the hard tissues such as the bones and the soft tissues including the blood vessels, the tendon, the skins, and the subcutaneous tissues in the finger joints systems can be effectively recovered by using our multimodality MPAUCT system. The developed MPAUCT system is able to provide us with more comprehensive information of the human finger joints, which shows its potential for characterization and diagnosis of bone or joint diseases.

  4. Diagnosis of lumbar disc hernia with computed tomography

    International Nuclear Information System (INIS)

    Yoshizumi, Atsuro; Ohira, Nobuhiro; Ojima, Tadashi; Oshida, Midori; Horaguchi, Mitsuru

    1982-01-01

    Results of computed tomography performed on patients with clinically diagnosed hernia were compared with those of myelography and operative findings. This comparative study suggested that computed tomography is quite different from other methods and very useful in diagnosis of hernia. Some cases of hernia were shown, and the characteristics of CT were reviewed. (Ueda, J.)

  5. Improved air trapping evaluation in chest computed tomography in children with cystic fibrosis using real-time spirometric monitoring and biofeedback

    DEFF Research Database (Denmark)

    Kongstad, Thomas; Buchvald, Frederik F; Green, Kent

    2013-01-01

    CTs were evaluated. Mean (95%CI) change in inspiratory-expiratory lung density differences was 436 Hounsfield Units (HU) (408 to 464) in the COP cohort with spirometric breath hold monitoring versus 229 HU (188 to 269) in the GOT cohort with unmonitored breath hold manoeuvres (p...BACKGROUND: The quality of chest Computed Tomography (CT) images in children is dependent upon a sufficient breath hold during CT scanning. This study evaluates the influence of spirometric breath hold monitoring with biofeedback software on inspiratory and expiratory chest CT lung density measures......, and on trapped air (TA) scoring in children with cystic fibrosis (CF). This is important because TA is an important component of early and progressive CF lung disease. METHODS: A cross sectional comparison study was completed for chest CT imaging in two cohorts of CF children with comparable disease severity...

  6. A distributed agent architecture for real-time knowledge-based systems: Real-time expert systems project, phase 1

    Science.gov (United States)

    Lee, S. Daniel

    1990-01-01

    We propose a distributed agent architecture (DAA) that can support a variety of paradigms based on both traditional real-time computing and artificial intelligence. DAA consists of distributed agents that are classified into two categories: reactive and cognitive. Reactive agents can be implemented directly in Ada to meet hard real-time requirements and be deployed on on-board embedded processors. A traditional real-time computing methodology under consideration is the rate monotonic theory that can guarantee schedulability based on analytical methods. AI techniques under consideration for reactive agents are approximate or anytime reasoning that can be implemented using Bayesian belief networks as in Guardian. Cognitive agents are traditional expert systems that can be implemented in ART-Ada to meet soft real-time requirements. During the initial design of cognitive agents, it is critical to consider the migration path that would allow initial deployment on ground-based workstations with eventual deployment on on-board processors. ART-Ada technology enables this migration while Lisp-based technologies make it difficult if not impossible. In addition to reactive and cognitive agents, a meta-level agent would be needed to coordinate multiple agents and to provide meta-level control.

  7. Ultrasonic and computed tomography in radiotherapy planning - a comparison

    International Nuclear Information System (INIS)

    Schertel, L.

    1980-01-01

    The precondition of any radiotherapy is radiation planning. This must be done individually for every patient and must be applicable for any region of the body. Modern irradiation planning requires pictures of the body parts concerned; these can be made by means of the ultrasonic method and computed tomography. This comparative investigation leads to the result (see fig. 4 and 5) that computed tomographic body part pictures should be preferred to those made sonographically. The opinion of Huenig and Co. [8] that ultrasonic tomography will soon lose some of its importance within irradiation planning once computed tomography is introduced could be confirmed by the latest developments. The authors can confirm this also out of their own experience and agree with Winkel and Hermann [23] that computed tomography cannot be done without any more irradiation planning. (orig.) [de

  8. Research of scatter correction on industry computed tomography

    International Nuclear Information System (INIS)

    Sun Shaohua; Gao Wenhuan; Zhang Li; Chen Zhiqiang

    2002-01-01

    In the scanning process of industry computer tomography, scatter blurs the reconstructed image. The grey values of pixels in the reconstructed image are away from what is true and such effect need to be corrected. If the authors use the conventional method of deconvolution, many steps of iteration are needed and the computing time is not satisfactory. The author discusses a method combining Ordered Subsets Convex algorithm and scatter model to implement scatter correction and promising results are obtained in both speed and image quality

  9. The Comparison of Computed Tomography Perfusion, Contrast-Enhanced Computed Tomography and Positron-Emission Tomography/Computed Tomography for the Detection of Primary Esophageal Carcinoma.

    Science.gov (United States)

    Genc, Berhan; Kantarci, Mecit; Sade, Recep; Orsal, Ebru; Ogul, Hayri; Okur, Aylin; Aydin, Yener; Karaca, Leyla; Eroğlu, Atilla

    2016-01-01

    The purpose of this study was to investigate the efficiency of computed tomography perfusion (CTP), contrast-enhanced computed tomography (CECT) and 18F-fluoro-2-deoxy-D-glucose (18F-FDG) positron-emission tomography (PET/CT) in the diagnosis of esophageal cancer. This prospective study consisted of 33 patients with pathologically confirmed esophageal cancer, 2 of whom had an esophageal abscess. All the patients underwent CTP, CECT and PET/CT imaging and the imaging findings were evaluated. Sensitivity, specificity and positive and negative predictive values were calculated for each of the 3 imaging modalities relative to the histological diagnosis. Thirty-three tumors were visualized on CTP, 29 on CECT and 27 on PET/CT. Six tumors were stage 1, and 2 and 4 of these tumors were missed on CECT and PET/CT, respectively. Significant differences between CTP and CECT (p = 0.02), and between CTP and PET/CT (p = 0.04) were found for stage 1 tumors. Values for the sensitivity, specificity and positive and negative predictive values on CTP were 100, 100, 100 and 100%, respectively. Corresponding values on CECT were 93.94, 0, 93.94 and 0%, respectively, and those on PET/CT were 87.88, 0, 93.55 and 0%, respectively. Hence, the sensitivity, specificity and positive and negative predictive values of CTP were better than those of CECT and PET/CT. CTP had an advantage over CECT and PET/CT in detecting small lesions. CTP was valuable, especially in detecting stage 1 tumors. © 2016 S. Karger AG, Basel.

  10. Diagnosis of hoof diseases in horses using computed tomography

    International Nuclear Information System (INIS)

    Kovac, M.; Nowak, M.; Kaufels, N.; Tambur, Z.

    2002-01-01

    This study describes findings of computed tomography investigations at the Bergische Equine Clinic (Bergische Tierklinik), Germany, of 39 horses with hoof diseases. The most frequently findings were the navicular syndrome (eight horses), laminitis (seven horses), keratnoma (six horses) and ossification of collateral cartilages in the distal phalanx (four horses). The special value of the computed tomography is in evaluating the size and courses fracture/fissure of the navicular and koffin bones, which were diagnose in five horses. In four of horses no pathologic changes of the hoof were determined by computed tomography

  11. Storm blueprints patterns for distributed real-time computation

    CERN Document Server

    Goetz, P Taylor

    2014-01-01

    A blueprints book with 10 different projects built in 10 different chapters which demonstrate the various use cases of storm for both beginner and intermediate users, grounded in real-world example applications.Although the book focuses primarily on Java development with Storm, the patterns are more broadly applicable and the tips, techniques, and approaches described in the book apply to architects, developers, and operations.Additionally, the book should provoke and inspire applications of distributed computing to other industries and domains. Hadoop enthusiasts will also find this book a go

  12. Comparison of hand and semiautomatic tracing methods for creating maxillofacial artificial organs using sequences of computed tomography (CT) and cone beam computed tomography (CBCT) images.

    Science.gov (United States)

    Szabo, Bence T; Aksoy, Seçil; Repassy, Gabor; Csomo, Krisztian; Dobo-Nagy, Csaba; Orhan, Kaan

    2017-06-09

    The aim of this study was to compare the paranasal sinus volumes obtained by manual and semiautomatic imaging software programs using both CT and CBCT imaging. 121 computed tomography (CT) and 119 cone beam computed tomography (CBCT) examinations were selected from the databases of the authors' institutes. The Digital Imaging and Communications in Medicine (DICOM) images were imported into 3-dimensonal imaging software, in which hand mode and semiautomatic tracing methods were used to measure the volumes of both maxillary sinuses and the sphenoid sinus. The determined volumetric means were compared to previously published averages. Isometric CBCT-based volume determination results were closer to the real volume conditions, whereas the non-isometric CT-based volume measurements defined coherently lower volumes. By comparing the 2 volume measurement modes, the values gained from hand mode were closer to the literature data. Furthermore, CBCT-based image measurement results corresponded to the known averages. Our results suggest that CBCT images provide reliable volumetric information that can be depended on for artificial organ construction, and which may aid the guidance of the operator prior to or during the intervention.

  13. Computed tomography of pulmonary nodules

    International Nuclear Information System (INIS)

    Nakata, Hajime; Honda, Hiroshi; Nakayama, Chikashi; Kimoto, Tatsuya; Nakayama, Takashi

    1983-01-01

    We have evaluated the value of computed tomography (CT) in distinguishing benign and malignant pulmonary nodules. CT was performed on 30 cases of solitary pulmonary nodules consisting of 17 primary lung cancers, 3 metastatic tumors and 10 benign nodules. The CT number was calculated for each lesion. Three benign nodules showed CT numbers well above the range of malignant nodules, and only in one of them was calcification visible on conventional tomography. In 6 benign nodules, the CT numbers overlapped those of malignant lesion and could not be differentiated. Thus the measurement of CT number can be useful to confirm the benign nature of certain nodules when calcification is unclear or not visible on conventional tomography. As for the morphological observation of the nodule, CT was not superior to conventional tomography and its value seems to be limited. (author)

  14. A Low-Power High-Speed Spintronics-Based Neuromorphic Computing System Using Real Time Tracking Method

    DEFF Research Database (Denmark)

    Farkhani, Hooman; Tohidi, Mohammad; Farkhani, Sadaf

    2018-01-01

    In spintronic-based neuromorphic computing systems (NCS), the switching of magnetic moment in a magnetic tunnel junction (MTJ) is used to mimic neuron firing. However, the stochastic switching behavior of the MTJ and process variations effect lead to a significant increase in stimulation time...... of such NCSs. Moreover, current NCSs need an extra phase to read the MTJ state after stimulation which is in contrast with real neuron functionality in human body. In this paper, the read circuit is replaced with a proposed real-time sensing (RTS) circuit. The RTS circuit tracks the MTJ state during...... stimulation phase. As soon as switching happens, the RTS circuit terminates the MTJ current and stimulates the post neuron. Hence, the RTS circuit not only improves the energy consumption and speed, but also makes the operation of NCS similar to real neuron functionality. The simulation results in 65-nm CMOS...

  15. An Energy Efficient Neuromorphic Computing System Using Real Time Sensing Method

    DEFF Research Database (Denmark)

    Farkhani, Hooman; Tohidi, Mohammad; Farkhani, Sadaf

    2017-01-01

    In spintronic-based neuromorphic computing systems (NCS), the switching of magnetic moment in a magnetic tunnel junction (MTJ) is used to mimic neuron firing. However, the stochastic switching behavior of the MTJ and process variations effect leads to extra stimulation time. This leads to extra...... energy consumption and delay of such NCSs. In this paper, a new real-time sensing (RTS) circuit is proposed to track the MTJ state and terminate stimulation phase immediately after MTJ switching. This leads to significant degradation in energy consumption and delay of NCS. The simulation results using...... a 65-nm CMOS technology and a 40-nm MTJ technology confirm that the energy consumption of a RTS-based NCS is improved by 50% in comparison with a typical NCS. Moreover, utilizing RTS circuit improves the overall speed of an NCS by 2.75x....

  16. High performance real-time flight simulation at NASA Langley

    Science.gov (United States)

    Cleveland, Jeff I., II

    1994-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be deterministic and be completed in as short a time as possible. This includes simulation mathematical model computational and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, personnel at NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to a standard input/output system to provide for high bandwidth, low latency data acquisition and distribution. The Computer Automated Measurement and Control technology (IEEE standard 595) was extended to meet the performance requirements for real-time simulation. This technology extension increased the effective bandwidth by a factor of ten and increased the performance of modules necessary for simulator communications. This technology is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications of this technology are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC have completed the development of the use of supercomputers for simulation mathematical model computational to support real-time flight simulation. This includes the development of a real-time operating system and the development of specialized software and hardware for the CAMAC simulator network. This work, coupled with the use of an open systems software architecture, has advanced the state of the art in real time flight simulation. The data acquisition technology innovation and experience with recent developments in this technology are described.

  17. Real-time WAMI streaming target tracking in fog

    Science.gov (United States)

    Chen, Yu; Blasch, Erik; Chen, Ning; Deng, Anna; Ling, Haibin; Chen, Genshe

    2016-05-01

    Real-time information fusion based on WAMI (Wide-Area Motion Imagery), FMV (Full Motion Video), and Text data is highly desired for many mission critical emergency or security applications. Cloud Computing has been considered promising to achieve big data integration from multi-modal sources. In many mission critical tasks, however, powerful Cloud technology cannot satisfy the tight latency tolerance as the servers are allocated far from the sensing platform, actually there is no guaranteed connection in the emergency situations. Therefore, data processing, information fusion, and decision making are required to be executed on-site (i.e., near the data collection). Fog Computing, a recently proposed extension and complement for Cloud Computing, enables computing on-site without outsourcing jobs to a remote Cloud. In this work, we have investigated the feasibility of processing streaming WAMI in the Fog for real-time, online, uninterrupted target tracking. Using a single target tracking algorithm, we studied the performance of a Fog Computing prototype. The experimental results are very encouraging that validated the effectiveness of our Fog approach to achieve real-time frame rates.

  18. Comparison of Tissue Density in Hounsfield Units in Computed Tomography and Cone Beam Computed Tomography.

    Science.gov (United States)

    Varshowsaz, Masoud; Goorang, Sepideh; Ehsani, Sara; Azizi, Zeynab; Rahimian, Sepideh

    2016-03-01

    Bone quality and quantity assessment is one of the most important steps in implant treatment planning. Different methods such as computed tomography (CT) and recently suggested cone beam computed tomography (CBCT) with lower radiation dose and less time and cost are used for bone density assessment. This in vitro study aimed to compare the tissue density values in Hounsfield units (HUs) in CBCT and CT scans of different tissue phantoms with two different thicknesses, two different image acquisition settings and in three locations in the phantoms. Four different tissue phantoms namely hard tissue, soft tissue, air and water were scanned by three different CBCT and a CT system in two thicknesses (full and half) and two image acquisition settings (high and low kVp and mA). The images were analyzed at three sites (middle, periphery and intermediate) using eFilm software. The difference in density values was analyzed by ANOVA and correction coefficient test (P<0.05). There was a significant difference between density values in CBCT and CT scans in most situations, and CBCT values were not similar to CT values in any of the phantoms in different thicknesses and acquisition parameters or the three different sites. The correction coefficients confirmed the results. CBCT is not reliable for tissue density assessment. The results were not affected by changes in thickness, acquisition parameters or locations.

  19. SLStudio: Open-source framework for real-time structured light

    DEFF Research Database (Denmark)

    Wilm, Jakob; Olesen, Oline Vinter; Larsen, Rasmus

    2014-01-01

    that this software makes real-time 3D scene capture more widely accessible and serves as a foundation for new structured light scanners operating in real-time, e.g. 20 depth images per second and more. The use cases for such scanners are plentyfull, however due to the computational constraints, all public......An open-source framework for real-time structured light is presented. It is called “SLStudio”, and enables real-time capture of metric depth images. The framework is modular, and extensible to support new algorithms for scene encoding/decoding, triangulation, and aquisition hardware. It is the aim...... implementations so far are limited to offline processing. With “SLStudio”, we are making a platform available which enables researchers from many different fields to build application specific real time 3D scanners. The software is hosted at http://compute.dtu.dk/~jakw/slstudio....

  20. X-ray Computed Tomography.

    Science.gov (United States)

    Michael, Greg

    2001-01-01

    Describes computed tomography (CT), a medical imaging technique that produces images of transaxial planes through the human body. A CT image is reconstructed mathematically from a large number of one-dimensional projections of a plane. The technique is used in radiological examinations and radiotherapy treatment planning. (Author/MM)

  1. Strategies of statistical windows in PET image reconstruction to improve the user’s real time experience

    Science.gov (United States)

    Moliner, L.; Correcher, C.; Gimenez-Alventosa, V.; Ilisie, V.; Alvarez, J.; Sanchez, S.; Rodríguez-Alvarez, M. J.

    2017-11-01

    Nowadays, with the increase of the computational power of modern computers together with the state-of-the-art reconstruction algorithms, it is possible to obtain Positron Emission Tomography (PET) images in practically real time. These facts open the door to new applications such as radio-pharmaceuticals tracking inside the body or the use of PET for image-guided procedures, such as biopsy interventions, among others. This work is a proof of concept that aims to improve the user experience with real time PET images. Fixed, incremental, overlapping, sliding and hybrid windows are the different statistical combinations of data blocks used to generate intermediate images in order to follow the path of the activity in the Field Of View (FOV). To evaluate these different combinations, a point source is placed in a dedicated breast PET device and moved along the FOV. These acquisitions are reconstructed according to the different statistical windows, resulting in a smoother transition of positions for the image reconstructions that use the sliding and hybrid window.

  2. A case of skeletal tuberculosis and psoas abscess: disease activity evaluated using 18 F-fluorodeoxyglucose positron emission tomography-computed tomography

    International Nuclear Information System (INIS)

    Kimizuka, Yoshifumi; Hasegawa, Naoki; Ishii, Makoto; Murakami, Koji; Ishioka, Kota; Yagi, Kazuma; Ishii, Ken; Watanabe, Kota; Soejima, Kenzo; Betsuyaku, Tomoko

    2013-01-01

    Psoas abscess complicating tuberculous spondylitis is a rare morbidity in extrapulmonary tuberculosis. There are no established guidelines for evaluating the clinical response of psoas abscess. Although several studies have shown that positron emission tomography-computed tomography with 18 F-fluorodeoxyglucose can play a potential role in diagnosing multifocal tuberculosis and monitoring the clinical response of pulmonary tuberculosis, to our knowledge, this is the first report demonstrating that positron emission tomography-computed tomography is useful for evaluating local inflammation and disease activity of a tuberculous psoas abscess. We report a case of multifocal bone and lymph node tuberculosis with concomitant lumbar psoas abscess in a 77-year-old man, along with a literature review. An initial positron emission tomography-computed tomography scan showed intense 18 F-fluorodeoxyglucose accumulation in the sternum, ribs, vertebrae, and lymph nodes. The patient was successfully treated with antitubercular agents and computed tomography-guided drainage therapy. A follow-up positron emission tomography-computed tomography after abscess drainage and 9 months of antitubercular drug treatment revealed that the majority of lesions improved; however, protracted inflammation surrounding the psoas abscess was still observed. These results indicate that disease activity of psoas abscess can remain, even after successful drainage and antitubercular medication regime of appropriate duration. We have successfully followed up the extent of skeletal tuberculosis complicated with psoas abscess by positron emission tomography-computed tomography. In this patient, positron emission tomography-computed tomography is useful for evaluating the disease activity of tuberculous psoas abscess and for assessing the appropriate duration of antitubercular drug therapy in psoas abscess

  3. Peri-implant assessment via cone beam computed tomography and digital periapical radiography: an ex vivo study

    Directory of Open Access Journals (Sweden)

    Nicolau Silveira-Neto

    Full Text Available OBJECTIVES: This research evaluated detail registration in peri-implant bone using two different cone beam computer tomography systems and a digital periapical radiograph. METHODS: Three different image acquisition protocols were established for each cone beam computer tomography apparatus, and three clinical situations were simulated in an ex vivo fresh pig mandible: buccal bone defect, peri-implant bone defect, and bone contact. Data were subjected to two analyses: quantitative and qualitative. The quantitative analyses involved a comparison of real specimen measures using a digital caliper in three regions of the preserved buccal bone – A, B and E (control group – to cone beam computer tomography images obtained with different protocols (kp1, kp2, kp3, ip1, ip2, and ip3. In the qualitative analyses, the ability to register peri-implant details via tomography and digital periapical radiography was verified, as indicated by twelve evaluators. Data were analyzed with ANOVA and Tukey’s test (α=0.05. RESULTS: The quantitative assessment showed means statistically equal to those of the control group under the following conditions: buccal bone defect B and E with kp1 and ip1, peri-implant bone defect E with kp2 and kp3, and bone contact A with kp1, kp2, kp3, and ip2. Qualitatively, only bone contacts were significantly different among the assessments, and the p3 results differed from the p1 and p2 results. The other results were statistically equivalent. CONCLUSIONS: The registration of peri-implant details was influenced by the image acquisition protocol, although metal artifacts were produced in all situations. The evaluators preferred the Kodak 9000 3D cone beam computer tomography in most cases. The evaluators identified buccal bone defects better with cone beam computer tomography and identified peri-implant bone defects better with digital periapical radiography.

  4. An optimized strategy for real-time hemorrhage monitoring with electrical impedance tomography

    International Nuclear Information System (INIS)

    Xu, Canhua; Dai, Meng; You, Fusheng; Shi, Xuetao; Fu, Feng; Liu, Ruigang; Dong, Xiuzhen

    2011-01-01

    Delayed detection of an internal hemorrhage may result in serious disabilities and possibly death for a patient. Currently, there are no portable medical imaging instruments that are suitable for long-term monitoring of patients at risk of internal hemorrhage. Electrical impedance tomography (EIT) has the potential to monitor patients continuously as a novel functional image modality and instantly detect the occurrence of an internal hemorrhage. However, the low spatial resolution and high sensitivity to noise of this technique have limited its application in clinics. In addition, due to the circular boundary display mode used in current EIT images, it is difficult for clinicians to identify precisely which organ is bleeding using this technique. The aim of this study was to propose an optimized strategy for EIT reconstruction to promote the use of EIT for clinical studies, which mainly includes the use of anatomically accurate boundary shapes, rapid selection of optimal regularization parameters and image fusion of EIT and computed tomography images. The method was evaluated on retroperitoneal and intraperitoneal bleeding piglet data. Both traditional backprojection images and optimized images among different boundary shapes were reconstructed and compared. The experimental results demonstrated that EIT images with precise anatomical information can be reconstructed in which the image resolution and resistance to noise can be improved effectively

  5. Role of single photon emission computed tomography/computed tomography in diagnostic iodine-131 scintigraphy before initial radioiodine ablation in differentiated thyroid cancer

    International Nuclear Information System (INIS)

    Agrawal, Kanhaiyalal; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2005-01-01

    The study was performed to evaluate the incremental value of single photon emission computed tomography/computed tomography (SPECT/CT) over planar radioiodine imaging before radioiodine ablation in the staging, management and stratification of risk of recurrence (ROR) in differentiated thyroid cancer (DTC) patients. Totally, 83 patients (21 male, 62 female) aged 17–75 (mean 39.9) years with DTC were included consecutively in this prospective study. They underwent postthyroidectomy planar and SPECT/CT scans after oral administration of 37–114 MBq iodine-131 (I-131). The scans were interpreted as positive, negative or suspicious for tracer uptake in the thyroid bed, cervical lymph nodes and sites outside the neck. In each case, the findings on planar images were recorded first, without knowledge of SPECT/CT findings. Operative and pathological findings were used for postsurgical tumor–node–metastasis staging. The tumor staging was reassessed after each of these two scans. Single photon emission computed tomography/computed tomography localized radioiodine uptake in the thyroid bed in 9/83 (10.8%) patients, neck nodes in 24/83 (28.9%) patients and distant metastases in 8/83 (9.6%) patients in addition to the planar study. Staging was changed in 8/83 (9.6%), ROR in 11/83 (13.2%) and management in 26/83 (31.3%) patients by the pretherapy SPECT/CT in comparison to planar imaging. SPECT/CT had incremental value in 32/83 patients (38.5%) over the planar scan. Single photon emission computed tomography/computed tomography is feasible during a diagnostic I-131 scan with a low amount of radiotracer. It improved the interpretation of pretherapy I-131 scintigraphy and changed the staging and subsequent patient management

  6. Use of Computed Tomography and Positron Emission Tomography/Computed Tomography for Staging of Local Extent in Patients With Malignant Pleural Mesothelioma

    OpenAIRE

    Frauenfelder, Thomas; Kestenholz, Peter; Hunziker, Roger; Nguyen, Thi Dan Linh; Fries, Martina; Veit-Haibach, Patrick; Husmann, Lars; Stahel, Rolf; Weder, Walter; Opitz, Isabelle

    2015-01-01

    PURPOSE The objective of this study was to determine the diagnostic value of computed tomography (CT) and positron emission tomography (PET)/CT for staging of malignant pleural mesothelioma (MPM) in patients undergoing induction chemotherapy. METHODS Sixty-two patients (median age, 61 years; female: n = 9) with proven MPM underwent CT after induction chemotherapy. Of these, 28 underwent additional PET/CT. Extrapleural pneumonectomy was performed for pathological TNM staging. Clinical TNM s...

  7. Clinical utility of dental cone-beam computed tomography: current perspectives

    OpenAIRE

    Jaju, Prashant P; Jaju, Sushma P

    2014-01-01

    Prashant P Jaju,1 Sushma P Jaju21Oral Medicine and Radiology, 2Conservative Dentistry and Endodontics, Rishiraj College of Dental Sciences and Research Center, Bhopal, IndiaAbstract: Panoramic radiography and computed tomography were the pillars of maxillofacial diagnosis. With the advent of cone-beam computed tomography, dental practice has seen a paradigm shift. This review article highlights the potential applications of cone-beam computed tomography in the fields of dental implantology an...

  8. Computed Tomography Status

    Science.gov (United States)

    Hansche, B. D.

    1983-01-01

    Computed tomography (CT) is a relatively new radiographic technique which has become widely used in the medical field, where it is better known as computerized axial tomographic (CAT) scanning. This technique is also being adopted by the industrial radiographic community, although the greater range of densities, variation in samples sizes, plus possible requirement for finer resolution make it difficult to duplicate the excellent results that the medical scanners have achieved.

  9. Impact of Real-Time Image Gating on Spot Scanning Proton Therapy for Lung Tumors: A Simulation Study.

    Science.gov (United States)

    Kanehira, Takahiro; Matsuura, Taeko; Takao, Seishin; Matsuzaki, Yuka; Fujii, Yusuke; Fujii, Takaaki; Ito, Yoichi M; Miyamoto, Naoki; Inoue, Tetsuya; Katoh, Norio; Shimizu, Shinichi; Umegaki, Kikuo; Shirato, Hiroki

    2017-01-01

    To investigate the effectiveness of real-time-image gated proton beam therapy for lung tumors and to establish a suitable size for the gating window (GW). A proton beam gated by a fiducial marker entering a preassigned GW (as monitored by 2 fluoroscopy units) was used with 7 lung cancer patients. Seven treatment plans were generated: real-time-image gated proton beam therapy with GW sizes of ±1, 2, 3, 4, 5, and 8 mm and free-breathing proton therapy. The prescribed dose was 70 Gy (relative biological effectiveness)/10 fractions to 99% of the target. Each of the 3-dimensional marker positions in the time series was associated with the appropriate 4-dimensional computed tomography phase. The 4-dimensional dose calculations were performed. The dose distribution in each respiratory phase was deformed into the end-exhale computed tomography image. The D99 and D5 to D95 of the clinical target volume scaled by the prescribed dose with criteria of D99 >95% and D5 to D95 lung, and treatment times were evaluated. Gating windows ≤ ±2 mm fulfilled the CTV criteria for all patients (whereas the criteria were not always met for GWs ≥ ±3 mm) and gave an average reduction in V20 of more than 17.2% relative to free-breathing proton therapy (whereas GWs ≥ ±4 mm resulted in similar or increased V20). The average (maximum) irradiation times were 384 seconds (818 seconds) for the ±1-mm GW, but less than 226 seconds (292 seconds) for the ±2-mm GW. The maximum increased considerably at ±1-mm GW. Real-time-image gated proton beam therapy with a GW of ±2 mm was demonstrated to be suitable, providing good dose distribution without greatly extending treatment time. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Impact of Real-Time Image Gating on Spot Scanning Proton Therapy for Lung Tumors: A Simulation Study

    Energy Technology Data Exchange (ETDEWEB)

    Kanehira, Takahiro [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Matsuura, Taeko, E-mail: matsuura@med.hokudai.ac.jp [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo (Japan); Takao, Seishin; Matsuzaki, Yuka; Fujii, Yusuke; Fujii, Takaaki [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Ito, Yoichi M. [Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Miyamoto, Naoki [Department of Medical Physics, Hokkaido University Hospital, Sapporo (Japan); Inoue, Tetsuya [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Katoh, Norio [Department of Radiation Oncology, Hokkaido University Hospital, Sapporo (Japan); Shimizu, Shinichi [Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Department of Radiation Oncology, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Umegaki, Kikuo [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo (Japan); Shirato, Hiroki [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan)

    2017-01-01

    Purpose: To investigate the effectiveness of real-time-image gated proton beam therapy for lung tumors and to establish a suitable size for the gating window (GW). Methods and Materials: A proton beam gated by a fiducial marker entering a preassigned GW (as monitored by 2 fluoroscopy units) was used with 7 lung cancer patients. Seven treatment plans were generated: real-time-image gated proton beam therapy with GW sizes of ±1, 2, 3, 4, 5, and 8 mm and free-breathing proton therapy. The prescribed dose was 70 Gy (relative biological effectiveness)/10 fractions to 99% of the target. Each of the 3-dimensional marker positions in the time series was associated with the appropriate 4-dimensional computed tomography phase. The 4-dimensional dose calculations were performed. The dose distribution in each respiratory phase was deformed into the end-exhale computed tomography image. The D99 and D5 to D95 of the clinical target volume scaled by the prescribed dose with criteria of D99 >95% and D5 to D95 <5%, V20 for the normal lung, and treatment times were evaluated. Results: Gating windows ≤ ±2 mm fulfilled the CTV criteria for all patients (whereas the criteria were not always met for GWs ≥ ±3 mm) and gave an average reduction in V20 of more than 17.2% relative to free-breathing proton therapy (whereas GWs ≥ ±4 mm resulted in similar or increased V20). The average (maximum) irradiation times were 384 seconds (818 seconds) for the ±1-mm GW, but less than 226 seconds (292 seconds) for the ±2-mm GW. The maximum increased considerably at ±1-mm GW. Conclusion: Real-time-image gated proton beam therapy with a GW of ±2 mm was demonstrated to be suitable, providing good dose distribution without greatly extending treatment time.

  11. Real-time management (RTM) by cloud computing system dynamics (CCSD) for risk analysis of Fukushima nuclear power plant (NPP) accident

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyo Sung [Yonsei Univ., Wonju Gangwon-do (Korea, Republic of). Dept. of Radiation Convergence Engineering; Woo, Tae Ho [Yonsei Univ., Wonju Gangwon-do (Korea, Republic of). Dept. of Radiation Convergence Engineering; The Cyber Univ. of Korea, Seoul (Korea, Republic of). Dept. of Mechanical and Control Engineering

    2017-03-15

    The earthquake and tsunami induced accident of nuclear power plant (NPP) in Fukushima disaster is investigated by the real-time management (RTM) method. This non-linear logic of the safety management is applied to enhance the methodological confidence in the NPP reliability. The case study of the earthquake is modeled for the fast reaction characteristics of the RTM. The system dynamics (SD) modeling simulations and cloud computing are applied for the RTM method where the real time simulation has the fast and effective communication for the accident remediation and prevention. Current tablet computing system can improve the safety standard of the NPP. Finally, the procedure of the cloud computing system dynamics (CCSD) modeling is constructed.

  12. Real-time management (RTM) by cloud computing system dynamics (CCSD) for risk analysis of Fukushima nuclear power plant (NPP) accident

    International Nuclear Information System (INIS)

    Cho, Hyo Sung; Woo, Tae Ho; The Cyber Univ. of Korea, Seoul

    2017-01-01

    The earthquake and tsunami induced accident of nuclear power plant (NPP) in Fukushima disaster is investigated by the real-time management (RTM) method. This non-linear logic of the safety management is applied to enhance the methodological confidence in the NPP reliability. The case study of the earthquake is modeled for the fast reaction characteristics of the RTM. The system dynamics (SD) modeling simulations and cloud computing are applied for the RTM method where the real time simulation has the fast and effective communication for the accident remediation and prevention. Current tablet computing system can improve the safety standard of the NPP. Finally, the procedure of the cloud computing system dynamics (CCSD) modeling is constructed.

  13. Using real-time fMRI brain-computer interfacing to treat eating disorders.

    Science.gov (United States)

    Sokunbi, Moses O

    2018-05-15

    Real-time functional magnetic resonance imaging based brain-computer interfacing (fMRI neurofeedback) has shown encouraging outcomes in the treatment of psychiatric and behavioural disorders. However, its use in the treatment of eating disorders is very limited. Here, we give a brief overview of how to design and implement fMRI neurofeedback intervention for the treatment of eating disorders, considering the basic and essential components. We also attempt to develop potential adaptations of fMRI neurofeedback intervention for the treatment of anorexia nervosa, bulimia nervosa and binge eating disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Cone-beam computed tomography: Time to move from ALARA to ALADA

    Energy Technology Data Exchange (ETDEWEB)

    Jaju, Prashant P.; Jaju, Sushma P. [Rishiraj College of Dental Sciences and Research Centre, Bhopa(Indonesia)

    2015-12-15

    Cone-beam computed tomography (CBCT) is routinely recommended for dental diagnosis and treatment planning. CBCT exposes patients to less radiation than does conventional CT. Still, lack of proper education among dentists and specialists is resulting in improper referral for CBCT. In addition, aiming to generate high-quality images, operators may increase the radiation dose, which can expose the patient to unnecessary risk. This letter advocates appropriate radiation dosing during CBCT to the benefit of both patients and dentists, and supports moving from the concept of 'as low as reasonably achievable' (ALARA) to 'as low as diagnostically acceptable' (ALADA.

  15. A real-time architecture for time-aware agents.

    Science.gov (United States)

    Prouskas, Konstantinos-Vassileios; Pitt, Jeremy V

    2004-06-01

    This paper describes the specification and implementation of a new three-layer time-aware agent architecture. This architecture is designed for applications and environments where societies of humans and agents play equally active roles, but interact and operate in completely different time frames. The architecture consists of three layers: the April real-time run-time (ART) layer, the time aware layer (TAL), and the application agents layer (AAL). The ART layer forms the underlying real-time agent platform. An original online, real-time, dynamic priority-based scheduling algorithm is described for scheduling the computation time of agent processes, and it is shown that the algorithm's O(n) complexity and scalable performance are sufficient for application in real-time domains. The TAL layer forms an abstraction layer through which human and agent interactions are temporally unified, that is, handled in a common way irrespective of their temporal representation and scale. A novel O(n2) interaction scheduling algorithm is described for predicting and guaranteeing interactions' initiation and completion times. The time-aware predicting component of a workflow management system is also presented as an instance of the AAL layer. The described time-aware architecture addresses two key challenges in enabling agents to be effectively configured and applied in environments where humans and agents play equally active roles. It provides flexibility and adaptability in its real-time mechanisms while placing them under direct agent control, and it temporally unifies human and agent interactions.

  16. Evolution of Computed Tomography Findings in Secondary Aortoenteric Fistula

    International Nuclear Information System (INIS)

    Bas, Ahmet; Simsek, Osman; Kandemirli, Sedat Giray; Rafiee, Babak; Gulsen, Fatih; Numan, Furuzan

    2015-01-01

    Aortoenteric fistula is a rare but significant clinical entity associated with high morbidity and mortality if remain untreated. Clinical presentation and imaging findings may be subtle and prompt diagnosis can be difficult. Herein, we present a patient who initially presented with abdominal pain and computed tomography showed an aortic aneurysm compressing duodenum without any air bubbles. One month later, the patient presented with gastrointestinal bleeding and computed tomography revealed air bubbles within aneurysm. With a diagnosis of aortoenteric fistula, endovascular aneurysm repair was carried out. This case uniquely presented the computed tomography findings in progression of an aneurysm to an aortoenteric fistula

  17. Automated real-time software development

    Science.gov (United States)

    Jones, Denise R.; Walker, Carrie K.; Turkovich, John J.

    1993-01-01

    A Computer-Aided Software Engineering (CASE) system has been developed at the Charles Stark Draper Laboratory (CSDL) under the direction of the NASA Langley Research Center. The CSDL CASE tool provides an automated method of generating source code and hard copy documentation from functional application engineering specifications. The goal is to significantly reduce the cost of developing and maintaining real-time scientific and engineering software while increasing system reliability. This paper describes CSDL CASE and discusses demonstrations that used the tool to automatically generate real-time application code.

  18. Quantified measurement of brain blood volume: comparative evaluations between the single photon emission computer tomography and the positron computer tomography

    International Nuclear Information System (INIS)

    Bouvard, G.; Fernandez, Y.; Petit-Taboue, M.C.; Derlon, J.M.; Travere, J.M.; Le Poec, C.

    1991-01-01

    The quantified measurement of cerebral blood volume is interesting for the brain blood circulation studies. This measurement is often used in positron computed tomography. It's more difficult in single photon emission computed tomography: there are physical problems with the limited resolution of the detector, the Compton effect and the photon attenuation. The objectif of this study is to compare the results between these two techniques. The quantified measurement of brain blood volume is possible with the single photon emission computer tomogragry. However, there is a loss of contrast [fr

  19. Acute mediastinitis: multidetector computed tomography findings following cardiac surgery

    International Nuclear Information System (INIS)

    Macedo, Clarissa Aguiar de; Baena, Marcos Eduardo da Silva; Uezumi, Kiyomi Kato; Castro, Claudio Campi de; Lucarelli, Claudio Luiz; Cerri, Giovanni Guido

    2008-01-01

    Postoperative mediastinitis is defined as an infection of the organs and tissues in the mediastinal space, with an incidence ranging between 0.4% and 5% of cases. This disease severity varies from infection of superficial tissues in the chest wall to fulminant mediastinitis with sternal involvement. Diagnostic criterion for postoperative detection of acute mediastinitis at computed tomography is the presence of fluid collections and gas in the mediastinal space, which might or might not be associated with peristernal abnormalities such as edema of soft tissues, separation of sternal segments with marginal bone resorption, sclerosis and osteomyelitis. Other associated findings include lymphadenomegaly, pulmonary consolidation and pleural/ pericardial effusion. Some of these findings, such as mediastinal gas and small fluid collections can be typically found in the absence of infection, early in the period following thoracic surgery where the effectiveness of computed tomography is limited. After approximately two weeks, computed tomography achieves almost 100% sensitivity and specificity. Patients with clinical suspicion of mediastinitis should be submitted to computed tomography for investigating the presence of fluid collections to identify the extent and nature of the disease. Multidetector computed tomography allows 3D images reconstruction, contributing particularly to the evaluation of the sternum. (author)

  20. Acute mediastinitis: multidetector computed tomography findings following cardiac surgery

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Clarissa Aguiar de [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Medicina. Instituto do Coracao (InCor)]. E-mail: clarissaaguiarm@yahoo.com.br; Baena, Marcos Eduardo da Silva [Instituto do Coracao (InCor), Sao Paulo, SP (Brazil). Unit of Ultrasonography; Uezumi, Kiyomi Kato [Instituto do Coracao (InCor), Sao Paulo, SP (Brazil). Unit of Computed Tomography; Castro, Claudio Campi de [Instituto do Coracao (InCor), Sao Paulo, SP (Brazil). Unit of Magnetic Resonance Imaging; Lucarelli, Claudio Luiz [Instituto do Coracao (InCor), Sao Paulo, SP (Brazil). Center of Diagnosis; Cerri, Giovanni Guido [Universidade de Sao Paulo (USP), SP (Brazil). School of Medicine. Dept. of Radiology

    2008-07-15

    Postoperative mediastinitis is defined as an infection of the organs and tissues in the mediastinal space, with an incidence ranging between 0.4% and 5% of cases. This disease severity varies from infection of superficial tissues in the chest wall to fulminant mediastinitis with sternal involvement. Diagnostic criterion for postoperative detection of acute mediastinitis at computed tomography is the presence of fluid collections and gas in the mediastinal space, which might or might not be associated with peristernal abnormalities such as edema of soft tissues, separation of sternal segments with marginal bone resorption, sclerosis and osteomyelitis. Other associated findings include lymphadenomegaly, pulmonary consolidation and pleural/ pericardial effusion. Some of these findings, such as mediastinal gas and small fluid collections can be typically found in the absence of infection, early in the period following thoracic surgery where the effectiveness of computed tomography is limited. After approximately two weeks, computed tomography achieves almost 100% sensitivity and specificity. Patients with clinical suspicion of mediastinitis should be submitted to computed tomography for investigating the presence of fluid collections to identify the extent and nature of the disease. Multidetector computed tomography allows 3D images reconstruction, contributing particularly to the evaluation of the sternum. (author)

  1. Computed tomography in intracranial malignant lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, S; Odake, G; Fujimoto, M; Yamaki, T; Mizukawa, N [Kyoto Prefectural Univ. of Medicine (Japan)

    1978-09-01

    Malignant lymphoma of the central nervous system has been found more and more often in recent years, partly because of the increased use of radiation and such drugs as steroids and antibiotics. However, the definite diagnosis of this disease is difficult until histological verification has been done by operation or autopsy. Since the revolutionary development of computed tomography, however, several reports have been presented, on the computed tomography of malignant lymphoma of the thorax and abdomen. Nevertheless, only a few cases of intracranial malignant lymphoma have been reported. The purpose of this paper, using four patients, is to emphasize the value of computed tomography in the diagnosis of intracranial malignant lymphoma. The characteristic CT findings of intracranial malignant lymphoma may be summarized follows: (1) the tumors are demonstrated to be well-defined, nodular-shaped, and homogenous isodensity - or slightly high-density - lesions in plain scans, and the tumors homogenously increase in density upon contrast enhancement; (2) the disease always has multifocal intracranial lesions, which are shown simultaneously or one after another, and (3) perifocal edema is prominent around the tumors in the cerebral hemisphere.

  2. Computed tomography of drill cores

    International Nuclear Information System (INIS)

    Taylor, T.

    1985-08-01

    A preliminary computed tomography evaluation of drill cores of granite and sandstone has generated geologically significant data. Density variations as small as 4 percent and fractures as narrow as 0.1 mm were easily detected

  3. Real-time performance monitoring and management system

    Science.gov (United States)

    Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA

    2007-06-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  4. A compressed sensing based reconstruction algorithm for synchrotron source propagation-based X-ray phase contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Melli, Seyed Ali, E-mail: sem649@mail.usask.ca [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Wahid, Khan A. [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Babyn, Paul [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada); Montgomery, James [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Snead, Elisabeth [Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK (Canada); El-Gayed, Ali [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Pettitt, Murray; Wolkowski, Bailey [College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK (Canada); Wesolowski, Michal [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada)

    2016-01-11

    Synchrotron source propagation-based X-ray phase contrast computed tomography is increasingly used in pre-clinical imaging. However, it typically requires a large number of projections, and subsequently a large radiation dose, to produce high quality images. To improve the applicability of this imaging technique, reconstruction algorithms that can reduce the radiation dose and acquisition time without degrading image quality are needed. The proposed research focused on using a novel combination of Douglas–Rachford splitting and randomized Kaczmarz algorithms to solve large-scale total variation based optimization in a compressed sensing framework to reconstruct 2D images from a reduced number of projections. Visual assessment and quantitative performance evaluations of a synthetic abdomen phantom and real reconstructed image of an ex-vivo slice of canine prostate tissue demonstrate that the proposed algorithm is competitive in reconstruction process compared with other well-known algorithms. An additional potential benefit of reducing the number of projections would be reduction of time for motion artifact to occur if the sample moves during image acquisition. Use of this reconstruction algorithm to reduce the required number of projections in synchrotron source propagation-based X-ray phase contrast computed tomography is an effective form of dose reduction that may pave the way for imaging of in-vivo samples.

  5. Contrast timing in computed tomography: Effect of different contrast media concentrations on bolus geometry

    International Nuclear Information System (INIS)

    Mahnken, Andreas H.; Jost, Gregor; Seidensticker, Peter; Kuhl, Christiane; Pietsch, Hubertus

    2012-01-01

    Objective: To assess the effect of low-osmolar, monomeric contrast media with different iodine concentrations on bolus shape in aortic CT angiography. Materials and methods: Repeated sequential computed tomography scanning of the descending aorta of eight beagle dogs (5 male, 12.7 ± 3.1 kg) was performed without table movement with a standardized CT scan protocol. Iopromide 300 (300 mg I/mL), iopromide 370 (370 mg I/mL) and iomeprol 400 (400 mg I/mL) were administered via a foreleg vein with an identical iodine delivery rate of 1.2 g I/s and a total iodine dose of 300 mg I/kg body weight. Time-enhancement curves were computed and analyzed. Results: Iopromide 300 showed the highest peak enhancement (445.2 ± 89.1 HU), steepest up-slope (104.2 ± 17.5 HU/s) and smallest full width at half maximum (FWHM; 5.8 ± 1.0 s). Peak enhancement, duration of FWHM, enhancement at FWHM and up-slope differed significantly between iopromide 300 and iomeprol 400 (p 0.05). Conclusions: Low viscous iopromide 300 results in a better defined bolus with a significantly higher peak enhancement, steeper up-slope and smaller FWHM when compared to iomeprol 400. These characteristics potentially affect contrast timing.

  6. CUDA-based real time surgery simulation.

    Science.gov (United States)

    Liu, Youquan; De, Suvranu

    2008-01-01

    In this paper we present a general software platform that enables real time surgery simulation on the newly available compute unified device architecture (CUDA)from NVIDIA. CUDA-enabled GPUs harness the power of 128 processors which allow data parallel computations. Compared to the previous GPGPU, it is significantly more flexible with a C language interface. We report implementation of both collision detection and consequent deformation computation algorithms. Our test results indicate that the CUDA enables a twenty times speedup for collision detection and about fifteen times speedup for deformation computation on an Intel Core 2 Quad 2.66 GHz machine with GeForce 8800 GTX.

  7. The Development of a Course Sequence in Real-Time Systems Design

    Science.gov (United States)

    1993-08-01

    This project deals with the development of a senior level course sequence in software intensive real - time systems . The sequence consists of a course...for an engineering industrial career in real - time systems development. The course sequence emphasizes practical standards, techniques, and tools for...system development. Few universities include real - time systems development in their undergraduate Computer Engineering or Computer Science curriculum

  8. Computed tomography in epidural abscess, subdural empyema, meningitis, and brain abscess

    International Nuclear Information System (INIS)

    Schadel, A.; Boettcher, H.D.; Haverkamp, U.; Wagner, W.; Schmilowski, G.M.; Muenster Univ.

    1983-01-01

    Computerised tomography cannot be of great help in diagnosing meningitis. Examination of the cerebrospinal fluid remains essential. After the inflammation of the meninges has progressed to some stage of encephalitis, the formation of an abscess can be located via computed tomography. It is characterised by the ring-type abscess capsule. Computed tomography for diagnostic purposes is superior to cerebral scanning, which demonstrates enhanced activity, but does not show the formation of a membrane, so essential for differential diagnosis. Furthermore, computed tomography shows the adjacent anatomical structures and answers the questions of displacements and threatening invasion of the ventricle system. Epidural and subdural abscesses can also be located by computed tomography. Therapy can begin directly after computerised tomography, whereas in scintigraphy only a non-specific enhanced activity is present, which often does not allow differentiation between epidural and subdural location. (orig.) [de

  9. Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography

    Science.gov (United States)

    Espigares, Jorge; Sadr, Alireza; Hamba, Hidenori; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori

    2015-01-01

    Abstract. A technology to characterize early enamel lesions is needed in dentistry. Optical coherence tomography (OCT) is a noninvasive method that provides high-resolution cross-sectional images. The aim of this study is to compare OCT with microfocus x-ray computed tomography (μCT) for assessment of natural enamel lesions in vitro. Ten human teeth with visible white spot-like changes on the enamel smooth surface and no cavitation (ICDAS code 2) were subjected to imaging by μCT (SMX-100CT, Shimadzu) and 1300-nm swept-source OCT (Dental SS-OCT, Panasonic Health Care). In μCT, the lesions appeared as radiolucent dark areas, while in SS-OCT, they appeared as areas of increased signal intensity beneath the surface. An SS-OCT attenuation coefficient based on Beer–Lambert law could discriminate lesions from sound enamel. Lesion depth ranged from 175 to 606  μm in SS-OCT. A correlation between μCT and SS-OCT was found regarding lesion depth (R=0.81, p<0.001) and also surface layer thickness (R=0.76, p<0.005). The images obtained clinically in real time using the dental SS-OCT system are suitable for the assessment of natural subsurface lesions and their surface layer, providing comparable images to a laboratory high-resolution μCT without the use of x-ray. PMID:26158079

  10. Real-Time Evaluation of Breast Self-Examination Using Computer Vision

    Directory of Open Access Journals (Sweden)

    Eman Mohammadi

    2014-01-01

    Full Text Available Breast cancer is the most common cancer among women worldwide and breast self-examination (BSE is considered as the most cost-effective approach for early breast cancer detection. The general objective of this paper is to design and develop a computer vision algorithm to evaluate the BSE performance in real-time. The first stage of the algorithm presents a method for detecting and tracking the nipples in frames while a woman performs BSE; the second stage presents a method for localizing the breast region and blocks of pixels related to palpation of the breast, and the third stage focuses on detecting the palpated blocks in the breast region. The palpated blocks are highlighted at the time of BSE performance. In a correct BSE performance, all blocks must be palpated, checked, and highlighted, respectively. If any abnormality, such as masses, is detected, then this must be reported to a doctor to confirm the presence of this abnormality and proceed to perform other confirmatory tests. The experimental results have shown that the BSE evaluation algorithm presented in this paper provides robust performance.

  11. Real-time evaluation of breast self-examination using computer vision.

    Science.gov (United States)

    Mohammadi, Eman; Dadios, Elmer P; Gan Lim, Laurence A; Cabatuan, Melvin K; Naguib, Raouf N G; Avila, Jose Maria C; Oikonomou, Andreas

    2014-01-01

    Breast cancer is the most common cancer among women worldwide and breast self-examination (BSE) is considered as the most cost-effective approach for early breast cancer detection. The general objective of this paper is to design and develop a computer vision algorithm to evaluate the BSE performance in real-time. The first stage of the algorithm presents a method for detecting and tracking the nipples in frames while a woman performs BSE; the second stage presents a method for localizing the breast region and blocks of pixels related to palpation of the breast, and the third stage focuses on detecting the palpated blocks in the breast region. The palpated blocks are highlighted at the time of BSE performance. In a correct BSE performance, all blocks must be palpated, checked, and highlighted, respectively. If any abnormality, such as masses, is detected, then this must be reported to a doctor to confirm the presence of this abnormality and proceed to perform other confirmatory tests. The experimental results have shown that the BSE evaluation algorithm presented in this paper provides robust performance.

  12. Computed tomography and (18)F-fluorodeoxyglucose positron emission tomography/computed tomography findings in adrenal candidiasis and histoplasmosis: two cases.

    Science.gov (United States)

    Altinmakas, Emre; Guo, Ming; Kundu, Uma R; Habra, Mouhammed Amir; Ng, Chaan

    2015-01-01

    We report the contrast-enhanced computed tomography (CT) and (18)F-fluorodeoxyglucose positron emission tomography findings in adrenal histoplasmosis and candidiasis. Both demonstrated bilateral hypermetabolic heterogeneous adrenal masses with limited wash-out on delayed CT. Adrenal candidiasis has not been previously reported, nor have the CT wash-out findings in either infection. The adrenal imaging findings are indistinguishable from malignancy, which is more common; but in this setting, physicians should be alert to the differential diagnosis of fungal infections, since it can be equally deadly. Published by Elsevier Inc.

  13. Multiple single-element transducer photoacoustic computed tomography system

    Science.gov (United States)

    Kalva, Sandeep Kumar; Hui, Zhe Zhi; Pramanik, Manojit

    2018-02-01

    Light absorption by the chromophores (hemoglobin, melanin, water etc.) present in any biological tissue results in local temperature rise. This rise in temperature results in generation of pressure waves due to the thermoelastic expansion of the tissue. In a circular scanning photoacoustic computed tomography (PACT) system, these pressure waves can be detected using a single-element ultrasound transducer (SUST) (while rotating in full 360° around the sample) or using a circular array transducer. SUST takes several minutes to acquire the PA data around the sample whereas the circular array transducer takes only a fraction of seconds. Hence, for real time imaging circular array transducers are preferred. However, these circular array transducers are custom made, expensive and not easily available in the market whereas SUSTs are cheap and readily available in the market. Using SUST for PACT systems is still cost effective. In order to reduce the scanning time to few seconds instead of using single SUST (rotating 360° ), multiple SUSTs can be used at the same time to acquire the PA data. This will reduce the scanning time by two-fold in case of two SUSTs (rotating 180° ) or by four-fold and eight-fold in case of four SUSTs (rotating 90° ) and eight SUSTs (rotating 45° ) respectively. Here we show that with multiple SUSTs, similar PA images (numerical and experimental phantom data) can be obtained as that of PA images obtained using single SUST.

  14. Analysis of the computed tomography in the acute abdomen; Analise da tomografia computadorizada no abdome agudo

    Energy Technology Data Exchange (ETDEWEB)

    Hochhegger, Bruno [Complexo Hospitalar Santa Casa de Porto Alegre, RS (Brazil); Moraes, Everton [Universidade Federal de Santa Maria (UFSM), RS (Brazil); Haygert, Carlos Jesus Pereira; Antunes, Paulo Sergio Pase [Hospital Universitario de Santa Maria, RS (Brazil); Gazzoni, Fernando [Pontificia Universidade Catolica de Porto Alegre (PUC-RS), Porto Alegre, RS (Brazil). Hospital Sao Lucas; Andrade, Rubens Gabriel Feijo [Fundacao Universitaria de Cardiologia de Porto Alegre, RS (Brazil). Inst. de Cardiologia; Bueno, Leticia Rossi [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Lopes, Luis Felipe Dias [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Estatistica]. E-mail: brunorgs@pop.com.br

    2007-07-01

    Introduction: This study tends to test the capacity of the computed tomography in assist in the diagnosis and the approach of the acute abdomen. Material and method: This is a longitudinal and prospective study, in which were analyzed the patients with the diagnosis of acute abdomen. There were obtained 105 cases of acute abdomen and after the application of the exclusions criteria were included 28 patients in the study. Results: Computed tomography changed the diagnostic hypothesis of the physicians in 50% of the cases (p < 0.05), and the confidence index in 85.71% of the cases (p 0.014). Computed tomography also altered the management in 46.43% of the cases (p > 0.05), where 78.57% of the patients had surgical indication before computed tomography and 67.86% after computed tomography (p = 0.0546). The index of accurate diagnosis of computed tomography, when compared to the anatomopathologic examination and the final diagnosis, was observed in 82.14% of the cases (p = 0.013). When the analysis was done dividing the patients in surgical and nonsurgical group, were obtained an accuracy of 89.28% (p 0.0001). The difference of 7.2 days of hospitalization (p = 0.003) was obtained compared with the mean of the acute abdomen without use the computed tomography. Conclusion: The computed tomography is correlative with the anatomopathology and has great accuracy in the surgical indication, associated with the capacity of increase the confident index of the physicians, reduces the hospitalization time, reduces the number of surgeries and is cost-effective. (author)

  15. GPU-based cone beam computed tomography.

    Science.gov (United States)

    Noël, Peter B; Walczak, Alan M; Xu, Jinhui; Corso, Jason J; Hoffmann, Kenneth R; Schafer, Sebastian

    2010-06-01

    The use of cone beam computed tomography (CBCT) is growing in the clinical arena due to its ability to provide 3D information during interventions, its high diagnostic quality (sub-millimeter resolution), and its short scanning times (60 s). In many situations, the short scanning time of CBCT is followed by a time-consuming 3D reconstruction. The standard reconstruction algorithm for CBCT data is the filtered backprojection, which for a volume of size 256(3) takes up to 25 min on a standard system. Recent developments in the area of Graphic Processing Units (GPUs) make it possible to have access to high-performance computing solutions at a low cost, allowing their use in many scientific problems. We have implemented an algorithm for 3D reconstruction of CBCT data using the Compute Unified Device Architecture (CUDA) provided by NVIDIA (NVIDIA Corporation, Santa Clara, California), which was executed on a NVIDIA GeForce GTX 280. Our implementation results in improved reconstruction times from minutes, and perhaps hours, to a matter of seconds, while also giving the clinician the ability to view 3D volumetric data at higher resolutions. We evaluated our implementation on ten clinical data sets and one phantom data set to observe if differences occur between CPU and GPU-based reconstructions. By using our approach, the computation time for 256(3) is reduced from 25 min on the CPU to 3.2 s on the GPU. The GPU reconstruction time for 512(3) volumes is 8.5 s. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  16. An approach to a real-time distribution system

    Science.gov (United States)

    Kittle, Frank P., Jr.; Paddock, Eddie J.; Pocklington, Tony; Wang, Lui

    1990-01-01

    The requirements of a real-time data distribution system are to provide fast, reliable delivery of data from source to destination with little or no impact to the data source. In this particular case, the data sources are inside an operational environment, the Mission Control Center (MCC), and any workstation receiving data directly from the operational computer must conform to the software standards of the MCC. In order to supply data to development workstations outside of the MCC, it is necessary to use gateway computers that prevent unauthorized data transfer back to the operational computers. Many software programs produced on the development workstations are targeted for real-time operation. Therefore, these programs must migrate from the development workstation to the operational workstation. It is yet another requirement for the Data Distribution System to ensure smooth transition of the data interfaces for the application developers. A standard data interface model has already been set up for the operational environment, so the interface between the distribution system and the application software was developed to match that model as closely as possible. The system as a whole therefore allows the rapid development of real-time applications without impacting the data sources. In summary, this approach to a real-time data distribution system provides development users outside of the MCC with an interface to MCC real-time data sources. In addition, the data interface was developed with a flexible and portable software design. This design allows for the smooth transition of new real-time applications to the MCC operational environment.

  17. Optical coherence tomography and computer-aided diagnosis of a murine model of chronic kidney disease

    Science.gov (United States)

    Wang, Bohan; Wang, Hsing-Wen; Guo, Hengchang; Anderson, Erik; Tang, Qinggong; Wu, Tongtong; Falola, Reuben; Smith, Tikina; Andrews, Peter M.; Chen, Yu

    2017-12-01

    Chronic kidney disease (CKD) is characterized by a progressive loss of renal function over time. Histopathological analysis of the condition of glomeruli and the proximal convolutional tubules over time can provide valuable insights into the progression of CKD. Optical coherence tomography (OCT) is a technology that can analyze the microscopic structures of a kidney in a nondestructive manner. Recently, we have shown that OCT can provide real-time imaging of kidney microstructures in vivo without administering exogenous contrast agents. A murine model of CKD induced by intravenous Adriamycin (ADR) injection is evaluated by OCT. OCT images of the rat kidneys have been captured every week up to eight weeks. Tubular diameter and hypertrophic tubule population of the kidneys at multiple time points after ADR injection have been evaluated through a fully automated computer-vision system. Results revealed that mean tubular diameter and hypertrophic tubule population increase with time in post-ADR injection period. The results suggest that OCT images of the kidney contain abundant information about kidney histopathology. Fully automated computer-aided diagnosis based on OCT has the potential for clinical evaluation of CKD conditions.

  18. Implementation of double-C-arm synchronous real-time X-ray positioning system computer aided for aspiration biopsy of small lung lesion

    International Nuclear Information System (INIS)

    Zhu Hong; Wang Dong; Ye Yukun; Zhou Yuan; Lu Jianfeng; Yang Jingyu; Wang Lining

    2007-01-01

    Objective: To evaluate the feasibility of a new type of real-time three-dimensional X-ray positioning system for aspiration biopsy of small lung lesions. Methods: Using X-ray imaging technology and X-ray collimator technology and combining with double-C-arm X-ray machine, two different synchronous real-time images were obtained from the vertical to the horizontal plane. Then, with the computer image processing and computer vision processing technologies, dynamic tracking for 3D information of a pulmonary lesion and the needle in aspiration, and the relative position of the two, were established. Results: There was no interference while the two imaging perpendicularly X-ray beam met, two synchronous real-time image acquisition and tracking of a lung lesion and a needle could be completed in free respiration. The average positioning system error was about 0.5 mm, the largest positioning error was about 1.0 mm, real-time display rate was 5 screen/sec. Conclusions: the establishment of a new type of double-C-arm synchronous real-time X-ray positioning system is feasible. It is available for the fast and accurate aspiration biopsy of small lung lesions. (authors)

  19. Computed tomography of craniomandibular osteopathy in a dog

    International Nuclear Information System (INIS)

    Hudson, J.A.; Montgomery, R.D.; Hathcock, J.T.; Jarboe, J.M.

    1994-01-01

    This report describes the use of computed tomography (CT) to evaluate the tympanic bullae and angular processes of the mandible in a West Highland White Terrier with craniomandibular osteopathy. The patient presented initially for swelling of the right forelimb. The report illustrates the use of computed tomography for evaluation of craniomandibular osteopathy, initial presentation with long-bone pathology, and remarkable resolution of osseous changes

  20. Research of real-time communication software

    Science.gov (United States)

    Li, Maotang; Guo, Jingbo; Liu, Yuzhong; Li, Jiahong

    2003-11-01

    Real-time communication has been playing an increasingly important role in our work, life and ocean monitor. With the rapid progress of computer and communication technique as well as the miniaturization of communication system, it is needed to develop the adaptable and reliable real-time communication software in the ocean monitor system. This paper involves the real-time communication software research based on the point-to-point satellite intercommunication system. The object-oriented design method is adopted, which can transmit and receive video data and audio data as well as engineering data by satellite channel. In the real-time communication software, some software modules are developed, which can realize the point-to-point satellite intercommunication in the ocean monitor system. There are three advantages for the real-time communication software. One is that the real-time communication software increases the reliability of the point-to-point satellite intercommunication system working. Second is that some optional parameters are intercalated, which greatly increases the flexibility of the system working. Third is that some hardware is substituted by the real-time communication software, which not only decrease the expense of the system and promotes the miniaturization of communication system, but also aggrandizes the agility of the system.

  1. Design and development of a diversified real time computer for future FBRs

    International Nuclear Information System (INIS)

    Sujith, K.R.; Bhattacharyya, Anindya; Behera, R.P.; Murali, N.

    2014-01-01

    The current safety related computer system of Prototype Fast Breeder Reactor (PFBR) under construction in Kalpakkam consists of two redundant Versa Module Europa (VME) bus based Real Time Computer system with a Switch Over Logic Circuit (SOLC). Since both the VME systems are identical, the dual redundant system is prone to common cause failure (CCF). The probability of CCF can be reduced by adopting diversity. Design diversity has long been used to protect redundant systems against common-mode failures. The conventional notion of diversity relies on 'independent' generation of 'different' implementations. This paper discusses the design and development of a diversified Real Time Computer which will replace one of the computer system in the dual redundant architecture. Compact PCI (cPCI) bus systems are widely used in safety critical applications such as avionics, railways, defence and uses diverse electrical signaling and logical specifications, hence was chosen for development of the diversified system. Towards the initial development a CPU card based on an ARM-9 processor, 16 channel Relay Output (RO) card and a 30 channel Analog Input (AI) card was developed. All the cards mentioned supports hot-swap and geographic addressing capability. In order to mitigate the component obsolescence problem the 32 bit PCI target controller and associated glue logic for the slave I/O cards was indigenously developed using VHDL. U-boot was selected as the boot loader and arm Linux 2.6 as the preliminary operating system for the CPU card. Board specific initialization code for the CPU card was written in ARM assembly language and serial port initialization was written in C language. Boot loader along with Linux 2.6 kernel and jffs2 file system was flashed into the CPU card. Test applications written in C language were used to test the various peripherals of the CPU card. Device driver for the AI and RO card was developed as Linux kernel modules and application library was also

  2. The Western Denmark Cardiac Computed Tomography Registry

    DEFF Research Database (Denmark)

    Nielsen, Lene Hüche; Nørgaard, Bjarne Linde; Tilsted, Hans-Henrik

    2014-01-01

    BACKGROUND: As a subregistry to the Western Denmark Heart Registry (WDHR), the Western Denmark Cardiac Computed Tomography Registry (WDHR-CCTR) is a clinical database established in 2008 to monitor and improve the quality of cardiac computed tomography (CT) in Western Denmark. OBJECTIVE: We...... examined the content, data quality, and research potential of the WDHR-CCTR. METHODS: We retrieved 2008-2012 data to examine the 1) content; 2) completeness of procedure registration using the Danish National Patient Registry as reference; 3) completeness of variable registration comparing observed vs...

  3. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... is Children's CT? Computed tomography, more commonly known as a CT or CAT scan, is a diagnostic ... is used to evaluate: complications from infections such as pneumonia a tumor that arises in the lung ...

  4. Measurement of density distribution of fluids by real-time holographic interferometer using lenticular lens

    International Nuclear Information System (INIS)

    Sakurai, Katsumi; Okamoto, Koji; Kato, Fumitake; Shimizu, Isao

    1998-01-01

    The three-dimensional density distribution could be measured using the computer tomography technique with interferogram image. The photoconductor-plastic hologram (PPH) is a new hologram device which can easily make the hologram for the real-time interferometer. Since the image contains 2D information, lots of images taken from different angles should be needed to reconstruct the 3D information. However, the optics configuration will be too complex to obtain the multi-directional image simultaneously, even in the PPH system. Using the diffusion plate, the laser light could be diffused to multi-direction. When the hologram is recorded with the diffused laser, the multi-directional image can be obtained using only one hologram plate. In the computer tomography technique, only the holizontal direction is effective, while the diffused laser contains the whole direction, causing the noise on the hologram. In this study, the lenticular lens is used as the diffusion plate. The lenticular lens reflects the laser only in horizontal direction without the vertical (non-horizontal) direction. Therefore the multi-directional fringe images could be clearly obtained. In the experiment the helium jet was measured to demonstrate the effectiveness of the proposed system. (author)

  5. Towards OpenVL: Improving Real-Time Performance of Computer Vision Applications

    Science.gov (United States)

    Shen, Changsong; Little, James J.; Fels, Sidney

    Meeting constraints for real-time performance is a main issue for computer vision, especially for embedded computer vision systems. This chapter presents our progress on our open vision library (OpenVL), a novel software architecture to address efficiency through facilitating hardware acceleration, reusability, and scalability for computer vision systems. A logical image understanding pipeline is introduced to allow parallel processing. We also discuss progress on our middleware—vision library utility toolkit (VLUT)—that enables applications to operate transparently over a heterogeneous collection of hardware implementations. OpenVL works as a state machine,with an event-driven mechanismto provide users with application-level interaction. Various explicit or implicit synchronization and communication methods are supported among distributed processes in the logical pipelines. The intent of OpenVL is to allow users to quickly and easily recover useful information from multiple scenes, in a cross-platform, cross-language manner across various software environments and hardware platforms. To validate the critical underlying concepts of OpenVL, a human tracking system and a local positioning system are implemented and described. The novel architecture separates the specification of algorithmic details from the underlying implementation, allowing for different components to be implemented on an embedded system without recompiling code.

  6. Computed tomography by reconstruction. Brain CT scanning. I. Basic physics, equipment, normal aspects, artefacts

    International Nuclear Information System (INIS)

    Chiras, J.; Palmieri, P.; Saudinos, J.; Salamon, G.

    1980-01-01

    The authors describe the physical basis, apparatus, normal images, and artefacts of computed tomography by reconstruction. Radio-anatomical sections enable clear comprehension of the computed tomography images. Other methods using computer reconstruction are outlined: tomography by Compton effect, tomography by positrons, tomography by gamma emission, tomography by protons, tomography by nuclear magnetic resonance [fr

  7. Project Energise: Using participatory approaches and real time computer prompts to reduce occupational sitting and increase work time physical activity in office workers.

    Science.gov (United States)

    Gilson, Nicholas D; Ng, Norman; Pavey, Toby G; Ryde, Gemma C; Straker, Leon; Brown, Wendy J

    2016-11-01

    This efficacy study assessed the added impact real time computer prompts had on a participatory approach to reduce occupational sedentary exposure and increase physical activity. Quasi-experimental. 57 Australian office workers (mean [SD]; age=47 [11] years; BMI=28 [5]kg/m 2 ; 46 men) generated a menu of 20 occupational 'sit less and move more' strategies through participatory workshops, and were then tasked with implementing strategies for five months (July-November 2014). During implementation, a sub-sample of workers (n=24) used a chair sensor/software package (Sitting Pad) that gave real time prompts to interrupt desk sitting. Baseline and intervention sedentary behaviour and physical activity (GENEActiv accelerometer; mean work time percentages), and minutes spent sitting at desks (Sitting Pad; mean total time and longest bout) were compared between non-prompt and prompt workers using a two-way ANOVA. Workers spent close to three quarters of their work time sedentary, mostly sitting at desks (mean [SD]; total desk sitting time=371 [71]min/day; longest bout spent desk sitting=104 [43]min/day). Intervention effects were four times greater in workers who used real time computer prompts (8% decrease in work time sedentary behaviour and increase in light intensity physical activity; pcomputer prompts facilitated the impact of a participatory approach on reductions in occupational sedentary exposure, and increases in physical activity. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. Memristive Computational Architecture of an Echo State Network for Real-Time Speech Emotion Recognition

    Science.gov (United States)

    2015-05-28

    recognition is simpler and requires less computational resources compared to other inputs such as facial expressions . The Berlin database of Emotional ...Processing Magazine, IEEE, vol. 18, no. 1, pp. 32– 80, 2001. [15] K. R. Scherer, T. Johnstone, and G. Klasmeyer, “Vocal expression of emotion ...Network for Real-Time Speech- Emotion Recognition 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62788F 6. AUTHOR(S) Q

  9. Simulation model for transcervical laryngeal injection providing real-time feedback.

    Science.gov (United States)

    Ainsworth, Tiffiny A; Kobler, James B; Loan, Gregory J; Burns, James A

    2014-12-01

    This study aimed to develop and evaluate a model for teaching transcervical laryngeal injections. A 3-dimensional printer was used to create a laryngotracheal framework based on de-identified computed tomography images of a human larynx. The arytenoid cartilages and intrinsic laryngeal musculature were created in silicone from clay casts and thermoplastic molds. The thyroarytenoid (TA) muscle was created with electrically conductive silicone using metallic filaments embedded in silicone. Wires connected TA muscles to an electrical circuit incorporating a cell phone and speaker. A needle electrode completed the circuit when inserted in the TA during simulated injection, providing real-time feedback of successful needle placement by producing an audible sound. Face validation by the senior author confirmed appropriate tactile feedback and anatomical realism. Otolaryngologists pilot tested the model and completed presimulation and postsimulation questionnaires. The high-fidelity simulation model provided tactile and audio feedback during needle placement, simulating transcervical vocal fold injections. Otolaryngology residents demonstrated higher comfort levels with transcervical thyroarytenoid injection on postsimulation questionnaires. This is the first study to describe a simulator for developing transcervical vocal fold injection skills. The model provides real-time tactile and auditory feedback that aids in skill acquisition. Otolaryngologists reported increased confidence with transcervical injection after using the simulator. © The Author(s) 2014.

  10. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... Children's (Pediatric) CT (Computed Tomography) Sponsored by Please note RadiologyInfo.org is not a medical facility. Please ... is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of ...

  11. Computed tomography of the head in neurological examination of children

    International Nuclear Information System (INIS)

    Baeckman, E.; Egg-Olofsson, O.; Raadberg, C.

    1980-01-01

    A total of 247 children from the departments of pediatrics and neurosurgery were examined with computed tomography of the head during a two year period in 1977-78. Pathological changes were demonstrated in 79 per cent. Supplementary neuro-radiological examination - angiography and encephalography - was necessary in 17 per cent. Computed tomography together with the clinical assessment frequently suffices for final diagnosis. Computed tomography greatly reduces the need for previously used neurological examinations including skull radiography. Complications may ensure because of over-sensitivity to intravenously administered contrast medium in connection with anesthesia, and the radiation dose particularly to the crystalline lens of the eye must be taken into account. Computed tomography should therefore be used only on strict indications after careful scrutiny of the case history and the status. (author)

  12. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study.

    Science.gov (United States)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-03-01

    An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

  13. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    Science.gov (United States)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography. PMID:28626241

  14. Real Time Conference 2016 Overview

    Science.gov (United States)

    Luchetta, Adriano

    2017-06-01

    This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.

  15. Transmission computed tomography data acquisition with a SPECT system

    International Nuclear Information System (INIS)

    Greer, K.L.; Harris, C.C.; Jaszczak, R.J.; Coleman, R.E.; Hedlund, L.W.; Floyd, C.E.; Manglos, S.H.

    1987-01-01

    Phantom and animal transmission computed tomography (TCT) scans were performed with a camera-based single photon emission computed tomography (SPECT) system to determine system linearity as a function of object density, which is important in the accurate determination of attenuation coefficients for SPECT attenuation compensation. Results from phantoms showed promise in providing a linear relationship in measuring density while maintaining good image resolution. Animal images were essentially free of artifacts. Transmission computed tomography scans derived from a SPECT system appear to have the potential to provide data suitable for incorporation in an attenuation compensation algorithm at relatively low (calculated) radiation doses to the subjects

  16. The value of positron emission tomography/computed tomography for evaluating metastatic disease in patients with pancreatic cancer.

    Science.gov (United States)

    Kim, Mi-Jin; Lee, Kwang Hyuck; Lee, Kyu Taek; Lee, Jong Kyun; Ku, Bon-Ho; Oh, Cho-Rong; Heo, Jin Seok; Choi, Seong-Ho; Choi, Dong Wook

    2012-08-01

    Routine application of positron emission tomography/computed tomography (PET/CT) for pancreatic cancer staging remains a controversial approach. The purpose of this study was to reassess the clinical impact of PET/CT for the detection of distant metastasis of pancreatic cancer. From January 2006 to June 2009, 125 patients with histologically proven pancreatic cancer that had undergone PET/CT at our hospital were retrospectively reviewed. To evaluate the clinical efficacy of PET/CT on the management plan, the post-PET/CT management plans were compared with the pre-PET/CT management plans. After the conventional staging workup, we determined that 76 patients (60.8%) had resectable lesions, whereas 48 patients had unresectable lesions. One patient underwent explorative laparotomy due to equivocal resectability. Positron emission tomography/computed tomography diagnosed distant metastasis in only 2 (2.6%) of the 76 patients with resectable lesions, and these patients did not undergo unnecessary surgical treatment. Complete resection was not performed in 8 of the 74 operative patients because they had distant metastasis detected during the operative procedure. Positron emission tomography/computed tomography diagnosed distant metastasis in 32 of the 44 patients with metastatic lesions that were histologically shown to have sensitivity of 72.7%. Positron emission tomography/computed tomography has a limited role in the evaluation of metastatic disease from pancreatic cancer.

  17. Real Time Text Analysis

    Science.gov (United States)

    Senthilkumar, K.; Ruchika Mehra Vijayan, E.

    2017-11-01

    This paper aims to illustrate real time analysis of large scale data. For practical implementation we are performing sentiment analysis on live Twitter feeds for each individual tweet. To analyze sentiments we will train our data model on sentiWordNet, a polarity assigned wordNet sample by Princeton University. Our main objective will be to efficiency analyze large scale data on the fly using distributed computation. Apache Spark and Apache Hadoop eco system is used as distributed computation platform with Java as development language

  18. A case of skeletal tuberculosis and psoas abscess: disease activity evaluated using (18) F-fluorodeoxyglucose positron emission tomography-computed tomography.

    Science.gov (United States)

    Kimizuka, Yoshifumi; Ishii, Makoto; Murakami, Koji; Ishioka, Kota; Yagi, Kazuma; Ishii, Ken; Watanabe, Kota; Soejima, Kenzo; Betsuyaku, Tomoko; Hasegawa, Naoki

    2013-11-14

    Psoas abscess complicating tuberculous spondylitis is a rare morbidity in extrapulmonary tuberculosis. There are no established guidelines for evaluating the clinical response of psoas abscess. Although several studies have shown that positron emission tomography-computed tomography with 18 F-fluorodeoxyglucose can play a potential role in diagnosing multifocal tuberculosis and monitoring the clinical response of pulmonary tuberculosis, to our knowledge, this is the first report demonstrating that positron emission tomography-computed tomography is useful for evaluating local inflammation and disease activity of a tuberculous psoas abscess. We report a case of multifocal bone and lymph node tuberculosis with concomitant lumbar psoas abscess in a 77-year-old man, along with a literature review. An initial positron emission tomography-computed tomography scan showed intense 18 F-fluorodeoxyglucose accumulation in the sternum, ribs, vertebrae, and lymph nodes. The patient was successfully treated with antitubercular agents and computed tomography-guided drainage therapy. A follow-up positron emission tomography-computed tomography after abscess drainage and 9 months of antitubercular drug treatment revealed that the majority of lesions improved; however, protracted inflammation surrounding the psoas abscess was still observed. These results indicate that disease activity of psoas abscess can remain, even after successful drainage and antitubercular medication regime of appropriate duration. We have successfully followed up the extent of skeletal tuberculosis complicated with psoas abscess by positron emission tomography-computed tomography. In this patient, positron emission tomography-computed tomography is useful for evaluating the disease activity of tuberculous psoas abscess and for assessing the appropriate duration of antitubercular drug therapy in psoas abscess.

  19. Effects of computer tomography on diagnosis of neurological and neurosurgical diseases

    International Nuclear Information System (INIS)

    Katzner, E.

    1981-01-01

    Computer tomography is presently the primary procedure for correct diagnosis of many neurological and neurosurgical diseases. Other expensive and riskier diagnostic methods have become superfluous. Selective and clearly indicated application of the undoubtedly expensive computer tomography ultimately spares unnecessary costs for hospitalization and less conclusive examination methods. Wheras the indications in the craniocerebral region can now be considered confirmed, spinal computer tomography is still in the development stage. With certain indications, e.g. in prolapsed lumbar intervertebral disk, a similar performance to that of CT can be obtained with myelography, so that the latter method is likely to be superceded by computer tomography. (orig.) [de

  20. Self-Organization in Embedded Real-Time Systems

    CERN Document Server

    Brinkschulte, Uwe; Rettberg, Achim

    2013-01-01

    This book describes the emerging field of self-organizing, multicore, distributed and real-time embedded systems.  Self-organization of both hardware and software can be a key technique to handle the growing complexity of modern computing systems. Distributed systems running hundreds of tasks on dozens of processors, each equipped with multiple cores, requires self-organization principles to ensure efficient and reliable operation. This book addresses various, so-called Self-X features such as self-configuration, self-optimization, self-adaptation, self-healing and self-protection. Presents open components for embedded real-time adaptive and self-organizing applications; Describes innovative techniques in: scheduling, memory management, quality of service, communications supporting organic real-time applications; Covers multi-/many-core embedded systems supporting real-time adaptive systems and power-aware, adaptive hardware and software systems; Includes case studies of open embedded real-time self-organizi...

  1. Gantry for computed tomography

    International Nuclear Information System (INIS)

    Brandt, R.T.; Hein, P.W.

    1981-01-01

    A novel design of gantry for use in computed tomography is described in detail. In the new gantry, curved tracks are mounted to the laterally spaced apart sides of the frame which rotates and carries the detector and X-ray source. This permits the frame to be tilted either side of vertical enabling angular slices of body layers to be viewed and allows simplification of the algorithm which the computer uses for image reconstruction. The tracks are supported on rollers which carry the substantial weight. Explicit engineering details are presented. (U.K.)

  2. Computed tomography in gastrointestinal stromal tumors

    International Nuclear Information System (INIS)

    Ghanem, Nadir; Altehoefer, Carsten; Winterer, Jan; Schaefer, Oliver; Springer, Oliver; Kotter, Elmar; Langer, Mathias; Furtwaengler, Alex

    2003-01-01

    The aim of this study was to define the imaging characteristics of primary and recurrent gastrointestinal stromal tumors (GIST) in computed tomography with respect to the tumor size. Computed tomography was performed in 35 patients with histologically confirmed gastrointestinal stromal tumors and analyzed retrospectively by two experienced and independent radiologist. The following morphologic tumor characteristics of primary (n=20) and (n=16) recurrent tumors were evaluated according to tumor size, shape, homogeneity, density compared with liver, contrast enhancement, presence of calcifications, ulcerations, fistula or distant metastases and the anatomical relationship to the intestinal wall, and the infiltration of adjacent visceral organs. Small GIST ( 5-10 cm) demonstrated an irregular shape, inhomogeneous density on unenhanced and contrast-enhanced images, a combined intra- and extraluminal tumor growth with aggressive findings, and infiltration of adjacent organs in 9 primary diagnosed and 2 recurrent tumors. Large GIST (>10 cm), which were observed in 8 primary tumors and 11 recurrent tumors, showed an irregular margin with inhomogeneous density and aggressive findings, and were characterized by signs of malignancy such as distant and peritoneal metastases. Small recurrent tumors had a similar appearance as compared with large primary tumors. Computed tomography gives additional information with respect to the relationship of gastrointestinal stromal tumor to the gastrointestinal wall and surrounding organs, and it detects distant metastasis. Primary and recurrent GIST demonstrate characteristic CT imaging features which are related to tumor size. Aggressive findings and signs of malignancy are found in larger tumors and in recurrent disease. Computed tomography is useful in detection and characterization of primary and recurrent tumors with regard to tumor growth pattern, tumor size, and varied appearances of gastrointestinal stromal tumors, and indirectly

  3. Synchronization and fault-masking in redundant real-time systems

    Science.gov (United States)

    Krishna, C. M.; Shin, K. G.; Butler, R. W.

    1983-01-01

    A real time computer may fail because of massive component failures or not responding quickly enough to satisfy real time requirements. An increase in redundancy - a conventional means of improving reliability - can improve the former but can - in some cases - degrade the latter considerably due to the overhead associated with redundancy management, namely the time delay resulting from synchronization and voting/interactive consistency techniques. The implications of synchronization and voting/interactive consistency algorithms in N-modular clusters on reliability are considered. All these studies were carried out in the context of real time applications. As a demonstrative example, we have analyzed results from experiments conducted at the NASA Airlab on the Software Implemented Fault Tolerance (SIFT) computer. This analysis has indeed indicated that in most real time applications, it is better to employ hardware synchronization instead of software synchronization and not allow reconfiguration.

  4. Computed tomography in malignant primary bone tumours

    International Nuclear Information System (INIS)

    Kersjes, W.; Harder, T.; Haeffner, P.

    1990-01-01

    The importance of computed tomography is examined in malignant primary bone tumours using a strongly defined examination group of 13 Patients (six Ewing's-sarcomas, five osteosarcomas, one chondrosarcoma and one spindle-shaped cell sarcoma). Computed tomography is judged superior compared to plain radiographs in recognition of bone marrow infiltration and presentation of parosteal tumour parts as well as in analysis of tissue components of tumours, CT is especially suitable for therapy planning and evaluating response to therapy. CT does not provide sufficient diagnostic information to determine dignity and exact diagnosis of bone tumours. (orig.) [de

  5. A general class of preconditioners for statistical iterative reconstruction of emission computed tomography

    International Nuclear Information System (INIS)

    Chinn, G.; Huang, S.C.

    1997-01-01

    A major drawback of statistical iterative image reconstruction for emission computed tomography is its high computational cost. The ill-posed nature of tomography leads to slow convergence for standard gradient-based iterative approaches such as the steepest descent or the conjugate gradient algorithm. In this paper new theory and methods for a class of preconditioners are developed for accelerating the convergence rate of iterative reconstruction. To demonstrate the potential of this class of preconditioners, a preconditioned conjugate gradient (PCG) iterative algorithm for weighted least squares reconstruction (WLS) was formulated for emission tomography. Using simulated positron emission tomography (PET) data of the Hoffman brain phantom, it was shown that the convergence rate of the PCG can reduce the number of iterations of the standard conjugate gradient algorithm by a factor of 2--8 times depending on the convergence criterion

  6. DE-BLURRING SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY IMAGES USING WAVELET DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    Neethu M. Sasi

    2016-02-01

    Full Text Available Single photon emission computed tomography imaging is a popular nuclear medicine imaging technique which generates images by detecting radiations emitted by radioactive isotopes injected in the human body. Scattering of these emitted radiations introduces blur in this type of images. This paper proposes an image processing technique to enhance cardiac single photon emission computed tomography images by reducing the blur in the image. The algorithm works in two main stages. In the first stage a maximum likelihood estimate of the point spread function and the true image is obtained. In the second stage Lucy Richardson algorithm is applied on the selected wavelet coefficients of the true image estimate. The significant contribution of this paper is that processing of images is done in the wavelet domain. Pre-filtering is also done as a sub stage to avoid unwanted ringing effects. Real cardiac images are used for the quantitative and qualitative evaluations of the algorithm. Blur metric, peak signal to noise ratio and Tenengrad criterion are used as quantitative measures. Comparison against other existing de-blurring algorithms is also done. The simulation results indicate that the proposed method effectively reduces blur present in the image.

  7. Computed tomography for radiographers

    International Nuclear Information System (INIS)

    Brooker, M.J.

    1986-01-01

    This book is directed towards giving radiographers an introduction to and basic knowledge of computerized tomography. The technical section discusses gantries and x-ray production, computer and disc drive image display, storage, artefacts quality assurance and design of departments. The clinical section includes patient preparation, radiotherapy planning, and interpretation of images from various areas of the anatomy. (U.K.)

  8. Simulation of a Real-Time Brain Computer Interface for Detecting a Self-Paced Hitting Task.

    Science.gov (United States)

    Hammad, Sofyan H; Kamavuako, Ernest N; Farina, Dario; Jensen, Winnie

    2016-12-01

    An invasive brain-computer interface (BCI) is a promising neurorehabilitation device for severely disabled patients. Although some systems have been shown to work well in restricted laboratory settings, their utility must be tested in less controlled, real-time environments. Our objective was to investigate whether a specific motor task could be reliably detected from multiunit intracortical signals from freely moving animals in a simulated, real-time setting. Intracortical signals were first obtained from electrodes placed in the primary motor cortex of four rats that were trained to hit a retractable paddle (defined as a "Hit"). In the simulated real-time setting, the signal-to-noise-ratio was first increased by wavelet denoising. Action potentials were detected, and features were extracted (spike count, mean absolute values, entropy, and combination of these features) within pre-defined time windows (200 ms, 300 ms, and 400 ms) to classify the occurrence of a "Hit." We found higher detection accuracy of a "Hit" (73.1%, 73.4%, and 67.9% for the three window sizes, respectively) when the decision was made based on a combination of features rather than on a single feature. However, the duration of the window length was not statistically significant (p = 0.5). Our results showed the feasibility of detecting a motor task in real time in a less restricted environment compared to environments commonly applied within invasive BCI research, and they showed the feasibility of using information extracted from multiunit recordings, thereby avoiding the time-consuming and complex task of extracting and sorting single units. © 2016 International Neuromodulation Society.

  9. 18 F-fluorodeoxyglucose positron emission tomography-computed tomography for preoperative lymph node staging in patients undergoing radical cystectomy for bladder cancer: a prospective study.

    Science.gov (United States)

    Hitier-Berthault, Maryam; Ansquer, Catherine; Branchereau, Julien; Renaudin, Karine; Bodere, Françoise; Bouchot, Olivier; Rigaud, Jérôme

    2013-08-01

    The objective of our study was to analyze the diagnostic performance of (18) F-fluorodeoxyglucose positron emission tomography-computed tomography for lymph node staging in patients with bladder cancer before radical cystectomy and to compare it with that of computed tomography. A total of 52 patients operated on between 2005 and 2010 were prospectively included in this prospective, mono-institutional, open, non-randomized pilot study. Patients who had received neoadjuvant chemotherapy or radiotherapy were excluded. (18) F-fluorodeoxyglucose positron emission tomography-computed tomography in addition to computed tomography was carried out for lymph node staging of bladder cancer before radical cystectomy. Lymph node dissection during radical cystectomy was carried out. Findings from (18) F-fluorodeoxyglucose positron emission tomography-computed tomography and computed tomography were compared with the results of definitive histological examination of the lymph node dissection. The diagnostic performance of the two imaging modalities was assessed and compared. The mean number of lymph nodes removed during lymph node dissection was 16.5 ± 10.9. Lymph node metastasis was confirmed on histological examination in 22 cases (42.3%). This had been suspected in five cases (9.6%) on computed tomography and in 12 cases (23.1%) on (18) F-fluorodeoxyglucose positron emission tomography-computed tomography. Sensitivity, specificity, positive predictive value, negative predictive value, relative risk and accuracy were 9.1%, 90%, 40%, 57.4%, 0.91 and 55.7%, respectively, for computed tomography, and 36.4%, 86.7%, 66.7%, 65%, 2.72, 65.4%, respectively, for (18) F-fluorodeoxyglucose positron emission tomography-computed tomography. (18) F-fluorodeoxyglucose positron emission tomography-computed tomography is more reliable than computed tomography for preoperative lymph node staging in patients with invasive bladder carcinoma undergoing radical cystectomy. © 2012 The Japanese

  10. Viewing Welds By Computer Tomography

    Science.gov (United States)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.

  11. Computed tomography of chest wall abscess

    International Nuclear Information System (INIS)

    Ikezoe, Junpei; Morimoto, Shizuo; Akira, Masanori

    1986-01-01

    Inflammatory lesions of the chest wall become less common because of the improvement of antibiotics and chemotherapeutic agents. Over a 5-year period, 7 patients with chest wall inflammatory diseases underwent chest computed tomography. These were 2 tuberculous pericostal abscesses, 2 empyema necessitatis, 1 spinal caries, and 2 bacterial chest wall abscesses (unknown organisms). Computed tomography (CT) helped in demonstrating the density, border, site, and extent of the lesions. CT images also demonstrated the accompaning abnormalities which included bone changes, pleural calcification, or old tuberculous changes of the lung. CT was very effective to demonstrate the communicating portions from the inside of the bony thorax to the outside of the bony thorax in 2 empyema necessitatis. (author)

  12. Computed tomography vs. digital radiography assessment for detection of osteolysis in asymptomatic patients with uncemented cups: a proposal for a new classification system based on computer tomography.

    Science.gov (United States)

    Sandgren, Buster; Crafoord, Joakim; Garellick, Göran; Carlsson, Lars; Weidenhielm, Lars; Olivecrona, Henrik

    2013-10-01

    Digital radiographic images in the anterior-posterior and lateral view have been gold standard for evaluation of peri-acetabular osteolysis for patients with an uncemented hip replacement. We compared digital radiographic images and computer tomography in detection of peri-acetabular osteolysis and devised a classification system based on computer tomography. Digital radiographs were compared with computer tomography on 206 hips, with a mean follow up 10 years after surgery. The patients had no clinical signs of osteolysis and none were planned for revision surgery. On digital radiographs, 192 cases had no osteolysis and only 14 cases had osteolysis. When using computer tomography there were 184 cases showing small or large osteolysis and only 22 patients had no osteolysis. A classification system for peri-acetabular osteolysis is proposed based on computer tomography that is easy to use on standard follow up evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... CT (Computed Tomography) Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ... links: For the convenience of our users, RadiologyInfo .org provides links to relevant websites. RadiologyInfo.org , ACR ...

  14. Real-time systems scheduling 2 focuses

    CERN Document Server

    Chetto, Maryline

    2014-01-01

    Real-time systems are used in a wide range of applications, including control, sensing, multimedia, etc. Scheduling is a central problem for these computing/communication systems since it is responsible for software execution in a timely manner. This book, the second of two volumes on the subject, brings together knowledge on specific topics and discusses the recent advances for some of them.  It addresses foundations as well as the latest advances and findings in real-time scheduling, giving comprehensive references to important papers, but the chapters are short and not overloaded with co

  15. GPU-based real-time triggering in the NA62 experiment

    CERN Document Server

    Ammendola, R.; Cretaro, P.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P.S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2016-01-01

    Over the last few years the GPGPU (General-Purpose computing on Graphics Processing Units) paradigm represented a remarkable development in the world of computing. Computing for High-Energy Physics is no exception: several works have demonstrated the effectiveness of the integration of GPU-based systems in high level trigger of different experiments. On the other hand the use of GPUs in the low level trigger systems, characterized by stringent real-time constraints, such as tight time budget and high throughput, poses several challenges. In this paper we focus on the low level trigger in the CERN NA62 experiment, investigating the use of real-time computing on GPUs in this synchronous system. Our approach aimed at harvesting the GPU computing power to build in real-time refined physics-related trigger primitives for the RICH detector, as the the knowledge of Cerenkov rings parameters allows to build stringent conditions for data selection at trigger level. Latencies of all components of the trigger chain have...

  16. Hard-real-time resource management for autonomous spacecraft

    Science.gov (United States)

    Gat, E.

    2000-01-01

    This paper describes tickets, a computational mechanism for hard-real-time autonomous resource management. Autonomous spacecraftcontrol can be considered abstractly as a computational process whose outputs are spacecraft commands.

  17. Real-time variables dictionary (RTVD), and expert system for development of real-time applications in nuclear power plants

    International Nuclear Information System (INIS)

    Senra Martinez, A.; Schirru, R.; Dutra Thome Filho, Z.

    1990-01-01

    It is presented in this paper a computerized methodology based on a data dictionary managed by an expert system called Real-Time Variables Dictionary (RTVD). This system is very usefull for development of real-time applications in nuclear power plants. It is described in details the RTVD functions and its implantation in a VAX 8600 computer. It is also pointed out the concepts of artificial intelligence used in teh RTVD

  18. Radiation dose in cone-beam computed tomography: myth or reality

    International Nuclear Information System (INIS)

    Madi, Medhini

    2013-01-01

    In the growing inventory of clinical computed tomography technologies, cone-beam X-ray computed tomography is a relatively recent instalment. It is an advancement in computed tomography imaging which is designed to provide relatively low-dose high-spatial-resolution visualization of high contrast structures in the head and neck and other anatomic areas. Comparatively low dosing requirements and relatively compact design has led to intense interest in surgical planning and intra-operative cone-beam computed tomography applications, particularly in head and neck, and also in spinal, thoracic, abdominal and orthopaedic procedures. The use of this emerging imaging technology, which has potential applications for imaging of high-contrast structures in the head and neck as well as dentomaxillofacial regions, has been the subject of criticism as well as acclaim. This paper envisages to discuss the state-of-the-art of the technique. (author)

  19. Computer tomography in the diagnosis of liver diseases

    International Nuclear Information System (INIS)

    Petkov, D.; Zhelyazkov, S.; Nedelkov, G.

    1983-01-01

    The modern achievements in the clinical study and diagnosis of liver diseases has definitely been associated with the application of whole body computer tomography (CT) in the practice. The diagnostic possibilities of the method come from high contrast and spacial disjunctive capabilities. Visualization of local lesions is associated with their size and the differences in their densitometric compactness from that of the normal parenchyma. The advantages of computer tomography in the diagnosis of liver diseases is discussed. They are associated with the possibilities for densitometric analysis of the pathologic changes, which opens a way for a probable qualitative diagnosis. Diffuse processes in the liver are relative indication for performing computer tomography. Examination under conditions of contrast amplification is indicated in cases when the nature of the lesion has to be specified and a ''negative'' result does not concur with the clinical manifestations. (authors)

  20. Real-time respiration monitoring using the radiotherapy treatment beam and four-dimensional computed tomography (4DCT)-a conceptual study

    International Nuclear Information System (INIS)

    Lu Weiguo; Ruchala, Kenneth J; Chen, Ming-Li; Chen, Quan; Olivera, Gustavo H

    2006-01-01

    Real-time knowledge of intra-fraction motion, such as respiration, is essential for four-dimensional (4D) radiotherapy. Surrogate-based and internal-fiducial-based methods may suffer from one or many drawbacks such as false correlation, being invasive, delivering extra patient radiation, and requiring complicated hardware and software development and implementation. In this paper we develop a simple non-surrogate, non-invasive method to monitor respiratory motion during radiotherapy treatments in real time. This method directly utilizes the treatment beam and thus imposes no additional radiation to the patient. The method requires a pre-treatment 4DCT and a real-time detector system. The method combines off-line processes with on-line processes. The off-line processes include 4DCT imaging and pre-calculating detector signals at each phase of the 4DCT based on the planned fluence map and the detector response function. The on-line processes include measuring detector signal from the treatment beam, and correlating the measured detector signal with the pre-calculated signals. The respiration phase is determined as the position of peak correlation. We tested our method with extensive simulations based on a TomoTherapy machine and a 4DCT of a lung cancer patient. Three types of simulations were implemented to mimic the clinical situations. Each type of simulation used three different TomoTherapy delivery sinograms, each with 800 to 1000 projections, as input fluences. Three arbitrary breathing patterns were simulated and two dose levels, 2 Gy/fraction and 2 cGy/fraction, were used for simulations to study the robustness of this method against detector quantum noise. The algorithm was used to determine the breathing phases and this result was compared with the simulated breathing patterns. For the 2 Gy/fraction simulations, the respiration phases were accurately determined within one phase error in real time for most projections of the treatment, except for a few

  1. Benefits of real-time gas management

    International Nuclear Information System (INIS)

    Nolty, R.; Dolezalek, D. Jr.

    1994-01-01

    In today's competitive gas gathering, processing, storage and transportation business environment, the requirements to do business are continually changing. These changes arise from government regulations such as the amendments to the Clean Air Act concerning the environment and FERC Order 636 concerning business practices. Other changes are due to advances in technology such as electronic flow measurement (EFM) and real-time communications capabilities within the gas industry. Gas gathering, processing, storage and transportation companies must be flexible in adapting to these changes to remain competitive. These dynamic requirements can be met with an open, real-time gas management computer information system. Such a system provides flexible services with a variety of software applications. Allocations, nominations management and gas dispatching are examples of applications that are provided on a real-time basis. By providing real-time services, the gas management system enables operations personnel to make timely adjustments within the current accounting period. Benefits realized from implementing a real-time gas management system include reduced unaccountable gas, reduced imbalance penalties, reduced regulatory violations, improved facility operations and better service to customers. These benefits give a company the competitive edge. This article discusses the applications provided, the benefits from implementing a real-time gas management system, and the definition of such a system

  2. Processor tradeoffs in distributed real-time systems

    Science.gov (United States)

    Krishna, C. M.; Shin, Kang G.; Bhandari, Inderpal S.

    1987-01-01

    The problem of the optimization of the design of real-time distributed systems is examined with reference to a class of computer architectures similar to the continuously reconfigurable multiprocessor flight control system structure, CM2FCS. Particular attention is given to the impact of processor replacement and the burn-in time on the probability of dynamic failure and mean cost. The solution is obtained numerically and interpreted in the context of real-time applications.

  3. Computed Tomography Technology: Development and Applications for Defence

    International Nuclear Information System (INIS)

    Baheti, G. L.; Saxena, Nisheet; Tripathi, D. K.; Songara, K. C.; Meghwal, L. R.; Meena, V. L.

    2008-01-01

    Computed Tomography(CT) has revolutionized the field of Non-Destructive Testing and Evaluation (NDT and E). Tomography for industrial applications warrants design and development of customized solutions catering to specific visualization requirements. Present paper highlights Tomography Technology Solutions implemented at Defence Laboratory, Jodhpur (DLJ). Details on the technological developments carried out and their utilization for various Defence applications has been covered.

  4. The utility of computed tomography for recent-onset partial seizures ...

    African Journals Online (AJOL)

    Objectives. To determine the diagnostic yield of computed tomography (CT) of the head in children presenting for the first time with partial seizures in a region with a high prevalence of tuberculosis and neurocysticercosis. Design. Prospective cohort study. Setting. The secondary-level ambulatory service of Red Cross ...

  5. Analysis and Synthesis of Communication-Intensive Heterogeneous Real-Time Systems

    DEFF Research Database (Denmark)

    Pop, Paul

    2003-01-01

    Embedded computer systems are now everywhere: from alarm clocks to PDAs, from mobile phones to cars, almost all the devices we use are controlled by embedded computer systems. An important class of embedded computer systems is that of real-time systems, which have to fulfill strict timing...... requirements. As realtime systems become more complex, they are often implemented using distributed heterogeneous architectures. The main objective of this thesis is to develop analysis and synthesis methods for communication-intensive heterogeneous hard real-time systems. The systems are heterogeneous...... is the synthesis of the communication infrastructure, which has a significant impact on the overall system performance and cost. To reduce the time-to-market of products, the design of real-time systems seldom starts from scratch. Typically, designers start from an already existing system, running certain...

  6. Roles of computed tomography and [18F]fluorodeoxyglucose-positron emission tomography/computed tomography in the characterization of multiple solitary solid lung nodules

    OpenAIRE

    Travaini, LL; Trifirò, G; Vigna, PD; Veronesi, G; De Pas, TM; Spaggiari, L; Paganelli, G; Bellomi, M

    2012-01-01

    The purpose of this study is to compare the performance of multidetector computed tomography (CT) and positron emission tomography/CT (PET/CT) with [18F]fluorodeoxyglucose in the diagnosis of multiple solitary lung nodules in 14 consecutive patients with suspicious lung cancer. CT and PET/CT findings were reviewed by a radiologist and nuclear medicine physician, respectively, blinded to the pathological diagnoses of lung cancer, considering nodule size, shape, and location (CT) and maximum st...

  7. Development of a proton Computed Tomography Detector System

    Energy Technology Data Exchange (ETDEWEB)

    Naimuddin, Md. [Delhi U.; Coutrakon, G. [Northern Illinois U.; Blazey, G. [Northern Illinois U.; Boi, S. [Northern Illinois U.; Dyshkant, A. [Northern Illinois U.; Erdelyi, B. [Northern Illinois U.; Hedin, D. [Northern Illinois U.; Johnson, E. [Northern Illinois U.; Krider, J. [Northern Illinois U.; Rukalin, V. [Northern Illinois U.; Uzunyan, S. A. [Northern Illinois U.; Zutshi, V. [Northern Illinois U.; Fordt, R. [Fermilab; Sellberg, G. [Fermilab; Rauch, J. E. [Fermilab; Roman, M. [Fermilab; Rubinov, P. [Fermilab; Wilson, P. [Fermilab

    2016-02-04

    Computer tomography is one of the most promising new methods to image abnormal tissues inside the human body. Tomography is also used to position the patient accurately before radiation therapy. Hadron therapy for treating cancer has become one of the most advantegeous and safe options. In order to fully utilize the advantages of hadron therapy, there is a necessity of performing radiography with hadrons as well. In this paper we present the development of a proton computed tomography system. Our second-generation proton tomography system consists of two upstream and two downstream trackers made up of fibers as active material and a range detector consisting of plastic scintillators. We present details of the detector system, readout electronics, and data acquisition system as well as the commissioning of the entire system. We also present preliminary results from the test beam of the range detector.

  8. Physics and instrumentation of emission computed tomography

    International Nuclear Information System (INIS)

    Links, J.M.

    1986-01-01

    Transverse emission computed tomography can be divided into two distinct classes: single photon emission computed tomography (SPECT) and positron emission tomography (PET). SPECT is usually accomplished with specially-adapted scintillation cameras, although dedicated SPECT scanners are available. The special SPECT cameras are standard cameras which are mounted on gantries that allow 360 degree rotation around the long axis of the head or body. The camera stops at a number of angles around the body (usually 64-128), acquiring a ''projection'' image at each stop. The data from these projections are used to reconstruct transverse images with a standard ''filtered back-projection'' algorithm, identical to that used in transmission CT. Because the scintillation camera acquires two-dimensional images, a simple 360 degree rotation around the patient results in the acquisition of data for a number of contiguous transverse slices. These slices, once reconstructed, can be ''stacked'' in computer memory, and orthogonal coronal and sagittal slices produced. Additionally, reorienting algorithms allow the generation of slices that are oblique to the long axis of the body

  9. The Implementation of a Real-Time Polyphase Filter

    OpenAIRE

    Adámek, Karel; Novotný, Jan; Armour, Wes

    2014-01-01

    In this article we study the suitability of dierent computational accelerators for the task of real-time data processing. The algorithm used for comparison is the polyphase filter, a standard tool in signal processing and a well established algorithm. We measure performance in FLOPs and execution time, which is a critical factor for real-time systems. For our real-time studies we have chosen a data rate of 6.5GB/s, which is the estimated data rate for a single channel on the SKAs Low Frequenc...

  10. A Stack Cache for Real-Time Systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Nielsen, Carsten

    2016-01-01

    Real-time systems need time-predictable computing platforms to allowfor static analysis of the worst-case execution time. Caches are important for good performance, but data caches arehard to analyze for the worst-case execution time. Stack allocated data has different properties related...

  11. Improved Real-time Denoising Method Based on Lifting Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Liu Zhaohua

    2014-06-01

    Full Text Available Signal denoising can not only enhance the signal to noise ratio (SNR but also reduce the effect of noise. In order to satisfy the requirements of real-time signal denoising, an improved semisoft shrinkage real-time denoising method based on lifting wavelet transform was proposed. The moving data window technology realizes the real-time wavelet denoising, which employs wavelet transform based on lifting scheme to reduce computational complexity. Also hyperbolic threshold function and recursive threshold computing can ensure the dynamic characteristics of the system, in addition, it can improve the real-time calculating efficiency as well. The simulation results show that the semisoft shrinkage real-time denoising method has quite a good performance in comparison to the traditional methods, namely soft-thresholding and hard-thresholding. Therefore, this method can solve more practical engineering problems.

  12. Real-time systems

    OpenAIRE

    Badr, Salah M.; Bruztman, Donald P.; Nelson, Michael L.; Byrnes, Ronald Benton

    1992-01-01

    This paper presents an introduction to the basic issues involved in real-time systems. Both real-time operating sys and real-time programming languages are explored. Concurrent programming and process synchronization and communication are also discussed. The real-time requirements of the Naval Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real-time operating system, real-time programming language, real-time sy...

  13. ISTTOK real-time architecture

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ivo S., E-mail: ivoc@ipfn.ist.utl.pt; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.

    2014-03-15

    Highlights: • All real-time diagnostics and actuators were integrated in the same control platform. • A 100 μs control cycle was achieved under the MARTe framework. • Time-windows based control with several event-driven control strategies implemented. • AC discharges with exception handling on iron core flux saturation. • An HTML discharge configuration was developed for configuring the MARTe system. - Abstract: The ISTTOK tokamak was upgraded with a plasma control system based on the Advanced Telecommunications Computing Architecture (ATCA) standard. This control system was designed to improve the discharge stability and to extend the operational space to the alternate plasma current (AC) discharges as part of the ISTTOK scientific program. In order to accomplish these objectives all ISTTOK diagnostics and actuators relevant for real-time operation were integrated in the control system. The control system was programmed in C++ over the Multi-threaded Application Real-Time executor (MARTe) which provides, among other features, a real-time scheduler, an interrupt handler, an intercommunications interface between code blocks and a clearly bounded interface with the external devices. As a complement to the MARTe framework, the BaseLib2 library provides the foundations for the data, code introspection and also a Hypertext Transfer Protocol (HTTP) server service. Taking advantage of the modular nature of MARTe, the algorithms of each diagnostic data processing, discharge timing, context switch, control and actuators output reference generation, run on well-defined blocks of code named Generic Application Module (GAM). This approach allows reusability of the code, simplified simulation, replacement or editing without changing the remaining GAMs. The ISTTOK control system GAMs run sequentially each 100 μs cycle on an Intel{sup ®} Q8200 4-core processor running at 2.33 GHz located in the ATCA crate. Two boards (inside the ATCA crate) with 32 analog

  14. ISTTOK real-time architecture

    International Nuclear Information System (INIS)

    Carvalho, Ivo S.; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.

    2014-01-01

    Highlights: • All real-time diagnostics and actuators were integrated in the same control platform. • A 100 μs control cycle was achieved under the MARTe framework. • Time-windows based control with several event-driven control strategies implemented. • AC discharges with exception handling on iron core flux saturation. • An HTML discharge configuration was developed for configuring the MARTe system. - Abstract: The ISTTOK tokamak was upgraded with a plasma control system based on the Advanced Telecommunications Computing Architecture (ATCA) standard. This control system was designed to improve the discharge stability and to extend the operational space to the alternate plasma current (AC) discharges as part of the ISTTOK scientific program. In order to accomplish these objectives all ISTTOK diagnostics and actuators relevant for real-time operation were integrated in the control system. The control system was programmed in C++ over the Multi-threaded Application Real-Time executor (MARTe) which provides, among other features, a real-time scheduler, an interrupt handler, an intercommunications interface between code blocks and a clearly bounded interface with the external devices. As a complement to the MARTe framework, the BaseLib2 library provides the foundations for the data, code introspection and also a Hypertext Transfer Protocol (HTTP) server service. Taking advantage of the modular nature of MARTe, the algorithms of each diagnostic data processing, discharge timing, context switch, control and actuators output reference generation, run on well-defined blocks of code named Generic Application Module (GAM). This approach allows reusability of the code, simplified simulation, replacement or editing without changing the remaining GAMs. The ISTTOK control system GAMs run sequentially each 100 μs cycle on an Intel ® Q8200 4-core processor running at 2.33 GHz located in the ATCA crate. Two boards (inside the ATCA crate) with 32 analog

  15. Comparison of Volumes between Four-Dimensional Computed Tomography and Cone-Beam Computed Tomography Images using Dynamic Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Eun; Won, Hui Su; Hong, Joo Wan; Chang, Nam Jun; Jung, Woo Hyun; Choi, Byeong Don [Dept. of Radiation Oncology, Seoul National University Bundang Hospital, Sungnam (Korea, Republic of)

    2016-12-15

    The aim of this study was to compare the differences between the volumes acquired with four-dimensional computed tomography (4DCT)images with a reconstruction image-filtering algorithm and cone-beam computed tomography (CBCT) images with dynamic phantom. The 4DCT images were obtained from the computerized imaging reference systems (CIRS) phantom using a computed tomography (CT) simulator. We analyzed the volumes for maximum intensity projection (MIP), minimum intensity projection (MinIP) and average intensity projection (AVG) of the images obtained with the 4DCT scanner against those acquired from CBCT images with CT ranger tools. Difference in volume for node of 1, 2 and 3 cm between CBCT and 4DCT was 0.54⁓2.33, 5.16⁓8.06, 9.03⁓20.11 ml in MIP, respectively, 0.00⁓1.48, 0.00⁓8.47, 1.42⁓24.85 ml in MinIP, respectively and 0.00⁓1.17, 0.00⁓2.19, 0.04⁓3.35 ml in AVG, respectively. After a comparative analysis of the volumes for each nodal size, it was apparent that the CBCT images were similar to the AVG images acquired using 4DCT.

  16. Real-time operation without a real-time operating system for instrument control and data acquisition

    Science.gov (United States)

    Klein, Randolf; Poglitsch, Albrecht; Fumi, Fabio; Geis, Norbert; Hamidouche, Murad; Hoenle, Rainer; Looney, Leslie; Raab, Walfried; Viehhauser, Werner

    2004-09-01

    We are building the Field-Imaging Far-Infrared Line Spectrometer (FIFI LS) for the US-German airborne observatory SOFIA. The detector read-out system is driven by a clock signal at a certain frequency. This signal has to be provided and all other sub-systems have to work synchronously to this clock. The data generated by the instrument has to be received by a computer in a timely manner. Usually these requirements are met with a real-time operating system (RTOS). In this presentation we want to show how we meet these demands differently avoiding the stiffness of an RTOS. Digital I/O-cards with a large buffer separate the asynchronous working computers and the synchronous working instrument. The advantage is that the data processing computers do not need to process the data in real-time. It is sufficient that the computer can process the incoming data stream on average. But since the data is read-in synchronously, problems of relating commands and responses (data) have to be solved: The data is arriving at a fixed rate. The receiving I/O-card buffers the data in its buffer until the computer can access it. To relate the data to commands sent previously, the data is tagged by counters in the read-out electronics. These counters count the system's heartbeat and signals derived from that. The heartbeat and control signals synchronous with the heartbeat are sent by an I/O-card working as pattern generator. Its buffer gets continously programmed with a pattern which is clocked out on the control lines. A counter in the I/O-card keeps track of the amount of pattern words clocked out. By reading this counter, the computer knows the state of the instrument or knows the meaning of the data that will arrive with a certain time-tag.

  17. Positron emission tomography/computed tomography surveillance in patients with Hodgkin lymphoma in first remission has a low positive predictive value and high costs.

    Science.gov (United States)

    El-Galaly, Tarec Christoffer; Mylam, Karen Juul; Brown, Peter; Specht, Lena; Christiansen, Ilse; Munksgaard, Lars; Johnsen, Hans Erik; Loft, Annika; Bukh, Anne; Iyer, Victor; Nielsen, Anne Lerberg; Hutchings, Martin

    2012-06-01

    The value of performing post-therapy routine surveillance imaging in patients with Hodgkin lymphoma is controversial. This study evaluates the utility of positron emission tomography/computed tomography using 2-[18F]fluoro-2-deoxyglucose for this purpose and in situations with suspected lymphoma relapse. We conducted a multicenter retrospective study. Patients with newly diagnosed Hodgkin lymphoma achieving at least a partial remission on first-line therapy were eligible if they received positron emission tomography/computed tomography surveillance during follow-up. Two types of imaging surveillance were analyzed: "routine" when patients showed no signs of relapse at referral to positron emission tomography/computed tomography, and "clinically indicated" when recurrence was suspected. A total of 211 routine and 88 clinically indicated positron emission tomography/computed tomography studies were performed in 161 patients. In ten of 22 patients with recurrence of Hodgkin lymphoma, routine imaging surveillance was the primary tool for the diagnosis of the relapse. Extranodal disease, interim positron emission tomography-positive lesions and positron emission tomography activity at response evaluation were all associated with a positron emission tomography/computed tomography-diagnosed preclinical relapse. The true positive rates of routine and clinically indicated imaging were 5% and 13%, respectively (P = 0.02). The overall positive predictive value and negative predictive value of positron emission tomography/computed tomography were 28% and 100%, respectively. The estimated cost per routine imaging diagnosed relapse was US$ 50,778. Negative positron emission tomography/computed tomography reliably rules out a relapse. The high false positive rate is, however, an important limitation and a confirmatory biopsy is mandatory for the diagnosis of a relapse. With no proven survival benefit for patients with a pre-clinically diagnosed relapse, the high costs and low

  18. Evaluation of resectability of renal cell carcinoma by computed tomography

    International Nuclear Information System (INIS)

    Hiramatsu, Yoshihiro; Matsumoto, Kunihiko; Tatezawa, Takashi; Kikuchi, Yoichi; Akisada, Masahiro; Kitagawa, Ryuichi

    1982-01-01

    Renal cell carcinoma is one of the unique neoplasm which is characterized by disappearing of the metastatic tumors after removal of the primary lesion. Angiography has been performed to evaluate the resectability of the primary tumor by nephrectomy in the past. With the use of computed tomography, detailed evaluation of the retroperitoneal structures is now possible. We have evaluated the resectability of renal cell tumor by computed tomography and compared the results with the angiographic findings and operative findings. Computed tomography is very accurate in determining the extent of the tumor especially in evaluation of tumor and the Gerota's fascia, which is essential to determine the resectability of the tumor. Informations about lymph node metastasis and invasion to the renal veins or inferior vena cava are also obtained.FIn most of the cases, angiography can be spared if computed tomography is properly performed. (author)

  19. Laryngopyocele: signs on computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nazaroglu, Hasan E-mail: hnazarog@dicle.edu.tr; Oezates, Mustafa; Uyar, Asur; Deger, Emin; Simsek, Masum

    2000-01-01

    A laryngocele is an air-filled dilation of the saccule of the larynx. An infected laryngocele is called a laryngopyocele. Our experience with a case of laryngopyocele with signs on computed tomography before and after antibiotic therapy is presented since laryngopyocele is more unusual.

  20. Laryngopyocele: signs on computed tomography

    International Nuclear Information System (INIS)

    Nazaroglu, Hasan; Oezates, Mustafa; Uyar, Asur; Deger, Emin; Simsek, Masum

    2000-01-01

    A laryngocele is an air-filled dilation of the saccule of the larynx. An infected laryngocele is called a laryngopyocele. Our experience with a case of laryngopyocele with signs on computed tomography before and after antibiotic therapy is presented since laryngopyocele is more unusual

  1. Industrial applications of computed tomography

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Carmignato, S.; Kruth, J. -P.

    2014-01-01

    The number of industrial applications of Computed Tomography(CT) is large and rapidly increasing. After a brief market overview, the paper gives a survey of state of the art and upcoming CT technologies, covering types of CT systems, scanning capabilities, and technological advances. The paper...

  2. Fluorine-18 fluorodeoxyglucose positron emission tomography-computed tomography in evaluation of residual intramuscular myxoma

    International Nuclear Information System (INIS)

    Zade, Anand; Ahire, Archana; Shetty, Shishir; Rai, Sujith; Bokka, Rajashekharrao; Velumani, Arokiaswamy; Kabnurkar, Rasika

    2015-01-01

    Intramuscular myxoma (IM) is a rare benign neoplasm. In a patient diagnosed with IM of left thigh, we report the utility of a postoperative fluorine-18 fluorodeoxyglucose positron emission tomography-computed tomography scan in assessing the efficacy of surgical excision

  3. Computed tomography in dementia of Alzheimer type

    International Nuclear Information System (INIS)

    Tsunoda, Masahiko; Fujii, Tsutomu; Tanii, Yasuyuki

    1990-01-01

    Computed tomography (CT) examinations of 7 patients with dementia of Alzheimer type were reviewed and correlated with clinical stages. The findings of CT were also compared with those of single photon emission computed tomography (SPECT). There was no positive correlation between the degree of cerebral atrophy on CT and clinical stage. Cerebral atrophy seemed to be influenced by aging, ill duration, and the degree of dementia. The cerebral/cerebellar uptake ratio of RI on SPECT was significantly decreased with the progression of clinical stage. SPECT seemed to reflect the degree of dementia, irrespective of ages and ill duration. (N.K.)

  4. Cranial computed tomography in psychiatry

    International Nuclear Information System (INIS)

    Falkai, P.; Bogerts, B.

    1993-01-01

    Computed tomography has gained importance as a diagnostic tool in psychiatry to exclude structural brain pathology, but has passed on its role in research to magnetic resonance tomography. It helps to distinguish between senile dementia of Alzheimer type and multi-infarct dementia. The enlargement of the ventricular system and cortical sulci is well established in schizophrenic and affective psychosis. Some alcohol addicts show a considerable degree of cerebral atrophy, only exceeded by demented patients, but this condition is potentially reversible. To screen psychiatric patients by CT is recommendable, as 2-10% of hospitalized psychiatric patients have structural brain disease. (orig.) [de

  5. Reliability of real-time computing with radiation data feedback at accidental release

    International Nuclear Information System (INIS)

    Deme, S.; Feher, I.; Lang, E.

    1990-01-01

    At the first workshop in 1985 we reported on the real-time dose computing method used at the Paks Nuclear Power Plant and on the telemetric system developed for the normalization of the computed data. At present, the computing method normalized for the telemetric data represents the primary information for deciding on any necessary counter measures in case of a nuclear reactor accident. In this connection we analyzed the reliability of the results obtained in this manner. The points of the analysis were: how the results are influenced by the choice of certain parameters that cannot be determined by direct methods and how the improperly chosen diffusion parameters would distort the determination of environmental radiation parameters normalized on the basis of the measurements ( 131 I activity concentration, gamma dose rate) at points lying at a given distance from the measuring stations. A further source of errors may be that, when determining the level of gamma radiation, the radionuclide doses in the cloud and on the ground surface are measured together by the environmental monitoring stations, whereas these doses appear separately in the computations. At the Paks NPP it is the time integral of the aiborne activity concentration of vapour form 131 I which is determined. This quantity includes neither the other physical and chemical forms of 131 I nor the other isotopes of radioiodine. We gave numerical examples for the uncertainties due to the above factors. As a result, we arrived at the conclusions that there is a need to decide on accident-related measures based on the computing method that the dose uncertainties may reach one order of magnitude for points lying far from the monitoring stations. Different measures are discussed to make the uncertainties significantly lower

  6. Cone beam computed tomography in endodontic

    Energy Technology Data Exchange (ETDEWEB)

    Durack, Conor; Patel, Shanon [Unit of Endodontology, Department of Conservative Dentistry, King' s College London, London (United Kingdom)

    2012-07-01

    Cone beam computed tomography (CBCT) is a contemporary, radiological imaging system designed specifically for use on the maxillofacial skeleton. The system overcomes many of the limitations of conventional radiography by producing undistorted, three-dimensional images of the area under examination. These properties make this form of imaging particularly suitable for use in endodontic. The clinician can obtain an enhanced appreciation of the anatomy being assessed, leading to an improvement in the detection of endodontic disease and resulting in more effective treatment planning. In addition, CBCT operates with a significantly lower effective radiation dose when compared with conventional computed tomography (CT). The purpose of this paper is to review the current literature relating to the limitations and potential applications of CBCT in endodontic practice. (author)

  7. Cone beam computed tomography in endodontic

    International Nuclear Information System (INIS)

    Durack, Conor; Patel, Shanon

    2012-01-01

    Cone beam computed tomography (CBCT) is a contemporary, radiological imaging system designed specifically for use on the maxillofacial skeleton. The system overcomes many of the limitations of conventional radiography by producing undistorted, three-dimensional images of the area under examination. These properties make this form of imaging particularly suitable for use in endodontic. The clinician can obtain an enhanced appreciation of the anatomy being assessed, leading to an improvement in the detection of endodontic disease and resulting in more effective treatment planning. In addition, CBCT operates with a significantly lower effective radiation dose when compared with conventional computed tomography (CT). The purpose of this paper is to review the current literature relating to the limitations and potential applications of CBCT in endodontic practice. (author)

  8. Gantry for computed tomography

    International Nuclear Information System (INIS)

    Kelman, A.L.; Peterson, T.E.

    1981-01-01

    A novel design of gantry for use in computed tomography is described in detail. In the new gantry, curved tracks are mounted to the laterally spaced apart sides of the frame which rotates and carries the detector and X-ray source. This permits the frame to be tilted either side of vertical enabling angular slices of body layers to be viewed and allows simplification of the algorithm which the computer uses for image reconstruction. The tracks are supported on rollers which carry the substantial weight. Explicit engineering details are presented especially of the ball bearing races used in the rotation. (U.K.)

  9. BENEFITS OF SEWERAGE SYSTEM REAL-TIME CONTROL

    Science.gov (United States)

    Real-time control (RTC) is a custom-designed computer-assisted management system for a specific urban sewerage network that is activated during a wet-weather flow event. Though uses of RTC systems had started in the mid 60s, recent developments in computers, telecommunication, in...

  10. Computed tomography findings of early abdominal postoperative complications

    International Nuclear Information System (INIS)

    Zissin, R.; Osadchy, A.; Gayer, G.

    2007-01-01

    Various surgical approaches are used for different abdominal pathological conditions. Postoperative complications occur not infrequently and vary according to the type of the surgery and the clinical context. Nowadays, multidetector computed tomography (MDCT) provides superb anatomic detail and diagnostic accuracy for various intraabdominal pathological processes, even if clinically unsuspected, and it thus has become an essential diagnostic tool for evaluating postoperative insults. Other advantages of abdominal MDCT include its accessibility and its speed, which allow scanning of uncooperative, marginally stable patients. Computed tomography (CT)-guided percutaneous (PC) drainage of postoperative collections is another advantage of CT. Therefore, although CT requires transportation of a critically ill, postoperative patient, it is recommended in any suspicious clinical setting because several conditions require prompt management and a correct diagnosis is crucial. In assessing a patient for suspected postoperative complications, several points should be taken into consideration, including the relevant clinical and laboratory data, the surgical findings, the type of the surgery, the time elapsed since surgery, and the operative technique (either open laparotomy of laparoscopic procedure). (author)

  11. Improvements for real-time magnetic equilibrium reconstruction on ASDEX Upgrade

    International Nuclear Information System (INIS)

    Giannone, L.; Fischer, R.; McCarthy, P.J.; Odstrcil, T.; Zammuto, I.; Bock, A.; Conway, G.; Fuchs, J.C.; Gude, A.; Igochine, V.; Kallenbach, A.; Lackner, K.; Maraschek, M.; Rapson, C.; Ruan, Q.; Schuhbeck, K.H.; Suttrop, W.; Wenzel, L.

    2015-01-01

    Highlights: • Spline basis current functions with second-order linear regularisation. • Perturbations of magnetic probe measurements due to ferromagnetic tiles on the inner wall and from oscillations in the fast position coil current are corrected. • A constraint of the safety factor on the magnetic axis is introduced. Soft X-ray tomography is used to assess the quality of the real-time magnetic equilibrium reconstruction. • External loop voltage measurements and magnetic probe pairs inside and outside the vessel wall were used to measure the vacuum vessel wall resistivity. - Abstract: Real-time magnetic equilibria are needed for NTM stabilization and disruption avoidance experiments on ASDEX Upgrade. Five improvements to real-time magnetic equilibrium reconstruction on ASDEX Upgrade have been investigated. The aim is to include as many features of the offline magnetic equilibrium reconstruction code in the real-time equilibrium reconstruction code. Firstly, spline current density basis functions with regularization are used in the offline equilibrium reconstruction code, CLISTE [1]. It is now possible to have the same number of spline basis functions in the real-time code. Secondly, in the presence of edge localized modes, (ELM's), it is found to be necessary to include the low pass filter effect of the vacuum vessel on the fast position control coil currents to correctly compensate the magnetic probes for current oscillations in these coils. Thirdly, the introduction of ferromagnetic tiles in ASDEX Upgrade means that a real-time algorithm for including the perturbations of the magnetic equilibrium generated by these tiles is required. A methodology based on tile surface currents is described. Fourthly, during current ramps it was seen that the difference between fitted and measured magnetic measurements in the equilibrium reconstruction were larger than in the constant current phase. External loop voltage measurements and magnetic probe pairs inside and

  12. Improvements for real-time magnetic equilibrium reconstruction on ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, L.; Fischer, R. [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); McCarthy, P.J. [Department of Physics, University College Cork, Cork (Ireland); Odstrcil, T.; Zammuto, I.; Bock, A.; Conway, G.; Fuchs, J.C.; Gude, A.; Igochine, V.; Kallenbach, A.; Lackner, K.; Maraschek, M.; Rapson, C. [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Ruan, Q. [National Instruments, Austin, TX 78759-3504 (United States); Schuhbeck, K.H.; Suttrop, W. [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Wenzel, L. [National Instruments, Austin, TX 78759-3504 (United States)

    2015-11-15

    Highlights: • Spline basis current functions with second-order linear regularisation. • Perturbations of magnetic probe measurements due to ferromagnetic tiles on the inner wall and from oscillations in the fast position coil current are corrected. • A constraint of the safety factor on the magnetic axis is introduced. Soft X-ray tomography is used to assess the quality of the real-time magnetic equilibrium reconstruction. • External loop voltage measurements and magnetic probe pairs inside and outside the vessel wall were used to measure the vacuum vessel wall resistivity. - Abstract: Real-time magnetic equilibria are needed for NTM stabilization and disruption avoidance experiments on ASDEX Upgrade. Five improvements to real-time magnetic equilibrium reconstruction on ASDEX Upgrade have been investigated. The aim is to include as many features of the offline magnetic equilibrium reconstruction code in the real-time equilibrium reconstruction code. Firstly, spline current density basis functions with regularization are used in the offline equilibrium reconstruction code, CLISTE [1]. It is now possible to have the same number of spline basis functions in the real-time code. Secondly, in the presence of edge localized modes, (ELM's), it is found to be necessary to include the low pass filter effect of the vacuum vessel on the fast position control coil currents to correctly compensate the magnetic probes for current oscillations in these coils. Thirdly, the introduction of ferromagnetic tiles in ASDEX Upgrade means that a real-time algorithm for including the perturbations of the magnetic equilibrium generated by these tiles is required. A methodology based on tile surface currents is described. Fourthly, during current ramps it was seen that the difference between fitted and measured magnetic measurements in the equilibrium reconstruction were larger than in the constant current phase. External loop voltage measurements and magnetic probe pairs inside

  13. A Real-Time Computation Model of the Electromagnetic Force and Torque for a Maglev Planar Motor with the Concentric Winding

    Directory of Open Access Journals (Sweden)

    Baoquan Kou

    2017-01-01

    Full Text Available The traditional model of the electromagnetic force and torque does not take the coil corners into account, which is the major cause for the motor fluctuation. To reduce the fluctuation, a more accurate real-time computation model, which considers the influence of the coil corners, is proposed in this paper. Three coordinate systems respectively for the stator, the mover, and the corner are established. The first harmonic of the magnetic flux density distribution of a Halbach magnet array is taken into account in this model. The coil is divided into the straight coil segment and the corner coil segment based on its structure. For the straight coil segment, the traditional Lorenz force method can be used to compute its electromagnetic force and torque, which is a function of the mover position. For the corner coil segment, however, the numerical calculation method can be used to get its respective electromagnetic force and torque. Based on the above separate analysis, an electromagnetic model can be derived, which is suitable for practical application. Compared with the well-known harmonic model, the proposed real-time computation model is found to have less model inaccuracy. Additionally, the real-time ability of the maglev planar motor model and the decoupling computation is validated by NI PXI platform (Austin, TX, USA.

  14. Computed tomography of the central nervous system in small animals

    International Nuclear Information System (INIS)

    Tipold, A.; Tipold, E.

    1991-01-01

    With computed tomography in 44 small animals some well defined anatomical structures and pathological processes of the central nervous system are described. Computed tomography is not only necessary for the diagnosis of tumors; malformations, inflammatory, degenerative and vascular diseases and traumas are also visible

  15. Evaluation of transurethral ultrasonography and computed tomography in the staging of bladder tumors

    International Nuclear Information System (INIS)

    Yamakawa, Kensuke; Hoshina, Akira; Tochigi, Hiromi; Kawamura, Juichi

    1987-01-01

    A definitive pathologic diagnosis was made in 47 patients with bladder tumors from cystectomy specimens or by surgical exploration. The tumor was staged in 35 cases by transurethral ultrasonography and in 39 cases by computed tomography. We obtained the following results : the accuracy was 83 % using transurethral sonography, 77 % using computed tomography. Although transurethral ultrasonography is more advantageous than computed tomography in the low stage in regard to accuracy, computed tomography is excellent method to obtain information about the tumor invasion and/or metastases. Of 25 cases combind with computed tomography and transurethral sonography. tumors were correctly staged by both methods in 18 cases (72 %). Histopathological stage was consistent with neither ultrasonographic stage nor computed tomographic stage in 2 cases, and any of these tumors was correctly staged by either of these methods. Although transurethral ultrasonography and computed tomography improve the clinical stage of the bladder tumors separately, some limitations and problems was recognized on using together with these methods for staging the bladder tumors. (author)

  16. Computed tomography of the llama head: technique and normal anatomy

    International Nuclear Information System (INIS)

    Hathcock, J.T.; Pugh, D.G.; Cartee, R.E.; Hammond, L.

    1996-01-01

    Computed tomography was performed on the head of 6 normal adult llamas. The animals were under general anesthesia and positioned in dorsal recumbency on the scanning table. The area scanned was from the external occipital protuberance to the rostral portion of the nasal passage, and the images are presented in both a bone window and a soft tissue window to allow evaluation and identification of the anatomy of the head. Computed tomography of the llama head can be accomplished by most computed tomography scanners utilizing a technique similar to that used in small animals with minor modification of the scanning table

  17. Applications of linac-mounted kilovoltage Cone-beam Computed Tomography in modern radiation therapy: A review

    International Nuclear Information System (INIS)

    Srinivasan, Kavitha; Mohammadi, Mohammad; Shepherd, Justin

    2014-01-01

    The use of Cone-beam Computed Tomography (CBCT) in radiotherapy is increasing due to the widespread implementation of kilovoltage systems on the currently available linear accelerators. Cone beam CT acts as an effective Image-Guided Radiotherapy (IGRT) tool for the verification of patient position. It also opens up the possibility of real-time re-optimization of treatment plans for Adaptive Radiotherapy (ART). This paper reviews the most prominent applications of CBCT (linac-mounted) in radiation therapy, focusing on CBCT-based planning and dose calculation studies. This is followed by a concise review of the main issues associated with CBCT, such as imaging artifacts, dose and image quality. It explores how medical physicists and oncologists can best apply CBCT for therapeutic applications

  18. The investigation and implementation of real-time face pose and direction estimation on mobile computing devices

    Science.gov (United States)

    Fu, Deqian; Gao, Lisheng; Jhang, Seong Tae

    2012-04-01

    The mobile computing device has many limitations, such as relative small user interface and slow computing speed. Usually, augmented reality requires face pose estimation can be used as a HCI and entertainment tool. As far as the realtime implementation of head pose estimation on relatively resource limited mobile platforms is concerned, it is required to face different constraints while leaving enough face pose estimation accuracy. The proposed face pose estimation method met this objective. Experimental results running on a testing Android mobile device delivered satisfactory performing results in the real-time and accurately.

  19. Multi-Detector Computed Tomography Imaging Techniques in Arterial Injuries

    Directory of Open Access Journals (Sweden)

    Cameron Adler

    2018-04-01

    Full Text Available Cross-sectional imaging has become a critical aspect in the evaluation of arterial injuries. In particular, angiography using computed tomography (CT is the imaging of choice. A variety of techniques and options are available when evaluating for arterial injuries. Techniques involve contrast bolus, various phases of contrast enhancement, multiplanar reconstruction, volume rendering, and maximum intensity projection. After the images are rendered, a variety of features may be seen that diagnose the injury. This article provides a general overview of the techniques, important findings, and pitfalls in cross sectional imaging of arterial imaging, particularly in relation to computed tomography. In addition, the future directions of computed tomography, including a few techniques in the process of development, is also discussed.

  20. Real-time fusion of coronary CT angiography with x-ray fluoroscopy during chronic total occlusion PCI.

    Science.gov (United States)

    Ghoshhajra, Brian B; Takx, Richard A P; Stone, Luke L; Girard, Erin E; Brilakis, Emmanouil S; Lombardi, William L; Yeh, Robert W; Jaffer, Farouc A

    2017-06-01

    The purpose of this study was to demonstrate the feasibility of real-time fusion of coronary computed tomography angiography (CTA) centreline and arterial wall calcification with x-ray fluoroscopy during chronic total occlusion (CTO) percutaneous coronary intervention (PCI). Patients undergoing CTO PCI were prospectively enrolled. Pre-procedural CT scans were integrated with conventional coronary fluoroscopy using prototype software. We enrolled 24 patients who underwent CTO PCI using the prototype CT fusion software, and 24 consecutive CTO PCI patients without CT guidance served as a control group. Mean age was 66 ± 11 years, and 43/48 patients were men. Real-time CTA fusion during CTO PCI provided additional information regarding coronary arterial calcification and tortuosity that generated new insights into antegrade wiring, antegrade dissection/reentry, and retrograde wiring during CTO PCI. Overall CTO success rates and procedural outcomes remained similar between the two groups, despite a trend toward higher complexity in the fusion CTA group. This study demonstrates that real-time automated co-registration of coronary CTA centreline and calcification onto live fluoroscopic images is feasible and provides new insights into CTO PCI, and in particular, antegrade dissection reentry-based CTO PCI. • Real-time semi-automated fusion of CTA/fluoroscopy is feasible during CTO PCI. • CTA fusion data can be toggled on/off as desired during CTO PCI • Real-time CT calcium and centreline overlay could benefit antegrade dissection/reentry-based CTO PCI.

  1. Ultrasonography and computer tomography in the diagnosis of certain abdominal diseases

    International Nuclear Information System (INIS)

    Wawrzynek, Z.

    1981-01-01

    Ultrasonography and computer tomography in the diagnosis of digestive tract and spleen diseases as well as traumas are compared. It is concluded that ultrasonography is nearly as usefull as computer tomography. (author)

  2. Real-time fusion of coronary CT angiography with X-ray fluoroscopy during chronic total occlusion PCI

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshhajra, Brian B.; Takx, Richard A.P. [Harvard Medical School, Cardiac MR PET CT Program, Massachusetts General Hospital, Department of Radiology and Division of Cardiology, Boston, MA (United States); Stone, Luke L.; Yeh, Robert W.; Jaffer, Farouc A. [Harvard Medical School, Cardiac Cathetrization Laboratory, Cardiology Division, Massachusetts General Hospital, Boston, MA (United States); Girard, Erin E. [Siemens Healthcare, Princeton, NJ (United States); Brilakis, Emmanouil S. [Cardiology Division, Dallas VA Medical Center and UT Southwestern Medical Center, Dallas, TX (United States); Lombardi, William L. [University of Washington, Cardiology Division, Seattle, WA (United States)

    2017-06-15

    The purpose of this study was to demonstrate the feasibility of real-time fusion of coronary computed tomography angiography (CTA) centreline and arterial wall calcification with X-ray fluoroscopy during chronic total occlusion (CTO) percutaneous coronary intervention (PCI). Patients undergoing CTO PCI were prospectively enrolled. Pre-procedural CT scans were integrated with conventional coronary fluoroscopy using prototype software. We enrolled 24 patients who underwent CTO PCI using the prototype CT fusion software, and 24 consecutive CTO PCI patients without CT guidance served as a control group. Mean age was 66 ± 11 years, and 43/48 patients were men. Real-time CTA fusion during CTO PCI provided additional information regarding coronary arterial calcification and tortuosity that generated new insights into antegrade wiring, antegrade dissection/reentry, and retrograde wiring during CTO PCI. Overall CTO success rates and procedural outcomes remained similar between the two groups, despite a trend toward higher complexity in the fusion CTA group. This study demonstrates that real-time automated co-registration of coronary CTA centreline and calcification onto live fluoroscopic images is feasible and provides new insights into CTO PCI, and in particular, antegrade dissection reentry-based CTO PCI. (orig.)

  3. Occult primary tumors of the head and neck: accuracy of thallium 201 single-photon emission computed tomography and computed tomography and/or magnetic resonance imaging

    NARCIS (Netherlands)

    van Veen, S. A.; Balm, A. J.; Valdés Olmos, R. A.; Hoefnagel, C. A.; Hilgers, F. J.; Tan, I. B.; Pameijer, F. A.

    2001-01-01

    To determine the accuracy of thallium 201 single-photon emission computed tomography (thallium SPECT) and computed tomography and/or magnetic resonance imaging (CT/MRI) in the detection of occult primary tumors of the head and neck. Study of diagnostic tests. National Cancer Institute, Amsterdam,

  4. Some selection criteria for computers in real-time systems for high energy physics

    International Nuclear Information System (INIS)

    Kolpakov, I.F.

    1980-01-01

    The right choice of program source is for the organization of real-time systems of great importance as cost and reliability are decisive factors. Some selection criteria for program sources for high energy physics multiwire chamber spectrometers (MWCS) are considered in this report. MWCS's accept bits of information from event pattens. Large and small computers, microcomputers and intelligent controllers in CAMAC crates are compared with respect to the following characteristics: data exchange speed, number of addresses for peripheral devices, cost of interfacing a peripheral device, sizes of buffer and mass memory, configuration costs, and the mean time between failures (MTBF). The results of comparisons are shown by plots and histograms which allow the selection of program sources according to the above criteria. (Auth.)

  5. Real-time resource allocation for tracking systems

    NARCIS (Netherlands)

    Satsangi, Y.; Whiteson, S.; Oliehoek, F.A.; Bouma, H.

    2017-01-01

    Automated tracking is key to many computer vision applications. However, many tracking systems struggle to perform in real-time due to the high computational cost of detecting people, especially in ultra high resolution images. We propose a new algorithm called PartiMax that greatly reduces this

  6. Wide-area, real-time monitoring and visualization system

    Science.gov (United States)

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2013-03-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  7. Real-time stylistic prediction for whole-body human motions.

    Science.gov (United States)

    Matsubara, Takamitsu; Hyon, Sang-Ho; Morimoto, Jun

    2012-01-01

    The ability to predict human motion is crucial in several contexts such as human tracking by computer vision and the synthesis of human-like computer graphics. Previous work has focused on off-line processes with well-segmented data; however, many applications such as robotics require real-time control with efficient computation. In this paper, we propose a novel approach called real-time stylistic prediction for whole-body human motions to satisfy these requirements. This approach uses a novel generative model to represent a whole-body human motion including rhythmic motion (e.g., walking) and discrete motion (e.g., jumping). The generative model is composed of a low-dimensional state (phase) dynamics and a two-factor observation model, allowing it to capture the diversity of motion styles in humans. A real-time adaptation algorithm was derived to estimate both state variables and style parameter of the model from non-stationary unlabeled sequential observations. Moreover, with a simple modification, the algorithm allows real-time adaptation even from incomplete (partial) observations. Based on the estimated state and style, a future motion sequence can be accurately predicted. In our implementation, it takes less than 15 ms for both adaptation and prediction at each observation. Our real-time stylistic prediction was evaluated for human walking, running, and jumping behaviors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Real Time Processing

    CERN Multimedia

    CERN. Geneva; ANDERSON, Dustin James; DOGLIONI, Caterina

    2015-01-01

    The LHC provides experiments with an unprecedented amount of data. Experimental collaborations need to meet storage and computing requirements for the analysis of this data: this is often a limiting factor in the physics program that would be achievable if the whole dataset could be analysed. In this talk, I will describe the strategies adopted by the LHCb, CMS and ATLAS collaborations to overcome these limitations and make the most of LHC data: data parking, data scouting, and real-time analysis.

  9. High-resolution computed tomography findings in pulmonary Langerhans cell histiocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Rosana Souza [Universidade Federal do Rio de Janeiro (HUCFF/UFRJ), RJ (Brazil). Hospital Universitario Clementino Fraga Filho. Unit of Radiology; Capone, Domenico; Ferreira Neto, Armando Leao [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil)

    2011-07-15

    Objective: The present study was aimed at characterizing main lung changes observed in pulmonary Langerhans cell histiocytosis by means of high-resolution computed tomography. Materials and Methods: High-resolution computed tomography findings in eight patients with proven disease diagnosed by open lung biopsy, immunohistochemistry studies and/or extrapulmonary manifestations were retrospectively evaluated. Results: Small rounded, thin-walled cystic lesions were observed in the lung of all the patients. Nodules with predominantly peripheral distribution over the lung parenchyma were observed in 75% of the patients. The lesions were diffusely distributed, predominantly in the upper and middle lung fields in all of the cases, but involvement of costophrenic angles was observed in 25% of the patients. Conclusion: Comparative analysis of high-resolution computed tomography and chest radiography findings demonstrated that thinwalled cysts and small nodules cannot be satisfactorily evaluated by conventional radiography. Because of its capacity to detect and characterize lung cysts and nodules, high-resolution computed tomography increases the probability of diagnosing pulmonary Langerhans cell histiocytosis. (author)

  10. Computed tomography of tibial plateau fractures

    International Nuclear Information System (INIS)

    Rafii, M.; Firooznia, H.; Golimbu, C.; Bonamo, J.

    1984-01-01

    Twenty patients with tibial plateau fractures were studied by conventional tomography and computed tomography (CT) in order to determine the role and feasibility of CT in management of such patients. CT resulted in less discomfort to the patient and provided optimal visualization of the plateau defect and the split fragments. It proved more accurate than conventional tomography in assessing depressed and split fractures when they involved the anterior or posterior border of the plateau and in demonstrating the extent of fracture comminution. Split fragments with an oblique plane of fracture also were seen better by CT. The degree of fracture depression and separation as measured by the computerized technique was often more accurate than measurements obtained from conventional tomograms

  11. The value of computer tomography and sonography in the investigation of the pancreas

    International Nuclear Information System (INIS)

    Lackner, K.; Frommhold, H.; Grauthoff, H.; Moedder, U.; Heuser, L.; Braun, G.; Buurman, R.; Scherer, K.; Hamburg Univ.; Koeln Univ.

    1980-01-01

    Three hundred and five patients were examined by computer tomography and sonography. In 117 patients no abnormalities were found in the pancreas. The accuracy of computer tomography was 87%, of sonography 85%. In 41 patients the presence of a carcinoma of the pancreas was confirmed histologically. In this group the sensitivity of computer tomography was 83%, of sonography 85%. Thirty-four patients suffered from acute pancreatitis. In this group sensitivity of the two methods was equal at 79%. 113 patients had changes of chronic pancreatitis. Sensitivity of computer tomography was 84%, of sonography 70%. Computer tomography is better at demonstrating calcification in the pancreas. Atrophy of the pancreas cannot be diagnosed by sonography. (orig.) [de

  12. Cone beam computed tomography in Endodontics - a review.

    Science.gov (United States)

    Patel, S; Durack, C; Abella, F; Shemesh, H; Roig, M; Lemberg, K

    2015-01-01

    Cone beam computed tomography (CBCT) produces undistorted three-dimensional information of the maxillofacial skeleton, including the teeth and their surrounding tissues with a lower effective radiation dose than computed tomography. The aim of this paper is to: (i) review the current literature on the applications and limitations of CBCT; (ii) make recommendations for the use of CBCT in Endodontics; (iii) highlight areas of further research of CBCT in Endodontics. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  13. Computed tomography of the mediastinum in myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Guertler, K.F.; Janzen, R.W.C.; Hagemann, J.; Otto, H.F.

    1982-01-01

    Computed tomography of the mediastinum was performed in 45 patients with myasthenia gravis. Surgery was carried out in fourteen. Amongst these, there were four thymomas, one thymolipoma, eight thymic hyperplasias and one normal thymus gland. A further patient, who did not have surgery, probably also had a thymic tumour. The normal thymus and thymic hyperplasia cannot be distinguished on computed tomography. Differentiation of small thymomas from normal thymus is not always possible. Invasion by thymomas can only be appreciated with large tumours.

  14. ¹⁸F-fluorodeoxyglucose positron emission tomography-computed tomography for the evaluation of bone metastasis in patients with gastric cancer.

    Science.gov (United States)

    Ma, Dae Won; Kim, Jie-Hyun; Jeon, Tae Joo; Lee, Yong Chan; Yun, Mijin; Youn, Young Hoon; Park, Hyojin; Lee, Sang In

    2013-09-01

    The roles of positron emission tomography and bone scanning in identifying bone metastasis in gastric cancer are unclear. We compared the usefulness of positron emission tomography-computed tomography and scanning in detecting bone metastasis in gastric cancer. Data from 1485 patients diagnosed with gastric cancer who had undergone positron emission tomography-computed tomography and scanning were reviewed. Of 170 enrolled patients who were suspected of bone metastasis in either positron emission tomography or scanning, 81.2% were confirmed to have bone metastasis. The sensitivity, specificity, and accuracy were 93.5%, 25.0%, and 80.6%, respectively, for positron emission tomography and 93.5%, 37.5%, and 82.9%, respectively, for scanning. 87.7% of patients with bone metastasis showed positive findings on two modalities. 15.0% of solitary bone metastases were positive on positron emission tomography only. Positron emission tomography was superior to scanning for the detection of synchronous bone metastasis, but the two modalities were similar for the detection of metachronous bone metastasis. The concordance rate of response assessment after treatment between two modalities was moderate. Positron emission tomography-computed tomography may be more effective for the diagnosis of bone metastasis in the initial staging workup. Conversely, bone scanning and positron emission tomography-computed tomography may be similarly effective for the detection of metachronous bone metastasis. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  15. Computed tomography in traumatology

    International Nuclear Information System (INIS)

    Heller, M.; Jend, H.H.

    1986-01-01

    This volume offers a critical review and assessment of new avenues opened up by computed tomography in traumatology. Over 200 illustrations, including numerous CT scans, aid the physician engaged emergency care and postoperative treatment of accident victims. Technical prerequisites, special techniques of investigation, pathomorphology of organ changes conditioned by trauma, diagnostic leading symptoms and signs, and diagnostics of iatrogenic injuries and lesions are presented

  16. Fundamentals of cone beam computed tomography for a prosthodontist

    Directory of Open Access Journals (Sweden)

    George Puthenpurayil John

    2015-01-01

    Full Text Available Cone beam computed tomography (CBCT, also referred to as C-arm computed tomography [CT], cone beam volume CT, or flat panel CT is a medical imaging technique of X-ray CT where the X-rays are divergent, forming a cone. [1] CBCT systems have been designed for imaging hard tissues of the maxillofacial region. CBCT is capable of providing sub-millimeter resolution in images of high diagnostic quality, with short scanning times (10-70 s and radiation dosages reportedly up to 15-100 times lower than those of conventional CT scans. Increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. The aim of this article is to sensitize the Prosthodontist to CBCT technology, provide an overview of currently available maxillofacial CBCT systems and review the specific application of various CBCT display modes to clinical Prosthodontic practice. A MEDLINE search for relevant articles in this specific area of interest was conducted. The selected articles were critically reviewed and the data acquired were systematically compiled.

  17. Fundamentals of cone beam computed tomography for a prosthodontist

    Science.gov (United States)

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R. B.

    2015-01-01

    Cone beam computed tomography (CBCT, also referred to as C-arm computed tomography [CT], cone beam volume CT, or flat panel CT) is a medical imaging technique of X-ray CT where the X-rays are divergent, forming a cone.[1] CBCT systems have been designed for imaging hard tissues of the maxillofacial region. CBCT is capable of providing sub-millimeter resolution in images of high diagnostic quality, with short scanning times (10–70 s) and radiation dosages reportedly up to 15–100 times lower than those of conventional CT scans. Increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. The aim of this article is to sensitize the Prosthodontist to CBCT technology, provide an overview of currently available maxillofacial CBCT systems and review the specific application of various CBCT display modes to clinical Prosthodontic practice. A MEDLINE search for relevant articles in this specific area of interest was conducted. The selected articles were critically reviewed and the data acquired were systematically compiled. PMID:26929479

  18. [18F]Fluorodeoxyglucose (FDG)-Positron Emission Tomography (PET)/Computed Tomography (CT) in Suspected Recurrent Breast Cancer

    DEFF Research Database (Denmark)

    Hildebrandt, Malene Grubbe; Gerke, Oke; Baun, Christina

    2016-01-01

    PURPOSE: To prospectively investigate the diagnostic accuracy of [(18)F]fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) with dual-time-point imaging, contrast-enhanced CT (ceCT), and bone scintigraphy (BS) in patients with suspected breast cancer recurrence....... PATIENTS AND METHODS: One hundred women with suspected recurrence of breast cancer underwent 1-hour and 3-hour FDG-PET/CT, ceCT, and BS within approximately 10 days. The study was powered to estimate the precision of the individual imaging tests. Images were visually interpreted using a four...

  19. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... information about radiation dose. There always is a risk of complications from general anesthesia or sedation. Every measure will be taken to ... in X-Ray and CT Exams Contrast Materials Anesthesia Safety Children and Radiation Safety ... (Pediatric) CT (Computed Tomography) Videos related to Children's (Pediatric) ...

  20. Computed tomography in sport injuries

    International Nuclear Information System (INIS)

    Reiser, M.; Rupp, N.

    1984-01-01

    Computed tomography (CT) provides axial slices plane and shows excellent details of bones and different soft tissues, favoring its use in traumatic lesions caused by sporting activities. Complex anatomical structures such as the shoulder, the vertebral column, the pelvis, the knee, the tarsal and carpal bones are often better recognized in detail than by conventional radiography. Fracture lines, localization of bone fragments and involvement of soft tissues are clearly demonstrated. Luxations and bone changes leading to luxations can be shown. CT arthrography provides for the first time a direct visualization of joint cartilage and of cruciate ligaments in the knee joint, so traumatic lesions such as chondropathia patellae or rupture of the cruciate ligaments are shown with a high degree of reliability. (orig.)

  1. Computed tomography in sport injuries

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, M; Rupp, N

    1984-01-01

    Computed tomography (CT) provides axial slices plane and shows excellent details of bones and different soft tissues, favoring its use in traumatic lesions caused by sporting activities. Complex anatomical structures such as the shoulder, the vertebral column, the pelvis, the knee, the tarsal and carpal bones are often better recognized in detail than by conventional radiography. Fracture lines, localization of bone fragments and involvement of soft tissues are clearly demonstrated. Luxations and bone changes leading to luxations can be shown. CT arthrography provides for the first time a direct visualization of joint cartilage and of cruciate ligaments in the knee joint, so traumatic lesions such as chondropathia patellae or rupture of the cruciate ligaments are shown with a high degree of reliability.

  2. Myocardial perfusion with multi-detector computed tomography: quantitative evaluation

    International Nuclear Information System (INIS)

    Carrascosa, Patricia M.; Vallejos, J.; Capunay, Carlos M.; Deviggiano, A.; Carrascosa, Jorge M.

    2007-01-01

    The objective of this work is to evaluate the skill of multidetector computer tomography, to quantify the different patterns of intensification during the evaluation of the myocardial perfusion. 45 patients were studied with suspicion of cardiovascular disease. Multi-detector computed tomography was utilized on patients at rest and in effort with pharmacological stress, after the administration of dipyridamole. Also they were evaluated using nuclear medicine [es

  3. Multi-GPU Jacobian accelerated computing for soft-field tomography

    International Nuclear Information System (INIS)

    Borsic, A; Attardo, E A; Halter, R J

    2012-01-01

    Image reconstruction in soft-field tomography is based on an inverse problem formulation, where a forward model is fitted to the data. In medical applications, where the anatomy presents complex shapes, it is common to use finite element models (FEMs) to represent the volume of interest and solve a partial differential equation that models the physics of the system. Over the last decade, there has been a shifting interest from 2D modeling to 3D modeling, as the underlying physics of most problems are 3D. Although the increased computational power of modern computers allows working with much larger FEM models, the computational time required to reconstruct 3D images on a fine 3D FEM model can be significant, on the order of hours. For example, in electrical impedance tomography (EIT) applications using a dense 3D FEM mesh with half a million elements, a single reconstruction iteration takes approximately 15–20 min with optimized routines running on a modern multi-core PC. It is desirable to accelerate image reconstruction to enable researchers to more easily and rapidly explore data and reconstruction parameters. Furthermore, providing high-speed reconstructions is essential for some promising clinical application of EIT. For 3D problems, 70% of the computing time is spent building the Jacobian matrix, and 25% of the time in forward solving. In this work, we focus on accelerating the Jacobian computation by using single and multiple GPUs. First, we discuss an optimized implementation on a modern multi-core PC architecture and show how computing time is bounded by the CPU-to-memory bandwidth; this factor limits the rate at which data can be fetched by the CPU. Gains associated with the use of multiple CPU cores are minimal, since data operands cannot be fetched fast enough to saturate the processing power of even a single CPU core. GPUs have much faster memory bandwidths compared to CPUs and better parallelism. We are able to obtain acceleration factors of 20 times

  4. Multi-GPU Jacobian accelerated computing for soft-field tomography.

    Science.gov (United States)

    Borsic, A; Attardo, E A; Halter, R J

    2012-10-01

    Image reconstruction in soft-field tomography is based on an inverse problem formulation, where a forward model is fitted to the data. In medical applications, where the anatomy presents complex shapes, it is common to use finite element models (FEMs) to represent the volume of interest and solve a partial differential equation that models the physics of the system. Over the last decade, there has been a shifting interest from 2D modeling to 3D modeling, as the underlying physics of most problems are 3D. Although the increased computational power of modern computers allows working with much larger FEM models, the computational time required to reconstruct 3D images on a fine 3D FEM model can be significant, on the order of hours. For example, in electrical impedance tomography (EIT) applications using a dense 3D FEM mesh with half a million elements, a single reconstruction iteration takes approximately 15-20 min with optimized routines running on a modern multi-core PC. It is desirable to accelerate image reconstruction to enable researchers to more easily and rapidly explore data and reconstruction parameters. Furthermore, providing high-speed reconstructions is essential for some promising clinical application of EIT. For 3D problems, 70% of the computing time is spent building the Jacobian matrix, and 25% of the time in forward solving. In this work, we focus on accelerating the Jacobian computation by using single and multiple GPUs. First, we discuss an optimized implementation on a modern multi-core PC architecture and show how computing time is bounded by the CPU-to-memory bandwidth; this factor limits the rate at which data can be fetched by the CPU. Gains associated with the use of multiple CPU cores are minimal, since data operands cannot be fetched fast enough to saturate the processing power of even a single CPU core. GPUs have much faster memory bandwidths compared to CPUs and better parallelism. We are able to obtain acceleration factors of 20 times

  5. Usefulness of measurement of circulation time using MgSO4 : correlation with time-density curve using electron beam computed tomography

    International Nuclear Information System (INIS)

    Kim, Byung Ki; Lee, Hui Joong; Lee, Jong Min; Kim, Yong Joo; Kang, Duck Sik

    1999-01-01

    To determine the usefulness of MgSO 4 for measuring the systemic circulation time. Systemic circulation time, defined as elapsed time from the injection of MgSO 4 solution to the point of pharyngeal burning sensation, was measured in 63 volunteers. MgSO 4 was injected into a superficial vein of an upper extremity. Using dynamic electron beam computed tomography at the level of the abdominal aorta and celiac axis, a time-intensity curve was plotted, and for these two locations, maximal enhancement time was compared. For 60 of the 63 subjects, both systemic circulation time and maximal enhancement time were determined. Average systemic circulation time was 17.4 (SD:3.6) secs. and average maximal enhancement times at the level of the abdominal aorta and celiac axis were 17.5 (SD:3.0) secs. and 18.5 (SD:3.2) secs., respectively. Correlation coefficients between systemic circulation time and maximal enhancement time for the abdominal aorta and celiac axis were 0.73 (p 4 injection and maximal enhancement time for the abdominal aorta showed significant correlation. Thus, to determine the appropriate scanning time in contrast-enhanced radiological studies, MgSO 4 can be used instead of a test bolus study

  6. Intranasal dexmedetomidine for sedation for pediatric computed tomography imaging.

    Science.gov (United States)

    Mekitarian Filho, Eduardo; Robinson, Fay; de Carvalho, Werther Brunow; Gilio, Alfredo Elias; Mason, Keira P

    2015-05-01

    This prospective observational pilot study evaluated the aerosolized intranasal route for dexmedetomidine as a safe, effective, and efficient option for infant and pediatric sedation for computed tomography imaging. The mean time to sedation was 13.4 minutes, with excellent image quality, no failed sedations, or significant adverse events. Registered with ClinicalTrials.gov: NCT01900405. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Soft x-ray tomography for real-time applications: present status at Tore Supra and possible future developments.

    Science.gov (United States)

    Mazon, D; Vezinet, D; Pacella, D; Moreau, D; Gabelieri, L; Romano, A; Malard, P; Mlynar, J; Masset, R; Lotte, P

    2012-06-01

    This paper is focused on the soft x-ray (SXR) tomography system setup at Tore Supra (DTOMOX) and the recent developments made to automatically get precise information about plasma features from inverted data. The first part describes the main aspects of the tomographic inversion optimization process. Several observations are made using this new tool and a set of shape factors is defined to help characterizing the emissivity field in a real-time perspective. The second part presents a detailed off-line analysis comparing the positions of the magnetic axis obtained from a magnetic equilibrium solver, and the maximum of the reconstructed emissivity field for ohmic and heated pulses. A systematic discrepancy of about 5 cm is found in both cases and it is shown that this discrepancy increases during sawtooth crashes. Finally, evidence of radially localized tungsten accumulation with an in-out asymmetry during a lower hybrid current drive pulse is provided to illustrate the DTOMOX capabilities for a precise observation of local phenomena.

  8. Soft x-ray tomography for real-time applications: present status at Tore Supra and possible future developments

    International Nuclear Information System (INIS)

    Mazon, D.; Vezinet, D.; Moreau, D.; Malard, P.; Masset, R.; Lotte, P.; Pacella, D.; Gabelieri, L.; Romano, A.; Mlynar, J.

    2012-01-01

    This paper is focused on the soft x-ray (SXR) tomography system setup at Tore Supra (DTOMOX) and the recent developments made to automatically get precise information about plasma features from inverted data. The first part describes the main aspects of the tomographic inversion optimization process. Several observations are made using this new tool and a set of shape factors is defined to help characterizing the emissivity field in a real-time perspective. The second part presents a detailed off-line analysis comparing the positions of the magnetic axis obtained from a magnetic equilibrium solver, and the maximum of the reconstructed emissivity field for ohmic and heated pulses. A systematic discrepancy of about 5 cm is found in both cases and it is shown that this discrepancy increases during sawtooth crashes. Finally, evidence of radially localized tungsten accumulation with an in–out asymmetry during a lower hybrid current drive pulse is provided to illustrate the DTOMOX capabilities for a precise observation of local phenomena.

  9. Real-time LMR control parameter generation using advanced adaptive synthesis

    International Nuclear Information System (INIS)

    King, R.W.; Mott, J.E.

    1990-01-01

    The reactor ''delta T'', the difference between the average core inlet and outlet temperatures, for the liquid-sodium-cooled Experimental Breeder Reactor 2 is empirically synthesized in real time from, a multitude of examples of past reactor operation. The real-time empirical synthesis is based on reactor operation. The real-time empirical synthesis is based on system state analysis (SSA) technology embodied in software on the EBR 2 data acquisition computer. Before the real-time system is put into operation, a selection of reactor plant measurements is made which is predictable over long periods encompassing plant shutdowns, core reconfigurations, core load changes, and plant startups. A serial data link to a personal computer containing SSA software allows the rapid verification of the predictability of these plant measurements via graphical means. After the selection is made, the real-time synthesis provides a fault-tolerant estimate of the reactor delta T accurate to +/-1%. 5 refs., 7 figs

  10. Experience with computed transmission tomography of the heart in vivo

    International Nuclear Information System (INIS)

    Carlsson, E.; Lipton, M.J.; Skioeldebrand, C.G.; Berninger, W.H.; Redington, R.W.

    1980-01-01

    Cardiac computed tomography in its present form provides useful information about the heart for clinical use in patients with heart disease and for investigative work in such patients and living animals. Its great reconstructive power and unmatched density resolution are particularly advantageous in the study of ischemic heart disease. Because of its non-invasive character cardiac computed tomography has the potential of becoming an effective screening tool for large numbers of patients with suspected or known coronary heart desiase. Other cardiac conditions such as valve disease and congenital lesions can also be examined with high diagnostic yield. However presently available scanners suffer from low repetion rate, long scan times and the fact that only one transverse cardiac level at a time can be obtained. The development which must be accomplished in order to eliminate these weaknesses is technically feasible. The availability of a dynamic cardiac scanner would greatly benefit the treatment of patients with heart disease and facilitate the inquiry into the pathophysiology of such diseases. (orig.) [de

  11. Positron emission tomography-computed tomography has a clinical impact for patients with cervical cancer

    DEFF Research Database (Denmark)

    Sandvik, Rikke Mulvad; Jensen, Pernille Tine; Hendel, Helle W

    2011-01-01

    Many studies have found that positron emission tomography-computed tomography (PET-CT) has a high sensitivity and specificity in the identification of metastasis in cervical cancer. Herlev Hospital, Denmark, has been performing PET-CTs in stage I-IV cervical cancer since 1 May 2006. The present...

  12. Acute Calculous Cholecystitis Missed on Computed Tomography and Ultrasound but Diagnosed with Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    Directory of Open Access Journals (Sweden)

    Carina Mari Aparici

    2016-01-01

    Full Text Available We present a case of a 69-year-old patient who underwent ascending aortic aneurysm repair with aortic valve replacement. On postsurgical day 12, he developed leukocytosis and low-grade fevers. The chest computed tomography (CT showed a periaortic hematoma which represents a postsurgical change from aortic aneurysm repair, and a small pericardial effusion. The abdominal ultrasound showed cholelithiasis without any sign of cholecystitis. Finally, a fluorodeoxyglucose (FDG-positron emission tomography (PET/CT examination was ordered to find the cause of fever of unknown origin, and it showed increased FDG uptake in the gallbladder wall, with no uptake in the lumen. FDG-PET/CT can diagnose acute cholecystitis in patients with nonspecific clinical symptoms and laboratory results.

  13. Computed tomography of the mediastinum in myasthenia gravis

    International Nuclear Information System (INIS)

    Guertler, K.F.; Janzen, R.W.C.; Hagemann, J.; Otto, H.F.; Hamburg Univ.; Hamburg Univ.

    1982-01-01

    Computed tomography of the mediastinum was performed in 45 patients with myasthenia gravis. Surgery was carried out in fourteen. Amongst these, there were four thymomas, one thymolipoma, eight thymic hyperplasias and one normal thymus gland. A further patient, who did not have surgery, probably also had a thymic tumour. The normal thymus and thymic hyperplasia cannot be distinguished on computed tomography. Differentiation of small thymomas from normal thymus is not always possible. Invasion by thymomas can only be appreciated with large tumours. (orig.) [de

  14. Computed tomography in the evaluation of acquired stenosis in the neonate

    International Nuclear Information System (INIS)

    Faw, K.; Muntz, H.; Siegel, M.; Spector, G.

    1982-01-01

    We studied the feasibility of computed tomographic evaluation of the neonatal airway. Three neonatal larynges, removed at necroscopy, were examined by computed tomography. Good resolution of soft tissue, cartilage and airway lumen was obtained in these small specimens. On the basis of these findings two neonates with acquired subglottic stenosis were examined by endoscopy, soft tissue airway radiographs, and computed tomography. Measurements of radiation dose revealed that a computed tomographic study delivered 36% of the mean tissue dose of standard image intensifier fluoroscopy. Computed tomography and fluoroscopy both demonstrated the degree and length of this stenosis accurately. An advantage of CT over conventional imaging procedures was better definition of the cross sectional area of the airway

  15. Computational hologram synthesis and representation on spatial light modulators for real-time 3D holographic imaging

    International Nuclear Information System (INIS)

    Reichelt, Stephan; Leister, Norbert

    2013-01-01

    In dynamic computer-generated holography that utilizes spatial light modulators, both hologram synthesis and hologram representation are essential in terms of fast computation and high reconstruction quality. For hologram synthesis, i.e. the computation step, Fresnel transform based or point-source based raytracing methods can be applied. In the encoding step, the complex wave-field has to be optimally represented by the SLM with its given modulation capability. For proper hologram reconstruction that implies a simultaneous and independent amplitude and phase modulation of the input wave-field by the SLM. In this paper, we discuss full complex hologram representation methods on SLMs by considering inherent SLM parameter such as modulation type and bit depth on their reconstruction performance such as diffraction efficiency and SNR. We review the three implementation schemes of Burckhardt amplitude-only representation, phase-only macro-pixel representation, and two-phase interference representation. Besides the optical performance we address their hardware complexity and required computational load. Finally, we experimentally demonstrate holographic reconstructions of different representation schemes as obtained by functional prototypes utilizing SeeReal's viewing-window holographic display technology. The proposed hardware implementations enable a fast encoding of complex-valued hologram data and thus will pave the way for commercial real-time holographic 3D imaging in the near future.

  16. New solutions and applications of 3D computer tomography image processing

    Science.gov (United States)

    Effenberger, Ira; Kroll, Julia; Verl, Alexander

    2008-02-01

    As nowadays the industry aims at fast and high quality product development and manufacturing processes a modern and efficient quality inspection is essential. Compared to conventional measurement technologies, industrial computer tomography (CT) is a non-destructive technology for 3D-image data acquisition which helps to overcome their disadvantages by offering the possibility to scan complex parts with all outer and inner geometric features. In this paper new and optimized methods for 3D image processing, including innovative ways of surface reconstruction and automatic geometric feature detection of complex components, are presented, especially our work of developing smart online data processing and data handling methods, with an integrated intelligent online mesh reduction. Hereby the processing of huge and high resolution data sets is guaranteed. Besides, new approaches for surface reconstruction and segmentation based on statistical methods are demonstrated. On the extracted 3D point cloud or surface triangulation automated and precise algorithms for geometric inspection are deployed. All algorithms are applied to different real data sets generated by computer tomography in order to demonstrate the capabilities of the new tools. Since CT is an emerging technology for non-destructive testing and inspection more and more industrial application fields will use and profit from this new technology.

  17. Rapid data processing for ultrafast X-ray computed tomography using scalable and modular CUDA based pipelines

    Science.gov (United States)

    Frust, Tobias; Wagner, Michael; Stephan, Jan; Juckeland, Guido; Bieberle, André

    2017-10-01

    Ultrafast X-ray tomography is an advanced imaging technique for the study of dynamic processes basing on the principles of electron beam scanning. A typical application case for this technique is e.g. the study of multiphase flows, that is, flows of mixtures of substances such as gas-liquidflows in pipelines or chemical reactors. At Helmholtz-Zentrum Dresden-Rossendorf (HZDR) a number of such tomography scanners are operated. Currently, there are two main points limiting their application in some fields. First, after each CT scan sequence the data of the radiation detector must be downloaded from the scanner to a data processing machine. Second, the current data processing is comparably time-consuming compared to the CT scan sequence interval. To enable online observations or use this technique to control actuators in real-time, a modular and scalable data processing tool has been developed, consisting of user-definable stages working independently together in a so called data processing pipeline, that keeps up with the CT scanner's maximal frame rate of up to 8 kHz. The newly developed data processing stages are freely programmable and combinable. In order to achieve the highest processing performance all relevant data processing steps, which are required for a standard slice image reconstruction, were individually implemented in separate stages using Graphics Processing Units (GPUs) and NVIDIA's CUDA programming language. Data processing performance tests on different high-end GPUs (Tesla K20c, GeForce GTX 1080, Tesla P100) showed excellent performance. Program Files doi:http://dx.doi.org/10.17632/65sx747rvm.1 Licensing provisions: LGPLv3 Programming language: C++/CUDA Supplementary material: Test data set, used for the performance analysis. Nature of problem: Ultrafast computed tomography is performed with a scan rate of up to 8 kHz. To obtain cross-sectional images from projection data computer-based image reconstruction algorithms must be applied. The

  18. RTSPM: real-time Linux control software for scanning probe microscopy.

    Science.gov (United States)

    Chandrasekhar, V; Mehta, M M

    2013-01-01

    Real time computer control is an essential feature of scanning probe microscopes, which have become important tools for the characterization and investigation of nanometer scale samples. Most commercial (and some open-source) scanning probe data acquisition software uses digital signal processors to handle the real time data processing and control, which adds to the expense and complexity of the control software. We describe here scan control software that uses a single computer and a data acquisition card to acquire scan data. The computer runs an open-source real time Linux kernel, which permits fast acquisition and control while maintaining a responsive graphical user interface. Images from a simulated tuning-fork based microscope as well as a standard topographical sample are also presented, showing some of the capabilities of the software.

  19. Fault tolerant distributed real time computer systems for I and C of prototype fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Manimaran, M., E-mail: maran@igcar.gov.in; Shanmugam, A.; Parimalam, P.; Murali, N.; Satya Murty, S.A.V.

    2014-03-15

    Highlights: • Architecture of distributed real time computer system (DRTCS) used in I and C of PFBR is explained. • Fault tolerant (hot standby) architecture, fault detection and switch over are detailed. • Scaled down model was used to study functional and performance requirements of DRTCS. • Quality of service parameters for scaled down model was critically studied. - Abstract: Prototype fast breeder reactor (PFBR) is in the advanced stage of construction at Kalpakkam, India. Three-tier architecture is adopted for instrumentation and control (I and C) of PFBR wherein bottom tier consists of real time computer (RTC) systems, middle tier consists of process computers and top tier constitutes of display stations. These RTC systems are geographically distributed and networked together with process computers and display stations. Hot standby architecture comprising of dual redundant RTC systems with switch over logic system is deployed in order to achieve fault tolerance. Fault tolerant dual redundant network connectivity is provided in each RTC system and TCP/IP protocol is selected for network communication. In order to assess the performance of distributed RTC systems, scaled down model was developed with 9 representative systems and nearly 15% of I and C signals of PFBR were connected and monitored. Functional and performance testing were carried out for each RTC system and the fault tolerant characteristics were studied by creating various faults into the system and observed the performance. Various quality of service parameters like connection establishment delay, priority parameter, transit delay, throughput, residual error ratio, etc., are critically studied for the network.

  20. Computed tomography of human joints and radioactive waste drums

    International Nuclear Information System (INIS)

    Martz, Harry E.; Roberson, G. Patrick; Hollerbach, Karin; Logan, Clinton M.; Ashby, Elaine; Bernardi, Richard

    1999-01-01

    X- and gamma-ray imaging techniques in nondestructive evaluation (NDE) and assay (NDA) have seen increasing use in an array of industrial, environmental, military, and medical applications. Much of this growth in recent years is attributed to the rapid development of computed tomography (CT) and the use of NDE throughout the life-cycle of a product. Two diverse examples of CT are discussed, 1.) Our computational approach to normal joint kinematics and prosthetic joint analysis offers an opportunity to evaluate and improve prosthetic human joint replacements before they are manufactured or surgically implanted. Computed tomography data from scanned joints are segmented, resulting in the identification of bone and other tissues of interest, with emphasis on the articular surfaces. 2.) We are developing NDE and NDA techniques to analyze closed waste drums accurately and quantitatively. Active and passive computed tomography (A and PCT) is a comprehensive and accurate gamma-ray NDA method that can identify all detectable radioisotopes present in a container and measure their radioactivity