WorldWideScience

Sample records for real-time 3-dimensional echocardiography

  1. [Real time 3D echocardiography

    Science.gov (United States)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  2. Real-time 3-dimensional fetal echocardiography with an instantaneous volume-rendered display: early description and pictorial essay.

    Science.gov (United States)

    Sklansky, Mark S; DeVore, Greggory R; Wong, Pierre C

    2004-02-01

    Random fetal motion, rapid fetal heart rates, and cumbersome processing algorithms have limited reconstructive approaches to 3-dimensional fetal cardiac imaging. Given the recent development of real-time, instantaneous volume-rendered sonographic displays of volume data, we sought to apply this technology to fetal cardiac imaging. We obtained 1 to 6 volume data sets on each of 30 fetal hearts referred for formal fetal echocardiography. Each volume data set was acquired over 2 to 8 seconds and stored on the system's hard drive. Rendered images were subsequently processed to optimize translucency, smoothing, and orientation and cropped to reveal "surgeon's eye views" of clinically relevant anatomic structures. Qualitative comparison was made with conventional fetal echocardiography for each subject. Volume-rendered displays identified all major abnormalities but failed to identify small ventricular septal defects in 2 patients. Important planes and views not visualized during the actual scans were generated with minimal processing of rendered image displays. Volume-rendered displays tended to have slightly inferior image quality compared with conventional 2-dimensional images. Real-time 3-dimensional echocardiography with instantaneous volume-rendered displays of the fetal heart represents a new approach to fetal cardiac imaging with tremendous clinical potential.

  3. Prognostic value of real-time three-dimensional echocardiography compared to two-dimensional echocardiography in patients with systolic heart failure.

    Science.gov (United States)

    Mancuso, Frederico J N; Moises, Valdir A; Almeida, Dirceu R; Poyares, Dalva; Storti, Luciana J; Brito, Flavio S; Tufik, Sergio; de Paola, Angelo A V; Carvalho, Antonio C C; Campos, Orlando

    2018-04-01

    Heart failure (HF) is associated with morbidity and mortality. Real-time three-dimensional echocardiography (RT3DE) may offer additional prognostic data in patients with HF. The study aimed to evaluate the prognostic value of real-time three-dimensional echocardiography (RT3DE). This is a prospective study that included 89 patients with HF and left ventricular ejection fraction (LVEF) < 0.50 who were followed for 48 months. Left atrium and ventricular volumes and functions were evaluated by RT3DE. TDI and two-dimensional echocardiography parameters were also obtained. The endpoint was a composite of death, heart transplantation and hospitalization for acute decompensated HF. The mean age was 55 ± 11 years, and the LVEF was 0.32 ± 0.10. The composite endpoint occurred in 49 patients (18 deaths, 30 hospitalizations, one heart transplant). Patients with outcomes had greater left atrial volume (40 ± 16 vs. 32 ± 12 mL/m 2 ; p < 0.01) and right ventricle diameter (41 ± 9 vs. 37 ± 8 mm, p = 0.01), worse total emptying fraction of the left atrium (36 ± 13% vs. 41 ± 11%; p = 0.03), LVEF (0.30 ± 0.09 vs. 0.34 ± 0.11; p = 0.02), right ventricle fractional area change (34.8 ± 12.1% vs. 39.2 ± 11.3%; p = 0.04), and greater E/e' ratio (19 ± 9 vs. 16 ± 8; p = 0.04) and systolic pulmonary artery pressure (SPAP) (50 ± 15 vs. 36 ± 11 mmHg; p < 0.01). In multivariate analysis, LVEF (OR 4.6; CI 95% 1.2-17.6; p < 0.01) and SPAP (OR 12.5; CI 95% 1.8-86.9; p < 0.01) were independent predictors of patient outcomes. LVEF and the SPAP were independent predictors of outcomes in patients with HF.

  4. Real-time three dimensional transesophageal echocardiography: technical aspects and clinical applications

    Directory of Open Access Journals (Sweden)

    Sergio Mondillo

    2010-02-01

    Full Text Available Real-time three-dimensional transeso-phageal echocardiography (RT3DTEE is now commonly used in daily clinical practice. The transesophageal, compared to the transthoracic approach, allows the visualization of the whole spectrum of the mitral valve apparatus and the posterior cardiac structures. Moreover, images obtained by RT 3D TEE provide a unique and complete visualization of the mitral valve prosthetic elements. Indeed, the possibility to visualize guidewires and catheters in cardiac chambers and their relationship with cardiac structures during percutaneous transcatheter procedures reduces the time of radiation exposure and simplifies the approach becoming the reference method for monitoring. This review aims to underline the potential clinical applications and the advantages of RT3DTEE compared to other methods.

  5. Real-Time Three-Dimensional Echocardiography: Characterization of Cardiac Anatomy and Function-Current Clinical Applications and Literature Review Update.

    Science.gov (United States)

    Velasco, Omar; Beckett, Morgan Q; James, Aaron W; Loehr, Megan N; Lewis, Taylor G; Hassan, Tahmin; Janardhanan, Rajesh

    2017-01-01

    Our review of real-time three-dimensional echocardiography (RT3DE) discusses the diagnostic utility of RT3DE and provides a comparison with two-dimensional echocardiography (2DE) in clinical cardiology. A Pubmed literature search on RT3DE was performed using the following key words: transthoracic, two-dimensional, three-dimensional, real-time, and left ventricular (LV) function. Articles included perspective clinical studies and meta-analyses in the English language, and focused on the role of RT3DE in human subjects. Application of RT3DE includes analysis of the pericardium, right ventricular (RV) and LV cavities, wall motion, valvular disease, great vessels, congenital anomalies, and traumatic injury, such as myocardial contusion. RT3DE, through a transthoracic echocardiography (TTE), allows for increasingly accurate volume and valve motion assessment, estimated LV ejection fraction, and volume measurements. Chamber motion and LV mass approximation have been more accurately evaluated by RT3DE by improved inclusion of the third dimension and quantification of volumetric movement. Moreover, RT3DE was shown to have no statistical significance when comparing the ejection fractions of RT3DE to cardiac magnetic resonance (CMR). Analysis of RT3DE data sets of the LV endocardial exterior allows for the volume to be directly quantified for specific phases of the cardiac cycle, ranging from end systole to end diastole, eliminating error from wall motion abnormalities and asymmetrical left ventricles. RT3DE through TTE measures cardiac function with superior diagnostic accuracy in predicting LV mass, systolic function, along with LV and RV volume when compared with 2DE with comparable results to CMR.

  6. Real-Time Three-Dimensional Echocardiography: Characterization of Cardiac Anatomy and Function—Current Clinical Applications and Literature Review Update

    Directory of Open Access Journals (Sweden)

    Morgan Q. Beckett

    2017-03-01

    Full Text Available Our review of real-time three-dimensional echocardiography (RT3DE discusses the diagnostic utility of RT3DE and provides a comparison with two-dimensional echocardiography (2DE in clinical cardiology. A Pubmed literature search on RT3DE was performed using the following key words: transthoracic, two-dimensional, three-dimensional, real-time, and left ventricular (LV function. Articles included perspective clinical studies and meta-analyses in the English language, and focused on the role of RT3DE in human subjects. Application of RT3DE includes analysis of the pericardium, right ventricular (RV and LV cavities, wall motion, valvular disease, great vessels, congenital anomalies, and traumatic injury, such as myocardial contusion. RT3DE, through a transthoracic echocardiography (TTE, allows for increasingly accurate volume and valve motion assessment, estimated LV ejection fraction, and volume measurements. Chamber motion and LV mass approximation have been more accurately evaluated by RT3DE by improved inclusion of the third dimension and quantification of volumetric movement. Moreover, RT3DE was shown to have no statistical significance when comparing the ejection fractions of RT3DE to cardiac magnetic resonance (CMR. Analysis of RT3DE data sets of the LV endocardial exterior allows for the volume to be directly quantified for specific phases of the cardiac cycle, ranging from end systole to end diastole, eliminating error from wall motion abnormalities and asymmetrical left ventricles. RT3DE through TTE measures cardiac function with superior diagnostic accuracy in predicting LV mass, systolic function, along with LV and RV volume when compared with 2DE with comparable results to CMR.

  7. Visually estimated ejection fraction by two dimensional and triplane echocardiography is closely correlated with quantitative ejection fraction by real-time three dimensional echocardiography.

    Science.gov (United States)

    Shahgaldi, Kambiz; Gudmundsson, Petri; Manouras, Aristomenis; Brodin, Lars-Ake; Winter, Reidar

    2009-08-25

    Visual assessment of left ventricular ejection fraction (LVEF) is often used in clinical routine despite general recommendations to use quantitative biplane Simpsons (BPS) measurements. Even thou quantitative methods are well validated and from many reasons preferable, the feasibility of visual assessment (eyeballing) is superior. There is to date only sparse data comparing visual EF assessment in comparison to quantitative methods available. The aim of this study was to compare visual EF assessment by two-dimensional echocardiography (2DE) and triplane echocardiography (TPE) using quantitative real-time three-dimensional echocardiography (RT3DE) as the reference method. Thirty patients were enrolled in the study. Eyeballing EF was assessed using apical 4-and 2 chamber views and TP mode by two experienced readers blinded to all clinical data. The measurements were compared to quantitative RT3DE. There were an excellent correlation between eyeballing EF by 2D and TP vs 3DE (r = 0.91 and 0.95 respectively) without any significant bias (-0.5 +/- 3.7% and -0.2 +/- 2.9% respectively). Intraobserver variability was 3.8% for eyeballing 2DE, 3.2% for eyeballing TP and 2.3% for quantitative 3D-EF. Interobserver variability was 7.5% for eyeballing 2D and 8.4% for eyeballing TP. Visual estimation of LVEF both using 2D and TP by an experienced reader correlates well with quantitative EF determined by RT3DE. There is an apparent trend towards a smaller variability using TP in comparison to 2D, this was however not statistically significant.

  8. Use of real time three-dimensional transesophageal echocardiography in intracardiac catheter based interventions.

    Science.gov (United States)

    Perk, Gila; Lang, Roberto M; Garcia-Fernandez, Miguel Angel; Lodato, Joe; Sugeng, Lissa; Lopez, John; Knight, Brad P; Messika-Zeitoun, David; Shah, Sanjiv; Slater, James; Brochet, Eric; Varkey, Mathew; Hijazi, Ziyad; Marino, Nino; Ruiz, Carlos; Kronzon, Itzhak

    2009-08-01

    Real-time three-dimensional (RT3D) echocardiography is a recently developed technique that is being increasingly used in echocardiography laboratories. Over the past several years, improvements in transducer technologies have allowed development of a full matrix-array transducer that allows acquisition of pyramidal-shaped data sets. These data sets can be processed online and offline to allow accurate evaluation of cardiac structures, volumes, and mass. More recently, a transesophageal transducer with RT3D capabilities has been developed. This allows acquisition of high-quality RT3D images on transesophageal echocardiography (TEE). Percutaneous catheter-based procedures have gained growing acceptance in the cardiac procedural armamentarium. Advances in technology and technical skills allow increasingly complex procedures to be performed using a catheter-based approach, thus obviating the need for open-heart surgery. The authors used RT3D TEE to guide 72 catheter-based cardiac interventions. The procedures included the occlusion of atrial septal defects or patent foramen ovales (n=25), percutaneous mitral valve repair (e-valve clipping; n=3), mitral balloon valvuloplasty for mitral stenosis (n=10), left atrial appendage obliteration (n=11), left atrial or pulmonary vein ablation for atrial fibrillation (n=5), percutaneous closures of prosthetic valve dehiscence (n=10), percutaneous aortic valve replacement (n=6), and percutaneous closures of ventricular septal defects (n=2). In this review, the authors describe their experience with this technique, the added value over multiplanar two-dimensional TEE, and the pitfalls that were encountered. The main advantages found for the use RT3D TEE during catheter-based interventions were (1) the ability to visualize the entire lengths of intracardiac catheters, including the tips of all catheters and the balloons or devices they carry, along with a clear depiction of their positions in relation to other cardiac structures, and

  9. A funnel shaped pannus formation above the mitral prosthetic valve diagnosed with real time three-dimensional echocardiography

    Directory of Open Access Journals (Sweden)

    Ezgi Polat Ocaklı

    2017-09-01

    Full Text Available Prosthetic valve obstruction due to pannus formation can be a life-threatening complication. We showed that real time three dimensional echocardiography has incremental value in diagnosing pannus localization and extent.

  10. Visually estimated ejection fraction by two dimensional and triplane echocardiography is closely correlated with quantitative ejection fraction by real-time three dimensional echocardiography

    Directory of Open Access Journals (Sweden)

    Manouras Aristomenis

    2009-08-01

    Full Text Available Abstract Background Visual assessment of left ventricular ejection fraction (LVEF is often used in clinical routine despite general recommendations to use quantitative biplane Simpsons (BPS measurements. Even thou quantitative methods are well validated and from many reasons preferable, the feasibility of visual assessment (eyeballing is superior. There is to date only sparse data comparing visual EF assessment in comparison to quantitative methods available. The aim of this study was to compare visual EF assessment by two-dimensional echocardiography (2DE and triplane echocardiography (TPE using quantitative real-time three-dimensional echocardiography (RT3DE as the reference method. Methods Thirty patients were enrolled in the study. Eyeballing EF was assessed using apical 4-and 2 chamber views and TP mode by two experienced readers blinded to all clinical data. The measurements were compared to quantitative RT3DE. Results There were an excellent correlation between eyeballing EF by 2D and TP vs 3DE (r = 0.91 and 0.95 respectively without any significant bias (-0.5 ± 3.7% and -0.2 ± 2.9% respectively. Intraobserver variability was 3.8% for eyeballing 2DE, 3.2% for eyeballing TP and 2.3% for quantitative 3D-EF. Interobserver variability was 7.5% for eyeballing 2D and 8.4% for eyeballing TP. Conclusion Visual estimation of LVEF both using 2D and TP by an experienced reader correlates well with quantitative EF determined by RT3DE. There is an apparent trend towards a smaller variability using TP in comparison to 2D, this was however not statistically significant.

  11. Obstructed bi-leaflet prosthetic mitral valve imaging with real-time three-dimensional transesophageal echocardiography.

    Science.gov (United States)

    Shimbo, Mai; Watanabe, Hiroyuki; Kimura, Shunsuke; Terada, Mai; Iino, Takako; Iino, Kenji; Ito, Hiroshi

    2015-01-01

    Real-time three-dimensional transesophageal echocardiography (RT3D-TEE) can provide unique visualization and better understanding of the relationship among cardiac structures. Here, we report the case of an 85-year-old woman with an obstructed mitral prosthetic valve diagnosed promptly by RT3D-TEE, which clearly showed a leaflet stuck in the closed position. The opening and closing angles of the valve leaflets measured by RT3D-TEE were compatible with those measured by fluoroscopy. Moreover, RT3D-TEE revealed, in the ring of the prosthetic valve, thrombi that were not visible on fluoroscopy. RT3D-TEE might be a valuable diagnostic technique for prosthetic mitral valve thrombosis. © 2014 Wiley Periodicals, Inc.

  12. Three-dimensional echocardiography

    International Nuclear Information System (INIS)

    Buck, Thomas

    2011-01-01

    Presents tips and tricks for beginners and experts Provides educational material for 3D training courses Features comprehensively illustrated cases Includes an accompanying DVD with video clips of all sample cases Three-dimensional echocardiography is the most recent fundamental advancement in echocardiography. Since real-time 3D echocardiography became commercially available in 2002, it has rapidly been accepted in echo labs worldwide. This book covers all clinically relevant aspects of this fascinating new technology, including a comprehensive explanation of its basic principles, practical aspects of clinical application, and detailed descriptions of specific uses in the broad spectrum of clinically important heart disease. The book was written by a group of well-recognized international experts in the field, who have not only been involved in the scientific and clinical evolution of 3D echocardiography since its inception but are also intensively involved in expert training courses. As a result, the clear focus of this book is on the practical application of 3D echocardiography in daily clinical routine with tips and tricks for both beginners and experts, accompanied by more than 150 case examples comprehensively illustrated in more than 800 images and more than 500 videos provided on a DVD. In addition to an in-depth review of the most recent literature on real-time 3D echocardiography, this book represents an invaluable reference work for beginners and expert users of 3D echocardiography. - Tips and tricks for beginners and experts - Educational material for 3D training courses - Comprehensively illustrated cases - DVD with video clips of all sample cases.

  13. Real-time three-dimensional transesophageal echocardiography in the assessment of mechanical prosthetic mitral valve ring thrombosis.

    Science.gov (United States)

    Ozkan, Mehmet; Gürsoy, Ozan Mustafa; Astarcıoğlu, Mehmet Ali; Gündüz, Sabahattin; Cakal, Beytullah; Karakoyun, Süleyman; Kalçık, Macit; Kahveci, Gökhan; Duran, Nilüfer Ekşi; Yıldız, Mustafa; Cevik, Cihan

    2013-10-01

    Although 2-dimensional (2D) transesophageal echocardiography (TEE) is the gold standard for the diagnosis of prosthetic valve thrombosis, nonobstructive clots located on mitral valve rings can be missed. Real-time 3-dimensional (3D) TEE has incremental value in the visualization of mitral prosthesis. The aim of this study was to investigate the utility of real-time 3D TEE in the diagnosis of mitral prosthetic ring thrombosis. The clinical outcomes of these patients in relation to real-time 3D transesophageal echocardiographic findings were analyzed. Of 1,263 patients who underwent echocardiographic studies, 174 patients (37 men, 137 women) with mitral ring thrombosis detected by real-time 3D TEE constituted the main study population. Patients were followed prospectively on oral anticoagulation for 25 ± 7 months. Eighty-nine patients (51%) had thrombi that were missed on 2D TEE and depicted only on real-time 3D TEE. The remaining cases were partially visualized with 2D TEE but completely visualized with real-time 3D TEE. Thirty-seven patients (21%) had thromboembolism. The mean thickness of the ring thrombosis in patients with thromboembolism was greater than that in patients without thromboembolism (3.8 ± 0.9 vs 2.8 ± 0.7 mm, p 3D TEE during follow-up. There were no thrombi in 39 patients (25%); 45 (29%) had regression of thrombi, and there was no change in thrombus size in 68 patients (44%). Thrombus size increased in 3 patients (2%). Thrombosis was confirmed surgically and histopathologically in 12 patients (7%). In conclusion, real-time 3D TEE can detect prosthetic mitral ring thrombosis that could be missed on 2D TEE and cause thromboembolic events. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Diagnosis of the prosthetic heart valve pannus formation with real-time three-dimensional transoesophageal echocardiography.

    Science.gov (United States)

    Ozkan, Mehmet; Gündüz, Sabahattin; Yildiz, Mustafa; Duran, Nilüfer Eksi

    2010-05-01

    Prosthetic heart valve obstruction (PHVO) caused by pannus formation is an uncommon but serious complication. Although two-dimensional transesophageal echocardiography (2D-TEE) is the method of choice in the evaluation of PHVO, visualization of pannus is almost impossible with 2D-TEE. While demonstrating the precise aetiology of PHVO is essential for guiding the therapy, either thrombolysis for valve thrombosis or surgery for pannus formation, more sophisticated imaging techniques are needed in patients with suspected pannus formation. We present real-time 3D-TEE imaging in a patient with mechanical mitral PHVO, clearly demonstrating pannus overgrowth.

  15. Real-time three-dimensional speckle tracking echocardiography: technical aspects and clinical applications

    Directory of Open Access Journals (Sweden)

    Sorrentino R

    2016-11-01

    Full Text Available Regina Sorrentino, Roberta Esposito, Enrica Pezzullo, Maurizio Galderisi Department of Advanced Biomedical Sciences, Interdepartmental Laboratory of Cardiac Imaging, Federico II University Hospital, Naples, Italy Abstract: Three-dimensional speckle tracking echocardiography (3D STE is a novel technique for the quantification of cardiac deformation based on tracking of ultrasonic speckles in gray scale full-volume 3D images. Developments in ultrasound technologies have made 3D speckle tracking widely available. Two-dimensional echocardiography has intrinsic limitations regarding estimation of left ventricular (LV volumes, ejection fraction, and LV mechanics, due to its inherent foreshortening errors and dependency on geometric models. The development of 3D echocardiography has improved reproducibility and accuracy. Data regarding the feasibility, accuracy, and clinical applications of 3D STE are rapidly assembling. From the tracking results, 3D STE derives several parameters, including longitudinal, circumferential and radial strain, as well as a combined assessment of longitudinal and circumferential strain, termed area strain. 3D STE can also quantify LV rotational movements such as rotation, twist, and torsion. 3D STE provides a better insight on global and regional myocardial deformation. Main applications include detection of subclinical myocardial involvement in heart failure, arterial hypertension, dyssynchrony, and ischemic heart disease. Emerging areas of application include a large spectrum of heart-involving systemic conditions, such as prediction of rejection in heart transplant patients, early detection of cardiotoxicity in patients receiving chemotherapy for cancer, and deeper physiological understanding of LV contraction mechanics in different types of athletes. Aim of this review is to discuss background, technical acquisition and processing aspects as well as recognized and developing clinical applications of this emerging

  16. Prosthetic mitral valve obstruction: role of real-time three-dimensional transesophageal echocardiography in diagnosis.

    Science.gov (United States)

    Kannan, Arun; Jahan, Kahroba; Lotun, Kapildeo; Janardhanan, Rajesh

    2015-09-21

    Acute prosthetic valve thrombosis is a potentially serious complication with an incidence as high as 6% per patient-year for prostheses in the mitral position. Accurate diagnosis of the degree of obstruction and differentiation of pannus versus thrombus is critical in determination of the best mode of therapy. We discuss a case of a patient with multiple comorbidities who presented with mechanical mitral valve obstruction where both transthoracic and two-dimensional transesophageal echocardiography (TEE) were limited in making an accurate diagnosis regarding the mechanism of obstruction. Real-time 3D-TEE (RT-3DTEE) was critical in identifying a partial thrombus on the mechanical valve and guided the choice of thrombolysis as the most appropriate intervention, thus avoiding high-risk surgery in this patient with significant multiple comorbidities. 2015 BMJ Publishing Group Ltd.

  17. Use of real-time three-dimensional transesophageal echocardiography in type A aortic dissections: Advantages of 3D TEE illustrated in three cases

    Directory of Open Access Journals (Sweden)

    Cindy J Wang

    2015-01-01

    Full Text Available Stanford type A aortic dissections often present to the hospital requiring emergent surgical intervention. Initial diagnosis is usually made by computed tomography; however transesophageal echocardiography (TEE can further characterize aortic dissections with specific advantages: It may be performed on an unstable patient, it can be used intra-operatively, and it has the ability to provide continuous real-time information. Three-dimensional (3D TEE has become more accessible over recent years allowing it to serve as an additional tool in the operating room. We present a case series of three patients presenting with type A aortic dissections and the advantages of intra-operative 3D TEE to diagnose the extent of dissection in each case. Prior case reports have demonstrated the use of 3D TEE in type A aortic dissections to characterize the extent of dissection and involvement of neighboring structures. In our three cases described, 3D TEE provided additional understanding of spatial relationships between the dissection flap and neighboring structures such as the aortic valve and coronary orifices that were not fully appreciated with two-dimensional TEE, which affected surgical decisions in the operating room. This case series demonstrates the utility and benefit of real-time 3D TEE during intra-operative management of a type A aortic dissection.

  18. Incremental value of live/real time three-dimensional transesophageal echocardiography over the two-dimensional technique in the assessment of primary cardiac malignant fibrous histiocytoma.

    Science.gov (United States)

    Gok, Gulay; Elsayed, Mahmoud; Thind, Munveer; Uygur, Begum; Abtahi, Firoozeh; Chahwala, Jugal R; Yıldırımtürk, Özlem; Kayacıoğlu, İlyas; Pehlivanoğlu, Seçkin; Nanda, Navin C

    2015-07-01

    We describe a case of primary cardiac malignant fibrous histiocytoma where live/real time three-dimensional transesophageal echocardiography added incremental value to the two-dimensional modalities. Specifically, the three-dimensional technique allowed us to delineate the true extent and infiltration of the tumor, to identify characteristics of the tumor mass suggestive of its malignant nature, and to quantitatively assess the total tumor burden. © 2015, Wiley Periodicals, Inc.

  19. Quantitative assessment of left ventricular systolic function using 3-dimensional echocardiography

    Directory of Open Access Journals (Sweden)

    Rahul Mehrotra

    2013-09-01

    Full Text Available Assessment of left ventricular systolic function is the commonest and one of the most important indications for performance of echocardiography. It is important for prognostication, determination of treatment plan, for decisions related to expensive device therapies and for assessing response to treatment. The current methods based on two-dimensional echocardiography are not reliable, have high degree of inter-observer and intra-observer variability and are based on presumptions about the geometry of left ventricle (LV. Real-time three-dimensional echocardiography (RT3DE on the other hand is fast, easy, accurate, relatively operator independent and is not based on any assumptions related to the shape of LV. Owing to these advantages, it is the Echocardiographic modality of choice for assessment of systolic function of the LV. We describe here a step by step approach to evaluation of LV volumes, ejection fraction, regional systolic function and Dyssynchrony analysis based on RT3DE. It has been well validated in clinical studies and is rapidly being incorporated in routine clinical practice.

  20. The advantages of live/real time three-dimensional transesophageal echocardiography during assessments of pulmonary stenosis.

    Science.gov (United States)

    Kemaloğlu Öz, Tuğba; Özpamuk Karadeniz, Fatma; Akyüz, Şükrü; Ünal Dayı, Şennur; Esen Zencirci, Aycan; Atasoy, Işıl; Ösken, Altuğ; Eren, Mehmet

    2016-04-01

    This report sought to compare live/real-time three-dimensional transesophageal echocardiography (3D-TEE) with two-dimensional transesophageal echocardiography (2D-TEE) and to determine whether there are advantages to using 3D-TEE on patients with pulmonary stenosis (PS). Sixteen consecutive adult patients (50 % male and 50 % female; mean age 33 ± 13.4 years) with PS and indications of TEE were prospectively enrolled in this study. Following this, initial 2D-TEE and 3D-TEE examinations were performed, and 3D-TEE images were analyzed using an off-line Q-lab software system. Finally, the 2D-TEE and 3D-TEE findings were compared. In the present study, 3D-TEE allowed us to obtain the en face views of pulmonary valves (PVs) in all but one patient. While this patient was without a PV due to a previous tetralogy of Fallot operation, we could detect the type of PV in the other 15 (93.7 %) patients by using 3D-TEE. Due to poor image quality, the most stenotic area was not measurable in only one (6.2 %) of the patients. In eight (50 %) of the patients, severity and localization of stenosis were more precisely determined with 3DTEE than with 2D-TEE. The PVs' maximal annulus dimensions were found to be significantly larger when they were measured using 3D modalities. This study provides evidence of the incremental value of using 3D-TEE rather than 2D-TEE during assessments of PS, specifically in cases where special conditions (pregnancy, pulmonary regurgitation, and concomitant atrial septal defects) cause recordings of the transvalvular peak gradient to be inaccurate. Therefore, 3D-TEE should be used as a complementary imaging tool to 2D-TEE during routine echocardiographic examinations.

  1. Evaluation of changes in left ventricular structure and function in hypertensive patients with coronary artery disease after PCI using real-time three-dimensional echocardiography.

    Science.gov (United States)

    Meng, Yanhong; Zong, Ling; Zhang, Ziteng; Han, Youdong; Wang, Yanhui

    2018-02-01

    We aimed to evaluate the changes in left ventricular structure and function in hypertensive patients with coronary artery disease before and after percutaneous coronary intervention (PCI) using real-time three-dimensional echocardiography. Two hundred and eighty hypertensive patients with coronary artery disease undergoing PCI and 120 cases who did not receive PCI in our hospital were selected as the subjects of our study. All patients were administered with routine antiplatelet, anticoagulant, lipid-lowering, antihypertensive, dilating coronary artery and other medications. The left ventricular systolic function and systolic synchrony index changes before and after subjects were treated by PCI were analyzed using three-dimensional echocardiography. At 2 days before surgery, there were no significant differences in the left ventricular end-diastolic volume, left ventricular end-systolic volume (LVESV) and ejection fraction (EF) between the two patient groups (P>0.05). At 3 months and 9 months, the two key time points after PCI, the LVESV level in the PCI group was distinctly decreased, while EF was significantly increased (P0.05); however, the parameters of time from the corresponding segment of the myocardium to the minimal systolic volume in patients in the PCI group were significantly reduced at 3 and 9 months after surgery (PPCI accurately and in real-time, which may play a significant role.

  2. Three-dimensional transesophageal echocardiography of the atrial septal defects

    Directory of Open Access Journals (Sweden)

    Romero-Cárdenas Ángel

    2008-07-01

    Full Text Available Abstract Transesophageal echocardiography has advantages over transthoracic technique in defining morphology of atrial structures. Even though real time three-dimensional echocardiographic imaging is a reality, the off-line reconstruction technique usually allows to obtain higher spatial resolution images. The purpose of this study was to explore the accuracy of off-line three-dimensional transesophageal echocardiography in a spectrum of atrial septal defects by comparing them with representative anatomic specimens.

  3. Assessment of tricuspid valve annulus size, shape and function using real-time three-dimensional echocardiography

    NARCIS (Netherlands)

    A.M. Anwar (Ashraf); M.L. Geleijnse (Marcel); F.J. ten Cate (Folkert); F.J. Meijboom (Folkert)

    2006-01-01

    textabstractTricuspid annulus (TA) evaluation continues to be a major problem in the surgical decision-making process. Obviously, 2-dimensional transthoracic echocardiography (2D TTE) is limited in TA visualization due to its complex 3D shape. The study aimed to determine TA morphology, size and

  4. New digital measurement methods for left ventricular volume using real-time three-dimensional echocardiography: comparison with electromagnetic flow method and magnetic resonance imaging

    Science.gov (United States)

    Qin, J. J.; Jones, M.; Shiota, T.; Greenberg, N. L.; Firstenberg, M. S.; Tsujino, H.; Zetts, A. D.; Sun, J. P.; Cardon, L. A.; Odabashian, J. A.; hide

    2000-01-01

    AIM: The aim of this study was to investigate the feasibility and accuracy of using symmetrically rotated apical long axis planes for the determination of left ventricular (LV) volumes with real-time three-dimensional echocardiography (3DE). METHODS AND RESULTS: Real-time 3DE was performed in six sheep during 24 haemodynamic conditions with electromagnetic flow measurements (EM), and in 29 patients with magnetic resonance imaging measurements (MRI). LV volumes were calculated by Simpson's rule with five 3DE methods (i.e. apical biplane, four-plane, six-plane, nine-plane (in which the angle between each long axis plane was 90 degrees, 45 degrees, 30 degrees or 20 degrees, respectively) and standard short axis views (SAX)). Real-time 3DE correlated well with EM for LV stroke volumes in animals (r=0.68-0.95) and with MRI for absolute volumes in patients (r-values=0.93-0.98). However, agreement between MRI and apical nine-plane, six-plane, and SAX methods in patients was better than those with apical four-plane and bi-plane methods (mean difference = -15, -18, -13, vs. -31 and -48 ml for end-diastolic volume, respectively, Pmethods of real-time 3DE correlated well with reference standards for calculating LV volumes. Balancing accuracy and required time for these LV volume measurements, the apical six-plane method is recommended for clinical use.

  5. [Assessment of the right ventricular function in healthy volunteers with one beat full-volume real-time three-dimensional echocardiography].

    Science.gov (United States)

    Zhu, Wei-hong; Zhang, Jin; Tong, Kai; Zhi, Guang; He, Kun-lun

    2012-08-01

    To determine the normal value of right ventricle using one beat full-volume real-time three-dimensional echocardiography (RT-3DE) and assess the feasibility of this technique. One beat full volume images were acquired at the apical 4 chamber view in 129 healthy volunteers. The right and left ventricular volumes were examined with the eSie LVA and RVA. The subjects were divided into 2 gender groups (male and female) and 3 age groups (20 - 39 years old, 40 - 59 years old, 60 years old and above). Adequate data were obtained in 129 subjects. The RV-EDV was (92.4 ± 21.3) ml, RV-ESV (34.6 ± 9.2) ml, RV-SV (57.8 ± 13.9) ml, RV-EF (62.5 ± 5.0) ml. EDV, ESV, and EF were significant different while SV was similar between RV and LV (all P Right ventricle function can be measured noninvasively by RT-3DE with high feasibility. This novel method contributes to the detailed study of right heart function in various cardiovascular diseases.

  6. Real-time 3D transesophageal echocardiography-guided closure of a complicated patent ductus arteriosus in a dog.

    Science.gov (United States)

    Doocy, K R; Nelson, D A; Saunders, A B

    2017-06-01

    Advanced imaging modalities are becoming more widely available in veterinary cardiology, including the use of transesophageal echocardiography (TEE) during occlusion of patent ductus arteriosus (PDA) in dogs. The dog in this report had a complex history of attempted ligation and a large PDA that initially precluded device placement thereby limiting the options for PDA closure. Following a second thoracotomy and partial ligation, the morphology of the PDA was altered and device occlusion was an option. Angiographic assessment of the PDA was limited by the presence of hemoclips, and the direction of ductal flow related to the change in anatomy following ligature placement. Intra-operative TEE, in particular real-time three-dimensional imaging, was pivotal for assessing the PDA morphology, monitoring during the procedure, selecting the device size, and confirming device placement. The TEE images increased operator confidence that the size and location of the device were appropriate before release despite the unusual position. This report highlights the benefit of intra-operative TEE, in particular real-time three-dimensional imaging, for successful PDA occlusion in a complicated case. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Real-time three-dimensional color Doppler echocardiography for characterizing the spatial velocity distribution and quantifying the peak flow rate in the left ventricular outflow tract

    Science.gov (United States)

    Tsujino, H.; Jones, M.; Shiota, T.; Qin, J. X.; Greenberg, N. L.; Cardon, L. A.; Morehead, A. J.; Zetts, A. D.; Travaglini, A.; Bauer, F.; hide

    2001-01-01

    Quantification of flow with pulsed-wave Doppler assumes a "flat" velocity profile in the left ventricular outflow tract (LVOT), which observation refutes. Recent development of real-time, three-dimensional (3-D) color Doppler allows one to obtain an entire cross-sectional velocity distribution of the LVOT, which is not possible using conventional 2-D echo. In an animal experiment, the cross-sectional color Doppler images of the LVOT at peak systole were derived and digitally transferred to a computer to visualize and quantify spatial velocity distributions and peak flow rates. Markedly skewed profiles, with higher velocities toward the septum, were consistently observed. Reference peak flow rates by electromagnetic flow meter correlated well with 3-D peak flow rates (r = 0.94), but with an anticipated underestimation. Real-time 3-D color Doppler echocardiography was capable of determining cross-sectional velocity distributions and peak flow rates, demonstrating the utility of this new method for better understanding and quantifying blood flow phenomena.

  8. Pulsed cavitational ultrasound for non-invasive chordal cutting guided by real-time 3D echocardiography.

    Science.gov (United States)

    Villemain, Olivier; Kwiecinski, Wojciech; Bel, Alain; Robin, Justine; Bruneval, Patrick; Arnal, Bastien; Tanter, Mickael; Pernot, Mathieu; Messas, Emmanuel

    2016-10-01

    Basal chordae surgical section has been shown to be effective in reducing ischaemic mitral regurgitation (IMR). Achieving this section by non-invasive mean can considerably decrease the morbidity of this intervention on already infarcted myocardium. We investigated in vitro and in vivo the feasibility and safety of pulsed cavitational focused ultrasound (histotripsy) for non-invasive chordal cutting guided by real-time 3D echocardiography. Experiments were performed on 12 sheep hearts, 5 in vitro on explanted sheep hearts and 7 in vivo on beating sheep hearts. In vitro, the mitral valve (MV) apparatus including basal and marginal chordae was removed and fixed on a holder in a water tank. High-intensity ultrasound pulses were emitted from the therapeutic device (1-MHz focused transducer, pulses of 8 µs duration, peak negative pressure of 17 MPa, repetition frequency of 100 Hz), placed at a distance of 64 mm under 3D echocardiography guidance. In vivo, after sternotomy, the same therapeutic device was applied on the beating heart. We analysed MV coaptation and chordae by real-time 3D echocardiography before and after basal chordal cutting. After sacrifice, the MV apparatus were harvested for anatomical and histological post-mortem explorations to confirm the section of the chordae. In vitro, all chordae were completely cut after a mean procedure duration of 5.5 ± 2.5 min. The procedure duration was found to increase linearly with the chordae diameter. In vivo, the central basal chordae of the anterior leaflet were completely cut. The mean procedure duration was 20 ± 9 min (min = 14, max = 26). The sectioned chordae was visible on echocardiography, and MV coaptation remained normal with no significant mitral regurgitation. Anatomical and histological post-mortem explorations of the hearts confirmed the section of the chordae. Histotripsy guided by 3D echo achieved successfully to cut MV chordae in vitro and in vivo in beating heart. We hope that this technique will

  9. The value of real-time three-dimensional transesophageal echocardiography in the assessment of paravalvular leak origin following prosthetic mitral valve replacement.

    Science.gov (United States)

    Yildiz, Mustafa; Duran, Nilüfer Ekşi; Gökdeniz, Tayyar; Kaya, Hasan; Ozkan, Mehmet

    2009-09-01

    Two-dimensional (2D) echocardiographic approaches are not sufficient to determine the origin of paravalvular leak (PVL) that occurs after prosthetic mitral valve replacement (MVR). In this study, we investigated the role of real-time three-dimensional transesophageal echocardiography (RT-3D TEE) in detecting the origin and size of PVL occurring after prosthetic MVR. The study included 13 patients (7 females; 6 males; mean age 56+/-10 years; range 37 to 71 years) who developed PVL within a mean of 8.3+/-3.8 years following mechanical prosthetic MVR. Nine patients (69.2%) had atrial fibrillation, and four patients (30.8%) had normal sinus rhythm. Four patients (30.8%) had hemolysis. Paravalvular leak was mild, moderate, and severe in two, six, and five patients, respectively. Real-time 3D TEE was performed using a 3D matrix-array TEE transducer immediately after detection of PVL on 2D TEE examination. Localization of PVL was made using a clock-wise format in relation to the aortic valve and the size of dehiscence was measured. The mean PVL width measured by 2D TEE was 3.00+/-0.92 mm. The mean length of dehiscence was 13.6+/-8.8 mm, and the mean width was 3.88+/-2.04 mm on RT-3D TEE. The PVLs were mainly localized in the posterior and anterior annular positions between 12 to 03 hours (n=7) and 06 to 09 hours (n=3) on RT-3D TEE, respectively, which corresponded to the posteromedial or anterolateral sectors of the posterior annulus. Considering that only the width of the PVL defect can be assessed by 2D TEE, delineation by RT-3D TEE includes the localization of PVL together with the length and width of the defect.

  10. Three-dimensional adult echocardiography: where the hidden dimension helps.

    Science.gov (United States)

    Mor-Avi, Victor; Sugeng, Lissa; Lang, Roberto M

    2008-05-01

    The introduction of three-dimensional (3D) imaging and its evolution from slow and labor-intense off-line reconstruction to real-time volumetric imaging is one of the most significant developments in ultrasound imaging of the heart of the past decade. This imaging modality currently provides valuable clinical information that empowers echocardiography with new levels of confidence in diagnosing heart disease. One major advantage of seeing the additional dimension is the improvement in the accuracy of the evaluation of cardiac chamber volumes by eliminating geometric modeling and the errors caused by foreshortened views. Another benefit of 3D imaging is the realistic views of cardiac valves capable of demonstrating numerous pathologies in a unique, noninvasive manner. This article reviews the major technological developments in 3D echocardiography and some of the recent literature that has provided the scientific basis for its clinical use.

  11. Real-time three-dimensional transesophageal echocardiography in valve disease: comparison with surgical findings and evaluation of prosthetic valves.

    Science.gov (United States)

    Sugeng, Lissa; Shernan, Stanton K; Weinert, Lynn; Shook, Doug; Raman, Jai; Jeevanandam, Valluvan; DuPont, Frank; Fox, John; Mor-Avi, Victor; Lang, Roberto M

    2008-12-01

    Recently, a novel real-time 3-dimensional (3D) matrix-array transesophageal echocardiographic (3D-MTEE) probe was found to be highly effective in the evaluation of native mitral valves (MVs) and other intracardiac structures, including the interatrial septum and left atrial appendage. However, the ability to visualize prosthetic valves using this transducer has not been evaluated. Moreover, the diagnostic accuracy of this new technology has never been validated against surgical findings. This study was designed to (1) assess the quality of 3D-MTEE images of prosthetic valves and (2) determine the potential value of 3D-MTEE imaging in the preoperative assessment of valvular pathology by comparing images with surgical findings. Eighty-seven patients undergoing clinically indicated transesophageal echocardiography were studied. In 40 patients, 3D-MTEE images of prosthetic MVs, aortic valves (AVs), and tricuspid valves (TVs) were scored for the quality of visualization. For both MVs and AVs, mechanical and bioprosthetic valves, the rings and leaflets were scored individually. In 47 additional patients, intraoperative 3D-MTEE diagnoses of MV pathology obtained before initiating cardiopulmonary bypass were compared with surgical findings. For the visualization of prosthetic MVs and annuloplasty rings, quality was superior compared with AV and TV prostheses. In addition, 3D-MTEE imaging had 96% agreement with surgical findings. Three-dimensional matrix-array transesophageal echocardiographic imaging provides superb imaging and accurate presurgical evaluation of native MV pathology and prostheses. However, the current technology is less accurate for the clinical assessment of AVs and TVs. Fast acquisition and immediate online display will make this the modality of choice for MV surgical planning and postsurgical follow-up.

  12. Temporal enhancement of two-dimensional color doppler echocardiography

    Science.gov (United States)

    Terentjev, Alexey B.; Settlemier, Scott H.; Perrin, Douglas P.; del Nido, Pedro J.; Shturts, Igor V.; Vasilyev, Nikolay V.

    2016-03-01

    Two-dimensional color Doppler echocardiography is widely used for assessing blood flow inside the heart and blood vessels. Currently, frame acquisition time for this method varies from tens to hundreds of milliseconds, depending on Doppler sector parameters. This leads to low frame rates of resulting video sequences equal to tens of Hz, which is insufficient for some diagnostic purposes, especially in pediatrics. In this paper, we present a new approach for reconstruction of 2D color Doppler cardiac images, which results in the frame rate being increased to hundreds of Hz. This approach relies on a modified method of frame reordering originally applied to real-time 3D echocardiography. There are no previous publications describing application of this method to 2D Color Doppler data. The approach has been tested on several in-vivo cardiac 2D color Doppler datasets with approximate duration of 30 sec and native frame rate of 15 Hz. The resulting image sequences had equivalent frame rates to 500Hz.

  13. Real-time 3-dimensional contrast-enhanced ultrasound in detecting hemorrhage of blunt renal trauma.

    Science.gov (United States)

    Xu, Rui-Xue; Li, Ye-Kuo; Li, Ting; Wang, Sha-Sha; Yuan, Gui-Zhong; Zhou, Qun-Fang; Zheng, Hai-Rong; Yan, Fei

    2013-10-01

    The objective of this study is to evaluate the diagnostic value of real-time 3-dimensional contrast-enhanced ultrasound in the hemorrhage of blunt renal trauma. Eighteen healthy New Zealand white rabbits were randomly divided into 3 groups. Blunt renal trauma was performed on each group by using minitype striker. Ultrasonography, color Doppler flow imaging, and contrast-enhanced 2-dimensional and real-time 3-dimensional ultrasound were applied before and after the strike. The time to shock and blood pressure were subjected to statistical analysis. Then, a comparative study of ultrasound and pathology was carried out. All the struck kidneys were traumatic. In the ultrasonography, free fluid was found under the renal capsule. In the color Doppler flow imaging, active hemorrhage was not identified. In 2-dimensional contrast-enhanced ultrasound, active hemorrhage of the damaged kidney was characterized. Real-time 3-dimensional contrast-enhanced ultrasound showed a real-time and stereoscopic ongoing bleeding of the injured kidney. The wider the hemorrhage area in 4-dimensional contrast-enhanced ultrasound was, the faster the blood pressure decreased. Real-time 3-dimensional contrast-enhanced ultrasound is a promising noninvasive tool for stereoscopically and vividly detecting ongoing hemorrhage of blunt renal trauma in real time. © 2013.

  14. Three-dimensional echocardiography of normal and pathologic mitral valve: a comparison with two-dimensional transesophageal echocardiography

    NARCIS (Netherlands)

    Salustri, A.; Becker, A. E.; van Herwerden, L.; Vletter, W. B.; ten Cate, F. J.; Roelandt, J. R.

    1996-01-01

    This study was done to ascertain whether three-dimensional echocardiography can facilitate the diagnosis of mitral valve abnormalities. The value of the additional information provided by three-dimensional echocardiography compared with two-dimensional multiplane transesophageal echocardiography for

  15. Assessment of inter-atrial, inter-ventricular, and atrio-ventricular interactions in tetralogy of Fallot patients after surgical correction. Insights from two-dimensional speckle tracking and three-dimensional echocardiography.

    Science.gov (United States)

    Abd El Rahman, Mohamed; Raedle-Hurst, Tanja; Rentzsch, Axel; Schäfers, Hans-Joachim; Abdul-Khaliq, Hashim

    2015-10-01

    We aimed to assess biatrial size and function, interactions on atrial and ventricular levels, and atrio-ventricular coupling in patients after tetralogy of Fallot repair. A total of 34 patients with a mean age of 20.9±9 years, and 35 healthy controls, underwent two-dimensional speckle tracking echocardiography for ventricular and atrial strain measurements and real-time three-dimensional echocardiography to assess ventricular and atrial volumes. When compared with controls, tetralogy of Fallot patients had significantly reduced right atrial peak atrial longitudinal strain (ptetralogy of Fallot group, left ventricular ejection fraction was negatively related to the right ventricular end-systolic volume normalised to body surface area (r=-0.62, ptetralogy of Fallot patients, biatrial dysfunction exists and can be quantified via two-dimensional speckle tracking echocardiography as well as real-time three-dimensional echocardiography. Different forms of interactions on atrial and ventricular levels are evident among such cohorts.

  16. Comparison of left ventricular outflow geometry and aortic valve area in patients with aortic stenosis by 2-dimensional versus 3-dimensional echocardiography.

    Science.gov (United States)

    Saitoh, Takeji; Shiota, Maiko; Izumo, Masaki; Gurudevan, Swaminatha V; Tolstrup, Kirsten; Siegel, Robert J; Shiota, Takahiro

    2012-06-01

    The present study sought to elucidate the geometry of the left ventricular outflow tract (LVOT) in patients with aortic stenosis and its effect on the accuracy of the continuity equation-based aortic valve area (AVA) estimation. Real-time 3-dimensional transesophageal echocardiography (RT3D-TEE) provides high-resolution images of LVOT in patients with aortic stenosis. Thus, AVA is derived reliably with the continuity equation. Forty patients with aortic stenosis who underwent 2-dimensional transthoracic echocardiography (2D-TTE), 2-dimensional transesophageal echocardiography (2D-TEE), and RT3D-TEE were studied. In 2D-TTE and 2D-TEE, the LVOT areas were calculated as π × (LVOT dimension/2)(2). In RT3D-TEE, the LVOT areas and ellipticity ([diameter of the anteroposterior axis]/[diameter of the medial-lateral axis]) were evaluated by planimetry. The AVA is then determined using planimetry and the continuity equation method. LVOT shape was found to be elliptical (ellipticity of 0.80 ± 0.08). Accordingly, the LVOT areas measured by 2D-TTE (median 3.7 cm(2), interquartile range 3.1 to 4.1) and 2D-TEE (median 3.7 cm(2), interquartile range 3.1 to 4.0) were smaller than those by 3D-TEE (median 4.6 cm(2), interquartile range 3.9 to 5.3; p interquartile range 0.79 to 1.3, p interquartile range 0.64 to 0.94) and 2D-TEE (median 0.76 cm(2), interquartile range 0.62 to 0.95). Additionally, the continuity equation-based AVA by RT3D-TEE was consistent with the planimetry method. In conclusion, RT3D-TEE might allow more accurate evaluation of the elliptical LVOT geometry and continuity equation-based AVA in patients with aortic stenosis than 2D-TTE and 2D-TEE. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Three- and four-dimensional ultrasound in fetal echocardiography: an up-to-date overview

    NARCIS (Netherlands)

    Adriaanse, B.M.; Vugt, J.M.G. van; Haak, M.C.

    2016-01-01

    Congenital heart diseases (CHD) are the most commonly overlooked lesions in prenatal screening programs. Real-time two-dimensional ultrasound (2DUS) is the conventionally used tool for fetal echocardiography. Although continuous improvements in the hardware and post-processing software have resulted

  18. Novel System for Real-Time Integration of 3-D Echocardiography and Fluoroscopy for Image-Guided Cardiac Interventions: Preclinical Validation and Clinical Feasibility Evaluation

    Science.gov (United States)

    Housden, R. James; Ma, Yingliang; Rajani, Ronak; Gao, Gang; Nijhof, Niels; Cathier, Pascal; Bullens, Roland; Gijsbers, Geert; Parish, Victoria; Kapetanakis, Stamatis; Hancock, Jane; Rinaldi, C. Aldo; Cooklin, Michael; Gill, Jaswinder; Thomas, Martyn; O'neill, Mark D.; Razavi, Reza; Rhode, Kawal S.

    2014-01-01

    Real-time imaging is required to guide minimally invasive catheter-based cardiac interventions. While transesophageal echocardiography allows for high-quality visualization of cardiac anatomy, X-ray fluoroscopy provides excellent visualization of devices. We have developed a novel image fusion system that allows real-time integration of 3-D echocardiography and the X-ray fluoroscopy. The system was validated in the following two stages: 1) preclinical to determine function and validate accuracy; and 2) in the clinical setting to assess clinical workflow feasibility and determine overall system accuracy. In the preclinical phase, the system was assessed using both phantom and porcine experimental studies. Median 2-D projection errors of 4.5 and 3.3 mm were found for the phantom and porcine studies, respectively. The clinical phase focused on extending the use of the system to interventions in patients undergoing either atrial fibrillation catheter ablation (CA) or transcatheter aortic valve implantation (TAVI). Eleven patients were studied with nine in the CA group and two in the TAVI group. Successful real-time view synchronization was achieved in all cases with a calculated median distance error of 2.2 mm in the CA group and 3.4 mm in the TAVI group. A standard clinical workflow was established using the image fusion system. These pilot data confirm the technical feasibility of accurate real-time echo-fluoroscopic image overlay in clinical practice, which may be a useful adjunct for real-time guidance during interventional cardiac procedures. PMID:27170872

  19. Annular dynamics of memo3D annuloplasty ring evaluated by 3D transesophageal echocardiography.

    Science.gov (United States)

    Nishi, Hiroyuki; Toda, Koichi; Miyagawa, Shigeru; Yoshikawa, Yasushi; Fukushima, Satsuki; Yoshioka, Daisuke; Sawa, Yoshiki

    2018-04-01

    We assessed the mitral annular motion after mitral valve repair with the Sorin Memo 3D® (Sorin Group Italia S.r.L., Saluggia, Italy), which is a unique complete semirigid annuloplasty ring intended to restore the systolic profile of the mitral annulus while adapting to the physiologic dynamism of the annulus, using transesophageal real-time three-dimensional echocardiography. 17 patients (12 male; mean age 60.4 ± 14.9 years) who underwent mitral annuloplasty using the Memo 3D ring were investigated. Mitral annular motion was assessed using QLAB®version8 allowing for a full evaluation of the mitral annulus dynamics. The mitral annular dimensions were measured throughout the cardiac cycle using 4D MV assessment2® while saddle shape was assessed through sequential measurements by RealView®. Saddle shape configuration of the mitral annulus and posterior and anterior leaflet motion could be observed during systole and diastole. The mitral annular area changed during the cardiac cycle by 5.7 ± 1.8%.The circumference length and diameter also changed throughout the cardiac cycle. The annular height was significantly higher in mid-systole than in mid-diastole (p 3D ring maintained a physiological saddle-shape configuration throughout the cardiac cycle. Real-time three-dimensional echocardiography analysis confirmed the motion and flexibility of the Memo 3D ring upon implantation.

  20. Annular dynamics after mitral valve repair with different prosthetic rings: A real-time three-dimensional transesophageal echocardiography study.

    Science.gov (United States)

    Nishi, Hiroyuki; Toda, Koichi; Miyagawa, Shigeru; Yoshikawa, Yasushi; Fukushima, Satsuki; Kawamura, Masashi; Yoshioka, Daisuke; Saito, Tetsuya; Ueno, Takayoshi; Kuratani, Toru; Sawa, Yoshiki

    2016-09-01

    We assessed the effects of different types of prosthetic rings on mitral annular dynamics using real-time three-dimensional echocardiography (RT3DE). RT3DE was performed in 44 patients, including patients undergoing mitral annuloplasty using the Cosgrove-Edwards flexible band (Group A, n = 10), the semi-rigid Sorin Memo 3D ring (Group B, n = 17), the semi-rigid Edwards Physio II ring (Group C, n = 7) and ten control subjects. Various annular diameters were measured throughout the cardiac cycle. We observed flexible anterior annulus motion in all of the groups except Group C. A flexible posterior annulus was only observed in Group B and the Control group. The mitral annular area changed during the cardiac cycle by 8.4 ± 3.2, 6.3 ± 2.0, 3.2 ± 1.3, and 11.6 ± 5.0 % in Group A, Group B, Group C, and the Control group, respectively. The dynamic diastolic to systolic change in mitral annular diameters was lost in Group C, while it was maintained in Group A, and to a good degree in Group B. In comparison to the Control group, the mitral annulus shape was more ellipsoid in Group B and Group C, and more circular in Group A. Although mitral regurgitation was well controlled by all of the types of rings that were utilized in the present study, we demonstrated that the annulus motion and annulus shape differed according to the type of prosthetic ring that was used, which might provide important information for the selection of an appropriate prosthetic ring.

  1. Quantitative analysis of aortic regurgitation: real-time 3-dimensional and 2-dimensional color Doppler echocardiographic method--a clinical and a chronic animal study

    Science.gov (United States)

    Shiota, Takahiro; Jones, Michael; Tsujino, Hiroyuki; Qin, Jian Xin; Zetts, Arthur D.; Greenberg, Neil L.; Cardon, Lisa A.; Panza, Julio A.; Thomas, James D.

    2002-01-01

    BACKGROUND: For evaluating patients with aortic regurgitation (AR), regurgitant volumes, left ventricular (LV) stroke volumes (SV), and absolute LV volumes are valuable indices. AIM: The aim of this study was to validate the combination of real-time 3-dimensional echocardiography (3DE) and semiautomated digital color Doppler cardiac flow measurement (ACM) for quantifying absolute LV volumes, LVSV, and AR volumes using an animal model of chronic AR and to investigate its clinical applicability. METHODS: In 8 sheep, a total of 26 hemodynamic states were obtained pharmacologically 20 weeks after the aortic valve noncoronary (n = 4) or right coronary (n = 4) leaflet was incised to produce AR. Reference standard LVSV and AR volume were determined using the electromagnetic flow method (EM). Simultaneous epicardial real-time 3DE studies were performed to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV), and LVSV by subtracting LVESV from LVEDV. Simultaneous ACM was performed to obtain LVSV and transmitral flows; AR volume was calculated by subtracting transmitral flow volume from LVSV. In a total of 19 patients with AR, real-time 3DE and ACM were used to obtain LVSVs and these were compared with each other. RESULTS: A strong relationship was found between LVSV derived from EM and those from the real-time 3DE (r = 0.93, P <.001, mean difference (3D - EM) = -1.0 +/- 9.8 mL). A good relationship between LVSV and AR volumes derived from EM and those by ACM was found (r = 0.88, P <.001). A good relationship between LVSV derived from real-time 3DE and that from ACM was observed (r = 0.73, P <.01, mean difference = 2.5 +/- 7.9 mL). In patients, a good relationship between LVSV obtained by real-time 3DE and ACM was found (r = 0.90, P <.001, mean difference = 0.6 +/- 9.8 mL). CONCLUSION: The combination of ACM and real-time 3DE for quantifying LV volumes, LVSV, and AR volumes was validated by the chronic animal study and was shown to be clinically applicable.

  2. Incremental value of three-dimensional transesophageal echocardiography over two-dimensional transesophageal echocardiography in the assessment of Lambl's excrescences and nodules of Arantius on the aortic valve.

    Science.gov (United States)

    Dumaswala, Bhavin; Dumaswala, Komal; Hsiung, Ming Chon; Quiroz, Luis David Meggo; Sungur, Aylin; Escanuela, Maximilliano German Amado; Mehta, Kruti; Oz, Tugba Kemaloglu; Bhagatwala, Kunal; Karia, Nidhi M; Nanda, Navin C

    2013-09-01

    In this retrospective study, we identified 7 cases where Lambl's excrescences were identified by two-dimensional transesophageal echocardiography (2DTEE) and also had live/real time three-dimensional transesophageal echocardiography (3DTEE) studies available for comparison. We subsequently assessed them for the presence of Lambl's excrescences (LE) and nodules of Arantius (NA) on the aortic valve. After their identification, we qualitatively and quantitatively organized our findings by number, cusp location, measurements, and orientation if applicable. A greater number of LE was found by 3DTEE than 2DTEE (19 vs. 11, respectively). In all 3DTEE studies, their cusp attachment site, their x-, y-, and z-axis measurements, and orientation were clearly visualized and described. Only 3DTEE studies provided confident visualization of the cusp attachment sites. Similarly, a greater number of NA was found by 3DTEE than 2DTEE (21 vs. 5, respectively). The triad of NA was visualized in all 3DTEE studies and each was described using its x-, y-, and z- axis measurements. Only three 2DTEE studies provided reliable identification of the NA. In conclusion, we present further evidence of the incremental value of 3DTEE over 2DTEE in the qualitative and quantitative assessment of cardiac structures including LE and NA on the aortic valve. © 2013, Wiley Periodicals, Inc.

  3. Functional Tricuspid Regurgitation Caused by Chronic Atrial Fibrillation: A Real-Time 3-Dimensional Transesophageal Echocardiography Study.

    Science.gov (United States)

    Utsunomiya, Hiroto; Itabashi, Yuji; Mihara, Hirotsugu; Berdejo, Javier; Kobayashi, Sayuki; Siegel, Robert J; Shiota, Takahiro

    2017-01-01

    Functional tricuspid regurgitation (TR) with a structurally normal tricuspid valve (TV) may occur secondary to chronic atrial fibrillation (AF). However, the clinical and echocardiographic differences according to functional TR subtypes are unclear. Therefore, characterization of functional TR because of chronic AF (AF-TR) remains undetermined. To investigate the prevalence of AF-TR, 437 patients with moderate to severe TR underwent 3-dimensional (3D) transesophageal echocardiography. TR severity was determined by the averaged vena contracta width on apical and parasternal inflow views. The prevalence of AF-TR was 9.2%, whereas that of functional TR because of left-sided heart disease was 45.3%. Clinical features of AF-TR included advanced age, female sex, greater right atrial than left atrial enlargement and lower systolic pulmonary artery pressure compared with left-sided heart disease-TR with sinus rhythm (all P<0.05). In 3D TV assessment, patients with AF-TR had a larger TV annular area with weaker annular contraction (both P<0.001) but a smaller tethering angle (P<0.001) despite a similar leaflet coaptation status compared with patients with left-sided heart disease-TR with sinus rhythm. On multivariable analysis, only the TV annular area in midsystole (coefficient, 0.059; 95% confidence interval, 0.041-0.078 per 100 mm 2 ; P<0.001) was associated with TR severity in AF-TR. The annular area was more closely correlated with the right atrial volume than right ventricular end-systolic volume in AF-TR (P<0.001). AF-TR is not rare and is associated with advanced age and right atrial enlargement. TV deformations and their association with right heart remodeling differ between AF-TR and left-sided heart disease-TR. Our results suggest that in patients with TR secondary to AF, TV annuloplasty should be effective because this entity has annular dilatation without leaflet deformation. © 2017 American Heart Association, Inc.

  4. The history of echocardiography.

    Science.gov (United States)

    Edler, Inge; Lindström, Kjell

    2004-12-01

    Following a brief review of the development of medical ultrasonics from the mid-1930s to the mid-1950s, the collaboration between Edler and Hertz that began in Lund in 1953 is described. Using an industrial ultrasonic flaw detector, they obtained time-varying echoes transcutaneously from within the heart. The first clinical applications of M-mode echocardiography were concerned with the assessment of the mitral valve from the shapes of the corresponding waveforms. Subsequently, the various M-mode recordings were related to their anatomical origins. The method then became established as a diagnostic tool and was taken up by investigators outside Lund, initially in China, Germany, Japan and the USA and, subsequently, world-wide. The diffusion of echocardiography into clinical practice depended on the timely commercial availability of suitable equipment. The discovery of contrast echocardiography in the late 1960s further validated the technique and extended the range of applications. Two-dimensional echocardiography was first demonstrated in the late 1950s, with real-time mechanical systems and, in the early 1960s, with intracardiac probes. Transesophageal echocardiography followed, in the late 1960s. Stop-action two-dimensional echocardiography enjoyed a brief vogue in the early 1970s. It was, however, the demonstration by Bom in Rotterdam of real-time two-dimensional echocardiography using a linear transducer array that revolutionized and popularized the subject. Then, the phased array sector scanner, which had been demonstrated in the late 1960s by Somer in Utrecht, was applied to cardiac studies from the mid-1970s onwards. Satomura had demonstrated the use of the ultrasonic Doppler effect to detect tissue motion in Osaka in the mid-1950s and the technique was soon afterwards applied in the heart, often in combination with M-mode recording. The development of the pulsed Doppler method in the late 1960s opened up new opportunities for clinical innovation. The

  5. Three-dimensional echocardiography in valve disease

    Directory of Open Access Journals (Sweden)

    Cesare Fiorentini

    2009-08-01

    Full Text Available This review covers the role of three-dimensional (3D echocardiography in the diagnosis of heart valve disease. Several factors have contributed to the evolution of this technique, which is currently a simple and routine method: rapid evolution in probe and computer technologies, demonstration that 3D data sets allowed more complete and accurate evaluation of cardiac structures, emerging clinical experience indicating the strong potential particularly in valve diseases, volume and function of the two ventricle measurements and several other fields. This report will review current and future applications of 3D echocardiography in mitral, aortic and tricuspid valve diseases underlying both qualitative (morphologic and quantitative advantages of this technique. (Heart International 2007; 3: 35-41

  6. Real-Time, Interactive Echocardiography Over High-Speed Networks: Feasibility and Functional Requirements

    Science.gov (United States)

    Bobinsky, Eric A.

    1998-01-01

    Real-time, Interactive Echocardiography Over High Speed Networks: Feasibility and Functional Requirements is an experiment in advanced telemedicine being conducted jointly by the NASA Lewis Research Center, the NASA Ames Research Center, and the Cleveland Clinic Foundation. In this project, a patient undergoes an echocardiographic examination in Cleveland while being diagnosed remotely by a cardiologist in California viewing a real-time display of echocardiographic video images transmitted over the broadband NASA Research and Education Network (NREN). The remote cardiologist interactively guides the sonographer administering the procedure through a two-way voice link between the two sites. Echocardiography is a noninvasive medical technique that applies ultrasound imaging to the heart, providing a "motion picture" of the heart in action. Normally, echocardiographic examinations are performed by a sonographer and cardiologist who are located in the same medical facility as the patient. The goal of telemedicine is to allow medical specialists to examine patients located elsewhere, typically in remote or medically underserved geographic areas. For example, a small, rural clinic might have access to an echocardiograph machine but not a cardiologist. By connecting this clinic to a major metropolitan medical facility through a communications network, a minimally trained technician would be able to carry out the procedure under the supervision and guidance of a qualified cardiologist.

  7. Role of modern 3D echocardiography in valvular heart disease

    Science.gov (United States)

    2014-01-01

    Three-dimensional (3D) echocardiography has been conceived as one of the most promising methods for the diagnosis of valvular heart disease, and recently has become an integral clinical tool thanks to the development of high quality real-time transesophageal echocardiography (TEE). In particular, for mitral valve diseases, this new approach has proven to be the most unique, powerful, and convincing method for understanding the complicated anatomy of the mitral valve and its dynamism. The method has been useful for surgical management, including robotic mitral valve repair. Moreover, this method has become indispensable for nonsurgical mitral procedures such as edge to edge mitral repair and transcatheter closure of paravaluvular leaks. In addition, color Doppler 3D echo has been valuable to identify the location of the regurgitant orifice and the severity of the mitral regurgitation. For aortic and tricuspid valve diseases, this method may not be quite as valuable as for the mitral valve. However, the necessity of 3D echo is recognized for certain situations even for these valves, such as for evaluating the aortic annulus for transcatheter aortic valve implantation. It is now clear that this method, especially with the continued development of real-time 3D TEE technology, will enhance the diagnosis and management of patients with these valvular heart diseases. PMID:25378966

  8. Application of Real-Time Three-Dimensional Echocardiography to Evaluate the Pre- and Postoperative Right Ventricular Systolic Function of Patients with Tetralogy of Fallot

    Science.gov (United States)

    Cui, Cunying; Liu, Lin; Fan, Taibing; Peng, Bangtian; Cheng, Zhaoyun; Ge, Zhenwei; Li, Yanan; Liu, Yuanyuan; Zhang, Yanwei; Ai, Feng; Zhang, Lianzhong

    2015-01-01

    Tetralogy of Fallot (ToF) can be challenging for clinicians to both diagnose and treat, given the multiple heart defects that are by definition associated with the illness. This study investigates the value of real-time three- dimensional echocardiography (RT-3DE) in evaluating the pre-and postoperative right ventricular systolic function of patients with tetralogy of Fallot. A total of 41 ToF patients were divided into two groups: the child group (CG) and the adult group (AG) according to age. The right ventricular end-diastolic volume (RVEDV), right ventricular end-systolic volume (RVESV), and the right ventricular ejection fraction (RVEF) of ToF patients were measured before surgery, 7 days, and 3 months after the surgery. The correlation between the preoperative Nakata index and RVEF was then analyzed. Compared with the RVEDV and RVESV prior to surgery, those of the postoperative 7-day and 3-month were not statistically significant (p > 0.05). However, RVEF decreased, and the difference was statistically significant (p 0.05). Compared with the pre-and postoperative RVEDV and RVESV of CG, those of AG increased. However, RVEF decreased, and the differences were statistically significant (p < 0.05). Our study indicated that the correlation between preoperative Nakata index and RVEF was good. Ultimately, we did confirm that RT-3DE can quantitatively evaluate the right ventricular volume and systolic function of ToF patients, thereby providing clinical significance in determining postoperative efficacy and prognosis evaluation. PMID:27122891

  9. Three-dimensional echocardiography in various types of heart disease: a comparison study of magnetic resonance imaging and 64-slice computed tomography in a real-world population.

    Science.gov (United States)

    Squeri, Angelo; Censi, Stefano; Reverberi, Claudio; Gaibazzi, Nicola; Baldelli, Marco; Binno, Simone Maurizio; Properzi, Enrico; Bosi, Stefano

    2017-03-01

    Accurate quantification of left ventricular (LV) volumes [end-diastolic volume (EDV) and end-systolic volume (ESV)] and ejection fraction (EF) is of critical importance. The development of real-time three-dimensional echocardiography (RT3DE) has shown better correlation than two-dimensional (2D) echocardiography with magnetic resonance imaging (MRI) measurements. The aim of our study was to assess the accuracy of RT3DE and 64-slice computed tomography (CT) in the evaluation of LV volumes and function using MRI as the reference standard in a real-world population with various types of heart disease with different chamber geometry. The study population consisted of 66 patients referred for cardiac MRI for various pathologies. All patients underwent cardiac MRI, and RT3DE and 64 slices CT were then performed on a subsequent day. The study population was then divided into 5 clinical groups depending on the underlying heart disease. RT3DE volumes correlated well with MRI values (R 2 values: 0.90 for EDV and 0.94 for ESV). RT3DE measurements of EF correlated well with MRI values (R 2  = 0.86). RT3DE measurements resulted in slightly underestimated values of both EDV and ESV, as reflected by biases of -9.18 and -4.50 mL, respectively. Comparison of RT3DE and MRI in various types of cardiomyopathies showed no statistical difference between different LV geometrical patterns. These results confirm that RT3DE has good accuracy in everyday clinical practice and can be of clinical utility in all types of cardiomyopathy independently of LV geometric pattern, LV diameter or wall thickness, taking into account a slight underestimation of LV volumes and EF compared to MRI.

  10. Echocardiography in the Era of Multimodality Cardiovascular Imaging

    Science.gov (United States)

    Shah, Benoy Nalin

    2013-01-01

    Echocardiography remains the most frequently performed cardiac imaging investigation and is an invaluable tool for detailed and accurate evaluation of cardiac structure and function. Echocardiography, nuclear cardiology, cardiac magnetic resonance imaging, and cardiovascular-computed tomography comprise the subspeciality of cardiovascular imaging, and these techniques are often used together for a multimodality, comprehensive assessment of a number of cardiac diseases. This paper provides the general cardiologist and physician with an overview of state-of-the-art modern echocardiography, summarising established indications as well as highlighting advances in stress echocardiography, three-dimensional echocardiography, deformation imaging, and contrast echocardiography. Strengths and limitations of echocardiography are discussed as well as the growing role of real-time three-dimensional echocardiography in the guidance of structural heart interventions in the cardiac catheter laboratory. PMID:23878804

  11. Evaluation of left ventricular function in maintained hemodialysis patients using real-time three-dimensional echocardiography

    International Nuclear Information System (INIS)

    Wang Ling; Wang Jing; Zheng Min; Zhang Chunmei; Li Chan

    2010-01-01

    Objective: Using magnetic resonance imaging (MRI) technique as control standard, to explore the feasibility and accuracy of true real-time three-dimensional volume quantitative techniques (RT-3DE) in evaluation of the left ventricular volume (LVV) and left ventricular ejection fraction (LVEF) of the maintained hemodialysis (MHD) patients. Methods: 48 MHD patients were enrolled in this study. RT-3DE was used to detect the LVV and LVEF, while Simpson's method and M-Teichholz method were used at the same time. The results of the three methods were compared with the data measured by MRI. Results: (1)The data measured by RT-3DE method showed a highly positive correlation with the LVV detected by MRI (r=0.90, P 0.05). (2)When heart cavity deformed, the results of left ventricular end-diastolic volume (LVEDV) and left ventricular end-systolic volume (LVESV) measured by M-Teichholz method and Simpson's method were higher or lower than the data measured by RT-3DE method, and the differences were statistically significant (all P<0.05). Conclusion: RT-3DE can accurately measure the volume of normal cardiac chambers and the left ventricular cavity deformation volume. The result of RT-3DE has higher accuracy compared with Simpson's method and M-Teichholz method. (authors)

  12. 3D Harmonic Echocardiography:

    NARCIS (Netherlands)

    M.M. Voormolen (Marco)

    2007-01-01

    textabstractThree dimensional (3D) echocardiography has recently developed from an experimental technique in the ’90 towards an imaging modality for the daily clinical practice. This dissertation describes the considerations, implementation, validation and clinical application of a unique

  13. Simplified single plane echocardiography is comparable to conventional biplane two-dimensional echocardiography in the evaluation of left atrial volume: a study validated by three-dimensional echocardiography in 143 individuals.

    Science.gov (United States)

    Vieira-Filho, Normando G; Mancuso, Frederico J N; Oliveira, Wercules A A; Gil, Manuel A; Fischer, Cláudio H; Moises, Valdir A; Campos, Orlando

    2014-03-01

    The left atrial volume index (LAVI) is a biomarker of diastolic dysfunction and a predictor of cardiovascular events. Three-dimensional echocardiography (3DE) is highly accurate for LAVI measurements but is not widely available. Furthermore, biplane two-dimensional echocardiography (B2DE) may occasionally not be feasible due to a suboptimal two-chamber apical view. Simplified single plane two-dimensional echocardiography (S2DE) could overcome these limitations. We aimed to compare the reliability of S2DE with other validated echocardiographic methods in the measurement of the LAVI. We examined 143 individuals (54 ± 13 years old; 112 with heart disease and 31 healthy volunteers; all with sinus rhythm, with a wide range of LAVI). The results for all the individuals were compared with B2DE-derived LAVIs and validated using 3DE. The LAVIs, as determined using S2DE (32.7 ± 13.1 mL/m(2)), B2DE (31.9 ± 12.7 mL/m(2)), and 3DE (33.1 ± 13.4 mL/m(2)), were not significantly different from each other (P = 0.85). The S2DE-derived LAVIs correlated significantly with those obtained using both B2DE (r = 0.98; P < 0.001) and 3DE (r = 0.93; P < 0.001). The mean difference between the S2DE and B2DE measurements was <1.0 mL/m(2). Using the American Society of Echocardiography criteria for grading LAVI enlargement (normal, mild, moderate, severe), we observed an excellent agreement between the S2DE- and B2DE-derived classifications (κ = 0.89; P < 0.001). S2DE is a simple, rapid, and reliable method for LAVI measurement that may expand the use of this important biomarker in routine echocardiographic practice. © 2013, Wiley Periodicals, Inc.

  14. 4-D ICE: A 2-D Array Transducer With Integrated ASIC in a 10-Fr Catheter for Real-Time 3-D Intracardiac Echocardiography.

    Science.gov (United States)

    Wildes, Douglas; Lee, Warren; Haider, Bruno; Cogan, Scott; Sundaresan, Krishnakumar; Mills, David M; Yetter, Christopher; Hart, Patrick H; Haun, Christopher R; Concepcion, Mikael; Kirkhorn, Johan; Bitoun, Marc

    2016-12-01

    We developed a 2.5 ×6.6 mm 2 2 -D array transducer with integrated transmit/receive application-specific integrated circuit (ASIC) for real-time 3-D intracardiac echocardiography (4-D ICE) applications. The ASIC and transducer design were optimized so that the high-voltage transmit, low-voltage time-gain control and preamp, subaperture beamformer, and digital control circuits for each transducer element all fit within the 0.019-mm 2 area of the element. The transducer assembly was deployed in a 10-Fr (3.3-mm diameter) catheter, integrated with a GE Vivid E9 ultrasound imaging system, and evaluated in three preclinical studies. The 2-D image quality and imaging modes were comparable to commercial 2-D ICE catheters. The 4-D field of view was at least 90 ° ×60 ° ×8 cm and could be imaged at 30 vol/s, sufficient to visualize cardiac anatomy and other diagnostic and therapy catheters. 4-D ICE should significantly reduce X-ray fluoroscopy use and dose during electrophysiology ablation procedures. 4-D ICE may be able to replace transesophageal echocardiography (TEE), and the associated risks and costs of general anesthesia, for guidance of some structural heart procedures.

  15. Real-time interpolation for true 3-dimensional ultrasound image volumes.

    Science.gov (United States)

    Ji, Songbai; Roberts, David W; Hartov, Alex; Paulsen, Keith D

    2011-02-01

    We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1-2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm(3) voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery.

  16. Recent advances in echocardiography for nuclear medicine physician

    International Nuclear Information System (INIS)

    Hong, Geu Ru; Shin, Dong Gu

    2005-01-01

    Echocardiography is one of the most frequently used techniques for diagnosing cardiovascular diseases. Over the last twenty years, technological advances have enabled the application of high-quality imaging. Important recent developments have occurred in echocardiography that are already being used clinically. Equipment and hardware is now available to produce real time three-dimensional and contrast enhanced imaging. Tissue Doppler and stress echocardiography have provided potential benefit to analyze hemodynamic information of heart. This review discusses each of these new developments and their potential impact on the practice of echocardiography and cardiology in general

  17. Prosthetic tricuspid valve dysfunction assessed by three-dimensional transthoracic and transesophageal echocardiography.

    Science.gov (United States)

    Yuasa, Toshinori; Takasaki, Kunitsugu; Mizukami, Naoko; Ueya, Nami; Kubota, Kayoko; Horizoe, Yoshihisa; Chaen, Hideto; Kuwahara, Eiji; Kisanuki, Akira; Hamasaki, Shuichi

    2013-09-01

    A 39-year-old male who had undergone tricuspid valve replacement for severe tricuspid regurgitation was admitted with palpitation and general edema. Two-dimensional (2D) echocardiography showed tricuspid prosthetic valve dysfunction. Additional three-dimensional (3D) transthoracic and transesophageal echocardiography (TEE) could clearly demonstrate the disabilities of the mechanical tricuspid valve. Particularly, 3D TEE demonstrated a mass located on the right ventricular side of the tricuspid prosthesis, which may have caused the stuck disk. This observation was confirmed by intra-operative findings.

  18. Two-dimensional color Doppler echocardiography for left ventricular stroke volume assessment: a comparison study with three-dimensional echocardiography.

    Science.gov (United States)

    Silva, Cristina Da; Pedro, Fátima; Deister, Lizandra; Sahlén, Anders; Manouras, Aristomenis; Shahgaldi, Kambiz

    2012-08-01

    Whether measurement of left ventricular outflow tract diameter (LVOTd) using color Doppler (CD) in order to more accurately define LVOTd is more accurate for determination of stroke volume (SV) than gray scale and compare it with direct measurement of LVOT area (a) using three-dimensional echocardiography (3DE) for SV determination. Twenty-one volunteers were examined. LVOTa was calculated by two-dimensional echocardiography (2DE) using the following formula: π× (d/2)(2) , d = LVOT diameter by gray scale and CD, respectively. Planimetry of LVOTa was performed in parasternal long axis using 3DE. Eccentricity Index was calculated using the lateral and anterior-posterior LVOTd. SV was obtained by four different methods: (1) 2D gray scale, (2) 2D color, (3) LVOTa × LVOT velocity time integral, and (4) SV by Simpson's biplane method. Gray scale LVOTd was significantly smaller compared to LVOTd obtained with CD (P vs 3.67 ± 0.70 cm(2) , P vs 3.61 ± 0.89 cm(2) , P = 0.011). Half of the subjects had at least 17% difference between the lateral and anterior-posterior LVOTd. There were significant differences between SV by 2D gray scale and 2D CD (82.8 ± 17.1 mL vs 92.4 ± 16.8 mL, P vs 90.7 ± 19.8 mL, P = 0.025). Our study demonstrates LVOT being frequently elliptical. SV and LVOTa were found to be similar when comparing 2DE CD and 3DE planimetry and showed higher values in comparison to 2DE gray scale, which suggests 2DE CD to be an alternative approach for SV assessment. © 2012, Wiley Periodicals, Inc.

  19. Real-time three-dimensional color doppler evaluation of the flow convergence zone for quantification of mitral regurgitation: Validation experimental animal study and initial clinical experience

    Science.gov (United States)

    Sitges, Marta; Jones, Michael; Shiota, Takahiro; Qin, Jian Xin; Tsujino, Hiroyuki; Bauer, Fabrice; Kim, Yong Jin; Agler, Deborah A.; Cardon, Lisa A.; Zetts, Arthur D.; hide

    2003-01-01

    BACKGROUND: Pitfalls of the flow convergence (FC) method, including 2-dimensional imaging of the 3-dimensional (3D) geometry of the FC surface, can lead to erroneous quantification of mitral regurgitation (MR). This limitation may be mitigated by the use of real-time 3D color Doppler echocardiography (CE). Our objective was to validate a real-time 3D navigation method for MR quantification. METHODS: In 12 sheep with surgically induced chronic MR, 37 different hemodynamic conditions were studied with real-time 3DCE. Using real-time 3D navigation, the radius of the largest hemispherical FC zone was located and measured. MR volume was quantified according to the FC method after observing the shape of FC in 3D space. Aortic and mitral electromagnetic flow probes and meters were balanced against each other to determine reference MR volume. As an initial clinical application study, 22 patients with chronic MR were also studied with this real-time 3DCE-FC method. Left ventricular (LV) outflow tract automated cardiac flow measurement (Toshiba Corp, Tokyo, Japan) and real-time 3D LV stroke volume were used to quantify the reference MR volume (MR volume = 3DLV stroke volume - automated cardiac flow measurement). RESULTS: In the sheep model, a good correlation and agreement was seen between MR volume by real-time 3DCE and electromagnetic (y = 0.77x + 1.48, r = 0.87, P time 3DCE-derived MR volume also showed a good correlation and agreement with the reference method (y = 0.89x - 0.38, r = 0.93, P time 3DCE can capture the entire FC image, permitting geometrical recognition of the FC zone geometry and reliable MR quantification.

  20. Real-time 3-dimensional virtual reality navigation system with open MRI for breast-conserving surgery

    International Nuclear Information System (INIS)

    Tomikawa, Morimasa; Konishi, Kozo; Ieiri, Satoshi; Hong, Jaesung; Uemura, Munenori; Hashizume, Makoto; Shiotani, Satoko; Tokunaga, Eriko; Maehara, Yoshihiko

    2011-01-01

    We report here the early experiences using a real-time three-dimensional (3D) virtual reality navigation system with open magnetic resonance imaging (MRI) for breast-conserving surgery (BCS). Two patients with a non-palpable MRI-detected breast tumor underwent BCS under the guidance of the navigation system. An initial MRI for the breast tumor using skin-affixed markers was performed immediately prior to excision. A percutaneous intramammary dye marker was applied to delineate an excision line, and the computer software '3D Slicer' generated a real-time 3D virtual reality model of the tumor and the puncture needle in the breast. Under guidance by the navigation system, marking procedures were performed without any difficulties. Fiducial registration errors were 3.00 mm for patient no.1, and 4.07 mm for patient no.2. The real-time 3D virtual reality navigation system with open MRI is feasible for safe and accurate excision of non-palpable MRI-detected breast tumors. (author)

  1. Three-dimensional liver motion tracking using real-time two-dimensional MRI.

    Science.gov (United States)

    Brix, Lau; Ringgaard, Steffen; Sørensen, Thomas Sangild; Poulsen, Per Rugaard

    2014-04-01

    Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Axial, sagittal, and coronal 2D MRI series

  2. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Brix, Lau, E-mail: lau.brix@stab.rm.dk [Department of Procurement and Clinical Engineering, Region Midt, Olof Palmes Allé 15, 8200 Aarhus N, Denmark and MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Ringgaard, Steffen [MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Sørensen, Thomas Sangild [Department of Computer Science, Aarhus University, Aabogade 34, 8200 Aarhus N, Denmark and Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Poulsen, Per Rugaard [Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark and Department of Oncology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C (Denmark)

    2014-04-15

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal

  3. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    International Nuclear Information System (INIS)

    Brix, Lau; Ringgaard, Steffen; Sørensen, Thomas Sangild; Poulsen, Per Rugaard

    2014-01-01

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal

  4. Four-dimensional echocardiography area strain combined with exercise stress echocardiography to evaluate left ventricular regional systolic function in patients with mild single vessel coronary artery stenosis.

    Science.gov (United States)

    Deng, Yan; Peng, Long; Liu, Yuan-Yuan; Yin, Li-Xue; Li, Chun-Mei; Wang, Yi; Rao, Li

    2017-09-01

    The aim of this prospective study was to assess the diagnosis value of four-dimensional echocardiography area strain (AS) combined with exercise stress echocardiography to evaluate left ventricular regional systolic function in patients with mild single vessel coronary artery stenosis. Based on treadmill exercise load status, two-dimensional conventional echocardiography and four-dimensional echocardiography area strain were performed on patients suspected coronary artery disease before coronary angiogram. Thirty patients (case group) with mild left anterior descending coronary artery stenosis (stenosis Four-dimensional echocardiography area strain combined with exercise stress echocardiography could sensitively find left ventricular regional systolic function abnormality in patients with mild single vessel coronary artery stenosis, and locate stenosis coronary artery accordingly. © 2017, Wiley Periodicals, Inc.

  5. Making three-dimensional echocardiography more tangible: a workflow for three-dimensional printing with echocardiographic data

    Directory of Open Access Journals (Sweden)

    Azad Mashari MD

    2016-12-01

    Full Text Available Three-dimensional (3D printing is a rapidly evolving technology with several potential applications in the diagnosis and management of cardiac disease. Recently, 3D printing (i.e. rapid prototyping derived from 3D transesophageal echocardiography (TEE has become possible. Due to the multiple steps involved and the specific equipment required for each step, it might be difficult to start implementing echocardiography-derived 3D printing in a clinical setting. In this review, we provide an overview of this process, including its logistics and organization of tools and materials, 3D TEE image acquisition strategies, data export, format conversion, segmentation, and printing. Generation of patient-specific models of cardiac anatomy from echocardiographic data is a feasible, practical application of 3D printing technology.

  6. "3D fusion" echocardiography improves 3D left ventricular assessment: comparison with 2D contrast echocardiography.

    Science.gov (United States)

    Augustine, Daniel; Yaqub, Mohammad; Szmigielski, Cezary; Lima, Eduardo; Petersen, Steffen E; Becher, Harald; Noble, J Alison; Leeson, Paul

    2015-02-01

    Three-dimensional fusion echocardiography (3DFE) is a novel postprocessing approach that utilizes imaging data acquired from multiple 3D acquisitions. We assessed image quality, endocardial border definition, and cardiac wall motion in patients using 3DFE compared to standard 3D images (3D) and results obtained with contrast echocardiography (2DC). Twenty-four patients (mean age 66.9 ± 13 years, 17 males, 7 females) undergoing 2DC had three, noncontrast, 3D apical volumes acquired at rest. Images were fused using an automated image fusion approach. Quality of the 3DFE was compared to both 3D and 2DC based on contrast-to-noise ratio (CNR) and endocardial border definition. We then compared clinical wall-motion score index (WMSI) calculated from 3DFE and 3D to those obtained from 2DC images. Fused 3D volumes had significantly improved CNR (8.92 ± 1.35 vs. 6.59 ± 1.19, P echocardiography (1.06 ± 0.09 vs. 1.07 ± 0.15, P = 0.69), whereas unfused images produced significantly more variable results (1.19 ± 0.30). This was confirmed by a better intraclass correlation coefficient (ICC 0.72; 95% CI 0.32-0.88) relative to comparisons with unfused images (ICC 0.56; 95% CI 0.02-0.81). 3DFE significantly improves left ventricular image quality compared to unfused 3D in a patient population and allows noncontrast assessment of wall motion that approaches that achieved with 2D contrast echocardiography. © 2014, Wiley Periodicals, Inc.

  7. Visualization of traumatic tricuspid insufficiency by three-dimensional echocardiography.

    Science.gov (United States)

    Nishimura, Kazuhisa; Okayama, Hideki; Inoue, Katsuji; Saito, Makoto; Nagai, Takayuki; Suzuki, Jun; Ogimoto, Akiyoshi; Ohtsuka, Tomoaki; Higaki, Jitsuo

    2010-01-01

    A 19-year-old male was admitted to the emergency room of our hospital after a motor vehicle accident. During his first physical examination, a holosystolic murmur was heard at the fourth left parasternal border. Transthoracic echocardiography showed severe tricuspid insufficiency, but the cause of tricuspid insufficiency was unclear. Therefore, three-dimensional echocardiography was performed and demonstrated flail anterior, posterior and septal leaflets of the tricuspid valve. The diagnosis was tricuspid insufficiency due to papillary muscle rupture secondary to chest blunt trauma. Surgical repair of the tricuspid valve was performed in this patient. After surgery, the signs and symptoms of right ventricular heart failure were relieved. In this case, three-dimensional echocardiography was very useful for the evaluation of spatial destruction of the tricuspid valve and papillary muscle. 2009 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  8. Simulation for transthoracic echocardiography of aortic valve

    Science.gov (United States)

    Nanda, Navin C.; Kapur, K. K.; Kapoor, Poonam Malhotra

    2016-01-01

    Simulation allows interactive transthoracic echocardiography (TTE) learning using a virtual three-dimensional model of the heart and may aid in the acquisition of the cognitive and technical skills needed to perform TTE. The ability to link probe manipulation, cardiac anatomy, and echocardiographic images using a simulator has been shown to be an effective model for training anesthesiology residents in transesophageal echocardiography. A proposed alternative to real-time reality patient-based learning is simulation-based training that allows anesthesiologists to learn complex concepts and procedures, especially for specific structures such as aortic valve. PMID:27397455

  9. Left-ventricle segmentation in real-time 3D echocardiography using a hybrid active shape model and optimal graph search approach

    Science.gov (United States)

    Zhang, Honghai; Abiose, Ademola K.; Campbell, Dwayne N.; Sonka, Milan; Martins, James B.; Wahle, Andreas

    2010-03-01

    Quantitative analysis of the left ventricular shape and motion patterns associated with left ventricular mechanical dyssynchrony (LVMD) is essential for diagnosis and treatment planning in congestive heart failure. Real-time 3D echocardiography (RT3DE) used for LVMD analysis is frequently limited by heavy speckle noise or partially incomplete data, thus a segmentation method utilizing learned global shape knowledge is beneficial. In this study, the endocardial surface of the left ventricle (LV) is segmented using a hybrid approach combining active shape model (ASM) with optimal graph search. The latter is used to achieve landmark refinement in the ASM framework. Optimal graph search translates the 3D segmentation into the detection of a minimum-cost closed set in a graph and can produce a globally optimal result. Various information-gradient, intensity distributions, and regional-property terms-are used to define the costs for the graph search. The developed method was tested on 44 RT3DE datasets acquired from 26 LVMD patients. The segmentation accuracy was assessed by surface positioning error and volume overlap measured for the whole LV as well as 16 standard LV regions. The segmentation produced very good results that were not achievable using ASM or graph search alone.

  10. Usefulness of three-dimensional echocardiography in the assessment of valvular involvement in Loeffler endocarditis.

    Science.gov (United States)

    Hernandez, Carlos M; Arisha, Mohammed J; Ahmad, Amier; Oates, Ethan; Nanda, Navin C; Nanda, Anil; Wasan, Anita; Caleti, Beda E; Bernal, Cinthia L P; Gallardo, Sergio M

    2017-07-01

    Loeffler endocarditis is a complication of hypereosinophilic syndrome resulting from eosinophilic infiltration of heart tissue. We report a case of Loeffler endocarditis in which three-dimensional transthoracic and transesophageal echocardiography provided additional information to what was found by two-dimensional transthoracic echocardiography alone. Our case illustrates the usefulness of combined two- and three-dimensional echocardiography in the assessment of Loeffler endocarditis. In addition, a summary of the features of hypereosinophilic syndrome and Loeffler endocarditis is provided in tabular form. © 2017, Wiley Periodicals, Inc.

  11. Usefulness of real-time three-dimensional ultrasonography in percutaneous nephrostomy: an animal study.

    Science.gov (United States)

    Hongzhang, Hong; Xiaojuan, Qin; Shengwei, Zhang; Feixiang, Xiang; Yujie, Xu; Haibing, Xiao; Gallina, Kazobinka; Wen, Ju; Fuqing, Zeng; Xiaoping, Zhang; Mingyue, Ding; Huageng, Liang; Xuming, Zhang

    2018-05-17

    To evaluate the effect of real-time three-dimensional (3D) ultrasonography (US) in guiding percutaneous nephrostomy (PCN). A hydronephrosis model was devised in which the ureters of 16 beagles were obstructed. The beagles were divided equally into groups 1 and 2. In group 1, the PCN was performed using real-time 3D US guidance, while in group 2 the PCN was guided using two-dimensional (2D) US. Visualization of the needle tract, length of puncture time and number of puncture times were recorded for the two groups. In group 1, score for visualization of the needle tract, length of puncture time and number of puncture times were 3, 7.3 ± 3.1 s and one time, respectively. In group 2, the respective results were 1.4 ± 0.5, 21.4 ± 5.8 s and 2.1 ± 0.6 times. The visualization of needle tract in group 1 was superior to that in group 2, and length of puncture time and number of puncture times were both lower in group 1 than in group 2. Real-time 3D US-guided PCN is superior to 2D US-guided PCN in terms of visualization of needle tract and the targeted pelvicalyceal system, leading to quick puncture. Real-time 3D US-guided puncture of the kidney holds great promise for clinical implementation in PCN. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.

  12. Bioeffects of albumin-encapsulated microbubbles and real-time myocardial contrast echocardiography in an experimental canine model

    Directory of Open Access Journals (Sweden)

    P.M.M. Dourado

    2006-06-01

    Full Text Available Myocardial contrast echocardiography has been used for assessing myocardial perfusion. Some concerns regarding its safety still remain, mainly regarding the induction of microvascular alterations. We sought to determine the bioeffects of microbubbles and real-time myocardial contrast echocardiography (RTMCE in a closed-chest canine model. Eighteen mongrel dogs were randomly assigned to two groups. Nine were submitted to continuous intravenous infusion of perfluorocarbon-exposed sonicated dextrose albumin (PESDA plus continuous imaging using power pulse inversion RTMCE for 180 min, associated with manually deflagrated high-mechanical index impulses. The control group consisted of 3 dogs submitted to continuous imaging using RTMCE without PESDA, 3 dogs received PESDA alone, and 3 dogs were sham-operated. Hemodynamics and cardiac rhythm were monitored continuously. Histological analysis was performed on cardiac and pulmonary tissues. No hemodynamic changes or cardiac arrhythmias were observed in any group. Normal left ventricular ejection fraction and myocardial perfusion were maintained throughout the protocol. Frequency of mild and focal microhemorrhage areas in myocardial and pulmonary tissue was similar in PESDA plus RTMCE and control groups. The percentages of positive microscopical fields in the myocardium were 0.4 and 0.7% (P = NS in the PESDA plus RTMCE and control groups, respectively, and in the lungs they were 2.1 and 1.1%, respectively (P = NS. In this canine model, myocardial perfusion imaging obtained with PESDA and RTMCE was safe, with no alteration in cardiac rhythm or left ventricular function. Mild and focal myocardial and pulmonary microhemorrhages were observed in both groups, and may be attributed to surgical tissue manipulation.

  13. Intraventricular dyssynchrony in light chain amyloidosis: a new mechanism of systolic dysfunction assessed by 3-dimensional echocardiography

    Directory of Open Access Journals (Sweden)

    Truran Seth

    2008-08-01

    Full Text Available Abstract Background Light chain amyloidosis (AL is a rare but often fatal disease due to intractable heart failure. Amyloid deposition leads to diastolic dysfunction and often preserved ejection fraction. We hypothesize that AL is associated with regional systolic dyssynchrony. The aim is to compare left ventricular (LV regional synchrony in AL subjects versus healthy controls using 16-segment dyssynchrony index measured from 3-dimension-al (3D echocardiography. Methods Cardiac 3D echocardiography full volumes were acquired in 10 biopsy-proven AL subjects (60 ± 3 years, 5 females and 10 healthy controls (52 ± 1 years, 5 females. The LV was subdivided into 16 segments and the time from end-diastole to the minimal systolic volume for each of the 16 segments was expressed as a percent of the cycle length. The standard deviations of these times provided a 16-segment dyssynchrony index (16-SD%. 16-SD% was compared between healthy and AL subjects. Results Left ventricular ejection fraction was comparable (control vs. AL: 62.4 ± 0.6 vs. 58.6 ± 2.8%, p = NS. 16-SD% was significantly higher in AL versus healthy subjects (5.93 ± 4.4 vs. 1.67 ± 0.87%, p = 0.003. 16-SD% correlated with left ventricular mass index (R 0.45, p = 0.04 but not to left ventricular ejection fraction. Conclusion Light chain amyloidosis is associated with left ventricular regional systolic dyssynchrony. Regional dyssynchrony may be an unrecognized mechanism of heart failure in AL subjects.

  14. Dynamic 3D echocardiography in virtual reality.

    NARCIS (Netherlands)

    A.E. van den Bosch (Annemien); A.H.J. Koning (Anton); F.J. Meijboom (Folkert); J.S. Vletter-McGhie (Jackie); M.L. Simoons (Maarten); P.J. van der Spek (Peter); A.J.J.C. Bogers (Ad)

    2005-01-01

    textabstractBACKGROUND: This pilot study was performed to evaluate whether virtual reality is applicable for three-dimensional echocardiography and if three-dimensional echocardiographic 'holograms' have the potential to become a clinically useful tool. METHODS: Three-dimensional echocardiographic

  15. Real-Time 3-Dimensional Ultrasound-Assisted Infraclavicular Brachial Plexus Catheter Placement: Implications of a New Technology

    Directory of Open Access Journals (Sweden)

    Steven R. Clendenen

    2010-01-01

    Full Text Available Background. There are a variety of techniques for targeting placement of an infraclavicular blockade; these include eliciting paresthesias, nerve stimulation, and 2-dimensional (2D ultrasound (US guidance. Current 2D US allows direct visualization of a “flat” image of the advancing needle and neurovascular structures but without the ability to extensively analyze multidimensional data and allow for real-time manipulation. Three-dimensional (3D ultrasonography has gained popularity and usefulness in many clinical specialties such as obstetrics and cardiology. We describe some of the potential clinical applications of 3D US in regional anesthesia. Methods. This case represents an infraclavicular catheter placement facilitated by 3D US, which demonstrates 360-degree spatial relationships of the entire anatomic region. Results. The block needle, peripheral nerve catheter, and local anesthetic diffusion were observed in multiple planes of view without manipulation of the US probe. Conclusion. Advantages of 3D US may include the ability to confirm correct needle and catheter placement prior to the injection of local anesthetic. The spread of local anesthetic along the length of the nerve can be easily observed while manipulating the 3D images in real-time by simply rotating the trackball on the US machine to provide additional information that cannot be identified with 2D US alone.

  16. Echocardiography in patients with complications related to pacemakers and cardiac defibrillators.

    Science.gov (United States)

    Almomani, Ahmed; Siddiqui, Khadija; Ahmad, Masood

    2014-03-01

    The evolving indications and uses for implantable cardiac devices have led to a significant increase in the number of implanted devices each year. Implantation of endocardial leads for permanent pacemakers and cardiac defibrillators can cause many delayed complications. Complications may be mechanical and related to the interaction of the device leads with the valves and endomyocardium, e.g., perforation, infection, and thrombosis, or due to the electrical pacing of the myocardium and conduction abnormalities, e.g., left ventricular dyssynchrony. Tricuspid regurgitation, another delayed complication in these patients, may be secondary to both mechanical and pacing effects of the device leads. Echocardiography plays an important role in the diagnosis of these device-related complications. Both two-dimensional transthoracic echocardiography and transesophageal echocardiography provide useful diagnostic information. Real time three-dimensional echocardiography is a novel technique that can further enhance the detection of lead-related complications. © 2013, Wiley Periodicals, Inc.

  17. Review of Real-Time 3-Dimensional Image Guided Radiation Therapy on Standard-Equipped Cancer Radiation Therapy Systems: Are We at the Tipping Point for the Era of Real-Time Radiation Therapy?

    Science.gov (United States)

    Keall, Paul J; Nguyen, Doan Trang; O'Brien, Ricky; Zhang, Pengpeng; Happersett, Laura; Bertholet, Jenny; Poulsen, Per R

    2018-04-14

    To review real-time 3-dimensional (3D) image guided radiation therapy (IGRT) on standard-equipped cancer radiation therapy systems, focusing on clinically implemented solutions. Three groups in 3 continents have clinically implemented novel real-time 3D IGRT solutions on standard-equipped linear accelerators. These technologies encompass kilovoltage, combined megavoltage-kilovoltage, and combined kilovoltage-optical imaging. The cancer sites treated span pelvic and abdominal tumors for which respiratory motion is present. For each method the 3D-measured motion during treatment is reported. After treatment, dose reconstruction was used to assess the treatment quality in the presence of motion with and without real-time 3D IGRT. The geometric accuracy was quantified through phantom experiments. A literature search was conducted to identify additional real-time 3D IGRT methods that could be clinically implemented in the near future. The real-time 3D IGRT methods were successfully clinically implemented and have been used to treat more than 200 patients. Systematic target position shifts were observed using all 3 methods. Dose reconstruction demonstrated that the delivered dose is closer to the planned dose with real-time 3D IGRT than without real-time 3D IGRT. In addition, compromised target dose coverage and variable normal tissue doses were found without real-time 3D IGRT. The geometric accuracy results with real-time 3D IGRT had a mean error of real-time 3D IGRT methods using standard-equipped radiation therapy systems that could also be clinically implemented. Multiple clinical implementations of real-time 3D IGRT on standard-equipped cancer radiation therapy systems have been demonstrated. Many more approaches that could be implemented were identified. These solutions provide a pathway for the broader adoption of methods to make radiation therapy more accurate, impacting tumor and normal tissue dose, margins, and ultimately patient outcomes. Copyright © 2018

  18. Trombosis de válvulas cardiacas biológicas. Presentación de dos casos evaluados con ecocardiografía 3D en tiempo real Thrombosis of biological valves. Report of two cases evaluated by 3D echocardiography in real time

    Directory of Open Access Journals (Sweden)

    Jairo A Rendón

    2011-10-01

    Full Text Available La trombosis de las válvulas protésicas biológicas es una complicación infrecuente, que se asocia con mortalidad elevada. En este artículo se reporta el caso de un paciente de género masculino, de 72 años de edad, con prótesis valvular biológica en posición aórtica y trombosis asociada a degeneración valvular, así como el de una paciente de género femenino de 64 años de edad, con prótesis biológica en posición mitral y trombosis de la misma en el contexto de una infección sistémica. Ambos casos se evaluaron mediante ecocardiografía transesofágica tridimensional en tiempo real.Thrombosis of biological prosthetic valves is a rare complication, associated with high mortality. We report the case of a 72 years old male patient with biological valve prosthesis in the aortic position and thrombosis associated with valvular degeneration, as well as that of a 64 years old female patient with bioprosthesis in the mitral position and thrombosis of it in the context of a systemic infection. Both cases were evaluated by three-dimensional transesophageal echocardiography in real time.

  19. The additional value of three-dimensional transesophageal echocardiography in complex aortic prosthetic heart valve endocarditis

    NARCIS (Netherlands)

    Tanis, Wilco; Teske, Arco J.; Van Herwerden, Lex A.; Chamuleau, Steven; Meijboom, Folkert; Budde, Ricardo P J; Cramer, MJ

    2015-01-01

    Background Two-dimensional transthoracic and transesophageal echocardiography (2DTTE and 2DTEE) may fail to detect signs of prosthetic heart valve (PHV) endocarditis due to acoustic shadowing. Three-dimensional (3D) TEE may have additional value; however, data are scarce. This study was performed to

  20. Three-dimensional transesophageal echocardiography in the evaluation of aortic valve destruction by endocarditis

    NARCIS (Netherlands)

    Nemes, Attila; Lagrand, Wim K.; McGhie, Jackie S.; ten Cate, Folkert J.

    2006-01-01

    Infective endocarditis remains a serious and complex disease with significant morbidity and mortality. The aim of this study was to demonstrate the clinical usefulness of 3-dimensional transesophageal echocardiography for the spatial assessment of aortic valve endocarditis. This case showed severe

  1. Transesophageal echocardiography. 3. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Lambertz, Heinz; Lethen, Harald

    2013-01-01

    The book on transesophageal echocardiography covers the following issues: Development of transesophageal echocardiography, technical advances; indications and contraindication for transesophageal echocardiography; systematic of the medical examination process; cardiac valves and valve prostheses; mitral and aortic valvuloplasty, TAVI and interventional treatment of mitral regurgitation; infectious endocarditis; one-way and effluence disturbances of the left and right ventricle; diseases of the thoracic aorta; undefined right ventricle enlargement; lung embolism, acute infarct complications; TEE during anesthesia and perioperative intensive medicine, cardiac sources of embolism; cardiac tumors, mediastinal lymph nodes; pericardiac diseases; congenital heart diseases in childhood and adulthood; catheter interventions and heart valve reconstruction; surgically corrected congenital cardiac defects; intracavitary versus transesophageal echocardiography; three-dimensional TEE; coronary diagnostics; ischemia and vitality diagnostics.

  2. Acute right ventricular dysfunction: real-time management with echocardiography.

    Science.gov (United States)

    Krishnan, Sundar; Schmidt, Gregory A

    2015-03-01

    In critically ill patients, the right ventricle is susceptible to dysfunction due to increased afterload, decreased contractility, or alterations in preload. With the increased use of point-of-care ultrasonography and a decline in the use of pulmonary artery catheters, echocardiography can be the ideal tool for evaluation and to guide hemodynamic and respiratory therapy. We review the epidemiology of right ventricular failure in critically ill patients; echocardiographic parameters for evaluating the right ventricle; and the impact of mechanical ventilation, fluid therapy, and vasoactive infusions on the right ventricle. Finally, we summarize the principles of management in the context of right ventricular dysfunction and provide recommendations for echocardiography-guided management.

  3. Correlation of two-dimensional echocardiography and pathologic findings in porcine valve dysfunction.

    Science.gov (United States)

    Forman, M B; Phelan, B K; Robertson, R M; Virmani, R

    1985-02-01

    Two-dimensional echocardiographic findings in porcine valve dysfunction were compared with pathologic findings in 10 patients (12 valves). Three specific echocardiographic findings were identified in patients with regurgitant lesions: prolapse, fracture and flail leaflets. Prolapse was associated pathologically with thinning of the leaflets, longitudinal tears close to the ring margin and acid mucopolysaccharide accumulation. Valve fracture was seen with and without prolapse and was accompanied pathologically by small pinpoint perforations or tears of the leaflet. A flail leaflet was seen with a linear tear of the free margin and was associated with calcific deposits. Mild degrees of fracture seen pathologically were missed on the echocardiographic study in five patients. Thickening or calcification, when present in moderate or severe amounts, was correctly identified by echocardiography. When all abnormal features were considered collectively, two-dimensional echocardiography correctly identified at least one of them in all patients. Therefore, two-dimensional echocardiography may prove useful in assessing the source of valvular regurgitation in patients with bioprosthetic valves.

  4. Incremental Value of Three-Dimensional Transesophageal Echocardiography over the Two-Dimensional Technique in the Assessment of a Thrombus in Transit through a Patent Foramen Ovale.

    Science.gov (United States)

    Thind, Munveer; Ahmed, Mustafa I; Gok, Gulay; Joson, Marisa; Elsayed, Mahmoud; Tuck, Benjamin C; Townsley, Matthew M; Klas, Berthold; McGiffin, David C; Nanda, Navin C

    2015-05-01

    We report a case of a right atrial thrombus traversing a patent foramen ovale into the left atrium, where three-dimensional transesophageal echocardiography provided considerable incremental value over two-dimensional transesophageal echocardiography in its assessment. As well as allowing us to better spatially characterize the thrombus, three-dimensional transesophageal echocardiography provided a more quantitative assessment through estimation of total thrombus burden. © 2015, Wiley Periodicals, Inc.

  5. Quantified Facial Soft-tissue Strain in Animation Measured by Real-time Dynamic 3-Dimensional Imaging.

    Science.gov (United States)

    Hsu, Vivian M; Wes, Ari M; Tahiri, Youssef; Cornman-Homonoff, Joshua; Percec, Ivona

    2014-09-01

    The aim of this study is to evaluate and quantify dynamic soft-tissue strain in the human face using real-time 3-dimensional imaging technology. Thirteen subjects (8 women, 5 men) between the ages of 18 and 70 were imaged using a dual-camera system and 3-dimensional optical analysis (ARAMIS, Trilion Quality Systems, Pa.). Each subject was imaged at rest and with the following facial expressions: (1) smile, (2) laughter, (3) surprise, (4) anger, (5) grimace, and (6) pursed lips. The facial strains defining stretch and compression were computed for each subject and compared. The areas of greatest strain were localized to the midface and lower face for all expressions. Subjects over the age of 40 had a statistically significant increase in stretch in the perioral region while lip pursing compared with subjects under the age of 40 (58.4% vs 33.8%, P = 0.015). When specific components of lip pursing were analyzed, there was a significantly greater degree of stretch in the nasolabial fold region in subjects over 40 compared with those under 40 (61.6% vs 32.9%, P = 0.007). Furthermore, we observed a greater degree of asymmetry of strain in the nasolabial fold region in the older age group (18.4% vs 5.4%, P = 0.03). This pilot study illustrates that the face can be objectively and quantitatively evaluated using dynamic major strain analysis. The technology of 3-dimensional optical imaging can be used to advance our understanding of facial soft-tissue dynamics and the effects of animation on facial strain over time.

  6. Transesophageal echocardiography in NeoChord procedure

    Directory of Open Access Journals (Sweden)

    Pittarello Demetrio

    2015-01-01

    Full Text Available Background: Transapical off-pump mitral valve intervention with neochord implantation for degenerative mitral valve disease have been recently introduced in the surgical practice. The procedure is performed under 2D-3D transesophageal echocardiography guidance. Methods: The use of 3D real-time transesophageal echocardiography provides more accurate information than 2D echocardiography only in all the steps of the procedure. In particular 3D echocardiography is mandatory for preoperative assessment of the morphology of the valve, for correct positioning of the neochord on the diseased segment , for the final tensioning of the chordae and for the final evaluation of the surgical result. Result and Conclusion: This article is to outline the technical aspects of the transesophageal echocardiography guidance of the NeoChord procedure showing that the procedure can be performed only with a close and continuous interaction between the anesthesiologist and the cardiac surgeon.

  7. Value of adenosine infusion for infarct size determination using real-time myocardial contrast echocardiography

    Directory of Open Access Journals (Sweden)

    da Luz Protásio

    2006-02-01

    Full Text Available Abstract Background Myocardial contrast echocardiography has been used for determination of infarct size (IS in experimental models. However, with intermittent harmonic imaging, IS seems to be underestimated immediately after reperfusion due to areas with preserved, yet dysfunctional, microvasculature. The use of exogenous vasodilators showed to be useful to unmask these infarcted areas with depressed coronary flow reserve. This study was undertaken to assess the value of adenosine for IS determination in an open-chest canine model of coronary occlusion and reperfusion, using real-time myocardial contrast echocardiography (RTMCE. Methods Nine dogs underwent 180 minutes of coronary occlusion followed by reperfusion. PESDA (Perfluorocarbon-Exposed Sonicated Dextrose Albumin was used as contrast agent. IS was determined by RTMCE before and during adenosine infusion at a rate of 140 mcg·Kg-1·min-1. Post-mortem necrotic area was determined by triphenyl-tetrazolium chloride (TTC staining. Results IS determined by RTMCE was 1.98 ± 1.30 cm2 and increased to 2.58 ± 1.53 cm2 during adenosine infusion (p = 0.004, with good correlation between measurements (r = 0.91; p 2 and showed no significant difference with IS determined by RTMCE before or during hyperemia. A slight better correlation between RTMCE and TTC measurements was observed during adenosine (r = 0.99; p Conclusion RTMCE can accurately determine IS in immediate period after acute myocardial infarction. Adenosine infusion results in a slight better detection of actual size of myocardial damage.

  8. Research overview of real-time monitoring system for micro leak of three-dimensional pipe network

    Directory of Open Access Journals (Sweden)

    Shaofeng WANG

    2016-04-01

    Full Text Available Aiming at the key technical problems encountered by domestic and foreign scholars in building the real-time monitoring system for the micro leak of three-dimensional pipe networks, the paper classifies the problems into three aspects: 1 in the extraction of fault signal frequency, how to avoid the effect of the mixed echo stack and improve the delay estimation accuracy of the correlation; 2 in network bifurcation structure, how to discern the signal propagation path, and how to locate the leak source; 3 under the uncertainly delay in transmitting and receiving information data, how to ensure the time synchronization accuracy of the real-time monitoring system for the three-dimensional pipe network leakage. Through the comparison of the monitoring technologies for the pipe network leakage at home and abroad, it shows that the acoustic emission sensor network based three-dimensional pipeline leak real-time monitoring has great advantages in detecting the weak leakage of flammable and explosive gas/liquid transportation pipelines.

  9. Real-Time Three-Dimensional Echocardiography of the Left Ventricle-Pediatric Percentiles and Head-to-Head Comparison of Different Contour-Finding Algorithms: A Multicenter Study.

    Science.gov (United States)

    Krell, Kristina; Laser, Kai Thorsten; Dalla-Pozza, Robert; Winkler, Christian; Hildebrandt, Ursula; Kececioglu, Deniz; Breuer, Johannes; Herberg, Ulrike

    2018-03-28

    Real-time three-dimensional echocardiography (RT3DE) is a promising method for accurate assessment of left ventricular (LV) volumes and function, however, pediatric reference values are scarce. The aim of the study was to establish pediatric percentiles in a large population and to compare the inherent influence of different evaluation software on the resulting measurements. In a multicenter prospective-design study, 497 healthy children (ages 1 day to 219 months) underwent RT3DE imaging of the LV (ie33, Philips, Andover, MA). Volume analysis was performed using QLab 9.0 (Philips) and TomTec 4DLV2.7 (vendor-independent; testing high (TomTec 75 ) and low (TomTec 30 ) contour-finding activity). Reference percentiles were computed using Cole's LMS method. In 22 subjects, cardiovascular magnetic resonance imaging (CMR) was used as the reference. A total of 370/497 (74.4%) of the subjects provided adequate data sets. LV volumes had a significant association with age, body size, and gender; therefore, sex-specific percentiles were indexed to body surface area. Intra- and interobserver variability for both workstations was good (relative bias ± SD for end-diastolic volume [EDV] in %: intraobserver: QLab = -0.8 ± 2.4; TomTec 30  = -0.7 ± 7.2; TomTec 75  = -1.9 ± 6.7; interobserver: QLab = 2.4 ± 7.5; TomTec 30  = 1.2 ± 5.1; TomTec 75  = 1.3 ± 4.5). Intervendor agreement between QLab and TomTec 30 showed larger bias and wider limits of agreement (bias: QLab vs TomTec 30 : end-systolic volume [ESV] = 0.8% ± 23.6%; EDV = -2.2% ± 17.0%) with notable individual differences in small children. QLab and TomTec underestimated CMR values, with the highest agreement between CMR and QLab. RT3DE allows reproducible noninvasive assessment of LV volumes and function. However, intertechnique variability is relevant. Therefore, our software-specific percentiles, based on a large pediatric population, serve as a reference for both commonly used

  10. Indium-111 platelet scintigraphy and two-dimensional echocardiography for detection of left ventricular thrombus: influence of clot size and age

    International Nuclear Information System (INIS)

    Seabold, J.E.; Schroeder, E.C.; Conrad, G.R.

    1987-01-01

    Two-dimensional echocardiography and indium-111 platelet scintigraphy were performed on 50 dogs to determine the influence of clot age and size on the detection of experimentally induced left ventricular mural thrombus. Thrombus was induced by apical infarction and injection of a sclerosing agent and thrombin. The animals were classified into four groups according to the time of indium-111 platelet injection after thrombus induction: Group I (17 dogs, 1/2 hour after induction; 3 dogs, before induction), Group II (12 dogs, 24 hours after induction) and Group III (12 dogs, 1 week after induction). In Group IV (six control dogs) apical infarction was produced, but thrombin was not injected; indium-111 platelets were injected 1/2 to 1 hour after infarction. The dogs were studied by indium-111 platelet scintigraphy and by two-dimensional echocardiography 1/2 to 5 hours (Group I) and 1 to 5 and up to 72 hours (Groups II to IV) after platelet administration and before death was induced. Two-dimensional echocardiography showed the best overall sensitivity for detection of acute thrombus (97%; 29 of 30). The sensitivity of indium-111 platelet scintigraphy was 86% (18 of 21) for clots greater than or equal to 0.08 ml in size, and 67% (20 of 30) for detection of all clots. Thrombus did not form in 14 dogs of Groups I to III and in 6 of 6 control dogs. The specificity of scintigraphy was 100% (20 of 20) compared with 80% (16 of 20) for echocardiography. Echocardiography was more sensitive than scintigraphy for detecting very small clots in this experimental model

  11. Evaluation of left ventricular volumes in patients with congenital heart disease and abnormal left ventricular geometry. Comparison of MRI and transthoracic 3-dimensional echocardiography

    International Nuclear Information System (INIS)

    Gutberlet, M.; Grothoff, M.; Roettgen, R.; Lange, P.; Felix, R.; Abdul-Khaliq, H.; Schroeter, J.; Schmitt, B.; Vogel, M.

    2003-01-01

    Purpose: To assess the new method of 3-dimensional echocardiography in comparison to the 'gold standard' MRI as to its ability to calculate left ventricular volumes in patients with congenital heart disease. Materials and methods: Eighteen patients between the ages of 3.9 to 37.3 years (mean: 12.8±9.7) with a geometrically abnormal left ventricle were examined using a 1.5 T scanner with a fast gradient-echo sequence (TR=14 ms, TE=2.6-2.9 ms, FOV=300-400 mm, flip angle=20 , matrix=128:256, slice thickness=5 mm, retrospective gating) in multislice-multiphase technique. Transthoracic 3D-echocardiography was performed with a 3.5 MHz transducer and a Tomtec trademark (Munich, Germany) system for 3D reconstruction. Results: Volume calculation was possible in all patients with 3D-echocardiography, but the muscle mass calculation only succeeded in 11 to 18 patients (61%) due to inadequate visualization of the entire myocardium. Comparing MRI and 3D-echocardiography, the correlation was r=0.97 for the end-systolic volumes, r=0.98 for the end-diastolic volumes, r=0.79 for the end-systolic muscle mass and r=0.77 for the end-diastolic muscle mass. The agreement between both methods was considered good for the calculated end-diastolic volumes and sufficient for the calculated end-systolic volumes. The muscle mass calculations showed larger differences especially for the end-systolic mass. Mean intraobserver variability was 18.6% for end-systolic and 8.3% for end-diastolic volumes. Conclusion: In patients with an abnormal left ventricular configuration due to congenital heart disease, the new method of 3D-echocardiography is sufficient for volume calculations in preselected patients. The high intraobserver variability is still a limitation of transthoracic 3D-echocardiography in comparison to MRI. (orig.) [de

  12. Integration of Computed Tomography and Three-Dimensional Echocardiography for Hybrid Three-Dimensional Printing in Congenital Heart Disease.

    Science.gov (United States)

    Gosnell, Jordan; Pietila, Todd; Samuel, Bennett P; Kurup, Harikrishnan K N; Haw, Marcus P; Vettukattil, Joseph J

    2016-12-01

    Three-dimensional (3D) printing is an emerging technology aiding diagnostics, education, and interventional, and surgical planning in congenital heart disease (CHD). Three-dimensional printing has been derived from computed tomography, cardiac magnetic resonance, and 3D echocardiography. However, individually the imaging modalities may not provide adequate visualization of complex CHD. The integration of the strengths of two or more imaging modalities has the potential to enhance visualization of cardiac pathomorphology. We describe the feasibility of hybrid 3D printing from two imaging modalities in a patient with congenitally corrected transposition of the great arteries (L-TGA). Hybrid 3D printing may be useful as an additional tool for cardiologists and cardiothoracic surgeons in planning interventions in children and adults with CHD.

  13. Informatics solutions for Three-dimensional visualization in real time

    International Nuclear Information System (INIS)

    Guzman Montoto, Jose Ignacio

    2002-01-01

    The advances reached in the development of the hardware and in the methods of acquisition of data like tomographic scanners and systems of analysis of images, have allowed obtaining geometric models of biomedical elements with the property of being manipulated through the three-dimensional visualization (3D). Nowadays, this visualization embraces from biological applications, including analysis of structures and its functional relationships, until medical applications that include anatomical accuracies and the planning or the training for complex surgical operations. This work proposes computer solutions to satisfy visualization requirements in real time. The developed algorithms are contained in a graphic library that will facilitate the development of future works. The obtained results allow facing current problems of three-dimensional representation of complex surfaces, realism is reached in the images and they have possible application in bioinformatics and medicine

  14. Dynamic 3D echocardiography in virtual reality

    Directory of Open Access Journals (Sweden)

    Simoons Maarten L

    2005-12-01

    Full Text Available Abstract Background This pilot study was performed to evaluate whether virtual reality is applicable for three-dimensional echocardiography and if three-dimensional echocardiographic 'holograms' have the potential to become a clinically useful tool. Methods Three-dimensional echocardiographic data sets from 2 normal subjects and from 4 patients with a mitral valve pathological condition were included in the study. The three-dimensional data sets were acquired with the Philips Sonos 7500 echo-system and transferred to the BARCO (Barco N.V., Kortrijk, Belgium I-space. Ten independent observers assessed the 6 three-dimensional data sets with and without mitral valve pathology. After 10 minutes' instruction in the I-Space, all of the observers could use the virtual pointer that is necessary to create cut planes in the hologram. Results The 10 independent observers correctly assessed the normal and pathological mitral valve in the holograms (analysis time approximately 10 minutes. Conclusion this report shows that dynamic holographic imaging of three-dimensional echocardiographic data is feasible. However, the applicability and use-fullness of this technology in clinical practice is still limited.

  15. Real-time visual tracking of less textured three-dimensional objects on mobile platforms

    Science.gov (United States)

    Seo, Byung-Kuk; Park, Jungsik; Park, Hanhoon; Park, Jong-Il

    2012-12-01

    Natural feature-based approaches are still challenging for mobile applications (e.g., mobile augmented reality), because they are feasible only in limited environments such as highly textured and planar scenes/objects, and they need powerful mobile hardware for fast and reliable tracking. In many cases where conventional approaches are not effective, three-dimensional (3-D) knowledge of target scenes would be beneficial. We present a well-established framework for real-time visual tracking of less textured 3-D objects on mobile platforms. Our framework is based on model-based tracking that efficiently exploits partially known 3-D scene knowledge such as object models and a background's distinctive geometric or photometric knowledge. Moreover, we elaborate on implementation in order to make it suitable for real-time vision processing on mobile hardware. The performance of the framework is tested and evaluated on recent commercially available smartphones, and its feasibility is shown by real-time demonstrations.

  16. 111In-labeled platelet scintigraphy and two-dimensional echocardiography for detection of left atrial appendage thrombi. Studies in a new canine model

    International Nuclear Information System (INIS)

    Vandenberg, B.F.; Seabold, J.E.; Conrad, G.R.; Kieso, R.; Johnson, J.; Fox-Eastham, K.; Ponto, J.; Bruch, P.; Kerber, R.E.

    1988-01-01

    111In-labeled platelet scintigraphy and two-dimensional echocardiography were performed in 40 dogs to determine the ability of the two techniques to detect left atrial appendage thrombi. Thrombi were induced in 33 dogs that were classified into two groups, acute or chronic, according to the time of labeled-platelet injection after thrombus induction. In the acute group (17 dogs), platelets were injected 24 hours after thrombus induction. In the chronic group (16 dogs), platelets were injected 4-8 days after thrombus induction. Sham thoracotomies were performed on seven additional control dogs who did not receive thrombin injections. Analog and blood pool-corrected 111In-labeled platelet scintigraphy images were obtained 4-72 hours later. Closed-chest two-dimensional echocardiography was performed before thoracotomy and repeated at the time of scintigraphy. The location and size of each thrombus were verified at autopsy. Two-dimensional echocardiography detected three of 17 acute (mean volume, 1.2 +/- 1.0 cc) and three of 10 chronic (mean volume, 0.4 +/- 0.3 cc; p less than 0.025) left atrial appendage thrombi. 111In-labeled platelet scintigraphy detected all 17 acute thrombi but only two of 10 chronic thrombi. The measured radioactivity levels of the excised thrombi were 1,949 +/- 1,665 cpm/clot/dose in group 1 and 228 +/- 213 cpm/clot/dose in group 2 (p less than 0.005). In this model, 111In-labeled platelet scintigraphy was able to detect acute left atrial appendage thrombi that could not be identified by two-dimensional echocardiography. Both techniques showed poor sensitivity for detection of chronic thrombi. The decline in sensitivity of 111In-labeled platelet scintigraphy for detection of older thrombi is probably due to diminished labeled-platelet incorporation

  17. The current status of fluoroscopy and echocardiography in the diagnosis of prosthetic valve thrombosis-a review article.

    Science.gov (United States)

    Gürsoy, Mustafa Ozan; Kalçik, Macit; Karakoyun, Süleyman; Özkan, Mehmet

    2015-01-01

    Prosthetic valve thrombosis (PVT) is a potentially life-threatening complication of heart valve replacement. Early diagnosis is crucial for the prevention of significantly morbid and lethal complications. Cinefluoroscopy (CF) and echocardiography have been widely used for diagnosing PVT. In recent years, the role of CF has declined since the introduction of transesophageal echocardiography and the great improvements in ultrasound technology including real time three-dimensional imaging. Nevertheless, both echocardiography and CF provide different kinds of information on prosthesis function, and therefore they are considered as complementary and not alternative. In this review, we aimed to summarize the current status of CF and echocardiography in the diagnosis of PVT. © 2014, Wiley Periodicals, Inc.

  18. The value of preoperative 3-dimensional over 2-dimensional valve analysis in predicting recurrent ischemic mitral regurgitation after mitral annuloplasty

    NARCIS (Netherlands)

    Wijdh-den Hamer, Inez J.; Bouma, Wobbe; Lai, Eric K.; Levack, Melissa M.; Shang, Eric K.; Pouch, Alison M.; Eperjesi, Thomas J.; Plappert, Theodore J.; Yushkevich, Paul A.; Hung, Judy; Mariani, Massimo A.; Khabbaz, Kamal R.; Gleason, Thomas G.; Mahmood, Feroze; Acker, Michael A.; Woo, Y. Joseph; Cheung, Albert T.; Gillespie, Matthew J.; Jackson, Benjamin M.; Gorman, Joseph H.; Gorman, Robert C.

    Objectives: Repair for ischemic mitral regurgitation with undersized annuloplasty is characterized by high recurrence rates. We sought to determine the value of pre-repair 3-dimensional echocardiography over 2-dimensional echocardiography in predicting recurrence at 6 months. Methods: Intraoperative

  19. Three-dimensional speckle tracking echocardiography allows detailed evaluation of left atrial function in hypertrophic cardiomyopathy--insights from the MAGYAR-Path Study.

    Science.gov (United States)

    Domsik, Péter; Kalapos, Anita; Chadaide, Számi; Sepp, Róbert; Hausinger, Péter; Forster, Tamás; Nemes, Attila

    2014-11-01

    Hypertrophic cardiomyopathy (HCM) represents a generalized myopathic process affecting both ventricular and atrial myocardium. Reduced left atrial (LA) function was demonstrated in HCM by different methods. Three-dimensional (3D) speckle tracking echocardiography (STE) has just been introduced for the evaluation of LA. This study was designed to compare 3DSTE-derived LA volumetric and strain parameters in HCM with healthy controls. The study comprised 23 consecutive HCM patients (mean age: 48.5 ± 15.1 years, 14 men). Their results were compared to 23 age- and gender-matched healthy controls. Complete two-dimensional Doppler echocardiography and 3DSTE have been performed in all cases. Calculated LA maximum (66.4 ± 20.4 mL vs. 36.0 ± 6.1 mL, P echocardiography allows detailed evaluation of LA (dys) function in HCM by volumetric and strain measurements. © 2014, Wiley Periodicals, Inc.

  20. Right ventricular volume determination by two-dimensional echocardiography and radiography in model hearts using a subtraction method

    International Nuclear Information System (INIS)

    Krebs, W.; Erbel, R.; Schweizer, P.; Richter, H.A.; Massberg, I.; Meyer, J.; Effert, S.; Henn, G.

    1982-01-01

    The irregularity and complexity of the right ventricle is the reason why no accurate method for right ventricular volume determination exists. A new method for right ventricular volume determination particularly for two-dimensional echocardiography was developed - it is called subtraction method - and was compared with the pyramid and Simpson's methods. The partial volume of the left ventricle and septum was subtracted from total volume of right and left ventricle including interventricular septum. Thus right ventricular volume resulted. Total and partial volume were computer-assisted calculated by use of biplane methods, preferably Simpson's rule. The method was proved with thinwall silicon-rubber model hearts of the left and right ventricle. Two orthogonal planes in the long-axis were filmed by radiography or scanned in a water bath by two-dimensional echocardiography equivalent to RAO and LAO-projections of cineangiocardiograms or to four- and two-chamber views of apical two-dimensional echocardiograms. For calculation of the major axes of the elliptical sections, summed up by Simpson's rule, they were derived from the LAO-projection and the four-chamber view, respectively, the minor axis approximated from the RAO-projection and the two-chamber view. For comparison of direct-measured volume and two-dimensional echocardiographically determined volume, regression equation was given by y = 1.01 x - 3.2, correlation-coefficient, r = 0.977, and standard error of estimate (SEE) +-10.5 ml. For radiography, regression equation was y = 0.909 x + 13.3, r = 0.983, SEE = +-8.0 ml. For pyramid method and Simpson's rule, higher standard errors and lower correlation coefficients were found. Between radiography and two-dimensional echocardiography a mean difference of 4.3 +- 13.2 ml, using subtraction method, and -10.2 +- 22.9 ml, using pyramid method, as well as -0.6 +- 18.5 ml, using Simpson's rule, were calculated for right ventricular volume measurements. (orig./APR) [de

  1. Incremental benefit of three-dimensional transesophageal echocardiography in the assessment of a primary pericardial hemangioma.

    Science.gov (United States)

    Arisha, Mohammed J; Hsiung, Ming C; Nanda, Navin C; ElKaryoni, Ahmed; Mohamed, Ahmed H; Wei, Jeng

    2017-08-01

    Hemangiomas are rarely found in the heart and pericardial involvement is even more rare. We report a case of primary pericardial hemangioma, in which three-dimensional transesophageal echocardiography (3DTEE) provided incremental benefit over standard two-dimensional images. Our case also highlights the importance of systematic cropping of the 3D datasets in making a diagnosis of pericardial hemangioma with a greater degree of certainty. In addition, we also provide a literature review of the features of cardiac/pericardial hemangiomas in a tabular form. © 2017, Wiley Periodicals, Inc.

  2. A systematic method for using 3D echocardiography to evaluate tricuspid valve insufficiency in hypoplastic left heart syndrome

    OpenAIRE

    Mart, Christopher Robin; Eckhauser, Aaron Wesley; Murri, Michael; Su, Jason Thomas

    2014-01-01

    With surgical palliation of hypoplastic left heart syndrome (HLHS), the tricuspid valve (TV) becomes the systemic atrioventricular valve and moderate/severe TV insufficiency (TVI), an adverse risk factor for survival to Fontan, has been reported in up to 35% of patients prior to stage I palliation. Precise echocardiographic identification of the mechanism of TVI cannot be determined by two-dimensional echocardiography. Three-dimensional echocardiography (3DE) can provide significant insight i...

  3. Analytical real-time measurement of a three-dimensional weld pool surface

    International Nuclear Information System (INIS)

    Zhang, WeiJie; Zhang, YuMing; Wang, XueWu

    2013-01-01

    The ability to observe and measure weld pool surfaces in real-time is the core of the foundation for next generation intelligent welding that can partially imitate skilled welders who observe the weld pool to acquire information on the welding process. This study aims at the real-time measurement of the specular three-dimensional (3D) weld pool surface under a strong arc in gas tungsten arc welding (GTAW). An innovative vision system is utilized in this study to project a dot-matrix laser pattern on the specular weld pool surface. Its reflection from the surface is intercepted at a distance from the arc by a diffuse plane. The intercepted laser dots illuminate this plane producing an image showing the reflection pattern. The deformation of this reflection pattern from the projected pattern (e.g. the dot matrix) is used to derive the 3D shape of the reflection surface, i.e., the weld pool surface. Based on careful analysis, the underlying reconstruction problem is formulated mathematically. An analytic solution is proposed to solve this formulated problem resulting in the weld pool surface being reconstructed on average in 3.04 ms during welding experiments. A vision-based monitoring system is thus established to measure the weld pool surface in GTAW in real-time. In order to verify the effectiveness of the proposed reconstruction algorithm, first numerical simulation is conducted. The proposed algorithm is then tested on a spherical convex mirror with a priori knowledge of its geometry. The detailed analysis of the measurement error validates the accuracy of the proposed algorithm. Results from the real-time experiments verify the robustness of the proposed reconstruction algorithm. (paper)

  4. Assessment of atrial fibrillation and vulnerability in patients with Wolff-Parkinson-White syndrome using two-dimensional speckle tracking echocardiography.

    Science.gov (United States)

    Li, Jing-Jie; Wei, Fang; Chen, Ju-Gang; Yu, Yan-Wei; Gu, Hong-Yue; Jiang, Rui; Wu, Xiu-Li; Sun, Qian

    2014-01-01

    The aim was to assess atrial fibrillation (AF) and vulnerability in Wolff-Parkinson-White (WPW) syndrome patients using two-dimensional speckle tracking echocardiography (2D-STE). All patients were examined via transthoracic echocardiography and 2D-STE in order to assess atrial function 7 days before and 10 days after RF catheter ablation. A postoperative 3-month follow-up was performed via outpatient visit or telephone calls. Results showed significant differences in both body mass index (BMI) and supraventricular tachycardia (SVT) duration between WPW patients and DAVNP patients (both Psyndrome may result in increased atrial vulnerability and contribute to the development of AF. Further, RF catheter ablation of AAV pathway can potentially improve atrial function in WPW syndrome patients. Two-dimensional speckle tracking echocardiography imaging in WPW patients would be necessary in the evaluation and improvement of the overall function of RF catheter ablation in a long-term follow-up period.

  5. Early detection of myocardial dysfunction using two-dimensional speckle tracking echocardiography in a young cat with hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ryohei Suzuki

    2018-02-01

    Full Text Available Case summary A 5-month-old intact female Scottish Fold cat was presented for cardiac evaluation. Careful auscultation detected a slight systolic murmur (Levine I/VI. The findings of electrocardiography, thoracic radiography, non-invasive blood pressure measurements and conventional echocardiographic studies were unremarkable. However, two-dimensional speckle tracking echocardiography revealed abnormalities in myocardial deformations, including decreased early-to-late diastolic strain rate ratios in longitudinal, radial and circumferential directions, and deteriorated segmental systolic longitudinal strain. At the follow-up examinations, the cat exhibited echocardiographic left ventricular hypertrophy and was diagnosed with hypertrophic cardiomyopathy using conventional echocardiography. Relevance and novel information This is the first report on the use of two-dimensional speckle tracking echocardiography for the early detection of myocardial dysfunction in a cat with hypertrophic cardiomyopathy; the myocardial dysfunction was detected before the development of hypertrophy. The findings from this case suggest that two-dimensional speckle tracking echocardiography can be useful for myocardial assessment when conventional echocardiographic and Doppler findings are ambiguous.

  6. Effects of antithrombotic drugs in patients with left ventricular thrombi: assessment with indium-111 platelet imaging and two-dimensional echocardiography

    International Nuclear Information System (INIS)

    Stratton, J.R.; Ritchie, J.L.

    1984-01-01

    Patients with left ventricular thrombi not caused by recent myocardial infarction were prospectively studied by indium-111 platelet imaging and two-dimensional echocardiography to determine the reproducibility of these techniques and the short-term effects of sulfinpyrazone (200 mg four times daily), aspirin (325 mg three times daily) plus dipyridamole (75 mg three times daily), and full-dose warfarin. At baseline, all patients underwent indium-111 platelet imaging and echocardiography, and the results were positive for thrombus. In six patients on no antithrombotic drug therapy, repeat platelet scans and echocardiographic studies at 6.0 +/- 3.3 weeks remained positive and were unchanged. In seven patients studied on sulfinpyrazone, three platelet scans became negative, two became equivocal, and two were unchanged; the presence and size of thrombus was constant by echocardiography in all seven patients. Of the six patients studied on aspirin plus dipyridamole, one platelet scan became negative, those of three became equivocal, and two were unchanged; all echocardiographic findings remained positive, but one patient had decreased thrombus size. Among four warfarin-treated patients, three had resolution of platelet deposition and one was unchanged; by echocardiography, thrombus resolved in one patient, was decreased in size in one, and was unchanged in two. We conclude that, in the absence of antithrombotic drug therapy, platelet imaging and echocardiographic findings are stable in patients with left ventricular thrombi not caused by recent myocardial infarction. Sulfinpyrazone, aspirin plus dipyridamole, and warfarin all interrupt platelet deposition in some patients with chronic left ventricular thrombi

  7. Real-time monitoring of cisplatin cytotoxicity on three-dimensional spheroid tumor cells

    Directory of Open Access Journals (Sweden)

    Baek NH

    2016-07-01

    Full Text Available NamHuk Baek,1,* Ok Won Seo,1,* Jaehwa Lee,1 John Hulme,2 Seong Soo A An2 1Department of Research and Development, NanoEntek Inc., Seoul, 2Department of BioNano Technology, Gachon University, Gyeonggi-do, Korea *These authors contributed equally to this work Abstract: Three-dimensional (3D cell cultivation is a powerful technique for monitoring and understanding diverse cellular mechanisms in developmental cancer and neuronal biology, tissue engineering, and drug development. 3D systems could relate better to in vivo models than two-dimensional (2D cultures. Several factors, such as cell type, survival rate, proliferation rate, and gene and protein expression patterns, determine whether a particular cell line can be adapted to a 3D system. The 3D system may overcome some of the limitations of 2D cultures in terms of cell–cell communication and cell networks, which are essential for understanding differentiation, structural organization, shape, and extended connections with other cells or organs. Here, the effect of the anticancer drug cisplatin, also known as cis-diamminedichloroplatinum (II or CDDP, on adenosine triphosphate (ATP generation was investigated using 3D spheroid-forming cells and real-time monitoring for 7 days. First, 12 cell lines were screened for their ability to form 3D spheroids: prostate (DU145, testis (F9, embryonic fibroblast (NIH-3T3, muscle (C2C12, embryonic kidney (293T, neuroblastoma (SH-SY5Y, adenocarcinomic alveolar basal epithelial cell (A549, cervical cancer (HeLa, HeLa contaminant (HEp2, pituitary epithelial-like cell (GH3, embryonic cell (PA317, and osteosarcoma (U-2OS cells. Of these, eight cell lines were selected: NIH-3T3, C2C12, 293T, SH-SY5Y, A549, HeLa, PA317, and U-2OS; and five underwent real-time monitoring of CDDP cytotoxicity: HeLa, A549, 293T, SH-SY5Y, and U-2OS. ATP generation was blocked 1 day after addition of 50 µM CDDP, but cytotoxicity in HeLa, A549, SH-SY5Y, and U-2OS cells could be

  8. Echocardiography-guided or "sided" pericardiocentesis.

    Science.gov (United States)

    Degirmencioglu, Aleks; Karakus, Gultekin; Güvenc, Tolga Sinan; Pinhan, Osman; Sipahi, Ilke; Akyol, Ahmet

    2013-10-01

    Echocardiography-guided pericardiocentesis is the first choice method for relieving cardiac tamponade, but the exact role of the echocardiography at the moment of the puncture is still controversial. In this report, detailed echocardiographic evaluation was performed in 21 consecutive patients with cardiac tamponade just before the pericardiocentesis. Appropriate needle position was determined according to the probe position using imaginary x, y, and z axes. Pericardiocentesis was performed successfully using this technique without simultaneous echocardiography and no complications were observed. We concluded that bedside echocardiography with detailed evaluation of the puncture site and angle is enough for pericardiocentesis instead of real time guiding. © 2013, Wiley Periodicals, Inc.

  9. Comparison of indium-111 platelet scintigraphy and two-dimensional echocardiography in the diagnosis of left ventricular thrombi

    International Nuclear Information System (INIS)

    Ezekowitz, M.D.; Wilson, D.A.; Smith, E.O.; Burow, R.D.; Harrison, L.H. Jr.; Parker, D.E.; Elkins, R.C.; Peyton, M.; Taylor, F.B.

    1982-01-01

    In a study comparing indium-111 platelet scintigraphy and two-dimensional echocardiography as methods of identifying left ventricular thrombi, the results obtained with both techniques were verified at surgery or autopsy in 53 patients-34 with left ventricular aneurysms, and 19 with mitral-valve disease. Left ventricular thrombi were found at surgery or autopsy in 14 of the patients with aneurysms and in none of those with mitral-valve disease. Thirteen of 53 echocardiograms (25%) were technically inadequate and excluded from the analysis. In the group with aneurysms, the sensitivity of scintigraphy in detecting thrombi was 71%, and that of echocardiography was 77%. The specificity of scintigraphy was 100%, and that of echocardiography was 93%. We conclude that indium-111 platelet scintigraphy and two-dimensional echocardiography have useful and complementary roles in the detection of left ventricular thrombi. Both these noninvasive techniques can be used to monitor therapy

  10. Accuracy of Real-time Couch Tracking During 3-dimensional Conformal Radiation Therapy, Intensity Modulated Radiation Therapy, and Volumetric Modulated Arc Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Wilbert, Juergen; Baier, Kurt; Hermann, Christian; Flentje, Michael; Guckenberger, Matthias

    2013-01-01

    Purpose: To evaluate the accuracy of real-time couch tracking for prostate cancer. Methods and Materials: Intrafractional motion trajectories of 15 prostate cancer patients were the basis for this phantom study; prostate motion had been monitored with the Calypso System. An industrial robot moved a phantom along these trajectories, motion was detected via an infrared camera system, and the robotic HexaPOD couch was used for real-time counter-steering. Residual phantom motion during real-time tracking was measured with the infrared camera system. Film dosimetry was performed during delivery of 3-dimensional conformal radiation therapy (3D-CRT), step-and-shoot intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). Results: Motion of the prostate was largest in the anterior–posterior direction, with systematic (∑) and random (σ) errors of 2.3 mm and 2.9 mm, respectively; the prostate was outside a threshold of 5 mm (3D vector) for 25.0%±19.8% of treatment time. Real-time tracking reduced prostate motion to ∑=0.01 mm and σ = 0.55 mm in the anterior–posterior direction; the prostate remained within a 1-mm and 5-mm threshold for 93.9%±4.6% and 99.7%±0.4% of the time, respectively. Without real-time tracking, pass rates based on a γ index of 2%/2 mm in film dosimetry ranged between 66% and 72% for 3D-CRT, IMRT, and VMAT, on average. Real-time tracking increased pass rates to minimum 98% on average for 3D-CRT, IMRT, and VMAT. Conclusions: Real-time couch tracking resulted in submillimeter accuracy for prostate cancer, which transferred into high dosimetric accuracy independently of whether 3D-CRT, IMRT, or VMAT was used.

  11. Preliminary study of the application of transthoracic echocardiography-guided three-dimensional printing for the assessment of structural heart disease.

    Science.gov (United States)

    Zhu, Yanbo; Liu, Jianshi; Wang, Lianqun; Guan, Xin; Luo, Yongjuan; Geng, Jie; Geng, Qingguo; Lin, Yunjia; Zhang, Lixia; Li, Xixue; Lu, Yaping

    2017-12-01

    To investigate the feasibility and diagnostic value of a preoperative transthoracic echocardiography-guided three-dimensional printed model (TTE-guided 3DPM) for the assessment of structural heart disease (SHD). Fourty-four patients underwent cardiac surgery at Tianjin Chest Hospital. The patients were preoperatively assessed using TTE-guided 3DPM, which was compared to conventional three-dimensional transthoracic echocardiography (3DTTE) along with direct intraoperative findings, which were considered the "gold standard." Twelve patients had SHD, including four with mitral prolapse, two with partial endocardial cushion defects, two with secondary atrial septal defects, two with rheumatic mitral stenosis, one with tetralogy of Fallot, and one with a ventricular septal defect (VSD). Thirty-two patients who did not have SHDs were designated as the negative control group. The sensitivity and specificity of the TTE-guided 3DPM were greater than or equal to those of the 3DTTE. The P-value of the McNemar test of 3DTTE was >.05, which indicates that the difference was not statistically significant (Kappa = 0.745, P guided 3DPM was >.05, which indicates that the difference was not statistically significant (Kappa = 0.955, P guided 3DPM resulted in a P-value >.05, which indicates that the difference was not statistically significant (Kappa = 0.879, P guided 3DPM displayed the 3D structure of SHDs and cardiac lesions clearly and was consistent with the intra-operative findings. Transthoracic echocardiography-guided three-dimensional printed model (TTE-guided 3DPM) provides essential information for preoperative evaluation and decision making for patients with SHDs. © 2017, Wiley Periodicals, Inc.

  12. Digital echocardiography and telemedicine applications in pediatric cardiology.

    Science.gov (United States)

    Sable, Craig

    2002-01-01

    Digital echocardiography offers several advantages over videotape, including easy review, comparison, storage, postprocessing, and sharing of studies, quantitative analysis, and superior resolution. Newer echocardiography systems can write digital data to computer hardware, whereas older systems require digitization of analog data. Clinical and digital data compression is required to reduce study size. Clinical compression has been validated in several adult studies and one pediatric study. JPEG and MPEG digital compression ratios of 26:1 and 200:1, respectively, approximate S-videotape quality. JPEG is the DICOM 3.0 standard and is ideal for short loops, serial comparisons, and quantitative analysis. MPEG (the motion picture standard) lends itself to digitization of video streams and may be more attractive to pediatric cardiologists. Options for data storage and transfer range from limited local review to multiple offline review stations linked by a wide-area network. Telemedicine expands the capabilities of digital echocardiography in a "store and forward" or "real-time" format. Real-time neonatal telecardiology is accurate, impacts patient care, is cost-effective, and does not increase utilization. Cost, increased reliance on sonographers' skills, lack of accepted standards, and legal, licensure, and billing issues are obstacles to widespread acceptance of digital echocardiography and telemedicine.

  13. Two-dimensional random arrays for real time volumetric imaging

    DEFF Research Database (Denmark)

    Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.

    1994-01-01

    real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive......Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...

  14. Four-dimensional real-time sonographically guided cauterization of the umbilical cord in a case of twin-twin transfusion syndrome.

    Science.gov (United States)

    Timor-Tritsch, Ilan E; Rebarber, Andrei; MacKenzie, Andrew; Caglione, Christopher F; Young, Bruce K

    2003-07-01

    In the past decade, three-dimensional (3D) sonographic technology has matured from a static imaging modality to near-real-time imaging. One of the more notable improvements in this technology has been the speed with which the imaged volume is acquired and displayed. This has enabled the birth of the near-real-time or four-dimensional (4D) sonographic concept. Using the 4D feature of the current 3D sonography machines allows us to follow moving structures, such as fetal motion, in almost real time. Shortly after the emergence of 3D and 4D technology as a clinical imaging tool, its use in guiding needles into structures was explored by other investigators. We present a case in which we used the 4D feature of our sonographic equipment to follow the course and motion of an instrument inserted into the uterus to occlude the umbilical cord of a fetus in a case of twin-twin transfusion syndrome.

  15. Can M mode and two dimensional echocardiography give a sufficient evaluation for surgeray of patients with pure mitral stenosis

    International Nuclear Information System (INIS)

    Balbarini, A; Tartarini, G.; Mengozzi, G.; Mariani, M.; Salvatore, L.; Barsotti, A.

    1987-01-01

    One hundred and twenty-six patients with rheumatic mitral stenosis were studied by M-mode and/or two-dimensional echocardiography. Eighty-nine patients were also submetted to cardiac catheterization and all 126 patients subsequently underwent mitral valve surgery (51 valvulotomy and 75 valve replacement). The mitral valve area measured by two-dimensional echocardiography showed a significant correlation both with hemodynamic (r=0.803, p 2 , respectively; likewise there was non significant difference in pulmonary vascular resistances (3.9 and 3.4 mmHg/l/min/m 2 ) between patients who showed functional improvement after surgery comparison to those who showed no improvement. Finally, coronary arteriography appeared to be necessary, before operation, only in cardiography is able to provide a satisfactory preoperative assessment of patients with mitral stenosis and that therefore these patients need not necessarily to be submitted to cardiac catheterization

  16. Segmentation of multiple heart cavities in 3-D transesophageal ultrasound images

    NARCIS (Netherlands)

    Haak, A.; Vegas-Sanchez-Ferrero, G.; Mulder, H.W.; Ren, B.; Kirisli, H.A.; Metz, C.; van Burken, G.; van Stralen, M.; Pluim, J.P.W.; Steen, van der A.F.W.; Walsum, van T.; Bosch, J.G.

    Three-dimensional transesophageal echocardiography (TEE) is an excellent modality for real-time visualization of the heart and monitoring of interventions. To improve the usability of 3-D TEE for intervention monitoring and catheter guidance, automated segmentation is desired. However, 3-D TEE

  17. Three-dimensional transesophageal echocardiography: Principles and clinical applications

    Directory of Open Access Journals (Sweden)

    Annette Vegas

    2016-01-01

    Full Text Available A basic understanding of evolving 3D technology enables the echocardiographer to master the new skills necessary to acquire, manipulate, and interpret 3D datasets. Single button activation of specific 3D imaging modes for both TEE and transthoracic echocardiography (TTE matrix array probes include (a live, (b zoom, (c full volume (FV, and (d color Doppler FV. Evaluation of regional LV wall motion by RT 3D TEE is based on a change in LV chamber subvolume over time from altered segmental myocardial contractility. Unlike standard 2D TEE, there is no direct measurement of myocardial thickening or displacement of individual segments.

  18. Myocardial Strain Analysis by 2-Dimensional Speckle Tracking Echocardiography Improves Diagnostics of Coronary Artery Stenosis in Stable Angina Pectoris

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Hoffmann, Soren; Mogelvang, Rasmus

    2014-01-01

    BACKGROUND: Two-dimensional strain echocardiography detects early signs of left ventricular dysfunction; however, it is unknown whether myocardial strain analysis at rest in patients with suspected stable angina pectoris predicts the presence of coronary artery disease (CAD). METHODS AND RESULTS...... echocardiography was performed in the 3 apical projections. Peak regional longitudinal systolic strain was measured in 18 myocardial sites and averaged to provide global longitudinal peak systolic strain. Duke score, including ST-segment depression, chest pain, and exercise capacity, was used as the outcome...

  19. Real-Time 3D Face Acquisition Using Reconfigurable Hybrid Architecture

    Directory of Open Access Journals (Sweden)

    Mitéran Johel

    2007-01-01

    Full Text Available Acquiring 3D data of human face is a general problem which can be applied in face recognition, virtual reality, and many other applications. It can be solved using stereovision. This technique consists in acquiring data in three dimensions from two cameras. The aim is to implement an algorithmic chain which makes it possible to obtain a three-dimensional space from two two-dimensional spaces: two images coming from the two cameras. Several implementations have already been considered. We propose a new simple real-time implementation based on a hybrid architecture (FPGA-DSP, allowing to consider an embedded and reconfigurable processing. Then we show our method which provides depth map of face, dense and reliable, and which can be implemented on an embedded architecture. A various architecture study led us to a judicious choice allowing to obtain the desired result. The real-time data processing is implemented in an embedded architecture. We obtain a dense face disparity map, precise enough for considered applications (multimedia, virtual worlds, biometrics and using a reliable method.

  20. Spatiotemporal Segmentation and Modeling of the Mitral Valve in Real-Time 3D Echocardiographic Images.

    Science.gov (United States)

    Pouch, Alison M; Aly, Ahmed H; Lai, Eric K; Yushkevich, Natalie; Stoffers, Rutger H; Gorman, Joseph H; Cheung, Albert T; Gorman, Joseph H; Gorman, Robert C; Yushkevich, Paul A

    2017-09-01

    Transesophageal echocardiography is the primary imaging modality for preoperative assessment of mitral valves with ischemic mitral regurgitation (IMR). While there are well known echocardiographic insights into the 3D morphology of mitral valves with IMR, such as annular dilation and leaflet tethering, less is understood about how quantification of valve dynamics can inform surgical treatment of IMR or predict short-term recurrence of the disease. As a step towards filling this knowledge gap, we present a novel framework for 4D segmentation and geometric modeling of the mitral valve in real-time 3D echocardiography (rt-3DE). The framework integrates multi-atlas label fusion and template-based medial modeling to generate quantitatively descriptive models of valve dynamics. The novelty of this work is that temporal consistency in the rt-3DE segmentations is enforced during both the segmentation and modeling stages with the use of groupwise label fusion and Kalman filtering. The algorithm is evaluated on rt-3DE data series from 10 patients: five with normal mitral valve morphology and five with severe IMR. In these 10 data series that total 207 individual 3DE images, each 3DE segmentation is validated against manual tracing and temporal consistency between segmentations is demonstrated. The ultimate goal is to generate accurate and consistent representations of valve dynamics that can both visually and quantitatively provide insight into normal and pathological valve function.

  1. Kawasaki disease-associated coronary artery lesions with navigator echo-based. Respiratory-gated three dimensional coronary magnetic resonance angiography compared with echocardiography in young children

    International Nuclear Information System (INIS)

    Amino, Masayuki; Teraoka, Kunihiko; Hirano, Masaharu; Kawashima, Naoshi; Kakizaki, Dai; Ookubo, Yasuo; Sasaki, Kazuyoshi; Katuyama, Hiroaki

    2004-01-01

    Navigator echo-based respiratory-gated three dimensional coronary magnetic resonance angiography (3D-CMRA) was compared with echocardiography, to determine whether 3D-CMRA was useful for the evaluation of Kawasaki disease-associated coronary artery lesions. Sixteen consecutive patients (imaging was performed 17 times in total) who were given a diagnosis of Kawasaki's disease at the pediatric department of our hospital and examined for the precise examination of complicating coronary artery lesions on MRI using a navigator-echo technique because of their incapability of holding their breath during imaging were entered into the present study. A 1.5T MRI system was used. Gd-DOTA was given at a total volume of 0.1 mmol/kg. During imaging, CMRA visualized the left coronary arteries in all 17 cases and the right coronary arteries in 16 cases, but not in one case. The left main coronary trunk segment no.5 was demonstrated in all cases with CMRA, but not in 4 cases with echocardiography. The left anterior descending branch no.6 was visualized in 11 of the 17 cases with CMRA, but only in 5 cases with echocardiography. The left circumflex branch no.11 was observed in 6 cases with CMRA, but only in 2 cases with echocardiography. As for the right coronary arteries, branches no.1 and no.2 were observed in 16 and 9 cases with CMRA, respectively, and in 13 and 3 cases with echocardiography, respectively. Vascular diameters measured on CMRA were almost identical to those on echocardiography, within the range of arteries visualized. 3D-CMRA combined with a navigator echo technique appears to be a useful tool for the observation of coronary artery lesions associated with Kawasaki's disease because it is superior in lesion visualization to echocardiography. (author)

  2. Real-time three-dimensional ultrasound-assisted axillary plexus block defines soft tissue planes.

    Science.gov (United States)

    Clendenen, Steven R; Riutort, Kevin; Ladlie, Beth L; Robards, Christopher; Franco, Carlo D; Greengrass, Roy A

    2009-04-01

    Two-dimensional (2D) ultrasound is commonly used for regional block of the axillary brachial plexus. In this technical case report, we described a real-time three-dimensional (3D) ultrasound-guided axillary block. The difference between 2D and 3D ultrasound is similar to the difference between plain radiograph and computer tomography. Unlike 2D ultrasound that captures a planar image, 3D ultrasound technology acquires a 3D volume of information that enables multiple planes of view by manipulating the image without movement of the ultrasound probe. Observation of the brachial plexus in cross-section demonstrated distinct linear hyperechoic tissue structures (loose connective tissue) that initially inhibited the flow of the local anesthesia. After completion of the injection, we were able to visualize the influence of arterial pulsation on the spread of the local anesthesia. Possible advantages of this novel technology over current 2D methods are wider image volume and the capability to manipulate the planes of the image without moving the probe.

  3. Three-dimensional Speckle Tracking Echocardiography in Light Chain Cardiac Amyloidosis: Examination of Left and Right Ventricular Myocardial Mechanics Parameters.

    Science.gov (United States)

    Urbano-Moral, Jose Angel; Gangadharamurthy, Dakshin; Comenzo, Raymond L; Pandian, Natesa G; Patel, Ayan R

    2015-08-01

    The study of myocardial mechanics has a potential role in the detection of cardiac involvement in patients with amyloidosis. This study aimed to characterize 3-dimensional-speckle tracking echocardiography-derived left and right ventricular myocardial mechanics in light chain amyloidosis and examine their relationship with brain natriuretic peptide. In patients with light chain amyloidosis, left ventricular longitudinal and circumferential strain (n=40), and right ventricular longitudinal strain and radial displacement (n=26) were obtained by 3-dimensional-speckle tracking echocardiography. Brain natriuretic peptide levels were determined. All myocardial mechanics measurements showed differences when compared by brain natriuretic peptide level tertiles. Left and right ventricular longitudinal strain were highly correlated (r=0.95, P<.001). Left ventricular longitudinal and circumferential strain were reduced in patients with cardiac involvement (-9±4 vs -16±2; P<.001, and -24±6 vs -29±4; P=.01, respectively), with the most prominent impairment at the basal segments. Right ventricular longitudinal strain and radial displacement were diminished in patients with cardiac involvement (-9±3 vs -17±3; P<.001, and 2.7±0.8 vs 3.8±0.3; P=.002). On multivariate analysis, left ventricular longitudinal strain was associated with the presence of cardiac involvement (odds ratio = 1.6; 95% confidence interval, 1.04 to 2.37; P=.03) independent of the presence of brain natriuretic peptide and troponin I criteria for cardiac amyloidosis. Three-dimensional-speckle tracking echocardiography-derived left and right ventricular myocardial mechanics are increasingly altered as brain natriuretic peptide increases in light chain amyloidosis. There appears to be a strong association between left ventricular longitudinal strain and cardiac involvement, beyond biomarkers such as brain natriuretic peptide and troponin I. Copyright © 2015 Sociedad Española de Cardiología. Published by

  4. Acoustic Performance of a Real-Time Three-Dimensional Sound-Reproduction System

    Science.gov (United States)

    Faller, Kenneth J., II; Rizzi, Stephen A.; Aumann, Aric R.

    2013-01-01

    The Exterior Effects Room (EER) is a 39-seat auditorium at the NASA Langley Research Center and was built to support psychoacoustic studies of aircraft community noise. The EER has a real-time simulation environment which includes a three-dimensional sound-reproduction system. This system requires real-time application of equalization filters to compensate for spectral coloration of the sound reproduction due to installation and room effects. This paper describes the efforts taken to develop the equalization filters for use in the real-time sound-reproduction system and the subsequent analysis of the system s acoustic performance. The acoustic performance of the compensated and uncompensated sound-reproduction system is assessed for its crossover performance, its performance under stationary and dynamic conditions, the maximum spatialized sound pressure level it can produce from a single virtual source, and for the spatial uniformity of a generated sound field. Additionally, application examples are given to illustrate the compensated sound-reproduction system performance using recorded aircraft flyovers

  5. Does three-dimensional transesophageal echocardiography provide incremental value in percutaneous closure of ascending aortic pseudoaneurysm?

    Science.gov (United States)

    Elkaryoni, Ahmed; Hsiung, Ming C; Arisha, Mohammed J; Ahmad, Amier; Nanda, Navin C; Mohamed, Ahmed H; Attia, Doaa; Sachdeva, Ankush; Singh, Lovepreet; Yin, Wei-Hsian

    2017-07-01

    Ascending aortic pseudoaneurysms (AO PSAs), if left untreated, are complicated by a high rate of rupture resulting in significant morbidity and mortality. New transcatheter modalities have emerged as acceptable surgical alternatives for their management. We present a case of an ascending aortic PSA in which intraoperative two- and three-dimensional transesophageal echocardiography (2DTEE and 3DTEE) provided a comprehensive assessment of the PSA in pre- and postclosure settings. © 2017, Wiley Periodicals, Inc.

  6. A Front-End ASIC with Receive Sub-array Beamforming Integrated with a 32 × 32 PZT Matrix Transducer for 3-D Transesophageal Echocardiography

    NARCIS (Netherlands)

    Chen, C.; Chen, Z.; Bera, Deep; Raghunathan, S.B.; ShabaniMotlagh, M.; Noothout, E.C.; Chang, Z.Y.; Ponte, Jacco; Prins, Christian; Vos, H.J.; Bosch, Johan G.; Verweij, M.D.; de Jong, N.; Pertijs, M.A.P.

    2017-01-01

    This paper presents a power-and area-efficient front-end application-specific integrated circuit (ASIC) that is directly integrated with an array of 32 × 32 piezoelectric transducer elements to enable next-generation miniature ultrasound probes for real-time 3-D transesophageal echocardiography.

  7. Application of a real-time three-dimensional navigation system to various oral and maxillofacial surgical procedures.

    Science.gov (United States)

    Ohba, Seigo; Yoshimura, Hitoshi; Ishimaru, Kyoko; Awara, Kousuke; Sano, Kazuo

    2015-09-01

    The aim of this study was to confirm the effectiveness of a real-time three-dimensional navigation system for use during various oral and maxillofacial surgeries. Five surgeries were performed with this real-time three-dimensional navigation system. For mandibular surgery, patients wore acrylic surgical splints when they underwent computed tomography examinations and the operation to maintain the mandibular position. The incidence of complications during and after surgery was assessed. No connection with the nasal cavity or maxillary sinus was observed at the maxilla during the operation. The inferior alveolar nerve was not injured directly, and any paresthesia around the lower lip and mental region had disappeared within several days after the surgery. In both maxillary and mandibular cases, there was no abnormal hemorrhage during or after the operation. Real-time three-dimensional computer-navigated surgery allows minimally invasive, safe procedures to be performed with precision. It results in minimal complications and early recovery.

  8. Doppler echocardiography in pediatric cardiology

    International Nuclear Information System (INIS)

    Allen, H.D.; Marx, G.R.

    1986-01-01

    Congenital heart disease encompasses abnormalities in cardiac development which generally have in common either valve stenoses or connections between chambers or great vessels. Usually, abnormalities of intracardiac anatomy, and often, abnormalities of great vessel anatomy, can be unraveled by two-dimensional echocardiography. However, echocardiography offers little information regarding flow characteristics in the various congenital lesions. Addition of the Doppler principle, particularly when combined with the two-dimensional examination, can characterize the source of a flow disturbance, quantify gradients across a site of obstruction, and quantify flow volume across sites where flow is nonturbulent. These features make Doppler echocardiography unique for noninvasive accurate evaluation of children and adults with various forms of congenital heart disease. In this report, the authors discuss some of the present uses of Doppler echocardiography in congenital heart disease. Application of this technique requires greater understanding of certain physics principles than does routine echocardiography

  9. Incremental benefit of three-dimensional transesophageal echocardiography in the assessment of left main coronary artery stent protrusion.

    Science.gov (United States)

    Arisha, Mohammed J; Hsiung, Ming C; Ahmad, Amier; Nanda, Navin C; Elkaryoni, Ahmed; Mohamed, Ahmed H; Yin, Wei-Hsian

    2017-06-01

    Ostial lesions represent a challenging clinical scenario and percutaneous intervention (PCI) of left main coronary artery ostial lesions has been associated with postintervention complications, including protrusion of deployed stents into a sinus of Valsalva or aortic root. We report a case of stent protrusion into the aortic root following aorto-ostial left main coronary artery PCI, in which three-dimensional transesophageal echocardiography (3DTEE) provided incremental benefit over standard two-dimensional images. Specifically, 3DTEE confirmed the presence of stent protrusion by allowing clear visualization of the stent scaffold, in addition to characterizing the relationship between the stent and surrounding structures. © 2017, Wiley Periodicals, Inc.

  10. A method for real-time three-dimensional vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav

    2003-01-01

    The paper presents an approach for making real-time three-dimensional vector flow imaging. Synthetic aperture data acquisition is used, and the data is beamformed along the flow direction to yield signals usable for flow estimation. The signals are cross-related to determine the shift in position...... are done using 16 × 16 = 256 elements at a time and the received signals from the same elements are sampled. Access to the individual elements is done through 16-to-1 multiplexing, so that only a 256 channels transmitting and receiving system are needed. The method has been investigated using Field II...

  11. Reliable 5-min real-time MR technique for left-ventricular-wall motion analysis

    International Nuclear Information System (INIS)

    Katoh, Marcus; Spuentrup, Elmar; Guenther, Rolf W.; Buecker, Arno; Kuehl, Harald P.; Lipke, Claudia S.A.

    2007-01-01

    The aim of this study was to investigate the value of a real-time magnetic resonance imaging (MRI) approach for the assessment of left-ventricular-wall motion in patients with insufficient transthoracic echocardiography in terms of accuracy and temporal expenditure. Twenty-five consecutive patients were examined on a 1.5-Tesla whole-body MR system (ACS-NT, Philips Medical Systems, Best, NL) using a real-time and ECG-gated (the current gold standard) steady-state free-precession (SSFP) sequence. Wall motion was analyzed by three observers by consensus interpretation. In addition, the preparation, scanning, and overall examination times were measured. The assessment of the wall motion demonstrated a close agreement between the two modalities resulting in a mean κ coefficient of 0.8. At the same time, each stage of the examination was significantly shortened using the real-time MR approach. Real-time imaging allows for accurate assessment of left-ventricular-wall motion with the added benefit of decreased examination time. Therefore, it may serve as a cost-efficient alternative in patients with insufficient echocardiography. (orig.)

  12. Three-dimensional localization of low activity gamma-ray sources in real-time scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Manish K., E-mail: mksrkf@mst.edu; Alajo, Ayodeji B.; Lee, Hyoung K.

    2016-03-21

    Radioactive source localization plays an important role in tracking radiation threats in homeland security tasks. Its real-time application requires computationally efficient and reasonably accurate algorithms even with limited data to support detection with minimum uncertainty. This paper describes a statistic-based grid-refinement method for backtracing the position of a gamma-ray source in a three-dimensional domain in real-time. The developed algorithm used measurements from various known detector positions to localize the source. This algorithm is based on an inverse-square relationship between source intensity at a detector and the distance from the source to the detector. The domain discretization was developed and implemented in MATLAB. The algorithm was tested and verified from simulation results of an ideal case of a point source in non-attenuating medium. Subsequently, an experimental validation of the algorithm was performed to determine the suitability of deploying this scheme in real-time scenarios. Using the measurements from five known detector positions and for a measurement time of 3 min, the source position was estimated with an accuracy of approximately 53 cm. The accuracy improved and stabilized to approximately 25 cm for higher measurement times. It was concluded that the error in source localization was primarily due to detection uncertainties. In verification and experimental validation of the algorithm, the distance between {sup 137}Cs source and any detector position was between 0.84 m and 1.77 m. The results were also compared with the least squares method. Since the discretization algorithm was validated with a weak source, it is expected that it can localize the source of higher activity in real-time. It is believed that for the same physical placement of source and detectors, a source of approximate activity 0.61–0.92 mCi can be localized in real-time with 1 s of measurement time and same accuracy. The accuracy and computational

  13. Two-Dimensional Echocardiography Estimates of Fetal Ventricular Mass throughout Gestation.

    Science.gov (United States)

    Aye, Christina Y L; Lewandowski, Adam James; Ohuma, Eric O; Upton, Ross; Packham, Alice; Kenworthy, Yvonne; Roseman, Fenella; Norris, Tess; Molloholli, Malid; Wanyonyi, Sikolia; Papageorghiou, Aris T; Leeson, Paul

    2017-08-12

    Two-dimensional (2D) ultrasound quality has improved in recent years. Quantification of cardiac dimensions is important to screen and monitor certain fetal conditions. We assessed the feasibility and reproducibility of fetal ventricular measures using 2D echocardiography, reported normal ranges in our cohort, and compared estimates to other modalities. Mass and end-diastolic volume were estimated by manual contouring in the four-chamber view using TomTec Image Arena 4.6 in end diastole. Nomograms were created from smoothed centiles of measures, constructed using fractional polynomials after log transformation. The results were compared to those of previous studies using other modalities. A total of 294 scans from 146 fetuses from 15+0 to 41+6 weeks of gestation were included. Seven percent of scans were unanalysable and intraobserver variability was good (intraclass correlation coefficients for left and right ventricular mass 0.97 [0.87-0.99] and 0.99 [0.95-1.0], respectively). Mass and volume increased exponentially, showing good agreement with 3D mass estimates up to 28 weeks of gestation, after which our measurements were in better agreement with neonatal cardiac magnetic resonance imaging. There was good agreement with 4D volume estimates for the left ventricle. Current state-of-the-art 2D echocardiography platforms provide accurate, feasible, and reproducible fetal ventricular measures across gestation, and in certain circumstances may be the modality of choice. © 2017 S. Karger AG, Basel.

  14. Two-dimensional speckle tracking echocardiography prognostic parameters in patients after acute myocardial infarction.

    Science.gov (United States)

    Haberka, Maciej; Liszka, Jerzy; Kozyra, Andrzej; Finik, Maciej; Gąsior, Zbigniew

    2015-03-01

    The aim of the study was to evaluate the left ventricle (LV) function with speckle tracking echocardiography (STE) and to assess its relation to prognosis in patients after acute myocardial infarction (AMI). Sixty-three patients (F/M = 16/47 pts; 62.33 ± 11.85 years old) with AMI (NSTEMI/STEMI 24/39 pts) and successful percutaneous coronary intervention (PCI) with stent implantation (thrombolysis in myocardial infarction; TIMI 3 flow) were enrolled in this study. All patients underwent baseline two-dimensional conventional echocardiography and STE 3 days (baseline) and 30 days after PCI. All patients were followed up for cardiovascular clinical endpoints, major adverse cardiovascular endpoint (MACE), and functional status (Canadian Cardiovascular Society and New York Heart Association). During the follow-up (31.9 ± 5.1 months), there were 3 cardiovascular deaths, 15 patients had AMI, 2 patients had cerebral infarction, 24 patients reached the MACE. Baseline LV torsion (P = 0.035), but none of the other strain parameters were associated with the time to first unplanned cardiovascular hospitalization. Univariate analysis showed that baseline longitudinal two-chamber and four-chamber strain (sLa2 0 and sLa4 0) and the same parameters obtained 30 days after the AMI together with transverse four-chamber strain (sLa2 30, sLa4 30, and sTa4 30) were significantly associated with combined endpoint (MACE). The strongest association in the univariate analysis was found for the baseline sLa2. However, in multivariable analysis only a left ventricular remodeling (LVR - 27% pts) was significantly associated with MACE and strain parameters were not associated with the combined endpoint. The assessment of LV function with STE may improve cardiovascular risk prediction in postmyocardial infarction patients. © 2014, Wiley Periodicals, Inc.

  15. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.

    Science.gov (United States)

    Peikon, Ian D; Fitzsimmons, Nathan A; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2009-06-15

    Collection and analysis of limb kinematic data are essential components of the study of biological motion, including research into biomechanics, kinesiology, neurophysiology and brain-machine interfaces (BMIs). In particular, BMI research requires advanced, real-time systems capable of sampling limb kinematics with minimal contact to the subject's body. To answer this demand, we have developed an automated video tracking system for real-time tracking of multiple body parts in freely behaving primates. The system employs high-contrast markers painted on the animal's joints to continuously track the three-dimensional positions of their limbs during activity. Two-dimensional coordinates captured by each video camera are combined and converted to three-dimensional coordinates using a quadratic fitting algorithm. Real-time operation of the system is accomplished using direct memory access (DMA). The system tracks the markers at a rate of 52 frames per second (fps) in real-time and up to 100fps if video recordings are captured to be later analyzed off-line. The system has been tested in several BMI primate experiments, in which limb position was sampled simultaneously with chronic recordings of the extracellular activity of hundreds of cortical cells. During these recordings, multiple computational models were employed to extract a series of kinematic parameters from neuronal ensemble activity in real-time. The system operated reliably under these experimental conditions and was able to compensate for marker occlusions that occurred during natural movements. We propose that this system could also be extended to applications that include other classes of biological motion.

  16. Prenatal Diagnosis of Fetal Interrupted Aortic Arch Type A by Two-Dimensional Echocardiography and Four-Dimensional Echocardiography with B-Flow Imaging and Spatiotemporal Image Correlation.

    Science.gov (United States)

    Zhang, Dongyu; Zhang, Ying; Ren, Weidong; Sun, Feifei; Guo, Yajun; Sun, Wei; Wang, Yu; Huang, Liping; Cai, Ailu

    2016-01-01

    Fetal interrupted aortic arch (IAA) is a rare cardiac anomaly and its prenatal diagnosis is challenging. The purpose of our report is to evaluate the use of two-dimensional echocardiography (2DE) and 4D echocardiography with B-flow imaging and spatiotemporal image correlation (4D BF-STIC) in detecting IAA type A (IAA-A). Twenty-three cases of confirmed IAA-A identified by fetal echocardiography were involved in the study. The fetal echocardiography image data were reviewed to analyze the ratio of right ventricle to left ventricle (RV/LV) diameter, the ratio of main pulmonary artery to ascending aorta (MPA/AAO) diameter, and the correlation of RV/LV diameter ratio and size of ventricular septal defect (VSD). 4D BF-STIC was performed in 21 fetuses using the sagittal view (4D BF-STIC-sagittal) and the four-chamber view (4D BF-STIC-4CV) as initial planes of view. An additional 183 normal fetuses were also included in our study. RV/LV and MPA/AAO ratios were calculated and compared with that of IAA-A fetuses. Fetal 2DE, 4D BF-STIC-sagittal, and 4D BF-STIC-4CV were used to visualize the aortic arch and its associated neck vessels. Six subgroups were evaluated according to gestational age. Fetal 2DE, 4D BF-STIC-sagittal, and 4D BF-STIC-4CV made the correct prenatal diagnosis of IAA-A in 19/23 (82.6%), 14/21 (66.7%), and 19/21 (90.5%) of patients, respectively. A significantly enlarged MPA combined with symmetric ventricles was found in the IAA-A fetuses, while the size of the VSD was negatively correlated with RV/LV ratio. 4D BF-STIC-sagittal and 4D BF-STIC-4CV were better than traditional 2D ultrasound in detecting the aortic arch and neck vessels between 17 and 28 gestational weeks and 29 to 40 gestational weeks in normal fetuses. It is demonstrated that IAA-A could be diagnosed by traditional fetal echocardiography, while 4D technique could better display the anatomic structure and the spatial relationships of the great arteries. Use of volume reconstruction may

  17. Anatomical features of acute mitral valve repair dysfunction: Additional value of three-dimensional echocardiography.

    Science.gov (United States)

    Derkx, Salomé; Nguyen, Virginia; Cimadevilla, Claire; Verdonk, Constance; Lepage, Laurent; Raffoul, Richard; Nataf, Patrick; Vahanian, Alec; Messika-Zeitoun, David

    2017-03-01

    Recurrence of mitral regurgitation after mitral valve repair is correlated with unfavourable left ventricular remodelling and poor outcome. This pictorial review describes the echocardiographic features of three types of acute mitral valve repair dysfunction, and the additional value of three-dimensional echocardiography. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Echocardiography as an indication of continuous-time cardiac quiescence

    Science.gov (United States)

    Wick, C. A.; Auffermann, W. F.; Shah, A. J.; Inan, O. T.; Bhatti, P. T.; Tridandapani, S.

    2016-07-01

    Cardiac computed tomography (CT) angiography using prospective gating requires that data be acquired during intervals of minimal cardiac motion to obtain diagnostic images of the coronary vessels free of motion artifacts. This work is intended to assess B-mode echocardiography as a continuous-time indication of these quiescent periods to determine if echocardiography can be used as a cost-efficient, non-ionizing modality to develop new prospective gating techniques for cardiac CT. These new prospective gating approaches will not be based on echocardiography itself but on CT-compatible modalities derived from the mechanics of the heart (e.g. seismocardiography and impedance cardiography), unlike the current standard electrocardiogram. To this end, echocardiography and retrospectively-gated CT data were obtained from ten patients with varied cardiac conditions. CT reconstructions were made throughout the cardiac cycle. Motion of the interventricular septum (IVS) was calculated from both echocardiography and CT reconstructions using correlation-based, deviation techniques. The IVS was chosen because it (1) is visible in echocardiography images, whereas the coronary vessels generally are not, and (2) has been shown to be a suitable indicator of cardiac quiescence. Quiescent phases were calculated as the minima of IVS motion and CT volumes were reconstructed for these phases. The diagnostic quality of the CT reconstructions from phases calculated from echocardiography and CT data was graded on a four-point Likert scale by a board-certified radiologist fellowship-trained in cardiothoracic radiology. Using a Wilcoxon signed-rank test, no significant difference in the diagnostic quality of the coronary vessels was found between CT volumes reconstructed from echocardiography- and CT-selected phases. Additionally, there was a correlation of 0.956 between the echocardiography- and CT-selected phases. This initial work suggests that B-mode echocardiography can be used as a

  19. [Initial study of transthoracic echocardiography guided three-dimensional printing on the application of assessment of structural heart disease].

    Science.gov (United States)

    Zhu, Y B; Liu, J S; Wang, L Q; Guan, X; Luo, Y J; Geng, J; Geng, Q G; Lin, Y J; Zhang, L X; Li, X X; Lu, Y P

    2017-08-01

    Objective: To investigate the feasibility and diagnostic value of preoperative transthoracic echocardiography guided three dimensional printing model (TTE Guided 3DPM) on the assessment of structural heart disease (SHD). Methods: From February 2016 to October 2016, 44 patients underwent cardiac surgery in Tianjin Chest Hospital, forty-four patients were assessed preoperatively using TTE Guided 3DPM, including 25 males and 19 females, aged 3-75 years, with an average of (44±22) years. compared to conventional three dimensional transthoracic echocardiography (3D-TTE), and took direct intraoperative findings as "Golden Standard" simultaneously. There are twelve patients with SHD, including four cases with mitral prolapse, two cases with partial endocardial cushion defect, two cases with secondary atrial septal defect, two cases with rheumatic mitral stenosis, one case with tetralogy of Fallot, one case with ventricular septal defect (VSD), thirty-two patients without SHD were designed as negative control. Results: The sensitivity and specificity of TTE Guided 3DPM were greater than or equal to 3D-TTE, P value of McNemar test of 3D-TTE was greater than 0.05, the difference was not statistically significant, kappa =0.745, P Guided 3DPM was greater than 0.05, the difference was not statistically significant, kappa =0.955, P Guided 3DPM and gold standards were consistent. Compared with 3D-TTE and TTE Guided 3DPM, P value was greater than 0.05, the difference was not statistically significant, kappa =0.879, P Guided 3DPM were consistent. TTE Guided 3DPM displayed the three-dimensional structure of SHD cardiac lesions clearly, which were consistent with intraoperative findings. Conclusion: TTE Guided 3DPM provides essential information for the preoperative evaluation and decision of SHD.

  20. Gated 99mTc-MIBI single-photon emission computed tomography for the evaluation of left ventricular ejection fraction. Comparison with three-dimensional echocardiography

    International Nuclear Information System (INIS)

    Lipiec, P.; Wejner-Mik, P.; Krzeminska-Pakula, M.; Kapusta, A.; Kasprzak, J.D.; Kusmierek, J.; Plachcinska, A.; Szuminski, R.

    2008-01-01

    Parameters of left ventricular systolic function directly influence the management of patients with suspected coronary artery disease (CAD). Quantitative gated single-photon emission computed tomography (QGS; Cedars-Sinai Medical Center, Los Angeles, CA, USA) allows the computation of left ventricular ejection fraction (LVEF) from myocardial perfusion imaging studies which are frequently performed on patients with suspected CAD. Three-dimensional (3D) echocardiography is considered to be the echocardiographic ''gold standard'' for the quantification of LVEF. We sought to compare QGS with 3D echocardiography in the evaluation of EF in patients with suspected CAD. Ninety-one consecutive patients with suspected CAD, scheduled for coronary angiography, underwent rest electrocardiographic-gated technetium-99m methoxyisobutylisonitrile SPECT (G-SPECT) with measurement of LVEF by QGS and transthoracic 3D echocardiography with off-line measurement of LVEF (Tomtec 4D LV Analysis 1.1). The diagnosis of CAD was based on coronary angiography, performed on every patient. Nine patients were excluded from the analysis owing to unsuitability for 3D echocardiography (8 patients) or G-SPECT (1 patient). In the remaining group of 82 patients, 71 (87%) had significant CAD, 34 (42%) had a history of myocardial infarction, and 50 (61%) had perfusion defects at rest G-SPECT images. The mean LVEF measured by QGS and 3D echocardiography was 53±13% and 53±10%, respectively. The mean difference in LVEF between 3D echocardiography and QGS was 0.1±6.0% (P=0.87), and the correlation between the values obtained by both methods was high (r=0.88, P< 0.001). The largest discrepancies were observed in patients with small ventricular volumes. In patients undergoing diagnostic work-up for CAD, the measurement of LVEF by QGS algorithm provides high correlation and satisfactory agreement with the results of reference ultrasound method- 3D echocardiography. (author)

  1. Enhancement of Online Robotics Learning Using Real-Time 3D Visualization Technology

    OpenAIRE

    Richard Chiou; Yongjin (james) Kwon; Tzu-Liang (bill) Tseng; Robin Kizirian; Yueh-Ting Yang

    2010-01-01

    This paper discusses a real-time e-Lab Learning system based on the integration of 3D visualization technology with a remote robotic laboratory. With the emergence and development of the Internet field, online learning is proving to play a significant role in the upcoming era. In an effort to enhance Internet-based learning of robotics and keep up with the rapid progression of technology, a 3- Dimensional scheme of viewing the robotic laboratory has been introduced in addition to the remote c...

  2. Quantified Facial Soft-tissue Strain in Animation Measured by Real-time Dynamic 3-Dimensional Imaging

    Directory of Open Access Journals (Sweden)

    Vivian M. Hsu, MD

    2014-09-01

    Conclusions: This pilot study illustrates that the face can be objectively and quantitatively evaluated using dynamic major strain analysis. The technology of 3-dimensional optical imaging can be used to advance our understanding of facial soft-tissue dynamics and the effects of animation on facial strain over time.

  3. Left ventricular thrombi: in vivo detection by indium-111 platelet imaging and two dimensional echocardiography

    International Nuclear Information System (INIS)

    Stratton, J.R.; Ritchie, J.L.; Hamilton, G.W.; Hammermeister, K.E.; Harker, L.A.

    1981-01-01

    Indium-111 platelet imaging, which can identify sites of active intravascular platelet deposition, and two dimensional echocardiography, which can identify intracardiac masses, can both be used to detect left ventricular thrombi noninvasively. We compared these techniques in 44 men at risk for thrombi from remote transmural myocardial infarction (31 patients) or cardiomyopathy (13 patients). All 44 patients underwent platelet imaging; 35 underwent echocardiography. On platelet imaging nine patients had thrombi and onehad a possible thrombus. Of these 10 studies, none were positive at 2 hours, 5 were positive at 24 hours and all were positive 48 or 72 hours after platelet labeling. Nine of these patients underwent echocardiography, and all had an intraventricular mass. The findings on platelet scanning were negative in six patients who had positive (four patients) or equivocally positive (two patients) findings on echocardiography. All patients with thrombi detected by either noninvasive method had transmural anterior myocardial infarction with ventricular aneurysm. Of the seven patients who underwent cardiac surgery or autopsy, three had thrombi. Platelet imaging failed to identify one thrombus in a patient in whom imaging was performed only at 24 hours after labeling. There were no false positive platelet images in this group. Five of these seven patients (two with throbi, three without) underwent echocardiography; in all cases the echocardiographic findings agreed with the pathologic findings. Both platelet imaging and echocardiography detect ventricular thrombi. Platelet imaging may detect only the most hematologically active thrombi. Both techniques may help define patients at risk of embolization and may be useful for in vivo assessment of antithrombotic drugs

  4. The Myocardial Ischemia Evaluated by Real-Time Contrast Echocardiography May Predict the Response to Cardiac Resynchronization Therapy: A Large Animal Study

    Science.gov (United States)

    Chen, Yongle; Cheng, Leilei; Yao, Haohua; Chen, Haiyan; Wang, Yongshi; Zhao, Weipeng; Pan, Cuizhen; Shu, Xianhong

    2014-01-01

    Evidence-based criteria for applying cardiac resynchronization therapy (CRT) in patients with ischemic cardiomyopathy are still scarce. The aim of the present study was to evaluate the predictive value of real-time myocardial contrast echocardiography (RT-MCE) in a preclinical canine model of ischemic cardiomyopathy who received CRT. Ischemic cardiomyopathy was produced by ligating the first diagonal branch in 20 beagles. Dogs were subsequently divided into two groups that were either treated with bi-ventricular pacing (CRT group) or left untreated (control group). RT-MCE was performed at baseline, before CRT, and 4 weeks after CRT. Two-dimensional speckle tracking imaging was used to evaluate the standard deviation of circumferential (Cir12SD), radial (R12SD), and longitudinal (L12SD) strains of left ventricular segments at basal as well as middle levels. Four weeks later, the Cir12SD, R12SD, and myocardial blood flow (MBF) of the treated group were significantly improved compared to their non-CRT counterparts. Furthermore, MBF values measured before CRT were significantly higher in responders than in non-responders to bi-ventricular pacing. Meanwhile, no significant differences were observed between the responder and non-responder groups in terms of Cir12SD, R12SD, and L12SD. A high degree of correlation was found between MBF values before CRT and LVEF after CRT. When MBF value>24.9 dB/s was defined as a cut-off point before CRT, the sensitivity and specificity of RT-MCE in predicting the response to CRT were 83.3% and 100%, respectively. Besides, MBF values increased significantly in the CRT group compared with the control group after 4 weeks of pacing (49.8±15.5 dB/s vs. 28.5±4.6 dB/s, p<0.05). Therefore, we considered that myocardial perfusion may be superior to standard metrics of LV synchrony in selecting appropriate candidates for CRT. In addition, CRT can improve myocardial perfusion in addition to cardiac synchrony, especially in the setting of ischemic

  5. Real-time three-dimensional soft tissue reconstruction for laparoscopic surgery.

    Science.gov (United States)

    Kowalczuk, Jędrzej; Meyer, Avishai; Carlson, Jay; Psota, Eric T; Buettner, Shelby; Pérez, Lance C; Farritor, Shane M; Oleynikov, Dmitry

    2012-12-01

    Accurate real-time 3D models of the operating field have the potential to enable augmented reality for endoscopic surgery. A new system is proposed to create real-time 3D models of the operating field that uses a custom miniaturized stereoscopic video camera attached to a laparoscope and an image-based reconstruction algorithm implemented on a graphics processing unit (GPU). The proposed system was evaluated in a porcine model that approximates the viewing conditions of in vivo surgery. To assess the quality of the models, a synthetic view of the operating field was produced by overlaying a color image on the reconstructed 3D model, and an image rendered from the 3D model was compared with a 2D image captured from the same view. Experiments conducted with an object of known geometry demonstrate that the system produces 3D models accurate to within 1.5 mm. The ability to produce accurate real-time 3D models of the operating field is a significant advancement toward augmented reality in minimally invasive surgery. An imaging system with this capability will potentially transform surgery by helping novice and expert surgeons alike to delineate variance in internal anatomy accurately.

  6. Real-Time Two-Dimensional Magnetic Particle Imaging for Electromagnetic Navigation in Targeted Drug Delivery

    Science.gov (United States)

    Le, Tuan-Anh; Zhang, Xingming; Hoshiar, Ali Kafash; Yoon, Jungwon

    2017-01-01

    Magnetic nanoparticles (MNPs) are effective drug carriers. By using electromagnetic actuated systems, MNPs can be controlled noninvasively in a vascular network for targeted drug delivery (TDD). Although drugs can reach their target location through capturing schemes of MNPs by permanent magnets, drugs delivered to non-target regions can affect healthy tissues and cause undesirable side effects. Real-time monitoring of MNPs can improve the targeting efficiency of TDD systems. In this paper, a two-dimensional (2D) real-time monitoring scheme has been developed for an MNP guidance system. Resovist particles 45 to 65 nm in diameter (5 nm core) can be monitored in real-time (update rate = 2 Hz) in 2D. The proposed 2D monitoring system allows dynamic tracking of MNPs during TDD and renders magnetic particle imaging-based navigation more feasible. PMID:28880220

  7. Left ventricular ejection fraction and volumes as measured by 3D echocardiography and ultrafast computed tomography

    International Nuclear Information System (INIS)

    Vieira, Marcelo Luiz Campos; Nomura, Cesar H.; Tranchesi Junior, Bernardino; Oliveira, Wercules A. de; Naccarato, Gustavo; Serpa, Bruna S.; Passos, Rodrigo B.D.; Funari, Marcelo B. G.; Fischer, Claudio H.; Morhy, Samira S.

    2009-01-01

    Background: Real-time three-dimensional echocardiography (RT-3D-Echo) and ultrafast computed tomography (CT) are two novel methods for the analysis of LV ejection fraction and volumes. Objective: To compare LVEF and volume measurements as obtained using RT-3D-Echo and ultrafast CT. Methods: Thirty nine consecutive patients (27 men, mean age of 57+- 12 years) were studied using RT-3D-Echo and 64-slice ultrafast CT. LVEF and LV volumes were analyzed. Statistical analysis: coefficient of correlation (r: Pearson), Bland-Altman analysis, linear regression analysis, 95% CI, p 5 .58)%; end-diastolic volume ranged from 49.6 to 178.2 (87+-27.8) ml; end-systolic volume ranged from 11.4 to 78 (33.1+-13.6) ml. CT scan measurements: LVEF ranged from 53 to 86% (67.8+-7.78); end-diastolic volume ranged from 51 to 186 (106.5+-30.3) ml; end-systolic volume ranged from 7 to 72 (35.5+-13.4)ml. Correlations between RT-3D-Echo and CT were: LVEF (r: 0.7888, p<0.0001, 95% CI 0.6301 to 0.8843); end-diastolic volume (r: 0.7695, p<0.0001, 95% CI 0.5995 to 0.8730); end-systolic volume (r: 0.8119, p<0.0001, 95% CI 0.6673 to 0.8975). Conclusion: Good correlation between LVEF and ventricular volume parameters as measured by RT-3D-Echo and 64-slice ultrafast CT was found in the present case series. (author)

  8. Real-time 2-D Phased Array Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon; Hansen, Kristoffer Lindskov; Fogh, Nikolaj

    2018-01-01

    Echocardiography examination of the blood flow is currently either restricted to 1-D techniques in real-time or experimental off-line 2-D methods. This paper presents an implementation of transverse oscillation for real-time 2-D vector flow imaging (VFI) on a commercial BK Ultrasound scanner....... A large field-of-view (FOV) sequence for studying flow dynamics at 11 frames per second (fps) and a sequence for studying peak systolic velocities (PSV) with a narrow FOV at 36 fps were validated. The VFI sequences were validated in a flow-rig with continuous laminar parabolic flow and in a pulsating flow...

  9. Quantification of Artifact Reduction With Real-Time Cine Four-Dimensional Computed Tomography Acquisition Methods

    International Nuclear Information System (INIS)

    Langner, Ulrich W.; Keall, Paul J.

    2010-01-01

    Purpose: To quantify the magnitude and frequency of artifacts in simulated four-dimensional computed tomography (4D CT) images using three real-time acquisition methods- direction-dependent displacement acquisition, simultaneous displacement and phase acquisition, and simultaneous displacement and velocity acquisition- and to compare these methods with commonly used retrospective phase sorting. Methods and Materials: Image acquisition for the four 4D CT methods was simulated with different displacement and velocity tolerances for spheres with radii of 0.5 cm, 1.5 cm, and 2.5 cm, using 58 patient-measured tumors and respiratory motion traces. The magnitude and frequency of artifacts, CT doses, and acquisition times were computed for each method. Results: The mean artifact magnitude was 50% smaller for the three real-time methods than for retrospective phase sorting. The dose was ∼50% lower, but the acquisition time was 20% to 100% longer for the real-time methods than for retrospective phase sorting. Conclusions: Real-time acquisition methods can reduce the frequency and magnitude of artifacts in 4D CT images, as well as the imaging dose, but they increase the image acquisition time. The results suggest that direction-dependent displacement acquisition is the preferred real-time 4D CT acquisition method, because on average, the lowest dose is delivered to the patient and the acquisition time is the shortest for the resulting number and magnitude of artifacts.

  10. Assessment of atrial fibrillation and vulnerability in patients with Wolff-Parkinson-White syndrome using two-dimensional speckle tracking echocardiography.

    Directory of Open Access Journals (Sweden)

    Jing-Jie Li

    Full Text Available PURPOSE: The aim was to assess atrial fibrillation (AF and vulnerability in Wolff-Parkinson-White (WPW syndrome patients using two-dimensional speckle tracking echocardiography (2D-STE. METHODS: All patients were examined via transthoracic echocardiography and 2D-STE in order to assess atrial function 7 days before and 10 days after RF catheter ablation. A postoperative 3-month follow-up was performed via outpatient visit or telephone calls. RESULTS: Results showed significant differences in both body mass index (BMI and supraventricular tachycardia (SVT duration between WPW patients and DAVNP patients (both P<0.05. Echocardiography revealed that the maximum left atrial volume (LAVmax and the left ventricular mass index (LVMI in diastole increased noticeably in patients with WPW compared to patients with DAVNP both before and after ablation (all P<0.05. Before ablation, there were obvious differences in the levels of SRs, SRe, and SRa from the 4-chamber view (LA in the WPW patients group compared with patients in the DAVNP group (all P<0.05. In the AF group, there were significant differences in the levels of systolic strain rate (SRs, early diastolic strain rate (SRe, and late diastolic strain rate (SRa from the 4-chamber view (LA both before and after ablation (all P<0.05. In the non-AF group, there were decreased SRe levels from the 4-chamber view (LA/RA pre-ablation compared to post-ablation (all P<0.05. CONCLUSION: Our findings provide convincing evidence that WPW syndrome may result in increased atrial vulnerability and contribute to the development of AF. Further, RF catheter ablation of AAV pathway can potentially improve atrial function in WPW syndrome patients. Two-dimensional speckle tracking echocardiography imaging in WPW patients would be necessary in the evaluation and improvement of the overall function of RF catheter ablation in a long-term follow-up period.

  11. Novel techniques in stress echocardiography: a focus on the advantages and disadvantages.

    Science.gov (United States)

    Vamvakidou, Anastasia; Gurunathan, Sothinathan; Senior, Roxy

    2016-01-01

    Stress echocardiography (SE) is an established tool not only for the assessment of coronary artery disease (CAD), but also for the evaluation of valvular disease and cardiomyopathy. New techniques, namely contrast echocardiography for function and perfusion including assessment of coronary flow reserve, strain imaging, 3-dimensional echocardiography, Doppler-derived coronary flow reserve and multimodality echocardiography, have been incorporated into stress protocols for improving assessment of cardiac disease. In this review, the advantages and disadvantages of these novel SE techniques are examined in terms of feasibility, accuracy, reproducibility and applications.

  12. Relationship between HgbA1c and myocardial blood flow reserve in patients with type 2 diabetes mellitus: noninvasive assessment using real-time myocardial perfusion echocardiography.

    Science.gov (United States)

    Huang, Runqing; Abdelmoneim, Sahar S; Nhola, Lara F; Mulvagh, Sharon L

    2014-01-01

    To study the relationship between glycosylated hemoglobin (HgbA1c) and myocardial perfusion in type 2 diabetes mellitus (T2DM) patients, we prospectively enrolled 24 patients with known or suspected coronary artery disease (CAD) who underwent adenosine stress by real-time myocardial perfusion echocardiography (RTMPE). HgbA1c was measured at time of RTMPE. Microbubble velocity (β min(-1)), myocardial blood flow (MBF, mL/min/g), and myocardial blood flow reserve (MBFR) were quantified. Quantitative MCE analysis was feasible in all patients (272/384 segments, 71%). Those with HgbA1c > 7.1% had significantly lower βreserve and MBFR than those with HgbA1c ≤ 7.1% (P relationship was not significant (r = -0.117, P = 0.129). Using a MBFR cutoff value > 2 as normal, HgbA1c > 7.1% significantly increased the risk for abnormal MBFR, (adjusted odds ratio: 1.92, 95% CI: 1.12-3.35, P = 0.02). Optimal glycemic control is associated with preservation of MBFR as determined by RTMPE, in T2DM patients at risk for CAD.

  13. Transesophageal echocardiography. 3. rev. and enl. ed.; Transoesophageale Echokardiografie. Lehrbuch und Altlas zur Untersuchungstechnik und Befundinterpretation

    Energy Technology Data Exchange (ETDEWEB)

    Lambertz, Heinz [ECHOECUCT-Akademie, Wiesbaden (Germany); Lethen, Harald (eds.) [Internistische Intensivmedizin, Wiesbaden (Germany). Innere Medizin/Kardiologie

    2013-02-01

    The book on transesophageal echocardiography covers the following issues: Development of transesophageal echocardiography, technical advances; indications and contraindication for transesophageal echocardiography; systematic of the medical examination process; cardiac valves and valve prostheses; mitral and aortic valvuloplasty, TAVI and interventional treatment of mitral regurgitation; infectious endocarditis; one-way and effluence disturbances of the left and right ventricle; diseases of the thoracic aorta; undefined right ventricle enlargement; lung embolism, acute infarct complications; TEE during anesthesia and perioperative intensive medicine, cardiac sources of embolism; cardiac tumors, mediastinal lymph nodes; pericardiac diseases; congenital heart diseases in childhood and adulthood; catheter interventions and heart valve reconstruction; surgically corrected congenital cardiac defects; intracavitary versus transesophageal echocardiography; three-dimensional TEE; coronary diagnostics; ischemia and vitality diagnostics.

  14. Use of Intracardiac Echocardiography in Interventional Cardiology: Working With the Anatomy Rather Than Fighting It.

    Science.gov (United States)

    Enriquez, Andres; Saenz, Luis C; Rosso, Raphael; Silvestry, Frank E; Callans, David; Marchlinski, Francis E; Garcia, Fermin

    2018-05-22

    The indications for catheter-based structural and electrophysiological procedures have recently expanded to more complex scenarios, in which an accurate definition of the variable individual cardiac anatomy is key to obtain optimal results. Intracardiac echocardiography (ICE) is a unique imaging modality able to provide high-resolution real-time visualization of cardiac structures, continuous monitoring of catheter location within the heart, and early recognition of procedural complications, such as pericardial effusion or thrombus formation. Additional benefits are excellent patient tolerance, reduction of fluoroscopy time, and lack of need for general anesthesia or a second operator. For these reasons, ICE has largely replaced transesophageal echocardiography as ideal imaging modality for guiding certain procedures, such as atrial septal defect closure and catheter ablation of cardiac arrhythmias, and has an emerging role in others, including mitral valvuloplasty, transcatheter aortic valve replacement, and left atrial appendage closure. In electrophysiology procedures, ICE allows integration of real-time images with electroanatomic maps; it has a role in assessment of arrhythmogenic substrate, and it is particularly useful for mapping structures that are not visualized by fluoroscopy, such as the interatrial or interventricular septum, papillary muscles, and intracavitary muscular ridges. Most recently, a three-dimensional (3D) volumetric ICE system has also been developed, with potential for greater anatomic information and a promising role in structural interventions. In this state-of-the-art review, we provide guidance on how to conduct a comprehensive ICE survey and summarize the main applications of ICE in a variety of structural and electrophysiology procedures. © 2018 American Heart Association, Inc.

  15. Three-dimensional (3D) real-time conformal brachytherapy - a novel solution for prostate cancer treatment Part I. Rationale and method

    International Nuclear Information System (INIS)

    Fijalkowski, M.; Bialas, B.; Maciejewski, B.; Bystrzycka, J.; Slosarek, K.

    2005-01-01

    Recently, the system for conformal real-time high-dose-rate brachytherapy has been developed and dedicated in general for the treatment of prostate cancer. The aim of this paper is to present the 3D-conformal real-time brachytherapy technique introduced to clinical practice at the Institute of Oncology in Gliwice. Equipment and technique of 3D-conformal real time brachytherapy (3D-CBRT) is presented in detail and compared with conventional high-dose-rate brachytherapy. Step-by-step procedures of treatment planning are described, including own modifications. The 3D-CBRT offers the following advantages: (1) on-line continuous visualization of the prostate and acquisition of the series of NS images during the entire procedure of planning and treatment; (2) high precision of definition and contouring the target volume and the healthy organs at risk (urethra, rectum, bladder) based on 3D transrectal continuous ultrasound images; (3) interactive on-line dose optimization with real-time corrections of the dose-volume histograms (DVHs) till optimal dose distribution is achieved; (4) possibility to overcome internal prostate motion and set-up inaccuracies by stable positioning of the prostate with needles fixed to the template; (5) significant shortening of overall treatment time; (6) cost reduction - the treatment can be provided as an outpatient procedure. The 3D- real time CBRT can be advertised as an ideal conformal boost dose technique integrated or interdigitated with pelvic conformal external beam radiotherapy or as a monotherapy for prostate cancer. (author)

  16. The Analysis of Task and Data Characteristic and the Collaborative Processing Method in Real-Time Visualization Pipeline of Urban 3DGIS

    Directory of Open Access Journals (Sweden)

    Dongbo Zhou

    2017-03-01

    Full Text Available Parallel processing in the real-time visualization of three-dimensional Geographic Information Systems (3DGIS has tended to concentrate on algorithm levels in recent years, and most of the existing methods employ multiple threads in a Central Processing Unit (CPU or kernel in a Graphics Processing Unit (GPU to improve efficiency in the computation of the Level of Details (LODs for three-dimensional (3D Models and in the display of Digital Elevation Models (DEMs and Digital Orthphoto Maps (DOMs. The systematic analysis of the task and data characteristics of parallelism in the real-time visualization of 3DGIS continues to fall behind the development of hardware. In this paper, the basic procedures of real-time visualization of urban 3DGIS are first reviewed, and then the real-time visualization pipeline is analyzed. Further, the pipeline is decomposed into different task stages based on the task order and the input-output dependency. Based on the analysis of task parallelism in different pipeline stages, the data parallelism characteristics in each task are summarized by studying the involved algorithms. Finally, this paper proposes a parallel co-processing mode and a collaborative strategy for real-time visualization of urban 3DGIS. It also provides a fundamental basis for developing parallel algorithms and strategies in 3DGIS.

  17. Normal left ventricular mechanics by two-dimensional speckle-tracking echocardiography. Reference values in healthy adults.

    Science.gov (United States)

    Kocabay, Gonenc; Muraru, Denisa; Peluso, Diletta; Cucchini, Umberto; Mihaila, Sorina; Padayattil-Jose, Seena; Gentian, Denas; Iliceto, Sabino; Vinereanu, Dragos; Badano, Luigi P

    2014-08-01

    Two-dimensional speckle-tracking echocardiography is a novel tool to assess myocardial function. The purpose of this study was to evaluate left ventricular myocardial strain and rotation parameters by two-dimensional speckle-tracking echocardiography in a large group of healthy adults across a wide age range to establish their reference values and to assess the influence of age, sex, and hemodynamic factors. Transthoracic echocardiograms were acquired in 247 healthy volunteers (139 women, 44 years [standard deviation, 16 years old] (range, 18-80 years). We measured longitudinal, circumferential, and radial peak systolic strain values, and left ventricular rotation and twist. Average values of global longitudinal, radial, and circumferential strain were -21.5% (standard deviation, 2.0%), 40.1% (standard deviation, 11.8%) and -22.2% (standard deviation, 3.4%), respectively. Longitudinal strain was significantly more negative in women, whereas radial and circumferential strain and rotational parameters were similar in both sexes. Accordingly, lower limits of normality for the strain components were -16.9% in men and -18.5% in women for longitudinal strain, and -15.4% for circumferential and 24.6% for radial strain, irrespective of sex. Longitudinal strain values were more negative at the base than at apical segments. Mean rotational values were -6.9° (standard deviation, 3.5°) for the base, 13.0° (standard deviation, 6.5°) for apical rotation, and 20.0° (standard deviation, 7.3°) for net twist. We report the comprehensive assessment of normal myocardial deformation and rotational mechanics in a large cohort of healthy volunteers. We found that women have more negative longitudinal strain, accounting for their higher left ventricular ejection fraction. Availability of reference values for these parameters may foster their implementation in the clinical routine. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  18. Intraoperative Right Ventricular Fractional Area Change Is a Good Indicator of Right Ventricular Contractility: A Retrospective Comparison Using Two- and Three-Dimensional Echocardiography.

    Science.gov (United States)

    Imada, Tatsuyuki; Kamibayashi, Takahiko; Ota, Chiho; Carl Shibata, Sho; Iritakenishi, Takeshi; Sawa, Yoshiki; Fujino, Yuji

    2015-08-01

    Intraoperative two-dimensional echocardiography is technically challenging, given the unique geometry of the right ventricle (RV). It was hypothesized that the RV fractional area change (RVFAC) could be used as a simple method to evaluate RV function during surgery. Therefore, the correlation between the intraoperative RVFAC and the true right ventricular ejection fraction (RVEF), as measured using newly developed three-dimensional (3D) analysis software, was evaluated. Retrospective study. University hospital. Patients who underwent cardiac surgery with transesophageal echocardiography monitoring between March 2014 and June 2014. None. Sixty-two patients were included in this study. After the exclusion of poor imaging data and patients with arrhythmias, 54 data sets were analyzed. RVFAC was measured by one anesthesiologist during surgery, and full-volume 3D echocardiographic data were recorded simultaneously. The 3D data were analyzed postoperatively using off-line 3D analysis software by a second anesthesiologist, who was blinded to the RVFAC results. The mean RVFAC was 38.8% ± 8.7%, the mean RVEF was 41.4% ± 8.3%, and there was a good correlation between the RVFAC and the RVEF (r(2) = 0.638; prights reserved.

  19. Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor

    International Nuclear Information System (INIS)

    Shirato, Hiroki; Shimizu, Shinichi; Kitamura, Kei; Nishioka, Takeshi; Kagei, Kenji; Hashimoto, Seiko; Aoyama, Hidefumi; Kunieda, Tatsuya; Shinohara, Nobuo; Dosaka-Akita, Hirotoshi; Miyasaka, Kazuo

    2000-01-01

    Purpose: To achieve precise three-dimensional (3D) conformal radiotherapy for mobile tumors, a new radiotherapy system and its treatment planning system were developed and used for clinical practice. Methods and Materials: We developed a linear accelerator synchronized with a fluoroscopic real-time tumor tracking system by which 3D coordinates of a 2.0-mm gold marker in the tumor can be determined every 0.03 second. The 3D relationships between the marker and the tumor at different respiratory phases are evaluated using CT image at each respiratory phase, whereby the optimum phase can be selected to synchronize with irradiation (4D treatment planning). The linac is triggered to irradiate the tumor only when the marker is located within the region of the planned coordinates relative to the isocenter. Results: The coordinates of the marker were detected with an accuracy of ± 1 mm during radiotherapy in the phantom experiment. The time delay between recognition of the marker position and the start or stop of megavoltage X-ray irradiation was 0.03 second. Fourteen patients with various tumors were treated by conformal radiotherapy with a 'tight' planning target volume (PTV) margin. They were surviving without relapse or complications with a median follow-up of 6 months. Conclusion: Fluoroscopic real-time tumor tracking radiotherapy following 4D treatment planning was developed and shown to be feasible to improve the accuracy of the radiotherapy for mobile tumors

  20. Real-time three-dimensional surface measurement by color encoded light projection

    International Nuclear Information System (INIS)

    Chen, S. Y.; Li, Y. F.; Guan, Q.; Xiao, G.

    2006-01-01

    Existing noncontact methods for surface measurement suffer from the disadvantages of poor reliability, low scanning speed, or high cost. The authors present a method for real-time three-dimensional data acquisition by a color-coded vision sensor composed of common components. The authors use a digital projector controlled by computer to generate desired color light patterns. The unique indexing of the light codes is a key problem and is solved in this study so that surface perception can be performed with only local pattern analysis of the neighbor color codes in a single image. Experimental examples and performance analysis are provided

  1. Advanced echocardiography and clinical surrogates to risk stratify and manage patients with structural heart disease

    NARCIS (Netherlands)

    Debonnaire, Philippe Jean Marc Rita

    2016-01-01

    Part I focuses on the potential role of 3-dimensional echocardiography. At first a clinical risk score model for prediction of outcome in patients undergoing TAVI is presented (Chapter 2). Second the role of 3D-echocardiography is explored in depth in patients with mitral valve disease. Different

  2. Clinical Stress Echocardiography

    NARCIS (Netherlands)

    S.E. Karagiannis

    2007-01-01

    textabstractTwo-dimensional echocardiography is a commonly used non-invasive method for the assessment of left ventricular function. It provides precise information on both global and segmental myocardial function by displaying endocardial motion and wall thickening. Dobutamine stress

  3. Recent advances in echocardiography for valvular heart disease.

    Science.gov (United States)

    Hahn, Rebecca

    2015-01-01

    Echocardiography is the imaging modality of choice for the assessment of patients with valvular heart disease. Echocardiographic advancements may have particular impact on the assessment and management of patients with valvular heart disease. This review will summarize the current literature on advancements, such as three-dimensional echocardiography, strain imaging, intracardiac echocardiography, and fusion imaging, in this patient population.

  4. Role of Three-Dimensional Speckle Tracking Echocardiography in the Quantification of Myocardial Iron Overload in Patients with Beta-Thalassemia Major.

    Science.gov (United States)

    Li, Shu-Juan; Hwang, Yu-Yan; Ha, Shau-Yin; Chan, Godfrey C F; Mok, Amanda S P; Wong, Sophia J; Cheung, Yiu-Fai

    2016-09-01

    The new three-dimensional speckle tracking echocardiography (3DSTE) may enable comprehensive quantification of global left ventricular (LV) myocardial mechanics. Twenty-four patients aged 29.3 ± 5.2 years and 22 controls were studied. 3DSTE was performed to assess LV 3D global strain, twist and torsion, ejection fraction, and systolic dyssynchrony index (SDI). The LV SDI was calculated as % of SD of times-to-peak strain of 16 segments/RR interval. The global performance index (GPI) was calculated as (global 3D strain·torsion)/SDI. Area under the receiver operating characteristic curve (AUC) was calculated to determine the capability of 3DSTE parameters to discriminate between patients with (cardiac magnetic resonance T2* overload. Compared with controls, patients had significantly lower LV global 3D strain (P overload. The LV composite index of strain, torsion, and dyssynchrony derived from 3DSTE enables sensitive detection of myocardial iron overload in patients with thalassemia. © 2016, Wiley Periodicals, Inc.

  5. Analysis of chronic aortic regurgitation by 2D and 3D echocardiography and cardiac MRI

    DEFF Research Database (Denmark)

    Stoebe, Stephan; Metze, Michael; Jurisch, Daniel

    2018-01-01

    ) were assessed retrospectively by 2D, 3D echocardiography and cMRI in 55 chronic AR patients. Semi-quantitative parameters were assessed by 2D echocardiography. RESULTS: 22 (40%) patients had mild, 25 (46%) moderate and 8 (14%) severe AR. The quantitative volumetric approach was feasible using 2D, 3D...... echocardiography and cMRI, whereas the feasibility of semi-quantitative parameters varied considerably. LV volume (LVEDV, LVESV, SVtot) analyses showed good correlations between the different imaging modalities, although significantly increased LV volumes were assessed by cMRI. RVol was significantly different...... between 2D/3D echocardiography and 2D echocardiography/cMRI but was not significantly different between 3D echocardiography/cMRI. RF was not statistically different between 2D echocardiography/cMRI and 3D echocardiography/cMRI showing poor correlations (r

  6. Two-dimensional speckle tracking echocardiography demonstrates no effect of active acromegaly on left ventricular strain.

    Science.gov (United States)

    Volschan, I C M; Kasuki, L; Silva, C M S; Alcantara, M L; Saraiva, R M; Xavier, S S; Gadelha, M R

    2017-06-01

    Speckle tracking echocardiography (STE) allows for the study of myocardial strain (ε), a marker of early and subclinical ventricular systolic dysfunction. Cardiac disease may be present in patients with acromegaly; however, STE has never been used to evaluate these patients. To evaluate left ventricular (LV) global longitudinal strain in patients with active acromegaly with normal LV systolic function. Cross-sectional clinical study. Patients with active acromegaly with no detectable heart disease and a control group were matched for age, gender, arterial hypertension and diabetes mellitus underwent STE. Global LV longitudinal ε (GLS), left ventricular mass index (LVMi), left ventricular ejection fraction (LVEF) and relative wall thickness (RWT) were obtained via two-dimensional (2D) echocardiography using STE. Thirty-seven patients with active acromegaly (mean age 45.6 ± 13.8; 48.6% were males) and 48 controls were included. The mean GLS was not significantly different between the acromegaly group and the control group (in %, -20.1 ± 3.1 vs. -19.4 ± 2.2, p = 0.256). Mean LVMi was increased in the acromegaly group (in g/m 2 , 101.6 ± 27.1 vs. 73.2 ± 18.6, p Acromegaly patients, despite presenting with a higher LVMi when analyzed by 2D echocardiography, did not present with impairment in the strain when compared to a control group; this finding indicates a low chance of evolution to systolic dysfunction and agrees with recent studies that show a lower frequency of cardiac disease in these patients.

  7. Determination of multidirectional myocardial deformations in cats with hypertrophic cardiomyopathy by using two-dimensional speckle-tracking echocardiography.

    Science.gov (United States)

    Suzuki, Ryohei; Mochizuki, Yohei; Yoshimatsu, Hiroki; Teshima, Takahiro; Matsumoto, Hirotaka; Koyama, Hidekazu

    2017-12-01

    Objectives Hypertrophic cardiomyopathy, a primary disorder of the myocardium, is the most common cardiac disease in cats. However, determination of myocardial deformation with two-dimensional speckle-tracking echocardiography in cats with various stages of hypertrophic cardiomyopathy has not yet been reported. This study was designed to measure quantitatively multidirectional myocardial deformations of cats with hypertrophic cardiomyopathy. Methods Thirty-two client-owned cats with hypertrophic cardiomyopathy and 14 healthy cats serving as controls were enrolled and underwent assessment of myocardial deformation (peak systolic strain and strain rate) in the longitudinal, radial and circumferential directions. Results Longitudinal and radial deformations were reduced in cats with hypertrophic cardiomyopathy, despite normal systolic function determined by conventional echocardiography. Cats with severely symptomatic hypertrophic cardiomyopathy also had lower peak systolic circumferential strain, in addition to longitudinal and radial strain. Conclusions and relevance Longitudinal and radial deformation may be helpful in the diagnosis of hypertrophic cardiomyopathy. Additionally, the lower circumferential deformation in cats with severe hypertrophic cardiomyopathy may contribute to clinical findings of decompensation, and seems to be related to severe cardiac clinical signs. Indices of multidirectional myocardial deformations by two-dimensional speckle-tracking echocardiography may be useful markers and help to distinguish between cats with hypertrophic cardiomyopathy and healthy cats. Additionally, they may provide more detailed assessment of contractile function in cats with hypertrophic cardiomyopathy.

  8. Improvement of continuous subcutaneous insulin infusion on patients with type 2 diabetes mellitus by 3-dimensional speckle tracking echocardiography.

    Science.gov (United States)

    Luo, Hong-Xia; Zhou, Xiao-Ling; Kou, Hong-Ju; Ni, Xian-Wei; Wu, Qing; Zou, Chun-Peng; Wu, Dao-Zhu; Liu, Yong-Fang

    2018-03-01

    Three-dimensional speckle tracking echocardiography (3D-STE) was used to evaluate the improvement of continuous subcutaneous insulin infusion on the left ventricular (LV) systolic function of patients with type 2 diabetes mellitu (T2DM). We recruited T2DM patients (38 cases, diabetic group) and healthy volunteers (35 cases, control group) to collect LV full volume imaging. TomTec software was used for calculating LV global longitudinal strain (LVGLS), global circumferential strain (LVGCS), peak twist (LVTW), peak apical rotation (LVPAR), ejection fraction (LVEF), and torsion (LVT). All indices were re-tested 2 weeks later after intensive treatment of insulin pump. LVGLS, LVGCS, LVTW and LVPAR in diabetic group were significantly decreased than control group. LVGLS and LVGCS in pre-treatment diabetic group were significantly increased than post-treatment. LVGLS, LVGCS, LVTW and LVPAR had correlations among control, pre-treatment and post-treatment diabetic groups. There were no significant differences in LVEDV, LVESV, LVEF, LVT and R-R. LV systolic function of patients with T2DM complicated with microangiopathy was improved after treatment of continuous subcutaneous insulin infusion. In addition, therapeutic effect could be accurately evaluated by 3D-STE which had vital clinical application.

  9. Real-time three-dimensional echocardiographic left ventricular ejection fraction and volumes assessment: comparison with cardiac computed tomography; Comparacao entre a afericao da fracao de ejecao e dos volumes do ventriculo esquerdo, medidos com ecocardiografia tridimensional em tempo real e com tomografia computadorizada ultra-rapida

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Marcelo L.C.; Nomura, Cesar H.; Tranchesi Junior, Bernardino; Oliveira, Wercules A. de; Naccarato, Gustavo; Serpa, Bruna S.; Cury, Alexandre; Passos, Rodrigo B.D.; Nobrega, Marcel V. da; Funari, Marcelo B.G.; Pfefermam, Abhaham; Makdisse, Marcia; Fischer, Claudio H.; Morhy, Samira S., E-mail: luiz766@terra.com.br [Hospital Israelita Albert Einstein, Sao Paulo, SP (Brazil)

    2008-10-15

    Background and objective: Few studies addressed the comparison between real-time 3D echocardiography (RT3DE) and cardiac computed tomography (CCT) concerning left ventricular ejection fraction and volumes assessment. We sought to compare both techniques regarding left ventricle (LV) ejection fraction function and volumes analysis. Methods: we studied by RT3DE (Philips IE 33, And, MA, USA) and by CCT (Toshiba, 64-slice, Otawara, Japan) 41 consecutive patients (29 males, 58 ± 11 yrs). We analysed by both techniques LVEF, LVEDV, LVESV. RT3DE and CCT data were compared by coefficients of determination (r: Pearson), Bland and Altman test and linear regression, 95% CI. Results: RT3DE data: LVEF ranged from 56.7 to 78.9 % (65.3 + 5.7 ); LVEDV ranged from 49.6 to 178.2 (88 + 27.5) mL; LVESV from 11.4 to 78 ( 33.9 + 13.7) mL. CCT data: LVEF ranged from 53 to 86 % (67.3 + 7.9 ); LVEDV ranged from 51 to 186 (106.4 + 30.7) mL; LVESV from 7 to 72 ( 35.1 + 13.8) mL. Correlations relative to RT3DE and CCT were: LVEF (r: 0. 7877, p<0.0001, 95 % CI 0.6327 to 0.8853 ); LVEDV (r:0.7671, p<0.0001, 95 % CI 0.5974 to 0.8745); LVESV (r: 0.8121, p<0.0001, 95 % CI 0.6659 to 0.8957). Conclusions: it was observed adequate correlation between real-time 3D echocardiography and cardiac computed tomography concerning ejection fraction and volumes assessment. (author)

  10. Strain measurement of abdominal aortic aneurysm with real-time 3D ultrasound speckle tracking.

    Science.gov (United States)

    Bihari, P; Shelke, A; Nwe, T H; Mularczyk, M; Nelson, K; Schmandra, T; Knez, P; Schmitz-Rixen, T

    2013-04-01

    Abdominal aortic aneurysm rupture is caused by mechanical vascular tissue failure. Although mechanical properties within the aneurysm vary, currently available ultrasound methods assess only one cross-sectional segment of the aorta. This study aims to establish real-time 3-dimensional (3D) speckle tracking ultrasound to explore local displacement and strain parameters of the whole abdominal aortic aneurysm. Validation was performed on a silicone aneurysm model, perfused in a pulsatile artificial circulatory system. Wall motion of the silicone model was measured simultaneously with a commercial real-time 3D speckle tracking ultrasound system and either with laser-scan micrometry or with video photogrammetry. After validation, 3D ultrasound data were collected from abdominal aortic aneurysms of five patients and displacement and strain parameters were analysed. Displacement parameters measured in vitro by 3D ultrasound and laser scan micrometer or video analysis were significantly correlated at pulse pressures between 40 and 80 mmHg. Strong local differences in displacement and strain were identified within the aortic aneurysms of patients. Local wall strain of the whole abdominal aortic aneurysm can be analysed in vivo with real-time 3D ultrasound speckle tracking imaging, offering the prospect of individual non-invasive rupture risk analysis of abdominal aortic aneurysms. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  11. Analysis of chronic aortic regurgitation by 2D and 3D echocardiography and cardiac MRI

    Science.gov (United States)

    Stoebe, Stephan; Metze, Michael; Jurisch, Daniel; Tayal, Bhupendar; Solty, Kilian; Laufs, Ulrich; Pfeiffer, Dietrich; Hagendorff, Andreas

    2018-01-01

    Purpose The study compares the feasibility of the quantitative volumetric and semi-quantitative approach for quantification of chronic aortic regurgitation (AR) using different imaging modalities. Methods Left ventricular (LV) volumes, regurgitant volumes (RVol) and regurgitant fractions (RF) were assessed retrospectively by 2D, 3D echocardiography and cMRI in 55 chronic AR patients. Semi-quantitative parameters were assessed by 2D echocardiography. Results 22 (40%) patients had mild, 25 (46%) moderate and 8 (14%) severe AR. The quantitative volumetric approach was feasible using 2D, 3D echocardiography and cMRI, whereas the feasibility of semi-quantitative parameters varied considerably. LV volume (LVEDV, LVESV, SVtot) analyses showed good correlations between the different imaging modalities, although significantly increased LV volumes were assessed by cMRI. RVol was significantly different between 2D/3D echocardiography and 2D echocardiography/cMRI but was not significantly different between 3D echocardiography/cMRI. RF was not statistically different between 2D echocardiography/cMRI and 3D echocardiography/cMRI showing poor correlations (r echocardiography and 2D echocardiography/cMRI and good agreement was observed between 3D echocardiography/cMRI. Conclusion Semi-quantitative parameters are difficult to determine by 2D echocardiography in clinical routine. The quantitative volumetric RF assessment seems to be feasible and can be discussed as an alternative approach in chronic AR. However, RVol and RF did not correlate well between the different imaging modalities. The best agreement for grading of AR severity by RF was observed between 3D echocardiography and cMRI. LV volumes can be verified by different approaches and different imaging modalities. PMID:29519957

  12. Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes.

    Science.gov (United States)

    Kwon, M-W; Kim, S-C; Yoon, S-E; Ho, Y-S; Kim, E-S

    2015-02-09

    A new object tracking mask-based novel-look-up-table (OTM-NLUT) method is proposed and implemented on graphics-processing-units (GPUs) for real-time generation of holographic videos of three-dimensional (3-D) scenes. Since the proposed method is designed to be matched with software and memory structures of the GPU, the number of compute-unified-device-architecture (CUDA) kernel function calls and the computer-generated hologram (CGH) buffer size of the proposed method have been significantly reduced. It therefore results in a great increase of the computational speed of the proposed method and enables real-time generation of CGH patterns of 3-D scenes. Experimental results show that the proposed method can generate 31.1 frames of Fresnel CGH patterns with 1,920 × 1,080 pixels per second, on average, for three test 3-D video scenarios with 12,666 object points on three GPU boards of NVIDIA GTX TITAN, and confirm the feasibility of the proposed method in the practical application of electro-holographic 3-D displays.

  13. Real-time Stereoscopic 3D for E-Robotics Learning

    Directory of Open Access Journals (Sweden)

    Richard Y. Chiou

    2011-02-01

    Full Text Available Following the design and testing of a successful 3-Dimensional surveillance system, this 3D scheme has been implemented into online robotics learning at Drexel University. A real-time application, utilizing robot controllers, programmable logic controllers and sensors, has been developed in the “MET 205 Robotics and Mechatronics” class to provide the students with a better robotic education. The integration of the 3D system allows the students to precisely program the robot and execute functions remotely. Upon the students’ recommendation, polarization has been chosen to be the main platform behind the 3D robotic system. Stereoscopic calculations are carried out for calibration purposes to display the images with the highest possible comfort-level and 3D effect. The calculations are further validated by comparing the results with students’ evaluations. Due to the Internet-based feature, multiple clients have the opportunity to perform the online automation development. In the future, students, in different universities, will be able to cross-control robotic components of different types around the world. With the development of this 3D ERobotics interface, automation resources and robotic learning can be shared and enriched regardless of location.

  14. Management of three-dimensional intrafraction motion through real-time DMLC tracking

    International Nuclear Information System (INIS)

    Sawant, Amit; Venkat, Raghu; Srivastava, Vikram; Carlson, David; Povzner, Sergey; Cattell, Herb; Keall, Paul

    2008-01-01

    Tumor tracking using a dynamic multileaf collimator (DMLC) represents a promising approach for intrafraction motion management in thoracic and abdominal cancer radiotherapy. In this work, we develop, empirically demonstrate, and characterize a novel 3D tracking algorithm for real-time, conformal, intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based radiation delivery to targets moving in three dimensions. The algorithm obtains real-time information of target location from an independent position monitoring system and dynamically calculates MLC leaf positions to account for changes in target position. Initial studies were performed to evaluate the geometric accuracy of DMLC tracking of 3D target motion. In addition, dosimetric studies were performed on a clinical linac to evaluate the impact of real-time DMLC tracking for conformal, step-and-shoot (S-IMRT), dynamic (D-IMRT), and VMAT deliveries to a moving target. The efficiency of conformal and IMRT delivery in the presence of tracking was determined. Results show that submillimeter geometric accuracy in all three dimensions is achievable with DMLC tracking. Significant dosimetric improvements were observed in the presence of tracking for conformal and IMRT deliveries to moving targets. A gamma index evaluation with a 3%-3 mm criterion showed that deliveries without DMLC tracking exhibit between 1.7 (S-IMRT) and 4.8 (D-IMRT) times more dose points that fail the evaluation compared to corresponding deliveries with tracking. The efficiency of IMRT delivery, as measured in the lab, was observed to be significantly lower in case of tracking target motion perpendicular to MLC leaf travel compared to motion parallel to leaf travel. Nevertheless, these early results indicate that accurate, real-time DMLC tracking of 3D tumor motion is feasible and can potentially result in significant geometric and dosimetric advantages leading to more effective management of intrafraction motion

  15. Determination of the optimum number of cardiac cycles to differentiate intra-pulmonary shunt and patent foramen ovale by saline contrast two- and three-dimensional echocardiography.

    Science.gov (United States)

    Bhatia, Nirmanmoh; Abushora, Mohannad Y; Donneyong, Macarius M; Stoddard, Marcus F

    2014-03-01

    Patent foramen ovale (PFO) and intra-pulmonary shunt (IPS) are potential causes of stroke. The most optimum cardiac cycle cutoff for bubbles to appear in the left heart on saline contrast transthoracic echocardiography (TTE) as criteria to differentiate the 2 entities is unknown. Ninety-five adult patients had saline contrast transesophageal echocardiography (TEE), two-dimensional (2D) and 3DTTE. Sensitivity and specificity of each cardiac cycle as cutoff to differentiate a PFO and IPS were obtained. Transesophageal echocardiography showed IPS in 28 and PFO in 15 patients. If bubbles appeared in the left heart within the first 4 cardiac cycles (the 4th cardiac cycle rule) as compared to alternate cutoffs, a PFO was most accurately diagnosed by both 2D and 3DTTE. Bubbles appearing at or after the 5th cardiac cycle most accurately determined an IPS. 3D versus 2DTTE had a trend for a higher sensitivity (61% vs. 36%, P = 0.06), but similar specificity (94% vs. 91%) for IPS. Accuracy of 3DTTE was 84% and 2DTTE was 75% (P = 0.08) for IPS. For PFO, 2DTTE sensitivity (87%) and specificity (98%) did not differ (P = NS) from that of 3DTTE sensitivity (73%) and specificity (100%). This study demonstrates for the first time that the 4th cardiac cycle rule differentiates PFO and IPS most optimally by 2D and 3DTTE. 3DTTE appears to have higher sensitivity for diagnosing IPS. These data suggest that 3DTTE is preferable when IPS is to be diagnosed. Both methods are similar for diagnosing PFO. © 2013, Wiley Periodicals, Inc.

  16. Determinants of Pediatric Echocardiography Laboratory Productivity: Analysis from the Second Survey of the American Society of Echocardiography Committee on Echocardiography Laboratory Productivity.

    Science.gov (United States)

    Srivastava, Shubhika; Allada, Vivekanand; Younoszai, Adel; Lopez, Leo; Soriano, Brian D; Fleishman, Craig E; Van Hoever, Andrea M; Lai, Wyman W

    2016-10-01

    The American Society of Echocardiography Committee on Pediatric Echocardiography Laboratory Productivity aimed to study factors that could influence the clinical productivity of physicians and sonographers and assess longitudinal trends for the same. The first survey results indicated that productivity correlated with the total volume of echocardiograms. Survey questions were designed to assess productivity for (1) physician full-time equivalent (FTE) allocated to echocardiography reading (echocardiograms per physician FTE per day), (2) sonographer FTE (echocardiograms per sonographer FTE per year), and (3) machine utilization (echocardiograms per machine per year). Questions were also posed to assess work flow and workforce. For fiscal year 2013 or academic year 2012-2013, the mean number of total echocardiograms-including outreach, transthoracic, fetal, and transesophageal echocardiograms-per physician FTE per day was 14.3 ± 5.9, the mean number of echocardiograms per sonographer FTE per year was 1,056 ± 441, and the mean number of echocardiograms per machine per year was 778 ± 303. Both physician and sonographer productivity was higher at high-volume surgical centers and with echocardiography slots scheduled concordantly with clinic visits. Having an advanced imaging fellow and outpatient sedation correlated negatively with clinical laboratory productivity. Machine utilization was greater in laboratories with higher sonographer and physician productivity and lower for machines obtained before 2009. Measures of pediatric echocardiography laboratory staff productivity and machine utilization were shown to correlate positively with surgical volume, total echocardiography volumes, and concordant echocardiography scheduling; the same measures correlated negatively with having an advanced imaging fellow and outpatient sedation. There has been no significant change in staff productivity noted over two Committee on Pediatric Echocardiography Laboratory

  17. Pixel multiplexing technique for real-time three-dimensional-imaging laser detection and ranging system using four linear-mode avalanche photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fan; Wang, Yuanqing, E-mail: yqwang@nju.edu.cn; Li, Fenfang [School of Electronic Science and Engineering, Nanjing University, Nanjing 210046 (China)

    2016-03-15

    The avalanche-photodiode-array (APD-array) laser detection and ranging (LADAR) system has been continually developed owing to its superiority of nonscanning, large field of view, high sensitivity, and high precision. However, how to achieve higher-efficient detection and better integration of the LADAR system for real-time three-dimensional (3D) imaging continues to be a problem. In this study, a novel LADAR system using four linear mode APDs (LmAPDs) is developed for high-efficient detection by adopting a modulation and multiplexing technique. Furthermore, an automatic control system for the array LADAR system is proposed and designed by applying the virtual instrumentation technique. The control system aims to achieve four functions: synchronization of laser emission and rotating platform, multi-channel synchronous data acquisition, real-time Ethernet upper monitoring, and real-time signal processing and 3D visualization. The structure and principle of the complete system are described in the paper. The experimental results demonstrate that the LADAR system is capable of achieving real-time 3D imaging on an omnidirectional rotating platform under the control of the virtual instrumentation system. The automatic imaging LADAR system utilized only 4 LmAPDs to achieve 256-pixel-per-frame detection with by employing 64-bit demodulator. Moreover, the lateral resolution is ∼15 cm and range accuracy is ∼4 cm root-mean-square error at a distance of ∼40 m.

  18. Evaluation of training nurses to perform semi-automated three-dimensional left ventricular ejection fraction using a customised workstation-based training protocol.

    Science.gov (United States)

    Guppy-Coles, Kristyan B; Prasad, Sandhir B; Smith, Kym C; Hillier, Samuel; Lo, Ada; Atherton, John J

    2015-06-01

    We aimed to determine the feasibility of training cardiac nurses to evaluate left ventricular function utilising a semi-automated, workstation-based protocol on three dimensional echocardiography images. Assessment of left ventricular function by nurses is an attractive concept. Recent developments in three dimensional echocardiography coupled with border detection assistance have reduced inter- and intra-observer variability and analysis time. This could allow abbreviated training of nurses to assess cardiac function. A comparative, diagnostic accuracy study evaluating left ventricular ejection fraction assessment utilising a semi-automated, workstation-based protocol performed by echocardiography-naïve nurses on previously acquired three dimensional echocardiography images. Nine cardiac nurses underwent two brief lectures about cardiac anatomy, physiology and three dimensional left ventricular ejection fraction assessment, before a hands-on demonstration in 20 cases. We then selected 50 cases from our three dimensional echocardiography library based on optimal image quality with a broad range of left ventricular ejection fractions, which was quantified by two experienced sonographers and the average used as the comparator for the nurses. Nurses independently measured three dimensional left ventricular ejection fraction using the Auto lvq package with semi-automated border detection. The left ventricular ejection fraction range was 25-72% (70% with a left ventricular ejection fraction nurses showed excellent agreement with the sonographers. Minimal intra-observer variability was noted on both short-term (same day) and long-term (>2 weeks later) retest. It is feasible to train nurses to measure left ventricular ejection fraction utilising a semi-automated, workstation-based protocol on previously acquired three dimensional echocardiography images. Further study is needed to determine the feasibility of training nurses to acquire three dimensional echocardiography

  19. Role of echocardiography in reducing shock reversal time in pediatric septic shock: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ahmed A. EL-Nawawy

    Full Text Available Abstract Objective: To evaluate the role of echocardiography in reducing shock reversal time in pediatric septic shock. Methods: A prospective study conducted in the pediatric intensive care unit of a tertiary care teaching hospital from September 2013 to May 2016. Ninety septic shock patients were randomized in a 1:1 ratio for comparing the serial echocardiography-guided therapy in the study group with the standard therapy in the control group regarding clinical course, timely treatment, and outcomes. Results: Shock reversal was significantly higher in the study group (89% vs. 67%, with significantly reduced shock reversal time (3.3 vs. 4.5 days. Pediatric intensive care unit stay in the study group was significantly shorter (8 ± 3 vs. 14 ± 10 days. Mortality due to unresolved shock was significantly lower in the study group. Fluid overload was significantly lower in the study group (11% vs. 44%. In the study group, inotropes were used more frequently (89% vs. 67% and initiated earlier (12[0.5-24] vs. 24[6-72] h with lower maximum vasopressor inotrope score (120[30-325] vs. 170[80-395], revealing predominant use of milrinone (62% vs. 22%. Conclusion: Serial echocardiography provided crucial data for early recognition of septic myocardial dysfunction and hypovolemia that was not apparent on clinical assessment, allowing a timely management and resulting in shock reversal time reduction among children with septic shock.

  20. Simulation Study of Real Time 3-D Synthetic Aperture Sequential Beamforming for Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Morten Fischer; Stuart, Matthias Bo

    2014-01-01

    in the main system. The real-time imaging capability is achieved using a synthetic aperture beamforming technique, utilizing the transmit events to generate a set of virtual elements that in combination can generate an image. The two core capabilities in combination is named Synthetic Aperture Sequential......This paper presents a new beamforming method for real-time three-dimensional (3-D) ultrasound imaging using a 2-D matrix transducer. To obtain images with sufficient resolution and contrast, several thousand elements are needed. The proposed method reduces the required channel count from...... Beamforming (SASB). Simulations are performed to evaluate the image quality of the presented method in comparison to Parallel beamforming utilizing 16 receive beamformers. As indicators for image quality the detail resolution and Cystic resolution are determined for a set of scatterers at a depth of 90mm...

  1. Evaluation of Subclinical Left Ventricular Systolic Dysfunction in Chronic Asymptomatic Alcoholics by Speckle Tracking Echocardiography

    Directory of Open Access Journals (Sweden)

    Murathan Kucuk

    2017-01-01

    Full Text Available By using two-dimensional speckle tracking echocardiography, we aimed to investigate the structural and functional changes on myocardium in chronic asymptomatic alcoholics without any cardiovascular disease. Forty-one consecutive asymptomatic male alcoholics who were admitted to the outpatient alcoholism unit and 30 age matched healthy male volunteers selected as the control group were enrolled in the study. The study group were investigated by using standard two-dimensional echocardiography and speckle tracking echocardiography. The left ventricular (LV global longitudinal strain and LV global circumferential strain were significantly lower in alcoholics when compared with control subjects. There was no difference in global radial strain between the two groups. To demonstrate the effect of total life time dose of ethanol (TLDE on echocardiographic abnormalities, we assessed the correlation analysis. There was a nonsignificant weak correlation between global LV circumferential strain and TLDE (r=0.27, p=0.083. Speckle tracking echocardiography derived left ventricular systolic function was impaired in chronic alcoholic patients when compared with healthy controls.

  2. Real-time adjustment of ventricular restraint therapy in heart failure.

    Science.gov (United States)

    Ghanta, Ravi K; Lee, Lawrence S; Umakanthan, Ramanan; Laurence, Rita G; Fox, John A; Bolman, Ralph Morton; Cohn, Lawrence H; Chen, Frederick Y

    2008-12-01

    Current ventricular restraint devices do not allow for either the measurement or adjustment of ventricular restraint level. Periodic adjustment of restraint level post-device implantation may improve therapeutic efficacy. We evaluated the feasibility of an adjustable quantitative ventricular restraint (QVR) technique utilizing a fluid-filled polyurethane epicardial balloon to measure and adjust restraint level post-implantation guided by physiologic parameters. QVR balloons were implanted in nine ovine with post-infarction dilated heart failure. Restraint level was defined by the maximum restraint pressure applied by the balloon to the epicardium at end-diastole. An access line connected the balloon lumen to a subcutaneous portacath to allow percutaneous access. Restraint level was adjusted while left ventricular (LV) end-diastolic volume (EDV) and cardiac output was assessed with simultaneous transthoracic echocardiography. All nine ovine successfully underwent QVR balloon implantation. Post-implantation, restraint level could be measured percutaneously in real-time and dynamically adjusted by instillation and withdrawal of fluid from the balloon lumen. Using simultaneous echocardiography, restraint level could be adjusted based on LV EDV and cardiac output. After QVR therapy for 21 days, LV EDV decreased from 133+/-15 ml to 113+/-17 ml (p<0.05). QVR permits real-time measurement and physiologic adjustment of ventricular restraint therapy after device implantation.

  3. Design of a Matrix Transducer for Three-Dimensional Second Harmonic Transesophageal Echocardiography

    Science.gov (United States)

    Blaak, Sandra; van Neer, Paul L. M. J.; Prins, Christian; Bosch, Johan G.; Lancée, Charles T.; van der Steen, Antonius F. W.; de Jong, Nico

    Three-dimensional (3D) echocardiography visualizes the 3D anatomy and function of the heart. For 3D imaging an ultrasound matrix of several thousands of elements is required. To connect the matrix to an external imaging system, smart signal processing with integrated circuitry in the tip of the TEE probe is required for channel reduction. To separate the low voltage integrated receive circuitry from the high voltages required for transmission, our design features a separate transmit and receive subarray. In this study we focus on the transmit subarray. A 3D model of an individual element was developed using the finite element method (FEM). The model was validated by laser interferometer and acoustic measurements. Measurement and simulations matched well. The maximum transmit transfer was 3 nm/V at 2.4 MHz for both the FEM simulation of an element in air and the laser interferometer measurement. The FEM simulation of an element in water resulted in a maximum transfer of 43 kPa/V at 2.3 MHz and the acoustic measurement in 55 kPa/V at 2.5 MHz. The maximum pressure is ~1 MPa/120Vpp, which is sufficient pressure for second harmonic imaging. The proposed design of the transmit subarray is suitable for its role in a 3D 2H TEE probe.

  4. Feasibility of transient elastography versus real-time two-dimensional shear wave elastography in difficult-to-scan patients

    DEFF Research Database (Denmark)

    Staugaard, Benjamin; Christensen, Peer Brehm; Mössner, Belinda

    2016-01-01

    BACKGROUND AND AIMS: Transient elastography (TE) is hampered in some patients by failures and unreliable results. We hypothesized that real time two-dimensional shear wave elastography (2D-SWE), the FibroScan XL probe, and repeated TE exams, could be used to obtain reliable liver stiffness...

  5. Evaluation of left ventricular function and volumes in patients with ischaemic cardiomyopathy: gated single-photon emission computed tomography versus two-dimensional echocardiography

    International Nuclear Information System (INIS)

    Vourvouri, E.C.; Poldermans, D.; Sianos, G.; Sozzi, F.B.; Schinkel, A.F.L.; Sutter, J. de; Roelandt, J.R.T.C.; Bax, J.J.; Parcharidis, G.; Valkema, R.

    2001-01-01

    The objective of this study was to perform a head-to-head comparison between two-dimensional (2D) echocardiography and gated single-photon emission computed tomography (SPET) for the evaluation of left ventricular (LV) function and volumes in patients with severe ischaemic LV dysfunction. Thirty-two patients with chronic ischaemic LV dysfunction [mean LV ejection fraction (EF) 25%±6%] were studied with gated SPET and 2D echocardiography. Regional wall motion was evaluated by both modalities and scored by two independent observers using a 16-segment model with a 5-point scoring system (1= normokinesia, 2= mild hypokinesia, 3= severe hypokinesia, 4= akinesia and 5= dyskinesia). LVEF and LV end-diastolic and end-systolic volumes were evaluated by 2D echocardiography using the Simpson's biplane discs method. The same parameters were calculated using quantitative gated SPET software (QGS, Cedars-Sinai Medical Center). The overall agreement between the two imaging modalities for assessment of regional wall motion was 69%. The correlations between gated SPET and 2D echocardiography for the assessment of end-diastolic and end-systolic volumes were excellent (r=0.94, P<0.01, and r=0.96, P<0.01, respectively). The correlation for LVEF was also good (r=0.83, P<0.01). In conclusion: in patients with ischaemic cardiomyopathy, close and significant relations between gated SPET and 2D echocardiography were observed for the assessment of regional and global LV function and LV volumes; gated SPET has the advantage that it provides information on both LV function/dimensions and perfusion. (orig.)

  6. Intraoperative three-dimensional transesophageal echocardiography for assessing the defect geometries of mitral prosthetic paravalvular leak during transcatheter closure.

    Science.gov (United States)

    Wei, Jeng; Yin, Wei-Hsian; Lee, Yung-Tsai; Hsiung, Ming C; Tsai, Shen-Kou; Chuang, Yi Cheng; Ou, Ching-Huei; Chou, Yi-Pen

    2015-03-01

    Paravalvular leaks (PVLs) are a common complication of prosthetic valve replacement. Use of the transcatheter intervention technique is a suitable alternative in high-risk patients who may not tolerate repeat surgery. Common reasons for failure of this demanding intervention include poor imaging quality and unsuitable anatomy. The purpose of this study was to assess the usefulness and the incremental value of real-time three-dimensional (RT 3D) transesophageal echocardiography (TEE) over two-dimensional (2D) TEE findings in the evaluation of the geometry and track of mitral PVLs during transcatheter closure. Five patients with six mitral PVLs at high risk for repeat surgery underwent transcatheter leak closure. Intraoperative RT 3DTEE was used to assess the location, shape, number, and size of the defects. Transapical approaches were used in all cases with fluoroscopic and RT 3D TEE guidance of the wire and catheter, device positioning, and assessment of residual leak after the procedure. In all of the cases, defects with irregular crescent shapes and distorted tracks were clearly delineated by RT 3D TEE. This was compared to those results obtained through 2D TEE, which was unable to characterize the defects. Three cases showed small leaks, which were completely occluded with a patent ductus arteriosus (PDA) device in two cases, and a muscular ventricular septal defect (mVSD) occluder combined with coil devices in one case. One case involved a large leak and early device embolization of the muscular VSD occluder, which was removed surgically, and demonstrated a crescent-shaped defect. One patient had two releaks 2 months subsequent to the procedure due to two new extended leaks at the tails of the crescent-shaped defect. RT 3D TEE can clearly delineate the geometries of defects in their entirety, including shape, size, and location of the defect and track canal. It would also appear that RT 3D TEE is superior to 2D TEE in the process of guiding the wire through the

  7. Validation and Assessment of Multi-GNSS Real-Time Precise Point Positioning in Simulated Kinematic Mode Using IGS Real-Time Service

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2018-02-01

    Full Text Available Precise Point Positioning (PPP is a popular technology for precise applications based on the Global Navigation Satellite System (GNSS. Multi-GNSS combined PPP has become a hot topic in recent years with the development of multiple GNSSs. Meanwhile, with the operation of the real-time service (RTS of the International GNSS Service (IGS agency that provides satellite orbit and clock corrections to broadcast ephemeris, it is possible to obtain the real-time precise products of satellite orbits and clocks and to conduct real-time PPP. In this contribution, the real-time multi-GNSS orbit and clock corrections of the CLK93 product are applied for real-time multi-GNSS PPP processing, and its orbit and clock qualities are investigated, first with a seven-day experiment by comparing them with the final multi-GNSS precise product ‘GBM’ from GFZ. Then, an experiment involving real-time PPP processing for three stations in the Multi-GNSS Experiment (MGEX network with a testing period of two weeks is conducted in order to evaluate the convergence performance of real-time PPP in a simulated kinematic mode. The experimental result shows that real-time PPP can achieve a convergence performance of less than 15 min for an accuracy level of 20 cm. Finally, the real-time data streams from 12 globally distributed IGS/MGEX stations for one month are used to assess and validate the positioning accuracy of real-time multi-GNSS PPP. The results show that the simulated kinematic positioning accuracy achieved by real-time PPP on different stations is about 3.0 to 4.0 cm for the horizontal direction and 5.0 to 7.0 cm for the three-dimensional (3D direction.

  8. Two dimensional echocardiography in mitral, aortic and tricuspid valve prolapse - The clinical problem, cardiac nuclear imaging considerations and a proposed standard for diagnosis

    International Nuclear Information System (INIS)

    Morganroth, J.; Jones, R.H.; Chen, C.C.; Naito, M.; Thomas Jefferson University, Philadelphia, Pa.; Duke University, Medical Center, Durham, N.C.)

    1980-01-01

    The mitral valve prolapse syndrome may present with a variety of clinical manifestations and has proved to be a common cause of nonspecific cardiac symptoms in clinical practice. Primary and secondary forms must be distinguished. Myxomatous degeneration appears to be the common denominator of the primary form. The diagnostic standard of this form has not previously been defined because the detection of mitral leaflet tissue in the left atrium (prolapse) on physical examination or angiography is nonspecific. M mode echocardiography has greatly enhanced the recognition of this syndrome but has not proved to be the best diagnostic standard because of its limited view of mitral valve motion. The advent of two-dimensional echocardiography has provided the potential means for specific identification of the mitral leaflet motion in systole and can be considered the diagnostic standard for this syndrome. Primary myxomatous degeneration with leaflet prolapse is not localized to the mitral valve. Two-dimensional echocardiography has detected in preliminary studies tricuspid valve prolapse in up to 50% and aortic valve prolapse in about 20% of patients with idiopathic mitral valve prolapse

  9. Novel methods for real-time 3D facial recognition

    OpenAIRE

    Rodrigues, Marcos; Robinson, Alan

    2010-01-01

    In this paper we discuss our approach to real-time 3D face recognition. We argue the need for real time operation in a realistic scenario and highlight the required pre- and post-processing operations for effective 3D facial recognition. We focus attention to some operations including face and eye detection, and fast post-processing operations such as hole filling, mesh smoothing and noise removal. We consider strategies for hole filling such as bilinear and polynomial interpolation and Lapla...

  10. PRIMAS: a real-time 3D motion-analysis system

    Science.gov (United States)

    Sabel, Jan C.; van Veenendaal, Hans L. J.; Furnee, E. Hans

    1994-03-01

    The paper describes a CCD TV-camera-based system for real-time multicamera 2D detection of retro-reflective targets and software for accurate and fast 3D reconstruction. Applications of this system can be found in the fields of sports, biomechanics, rehabilitation research, and various other areas of science and industry. The new feature of real-time 3D opens an even broader perspective of application areas; animations in virtual reality are an interesting example. After presenting an overview of the hardware and the camera calibration method, the paper focuses on the real-time algorithms used for matching of the images and subsequent 3D reconstruction of marker positions. When using a calibrated setup of two cameras, it is now possible to track at least ten markers at 100 Hz. Limitations in the performance are determined by the visibility of the markers, which could be improved by adding a third camera.

  11. Real-time three-dimensional imaging of epidermal splitting and removal by high-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, Marc; Draye, Jean Pierre; Verween, Gunther

    2014-01-01

    While real-time 3-D evaluation of human skin constructs is needed, only 2-D non-invasive imaging techniques are available. The aim of this paper is to evaluate the potential of high-definition optical coherence tomography (HD-OCT) for real-time 3-D assessment of the epidermal splitting and decell......While real-time 3-D evaluation of human skin constructs is needed, only 2-D non-invasive imaging techniques are available. The aim of this paper is to evaluate the potential of high-definition optical coherence tomography (HD-OCT) for real-time 3-D assessment of the epidermal splitting...... before and after incubation. Real-time 3-D HD-OCT assessment was compared with 2-D en face assessment by reflectance confocal microscopy (RCM). (Immuno) histopathology was used as control. HD-OCT imaging allowed real-time 3-D visualization of the impact of selected agents on epidermal splitting, dermo......-epidermal junction, dermal architecture, vascular spaces and cellularity. RCM has a better resolution (1 μm) than HD-OCT (3 μm), permitting differentiation of different collagen fibres, but HD-OCT imaging has deeper penetration (570 μm) than RCM imaging (200 μm). Dispase II and NaCl treatments were found...

  12. Cardiac MR imaging: Comparison with echocardiography and dynamic CT

    International Nuclear Information System (INIS)

    Colletti, P.M.; Norris, S.; Raval, J.; Boswell, W.; Lee, K.; Ralls, P.; Haywood, J.; Halls, J.

    1986-01-01

    The authors compared gated cardiac MR imaging with two-dimensional and Doppler echocardiography and dynamic CT. Gated cardiac MR imaging (VISTA unit, 0.5 T) was performed in 55 patients with a variety of conditions. Accuracy of diagnosis was compared. CT showed arterial, valvular, and pericardial calcifications not seen on MR imaging. Many lesions were seen as well on CT as on MR imaging. Two-dimensional echocardiography was superior in demonstrating wall motion and valvular disease. MR imaging was superior in demonstrating myocardial structures

  13. Evaluation of right atrial dysfunction in patients with corrected tetralogy of Fallot using 3D speckle-tracking echocardiography. Insights from the CSONGRAD Registry and MAGYAR-Path Study.

    Science.gov (United States)

    Nemes, Attila; Havasi, Kálmán; Domsik, Péter; Kalapos, Anita; Forster, Tamás

    2015-11-01

    In recent studies, alterations in ventricular deformations were demonstrated in adult patients with corrected tetralogy of Fallot by three-dimensional speckle-tracking echocardiography. The present study was designed to assess three-dimensional speckle-tracking echocardiography-derived right atrial volumetric and strain parameters in corrected tetralogy of Fallot. A total of 17 patients with corrected tetralogy of Fallot were included in the study. Their results were compared with 18 age- and gender-matched healthy controls. Complete two-dimensional echocardiography and three-dimensional speckle-tracking echocardiography were performed in all cases. Significantly increased right atrial volumes respecting heart cycle were detected in patients with corrected tetralogy of Fallot. Total and passive atrial emptying fractions proved to be significantly decreased in patients with corrected tetralogy of Fallot (26.4 ± 12.4 % vs. 39.1 ± 8.8 %, p = 0.001 and 11.2 ± 6.8 % vs. 19.8 ± 9.0 %, p = 0.003, respectively). Global and mean segmental peak longitudinal (17.3 ± 9.2 % vs. 30.8 ± 11.2 %, p = 0.0007 and 20.6 ± 10.7 % vs. 34.4 ± 10.5 %, p = 0.0005) and area strains (20.1 ± 17.6 % vs. 41.0 ± 19.8 %, p = 0.004 and 28.1 ± 19.8 % vs. 49.1 ± 19.7 %, p = 0.004) as well as global radial peak strain (-9.1 ± 5.1 % vs. -15.0 ± 10.0 %, p = 0.05) were reduced in patients with corrected tetralogy of Fallot compared with controls. The complexity of right atrial dysfunction can be demonstrated by three-dimensional speckle-tracking echocardiography in patients with corrected tetralogy of Fallot.

  14. Incremental benefit of 3D transesophageal echocardiography: a case of a mass overlying a prosthetic mitral valve.

    Science.gov (United States)

    Tauras, James M; Zhang, Zhihang; Taub, Cynthia C

    2011-05-01

    A young woman with a mechanical mitral valve and prosthetic mitral stenosis underwent multiple imaging modalities (including transthoracic ECHO, fluoroscopy, and two-dimensional transesophageal ECHO) to determine the cause of her stenosis. Only three-dimensional transesophageal echocardiography demonstrated the full size and extent of an obstructing mass on the strut and sewing ring of the prosthetic mitral valve. © 2011, Wiley Periodicals, Inc.

  15. A systematic method for using 3D echocardiography to evaluate tricuspid valve insufficiency in hypoplastic left heart syndrome.

    Science.gov (United States)

    Mart, Christopher Robin; Eckhauser, Aaron Wesley; Murri, Michael; Su, Jason Thomas

    2014-09-01

    With surgical palliation of hypoplastic left heart syndrome (HLHS), the tricuspid valve (TV) becomes the systemic atrioventricular valve and moderate/severe TV insufficiency (TVI), an adverse risk factor for survival to Fontan, has been reported in up to 35% of patients prior to stage I palliation. Precise echocardiographic identification of the mechanism of TVI cannot be determined by two-dimensional echocardiography. Three-dimensional echocardiography (3DE) can provide significant insight into the mechanisms of TVI. It is the intent of this report to propose a systematic method on how to evaluate and display 3DE images of the TV in HLHS which has not been done previously. TV anatomy, function, and the known mechanisms of insufficiency are reviewed. We defined three regions of the TV (anterior, posterior, septal) that can help define valve "leaflets" that incorporates the many variations of TV anatomy. To determine how the surgeon views the TV, a picture of a pathologic specimen of the TV was placed on a computer screen and rotated until it was oriented as it appears during surgery, the "surgeons view." We have proposed a systematic method for evaluating and displaying the TV using 3DE which can provide significant insight into the mechanisms causing TVI in HLHS. This has the potential to improve both the surgical approach to repairing the valve and, ultimately, patient outcomes.

  16. The evaluation of single-view and multi-view fusion 3D echocardiography using image-driven segmentation and tracking.

    Science.gov (United States)

    Rajpoot, Kashif; Grau, Vicente; Noble, J Alison; Becher, Harald; Szmigielski, Cezary

    2011-08-01

    Real-time 3D echocardiography (RT3DE) promises a more objective and complete cardiac functional analysis by dynamic 3D image acquisition. Despite several efforts towards automation of left ventricle (LV) segmentation and tracking, these remain challenging research problems due to the poor-quality nature of acquired images usually containing missing anatomical information, speckle noise, and limited field-of-view (FOV). Recently, multi-view fusion 3D echocardiography has been introduced as acquiring multiple conventional single-view RT3DE images with small probe movements and fusing them together after alignment. This concept of multi-view fusion helps to improve image quality and anatomical information and extends the FOV. We now take this work further by comparing single-view and multi-view fused images in a systematic study. In order to better illustrate the differences, this work evaluates image quality and information content of single-view and multi-view fused images using image-driven LV endocardial segmentation and tracking. The image-driven methods were utilized to fully exploit image quality and anatomical information present in the image, thus purposely not including any high-level constraints like prior shape or motion knowledge in the analysis approaches. Experiments show that multi-view fused images are better suited for LV segmentation and tracking, while relatively more failures and errors were observed on single-view images. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. A comparison of left ventricular mass between two-dimensional echocardiography, using fundamental and tissue harmonic imaging, and cardiac MRI in patients with hypertension

    International Nuclear Information System (INIS)

    Alfakih, Khaled; Bloomer, Tim; Bainbridge, Samantha; Bainbridge, Gavin; Ridgway, John; Williams, Gordon; Sivananthan, Mohan

    2004-01-01

    Purpose: To compare left ventricular mass (LVM) as measured by two-dimensional (2D) echocardiography using two different calculation methods: truncated ellipse (TE) and area length (AL), in both fundamental and tissue harmonic imaging frequencies, to LVM as measured by, the current gold standard, cardiac magnetic resonance imaging (MRI). Turbo gradient echo (TGE) pulse sequence was utilized for MRI. Materials and methods: Thirty-two subjects with history of hypertension were recruited. The images were acquired, contours were traced and the LVM was calculated for all four different echocardiography methods as well as for the cardiac MRI method. The intra-observer variabilities were calculated. The four different echocardiography methods were compared to cardiac MRI using the method described by Bland and Altman. Results: Twenty-five subjects had adequate paired data sets. The mean LVM as measured by cardiac MRI was 162±55 g and for the four different echocardiography methods were: fundamental AL 165±55 g, harmonic AL 168±53 g, fundamental TE 148±50 g, harmonic TE 149±45 g. The intra-observer variability for cardiac MRI method, expressed as bias ± 1 standard deviation of the difference (S.D.D.), was 2.3±9.2 g and for the four different echocardiography methods were: fundamental TE 0.4±26.8 g, fundamental AL 0.6±27.0 g, harmonic TE 6.7±21.8 g, harmonic AL 6.4±22.9 g. The mean LVM for the AL method was closest to the cardiac MRI technique, while TE underestimated LVM. The 95% limits of agreement were consistently wide for all the 2D echocardiography modalities when compared with the cardiac MRI technique. Conclusion: The intra-observer variability in measurements of 2D echocardiographic LVM, together with the wide limits of agreement when compared to the gold standard (cardiac MRI) are sufficiently large to make serial estimates of LVM, of single patients or small groups of subjects, by 2D echocardiography, unreliable

  18. Handheld real-time volumetric 3-D gamma-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Haefner, Andrew, E-mail: ahaefner@lbl.gov [Lawrence Berkeley National Lab – Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Barnowski, Ross [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720 (United States); Luke, Paul; Amman, Mark [Lawrence Berkeley National Lab – Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Vetter, Kai [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720 (United States); Lawrence Berkeley National Lab – Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2017-06-11

    This paper presents the concept of real-time fusion of gamma-ray imaging and visual scene data for a hand-held mobile Compton imaging system in 3-D. The ability to obtain and integrate both gamma-ray and scene data from a mobile platform enables improved capabilities in the localization and mapping of radioactive materials. This not only enhances the ability to localize these materials, but it also provides important contextual information of the scene which once acquired can be reviewed and further analyzed subsequently. To demonstrate these concepts, the high-efficiency multimode imager (HEMI) is used in a hand-portable implementation in combination with a Microsoft Kinect sensor. This sensor, in conjunction with open-source software, provides the ability to create a 3-D model of the scene and to track the position and orientation of HEMI in real-time. By combining the gamma-ray data and visual data, accurate 3-D maps of gamma-ray sources are produced in real-time. This approach is extended to map the location of radioactive materials within objects with unknown geometry.

  19. Real-time luminescence from Al2O3 fiber dosimeters

    International Nuclear Information System (INIS)

    Polf, J.C.; Yukihara, E.G.; Akselrod, M.S.; McKeever, S.W.S.

    2004-01-01

    The real-time luminescence signal from Al 2 O 3 single crystal fibers, monitored during simultaneous irradiation and optical stimulation, was investigated using computer simulations and experimental measurements. Both radioluminescence (RL) and optically stimulated luminescence (OSL) signals were studied. The simulations were performed initially using a simple one-trap/one-recombination-center energy band model, and then extended to include shallow and deep electron traps as well. Real-time luminescence experiments were performed for different radiation dose rates and optical stimulation powers using periodic laser stimulation of the samples through a fiber optic cable, and the experimental results were compared with the predictions from the computer simulations. The luminescence signal was observed, both theoretically and experimentally, to increase from its initial value to a steady-state level. The steady-state RL and OSL levels were found to be dependent on dose rate, the steady-state level of the real-time OSL being independent of laser power. It was also shown that the total integrated absorbed dose throughout the irradiation period can be determined by correcting the real-time OSL signal for depletion caused by each laser stimulation pulse. The effects of the shallow and deep traps on the time-dependence of the real-time luminescence signal were studied comparing the experimental data from several Al 2 O 3 fibers known to have different trapping state concentrations. The additional traps were found to slow the response of the real-time luminescence such that the time to reach steady state was increased as the additional traps were added

  20. Three dimensional transesophageal echocardiography guided transcatheter closure of mitral paraprosthesis regurgitation – A case report

    Directory of Open Access Journals (Sweden)

    Vinay Kumar Sharma

    2013-05-01

    Full Text Available The last two decades have witnessed vast advances in the field of cardiac intervention, particularly with regard to nonsurgical closure of structural heart diseases including para prosthetic valvular leaks. The use of imaging techniques to guide even well-established procedures enhances the efficiency and safety of these procedures. The present case report aims to highlight the role of three dimensional transesophageal echocardiography in pre, intra and post operative management of patients with mitral para prosthetic valvular regurgitation.

  1. Real-time quasi-3D tomographic reconstruction

    Science.gov (United States)

    Buurlage, Jan-Willem; Kohr, Holger; Palenstijn, Willem Jan; Joost Batenburg, K.

    2018-06-01

    Developments in acquisition technology and a growing need for time-resolved experiments pose great computational challenges in tomography. In addition, access to reconstructions in real time is a highly demanded feature but has so far been out of reach. We show that by exploiting the mathematical properties of filtered backprojection-type methods, having access to real-time reconstructions of arbitrarily oriented slices becomes feasible. Furthermore, we present , software for visualization and on-demand reconstruction of slices. A user of can interactively shift and rotate slices in a GUI, while the software updates the slice in real time. For certain use cases, the possibility to study arbitrarily oriented slices in real time directly from the measured data provides sufficient visual and quantitative insight. Two such applications are discussed in this article.

  2. IPS – A SYSTEM FOR REAL-TIME NAVIGATION AND 3D MODELING

    Directory of Open Access Journals (Sweden)

    D. Grießbach

    2012-07-01

    Full Text Available fdaReliable navigation and 3D modeling is a necessary requirement for any autonomous system in real world scenarios. German Aerospace Center (DLR developed a system providing precise information about local position and orientation of a mobile platform as well as three-dimensional information about its environment in real-time. This system, called Integral Positioning System (IPS can be applied for indoor environments and outdoor environments. To achieve high precision, reliability, integrity and availability a multi-sensor approach was chosen. The important role of sensor data synchronization, system calibration and spatial referencing is emphasized because the data from several sensors has to be fused using a Kalman filter. A hardware operating system (HW-OS is presented, that facilitates the low-level integration of different interfaces. The benefit of this approach is an increased precision of synchronization at the expense of additional engineering costs. It will be shown that the additional effort is leveraged by the new design concept since the HW-OS methodology allows a proven, flexible and fast design process, a high re-usability of common components and consequently a higher reliability within the low-level sensor fusion. Another main focus of the paper is on IPS software. The DLR developed, implemented and tested a flexible and extensible software concept for data grabbing, efficient data handling, data preprocessing (e.g. image rectification being essential for thematic data processing. Standard outputs of IPS are a trajectory of the moving platform and a high density 3D point cloud of the current environment. This information is provided in real-time. Based on these results, information processing on more abstract levels can be executed.

  3. Real-time Risk Assessment for Aids to Navigation Using Fuzzy-FSA on Three-Dimensional Simulation System

    Directory of Open Access Journals (Sweden)

    Jinbiao Chen

    2014-06-01

    Full Text Available The risk level of the Aids to Navigation (AtoNs can reflect the ship navigation safety level in the channel to some extent. In order to appreciate the risk level of the aids to navigation (AtoNs in a navigation channel and to provide some decision-making suggestions for the AtoNs Maintenance and Management Department, the risk assessment index system of the AtoNs was built considering the advanced experience of IALA. Under the Formal Safety Assessment frame, taking the advantages of the fuzzy comprehensive evaluation method, the fuzzy-FSA model of risk assessment for aids to navigation was established. The model was implemented for the assessment of aids to navigation in Shanghai area based on the aids to navigation three-dimensional simulation system. The real-time data were extracted from the existing information system of aids to navigation, and the real-time risk assessment for aids to navigation of the chosen channel was performed on platform of the three-dimensional simulation system, with the risk assessment software. Specifically, the deep-water channel of the Yangtze River estuary was taken as an example to illustrate the general assessment procedure. The method proposed presents practical significance and application prospect on the maintenance and management of the aids to navigation.

  4. Measurement of left ventricular torsion using block-matching-based speckle tracking for two-dimensional echocardiography

    Science.gov (United States)

    Sun, Feng-Rong; Wang, Xiao-Jing; Wu, Qiang; Yao, Gui-Hua; Zhang, Yun

    2013-01-01

    Left ventricular (LV) torsion is a sensitive and global index of LV systolic and diastolic function, but how to noninvasively measure it is challenging. Two-dimensional echocardiography and the block-matching based speckle tracking method were used to measure LV torsion. Main advantages of the proposed method over the previous ones are summarized as follows: (1) The method is automatic, except for manually selecting some endocardium points on the end-diastolic frame in initialization step. (2) The diamond search strategy is applied, with a spatial smoothness constraint introduced into the sum of absolute differences matching criterion; and the reference frame during the search is determined adaptively. (3) The method is capable of removing abnormal measurement data automatically. The proposed method was validated against that using Doppler tissue imaging and some preliminary clinical experimental studies were presented to illustrate clinical values of the proposed method.

  5. Intracardiac echocardiography: use during transcatheter device closure of a patent ductus arteriosus in a dog.

    Science.gov (United States)

    Chetboul, V; Damoiseaux, C; Behr, L; Morlet, A; Moise, N S; Gouni, V; Lavennes, M; Pouchelon, J-L; Laborde, F; Borenstein, N

    2017-06-01

    Intracardiac echocardiography (ICE) is used in humans for percutaneous interventional procedures, such as transcatheter device closures. Intracardiac echocardiography provides high-resolution imaging of cardiac structures with two-dimensional, M-mode, Doppler, and also three-dimensional modalities. The present report describes application of ICE during transcatheter occlusion of patent ductus arteriosus using a canine ductal occluder in a dog for which transesophageal echocardiography could not provide an optimal acoustic window. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A brief history of fetal echocardiography and its impact on the management of congenital heart disease.

    Science.gov (United States)

    Maulik, Dev; Nanda, Navin C; Maulik, Devika; Vilchez, Gustavo

    2017-12-01

    Congenital heart disease (CHD), the most common congenital malformation, is associated with adverse outcome. Development of fetal echocardiography has made prenatal diagnosis of CHD a reality, and in the process revolutionized its management. This historical review briefly narrates this development over the decades focusing on the emergence of the primary modalities of fetal echocardiography comprised of the time-motion mode, two-dimensional B-mode, spectral Doppler, color Doppler, and three- and four-dimensional cardiac imaging. Collaboration between clinicians and engineers has been central to these advances. Also discussed are the accuracy and impact of fetal echocardiography on the management of CHD, and especially its role in the prenatal diagnosis of critical CHD in individualizing the management and improving the outcome. Despite these advances, most cases of CHD are not identified prenatally, emphasizing the continuing need for further technological and educational innovation and improvement. © 2017, Wiley Periodicals, Inc.

  7. Real-time simulation of large-scale floods

    Science.gov (United States)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  8. A study of the application of singular perturbation theory. [development of a real time algorithm for optimal three dimensional aircraft maneuvers

    Science.gov (United States)

    Mehra, R. K.; Washburn, R. B.; Sajan, S.; Carroll, J. V.

    1979-01-01

    A hierarchical real time algorithm for optimal three dimensional control of aircraft is described. Systematic methods are developed for real time computation of nonlinear feedback controls by means of singular perturbation theory. The results are applied to a six state, three control variable, point mass model of an F-4 aircraft. Nonlinear feedback laws are presented for computing the optimal control of throttle, bank angle, and angle of attack. Real Time capability is assessed on a TI 9900 microcomputer. The breakdown of the singular perturbation approximation near the terminal point is examined Continuation methods are examined to obtain exact optimal trajectories starting from the singular perturbation solutions.

  9. Real-time laser holographic interferometry for aerodynamics

    International Nuclear Information System (INIS)

    Lee, G.

    1987-01-01

    Recent developments in thermoplastic recording holograms and advancements in automated image digitalization and analysis make real-time laser holographic interferometry feasible for two-dimensional flows such as airfoil flows. Typical airfoil measurements would include airfoil pressure distributions, wake and boundary layer profiles, and flow field density contours. This paper addresses some of the problems and requirements of a real-time laser holographic interferometer. 13 references

  10. Evaluation of Left Ventricular Diastolic Dysfunction with Early Systolic Dysfunction Using Two-Dimensional Speckle Tracking Echocardiography in Canine Heart Failure Model.

    Science.gov (United States)

    Wu, Wei-Chun; Ma, Hong; Xie, Rong-Ai; Gao, Li-Jian; Tang, Yue; Wang, Hao

    2016-04-01

    This study evaluated the role of two-dimensional speckle tracking echocardiography (2DSTE) for predicting left ventricular (LV) diastolic dysfunction in pacing-induced canine heart failure. Pacing systems were implanted in 8 adult mongrel dogs, and continuous rapid right ventricular pacing (RVP, 240 beats/min) was maintained for 2 weeks. The obtained measurements from 2DSTE included global strain rate during early diastole (SRe) and during late diastole (SRa) in the longitudinal (L-SRe, L-SRa), circumferential (C-SRe, C-SRa), and radial directions (R-SRe, R-SRa). Changes in heart morphology were observed by light microscopy and transmission electron microscopy at 2 weeks. The onset of LV diastolic dysfunction with early systolic dysfunction occurred 3 days after RVP initiation. Most of the strain rate imaging indices were altered at 1 or 3 days after RVP onset and continued to worsen until heart failure developed. Light and transmission electron microscopy showed myocardial vacuolar degeneration and mitochondrial swelling in the left ventricular at 2 weeks after RVP onset. Pearson's correlation analysis revealed that parameters of conventional echocardiography and 2DSTE showed moderate correlation with LV pressure parameters, including E/Esep' (r = 0.58, P echocardiography and strain rate imaging could effectively predict LV diastolic dysfunction (area under the curve: E/Esep' 0.78; L-SRe 0.84; E/L-SRe 0.80; R-SRe 0.80). 2DSTE was a sensitive and accurate technique that could be used for predicting LV diastolic dysfunction in canine heart failure model. © 2015, Wiley Periodicals, Inc.

  11. Feature Space Dimensionality Reduction for Real-Time Vision-Based Food Inspection

    Directory of Open Access Journals (Sweden)

    Mai Moussa CHETIMA

    2009-03-01

    Full Text Available Machine vision solutions are becoming a standard for quality inspection in several manufacturing industries. In the processed-food industry where the appearance attributes of the product are essential to customer’s satisfaction, visual inspection can be reliably achieved with machine vision. But such systems often involve the extraction of a larger number of features than those actually needed to ensure proper quality control, making the process less efficient and difficult to tune. This work experiments with several feature selection techniques in order to reduce the number of attributes analyzed by a real-time vision-based food inspection system. Identifying and removing as much irrelevant and redundant information as possible reduces the dimensionality of the data and allows classification algorithms to operate faster. In some cases, accuracy on classification can even be improved. Filter-based and wrapper-based feature selectors are experimentally evaluated on different bakery products to identify the best performing approaches.

  12. Three-dimensional echocardiography: assessment of inter- and intra-operator variability and accuracy in the measurement of left ventricular cavity volume and myocardial mass

    International Nuclear Information System (INIS)

    Nadkarni, S.K.; Drangova, M.; Boughner, D.R.; Fenster, A.; Department of Medical Biophysics, Medical Sciences Building, University of Western Ontario, London, Ontario N6A 5C1

    2000-01-01

    Accurate left ventricular (LV) volume and mass estimation is a strong predictor of cardiovascular morbidity and mortality. We propose that our technique of 3D echocardiography provides an accurate quantification of LV volume and mass by the reconstruction of 2D images into 3D volumes, thus avoiding the need for geometric assumptions. We compared the accuracy and variability in LV volume and mass measurement using 3D echocardiography with 2D echocardiography, using in vitro studies. Six operators measured the LV volume and mass of seven porcine hearts, using both 3D and 2D techniques. Regression analysis was used to test the accuracy of results and an ANOVA test was used to compute variability in measurement. LV volume measurement accuracy was 9.8% (3D) and 18.4% (2D); LV mass measurement accuracy was 5% (3D) and 9.2% (2D). Variability in LV volume quantification with 3D echocardiography was %SEM inter = 13.5%, %SEM intra = 11.4%, and for 2D echocardiography was %SEM inter = 21.5%, %SEM intra = 19.1%. We derived an equation to predict uncertainty in measurement of LV volume and mass using 3D echocardiography, the results of which agreed with our experimental results to within 13%. 3D echocardiography provided twice the accuracy for LV volume and mass measurement and half the variability for LV volume measurement as compared with 2D echocardiography. (author)

  13. Real-Time 3D Profile Measurement Using Structured Light

    International Nuclear Information System (INIS)

    Xu, L; Zhang, Z J; Ma, H; Yu, Y J

    2006-01-01

    The paper builds a real-time system of 3D profile measurement using structured-light imaging. It allows a hand-held object to rotate free in the space-time coded light field, which is projected by the projector. The surface of measured objects with projected coded light is imaged; the system shows surface reconstruction results of objects online. This feedback helps user to adjust object's pose in the light field according to the dismissed or error data, which would achieve the integrality of data used in reconstruction. This method can acquire denser data cloud and have higher reconstruction accuracy and efficiency. According to the real-time requirements, the paper presents the non-restricted light plane modelling which suits stripe structured light system, designs the three-frame stripes space-time coded pattern, and uses the advance ICP algorithms to acquire 3D data alignment from multiple view

  14. Left Ventricular Function after Arterial Switch Operation as Assessed by Two-Dimensional Speckle-Tracking Echocardiography in Patients with Simple Transposition of the Great Arteries.

    Science.gov (United States)

    Malakan Rad, Elaheh; Ghandi, Yazdan; Kocharian, Armen; Mirzaaghayan, Mohammadreza

    2016-07-06

    Background: The late postoperative course for children with transposition of the great arteries (TGA) with an intact ventricular septum (IVS) is very important because the coronary arteries may be at risk of damage during arterial switch operation (ASO). We sought to investigate left ventricular function in patients with TGA/IVS by echocardiography. Methods: From March 2011 to December 2012, totally 20 infants (12 males and 8 females) with TGA/IVS were evaluated via 2-dimensional speckle-tracking echocardiography (2D STE) more than 6 months after they underwent ASO. A control group of age-matched infants and children was also studied. Left ventricular longitudinal strain (S), strain rate (SR), time to peak systolic longitudinal strain (TPS), and time to peak systolic longitudinal strain rate (TPSR) were measured and compared between the 2 groups. Results: Mean ± SD of age at the time of study in the patients with TGA/IVS was 15 ± 5 months, and also age at the time of ASO was 12 ± 3 days. Weight was 3.13 ± 0.07 kg at birth and 8.83 ± 1.57 kg at the time of ASO. Global strain (S), Time to peak strain rate (TPSR), and Time to peak strain (TPS) were not significantly different between the 2 groups, whereas global strain rate (SR) was significantly different (p value < 0.001). In the 3-chamber view, the values of S in the lateral, septal, inferior, and anteroseptal walls were significantly different between the 2 groups (p value < 0.001), and SR in the posterior wall was significantly different between the 2 groups (p value < 0.001). There were no positive correlations between S and SR in terms of the variables of heart rate, total cardiopulmonary bypass time, and aortic cross-clamp time. There were no statistically significant differences between the 2 groups regarding S, SR, TPS, and TPSR in the anteroseptal and posterior walls in the 3-chamber view and in the lateral and septal walls in the 4-chamber view. Conclusion: We showed that between 6 and 18 months after

  15. Visualization of patent ductus arteriosus using real-time three-dimensional echocardiogram: Comparative study with 2D echocardiogram and angiography.

    Science.gov (United States)

    Roushdy, Alaa; Fiky, Azza El; Din, Dina Ezz El

    2012-07-01

    To determine the feasibility and accuracy of real time 3D echocardiography (RT3DE) in determining the dimensions and anatomical type of the patent ductus arteriosus (PDA). The study included 42 pediatric patients with a mean age of 3.6 years (ranging from 2 months to 14 years) who were referred for elective percutaneous PDA closure. All patients underwent full 2D echocardiogram as well as RT3DE with off line analysis using Q lab software within 6 h from their angiograms. The PDA was studied as regard the anatomical type, length of the duct as well as the ampulla and the pulmonary end of the PDA. Data obtained by RT3DE was compared against 2D echocardiogram and the gold standard angiography. Offline analysis of the PDA was feasible in 97.6% of the cases while determination of the anatomical type using gated color flow 3D acquisitions was achieved in 78.5% of the cases. The pulmonary end of the duct was rather elliptical using 3D echocardiogram. There was significant difference between the pulmonary end measured by 3D echocardiogram and angiography (P ductus compared to 2D echocardiogram. 3D echocardiogram was more accurate than 2D echocardiogram in determining the length and the ampulla of the PDA. The morphologic assessment of the PDA using gated 3D color flow was achieved in 78.5% of the patients. Nevertheless the use of 3D echocardiogram in assessment of small vascular structures like PDA in children with rapid heart rates is still of limited clinical value.

  16. Large holographic displays for real-time applications

    Science.gov (United States)

    Schwerdtner, A.; Häussler, R.; Leister, N.

    2008-02-01

    Holography is generally accepted as the ultimate approach to display three-dimensional scenes or objects. Principally, the reconstruction of an object from a perfect hologram would appear indistinguishable from viewing the corresponding real-world object. Up to now two main obstacles have prevented large-screen Computer-Generated Holograms (CGH) from achieving a satisfactory laboratory prototype not to mention a marketable one. The reason is a small cell pitch CGH resulting in a huge number of hologram cells and a very high computational load for encoding the CGH. These seemingly inevitable technological hurdles for a long time have not been cleared limiting the use of holography to special applications, such as optical filtering, interference, beam forming, digital holography for capturing the 3-D shape of objects, and others. SeeReal Technologies has developed a new approach for real-time capable CGH using the socalled Tracked Viewing Windows technology to overcome these problems. The paper will show that today's state of the art reconfigurable Spatial Light Modulators (SLM), especially today's feasible LCD panels are suited for reconstructing large 3-D scenes which can be observed from large viewing angles. For this to achieve the original holographic concept of containing information from the entire scene in each part of the CGH has been abandoned. This substantially reduces the hologram resolution and thus the computational load by several orders of magnitude making thus real-time computation possible. A monochrome real-time prototype measuring 20 inches has been built and demonstrated at last year's SID conference and exhibition 2007 and at several other events.

  17. Usefulness of exercise echocardiography in ischemic heart disease. Comparison with exercise cardiac scintigraphy

    International Nuclear Information System (INIS)

    Tashiro, Hideki; Koyanagi, Samon; Narabayashi, Hideki; Inou, Tetsuji; Takeshita, Akira

    1999-01-01

    Exercise echocardiography and exercise thallium-201 ( 201 Tl) single photon emission computed tomography (SPECT) were performed in 152 patients with suspected coronary artery disease, including 61 patients with old myocardial infarction. All patients underwent coronary arteriography, and coronary artery disease was defined as ≥75% diameter stenosis. Digital two-dimensional echocardiography was performed before and after the treadmill exercise test, and wall motion abnormality was evaluated using quad-screen. Sensitivity and specificity for the diagnosis of coronary artery disease were similar for the 2 exercise tests (77% and 80% for echocardiography and 75%, and 83% for SPECT, respectively). Diagnoses for one-vessel disease, 2-vessel disease and 3-vessel disease were similar for echocardiography (79%, 72% and 77%, respectively) and SPECT (74%, 75% and 77%, respectively). Sensitivity for the diagnosis of ischemia at the area remote from infarct area was low for both exercise echocardiography and exercise SPECT (45% and 48%, respectively). Exercise echocardiography has comparable diagnostic value to SPECT for the detection of coronary artery disease. However, both exercise tests have limitations for the diagnosis of ischemia at the area remote from infarct area. (author)

  18. On-Orbit Prospective Echocardiography on International Space Station

    Science.gov (United States)

    Hamilton, Douglas R.; Sargsyan, Ashot E.; Martin, David; Garcia, Kathleen M.; Melton, Shannon; Feiverson, Alan; Dulchavsky, Scott A.

    2010-01-01

    A number of echocardiographic research projects and experiments have been flown on almost every space vehicle since 1970, but validation of standard methods and the determination of Space Normal cardiac function has not been reported to date. Advanced Diagnostics in Microgravity (ADUM) -remote guided echocardiographic technique provides a novel and effective approach to on-board assessment of cardiac physiology and structure using a just-in-time training algorithm and real-time remote guidance aboard the International Space Station (ISS). The validation of remotely guided echocardiographic techniques provides the procedures and protocols to perform scientific and clinical echocardiography on the ISS and the Moon. The objectives of this study were: 1.To confirm the ability of non-physician astronaut/cosmonaut crewmembers to perform clinically relevant remotely guided echocardiography using the Human Research Facility on board the ISS. 2.To compare the preflight, postflight and in-flight echocardiographic parameters commonly used in clinical medicine.

  19. Clinical feasibility and validation of 3D principal strain analysis from cine MRI: comparison to 2D strain by MRI and 3D speckle tracking echocardiography.

    Science.gov (United States)

    Satriano, Alessandro; Heydari, Bobak; Narous, Mariam; Exner, Derek V; Mikami, Yoko; Attwood, Monica M; Tyberg, John V; Lydell, Carmen P; Howarth, Andrew G; Fine, Nowell M; White, James A

    2017-12-01

    Two-dimensional (2D) strain analysis is constrained by geometry-dependent reference directions of deformation (i.e. radial, circumferential, and longitudinal) following the assumption of cylindrical chamber architecture. Three-dimensional (3D) principal strain analysis may overcome such limitations by referencing intrinsic (i.e. principal) directions of deformation. This study aimed to demonstrate clinical feasibility of 3D principal strain analysis from routine 2D cine MRI with validation to strain from 2D tagged cine analysis and 3D speckle tracking echocardiography. Thirty-one patients undergoing cardiac MRI were studied. 3D strain was measured from routine, multi-planar 2D cine SSFP images using custom software designed to apply 4D deformation fields to 3D cardiac models to derive principal strain. Comparisons of strain estimates versus those by 2D tagged cine, 2D non-tagged cine (feature tracking), and 3D speckle tracking echocardiography (STE) were performed. Mean age was 51 ± 14 (36% female). Mean LV ejection fraction was 66 ± 10% (range 37-80%). 3D principal strain analysis was feasible in all subjects and showed high inter- and intra-observer reproducibility (ICC range 0.83-0.97 and 0.83-0.98, respectively-p analysis is feasible using routine, multi-planar 2D cine MRI and shows high reproducibility with strong correlations to 2D conventional strain analysis and 3D STE-based analysis. Given its independence from geometry-related directions of deformation this technique may offer unique benefit for the detection and prognostication of myocardial disease, and warrants expanded investigation.

  20. Comparison of Quantitative Wall Motion Analysis and Strain For Detection Of Coronary Stenosis With Three-Dimensional Dobutamine Stress Echocardiography

    Science.gov (United States)

    Parker, Katherine M.; Clark, Alexander P.; Goodman, Norman C.; Glover, David K.; Holmes, Jeffrey W.

    2015-01-01

    Background Quantitative analysis of wall motion from three-dimensional (3D) dobutamine stress echocardiography (DSE) could provide additional diagnostic information not available from qualitative analysis. In this study we compare the effectiveness of 3D fractional shortening (3DFS), a measure of wall motion computed from 3D echocardiography (3DE), to strain and strain rate measured with sonomicrometry for detecting critical stenoses during DSE. Methods Eleven open-chest dogs underwent DSE both with and without a critical stenosis. 3DFS was measured from 3DE images acquired at peak stress. 3DFS was normalized by subtracting average 3DFS during control peak stress (Δ3DFS). Strains in the perfusion defect (PD) were measured from sonomicrometry, and PD size and location were measured with microspheres. Results A Δ3DFS abnormality indicated the presence of a critical stenosis with high sensitivity and specificity (88% and 100%, respectively), and Δ3DFS abnormality size correlated with PD size (R2=0.54). The sensitivity and specificity for Δ3DFS was similar to that for area strain (88%, 100%) and circumferential strain and strain rate (88%, 92% and 88%, 86%, respectively), while longitudinal strain and strain rate were less specific. Δ3DFS correlated significantly with both coronary flow reserve (R2=0.71) and PD size (R2=0.97), while area strain correlated with PD size only (R2=0.67), and other measures were not significantly correlated with flow reserve or PD size. Conclusion Quantitative wall motion analysis using Δ3DFS is effective for detecting critical stenoses during DSE, performing similarly to 3D strain, and provides potentially useful information on the size and location of a perfusion defect. PMID:24815588

  1. Enhancement of Online Robotics Learning Using Real-Time 3D Visualization Technology

    Directory of Open Access Journals (Sweden)

    Richard Chiou

    2010-06-01

    Full Text Available This paper discusses a real-time e-Lab Learning system based on the integration of 3D visualization technology with a remote robotic laboratory. With the emergence and development of the Internet field, online learning is proving to play a significant role in the upcoming era. In an effort to enhance Internet-based learning of robotics and keep up with the rapid progression of technology, a 3- Dimensional scheme of viewing the robotic laboratory has been introduced in addition to the remote controlling of the robots. The uniqueness of the project lies in making this process Internet-based, and remote robot operated and visualized in 3D. This 3D system approach provides the students with a more realistic feel of the 3D robotic laboratory even though they are working remotely. As a result, the 3D visualization technology has been tested as part of a laboratory in the MET 205 Robotics and Mechatronics class and has received positive feedback by most of the students. This type of research has introduced a new level of realism and visual communications to online laboratory learning in a remote classroom.

  2. Endocardial left ventricle feature tracking and reconstruction from tri-plane trans-esophageal echocardiography data

    Science.gov (United States)

    Dangi, Shusil; Ben-Zikri, Yehuda K.; Cahill, Nathan; Schwarz, Karl Q.; Linte, Cristian A.

    2015-03-01

    Two-dimensional (2D) ultrasound (US) has been the clinical standard for over two decades for monitoring and assessing cardiac function and providing support via intra-operative visualization and guidance for minimally invasive cardiac interventions. Developments in three-dimensional (3D) image acquisition and transducer design and technology have revolutionized echocardiography imaging enabling both real-time 3D trans-esophageal and intra-cardiac image acquisition. However, in most cases the clinicians do not access the entire 3D image volume when analyzing the data, rather they focus on several key views that render the cardiac anatomy of interest during the US imaging exam. This approach enables image acquisition at a much higher spatial and temporal resolution. Two such common approaches are the bi-plane and tri-plane data acquisition protocols; as their name states, the former comprises two orthogonal image views, while the latter depicts the cardiac anatomy based on three co-axially intersecting views spaced at 600 to one another. Since cardiac anatomy is continuously changing, the intra-operative anatomy depicted using real-time US imaging also needs to be updated by tracking the key features of interest and endocardial left ventricle (LV) boundaries. Therefore, rapid automatic feature tracking in US images is critical for three reasons: 1) to perform cardiac function assessment; 2) to identify location of surgical targets for accurate tool to target navigation and on-target instrument positioning; and 3) to enable pre- to intra-op image registration as a means to fuse pre-op CT or MR images used during planning with intra-operative images for enhanced guidance. In this paper we utilize monogenic filtering, graph-cut based segmentation and robust spline smoothing in a combined work flow to process the acquired tri-plane TEE time series US images and demonstrate robust and accurate tracking of the LV endocardial features. We reconstruct the endocardial LV

  3. Noninvasive Localization of Accessory Pathways in Wolff-Parkinson-White Syndrome by Three-Dimensional Speckle Tracking Echocardiography.

    Science.gov (United States)

    Ishizu, Tomoko; Seo, Yoshihiro; Igarashi, Miyako; Sekiguchi, Yukio; Machino-Ohtsuka, Tomoko; Ogawa, Kojiro; Kuroki, Kenji; Yamamoto, Masahiro; Nogami, Akihiko; Kawakami, Yasushi; Aonuma, Kazutaka

    2016-06-01

    We have developed a noninvasive isochrone activation imaging (AI) system with 3-dimensional (3D) speckle tracking echocardiography (STE), which allows visualization of the wavefront image of mechanical propagation of the accessory pathway (ACP) in Wolff-Parkinson-White syndrome. Patients with manifest Wolff-Parkinson-White syndrome were imaged in 3D-STE AI mode, which quantified the time from QRS onset to regional endocardial deformation. In 2 patients with left- and right-side ACP, we confirmed that intraoperative contact endocardial electric mapping and the 3D-STE AI system showed comparable images pre- and postablation. In normal heart assessment by 3D-echo AI, the earliest activation sites were found at the attachment of the papillary muscles in the left ventricle and midseptum in the right ventricle, and none showed earliest activation at the peri-atrioventricular valve annuli. An analyzer who was unaware of the clinical information assessed 39 ACP locations in 38 Wolff-Parkinson-White syndrome patients using 3D-STE. All showed abnormal perimitral or tricuspid annular activations, and the location of 34 ACP (87%) showed agreement with the successful ablation sites within a 2-o'clock range. Especially for left free wall ACP, 17/18 (94%) showed consistency with the ablation site within a 2 o'clock range. Among 15 ACP at the ventricular septum, 9 (60%) showed early local activation in both right and left sides of the septum. Isochrone AI with 3D-STE may be a promising noninvasive imaging tool to assess cardiac synchronized activation in normal hearts and detect abnormal breakthrough of mechanical activation from both atrioventricular annuli in Wolff-Parkinson-White syndrome. © 2016 American Heart Association, Inc.

  4. Elevational spatial compounding for enhancing image quality in echocardiography

    OpenAIRE

    Perperidis, Antonios; McDicken, Norman; MacGillivray, Tom; Anderson, Tom

    2016-01-01

    Introduction Echocardiography is commonly used in clinical practice for the real-time assessment of cardiac morphology and function. Nevertheless, due to the nature of the data acquisition, cardiac ultrasound images are often corrupted by a range of acoustic artefacts, including acoustic noise, speckle and shadowing. Spatial compounding techniques have long been recognised for their ability to suppress common ultrasound artefacts, enhancing the imaged cardiac structures. However, they require...

  5. Real-time computational photon-counting LiDAR

    Science.gov (United States)

    Edgar, Matthew; Johnson, Steven; Phillips, David; Padgett, Miles

    2018-03-01

    The availability of compact, low-cost, and high-speed MEMS-based spatial light modulators has generated widespread interest in alternative sampling strategies for imaging systems utilizing single-pixel detectors. The development of compressed sensing schemes for real-time computational imaging may have promising commercial applications for high-performance detectors, where the availability of focal plane arrays is expensive or otherwise limited. We discuss the research and development of a prototype light detection and ranging (LiDAR) system via direct time of flight, which utilizes a single high-sensitivity photon-counting detector and fast-timing electronics to recover millimeter accuracy three-dimensional images in real time. The development of low-cost real time computational LiDAR systems could have importance for applications in security, defense, and autonomous vehicles.

  6. Echocardiography and cardiac resynchronisation therapy, friends or foes?

    Science.gov (United States)

    van Everdingen, W M; Schipper, J C; van 't Sant, J; Ramdat Misier, K; Meine, M; Cramer, M J

    2016-01-01

    Echocardiography is used in cardiac resynchronisation therapy (CRT) to assess cardiac function, and in particular left ventricular (LV) volumetric status, and prediction of response. Despite its widespread applicability, LV volumes determined by echocardiography have inherent measurement errors, interobserver and intraobserver variability, and discrepancies with the gold standard magnetic resonance imaging. Echocardiographic predictors of CRT response are based on mechanical dyssynchrony. However, parameters are mainly tested in single-centre studies or lack feasibility. Speckle tracking echocardiography can guide LV lead placement, improving volumetric response and clinical outcome by guiding lead positioning towards the latest contracting segment. Results on optimisation of CRT device settings using echocardiographic indices have so far been rather disappointing, as results suffer from noise. Defining response by echocardiography seems valid, although re-assessment after 6 months is advisable, as patients can show both continuous improvement as well as deterioration after the initial response. Three-dimensional echocardiography is interesting for future implications, as it can determine volume, dyssynchrony and viability in a single recording, although image quality needs to be adequate. Deformation patterns from the septum and the derived parameters are promising, although validation in a multicentre trial is required. We conclude that echocardiography has a pivotal role in CRT, although clinicians should know its shortcomings.

  7. Echocardiography in Infective Endocarditis: State of the Art.

    Science.gov (United States)

    Afonso, Luis; Kottam, Anupama; Reddy, Vivek; Penumetcha, Anirudh

    2017-10-25

    In this review, we examine the central role of echocardiography in the diagnosis, prognosis, and management of infective endocarditis (IE). 2D transthoracic echocardiography (TTE) and transesophageal echocardiography TEE have complementary roles and are unequivocally the mainstay of diagnostic imaging in IE. The advent of 3D and multiplanar imaging have greatly enhanced the ability of the imager to evaluate cardiac structure and function. Technologic advances in 3D imaging allow for the reconstruction of realistic anatomic images that in turn have positively impacted IE-related surgical planning and intervention. CT and metabolic imaging appear to be emerging as promising ancillary diagnostic tools that could be deployed in select scenarios to circumvent some of the limitations of echocardiography. Our review summarizes the indispensable and central role of various echocardiographic modalities in the management of infective endocarditis. The complementary role of 2D TTE and TEE are discussed and areas where 3D TEE offers incremental value highlighted. An algorithm summarizing a contemporary approach to the workup of endocarditis is provided and major societal guidelines for timing of surgery are reviewed.

  8. Quantitation of valve regurgitation severity by three-dimensional vena contracta area is superior to flow convergence method of quantitation on transesophageal echocardiography.

    Science.gov (United States)

    Abudiab, Muaz M; Chao, Chieh-Ju; Liu, Shuang; Naqvi, Tasneem Z

    2017-07-01

    Quantitation of regurgitation severity using the proximal isovelocity acceleration (PISA) method to calculate effective regurgitant orifice (ERO) area has limitations. Measurement of three-dimensional (3D) vena contracta area (VCA) accurately grades mitral regurgitation (MR) severity on transthoracic echocardiography (TTE). We evaluated 3D VCA quantitation of regurgitant jet severity using 3D transesophageal echocardiography (TEE) in 110 native mitral, aortic, and tricuspid valves and six prosthetic valves in patients with at least mild valvular regurgitation. The ASE-recommended integrative method comprising semiquantitative and quantitative assessment of valvular regurgitation was used as a reference method, including ERO area by 2D PISA for assigning severity of regurgitation grade. Mean age was 62.2±14.4 years; 3D VCA quantitation was feasible in 91% regurgitant valves compared to 78% by the PISA method. When both methods were feasible and in the presence of a single regurgitant jet, 3D VCA and 2D PISA were similar in differentiating assigned severity (ANOVAP<.001). In valves with multiple jets, however, 3D VCA had a better correlation to assigned severity (ANOVAP<.0001). The agreement of 2D PISA and 3D VCA with the integrative method was 47% and 58% for moderate and 65% and 88% for severe regurgitation, respectively. Measurement of 3D VCA by TEE is superior to the 2D PISA method in determination of regurgitation severity in multiple native and prosthetic valves. © 2017, Wiley Periodicals, Inc.

  9. Evaluation of Left Atrial Volumes Using Multidetector Computed Tomography: Comparison with Echocardiography

    International Nuclear Information System (INIS)

    Gweon, Hye Mi; Kim, Sang Jin; Kim, Tae Hoon; Lee, Sang Min; Hong, Yoo Jin; Rim, Se Joong

    2010-01-01

    To prospectively assess the relationship between the two different measurement methods for the evaluation of left atrial (LA) volume using cardiac multidetector computed tomography (MDCT) and to compare the results between cardiac MDCT and echocardiography. Thirty-five patients (20 men, 15 women; mean age, 60 years) underwent cardiac MDCT angiography for coronary artery disease. The LA volumes were measured using two different methods: the two dimensional (2D) length-based (LB) method measured along the three-orthogonal planes of the LA and the 3D volumetric threshold-based (VTB) method measured according to the threshold 3D segmentation of the LA. The results obtained by cardiac MDCT were compared with those obtained by echocardiography. The LA end-systolic and end-diastolic volumes (LAESV and LAEDV) measured by the 2D-LB method correlated well with those measured by the 3DVTB method using cardiac MDCT (r = 0.763, r = 0.786, p = 0.001). However, there was a significant difference in the LAESVs between the two measurement methods using cardiac MDCT (p < 0.05). The LAESV measured by cardiac MDCT correlated well with measurements by echocardiography (r = 0.864, p = 0.001), however with a significant difference (p < 0.01) in their volumes. The cardiac MDCT overestimated the LAESV by 22% compared to measurements by echocardiography. A significant correlation was found between the two different measurement methods for evaluating LA volumes by cardiac MDCT. Further, cardiac MDCT correlates well with echocardiography in evaluating the LA volume. However, there are significant differences in the LAESV between the two measurement methods using cardiac MDCT and between cardiac MDCT and echocardiography

  10. Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration.

    Science.gov (United States)

    Su, Li-Ming; Vagvolgyi, Balazs P; Agarwal, Rahul; Reiley, Carol E; Taylor, Russell H; Hager, Gregory D

    2009-04-01

    To investigate a markerless tracking system for real-time stereo-endoscopic visualization of preoperative computed tomographic imaging as an augmented display during robot-assisted laparoscopic partial nephrectomy. Stereoscopic video segments of a patient undergoing robot-assisted laparoscopic partial nephrectomy for tumor and another for a partial staghorn renal calculus were processed to evaluate the performance of a three-dimensional (3D)-to-3D registration algorithm. After both cases, we registered a segment of the video recording to the corresponding preoperative 3D-computed tomography image. After calibrating the camera and overlay, 3D-to-3D registration was created between the model and the surgical recording using a modified iterative closest point technique. Image-based tracking technology tracked selected fixed points on the kidney surface to augment the image-to-model registration. Our investigation has demonstrated that we can identify and track the kidney surface in real time when applied to intraoperative video recordings and overlay the 3D models of the kidney, tumor (or stone), and collecting system semitransparently. Using a basic computer research platform, we achieved an update rate of 10 Hz and an overlay latency of 4 frames. The accuracy of the 3D registration was 1 mm. Augmented reality overlay of reconstructed 3D-computed tomography images onto real-time stereo video footage is possible using iterative closest point and image-based surface tracking technology that does not use external navigation tracking systems or preplaced surface markers. Additional studies are needed to assess the precision and to achieve fully automated registration and display for intraoperative use.

  11. Real-time tracking with a 3D-flow processor array

    International Nuclear Information System (INIS)

    Crosetto, D.

    1993-01-01

    The problem of real-time track-finding has been performed to date with CAM (Content Addressable Memories) or with fast coincidence logic, because the processing scheme was though to have much slower performance. Advances in technology together with a new architectural approach make it feasible to also explore the computing technique for real-time track finding thus giving the advantages of implementing algorithms that can find more parameters such as calculate the sagitta, curvature, pt, etc. with respect to the CAM approach. This report describes real-time track finding using a new computing approach technique based on the 3D-flow array processor system. This system consists of a fixed interconnection architexture scheme, allowing flexible algorithm implementation on a scalable platform. The 3D-Flow parallel processing system for track finding is scalable in size and performance by either increasing the number of processors, or increasing the speed or else the number of pipelined stages. The present article describes the conceptual idea and the design stage of the project

  12. Real-time tracking with a 3D-Flow processor array

    International Nuclear Information System (INIS)

    Crosetto, D.

    1993-06-01

    The problem of real-time track-finding has been performed to date with CAM (Content Addressable Memories) or with fast coincidence logic, because the processing scheme was thought to have much slower performance. Advances in technology together with a new architectural approach make it feasible to also explore the computing technique for real-time track finding thus giving the advantages of implementing algorithms that can find more parameters such as calculate the sagitta, curvature, pt, etc., with respect to the CAM approach. The report describes real-time track finding using new computing approach technique based on the 3D-Flow array processor system. This system consists of a fixed interconnection architecture scheme, allowing flexible algorithm implementation on a scalable platform. The 3D-Flow parallel processing system for track finding is scalable in size and performance by either increasing the number of processors, or increasing the speed or else the number of pipelined stages. The present article describes the conceptual idea and the design stage of the project

  13. Towards a Three-Dimensional Near-Real Time Cloud Product for Aviation Safety and Weather Diagnoses

    Science.gov (United States)

    Minnis, Patrick; Nguyen, Louis; Palikonda, Rabindra; Spangeberg, Douglas; Nordeen, Michele L.; Yi, Yu-Hong; Ayers, J. Kirk

    2004-01-01

    Satellite data have long been used for determining the extent of cloud cover and for estimating the properties at the cloud tops. The derived properties can also be used to estimate aircraft icing potential to improve the safety of air traffic in the region. Currently, cloud properties and icing potential are derived in near-real time over the United States of America (USA) from the Geostationary Operational Environmental Satellite GOES) imagers at 75 W and 135 W. Traditionally, the results have been given in two dimensions because of the lack of knowledge about the vertical extent of clouds and the occurrence of overlapping clouds. Aircraft fly in a three-dimensional space and require vertical as well as horizontal information about clouds, their intensity, and their potential for icing. To improve the vertical component of the derived cloud and icing parameters, this paper explores various methods and datasets for filling in the three-dimensional space over the USA with cloud water.

  14. 3D Printed "Earable" Smart Devices for Real-Time Detection of Core Body Temperature.

    Science.gov (United States)

    Ota, Hiroki; Chao, Minghan; Gao, Yuji; Wu, Eric; Tai, Li-Chia; Chen, Kevin; Matsuoka, Yasutomo; Iwai, Kosuke; Fahad, Hossain M; Gao, Wei; Nyein, Hnin Yin Yin; Lin, Liwei; Javey, Ali

    2017-07-28

    Real-time detection of basic physiological parameters such as blood pressure and heart rate is an important target in wearable smart devices for healthcare. Among these, the core body temperature is one of the most important basic medical indicators of fever, insomnia, fatigue, metabolic functionality, and depression. However, traditional wearable temperature sensors are based upon the measurement of skin temperature, which can vary dramatically from the true core body temperature. Here, we demonstrate a three-dimensional (3D) printed wearable "earable" smart device that is designed to be worn on the ear to track core body temperature from the tympanic membrane (i.e., ear drum) based on an infrared sensor. The device is fully integrated with data processing circuits and a wireless module for standalone functionality. Using this smart earable device, we demonstrate that the core body temperature can be accurately monitored regardless of the environment and activity of the user. In addition, a microphone and actuator are also integrated so that the device can also function as a bone conduction hearing aid. Using 3D printing as the fabrication method enables the device to be customized for the wearer for more personalized healthcare. This smart device provides an important advance in realizing personalized health care by enabling real-time monitoring of one of the most important medical parameters, core body temperature, employed in preliminary medical screening tests.

  15. Real-time monitoring/emergency response modeling workstation for a tritium facility

    International Nuclear Information System (INIS)

    Lawver, B.S.; Sims, J.M.; Baskett, R.L.

    1993-01-01

    At Lawrence Livermore National Laboratory (LLNL) we have developed a real-time system to monitor two stacks on our tritium handling facility. The monitors transmit the stack data to a workstation, which computes a three-dimensional numerical model of atmospheric dispersion. The workstation also collects surface and upper air data from meteorological towers and a sodar. The complex meteorological and terrain setting in the Livermore Valley demands more sophisticated resolution of the three-dimensional structure of the atmosphere to reliably calculate plume dispersion than afforded by Gaussian models. We experience both mountain valley and sea breeze flows. To address these complexities, we have implemented the three-dimensional diagnostic MATHEW mass-adjusted wind field and ADPIC particle-in-cell dispersion models on the workstation for use in real-time emergency response modeling. Both MATHEW and ADPIC have shown their utility in a variety of complex settings over the last 15 yr within the U.S. Department of Energy's Atmospheric Release Advisory Capability (ARAC) project. Faster workstations and real-time instruments allow utilization of more complex three-dimensional models, which provides a foundation for building a real-time monitoring and emergency response workstation for a tritium facility. The stack monitors are two ion chambers per stack

  16. Clinical assessment of heart chamber size and valve motion during cardiopulmonary resuscitation by two-dimensional echocardiography.

    Science.gov (United States)

    Rich, S; Wix, H L; Shapiro, E P

    1981-09-01

    It has been generally accepted that enhanced blood flow during closed-chest CPR is generated from compression of the heart between the sternum and the spine. To visualize the heart during closed-chest massage, we performed two-dimensional echocardiography (2DE) during resuscitation efforts in four patients who had cardiac arrest. 2DE analysis showed that (1) the LV internal dimensions did not change appreciably with chest compression; (2) the mitral and aortic valves were open simultaneously during the compression phase; (3) blood flow into the right heart, as evidenced by saline bubble contrast, occurred during the relaxation phase; and (4) compression of the right ventricle and LA occurred in varying amounts in all patients. We conclude that stroke volume from the heart during CPR does not result from compression of the LV. Rather, CPR-induced improved cardiocirculatory dynamics appear to be principally the result of changes in intrathoracic pressure created by sternal compression.

  17. Noninvasive Real-Time Assessment of Cell Viability in a Three-Dimensional Tissue.

    Science.gov (United States)

    Mahfouzi, Seyed Hossein; Amoabediny, Ghassem; Doryab, Ali; Safiabadi-Tali, Seyed Hamid; Ghanei, Mostafa

    2018-04-01

    Maintaining cell viability within 3D tissue engineering scaffolds is an essential step toward a functional tissue or organ. Assessment of cell viability in 3D scaffolds is necessary to control and optimize tissue culture process. Monitoring systems based on respiration activity of cells (e.g., oxygen consumption) have been used in various cell cultures. In this research, an online monitoring system based on respiration activity was developed to monitor cell viability within acellular lung scaffolds. First, acellular lung scaffolds were recellularized with human umbilical cord vein endothelial cells, and then, cell viability was monitored during a 5-day period. The real-time monitoring system generated a cell growth profile representing invaluable information on cell viability and proliferative states during the culture period. The cell growth profile obtained by the monitoring system was consistent with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and glucose consumption measurement. This system provided a means for noninvasive, real-time, and repetitive investigation of cell viability. Also, we showed the applicability of this monitoring system by introducing shaking as an operating parameter in a long-term culture.

  18. Early Detection of Subclinical Uremic Cardiomyopathy Using Two-Dimensional Speckle Tracking Echocardiography.

    Science.gov (United States)

    Hassanin, Noha; Alkemary, Alkhateeb

    2016-04-01

    Overhydration has a deleterious effect on cardio myocytes. This study was designated to evaluate left ventricular (LV) systolic and diastolic dysfunction in patients with various stages of chronic kidney disease (CKD) using conventional, tissue Doppler and two-dimensional speckle tracking echocardiography (2DSTE). Forty controls and 90 CKD patients, aged 49.3 ± 14 years old, were enrolled in the study. Patients were divided into 3 groups depending on their glomerular filtration rate. Group 1 (≥60 mL/min per 1.73 m(2) ), group 2 (≤60 mL/min per 1.73 m(2) ), and group 3 (≤60 mL/min per 1.73 m(2) and on regular dialysis for at least 12 months). Pulsed-Doppler and tissue Doppler studies were used to estimate LV filling pressure E/E'. Using 2DSTE, circumferential, radial, and longitudinal functions of the LV have been measured. LV longitudinal systolic strain, early, and late diastolic strain rates were significantly reduced in CKD patients (-16.9 ± 3.8%, 1.6 ± 0.5%, and 1.3 ± 0.4% in CKD vs. -22.5 ± 0.6%, 2.3 ± 0.2%, and 1.9 ± 0.1% in controls, P < 0.001 for all), and no difference was observed in terms of the circumferential LV functions (-22.4 ± 1.7 vs. -22.5 ± 1.4, P = 0.567). Severity of the kidney dysfunction appears to parallel with the rise of E/E' significantly (P < 0.001). In CKD, although the longitudinal and radial systolic functions were reduced, LV ejection fraction may remain within normal limits due to the preservation of the circumferential functions. Early detection of uremic cardiomyopathy might provide useful information for the risk stratification and decide the proper dialysis therapy in these patients. © 2015, Wiley Periodicals, Inc.

  19. Real-Time Climate Simulations in the Interactive 3D Game Universe Sandbox ²

    Science.gov (United States)

    Goldenson, N. L.

    2014-12-01

    Exploration in an open-ended computer game is an engaging way to explore climate and climate change. Everyone can explore physical models with real-time visualization in the educational simulator Universe Sandbox ² (universesandbox.com/2), which includes basic climate simulations on planets. I have implemented a time-dependent, one-dimensional meridional heat transport energy balance model to run and be adjustable in real time in the midst of a larger simulated system. Universe Sandbox ² is based on the original game - at its core a gravity simulator - with other new physically-based content for stellar evolution, and handling collisions between bodies. Existing users are mostly science enthusiasts in informal settings. We believe that this is the first climate simulation to be implemented in a professionally developed computer game with modern 3D graphical output in real time. The type of simple climate model we've adopted helps us depict the seasonal cycle and the more drastic changes that come from changing the orbit or other external forcings. Users can alter the climate as the simulation is running by altering the star(s) in the simulation, dragging to change orbits and obliquity, adjusting the climate simulation parameters directly or changing other properties like CO2 concentration that affect the model parameters in representative ways. Ongoing visuals of the expansion and contraction of sea ice and snow-cover respond to the temperature calculations, and make it accessible to explore a variety of scenarios and intuitive to understand the output. Variables like temperature can also be graphed in real time. We balance computational constraints with the ability to capture the physical phenomena we wish to visualize, giving everyone access to a simple open-ended meridional energy balance climate simulation to explore and experiment with. The software lends itself to labs at a variety of levels about climate concepts including seasons, the Greenhouse effect

  20. Prosthesis-patient mismatch after transcatheter aortic valve implantation: impact of 2D-transthoracic echocardiography versus 3D-transesophageal echocardiography.

    Science.gov (United States)

    da Silva, Cristina; Sahlen, Anders; Winter, Reidar; Bäck, Magnus; Rück, Andreas; Settergren, Magnus; Manouras, Aristomenis; Shahgaldi, Kambiz

    2014-12-01

    To investigate the role of 2D-transthoracic echocardiography (2D-TTE) and 3D-transesophageal echocardiography (3D-TEE) in the determination of aortic annulus size prior transcatheter aortic valve implantation (TAVI) and its' impact on the prevalence of patient prosthesis mismatch (PPM). Echocardiography plays an important role in measuring aortic annulus dimension in patients undergoing TAVI. This has great importance since it determines both eligibility for TAVI and selection of prosthesis type and size, and can be potentially important in preventing an inadequate ratio between the prosthetic valvular orifice and the patient's body surface area, concept known as prosthesis-patient mismatch (PPM). A total of 45 patients were studied pre-TAVI: 20 underwent 3D-TEE (men/women 12/8, age 84.8 ± 5.6) and 25 2D-TTE (men/women 9/16, age 84.4 ± 5.4) in order to measure aortic annulus diameter. The presence of PPM was assessed before hospital discharge and after a mean period of 3 months. Moderate PPM was defined as indexed aortic valve area (AVAi) ≤ 0.85 cm(2)/m(2) and severe PPM as AVAi 3D-TEE and 2D-TTE respectively p value = n.s) and severe PPM occurred in 10 % of the patients who underwent 3D-TEE and in 20 % in those with 2D-TTE (p value = n.s). The echocardiographic evaluation 3 months post-TAVI showed 25 % moderate PPM in the 3D-TEE group compared with 24 % in the 2D-TTE group (p value = n.s) and no cases of severe PPM in the 3DTEE group comparing to 20 % in the 2D-TTE group (p = 0.032). Our results indicate a higher incidence of severe PPM in patients who performed 2DTTE compared to those performing 3DTEE prior TAVI. This suggests that the 3D technique should replace the 2DTTE analysis when investigating the aortic annulus diameter in patients undergoing TAVI.

  1. Real-time modeling of heat distributions

    Science.gov (United States)

    Hamann, Hendrik F.; Li, Hongfei; Yarlanki, Srinivas

    2018-01-02

    Techniques for real-time modeling temperature distributions based on streaming sensor data are provided. In one aspect, a method for creating a three-dimensional temperature distribution model for a room having a floor and a ceiling is provided. The method includes the following steps. A ceiling temperature distribution in the room is determined. A floor temperature distribution in the room is determined. An interpolation between the ceiling temperature distribution and the floor temperature distribution is used to obtain the three-dimensional temperature distribution model for the room.

  2. Role of four-dimensional echocardiography with high-definition flow imaging and spatiotemporal image correlation in detecting fetal pulmonary veins.

    Science.gov (United States)

    Sun, Xue; Zhang, Ying; Fan, Miao; Wang, Yu; Wang, Meilian; Siddiqui, Faiza Amber; Sun, Wei; Sun, Feifei; Zhang, Dongyu; Lei, Wenjia; Hu, Guyue

    2017-06-01

    Prenatal diagnosis of fetal total anomalous pulmonary vein connection (TAPVC) remains challenging for most screening sonographers. The purpose of this study was to evaluate the use of four-dimensional echocardiography with high-definition flow imaging and spatiotemporal image correlation (4D-HDFI) in identifying pulmonary veins in normal and TAPVC fetuses. We retrospectively reviewed and performed 4D-HDFI in 204 normal and 12 fetuses with confirmed diagnosis of TAPVC. Cardiac volumes were available for postanalysis to obtain 4D-rendered images of the pulmonary veins. For the normal fetuses, two other traditional modalities including color Doppler and HDFI were used to detect the number of pulmonary veins and comparisons were made between each of these traditional methods and 4D-HDFI. For conventional echocardiography, HDFI modality was superior to color Doppler in detecting more pulmonary veins in normal fetuses throughout the gestational period. 4D-HDFI was the best method during the second trimester of pregnancy in identifying normal fetal pulmonary veins. 4D-HDFI images vividly depicted the figure, course, and drainage of pulmonary veins in both normal and TAPVC fetuses. HDFI and the advanced 4D-HDFI technique could facilitate identification of the anatomical features of pulmonary veins in both normal and TAPVC fetuses; 4D-HDFI therefore provides additional and more precise information than conventional echocardiography techniques. © 2017, Wiley Periodicals, Inc.

  3. Comparison of aortic root dimensions and geometries before and after transcatheter aortic valve implantation by 2- and 3-dimensional transesophageal echocardiography and multislice computed tomography.

    NARCIS (Netherlands)

    Ng, A.C.; Delgado, V.; Kley, F. van der; Shanks, M.; Veire, N.R. van de; Bertini, M.; Nucifora, G.; Bommel, R.J. van; Tops, L.F.; Weger, A. de; Tavilla, G.; Roos, A. de; Kroft, L.J.; Leung, D.Y.; Schuijf, J.; Schalij, M.J.; Bax, J.J.

    2010-01-01

    BACKGROUND: 3D transesophageal echocardiography (TEE) may provide more accurate aortic annular and left ventricular outflow tract (LVOT) dimensions and geometries compared with 2D TEE. We assessed agreements between 2D and 3D TEE measurements with multislice computed tomography (MSCT) and changes in

  4. Time-resolved measurements with intense ultrashort laser pulses: a 'molecular movie' in real time

    International Nuclear Information System (INIS)

    Rudenko, A; Ergler, Th; Feuerstein, B; Zrost, K; Schroeter, C D; Moshammer, R; Ullrich, J

    2007-01-01

    We report on the high-resolution multidimensional real-time mapping of H 2 + and D 2 + nuclear wave packets performed employing time-resolved three-dimensional Coulomb explosion imaging with intense laser pulses. Exploiting a combination of a 'reaction microscope' spectrometer and a pump-probe setup with two intense 6-7 fs laser pulses, we simultaneously visualize both vibrational and rotational motion of the molecule, and obtain a sequence of snapshots of the squared ro-vibrational wave function with time-step resolution of ∼ 0.3 fs, allowing us to reconstruct a real-time movie of the ultrafast molecular motion. We observe fast dephasing, or 'collapse' of the vibrational wave packet and its subsequent revival, as well as signatures of rotational excitation. For D 2 + we resolve also the fractional revivals resulting from the interference between the counter-propagating parts of the wave packet

  5. Evaluation of prosthetic heart valves by transesophageal echocardiography: problems, pitfalls, and timing of echocardiography

    NARCIS (Netherlands)

    van den Brink, Renee B. A.

    2006-01-01

    Transesophageal echocardiography (TEE) is especially suitable for examination of prosthetic valves because of the proximity of the esophagus to the heart and absence of interference with lungs and ribs. This article reviews normal and abnormal morphologic characteristics of prosthetic valves such as

  6. Imaging the heart: cardiac scintigraphy and echocardiography in US hospitals (1983)

    International Nuclear Information System (INIS)

    McPhee, S.J.; Garnick, D.W.

    1986-01-01

    The rapid growth of cardiac catheterization has raised questions about the availability of less costly, noninvasive tests such as cardiac scintigraphy and echocardiography. To assess their availability and rates of use, we surveyed 3778 non-federal short-term US hospitals in June, 1983. Overall, 2605 hospitals (69%) offered 201 Tl myocardial perfusion scans, 2580 (68%) 99mTc equilibrium gated blood pool scans, and 2483 (67%) cardiac shunt scans; 1679 hospitals (44%) offered M-mode and/or 2-dimensional echocardiography, and 768 (20%) pulsed Doppler echocardiography. Volumes of procedures varied enormously among hospitals capable of performing them. High volumes of both scintigraphy and echocardiography were performed in a small number of hospitals. Larger, voluntary, and teaching hospitals performed higher volumes of both procedures. Despite widespread availability of these noninvasive technologies, high volumes of both cardiac scintigraphy and echocardiography procedures are concentrated in a small number of US hospitals

  7. Three-dimensional echocardiographic assessment of the repaired mitral valve.

    Science.gov (United States)

    Maslow, Andrew; Mahmood, Feroze; Poppas, Athena; Singh, Arun

    2014-02-01

    This study examined the geometric changes of the mitral valve (MV) after repair using conventional and three-dimensional echocardiography. Prospective evaluation of consecutive patients undergoing mitral valve repair. Tertiary care university hospital. Fifty consecutive patients scheduled for elective repair of the mitral valve for regurgitant disease. Intraoperative transesophageal echocardiography. Assessments of valve area (MVA) were performed using two-dimensional planimetry (2D-Plan), pressure half-time (PHT), and three-dimensional planimetry (3D-Plan). In addition, the direction of ventricular inflow was assessed from the three-dimensional imaging. Good correlations (r = 0.83) and agreement (-0.08 +/- 0.43 cm(2)) were seen between the MVA measured with 3D-Plan and PHT, and were better than either compared to 2D-Plan. MVAs were smaller after repair of functional disease repaired with an annuloplasty ring. After repair, ventricular inflow was directed toward the lateral ventricular wall. Subgroup analysis showed that the change in inflow angle was not different after repair of functional disease (168 to 171 degrees) as compared to those presenting with degenerative disease (168 to 148 degrees; p<0.0001). Three-dimensional imaging provides caregivers with a unique ability to assess changes in valve function after mitral valve repair. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Comparison of two-dimensional echocardiography with gated radionuclide ventriculography in the evaluation of global and regional left ventricular function in acute myocardial infarction

    International Nuclear Information System (INIS)

    Van Reet, R.E.; Quinones, M.A.; Poliner, L.R.; Nelson, J.G.; Waggoner, A.D.; Kanon, D.; Lubetkin, S.J.; Pratt, C.M.; Winters, W.L. Jr.

    1984-01-01

    Two-dimensional echocardiography and gated radionuclide ventriculography were performed in 93 patients (66 men, 27 women; mean age 61 years) with 95 episodes of acute myocardial infarction within 48 hours and at 10 days after infarction. Abnormal motion of an inferior or posterior wall segment was seen in 91% of inferoposterior infarctions by echocardiography versus 61% seen by radionuclide ventriculography. Ejection fractions determined by echocardiography and radionuclide ventriculography correlated well (r . 0.82) and did not change from the first 48 hours to 10 days after infarction (0.48 +/- 0.14). Similarly, wall motion score showed minimal change from the first 48 hours to 10 days. In-hospital mortality was 37 and 42% in patients with an ejection fraction of 0.35 or less by echocardiography and radionuclide ventriculography, respectively. No mortality was seen in patients with an ejection fraction above 0.40 by either test. The echocardiographic wall motion score was also predictive of mortality (40 versus 2%; score less than or equal to 0.50 versus greater than 0.50). The 1 year mortality rate in the 81 short-term survivors was 17%. Mortality was lowest in patients with an ejection fraction above 0.49 or wall motion score above (0.79 (2 to 5%) and worse in those with an ejection fraction below 0.36 or wall motion score below 0.51 (36 to 63%) by either technique. Thus in acute myocardial infarction, echocardiography and radionuclide ventriculography provide a comparable assessment of left ventricular function and wall motion in anterior infarction. Echocardiography appears more sensitive in detecting inferoposterior wall motion abnormalities. Both techniques are capable of identifying subgroups of patients with a high risk of death during the acute event and with an equally high mortality rate over a 1 year follow-up period

  9. Realistic 3D Terrain Roaming and Real-Time Flight Simulation

    Science.gov (United States)

    Que, Xiang; Liu, Gang; He, Zhenwen; Qi, Guang

    2014-12-01

    This paper presents an integrate method, which can provide access to current status and the dynamic visible scanning topography, to enhance the interactive during the terrain roaming and real-time flight simulation. A digital elevation model and digital ortho-photo map data integrated algorithm is proposed as the base algorithm for our approach to build a realistic 3D terrain scene. A new technique with help of render to texture and head of display for generating the navigation pane is used. In the flight simulating, in order to eliminate flying "jump", we employs the multidimensional linear interpolation method to adjust the camera parameters dynamically and steadily. Meanwhile, based on the principle of scanning laser imaging, we draw pseudo color figures by scanning topography in different directions according to the real-time flying status. Simulation results demonstrate that the proposed algorithm is prospective for applications and the method can improve the effect and enhance dynamic interaction during the real-time flight.

  10. Real-time 3D-surface-guided head refixation useful for fractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Li Shidong; Liu Dezhi; Yin Gongjie; Zhuang Ping; Geng, Jason

    2006-01-01

    Accurate and precise head refixation in fractionated stereotactic radiotherapy has been achieved through alignment of real-time 3D-surface images with a reference surface image. The reference surface image is either a 3D optical surface image taken at simulation with the desired treatment position, or a CT/MRI-surface rendering in the treatment plan with corrections for patient motion during CT/MRI scans and partial volume effects. The real-time 3D surface images are rapidly captured by using a 3D video camera mounted on the ceiling of the treatment vault. Any facial expression such as mouth opening that affects surface shape and location can be avoided using a new facial monitoring technique. The image artifacts on the real-time surface can generally be removed by setting a threshold of jumps at the neighboring points while preserving detailed features of the surface of interest. Such a real-time surface image, registered in the treatment machine coordinate system, provides a reliable representation of the patient head position during the treatment. A fast automatic alignment between the real-time surface and the reference surface using a modified iterative-closest-point method leads to an efficient and robust surface-guided target refixation. Experimental and clinical results demonstrate the excellent efficacy of <2 min set-up time, the desired accuracy and precision of <1 mm in isocenter shifts, and <1 deg. in rotation

  11. Normal references of right ventricular strain values by two-dimensional strain echocardiography according to the age and gender.

    Science.gov (United States)

    Park, Jae-Hyeong; Choi, Jin-Oh; Park, Seung Woo; Cho, Goo-Yeong; Oh, Jin Kyung; Lee, Jae-Hwan; Seong, In-Whan

    2018-02-01

    Right ventricular (RV) strain values by 2-dimensional strain echocardiography (STE) can be used as objective markers of RV systolic function. However, there is little data about normal reference RV strain values according to age and gender. We measured normal RV strain values by STE. RV strain values were analyzed from the digitally stored echocardiographic images from NORMAL (Normal echOcardiogRaphic diMensions and functions in KoreAn popuLation) study for the measurement of normal echocardiographic values performed in 23 Korean university hospitals. We enrolled total 1003 healthy persons in the NORMAL study. Of them, we analyzed 2-dimensional RV strain values in 493 subjects (261 females, mean 47 ± 15 years old) only with echocardiographic images by GE machines. Their LV systolic and diastolic functions were normal. RV fractional area change was 48 ± 6% and tricuspid annular plane systolic excursion was 23 ± 3 mm. Total RV global longitudinal peak systolic strain (RVGLS total ) was -21.5 ± 3.2%. Females had higher absolute RVGLS total (-22.3 ± 3.3 vs -20.7 ± 2.9%, p value to that of older males (age ≥50 years, -20.5 ± 2.8 vs -20.9 ± 3.1%, p = 0.224). We calculated normal RVGLS values in normal population. Females have higher absolute strain values than males, especially in younger age groups (<50 years old).

  12. Towards real-time 3D ultrasound planning and personalized 3D printing for breast HDR brachytherapy treatment

    International Nuclear Information System (INIS)

    Poulin, Eric; Gardi, Lori; Fenster, Aaron; Pouliot, Jean; Beaulieu, Luc

    2015-01-01

    Two different end-to-end procedures were tested for real-time planning in breast HDR brachytherapy treatment. Both methods are using a 3D ultrasound (3DUS) system and a freehand catheter optimization algorithm. They were found fast and efficient. We demonstrated a proof-of-concept approach for personalized real-time guidance and planning to breast HDR brachytherapy treatments

  13. Development of real-time x-ray microtomography system

    International Nuclear Information System (INIS)

    Takano, H; Morikawa, M; Konishi, S; Azuma, H; Shimomura, S; Tsusaka, Y; Kagoshima, Y; Nakano, S; Kosaka, N; Yamamoto, K

    2013-01-01

    We have developed a four-dimensional (4D) x-ray microcomputed tomography (CT) system that can obtain time-lapse CT volumes in real time. The system consists of a high-speed sample rotation system and a high-frame-rate x-ray imager, which are installed at a synchrotron radiation x-ray beamline. As a result of system optimization and introduction of a 'zoom resolution' procedure, a real-time 4D CT movie with a frame rate of 30 was obtained with a voxel size of 2.5 μm using 10 keV x-rays

  14. Real time processor for array speckle interferometry

    Science.gov (United States)

    Chin, Gordon; Florez, Jose; Borelli, Renan; Fong, Wai; Miko, Joseph; Trujillo, Carlos

    1989-02-01

    The authors are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element two-dimensional complex FFT (fast Fourier transform) and average the power spectrum, all within the 25 ms coherence time for speckles at near-IR (infrared) wavelength. The processor will be a compact unit controlled by a PC with real-time display and data storage capability. This will provide the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with offline methods. The image acquisition and processing, design criteria, and processor architecture are described.

  15. Clinical study on left atrial thrombi. Comparative study between echocardiography and CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, E; Asano, H; Kurasawa, T; Mitsumoto, K; Yamane, Y [Tokyo Kosei-Nenkin Hospital (Japan)

    1981-09-01

    We studied left atrial thrombi (LAT) by both echocardiography and computed tomography (CT) and compared the features of the 2 methods. A total of 15 patients with mitral stenosis complicated by atrial fibrillation were selected as the subjects. LAT were noted on the M-mode echocardiograms in 2 patients including a questionably positive one, on the two-dimensional echocardiograms in 5, and on the CT scans in 6 of 15. The history of thromboembolism was rather frequent and was found in 7 of 15 patients. However, LAT was found in only 3 of these on the CT scans. A shaggy or fuzzy pattern on the M-mode echocardiogram cannot be regarded as representing thrombi, while a laminar pattern undoubtedly represented thrombi. Two-dimensional echocardiography has considerably contributed to the improved detection rate of LAT. For the characteristic properties of ultrasound beams, however, it was impossible to investigate the entire left atrium. The detection of the thrombi in the appendage was especially difficult. However, computed tomography, permitting transverse cross-sectional tomography, was capable of sectioning the heart even in the presence of air and bones. The measurement of CT values was suggestive of the properties of the substance or substances involved, and also allowed the presumption as to whether the thrombus has been fibrosed. Furthermore, it was possible to estimate more accurately as well as 3-dimensionally the location, shape and dimensions of the thrombi by the reconstruction of the heart according to the CT values. It was concluded that echocardiography and computed tomography are the mutual aid to further improvement in the detection rate of left atrial thrombi.

  16. Axial Tomography from Digitized Real Time Radiography

    Science.gov (United States)

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  17. Real-time three-dimensional imaging of epidermal splitting and removal by high-definition optical coherence tomography.

    Science.gov (United States)

    Boone, Marc; Draye, Jean Pierre; Verween, Gunther; Pirnay, Jean-Paul; Verbeken, Gilbert; De Vos, Daniel; Rose, Thomas; Jennes, Serge; Jemec, Gregor B E; Del Marmol, Véronique

    2014-10-01

    While real-time 3-D evaluation of human skin constructs is needed, only 2-D non-invasive imaging techniques are available. The aim of this paper is to evaluate the potential of high-definition optical coherence tomography (HD-OCT) for real-time 3-D assessment of the epidermal splitting and decellularization. Human skin samples were incubated with four different agents: Dispase II, NaCl 1 M, sodium dodecyl sulphate (SDS) and Triton X-100. Epidermal splitting, dermo-epidermal junction, acellularity and 3-D architecture of dermal matrices were evaluated by High-definition optical coherence tomography before and after incubation. Real-time 3-D HD-OCT assessment was compared with 2-D en face assessment by reflectance confocal microscopy (RCM). (Immuno) histopathology was used as control. HD-OCT imaging allowed real-time 3-D visualization of the impact of selected agents on epidermal splitting, dermo-epidermal junction, dermal architecture, vascular spaces and cellularity. RCM has a better resolution (1 μm) than HD-OCT (3 μm), permitting differentiation of different collagen fibres, but HD-OCT imaging has deeper penetration (570 μm) than RCM imaging (200 μm). Dispase II and NaCl treatments were found to be equally efficient in the removal of the epidermis from human split-thickness skin allografts. However, a different epidermal splitting level at the dermo-epidermal junction could be observed and confirmed by immunolabelling of collagen type IV and type VII. Epidermal splitting occurred at the level of the lamina densa with dispase II and above the lamina densa (in the lamina lucida) with NaCl. The 3-D architecture of dermal papillae and dermis was more affected by Dispase II on HD-OCT which corresponded with histopathologic (orcein staining) fragmentation of elastic fibres. With SDS treatment, the epidermal removal was incomplete as remnants of the epidermal basal cell layer remained attached to the basement membrane on the dermis. With Triton X-100 treatment

  18. Does point-of-care functional echocardiography enhance cardiovascular care in the NICU?

    Science.gov (United States)

    Sehgal, A; McNamara, P J

    2008-11-01

    Although the last two decades have seen major advances in the care of sick, extremely premature newborns, the approach to cardiovascular assessment and monitoring remains suboptimal owing to an overreliance on poorly predictive clinical markers such as heart rate or capillary refill time. Point-of-care functional echocardiography (PCFecho) enables real-time evaluation of cardiac performance and systemic hemodynamics to characterize acute physiology, identify the exact nature of cardiovascular compromise and guide therapeutic decisions. In this article, we will review four clinical scenarios where bedside functional cardiac imaging enabled delineation of the real clinical problem and refinement of the therapeutic care plan with direct patient benefits.

  19. Integration of real-time 3D capture, reconstruction, and light-field display

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao

    2015-03-01

    Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.

  20. Advanced quantitative echocardiography in arrhythmogenic right ventricular cardiomyopathy

    DEFF Research Database (Denmark)

    Kjaergaard, Jesper; Hastrup Svendsen, Jesper; Sogaard, Peter

    2007-01-01

    BACKGROUND: Arrhythmogenic right ventricular (RV) cardiomyopathy (ARVC) is a regional disease of the RV myocardium with variable degrees of left ventricular involvement. Three-dimensional echocardiography and Doppler tissue imaging (DTI) are new echocardiographic modalities for the evaluation......, patients with ARVC had a decreased RV ejection fraction (0.47 +/- 0.08 vs 0.53 +/- 0.05, P vs 15.1 +/- 3.7 cm/s, P left ventricle (7.0 +/- 2.6 vs 9.5 +/- 1.9 cm/s, P ... of the longitudinal motility appears to be a sensitive marker of preclinical left ventricular involvement....

  1. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer.

    Science.gov (United States)

    Kessel, Sarah; Cribbes, Scott; Bonasu, Surekha; Rice, William; Qiu, Jean; Chan, Leo Li-Ying

    2017-09-01

    The development of three-dimensional (3D) multicellular tumor spheroid models for cancer drug discovery research has increased in the recent years. The use of 3D tumor spheroid models may be more representative of the complex in vivo tumor microenvironments in comparison to two-dimensional (2D) assays. Currently, viability of 3D multicellular tumor spheroids has been commonly measured on standard plate-readers using metabolic reagents such as CellTiter-Glo® for end point analysis. Alternatively, high content image cytometers have been used to measure drug effects on spheroid size and viability. Previously, we have demonstrated a novel end point drug screening method for 3D multicellular tumor spheroids using the Celigo Image Cytometer. To better characterize the cancer drug effects, it is important to also measure the kinetic cytotoxic and apoptotic effects on 3D multicellular tumor spheroids. In this work, we demonstrate the use of PI and caspase 3/7 stains to measure viability and apoptosis for 3D multicellular tumor spheroids in real-time. The method was first validated by staining different types of tumor spheroids with PI and caspase 3/7 and monitoring the fluorescent intensities for 16 and 21 days. Next, PI-stained and nonstained control tumor spheroids were digested into single cell suspension to directly measure viability in a 2D assay to determine the potential toxicity of PI. Finally, extensive data analysis was performed on correlating the time-dependent PI and caspase 3/7 fluorescent intensities to the spheroid size and necrotic core formation to determine an optimal starting time point for cancer drug testing. The ability to measure real-time viability and apoptosis is highly important for developing a proper 3D model for screening tumor spheroids, which can allow researchers to determine time-dependent drug effects that usually are not captured by end point assays. This would improve the current tumor spheroid analysis method to potentially better

  2. Pseudo real-time imaging systems with nonredundant pinhole arrays

    International Nuclear Information System (INIS)

    Han, K.S.; Berzins, G.J.; Roach, W.H.

    1976-01-01

    Coded aperture techniques, because of their efficiency and three-dimensional information content, represent potentially powerful tools for LMFBR safety experiment diagnostics. These techniques should be even more powerful if the data can be interpreted in real time or in pseudo real time. For example, to satisfy the stated goals for LMFBR diagnostics (1-ms time resolution and 1-mm spatial resolution), it is conceivable that several hundred frames of coded data would be recorded. To unscramble all of this information into reconstructed images could be a laborious, time-consuming task. A way to circumvent the tedium is with the use of the described hybrid digital/analog real-time imaging system. Some intermediate results are described briefly

  3. Recommendations for terminology and display for doppler echocardiography

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Doppler echocardiography has recently emerged as a major noninvasive technique with many applications in cardiology. To a large extent, this has been based upon a combination of clinical and engineering advances which now make possible the use of quantitative Doppler echocardiography in combination with two-dimensional imaging for measurement of volume flows, transvalve gradients, and other physiologic flow parameters which reflect cardiac function. It was the purpose of this Committee to provide a glossary of terms which could be used in standard fashion for papers and discussions related to Doppler echocardiography. As part of its task, the Committee also undertook an attempt to recommend a standard for display of Doppler information which would be useful, both for manufacturers and for clinicians. The document, therefore, includes: Section I, the Committee's recommendations for Doppler display. Section II, the glossary of Doppler terms, related to engineering and to clinical applications

  4. Multiline 3D beamforming using micro-beamformed datasets for pediatric transesophageal echocardiography

    Science.gov (United States)

    Bera, D.; Raghunathan, S. B.; Chen, C.; Chen, Z.; Pertijs, M. A. P.; Verweij, M. D.; Daeichin, V.; Vos, H. J.; van der Steen, A. F. W.; de Jong, N.; Bosch, J. G.

    2018-04-01

    Until now, no matrix transducer has been realized for 3D transesophageal echocardiography (TEE) in pediatric patients. In 3D TEE with a matrix transducer, the biggest challenges are to connect a large number of elements to a standard ultrasound system, and to achieve a high volume rate (>200 Hz). To address these issues, we have recently developed a prototype miniaturized matrix transducer for pediatric patients with micro-beamforming and a small central transmitter. In this paper we propose two multiline parallel 3D beamforming techniques (µBF25 and µBF169) using the micro-beamformed datasets from 25 and 169 transmit events to achieve volume rates of 300 Hz and 44 Hz, respectively. Both the realizations use angle-weighted combination of the neighboring overlapping sub-volumes to avoid artifacts due to sharp intensity changes introduced by parallel beamforming. In simulation, the image quality in terms of the width of the point spread function (PSF), lateral shift invariance and mean clutter level for volumes produced by µBF25 and µBF169 are similar to the idealized beamforming using a conventional single-line acquisition with a fully-sampled matrix transducer (FS4k, 4225 transmit events). For completeness, we also investigated a 9 transmit-scheme (3  ×  3) that allows even higher frame rates but found worse B-mode image quality with our probe. The simulations were experimentally verified by acquiring the µBF datasets from the prototype using a Verasonics V1 research ultrasound system. For both µBF169 and µBF25, the experimental PSFs were similar to the simulated PSFs, but in the experimental PSFs, the clutter level was ~10 dB higher. Results indicate that the proposed multiline 3D beamforming techniques with the prototype matrix transducer are promising candidates for real-time pediatric 3D TEE.

  5. Real-Time 3D Visualization

    Science.gov (United States)

    1997-01-01

    Butler Hine, former director of the Intelligent Mechanism Group (IMG) at Ames Research Center, and five others partnered to start Fourth Planet, Inc., a visualization company that specializes in the intuitive visual representation of dynamic, real-time data over the Internet and Intranet. Over a five-year period, the then NASA researchers performed ten robotic field missions in harsh climes to mimic the end- to-end operations of automated vehicles trekking across another world under control from Earth. The core software technology for these missions was the Virtual Environment Vehicle Interface (VEVI). Fourth Planet has released VEVI4, the fourth generation of the VEVI software, and NetVision. VEVI4 is a cutting-edge computer graphics simulation and remote control applications tool. The NetVision package allows large companies to view and analyze in virtual 3D space such things as the health or performance of their computer network or locate a trouble spot on an electric power grid. Other products are forthcoming. Fourth Planet is currently part of the NASA/Ames Technology Commercialization Center, a business incubator for start-up companies.

  6. Real-time systems

    OpenAIRE

    Badr, Salah M.; Bruztman, Donald P.; Nelson, Michael L.; Byrnes, Ronald Benton

    1992-01-01

    This paper presents an introduction to the basic issues involved in real-time systems. Both real-time operating sys and real-time programming languages are explored. Concurrent programming and process synchronization and communication are also discussed. The real-time requirements of the Naval Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real-time operating system, real-time programming language, real-time sy...

  7. Realistic Vendor-Specific Synthetic Ultrasound Data for Quality Assurance of 2-D Speckle Tracking Echocardiography: Simulation Pipeline and Open Access Database.

    Science.gov (United States)

    Alessandrini, Martino; Chakraborty, Bidisha; Heyde, Brecht; Bernard, Olivier; De Craene, Mathieu; Sermesant, Maxime; D'Hooge, Jan

    2018-03-01

    Two-dimensional (2-D) echocardiography is the modality of choice in the clinic for the diagnosis of cardiac disease. Hereto, speckle tracking (ST) packages complement visual assessment by the cardiologist by providing quantitative diagnostic markers of global and regional cardiac function (e.g., displacement, strain, and strain-rate). Yet, the reported high vendor-dependence between the outputs of different ST packages raises clinical concern and hampers the widespread dissemination of the ST technology. In part, this is due to the lack of a solid commonly accepted quality assurance pipeline for ST packages. Recently, we have developed a framework to benchmark ST algorithms for 3-D echocardiography by using realistic simulated volumetric echocardiographic recordings. Yet, 3-D echocardiography remains an emerging technology, whereas the compelling clinical concern is, so far, directed to the standardization of 2-D ST only. Therefore, by building upon our previous work, we present in this paper a pipeline to generate realistic synthetic sequences for 2-D ST algorithms. Hereto, the synthetic cardiac motion is obtained from a complex electromechanical heart model, whereas realistic vendor-specific texture is obtained by sampling a real clinical ultrasound recording. By modifying the parameters in our pipeline, we generated an open-access library of 105 synthetic sequences encompassing: 1) healthy and ischemic motion patterns; 2) the most common apical probe orientations; and 3) vendor-specific image quality from seven different systems. Ground truth deformation is also provided to allow performance analysis. The application of the provided data set is also demonstrated in the benchmarking of a recent academic ST algorithm.

  8. Pathophysiology of Degenerative Mitral Regurgitation: New 3-Dimensional Imaging Insights.

    Science.gov (United States)

    Antoine, Clemence; Mantovani, Francesca; Benfari, Giovanni; Mankad, Sunil V; Maalouf, Joseph F; Michelena, Hector I; Enriquez-Sarano, Maurice

    2018-01-01

    Despite its high prevalence, little is known about mechanisms of mitral regurgitation in degenerative mitral valve disease apart from the leaflet prolapse itself. Mitral valve is a complex structure, including mitral annulus, mitral leaflets, papillary muscles, chords, and left ventricular walls. All these structures are involved in physiological and pathological functioning of this valvuloventricular complex but up to now were difficult to analyze because of inherent limitations of 2-dimensional imaging. The advent of 3-dimensional echocardiography, computed tomography, and cardiac magnetic resonance imaging overcoming these limitations provides new insights into mechanistic analysis of degenerative mitral regurgitation. This review will detail the contribution of quantitative and qualitative dynamic analysis of mitral annulus and mitral leaflets by new imaging methods in the understanding of degenerative mitral regurgitation pathophysiology. © 2018 American Heart Association, Inc.

  9. Real time animation of space plasma phenomena

    International Nuclear Information System (INIS)

    Jordan, K.F.; Greenstadt, E.W.

    1987-01-01

    In pursuit of real time animation of computer simulated space plasma phenomena, the code was rewritten for the Massively Parallel Processor (MPP). The program creates a dynamic representation of the global bowshock which is based on actual spacecraft data and designed for three dimensional graphic output. This output consists of time slice sequences which make up the frames of the animation. With the MPP, 16384, 512 or 4 frames can be calculated simultaneously depending upon which characteristic is being computed. The run time was greatly reduced which promotes the rapid sequence of images and makes real time animation a foreseeable goal. The addition of more complex phenomenology in the constructed computer images is now possible and work proceeds to generate these images

  10. Learning dictionaries of sparse codes of 3D movements of body joints for real-time human activity understanding.

    Science.gov (United States)

    Qi, Jin; Yang, Zhiyong

    2014-01-01

    Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D) videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications.

  11. Learning dictionaries of sparse codes of 3D movements of body joints for real-time human activity understanding.

    Directory of Open Access Journals (Sweden)

    Jin Qi

    Full Text Available Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications.

  12. Abnormal biventricular performance in asymptomatic adolescents late after repaired Tetralogy of Fallot: Combined two-dimensional speckle tracking and three-dimensional echocardiography study

    Directory of Open Access Journals (Sweden)

    Ken-Pen Weng

    2018-02-01

    Conclusion: Our results suggest asymptomatic adolescents with repaired TOF had abnormal biventricular myocardial performance, as demonstrated by combined 2D speckle-tracking and 3D echocardiography. The implications of these findings for management of adolescents late after repaired TOF remain to be determined.

  13. What Is Echocardiography?

    Science.gov (United States)

    ... Intramural Research Home / Echocardiography Echocardiography Also known as Echo , Surface echo , Ultrasound of ... other tests, echo doesn't involve radiation. Transthoracic Echocardiography Transthoracic (tranz-thor-AS-ik) echo is the ...

  14. Optimal Analysis of Left Atrial Strain by Speckle Tracking Echocardiography: P-wave versus R-wave Trigger.

    Science.gov (United States)

    Hayashi, Shuji; Yamada, Hirotsugu; Bando, Mika; Saijo, Yoshihito; Nishio, Susumu; Hirata, Yukina; Klein, Allan L; Sata, Masataka

    2015-08-01

    Left atrial (LA) strain analysis using speckle tracking echocardiography is useful for assessing LA function. However, there is no established procedure for this method. Most investigators have determined the electrocardiographic R-wave peak as the starting point for LA strain analysis. To test our hypothesis that P-wave onset should be used as the starting point, we measured LA strain using 2 different starting points and compared the strain values with the corresponding LA volume indices obtained by three-dimensional (3D) echocardiography. We enrolled 78 subjects (61 ± 17 years, 25 males) with and without various cardiac diseases in this study and assessed global longitudinal LA strain by two-dimensional speckle tracking strain echocardiography using EchoPac software. We used either R-wave peak or P-wave onset as the starting point for determining LA strains during the reservoir (Rres, Pres), conduit (Rcon, Pcon), and booster pump (Rpump, Ppump) phases. We determined the maximum, minimum, and preatrial contraction LA volumes, and calculated the LA total, passive, and active emptying fractions using 3D echocardiography. The correlation between Pres and LA total emptying fraction was better than the correlation between Rres and LA total emptying fraction (r = 0.458 vs. 0.308, P = 0.026). Pcon and Ppump exhibited better correlation with the corresponding 3D echocardiographic parameters than Rcon (r = 0.560 vs. 0.479, P = 0.133) and Rpump (r = 0.577 vs. 0.345, P = 0.003), respectively. LA strain in any phase should be analyzed using P-wave onset as the starting point rather than R-wave peak. © 2014, Wiley Periodicals, Inc.

  15. Role of echocardiography in reducing shock reversal time in pediatric septic shock: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ahmed A. EL‐Nawawy

    2018-01-01

    Conclusion: Serial echocardiography provided crucial data for early recognition of septic myocardial dysfunction and hypovolemia that was not apparent on clinical assessment, allowing a timely management and resulting in shock reversal time reduction among children with septic shock.

  16. Real-time stereo generation for surgical vision during minimal invasive robotic surgery

    Science.gov (United States)

    Laddi, Amit; Bhardwaj, Vijay; Mahapatra, Prasant; Pankaj, Dinesh; Kumar, Amod

    2016-03-01

    This paper proposes a framework for 3D surgical vision for minimal invasive robotic surgery. It presents an approach for generating the three dimensional view of the in-vivo live surgical procedures from two images captured by very small sized, full resolution camera sensor rig. A pre-processing scheme is employed to enhance the image quality and equalizing the color profile of two images. Polarized Projection using interlacing two images give a smooth and strain free three dimensional view. The algorithm runs in real time with good speed at full HD resolution.

  17. Echocardiographic anatomy of the mitral valve: a critical appraisal of 2-dimensional imaging protocols with a 3-dimensional perspective.

    Science.gov (United States)

    Mahmood, Feroze; Hess, Philip E; Matyal, Robina; Mackensen, G Burkhard; Wang, Angela; Qazi, Aisha; Panzica, Peter J; Lerner, Adam B; Maslow, Andrew

    2012-10-01

    To highlight the limitations of traditional 2-dimensional (2D) echocardiographic mitral valve (MV) examination methodologies, which do not account for patient-specific transesophageal echocardiographic (TEE) probe adjustments made during an actual clinical perioperative TEE examination. Institutional quality-improvement project. Tertiary care hospital. Attending anesthesiologists certified by the National Board of Echocardiography. Using the technique of multiplanar reformatting with 3-dimensional (3D) data, ambiguous 2D images of the MV were generated, which resembled standard midesophageal 2D views. Based on the 3D image, the MV scallops visualized in each 2D image were recognized exactly by the position of the scan plane. Twenty-three such 2D MV images were created in a presentation from the 3D datasets. Anesthesia staff members (n = 13) were invited to view the presentation based on the 2D images only and asked to identify the MV scallops. Their responses were scored as correct or incorrect based on the 3D image. The overall accuracy was 30.4% in identifying the MV scallops. The transcommissural view was identified correctly >90% of the time. The accuracy of the identification of A1, A3, P1, and P3 scallops was <50%. The accuracy of the identification of A2P2 scallops was ≥50%. In the absence of information on TEE probe adjustments performed to acquire a specific MV image, it is possible to misidentify the scallops. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Acquisition performance of LAPAN-A3/IPB multispectral imager in real-time mode of operation

    Science.gov (United States)

    Hakim, P. R.; Permala, R.; Jayani, A. P. S.

    2018-05-01

    LAPAN-A3/IPB satellite was launched in June 2016 and its multispectral imager has been producing Indonesian coverage images. In order to improve its support for remote sensing application, the imager should produce images with high quality and quantity. To improve the quantity of LAPAN-A3/IPB multispectral image captured, image acquisition could be executed in real-time mode from LAPAN ground station in Bogor when the satellite passes west Indonesia region. This research analyses the performance of LAPAN-A3/IPB multispectral imager acquisition in real-time mode, in terms of image quality and quantity, under assumption of several on-board and ground segment limitations. Results show that with real-time operation mode, LAPAN-A3/IPB multispectral imager could produce twice as much as image coverage compare to recorded mode. However, the images produced in real-time mode will have slightly degraded quality due to image compression process involved. Based on several analyses that have been done in this research, it is recommended to use real-time acquisition mode whenever it possible, unless for some circumstances that strictly not allow any quality degradation of the images produced.

  19. A real-time monitoring/emergency response modeling workstation for a tritium facility

    International Nuclear Information System (INIS)

    Lawver, B.S.; Sims, J.M.; Baskett, R.L.

    1993-07-01

    At Lawrence Livermore National Laboratory (LLNL) we developed a real-time system to monitor two stacks on our tritium handling facility. The monitors transmit the stack data to a workstation which computes a 3D numerical model of atmospheric dispersion. The workstation also collects surface and upper air data from meteorological towers and a sodar. The complex meteorological and terrain setting in the Livermore Valley demands more sophisticated resolution of the three-dimensional structure of the atmosphere to reliably calculate plume dispersion than afforded by Gaussian models. We experience both mountain valley and sea breeze flows. To address these complexities, we have implemented the three-dimensional diagnostic MATHEW mass-adjusted wind field and ADPIC particle-in-cell dispersion models on the workstation for use in real-time emergency response modeling. Both MATHEW and ADPIC have shown their utility in a variety of complex settings over the last 15 years within the Department of Energy's Atmospheric Release Advisory Capability (ARAC[1,2]) project

  20. Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback.

    Science.gov (United States)

    Alaraj, Ali; Luciano, Cristian J; Bailey, Daniel P; Elsenousi, Abdussalam; Roitberg, Ben Z; Bernardo, Antonio; Banerjee, P Pat; Charbel, Fady T

    2015-03-01

    With the decrease in the number of cerebral aneurysms treated surgically and the increase of complexity of those treated surgically, there is a need for simulation-based tools to teach future neurosurgeons the operative techniques of aneurysm clipping. To develop and evaluate the usefulness of a new haptic-based virtual reality simulator in the training of neurosurgical residents. A real-time sensory haptic feedback virtual reality aneurysm clipping simulator was developed using the ImmersiveTouch platform. A prototype middle cerebral artery aneurysm simulation was created from a computed tomographic angiogram. Aneurysm and vessel volume deformation and haptic feedback are provided in a 3-dimensional immersive virtual reality environment. Intraoperative aneurysm rupture was also simulated. Seventeen neurosurgery residents from 3 residency programs tested the simulator and provided feedback on its usefulness and resemblance to real aneurysm clipping surgery. Residents thought that the simulation would be useful in preparing for real-life surgery. About two-thirds of the residents thought that the 3-dimensional immersive anatomic details provided a close resemblance to real operative anatomy and accurate guidance for deciding surgical approaches. They thought the simulation was useful for preoperative surgical rehearsal and neurosurgical training. A third of the residents thought that the technology in its current form provided realistic haptic feedback for aneurysm surgery. Neurosurgical residents thought that the novel immersive VR simulator is helpful in their training, especially because they do not get a chance to perform aneurysm clippings until late in their residency programs.

  1. Real-time particle image velocimetry based on FPGA technology

    International Nuclear Information System (INIS)

    Iriarte Munoz, Jose Miguel

    2008-01-01

    Particle image velocimetry (PIV), based on laser sheet, is a method for image processing and calculation of distributed velocity fields.It is well established as a fluid dynamics measurement tool, being applied to liquid, gases and multiphase flows.Images of particles are processed by means of computationally demanding algorithms, what makes its real-time implementation difficult.The most probable displacements are found applying two dimensional cross-correlation function. In this work, we detail how it is possible to achieve real-time visualization of PIV method by designing an adaptive embedded architecture based on FPGA technology.We show first results of a physical field of velocity calculated by this platform system in a real-time approach. [es

  2. Real-Time Trajectory Generation for Autonomous Nonlinear Flight Systems

    National Research Council Canada - National Science Library

    Larsen, Michael; Beard, Randal W; McLain, Timothy W

    2006-01-01

    ... to mobile threats such as radar, jammers, and unfriendly aircraft. In Phase 1 of this STTR project, real-time path planning and trajectory generation techniques for two dimensional flight were developed and demonstrated in software simulation...

  3. Three-Dimensional Intrafractional Motion of Breast During Tangential Breast Irradiation Monitored With High-Sampling Frequency Using a Real-Time Tumor-Tracking Radiotherapy System

    International Nuclear Information System (INIS)

    Kinoshita, Rumiko; Shimizu, Shinichi; Taguchi, Hiroshi; Katoh, Norio; Fujino, Masaharu; Onimaru, Rikiya; Aoyama, Hidefumi; Katoh, Fumi; Omatsu, Tokuhiko; Ishikawa, Masayori; Shirato, Hiroki

    2008-01-01

    Purpose: To evaluate the three-dimensional intrafraction motion of the breast during tangential breast irradiation using a real-time tracking radiotherapy (RT) system with a high-sampling frequency. Methods and Materials: A total of 17 patients with breast cancer who had received breast conservation RT were included in this study. A 2.0-mm gold marker was placed on the skin near the nipple of the breast for RT. A fluoroscopic real-time tumor-tracking RT system was used to monitor the marker. The range of motion of each patient was calculated in three directions. Results: The mean ± standard deviation of the range of respiratory motion was 1.0 ± 0.6 mm (median, 0.9; 95% confidence interval [CI] of the marker position, 0.4-2.6), 1.3 ± 0.5 mm (median, 1.1; 95% CI, 0.5-2.5), and 2.6 ± 1.4 (median, 2.3; 95% CI, 1.0-6.9) for the right-left, craniocaudal, and anteroposterior direction, respectively. No correlation was found between the range of motion and the body mass index or respiratory function. The mean ± standard deviation of the absolute value of the baseline shift in the right-left, craniocaudal, and anteroposterior direction was 0.2 ± 0.2 mm (range, 0.0-0.8 mm), 0.3 ± 0.2 mm (range, 0.0-0.7 mm), and 0.8 ± 0.7 mm (range, 0.1-1.8 mm), respectively. Conclusion: Both the range of motion and the baseline shift were within a few millimeters in each direction. As long as the conventional wedge-pair technique and the proper immobilization are used, the intrafraction three-dimensional change in the breast surface did not much influence the dose distribution

  4. 3D Assessment of Features Associated With Transvalvular Aortic Regurgitation After TAVR: A Real-Time 3D TEE Study.

    Science.gov (United States)

    Shibayama, Kentaro; Mihara, Hirotsugu; Jilaihawi, Hasan; Berdejo, Javier; Harada, Kenji; Itabashi, Yuji; Siegel, Robert; Makkar, Raj R; Shiota, Takahiro

    2016-02-01

    This study of 3-dimensional (3D) transesophageal echocardiography (TEE) aimed to demonstrate features associated with transvalvular aortic regurgitation (AR) after transcatheter aortic valve replacement (TAVR) and to confirm the fact that a gap between the native aortic annulus and prosthesis is associated with paravalvular AR. The mechanism of AR after TAVR, particularly that of transvalvular AR, has not been evaluated adequately. All patients with severe aortic stenosis who underwent TAVR with the Sapien device (Edwards Lifesciences, Irvine, California) had 3D TEE of the pre-procedural native aortic annulus and the post-procedural prosthetic valve. In the 201 patients studied, the total AR was mild in 67 patients (33%), moderate in 21 patients (10%), and severe in no patients. There were 20 patients with transvalvular AR and 82 patients with paravalvular AR. Fourteen patients had both transvalvular and paravalvular AR. Patients with transvalvular AR had larger prosthetic expansion (p prosthetic shape at the prosthetic commissure level (p prosthetic commissures in relation to the native commissures, than the patients without transvalvular AR. Age (odds ratio [OR]: 1.05; 95% confidence interval [CI]: 1.01 to 1.09; p 3D TEE successfully demonstrated the features associated with transvalvular AR, such as large prosthetic expansion, elliptical prosthetic shape, and anti-anatomical position of prosthesis. Additionally, effective area oversizing was associated with paravalvular AR. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. Fetal echocardiography

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007340.htm Fetal echocardiography To use the sharing features on this page, please enable JavaScript. Fetal echocardiography is a test that uses sound waves ( ultrasound ) ...

  6. Speed and amplitude of lung tumor motion precisely detected in four-dimensional setup and in real-time tumor-tracking radiotherapy

    International Nuclear Information System (INIS)

    Shirato, Hiroki; Suzuki, Keishiro; Sharp, Gregory C.; Fujita, Katsuhisa R.T.; Onimaru, Rikiya; Fujino, Masaharu; Kato, Norio; Osaka, Yasuhiro; Kinoshita, Rumiko; Taguchi, Hiroshi; Onodera, Shunsuke; Miyasaka, Kazuo

    2006-01-01

    Background: To reduce the uncertainty of registration for lung tumors, we have developed a four-dimensional (4D) setup system using a real-time tumor-tracking radiotherapy system. Methods and Materials: During treatment planning and daily setup in the treatment room, the trajectory of the internal fiducial marker was recorded for 1 to 2 min at the rate of 30 times per second by the real-time tumor-tracking radiotherapy system. To maximize gating efficiency, the patient's position on the treatment couch was adjusted using the 4D setup system with fine on-line remote control of the treatment couch. Results: The trajectory of the marker detected in the 4D setup system was well visualized and used for daily setup. Various degrees of interfractional and intrafractional changes in the absolute amplitude and speed of the internal marker were detected. Readjustments were necessary during each treatment session, prompted by baseline shifting of the tumor position. Conclusion: The 4D setup system was shown to be useful for reducing the uncertainty of tumor motion and for increasing the efficiency of gated irradiation. Considering the interfractional and intrafractional changes in speed and amplitude detected in this study, intercepting radiotherapy is the safe and cost-effective method for 4D radiotherapy using real-time tracking technology

  7. Intraoperative Two- and Three-Dimensional Transesophageal Echocardiography in Combined Myectomy-Mitral Operations for Hypertrophic Cardiomyopathy.

    Science.gov (United States)

    Nampiaparampil, Robert G; Swistel, Daniel G; Schlame, Michael; Saric, Muhamed; Sherrid, Mark V

    2018-03-01

    Transesophageal echocardiography is essential in guiding the surgical approach for patients with obstructive hypertrophic cardiomyopathy. Septal hypertrophy, elongated mitral valve leaflets, and abnormalities of the subvalvular apparatus are prominent features, all of which may contribute to left ventricular outflow tract obstruction. Surgery aims to alleviate the obstruction via an extended myectomy, often with an intervention on the mitral valve and subvalvular apparatus. The goal of intraoperative echocardiography is to assess the anatomic pathology and pathophysiology in order to achieve a safe intraoperative course and a successful repair. This guide summarizes the systematic evaluation of these patients to determine the best surgical plan. Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  8. Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration.

    Science.gov (United States)

    Sato, Hirochika; Kakue, Takashi; Ichihashi, Yasuyuki; Endo, Yutaka; Wakunami, Koki; Oi, Ryutaro; Yamamoto, Kenji; Nakayama, Hirotaka; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2018-01-24

    Although electro-holography can reconstruct three-dimensional (3D) motion pictures, its computational cost is too heavy to allow for real-time reconstruction of 3D motion pictures. This study explores accelerating colour hologram generation using light-ray information on a ray-sampling (RS) plane with a graphics processing unit (GPU) to realise a real-time holographic display system. We refer to an image corresponding to light-ray information as an RS image. Colour holograms were generated from three RS images with resolutions of 2,048 × 2,048; 3,072 × 3,072 and 4,096 × 4,096 pixels. The computational results indicate that the generation of the colour holograms using multiple GPUs (NVIDIA Geforce GTX 1080) was approximately 300-500 times faster than those generated using a central processing unit. In addition, the results demonstrate that 3D motion pictures were successfully reconstructed from RS images of 3,072 × 3,072 pixels at approximately 15 frames per second using an electro-holographic reconstruction system in which colour holograms were generated from RS images in real time.

  9. Real-time change detection in data streams with FPGAs

    International Nuclear Information System (INIS)

    Vega, J.; Dormido-Canto, S.; Cruz, T.; Ruiz, M.; Barrera, E.; Castro, R.; Murari, A.; Ochando, M.

    2014-01-01

    Highlights: • Automatic recognition of changes in data streams of multidimensional signals. • Detection algorithm based on testing exchangeability on-line. • Real-time and off-line applicability. • Real-time implementation in FPGAs. - Abstract: The automatic recognition of changes in data streams is useful in both real-time and off-line data analyses. This article shows several effective change-detecting algorithms (based on martingales) and describes their real-time applicability in the data acquisition systems through the use of Field Programmable Gate Arrays (FPGA). The automatic event recognition system is absolutely general and it does not depend on either the particular event to detect or the specific data representation (waveforms, images or multidimensional signals). The developed approach provides good results for change detection in both the temporal evolution of profiles and the two-dimensional spatial distribution of volume emission intensity. The average computation time in the FPGA is 210 μs per profile

  10. Real-time telemedicine using shared three-dimensional workspaces over ATM

    Science.gov (United States)

    Cahoon, Peter; Forsey, David R.; Hutchison, Susan

    1999-03-01

    During the past five years a high speed ATM network has been developed at UBC that provides a campus testbed, a local testbed to the hospitals, and a National testbed between here and the BADLAB in Ottawa. This testbed has been developed to combine a commercial shared audio/video/whiteboard environment coupled with a shared interactive 3-dimensional solid model. This solid model ranges from a skull reconstructed from a CT scan with muscles and an overlying skin, to a model of the ventricle system of the human brain. Typical interactions among surgeon, radiologist and modeler consist of having image slices of the original scan shared by all and the ability to adjust the surface of the model to conform to each individuals perception of what the final object should look like. The purpose of this interaction can range from forensic reconstruction from partial remains to pre-maxillofacial surgery. A joint project with the forensic unit of the R.C.M.P. in Ottawa using the BADLAB is now in the stages of testing this methodology on a real case beginning with a CT scan of partial remains. A second study underway with the department of Maxiofacial reconstruction at Dalhousie University in Halifax Nova Scotia and concerns a subject who is about to undergo orthognathic surgery, in particular a mandibular advancement. This subject has been MRI scanned, a solid model constructed of the mandible and the virtual surgery constructed on the model. This model and the procedure have been discussed and modified by the modeler and the maxillofacial specialist using these shared workspaces. The procedure will be repeated after the actual surgery to verify the modeled procedure. The advantage of this technique is that none of the specialists need be in the same room, or city. Given the scarcity of time and specialists this methodology shows great promise. In November of this last year a shared live demonstration of this facial modeler was done between Vancouver and Dalhousie University in

  11. High dose three-dimensional conformal boost (3DCB) using an orthogonal diagnostic X-ray set-up for patients with gynecological malignancy: a new application of real-time tumor-tracking system

    International Nuclear Information System (INIS)

    Yamamoto, Ritsu; Yonesaka, Akio; Nishioka, Seiko; Watari, Hidemichi; Hashimoto, Takayuki; Uchida, Daichi; Taguchi, Hiroshi; Nishioka, Takeshi; Miyasaka, Kazuo; Sakuragi, Noriaki; Shirato, Hiroki

    2004-01-01

    The feasibility and accuracy of high dose three-dimensional conformal boost (3DCB) using three internal fiducial markers and a two-orthogonal X-ray set-up of the real-time tumor-tracking system on patients with gynecological malignancy were investigated in 10 patients. The standard deviation of the distribution of systematic deviations (Σ) was reduced from 3.8, 4.6, and 4.9 mm in the manual set-up to 2.3, 2.3 and 2.7 mm in the set-up using the internal markers. The average standard deviation of the distribution of random deviations (σ) was reduced from 3.7, 5.0, and 4.5 mm in the manual set-up to 3.3, 3.0, and 4.2 mm in the marker set-up. The appropriate PTV margin was estimated to be 10.2, 12.8, and 12.9 mm in the manual set-up and 6.9, 6.7, and 8.3 mm in the gold marker set-up, respectively, using the formula 2Σ+0.7σ. Set-up of the patients with three markers and two fluoroscopy is useful to reduce PTV margin and perform 3DCB

  12. Performance of two-dimensional Doppler echocardiography for the assessment of infarct size and left ventricular function in rats

    Directory of Open Access Journals (Sweden)

    Nozawa E.

    2006-01-01

    Full Text Available Although echocardiography has been used in rats, few studies have determined its efficacy for estimating myocardial infarct size. Our objective was to estimate the myocardial infarct size, and to evaluate anatomic and functional variables of the left ventricle. Myocardial infarction was produced in 43 female Wistar rats by ligature of the left coronary artery. Echocardiography was performed 5 weeks later to measure left ventricular diameter and transverse area (mean of 3 transverse planes, infarct size (percentage of the arc with infarct on 3 transverse planes, systolic function by the change in fractional area, and diastolic function by mitral inflow parameters. The histologic measurement of myocardial infarction size was similar to the echocardiographic method. Myocardial infarct size ranged from 4.8 to 66.6% when determined by histology and from 5 to 69.8% when determined by echocardiography, with good correlation (r = 0.88; P < 0.05; Pearson correlation coefficient. Left ventricular diameter and mean diastolic transverse area correlated with myocardial infarct size by histology (r = 0.57 and r = 0.78; P < 0.0005. The fractional area change ranged from 28.5 ± 5.6 (large-size myocardial infarction to 53.1 ± 1.5% (control and correlated with myocardial infarct size by echocardiography (r = -0.87; P < 0.00001 and histology (r = -0.78; P < 00001. The E/A wave ratio of mitral inflow velocity for animals with large-size myocardial infarction (5.6 ± 2.7 was significantly higher than for all others (control: 1.9 ± 0.1; small-size myocardial infarction: 1.9 ± 0.4; moderate-size myocardial infarction: 2.8 ± 2.3. There was good agreement between echocardiographic and histologic estimates of myocardial infarct size in rats.

  13. Real time 3D structural and Doppler OCT imaging on graphics processing units

    Science.gov (United States)

    Sylwestrzak, Marcin; Szlag, Daniel; Szkulmowski, Maciej; Gorczyńska, Iwona; Bukowska, Danuta; Wojtkowski, Maciej; Targowski, Piotr

    2013-03-01

    In this report the application of graphics processing unit (GPU) programming for real-time 3D Fourier domain Optical Coherence Tomography (FdOCT) imaging with implementation of Doppler algorithms for visualization of the flows in capillary vessels is presented. Generally, the time of the data processing of the FdOCT data on the main processor of the computer (CPU) constitute a main limitation for real-time imaging. Employing additional algorithms, such as Doppler OCT analysis, makes this processing even more time consuming. Lately developed GPUs, which offers a very high computational power, give a solution to this problem. Taking advantages of them for massively parallel data processing, allow for real-time imaging in FdOCT. The presented software for structural and Doppler OCT allow for the whole processing with visualization of 2D data consisting of 2000 A-scans generated from 2048 pixels spectra with frame rate about 120 fps. The 3D imaging in the same mode of the volume data build of 220 × 100 A-scans is performed at a rate of about 8 frames per second. In this paper a software architecture, organization of the threads and optimization applied is shown. For illustration the screen shots recorded during real time imaging of the phantom (homogeneous water solution of Intralipid in glass capillary) and the human eye in-vivo is presented.

  14. Time dependent semiclassical tunneling through one dimensional barriers using only real valued trajectories

    International Nuclear Information System (INIS)

    Herman, Michael F.

    2015-01-01

    The time independent semiclassical treatment of barrier tunneling has been understood for a very long time. Several semiclassical approaches to time dependent tunneling through barriers have also been presented. These typically involve trajectories for which the position variable is a complex function of time. In this paper, a method is presented that uses only real valued trajectories, thus avoiding the complications that can arise when complex trajectories are employed. This is accomplished by expressing the time dependent wave packet as an integration over momentum. The action function in the exponent in this expression is expanded to second order in the momentum. The expansion is around the momentum, p 0 * , at which the derivative of the real part of the action is zero. The resulting Gaussian integral is then taken. The stationary phase approximation requires that the derivative of the full action is zero at the expansion point, and this leads to a complex initial momentum and complex tunneling trajectories. The “pseudo-stationary phase” approximation employed in this work results in real values for the initial momentum and real valued trajectories. The transmission probabilities obtained are found to be in good agreement with exact quantum results

  15. Time dependent semiclassical tunneling through one dimensional barriers using only real valued trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Herman, Michael F. [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States)

    2015-10-28

    The time independent semiclassical treatment of barrier tunneling has been understood for a very long time. Several semiclassical approaches to time dependent tunneling through barriers have also been presented. These typically involve trajectories for which the position variable is a complex function of time. In this paper, a method is presented that uses only real valued trajectories, thus avoiding the complications that can arise when complex trajectories are employed. This is accomplished by expressing the time dependent wave packet as an integration over momentum. The action function in the exponent in this expression is expanded to second order in the momentum. The expansion is around the momentum, p{sub 0{sup *}}, at which the derivative of the real part of the action is zero. The resulting Gaussian integral is then taken. The stationary phase approximation requires that the derivative of the full action is zero at the expansion point, and this leads to a complex initial momentum and complex tunneling trajectories. The “pseudo-stationary phase” approximation employed in this work results in real values for the initial momentum and real valued trajectories. The transmission probabilities obtained are found to be in good agreement with exact quantum results.

  16. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates

    Science.gov (United States)

    Wessberg, Johan; Stambaugh, Christopher R.; Kralik, Jerald D.; Beck, Pamela D.; Laubach, Mark; Chapin, John K.; Kim, Jung; Biggs, S. James; Srinivasan, Mandayam A.; Nicolelis, Miguel A. L.

    2000-11-01

    Signals derived from the rat motor cortex can be used for controlling one-dimensional movements of a robot arm. It remains unknown, however, whether real-time processing of cortical signals can be employed to reproduce, in a robotic device, the kind of complex arm movements used by primates to reach objects in space. Here we recorded the simultaneous activity of large populations of neurons, distributed in the premotor, primary motor and posterior parietal cortical areas, as non-human primates performed two distinct motor tasks. Accurate real-time predictions of one- and three-dimensional arm movement trajectories were obtained by applying both linear and nonlinear algorithms to cortical neuronal ensemble activity recorded from each animal. In addition, cortically derived signals were successfully used for real-time control of robotic devices, both locally and through the Internet. These results suggest that long-term control of complex prosthetic robot arm movements can be achieved by simple real-time transformations of neuronal population signals derived from multiple cortical areas in primates.

  17. Facial Expression Emotion Detection for Real-Time Embedded Systems

    Directory of Open Access Journals (Sweden)

    Saeed Turabzadeh

    2018-01-01

    Full Text Available Recently, real-time facial expression recognition has attracted more and more research. In this study, an automatic facial expression real-time system was built and tested. Firstly, the system and model were designed and tested on a MATLAB environment followed by a MATLAB Simulink environment that is capable of recognizing continuous facial expressions in real-time with a rate of 1 frame per second and that is implemented on a desktop PC. They have been evaluated in a public dataset, and the experimental results were promising. The dataset and labels used in this study were made from videos, which were recorded twice from five participants while watching a video. Secondly, in order to implement in real-time at a faster frame rate, the facial expression recognition system was built on the field-programmable gate array (FPGA. The camera sensor used in this work was a Digilent VmodCAM — stereo camera module. The model was built on the Atlys™ Spartan-6 FPGA development board. It can continuously perform emotional state recognition in real-time at a frame rate of 30. A graphical user interface was designed to display the participant’s video in real-time and two-dimensional predict labels of the emotion at the same time.

  18. Transesophageal echocardiography as an alternative for the assessment of the trauma and critical care patient.

    Science.gov (United States)

    Rose, David D

    2003-06-01

    Transesophageal echocardiography was first described and used to monitor cardiac function in 1976. Initially adopted by cardiac anesthesiologists and cardiologists, it has gained acceptance as an important diagnostic tool in the monitoring and assessment of cardiac status in the critically ill and trauma patient population. Comparative data suggest that transesophageal echocardiography provides rapid real-time noninvasive monitoring of the critically ill and avoids the morbidity and mortality that is associated with more invasive methods of patient monitoring. In addition, transesophageal echocardiography affords the practitioner reliable cardiac filling volumes based on direct left ventricular assessment compared to pressure data that are based on indirect right ventricular and pulmonary occlusive pressures. In a healthcare environment that seeks optimum patient assessment while requiring an approach that encourages cost-effective, noninvasive, and minimal patient risk, those nurse anesthetists who work in institutions that have transesophageal echocardiographic capabilities should learn this newer technology and begin to incorporate it into their practice.

  19. Echocardiography as an approach for canine cardiac disease diagnosis

    Directory of Open Access Journals (Sweden)

    P. Singh

    2014-11-01

    Full Text Available Aim: The aim of the study was to establish the methods for diagnosis various canine cardiac ailments using echocardiography. Materials and Methods: M-mode, two-dimensional echocardiography and Doppler studies were performed on 10 cases. Dogs showing signs of cardiac ailment either clinically, radiographic or via electrocardiographic examination were selected for study. Right parasternal short axis view was used for echocardiographic measurements. Right parasternal long axis and left parasternal apical views were used for Doppler studies. Doppler studies were performed at the level of aortic valve and atrioventricular valves for semi quantitative diagnosis of regurgitation. Results: Dogs were found affected with dilated cardiomyopathy (DCM (n=5, pericardial effusion (PE (n=1, combined PE and DCM (n=2 and remaining two showed abnormality on radiographic or electrographically evaluation but were found out to be normal echocardiographically (n=2. Conclusion: Echocardiography is an effective tool for diagnosis of various heart ailments.

  20. A real-time 3D scanning system for pavement distortion inspection

    International Nuclear Information System (INIS)

    Li, Qingguang; Yao, Ming; Yao, Xun; Xu, Bugao

    2010-01-01

    Pavement distortions, such as rutting and shoving, are the common pavement distress problems that need to be inspected and repaired in a timely manner to ensure ride quality and traffic safety. This paper introduces a real-time, low-cost inspection system devoted to detecting these distress features using high-speed 3D transverse scanning techniques. The detection principle is the dynamic generation and characterization of the 3D pavement profile based on structured light triangulation. To improve the accuracy of the system, a multi-view coplanar scheme is employed in the calibration procedure so that more feature points can be used and distributed across the field of view of the camera. A sub-pixel line extraction method is applied for the laser stripe location, which includes filtering, edge detection and spline interpolation. The pavement transverse profile is then generated from the laser stripe curve and approximated by line segments. The second-order derivatives of the segment endpoints are used to identify the feature points of possible distortions. The system can output the real-time measurements and 3D visualization of rutting and shoving distress in a scanned pavement

  1. Real-time microscopic 3D shape measurement based on optimized pulse-width-modulation binary fringe projection

    Science.gov (United States)

    Hu, Yan; Chen, Qian; Feng, Shijie; Tao, Tianyang; Li, Hui; Zuo, Chao

    2017-07-01

    In recent years, tremendous progress has been made in 3D measurement techniques, contributing to the realization of faster and more accurate 3D measurement. As a representative of these techniques, fringe projection profilometry (FPP) has become a commonly used method for real-time 3D measurement, such as real-time quality control and online inspection. To date, most related research has been concerned with macroscopic 3D measurement, but microscopic 3D measurement, especially real-time microscopic 3D measurement, is rarely reported. However, microscopic 3D measurement plays an important role in 3D metrology and is indispensable in some applications in measuring micro scale objects like the accurate metrology of MEMS components of the final devices to ensure their proper performance. In this paper, we proposed a method which effectively combines optimized binary structured patterns with a number-theoretical phase unwrapping algorithm to realize real-time microscopic 3D measurement. A slight defocusing of our optimized binary patterns can considerably alleviate the measurement error based on four-step phase-shifting FPP, providing the binary patterns with a comparable performance to ideal sinusoidal patterns. The static measurement accuracy can reach 8 μm, and the experimental results of a vibrating earphone diaphragm reveal that our system can successfully realize real-time 3D measurement of 120 frames per second (FPS) with a measurement range of 8~\\text{mm}× 6~\\text{mm} in lateral and 8 mm in depth.

  2. A 3D simulation look-up library for real-time airborne gamma-ray spectroscopy

    Science.gov (United States)

    Kulisek, Jonathan A.; Wittman, Richard S.; Miller, Erin A.; Kernan, Warnick J.; McCall, Jonathon D.; McConn, Ron J.; Schweppe, John E.; Seifert, Carolyn E.; Stave, Sean C.; Stewart, Trevor N.

    2018-01-01

    A three-dimensional look-up library consisting of simulated gamma-ray spectra was developed to leverage, in real-time, the abundance of data provided by a helicopter-mounted gamma-ray detection system consisting of 92 CsI-based radiation sensors and exhibiting a highly angular-dependent response. We have demonstrated how this library can be used to help effectively estimate the terrestrial gamma-ray background, develop simulated flight scenarios, and to localize radiological sources. Source localization accuracy was significantly improved, particularly for weak sources, by estimating the entire gamma-ray spectra while accounting for scattering in the air, and especially off the ground.

  3. A real time zero-dimensional diagnostic model for the calculation of in-cylinder temperatures, HRR and nitrogen oxides in diesel engines

    International Nuclear Information System (INIS)

    Finesso, Roberto; Spessa, Ezio

    2014-01-01

    Highlights: • Real-time zero-dimensional three-zone diagnostic combustion model. • Capable of evaluating in-cylinder temperatures, HRR and NOx in DI diesel engines. • Able to be integrated in the engine ECU for control applications. • Able to be integrated in the test bed acquisition software for calibration tasks. • Tested under both steady state and fast transient conditions. - Abstract: A real-time zero-dimensional diagnostic combustion model has been developed and assessed to evaluate in-cylinder temperatures, HRR (heat release rate) and NOx (nitrogen oxides) in DI (Direct Injection) diesel engines under steady state and transient conditions. The approach requires very little computational time, that is, of the order of a few milliseconds, and is therefore suitable for real-time applications. It could, for example, be implemented in an ECU (Engine Control Unit) for the on-board diagnostics of combustion and emission formation processes, or it could be integrated in acquisition software installed on an engine test bench for indicated analysis. The model could also be used for post-processing analysis of previously acquired experimental data. The methodology is based on a three-zone thermodynamic model: the combustion chamber is divided into a fuel zone, an unburned gas zone and a stoichiometric burned gas zone, to which the energy and mass conservation equations are applied. The main novelty of the proposed method is that the equations can be solved in closed form, thus making the approach suitable for real-time applications. The evaluation of the temperature of burned gases allows the in-cylinder NOx concentration to be calculated, on the basis of prompt and Zeldovich thermal mechanisms. The procedure also takes into account the NOx level in the intake charge, and is therefore suitable for engines equipped with traditional short-route EGR (Exhaust Gas Recirculation) systems, and engines equipped with SCR (Selective Catalytic Reduction) and long

  4. Objective video quality measure for application to tele-echocardiography.

    Science.gov (United States)

    Moore, Peter Thomas; O'Hare, Neil; Walsh, Kevin P; Ward, Neil; Conlon, Niamh

    2008-08-01

    Real-time tele-echocardiography is widely used to remotely diagnose or exclude congenital heart defects. Cost effective technical implementation is realised using low-bandwidth transmission systems and lossy compression (videoconferencing) schemes. In our study, DICOM video sequences were converted to common multimedia formats, which were then, compressed using three lossy compression algorithms. We then applied a digital (multimedia) video quality metric (VQM) to determine objectively a value for degradation due to compression. Three levels of compression were simulated by varying system bandwidth and compared to a subjective assessment of video clip quality by three paediatric cardiologists with more than 5 years of experience.

  5. An active robot vision system for real-time 3-D structure recovery

    Energy Technology Data Exchange (ETDEWEB)

    Juvin, D. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Electronique et d`Instrumentation Nucleaire; Boukir, S.; Chaumette, F.; Bouthemy, P. [Rennes-1 Univ., 35 (France)

    1993-10-01

    This paper presents an active approach for the task of computing the 3-D structure of a nuclear plant environment from an image sequence, more precisely the recovery of the 3-D structure of cylindrical objects. Active vision is considered by computing adequate camera motions using image-based control laws. This approach requires a real-time tracking of the limbs of the cylinders. Therefore, an original matching approach, which relies on an algorithm for determining moving edges, is proposed. This method is distinguished by its robustness and its easiness to implement. This method has been implemented on a parallel image processing board and real-time performance has been achieved. The whole scheme has been successfully validated in an experimental set-up.

  6. An active robot vision system for real-time 3-D structure recovery

    International Nuclear Information System (INIS)

    Juvin, D.

    1993-01-01

    This paper presents an active approach for the task of computing the 3-D structure of a nuclear plant environment from an image sequence, more precisely the recovery of the 3-D structure of cylindrical objects. Active vision is considered by computing adequate camera motions using image-based control laws. This approach requires a real-time tracking of the limbs of the cylinders. Therefore, an original matching approach, which relies on an algorithm for determining moving edges, is proposed. This method is distinguished by its robustness and its easiness to implement. This method has been implemented on a parallel image processing board and real-time performance has been achieved. The whole scheme has been successfully validated in an experimental set-up

  7. Three-dimensional echocardiographic assessment of atrial septal defects

    Directory of Open Access Journals (Sweden)

    Charles German

    2015-01-01

    Full Text Available Echocardiography provides a useful tool in the diagnosis of many congenital heart diseases, including atrial septal defects, and aids in further delineating treatment options. Although two-dimensional echocardiography has been the standard of care in this regard, technological advancements have made three-dimensional echocardiography possible, and the images obtained in this new imaging modality are able to accurately portray the morphology, location, dimensions, and dynamic changes of defects and many other heart structures during the cardiac cycle.

  8. Measurement of cardiac dimensions with two-dimensional echocardiography in the living horse.

    Science.gov (United States)

    Voros, K; Holmes, J R; Gibbs, C

    1991-11-01

    Two-dimensional echocardiography (2DE) was performed on 22 unsedated Thoroughbred and part Thoroughbred horses weighing between 411 and 650 kg to establish normal reference values for 2DE measurements. Animals stood during examinations performed with a 3.5 MHz mechanical sector transducer using various transducer positions and tomographic planes. Right ventricular diameter (RVD), ventricular septal thickness (VSTh), aortic diameter (AoD), area of the chordal lumen of the left ventricle (CTA), left ventricular diameter (LVD) and left atrial diameter (LAD) were determined at ventricular end-diastole (Ed) and/or end-systole (Es). Fractional shortening (FS) of the left ventricle and end-systolic left atrial to aortic ratio (LAD-Es:AoD-Es) also were calculated. Echocardiographic data were related to body weight by linear regression analysis. Intra-observer variability was checked in five horses by measuring each parameter during each of 10 consecutive cardiac cycles. The 2DE data were compared with M-mode values in published reports. In the 18 horses whose weight did not exceed 551 kg, repeatable recordings of good quality were obtained, and 2DE measurements could be made using intra-cardiac reference points. Increasing body weight proved to impose substantial limitations on measurements taken with the available machine and transducer. This problem might be overcome by using probes of lower frequency or equipment with higher quality image display at greater depth. The following parameters correlated significantly to body weight: VSTh-Es (r = 0.69; P less than 0.01). AoD-Es (r = 0.64; P less than 0.01) and CTA-Es (r = 0.84; P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Near real-time digital holographic microscope based on GPU parallel computing

    Science.gov (United States)

    Zhu, Gang; Zhao, Zhixiong; Wang, Huarui; Yang, Yan

    2018-01-01

    A transmission near real-time digital holographic microscope with in-line and off-axis light path is presented, in which the parallel computing technology based on compute unified device architecture (CUDA) and digital holographic microscopy are combined. Compared to other holographic microscopes, which have to implement reconstruction in multiple focal planes and are time-consuming the reconstruction speed of the near real-time digital holographic microscope can be greatly improved with the parallel computing technology based on CUDA, so it is especially suitable for measurements of particle field in micrometer and nanometer scale. Simulations and experiments show that the proposed transmission digital holographic microscope can accurately measure and display the velocity of particle field in micrometer scale, and the average velocity error is lower than 10%.With the graphic processing units(GPU), the computing time of the 100 reconstruction planes(512×512 grids) is lower than 120ms, while it is 4.9s using traditional reconstruction method by CPU. The reconstruction speed has been raised by 40 times. In other words, it can handle holograms at 8.3 frames per second and the near real-time measurement and display of particle velocity field are realized. The real-time three-dimensional reconstruction of particle velocity field is expected to achieve by further optimization of software and hardware. Keywords: digital holographic microscope,

  10. Intraoperative application of geometric three-dimensional mitral valve assessment package: a feasibility study.

    Science.gov (United States)

    Mahmood, Feroze; Karthik, Swaminathan; Subramaniam, Balachundhar; Panzica, Peter J; Mitchell, John; Lerner, Adam B; Jervis, Karinne; Maslow, Andrew D

    2008-04-01

    To study the feasibility of using 3-dimensional (3D) echocardiography in the operating room for mitral valve repair or replacement surgery. To perform geometric analysis of the mitral valve before and after repair. Prospective observational study. Academic, tertiary care hospital. Consecutive patients scheduled for mitral valve surgery. Intraoperative reconstruction of 3D images of the mitral valve. One hundred and two patients had 3D analysis of their mitral valve. Successful image reconstruction was performed in 93 patients-8 patients had arrhythmias or a dilated mitral valve annulus resulting in significant artifacts. Time from acquisition to reconstruction and analysis was less than 5 minutes. Surgeon identification of mitral valve anatomy was 100% accurate. The study confirms the feasibility of performing intraoperative 3D reconstruction of the mitral valve. This data can be used for confirmation and communication of 2-dimensional data to the surgeons by obtaining a surgical view of the mitral valve. The incorporation of color-flow Doppler into these 3D images helps in identification of the commissural or perivalvular location of regurgitant orifice. With improvements in the processing power of the current generation of echocardiography equipment, it is possible to quickly acquire, reconstruct, and manipulate images to help with timely diagnosis and surgical planning.

  11. A real-time monitoring/emergency response workstation using a 3-D numerical model initialized with SODAR

    International Nuclear Information System (INIS)

    Lawver, B.S.; Sullivan, T.J.; Baskett, R.L.

    1993-01-01

    Many workstation based emergency response dispersion modeling systems provide simple Gaussian models driven by single meteorological tower inputs to estimate the downwind consequences from accidental spills or stack releases. Complex meteorological or terrain settings demand more sophisticated resolution of the three-dimensional structure of the atmosphere to reliably calculate plume dispersion. Mountain valleys and sea breeze flows are two common examples of such settings. To address these complexities, we have implemented the three-dimensional-diagnostic MATHEW mass-adjusted wind field and ADPIC particle-in-cell dispersion models on a workstation for use in real-time emergency response modeling. Both MATHEW and ADPIC have shown their utility in a variety of complex settings over the last 15 years within the Department of Energy's Atmospheric Release Advisory Capability project

  12. Conventional versus 3-D Echocardiography to Predict Arrhythmia Recurrence After Atrial Fibrillation Ablation.

    Science.gov (United States)

    Bossard, Matthias; Knecht, Sven; Aeschbacher, Stefanie; Buechel, Ronny R; Hochgruber, Thomas; Zimmermann, Andreas J; Kessel-Schaefer, Arnheid; Stephan, Frank-Peter; Völlmin, Gian; Pradella, Maurice; Sticherling, Christian; Osswald, Stefan; Kaufmann, Beat A; Conen, David; Kühne, Michael

    2017-06-01

    Arrhythmia recurrence after atrial fibrillation (AF) ablation remains high and requires repeat interventions in a substantial number of patients. We assessed the value of conventional and 3-D echocardiography to predict AF recurrence. Consecutive patients undergoing AF ablation by means of pulmonary vein isolation were included in a prospective registry. Echocardiograms were obtained prior to the ablation procedure, and analyzed offline in a standardized manner, including 3-D left atrial (LA) volumetry and determination of LA function and sphericity. The primary endpoint, AF recurrence (>30 seconds) between 3 to 12 months after AF ablation, was independently adjudicated. We included 276 patients (73% male, mean age 59.9 ± 9.9 years). Paroxysmal and persistent AF were present in 178 (64%) and 98 (36%) patients, respectively. Mean left ventricular ejection fraction and indexed LA volume in 3-D (LAVI) were 52 ± 12% and 42 ± 13 mL/m 2 , respectively. AF recurrence was observed in 110 (40%) patients after a single procedure. Median (interquartile range) time to AF recurrence was 123 (92; 236) days. In multivariable Cox regression models, the only predictors for AF recurrence were the minimal, maximal, and indexed 3-D LA volumes, P = 0.024, P = 0.016, and P = 0.014, respectively. Quartile specific analysis of 3-D LAVI showed an HR of 1.885 (95%CI 1.066-3.334; P for trend = 0.015) for the highest compared to the lowest quartile. Our results show the important role of LA volume for the long-term freedom from arrhythmia after AF ablation. These data also highlight the potential of 3-D echocardiography in this context and may facilitate patient selection for AF ablation. © 2017 Wiley Periodicals, Inc.

  13. Real-time 3-D space numerical shake prediction for earthquake early warning

    Science.gov (United States)

    Wang, Tianyun; Jin, Xing; Huang, Yandan; Wei, Yongxiang

    2017-12-01

    In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of source parameters. For computation efficiency, wave direction is assumed to propagate on the 2-D surface of the earth in these methods. In fact, since the seismic wave propagates in the 3-D sphere of the earth, the 2-D space modeling of wave direction results in inaccurate wave estimation. In this paper, we propose a 3-D space numerical shake prediction method, which simulates the wave propagation in 3-D space using radiative transfer theory, and incorporate data assimilation technique to estimate the distribution of wave energy. 2011 Tohoku earthquake is studied as an example to show the validity of the proposed model. 2-D space model and 3-D space model are compared in this article, and the prediction results show that numerical shake prediction based on 3-D space model can estimate the real-time ground motion precisely, and overprediction is alleviated when using 3-D space model.

  14. Real Time Revisited

    Science.gov (United States)

    Allen, Phillip G.

    1985-12-01

    The call for abolishing photo reconnaissance in favor of real time is once more being heard. Ten years ago the same cries were being heard with the introduction of the Charge Coupled Device (CCD). The real time system problems that existed then and stopped real time proliferation have not been solved. The lack of an organized program by either DoD or industry has hampered any efforts to solve the problems, and as such, very little has happened in real time in the last ten years. Real time is not a replacement for photo, just as photo is not a replacement for infra-red or radar. Operational real time sensors can be designed only after their role has been defined and improvements made to the weak links in the system. Plodding ahead on a real time reconnaissance suite without benefit of evaluation of utility will allow this same paper to be used ten years from now.

  15. [Safety and efficacy of percutaneous patent ductus arteriosus closure solely under thoracic echocardiography guidance].

    Science.gov (United States)

    Pan, Xiangbin; Ouyang, Wenbin; Li, Shoujun; Guo, Gaili; Liu, Yao; Zhang, Dawei; Zhang, Fengwen; Pang, Kunjing; Fang, Nengxin; Hu, Shengshou

    2015-01-01

    To avoid the radiation injuries and use of contrast agent, we assessed the safety and efficacy of percutaneous patent ductus arteriosus closure solely under thoracic echocardiography guidance. From June 2013 to June 2014, thirty patients (mean age: (6.3 ± 2.5) years, mean body weight:(22.5 ± 7.3) kg) with pure patent ductus arteriosus were continuously included in this study. The mean diameter of patent ductus arteriosus was (3.8 ± 0.9) mm. Patients were all treated by percutaneous patent ductus arteriosus closure via right femoral artery solely under thoracic echocardiography guidance. The efficacy of the procedure was evaluated by thoracic echocardiography. Follow-up was performed at one month after procedure. All 30 cases were successfully treated with percutaneous patent ductus arteriosus closure solely under thracic echocardiography guidance. The procedural time was (32.8 ± 5.7) minutes. The mean diameter of Amplatzer ADO II was (4.9 ± 1.0) mm. Postoperative trivial residual shunt occurred in six patients immediately after the procedure. All patients survived without peripheral vascular injury or complications such as cardiac perforation. Hospitalization time was (3.4 ± 0.7) days. At one-month follow-up, no complications such as residual shunt or pericardial effusion were observed. Echocardiography guided percutaneous patent ductus arteriosus closure by femoral artery approach is safe and effective, and can avoid X-ray and the use of contrast agents.

  16. Real Time 3D Facial Movement Tracking Using a Monocular Camera

    Directory of Open Access Journals (Sweden)

    Yanchao Dong

    2016-07-01

    Full Text Available The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference.

  17. 3D Hand Gesture Analysis through a Real-Time Gesture Search Engine

    Directory of Open Access Journals (Sweden)

    Shahrouz Yousefi

    2015-06-01

    Full Text Available 3D gesture recognition and tracking are highly desired features of interaction design in future mobile and smart environments. Specifically, in virtual/augmented reality applications, intuitive interaction with the physical space seems unavoidable and 3D gestural interaction might be the most effective alternative for the current input facilities such as touchscreens. In this paper, we introduce a novel solution for real-time 3D gesture-based interaction by finding the best match from an extremely large gesture database. This database includes images of various articulated hand gestures with the annotated 3D position/orientation parameters of the hand joints. Our unique matching algorithm is based on the hierarchical scoring of the low-level edge-orientation features between the query frames and database and retrieving the best match. Once the best match is found from the database in each moment, the pre-recorded 3D motion parameters can instantly be used for natural interaction. The proposed bare-hand interaction technology performs in real time with high accuracy using an ordinary camera.

  18. Real time 2 dimensional detector for charged particle and soft X-ray images

    International Nuclear Information System (INIS)

    Ishikawa, M.; Ito, M.; Endo, T.; Oba, K.

    1995-01-01

    The conventional instruments used in experiments for the soft X-ray region such as X-ray diffraction analysis are X-ray films or imaging plates. However, these instruments are not suitable for real time observation. In this paper, newly developed imaging devices will be presented, which have the capability to take X-ray images in real time with a high detection efficiency. Also, another capability, to take elementary particle tracking images, is described. (orig.)

  19. Improved process control through real-time measurement of mineral content

    Energy Technology Data Exchange (ETDEWEB)

    Turler, Daniel; Karaca, Murat; Davis, William B.; Giauque, Robert D.; Hopkins, Deborah

    2001-11-02

    In a highly collaborative research and development project with mining and university partners, sensors and data-analysis tools are being developed for rock-mass characterization and real-time measurement of mineral content. Determining mineralogy prior to mucking in an open-pit mine is important for routing the material to the appropriate processing stream. A possible alternative to lab assay of dust and cuttings obtained from drill holes is continuous on-line sampling and real-time x-ray fluorescence (XRF) spectroscopy. Results presented demonstrate that statistical analyses combined with XRF data can be employed to identify minerals and, possibly, different rock types. The objective is to create a detailed three-dimensional mineralogical map in real time that would improve downstream process efficiency.

  20. Influence of the Quantity of Aortic Valve Calcium on the Agreement Between Automated 3-Dimensional Transesophageal Echocardiography and Multidetector Row Computed Tomography for Aortic Annulus Sizing.

    Science.gov (United States)

    Podlesnikar, Tomaz; Prihadi, Edgard A; van Rosendael, Philippe J; Vollema, E Mara; van der Kley, Frank; de Weger, Arend; Ajmone Marsan, Nina; Naji, Franjo; Fras, Zlatko; Bax, Jeroen J; Delgado, Victoria

    2018-01-01

    Accurate aortic annulus sizing is key for selection of appropriate transcatheter aortic valve implantation (TAVI) prosthesis size. The present study compared novel automated 3-dimensional (3D) transesophageal echocardiography (TEE) software and multidetector row computed tomography (MDCT) for aortic annulus sizing and investigated the influence of the quantity of aortic valve calcium (AVC) on the selection of TAVI prosthesis size. A total of 83 patients with severe aortic stenosis undergoing TAVI were evaluated. Maximal and minimal aortic annulus diameter, perimeter, and area were measured. AVC was assessed with computed tomography. The low and high AVC burden groups were defined according to the median AVC score. Overall, 3D TEE measurements slightly underestimated the aortic annulus dimensions as compared with MDCT (mean differences between maximum, minimum diameter, perimeter, and area: -1.7 mm, 0.5 mm, -2.7 mm, and -13 mm 2 , respectively). The agreement between 3D TEE and MDCT on aortic annulus dimensions was superior among patients with low AVC burden (AVC burden (≥3,025 arbitrary units). The interobserver variability was excellent for both methods. 3D TEE and MDCT led to the same prosthesis size selection in 88%, 95%, and 81% of patients in the total population, the low, and the high AVC burden group, respectively. In conclusion, the novel automated 3D TEE imaging software allows accurate and highly reproducible measurements of the aortic annulus dimensions and shows excellent agreement with MDCT to determine the TAVI prosthesis size, particularly in patients with low AVC burden. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Safety of ultrasound contrast agents in stress echocardiography.

    Science.gov (United States)

    Gabriel, Ruvin S; Smyth, Yvonne M; Menon, Venu; Klein, Allan L; Grimm, Richard A; Thomas, James D; Sabik, Ellen Mayer

    2008-11-01

    Definity and Optison are perflutren-based ultrasound contrast agents used in echocardiography. United States Food and Drug Administration warnings regarding serious cardiopulmonary reactions and death after Definity administration highlighted the limited safety data in patients who undergo contrast stress echocardiography. From 1998 and 2007, 2,022 patients underwent dobutamine stress echocardiography and 2,764 underwent exercise stress echocardiography with contrast at the Cleveland Clinic. The echocardiographic database, patient records, and the Social Security Death Index were reviewed for the timing and cause of death, severe adverse events, arrhythmias, and symptoms. Complication rates for contrast dobutamine stress echocardiography and exercise stress echocardiography were compared with those in a control group of 5,012 patients matched for test year and type who did not receive contrast. Ninety-five percent of studies were performed in outpatients. There were no differences in the rates of severe adverse events (0.19% vs 0.17%, p = 0.7), death within 24 hours (0% vs 0.04%, p = 0.1), cardiac arrest (0.04% vs 0.04%, p = 0.96), and sustained ventricular tachycardia (0.2% vs 0.1%, p = 0.32) between patients receiving and not receiving intravenous contrast, respectively. In conclusion, severe adverse reactions to intravenous contrast agents during stress echocardiography are uncommon. Contrast use does not add to the baseline risk for severe adverse events in patients who undergo stress echocardiography.

  2. Real time 3D photometry

    Science.gov (United States)

    Fernandez-Balbuena, A. A.; Vazquez-Molini, D.; García-Botella, A.; Romo, J.; Serrano, Ana

    2017-09-01

    The photometry and radiometry measurement is a well-developed field. The necessity of measuring optical systems performance involves the use of several techniques like Gonio-photometry. The Gonio photometers are a precise measurement tool that is used in the lighting area like office, luminaire head car lighting, concentrator /collimator measurement and all the designed and fabricated optical systems that works with light. There is one disadvantage in this kind of measurements that obtain the intensity polar curves and the total flux of the optical system. In the industry, there are good Gonio photometers that are precise and reliable but they are very expensive and the measurement time is long. In industry the cost can be of minor importance but measuring time that is around 30 minutes is of major importance due to trained staff cost. We have designed a system to measure photometry in real time; it consists in a curved screen to get a huge measurement angle and a CCD. The system to be measured projects light onto the screen and the CCD records a video of the screen obtaining an image of the projected profile. A complex calibration permits to trace screen data (x,y,z) to intensity polar curve (I,αγ). This intensity is obtained in candels (cd) with an image + processing time below one second.

  3. Echocardiography for the diagnosis of congenital heart defects in the dog.

    Science.gov (United States)

    Wingfield, W E; Boon, J A

    1987-05-01

    Echocardiography utilizing M-mode and real-time techniques is a safe, noninvasive diagnostic technique for use in veterinary cardiology. It provides a means to assess structural sizes and relationships and can be used to provide quantitative data for diagnosis of congenital heart disease. Although its availability is largely limited to veterinary colleges and specialty hospitals, the practicing veterinarian should know of its advantages and disadvantages. He or she is also encouraged to consider the use of ultrasound in the diagnosis and management of heart disease in all species of veterinary patients.

  4. Robust Myocardial Motion Tracking for Echocardiography: Variational Framework Integrating Local-to-Global Deformation

    Directory of Open Access Journals (Sweden)

    Chi Young Ahn

    2013-01-01

    Full Text Available This paper proposes a robust real-time myocardial border tracking algorithm for echocardiography. Commonly, after an initial contour of LV border is traced at one or two frames from the entire cardiac cycle, LV contour tracking is performed over the remaining frames. Among a variety of tracking techniques, optical flow method is the most widely used for motion estimation of moving objects. However, when echocardiography data is heavily corrupted in some local regions, the errors bring the tracking point out of the endocardial border, resulting in distorted LV contours. This shape distortion often occurs in practice since the data acquisition is affected by ultrasound artifacts, dropouts, or shadowing phenomena of cardiac walls. The proposed method is designed to deal with this shape distortion problem by integrating local optical flow motion and global deformation into a variational framework. The proposed descent method controls the individual tracking points to follow the local motions of a specific speckle pattern, while their overall motions are confined to the global motion constraint being approximately an affine transform of the initial tracking points. Many real experiments show that the proposed method achieves better overall performance than conventional methods.

  5. Real-Time Reactive Power Distribution in Microgrids by Dynamic Programing

    DEFF Research Database (Denmark)

    Levron, Yoash; Beck, Yuval; Katzir, Liran

    2017-01-01

    In this paper a new real-time optimization method for reactive power distribution in microgrids is proposed. The method enables location of a globally optimal distribution of reactive power under normal operating conditions. The method exploits the typical compact structure of microgrids to obtain...... combination of reactive powers, by means of dynamic programming. Since every single step involves a one-dimensional problem, the complexity of the solution is only linear with the number of clusters, and as a result, a globally optimal solution may be obtained in real time. The paper includes the results...

  6. Two dimensional microcirculation mapping with real time spatial frequency domain imaging

    Science.gov (United States)

    Zheng, Yang; Chen, Xinlin; Lin, Weihao; Cao, Zili; Zhu, Xiuwei; Zeng, Bixin; Xu, M.

    2018-02-01

    We present a spatial frequency domain imaging (SFDI) study of local hemodynamics in the human finger cuticle of healthy volunteers performing paced breathing and the forearm of healthy young adults performing normal breathing with our recently developed Real Time Single Snapshot Multiple Frequency Demodulation - Spatial Frequency Domain Imaging (SSMD-SFDI) system. A two-layer model was used to map the concentrations of deoxy-, oxy-hemoglobin, melanin, epidermal thickness and scattering properties at the subsurface of the forearm and the finger cuticle. The oscillations of the concentrations of deoxy- and oxy-hemoglobin at the subsurface of the finger cuticle and forearm induced by paced breathing and normal breathing, respectively, were found to be close to out-of-phase, attributed to the dominance of the blood flow modulation by paced breathing or heartbeat. Our results suggest that the real time SFDI platform may serve as one effective imaging modality for microcirculation monitoring.

  7. Atlas-based mosaicing of 3D transesophageal echocardiography images of the left atrium

    NARCIS (Netherlands)

    Mulder, H.W. (Harriët); Pluim, J.P.W.; Ren, B. (Ben); Haak, A. (Alexander); Viergever, M.A. (Max); Bosch, J.G. (Johan); Stralen, van M. (Marijn)

    2015-01-01

    3D transesophageal echocardiography (TEE) is routinely used for planning and guidance of cardiac interventions. However, the limited field-of-view dictates the compounding of multiple images for visualization of large structures, e.g. the left atrium (LA). Previously, we developed a TEE image

  8. Four-dimensional (4D) flow of the whole heart and great vessels using real-time respiratory self-gating

    DEFF Research Database (Denmark)

    Uribe, Sergio; Beerbaum, Philipp; Sørensen, Thomas Sangild

    2009-01-01

    Four-dimensional (4D) flow imaging has been used to study flow patterns and pathophysiology, usually focused on specific thoracic vessels and cardiac chambers. Whole-heart 4D flow at high measurement accuracy covering the entire thoracic cardiovascular system would be desirable to simplify...... and improve hemodynamic assessment. This has been a challenge because compensation of respiratory motion is difficult to achieve, but it is paramount to limit artifacts and improve accuracy. In this work we propose a self-gating technique for respiratory motion-compensation integrated into a whole-heart 4D...... flow acquisition that overcomes these challenges. Flow components are measured in all three directions for each pixel over the complete cardiac cycle, and 1D volume projections are obtained at certain time intervals for respiratory gating in real time during the acquisition. The technique was tested...

  9. Real Time Monitor of Grid job executions

    International Nuclear Information System (INIS)

    Colling, D J; Martyniak, J; McGough, A S; Krenek, A; Sitera, J; Mulac, M; Dvorak, F

    2010-01-01

    In this paper we describe the architecture and operation of the Real Time Monitor (RTM), developed by the Grid team in the HEP group at Imperial College London. This is arguably the most popular dissemination tool within the EGEE [1] Grid. Having been used, on many occasions including GridFest and LHC inauguration events held at CERN in October 2008. The RTM gathers information from EGEE sites hosting Logging and Bookkeeping (LB) services. Information is cached locally at a dedicated server at Imperial College London and made available for clients to use in near real time. The system consists of three main components: the RTM server, enquirer and an apache Web Server which is queried by clients. The RTM server queries the LB servers at fixed time intervals, collecting job related information and storing this in a local database. Job related data includes not only job state (i.e. Scheduled, Waiting, Running or Done) along with timing information but also other attributes such as Virtual Organization and Computing Element (CE) queue - if known. The job data stored in the RTM database is read by the enquirer every minute and converted to an XML format which is stored on a Web Server. This decouples the RTM server database from the client removing the bottleneck problem caused by many clients simultaneously accessing the database. This information can be visualized through either a 2D or 3D Java based client with live job data either being overlaid on to a 2 dimensional map of the world or rendered in 3 dimensions over a globe map using OpenGL.

  10. 3-Dimensional printing guide template assisted percutaneous vertebroplasty: Technical note.

    Science.gov (United States)

    Li, Jian; Lin, JiSheng; Yang, Yong; Xu, JunChuan; Fei, Qi

    2018-06-01

    Percutaneous vertebroplasty (PVP) is currently considered as an effective treatment for pain caused by acute osteoporotic vertebral compression fracture. Recently, puncture-related complications are increasingly reported. It's important to find a precise technique to reduce the puncture-related complications. We report a case and discussed the novel surgical technique with step-by-step operating procedures, to introduce the precise PVP assisted by a 3-dimensional printing guide template. Based on the preoperative CT scan and infrared scan data, a well-designed individual guide template could be established in a 3-dimensional reconstruction software and printed out by a 3-dimensional printer. In real operation, by matching the guide template to patient's back skin, cement needles' insertion orientation and depth were easily established. Only 14 times C-arm fluoroscopy with HDF mode (total exposure dose was 4.5 mSv) were required during the procedure. The operation took only 17 min. Cement distribution in the vertebral body was very good without any puncture-related complications. Pain was significantly relieved after surgery. In conclusion, the novel precise 3-dimensional printing guide template system may allow (1) comprehensive visualization of the fractured vertebral body and the individual surgical planning, (2) the perfect fitting between skin and guide template to ensure the puncture stability and accuracy, and (3) increased puncture precision and decreased puncture-related complications, surgical time and radiation exposure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A framework for predicting three-dimensional prostate deformation in real time

    NARCIS (Netherlands)

    Jahya, Alex; Herink, Mark; Misra, Sarthak

    2013-01-01

    Background Surgical simulation systems can be used to estimate soft tissue deformation during pre- and intra-operative planning. Such systems require a model that can accurately predict the deformation in real time. In this study, we present a back-propagation neural network for predicting

  12. Development of Transient-Reactor Analysis Code (TRAC) for real-time applications

    International Nuclear Information System (INIS)

    Niederauer, G.F.; Giguere, P.T.; Lime, J.F.; Knight, T.D.; Ashy, O.; Fakory, R.

    1997-01-01

    This is the final report of a six-month, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Nuclear-plant training simulators employ simplified one-dimensional thermal-hydraulics codes because of the demands to run in real time and with limited computing power. The objective of this project was to investigate the feasibility of using the advanced Transient-Reactor Analysis Code (TRAC) in a simulator to increase the fidelity of a simulator. Many issues need to be addressed to take such a complex code from a batch engineering environment to a real-time environment. Working with simulator vendor, GSE, the authors investigated the technical issues relating to integrating TRAC into a real-time environment. They also modified a nuclear power plant model for simulator purposes and investigated its performance in real time

  13. Two-dimensional statistical linear discriminant analysis for real-time robust vehicle-type recognition

    Science.gov (United States)

    Zafar, I.; Edirisinghe, E. A.; Acar, S.; Bez, H. E.

    2007-02-01

    Automatic vehicle Make and Model Recognition (MMR) systems provide useful performance enhancements to vehicle recognitions systems that are solely based on Automatic License Plate Recognition (ALPR) systems. Several car MMR systems have been proposed in literature. However these approaches are based on feature detection algorithms that can perform sub-optimally under adverse lighting and/or occlusion conditions. In this paper we propose a real time, appearance based, car MMR approach using Two Dimensional Linear Discriminant Analysis that is capable of addressing this limitation. We provide experimental results to analyse the proposed algorithm's robustness under varying illumination and occlusions conditions. We have shown that the best performance with the proposed 2D-LDA based car MMR approach is obtained when the eigenvectors of lower significance are ignored. For the given database of 200 car images of 25 different make-model classifications, a best accuracy of 91% was obtained with the 2D-LDA approach. We use a direct Principle Component Analysis (PCA) based approach as a benchmark to compare and contrast the performance of the proposed 2D-LDA approach to car MMR. We conclude that in general the 2D-LDA based algorithm supersedes the performance of the PCA based approach.

  14. Real-time simulation of ex-core nuclear instrumentation system

    International Nuclear Information System (INIS)

    Zhao Qiang; Zhang Zhijian; Cao Xinrong

    2005-01-01

    Real-time simulation of ex-core nuclear instrumentation system is an indispensable part of nuclear power plant (NPP) full-scope training simulator. The simulation method, which is based upon the theory of measurement, is introduced in the paper. The fitting formula between the measured data and the three-dimensional neutron flux distribution in the core is established. The fitting parameter is adjusted according to the reactor physical calculation or the experiment of power calibration. The simulation result shows that the method can simulate the ex-core neutron instrumentation system accurately in real-time and meets the needs of NPP full-scope training simulator. (authors)

  15. Topological transitions at finite temperatures: A real-time numerical approach

    International Nuclear Information System (INIS)

    Grigoriev, D.Yu.; Rubakov, V.A.; Shaposhnikov, M.E.

    1989-01-01

    We study topological transitions at finite temperatures within the (1+1)-dimensional abelian Higgs model by a numerical simulation in real time. Basic ideas of the real-time approach are presented and some peculiarities of the Metropolis technique are discussed. It is argued that the processes leading to topological transitions are of classical origin; the transitions can be observed by solving the classical field equations in real time. We show that the topological transitions actually pass via the sphaleron configuration. The transition rate as a function of temperature is found to be in good agreement with the analytical predictions. No extra suppression of the rate is observed. The conditions of applicability of our approach are discussed. The temperature interval where the low-temperature broken phase persists is estimated. (orig.)

  16. CT based 3D printing is superior to transesophageal echocardiography for pre-procedure planning in left atrial appendage device closure.

    Science.gov (United States)

    Obasare, Edinrin; Mainigi, Sumeet K; Morris, D Lynn; Slipczuk, Leandro; Goykhman, Igor; Friend, Evan; Ziccardi, Mary Rodriguez; Pressman, Gregg S

    2018-05-01

    Accurate assessment of the left atrial appendage (LAA) is important for pre-procedure planning when utilizing device closure for stroke reduction. Sizing is traditionally done with transesophageal echocardiography (TEE) but this is not always precise. Three-dimensional (3D) printing of the LAA may be more accurate. 24 patients underwent Watchman device (WD) implantation (71 ± 11 years, 42% female). All had complete 2-dimensional TEE. Fourteen also had cardiac computed tomography (CCT) with 3D printing to produce a latex model of the LAA for pre-procedure planning. Device implantation was unsuccessful in 2 cases (one with and one without a 3D model). The model correlated perfectly with implanted device size (R 2  = 1; p < 0.001), while TEE-predicted size showed inferior correlation (R 2  = 0.34; 95% CI 0.23-0.98, p = 0.03). Fisher's exact test showed the model better predicted final WD size than TEE (100 vs. 60%, p = 0.02). Use of the model was associated with reduced procedure time (70 ± 20 vs. 107 ± 53 min, p = 0.03), anesthesia time (134 ± 31 vs. 182 ± 61 min, p = 0.03), and fluoroscopy time (11 ± 4 vs. 20 ± 13 min, p = 0.02). Absence of peri-device leak was also more likely when the model was used (92 vs. 56%, p = 0.04). There were trends towards reduced trans-septal puncture to catheter removal time (50 ± 20 vs. 73 ± 36 min, p = 0.07), number of device deployments (1.3 ± 0.5 vs. 2.0 ± 1.2, p = 0.08), and number of devices used (1.3 ± 0.5 vs. 1.9 ± 0.9, p = 0.07). Patient specific models of the LAA improve precision in closure device sizing. Use of the printed model allowed rapid and intuitive location of the best landing zone for the device.

  17. Real-time interactive three-dimensional display of CT and MR imaging volume data

    International Nuclear Information System (INIS)

    Yla-Jaaski, J.; Kubler, O.; Kikinis, R.

    1987-01-01

    Real-time reconstruction of surfaces from CT and MR imaging volume data is demonstrated using a new algorithm and implementation in a parallel computer system. The display algorithm accepts noncubic 16-bit voxels directly as input. Operations such as interpolation, classification by thresholding, depth coding, simple lighting effects, and removal of parts of the volume by clipping planes are all supported on-line. An eight-processor implementation of the algorithm renders surfaces from typical CT data sets in real time to allow interactive rotation of the volume

  18. Real-time two-dimensional imaging of potassium ion distribution using an ion semiconductor sensor with charged coupled device technology.

    Science.gov (United States)

    Hattori, Toshiaki; Masaki, Yoshitomo; Atsumi, Kazuya; Kato, Ryo; Sawada, Kazuaki

    2010-01-01

    Two-dimensional real-time observation of potassium ion distributions was achieved using an ion imaging device based on charge-coupled device (CCD) and metal-oxide semiconductor technologies, and an ion selective membrane. The CCD potassium ion image sensor was equipped with an array of 32 × 32 pixels (1024 pixels). It could record five frames per second with an area of 4.16 × 4.16 mm(2). Potassium ion images were produced instantly. The leaching of potassium ion from a 3.3 M KCl Ag/AgCl reference electrode was dynamically monitored in aqueous solution. The potassium ion selective membrane on the semiconductor consisted of plasticized poly(vinyl chloride) (PVC) with bis(benzo-15-crown-5). The addition of a polyhedral oligomeric silsesquioxane to the plasticized PVC membrane greatly improved adhesion of the membrane onto Si(3)N(4) of the semiconductor surface, and the potential response was stabilized. The potential response was linear from 10(-2) to 10(-5) M logarithmic concentration of potassium ion. The selectivity coefficients were K(K(+),Li(+))(pot) = 10(-2.85), K(K(+),Na(+))(pot) = 10(-2.30), K(K(+),Rb(+))(pot) =10(-1.16), and K(K(+),Cs(+))(pot) = 10(-2.05).

  19. Dynamic three-dimensional display of common congenital cardiac defects from reconstruction of two-dimensional echocardiographic images.

    Science.gov (United States)

    Hsieh, K S; Lin, C C; Liu, W S; Chen, F L

    1996-01-01

    Two-dimensional echocardiography had long been a standard diagnostic modality for congenital heart disease. Further attempts of three-dimensional reconstruction using two-dimensional echocardiographic images to visualize stereotypic structure of cardiac lesions have been successful only recently. So far only very few studies have been done to display three-dimensional anatomy of the heart through two-dimensional image acquisition because such complex procedures were involved. This study introduced a recently developed image acquisition and processing system for dynamic three-dimensional visualization of various congenital cardiac lesions. From December 1994 to April 1995, 35 cases were selected in the Echo Laboratory here from about 3000 Echo examinations completed. Each image was acquired on-line with specially designed high resolution image grazmber with EKG and respiratory gating technique. Off-line image processing using a window-architectured interactive software package includes construction of 2-D ehcocardiographic pixel to 3-D "voxel" with conversion of orthogonal to rotatory axial system, interpolation, extraction of region of interest, segmentation, shading and, finally, 3D rendering. Three-dimensional anatomy of various congenital cardiac defects was shown, including four cases with ventricular septal defects, two cases with atrial septal defects, and two cases with aortic stenosis. Dynamic reconstruction of a "beating heart" is recorded as vedio tape with video interface. The potential application of 3D display of the reconstruction from 2D echocardiographic images for the diagnosis of various congenital heart defects has been shown. The 3D display was able to improve the diagnostic ability of echocardiography, and clear-cut display of the various congenital cardiac defects and vavular stenosis could be demonstrated. Reinforcement of current techniques will expand future application of 3D display of conventional 2D images.

  20. Early Impairment of Cardiac Function and Asynchronization of Systemic Amyloidosis with Preserved Ejection Fraction Using Two-Dimensional Speckle Tracking Echocardiography.

    Science.gov (United States)

    Huang, He; Jing, Xian-chao; Hu, Zhang-xue; Chen, Xi; Liu, Xiao-qin

    2015-12-01

    To observe the ventricular global and regional function of the patients with systemic amyloidosis using two-dimensional speckle tracking echocardiography. The study enrolled 31 consecutive biopsy-proved patients with systemic amyloidosis who underwent echocardiographic examination and EF ≥ 55% and 37 age- and gender-matched healthy controls. We compared systolic strain and strain rate, diastolic strain rate, time to peak strain, peak delay time in longitudinal, radial, circumferential directions in 16 left ventricular segments. The global peak systolic longitudinal and radial strain of left ventricle, peak systolic longitudinal strain and strain rate, diastolic strain rate of right ventricular free wall were also compared. (1) Global peak systolic longitudinal strain (GPSLS), peak systolic longitudinal strain (PSLS) and strain rate (PSLSR), peak early diastolic longitudinal strain rate (PELSR) in 16 segments were decreased in case (P < 0.05). (2) Peak systolic radial strain and strain rate of inferoseptum and inferolateral at the level of papillary muscle were lower (P < 0.05), and peak early diastolic radial strain rate (PERSR) was reduced (P < 0.05). (3) Peak early diastolic circumferential strain rate was lower (P < 0.05). (4) Time to peak systolic longitudinal, radial, circumferential strain was longer, and peak delay time at the same level retarded (P < 0.05). (5) Into right ventricular wall, PSLS and PSLSR at mid-segment, and PSLSR, PELSR, peak atrial systolic longitudinal strain rate (PALSR) at basal were reduced (P < 0.05). (6) Inverse correlation between interventricular septum (IVS) thickness and GPSLS and GPSRS was found (P < 0.05). Systolic and diastolic dysfunction existed in systemic amyloidosis with preserved EF. Mechanical contraction disorder may be one reason for systolic dysfunction. GPLSR and GPRSR were negatively related to IVS thickness. © 2015, Wiley Periodicals, Inc.

  1. Clinical utility of speckle-tracking echocardiography in cardiac resynchronisation therapy.

    Science.gov (United States)

    Khan, Sitara G; Klettas, Dimitris; Kapetanakis, Stam; Monaghan, Mark J

    2016-03-01

    Cardiac resynchronisation therapy (CRT) can profoundly improve outcome in selected patients with heart failure; however, response is difficult to predict and can be absent in up to one in three patients. There has been a substantial amount of interest in the echocardiographic assessment of left ventricular dyssynchrony, with the ultimate aim of reliably identifying patients who will respond to CRT. The measurement of myocardial deformation (strain) has conventionally been assessed using tissue Doppler imaging (TDI), which is limited by its angle dependence and ability to measure in a single plane. Two-dimensional speckle-tracking echocardiography is a technique that provides measurements of strain in three planes, by tracking patterns of ultrasound interference ('speckles') in the myocardial wall throughout the cardiac cycle. Since its initial use over 15 years ago, it has emerged as a tool that provides more robust, reproducible and sensitive markers of dyssynchrony than TDI. This article reviews the use of two-dimensional and three-dimensional speckle-tracking echocardiography in the assessment of dyssynchrony, including the identification of echocardiographic parameters that may hold predictive potential for the response to CRT. It also reviews the application of these techniques in guiding optimal LV lead placement pre-implant, with promising results in clinical improvement post-CRT. © 2016 The authors.

  2. Clinical utility of speckle-tracking echocardiography in cardiac resynchronisation therapy

    Directory of Open Access Journals (Sweden)

    Sitara G Khan

    2016-05-01

    Full Text Available Cardiac resynchronisation therapy (CRT can profoundly improve outcome in selected patients with heart failure; however, response is difficult to predict and can be absent in up to one in three patients. There has been a substantial amount of interest in the echocardiographic assessment of left ventricular dyssynchrony, with the ultimate aim of reliably identifying patients who will respond to CRT. The measurement of myocardial deformation (strain has conventionally been assessed using tissue Doppler imaging (TDI, which is limited by its angle dependence and ability to measure in a single plane. Two-dimensional speckle-tracking echocardiography is a technique that provides measurements of strain in three planes, by tracking patterns of ultrasound interference (‘speckles’ in the myocardial wall throughout the cardiac cycle. Since its initial use over 15 years ago, it has emerged as a tool that provides more robust, reproducible and sensitive markers of dyssynchrony than TDI. This article reviews the use of two-dimensional and three-dimensional speckle-tracking echocardiography in the assessment of dyssynchrony, including the identification of echocardiographic parameters that may hold predictive potential for the response to CRT. It also reviews the application of these techniques in guiding optimal LV lead placement pre-implant, with promising results in clinical improvement post-CRT.

  3. V-Man Generation for 3-D Real Time Animation. Chapter 5

    Science.gov (United States)

    Nebel, Jean-Christophe; Sibiryakov, Alexander; Ju, Xiangyang

    2007-01-01

    The V-Man project has developed an intuitive authoring and intelligent system to create, animate, control and interact in real-time with a new generation of 3D virtual characters: The V-Men. It combines several innovative algorithms coming from Virtual Reality, Physical Simulation, Computer Vision, Robotics and Artificial Intelligence. Given a high-level task like "walk to that spot" or "get that object", a V-Man generates the complete animation required to accomplish the task. V-Men synthesise motion at runtime according to their environment, their task and their physical parameters, drawing upon its unique set of skills manufactured during the character creation. The key to the system is the automated creation of realistic V-Men, not requiring the expertise of an animator. It is based on real human data captured by 3D static and dynamic body scanners, which is then processed to generate firstly animatable body meshes, secondly 3D garments and finally skinned body meshes.

  4. Sonocubic fine: new three-dimensional ultrasound software to the screening of congenital heart diseases

    Directory of Open Access Journals (Sweden)

    Edward Araujo Júnior

    2014-09-01

    Full Text Available Congenital heart disease is the most common fetal congenital malformations; however, the prenatal rate detection still is low. The two-dimensional echocardiography is the "gold standard" exam to screening and diagnosis of congenital heart disease during the prenatal; however, this exam is operator-depending and it is realized only in high risk pregnancies. Spatio-temporal image correlation is a three-dimensional ultrasound software that analyses the fetal heart and your connections in the multiplanar and rendering modes; however, spatio-temporal image correlation too is operator-depending and time-consuming. We presenting a new three-dimensional software named Sonocubic fine to the screening of congenital heart disease. This software applies intelligent navigation technology to spatio-temporal image correlation volume datasets to automatically generate nine fetal echocardiography standard views. Thus, this new software tends to be less operator-depending and time-consuming.

  5. Detection of lung tumor movement in real-time tumor-tracking radiotherapy

    International Nuclear Information System (INIS)

    Shimizu, Shinichi; Shirato, Hiroki; Ogura, Shigeaki; Akita-Dosaka, Hirotoshi; Kitamura, Kei; Nishioka, Takeshi; Kagei, Kenji; Nishimura, Masaji; Miyasaka, Kazuo

    2001-01-01

    Purpose: External radiotherapy for lung tumors requires reducing the uncertainty due to setup error and organ motion. We investigated the three-dimensional movement of lung tumors through an inserted internal marker using a real-time tumor-tracking system and evaluated the efficacy of this system at reducing the internal margin. Methods and Materials: Four patients with lung cancer were analyzed. A 2.0-mm gold marker was inserted into the tumor. The real-time tumor-tracking system calculates and stores three-dimensional coordinates of the marker 30 times/s. The system can trigger the linear accelerator to irradiate the tumor only when the marker is located within the predetermined 'permitted dislocation'. The value was set at ±1 to ±3 mm according to the patient's characteristics. We analyzed 10,413-14,893 data sets for each of the 4 patients. The range of marker movement during normal breathing (beam-off period) was compared with that during gated irradiation (beam-on period) by Student's t test. Results: The range of marker movement during the beam-off period was 5.5-10.0 mm in the lateral direction (x), 6.8-15.9 mm in the craniocaudal direction (y) and 8.1-14.6 mm in the ventrodorsal direction (z). The range during the beam-on period was reduced to within 5.3 mm in all directions in all 4 patients. A significant difference was found between the mean of the range during the beam-off period and the mean of the range during the beam-on period in the x (p=0.007), y (p=0.025), and z (p=0.002) coordinates, respectively. Conclusion: The real-time tumor-tracking radiotherapy system was useful to analyze the movement of an internal marker. Treatment with megavoltage X-rays was properly given when the tumor marker moved into the 'permitted dislocation' zone from the planned position

  6. Echocardiography Practice: Insights into Appropriate Clinical Use, Technical Competence and Quality Improvement Program

    Science.gov (United States)

    Kossaify, Antoine; Grollier, Gilles

    2014-01-01

    Echocardiography accounts for nearly half of all cardiac imaging techniques. It is a widely available and adaptable tool, as well as being a cost-effective and mainly a non-invasive test. In addition, echocardiography provides extensive clinical data, which is related to the presence or advent of different modalities (tissue Doppler imaging, speckle tracking imaging, three-dimensional mode, contrast echo, etc.), different approaches (transesophageal, intravascular, etc.), and different applications (ie, heart failure/resynchronization studies, ischemia/stress echo, etc.). In view of this, it is essential to conform to criteria of appropriate use and to keep standards of competence. In this study, we sought to review and discuss clinical practice of echocardiography in light of the criteria of appropriate clinical use, also we present an insight into echocardiographic technical competence and quality improvement project. PMID:24516342

  7. Real-Time 3d Reconstruction from Images Taken from AN Uav

    Science.gov (United States)

    Zingoni, A.; Diani, M.; Corsini, G.; Masini, A.

    2015-08-01

    We designed a method for creating 3D models of objects and areas from two aerial images acquired from an UAV. The models are generated automatically and in real-time, and consist in dense and true-colour reconstructions of the considered areas, which give the impression to the operator to be physically present within the scene. The proposed method only needs a cheap compact camera, mounted on a small UAV. No additional instrumentation is necessary, so that the costs are very limited. The method consists of two main parts: the design of the acquisition system and the 3D reconstruction algorithm. In the first part, the choices for the acquisition geometry and for the camera parameters are optimized, in order to yield the best performance. In the second part, a reconstruction algorithm extracts the 3D model from the two acquired images, maximizing the accuracy under the real-time constraint. A test was performed in monitoring a construction yard, obtaining very promising results. Highly realistic and easy-to-interpret 3D models of objects and areas of interest were produced in less than one second, with an accuracy of about 0.5m. For its characteristics, the designed method is suitable for video-surveillance, remote sensing and monitoring, especially in those applications that require intuitive and reliable information quickly, as disasters monitoring, search and rescue and area surveillance.

  8. Time-dependent perturbations in two-dimensional string black holes

    CERN Document Server

    Diamandis, G A; Maintas, X N; Mavromatos, Nikolaos E

    1992-01-01

    We discuss time-dependent perturbations (induced by matter fields) of a black-hole background in tree-level two-dimensional string theory. We analyse the linearized case and show the possibility of having black-hole solutions with time-dependent horizons. The latter exist only in the presence of time-dependent `tachyon' matter fields, which constitute the only propagating degrees of freedom in two-dimensional string theory. For real tachyon field configurations it is not possible to obtain solutions with horizons shrinking to a point. On the other hand, such a possibility seems to be realized in the case of string black-hole models formulated on higher world-sheet genera. We connect this latter result with black hole evaporation/decay at a quantum level.}

  9. Automatic short axis orientation of the left ventricle in 3D ultrasound recordings

    Science.gov (United States)

    Pedrosa, João.; Heyde, Brecht; Heeren, Laurens; Engvall, Jan; Zamorano, Jose; Papachristidis, Alexandros; Edvardsen, Thor; Claus, Piet; D'hooge, Jan

    2016-04-01

    The recent advent of three-dimensional echocardiography has led to an increased interest from the scientific community in left ventricle segmentation frameworks for cardiac volume and function assessment. An automatic orientation of the segmented left ventricular mesh is an important step to obtain a point-to-point correspondence between the mesh and the cardiac anatomy. Furthermore, this would allow for an automatic division of the left ventricle into the standard 17 segments and, thus, fully automatic per-segment analysis, e.g. regional strain assessment. In this work, a method for fully automatic short axis orientation of the segmented left ventricle is presented. The proposed framework aims at detecting the inferior right ventricular insertion point. 211 three-dimensional echocardiographic images were used to validate this framework by comparison to manual annotation of the inferior right ventricular insertion point. A mean unsigned error of 8, 05° +/- 18, 50° was found, whereas the mean signed error was 1, 09°. Large deviations between the manual and automatic annotations (> 30°) only occurred in 3, 79% of cases. The average computation time was 666ms in a non-optimized MATLAB environment, which potentiates real-time application. In conclusion, a successful automatic real-time method for orientation of the segmented left ventricle is proposed.

  10. Real-time stylistic prediction for whole-body human motions.

    Science.gov (United States)

    Matsubara, Takamitsu; Hyon, Sang-Ho; Morimoto, Jun

    2012-01-01

    The ability to predict human motion is crucial in several contexts such as human tracking by computer vision and the synthesis of human-like computer graphics. Previous work has focused on off-line processes with well-segmented data; however, many applications such as robotics require real-time control with efficient computation. In this paper, we propose a novel approach called real-time stylistic prediction for whole-body human motions to satisfy these requirements. This approach uses a novel generative model to represent a whole-body human motion including rhythmic motion (e.g., walking) and discrete motion (e.g., jumping). The generative model is composed of a low-dimensional state (phase) dynamics and a two-factor observation model, allowing it to capture the diversity of motion styles in humans. A real-time adaptation algorithm was derived to estimate both state variables and style parameter of the model from non-stationary unlabeled sequential observations. Moreover, with a simple modification, the algorithm allows real-time adaptation even from incomplete (partial) observations. Based on the estimated state and style, a future motion sequence can be accurately predicted. In our implementation, it takes less than 15 ms for both adaptation and prediction at each observation. Our real-time stylistic prediction was evaluated for human walking, running, and jumping behaviors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. A zero-dimensional approach to compute real radicals

    Directory of Open Access Journals (Sweden)

    Silke J. Spang

    2008-04-01

    Full Text Available The notion of real radicals is a fundamental tool in Real Algebraic Geometry. It takes the role of the radical ideal in Complex Algebraic Geometry. In this article I shall describe the zero-dimensional approach and efficiency improvement I have found during the work on my diploma thesis at the University of Kaiserslautern (cf. [6]. The main focus of this article is on maximal ideals and the properties they have to fulfil to be real. New theorems and properties about maximal ideals are introduced which yield an heuristic prepare_max which splits the maximal ideals into three classes, namely real, not real and the class where we can't be sure whether they are real or not. For the latter we have to apply a coordinate change into general position until we are sure about realness. Finally this constructs a randomized algorithm for real radicals. The underlying theorems and algorithms are described in detail.

  12. Real-time high dynamic range laser scanning microscopy

    Science.gov (United States)

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-04-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.

  13. Impact of Real-Time Image Gating on Spot Scanning Proton Therapy for Lung Tumors: A Simulation Study.

    Science.gov (United States)

    Kanehira, Takahiro; Matsuura, Taeko; Takao, Seishin; Matsuzaki, Yuka; Fujii, Yusuke; Fujii, Takaaki; Ito, Yoichi M; Miyamoto, Naoki; Inoue, Tetsuya; Katoh, Norio; Shimizu, Shinichi; Umegaki, Kikuo; Shirato, Hiroki

    2017-01-01

    To investigate the effectiveness of real-time-image gated proton beam therapy for lung tumors and to establish a suitable size for the gating window (GW). A proton beam gated by a fiducial marker entering a preassigned GW (as monitored by 2 fluoroscopy units) was used with 7 lung cancer patients. Seven treatment plans were generated: real-time-image gated proton beam therapy with GW sizes of ±1, 2, 3, 4, 5, and 8 mm and free-breathing proton therapy. The prescribed dose was 70 Gy (relative biological effectiveness)/10 fractions to 99% of the target. Each of the 3-dimensional marker positions in the time series was associated with the appropriate 4-dimensional computed tomography phase. The 4-dimensional dose calculations were performed. The dose distribution in each respiratory phase was deformed into the end-exhale computed tomography image. The D99 and D5 to D95 of the clinical target volume scaled by the prescribed dose with criteria of D99 >95% and D5 to D95 lung, and treatment times were evaluated. Gating windows ≤ ±2 mm fulfilled the CTV criteria for all patients (whereas the criteria were not always met for GWs ≥ ±3 mm) and gave an average reduction in V20 of more than 17.2% relative to free-breathing proton therapy (whereas GWs ≥ ±4 mm resulted in similar or increased V20). The average (maximum) irradiation times were 384 seconds (818 seconds) for the ±1-mm GW, but less than 226 seconds (292 seconds) for the ±2-mm GW. The maximum increased considerably at ±1-mm GW. Real-time-image gated proton beam therapy with a GW of ±2 mm was demonstrated to be suitable, providing good dose distribution without greatly extending treatment time. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Impact of Real-Time Image Gating on Spot Scanning Proton Therapy for Lung Tumors: A Simulation Study

    Energy Technology Data Exchange (ETDEWEB)

    Kanehira, Takahiro [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Matsuura, Taeko, E-mail: matsuura@med.hokudai.ac.jp [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo (Japan); Takao, Seishin; Matsuzaki, Yuka; Fujii, Yusuke; Fujii, Takaaki [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Ito, Yoichi M. [Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Miyamoto, Naoki [Department of Medical Physics, Hokkaido University Hospital, Sapporo (Japan); Inoue, Tetsuya [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Katoh, Norio [Department of Radiation Oncology, Hokkaido University Hospital, Sapporo (Japan); Shimizu, Shinichi [Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Department of Radiation Oncology, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Umegaki, Kikuo [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo (Japan); Shirato, Hiroki [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan)

    2017-01-01

    Purpose: To investigate the effectiveness of real-time-image gated proton beam therapy for lung tumors and to establish a suitable size for the gating window (GW). Methods and Materials: A proton beam gated by a fiducial marker entering a preassigned GW (as monitored by 2 fluoroscopy units) was used with 7 lung cancer patients. Seven treatment plans were generated: real-time-image gated proton beam therapy with GW sizes of ±1, 2, 3, 4, 5, and 8 mm and free-breathing proton therapy. The prescribed dose was 70 Gy (relative biological effectiveness)/10 fractions to 99% of the target. Each of the 3-dimensional marker positions in the time series was associated with the appropriate 4-dimensional computed tomography phase. The 4-dimensional dose calculations were performed. The dose distribution in each respiratory phase was deformed into the end-exhale computed tomography image. The D99 and D5 to D95 of the clinical target volume scaled by the prescribed dose with criteria of D99 >95% and D5 to D95 <5%, V20 for the normal lung, and treatment times were evaluated. Results: Gating windows ≤ ±2 mm fulfilled the CTV criteria for all patients (whereas the criteria were not always met for GWs ≥ ±3 mm) and gave an average reduction in V20 of more than 17.2% relative to free-breathing proton therapy (whereas GWs ≥ ±4 mm resulted in similar or increased V20). The average (maximum) irradiation times were 384 seconds (818 seconds) for the ±1-mm GW, but less than 226 seconds (292 seconds) for the ±2-mm GW. The maximum increased considerably at ±1-mm GW. Conclusion: Real-time-image gated proton beam therapy with a GW of ±2 mm was demonstrated to be suitable, providing good dose distribution without greatly extending treatment time.

  15. Stress echocardiography expert consensus statement

    NARCIS (Netherlands)

    R. Sicari (Rosa); P. Nihoyannopoulos (Petros); A. Evangelista (Arturo); J. Kasprzak (Jaroslav); P. Lancellotti (Patrizio); D. Poldermans (Don); J.U. Voigt; J.L. Zamorano (Jose)

    2008-01-01

    textabstractStress echocardiography is the combination of 2D echocardiography with a physical, pharmacological or electrical stress. The diagnostic end point for the detection of myocardial ischemia is the induction of a transient worsening in regional function during stress. Stress echocardiography

  16. Monitoring tumor motion by real time 2D/3D registration during radiotherapy.

    Science.gov (United States)

    Gendrin, Christelle; Furtado, Hugo; Weber, Christoph; Bloch, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Bergmann, Helmar; Stock, Markus; Fichtinger, Gabor; Georg, Dietmar; Birkfellner, Wolfgang

    2012-02-01

    In this paper, we investigate the possibility to use X-ray based real time 2D/3D registration for non-invasive tumor motion monitoring during radiotherapy. The 2D/3D registration scheme is implemented using general purpose computation on graphics hardware (GPGPU) programming techniques and several algorithmic refinements in the registration process. Validation is conducted off-line using a phantom and five clinical patient data sets. The registration is performed on a region of interest (ROI) centered around the planned target volume (PTV). The phantom motion is measured with an rms error of 2.56 mm. For the patient data sets, a sinusoidal movement that clearly correlates to the breathing cycle is shown. Videos show a good match between X-ray and digitally reconstructed radiographs (DRR) displacement. Mean registration time is 0.5 s. We have demonstrated that real-time organ motion monitoring using image based markerless registration is feasible. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Investigation of Real-Time Two-Dimensional Visualization of Fuel Spray Liquid/Vapor Distribution via Exciplex Fluorescence.

    Science.gov (United States)

    1987-08-30

    EXCIPLEX FLUORESCENCE ~N 0FINAL REPORT 00 JAMES F. VERDIECK AND ARTHUR A. ROTUNNO UNITED TECHNOLOGIES RESEARCH CENTER 0 AND LYNN A. MELTON D I UNIVERSITY...DOCUMENTATION. "NWA 0. INVESTIGATION OF REAL-TINE TWO-DIMENSIONAL VISUALIZATION OF FUEL SPRAY LIQUID/VAPOR DISTRIBUTION VIA EXCIPLEX FLUORESCENCE FINAL...Spray Liquid/Vapor Distribution Via Exciplex Fluorescen , - 12. PERSONAL AUTHOR(S) J. F. Yeardierk. A- A. Rnriiunn-l L_ A. Millo - 13a TYPE OF REPORT

  18. Dobutamine stress echocardiography: a review and update

    Directory of Open Access Journals (Sweden)

    Gilstrap LG

    2014-04-01

    Full Text Available Lauren Gray Gilstrap,1 R Sacha Bhatia,2 Rory B Weiner,3 David M Dudzinski3 1Division of Cardiology, Brigham and Women's Hospital, Boston, MA, USA; 2Institute for Health Systems Solutions, Women's College Hospital, Toronto, ON, Canada; 3Cardiology Division, Massachusetts General Hospital, Boston, MA, USA Abstract: Stress echocardiography is a noninvasive cardiovascular diagnostic test that provides functional and hemodynamic information in the assessment of a number of cardiac diseases. Performing stress echocardiography with a pharmacologic agent such as dobutamine allows for simulation of increased heart rate and increased myocardial physiologic demands in patients who may be unable to exercise due to musculoskeletal or pulmonary comorbidities. Dobutamine stress echocardiography (DSE, like exercise echocardiography, has found its primary application in ischemic heart disease, with roles in identification of obstructive epicardial coronary artery disease, detection of viable myocardium, and assessment of the efficacy of anti-ischemic medical therapy in patients with known coronary artery disease. DSE features prominently in the evaluation and management of valvular heart disease by helping to assess the effects of mitral and aortic stenoses, as well as a specific use in differentiating true severe valvular aortic stenosis from pseudostenosis that may occur in the setting of left ventricular systolic dysfunction. DSE is generally well tolerated, and its side effects and contraindications generally relate to consequences of excess inotropic and/or chronotropic stimulation of the heart. The aim of this paper is to review the indications, contraindications, advantages, disadvantages, and risks of DSE. Keywords: stress echocardiography, dobutamine, coronary artery disease, myocardial ischemia

  19. 2010 Canadian Cardiovascular Society/Canadian Society of Echocardiography Guidelines for Training and Maintenance of Competency in Adult Echocardiography.

    Science.gov (United States)

    Burwash, Ian G; Basmadjian, Arsene; Bewick, David; Choy, Jonathan B; Cujec, Bibiana; Jassal, Davinder S; MacKenzie, Scott; Nair, Parvathy; Rudski, Lawrence G; Yu, Eric; Tam, James W

    2011-01-01

    Guidelines for the provision of echocardiography in Canada were jointly developed and published by the Canadian Cardiovascular Society and the Canadian Society of Echocardiography in 2005. Since their publication, recognition of the importance of echocardiography to patient care has increased, along with the use of focused, point-of-care echocardiography by physicians of diverse clinical backgrounds and variable training. New guidelines for physician training and maintenance of competence in adult echocardiography were required to ensure that physicians providing either focused, point-of-care echocardiography or comprehensive echocardiography are appropriately trained and proficient in their use of echocardiography. In addition, revision of the guidelines was required to address technological advances and the desire to standardize echocardiography training across the country to facilitate the national recognition of a physician's expertise in echocardiography. This paper summarizes the new Guidelines for Physician Training and Maintenance of Competency in Adult Echocardiography, which are considerably more comprehensive than earlier guidelines and address many important issues not previously covered. These guidelines provide a blueprint for physician training despite different clinical backgrounds and help standardize physician training and training programs across the country. Adherence to the guidelines will ensure that physicians providing echocardiography have acquired sufficient expertise required for their specific practice. The document will also provide a framework for other national societies to standardize their training programs in echocardiography and will provide a benchmark by which competency in adult echocardiography may be measured. Copyright © 2011 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  20. Real-Time 3D Motion capture by monocular vision and virtual rendering

    OpenAIRE

    Gomez Jauregui , David Antonio; Horain , Patrick

    2012-01-01

    International audience; Avatars in networked 3D virtual environments allow users to interact over the Internet and to get some feeling of virtual telepresence. However, avatar control may be tedious. Motion capture systems based on 3D sensors have recently reached the consumer market, but webcams and camera-phones are more widespread and cheaper. The proposed demonstration aims at animating a user's avatar from real time 3D motion capture by monoscopic computer vision, thus allowing virtual t...

  1. Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction

    International Nuclear Information System (INIS)

    Zhang, Xiao-Guang; Nie, You-Qi; Liang, Hao; Zhang, Jun; Pan, Jian-Wei; Zhou, Hongyi; Ma, Xiongfeng

    2016-01-01

    We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilized interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.

  2. Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Guang; Nie, You-Qi; Liang, Hao; Zhang, Jun, E-mail: zhangjun@ustc.edu.cn; Pan, Jian-Wei [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhou, Hongyi; Ma, Xiongfeng [Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084 (China)

    2016-07-15

    We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilized interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.

  3. Dynamics in two-elevator traffic system with real-time information

    Energy Technology Data Exchange (ETDEWEB)

    Nagatani, Takashi, E-mail: wadokeioru@yahoo.co.jp

    2013-12-17

    We study the dynamics of traffic system with two elevators using a elevator choice scenario. The two-elevator traffic system with real-time information is similar to the two-route vehicular traffic system. The dynamics of two-elevator traffic system is described by the two-dimensional nonlinear map. An elevator runs a neck-and-neck race with another elevator. The motion of two elevators displays such a complex behavior as quasi-periodic one. The return map of two-dimensional map shows a piecewise map.

  4. The influence of percutaneous closure of patent ductus arteriosus on left ventricular size and function: a prospective study using two- and three-dimensional echocardiography and measurements of serum natriuretic peptides.

    Science.gov (United States)

    Eerola, Anneli; Jokinen, Eero; Boldt, Talvikki; Pihkala, Jaana

    2006-03-07

    We aimed to evaluate the effect of percutaneous closure of patent ductus arteriosus (PDA) on left ventricular (LV) hemodynamics. Today, most PDAs are closed percutaneously. Little is known, however, about hemodynamic changes after the procedure. Of 37 children (ages 0.6 to 10.6 years) taken to the catheterization laboratory for percutaneous PDA closure, the PDA was closed in 33. Left ventricular diastolic and systolic dimensions, volumes, and function were examined by two-dimensional (2D) and three-dimensional (3D) echocardiography and serum concentrations of natriuretic peptides measured before PDA closure, on the following day, and 6 months thereafter. Control subjects comprised 36 healthy children of comparable ages. At baseline, LV diastolic diameter measured >+2 SD in 5 of 33 patients. In 3D echocardiography, a median LV diastolic volume measured 54.0 ml/m2 in the control subjects and 58.4 ml/m2 (p closure and 57.2 ml/m2 (p = NS) 6 months after closure. A median N-terminal brain natriuretic peptide (pro-BNP) concentration measured 72 ng/l in the control group and 141 ng/l in the PDA group before closure (p = 0.001) and 78.5 ng/l (p = NS) 6 months after closure. Patients differed from control subjects in indices of LV systolic and diastolic function at baseline. By the end of follow-up, all these differences had disappeared. Even in the subgroup of patients with normal-sized LV at baseline, the LV diastolic volume decreased significantly during follow-up. Changes in LV volume and function caused by PDA disappear by 6 months after percutaneous closure. Even the children with normal-sized LV benefit from the procedure.

  5. Assessment of left ventricular regional function in affected and carrier dogs with duchenne muscular dystrophy using speckle tracking echocardiography

    Directory of Open Access Journals (Sweden)

    Yugeta Naoko

    2011-05-01

    Full Text Available Abstract Background Two-dimensional speckle tracking echocardiography (STE is a relatively new method to detect regional myocardial dysfunction. To assess left ventricular (LV regional myocardial dysfunction using STE in Duchenne muscular dystrophy model dogs (CXMDJ without overt clinical signs of heart failure. Methods Six affected dogs, 8 carrier dogs with CXMDJ, and 8 control dogs were used. Conventional echocardiography, systolic and diastolic function by Doppler echocardiography, tissue Doppler imaging (TDI, and strain indices using STE, were assessed and compared among the 3 groups. Results Significant differences were seen in body weight, transmitral E wave and E' wave derived from TDI among the 3 groups. Although no significant difference was observed in any global strain indices, in segmental analysis, the peak radial strain rate during early diastole in posterior segment at chordae the tendineae level showed significant differences among the 3 groups. Conclusions The myocardial strain rate by STE served to detect the impaired cardiac diastolic function in CXMDJ without any obvious LV dilation or clinical signs. The radial strain rate may be a useful parameter to detect early myocardial impairment in CXMDJ.

  6. QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ

    CSIR Research Space (South Africa)

    Henriques, R

    2010-05-01

    Full Text Available QuickPALM in conjunction with the acquisition of control features provides a complete solution for the acquisition, reconstruction and visualization of 3D PALM or STORM images, achieving resolutions of ~40 nm in real time. This software package...

  7. [Early detection of the cardiotoxicity induced by chemotherapy drug through two-dimensional speckle tracking echocardiography combined with high-sensitive cardiac troponin T].

    Science.gov (United States)

    Wang, W; Kang, Y; Shu, X H; Shen, X D; He, B

    2017-11-23

    Objective: To investigate the clinical value of two-dimensional speckle tracking echocardiography(2D-STE) combined with high-sensitive cardiac troponin T (hs-cTnT) in early detection of the cardiotoxicity induced by chemotherapy drug. Methods: Seventy-five non-Hodgkin's lymphoma patients who received the CHOP regimen were recruited in this study. Conventional echocardiography and 2D-STE were performed on these patients before chemotherapy, the second day after the third course of chemotherapy (during chemotherapy) and the second day after the last course of chemotherapy (after chemotherapy). The parameters included left ventricular ejection fraction (LVEF), global longitudinal strain (LS), global circumferential strain (CS) and global radial strain (RS). The serum hs-cTNT levels were tested simultaneously. Results: Three cycles of CHOP were completed in 30 patients and 6-8 cycles of CHOP were completed in 45 patients. The LVEF of 75 patients before, during and after chemotherapy was (63.8±2.6)%, (63.8±2.8)% and (64.0±3.3)%, respectively, without significant difference ( P =0.91). However, the LS of 75 patients before, during and after chemotherapy was (-18.5±1.7)%, (-16.5±1.9)% and (-16.0±1.6)%, respectively. The CS was (-20.9±2.9)%, (-19.3±3.5)% and (-19.2±3.2)%, respectively. The RS was (39.2±6.4)%, (35.3±5.2)% and (35.0±6.2)%, respectively. The hs-cTnT was (0.001 0±0.002 0)ng/ml, (0.006 3±0.008 9)ng/ml and (0.007 3±0.003 8)ng/ml, respectively. The LS, CS and RS were significantly decreased while hs-cTnT was significantly increased during chemotherapy when compared to those before chemotherapy (all of P chemotherapy were marginally different from those during chemotherapy (all of P >0.05). Moreover, T(LS-SD), T(CS-SD) and T(RS-SD) showed no significant difference before, during and after chemotherapy (all of P >0.05). The reduction of LS was positively associated with the enhancement of hs-cTnT after chemotherapy ( r =0.60, P effectively and

  8. Assessment of left atrial volume and function: a comparative study between echocardiography, magnetic resonance imaging and multi slice computed tomography.

    Science.gov (United States)

    Kühl, J Tobias; Lønborg, Jacob; Fuchs, Andreas; Andersen, Mads J; Vejlstrup, Niels; Kelbæk, Henning; Engstrøm, Thomas; Møller, Jacob E; Kofoed, Klaus F

    2012-06-01

    Measurement of left atrial (LA) maximal volume (LA(max)) using two-dimensional transthoracic echocardiography (TTE) provides prognostic information in several cardiac diseases. However, the relationship between LA(max) and LA function is poorly understood and TTE is less well suited for measuring dynamic LA volume changes. Conversely, cardiac magnetic resonance imaging (CMR) and multi-slice computed tomography (MSCT) appears more appropriate for such measures. We sought to determine the relationship between LA size assessed with TTE and LA size and function assessed with CMR and MSCT. Fifty-four patients were examined 3 months post myocardial infarction with echocardiography, CMR and MSCT. Left atrial volumes and LA reservoir function were assessed by TTE. LA time-volume curves were determined and LA reservoir function (cyclic change and fractional change), passive emptying function (reservoir volume) and pump function (left atrial ejection fraction-LAEF) were derived using CMR and MSCT. Left atrial fractional change and left atrial ejection fraction (LAEF) determined with CMR and MSCT were unrelated to LA(max) enlargement by echocardiography (P = NS). There was an overall good agreement between CMR and MSCT, with a small to moderate bias in LA(max) (4.9 ± 10.4 ml), CC (3.1 ± 9.1 ml) and reservoir volume (3.4 ± 9.1 ml). TTE underestimates LA(max) with up to 32% compared with CMR and MSCT (P fractional change and LAEF is not significantly related to LA(max) measured by TTE. TTE systematically underestimated LA volumes, whereas there are good agreements between MSCT and CMR for volumetric and functional properties.

  9. Dynamic Web Expression for Near-real-time Sensor Networks

    Science.gov (United States)

    Lindquist, K. G.; Newman, R. L.; Nayak, A.; Vernon, F. L.; Nelson, C.; Hansen, T. S.; Yuen-Wong, R.

    2003-12-01

    As near-real-time sensor grids become more widespread, and processing systems based on them become more powerful, summarizing the raw and derived information products and delivering them to the end user become increasingly important both for ongoing monitoring and as a platform for cross-disciplinary research. We have re-engineered the dbrecenteqs program, which was designed to express real-time earthquake databases into dynamic web pages, with several powerful new technologies. While the application is still most fully developed for seismic data, the infrastructure is extensible (and being extended) to create a real-time information architecture for numerous signal domains. This work provides a practical, lightweight approach suitable for individual seismic and sensor networks, which does not require a full 'web-services' implementation. Nevertheless, the technologies here are extensible to larger applications such as the Storage-Resource-Broker based VORB project. The technologies included in the new system blend real-time relational databases as a focus for processing and data handling; an XML->XSLT architecture as the core of the web mirroring; PHP extensions to Antelope (the environmental monitoring-system context adopted for RoadNET) in order to support complex, user-driven interactivity; and VRML output for expression of information as web-browsable three-dimensional worlds.

  10. A meshless EFG-based algorithm for 3D deformable modeling of soft tissue in real-time.

    Science.gov (United States)

    Abdi, Elahe; Farahmand, Farzam; Durali, Mohammad

    2012-01-01

    The meshless element-free Galerkin method was generalized and an algorithm was developed for 3D dynamic modeling of deformable bodies in real time. The efficacy of the algorithm was investigated in a 3D linear viscoelastic model of human spleen subjected to a time-varying compressive force exerted by a surgical grasper. The model remained stable in spite of the considerably large deformations occurred. There was a good agreement between the results and those of an equivalent finite element model. The computational cost, however, was much lower, enabling the proposed algorithm to be effectively used in real-time applications.

  11. Methodology for time-domain estimation of storm time geoelectric fields using the 3-D magnetotelluric response tensors

    Science.gov (United States)

    Kelbert, Anna; Balch, Christopher C.; Pulkkinen, Antti; Egbert, Gary D.; Love, Jeffrey J.; Rigler, E. Joshua; Fujii, Ikuko

    2017-07-01

    Geoelectric fields at the Earth's surface caused by magnetic storms constitute a hazard to the operation of electric power grids and related infrastructure. The ability to estimate these geoelectric fields in close to real time and provide local predictions would better equip the industry to mitigate negative impacts on their operations. Here we report progress toward this goal: development of robust algorithms that convolve a magnetic storm time series with a frequency domain impedance for a realistic three-dimensional (3-D) Earth, to estimate the local, storm time geoelectric field. Both frequency domain and time domain approaches are presented and validated against storm time geoelectric field data measured in Japan. The methods are then compared in the context of a real-time application.

  12. Communication patterns and satisfaction levels in three-dimensional versus real-life intimate relationships.

    Science.gov (United States)

    Gilbert, Richard L; Murphy, Nora A; Ávalos, M Clementina

    2011-10-01

    The present study compared communication patterns and satisfaction levels between three-dimensional (3D) and real-life intimate relationships using a sample of 71 participants who were concurrently involved in an intimate relationship within Second Life and a separate real-life romantic relationship. Participants indicated that the quality of their communication was significantly better in their Second-Life relationship and that they experienced higher levels of satisfaction with their virtual partners. The more positive or idealized view of the 3D relationships may have been due to higher levels of focused interaction and reduced stressors in the virtual world and the greater length, and associated problems, in participant's real-life relationships. In addition, the presence of a concurrent relationship within Second Life could have negatively affected participant's judgments of their real-life relationships. These data offer the first detailed assessment of communication patterns and satisfaction levels in intimate relationships across the real and 3D virtual realms as the number of users and romantic partners in immersive virtual environments continue to grow.

  13. The practice of echocardiography

    International Nuclear Information System (INIS)

    Kraus, R.

    1985-01-01

    This volume is an anthology by noted authorities on all clinically useful aspects of echocardiography. Its articles cover such subjects as: historical perspectives, physics, instrumentation and techniques, M mode and 2D echocardiography

  14. Measurement of cardiac dimensions with two-dimensional echocardiography in the living horse

    International Nuclear Information System (INIS)

    Voros, K.; Holmes, J.R.; Gibbs, C.

    1991-01-01

    Two-dimensional echocardiography (2DE) was performed on 22 unsedated Thoroughbred and part Thoroughbred horses weighing between 411 and 650 kg to establish normal reference values for 2DE measurements. Animals stood during examinations performed with a 3.5 MHz mechanical sector transducer using various transducer positions and tomographic planes. Right ventricular diameter (RVD), ventricular septal thickness (VSTh), aortic diameter (AoD), area of the chordal lumen of the left ventricle (CTA), left ventricular diameter (LVD) and left atrial diameter (LAD) were determined at ventricular end-diastole (Ed) and/or end-systole (Es). Fractional shortening (FS) of the left ventricle and end-systolic left atrial to aortic ratio (LADEs: AoD-Es) also were calculated. Echocardiographic data were related to body weight by linear regression analysis. Intra-observer variability was checked in five horses by measuring each parameter during each of 10 consecutive cardiac cycles. The 2DE data were compared with M-mode values in published reports. In the 18 horses whose weight did not exceed 551 kg, repeatable recordings of good quality were obtained, and 2DE measurements could be made using intra-cardiac reference points. Increasing body weight proved to impose substantial limitations on measurements taken with the available machine and transducer. This problem might be overcome by using probes of lower frequency or equipment with higher quality image display at greater depth. The following parameters correlated significantly to body weight: VSTh-Es (r = 0.69; P<0.01). AoD-Es (r = 0.64; P<0.01) and CTA-Es (r = 0.84; P<0.001). However, technical limitations prevented determination of the relationship between bodyweight and CTA-Ed and LVD-Ed. For each parameter, good reproducibility of values was found because the mean coefficient of variation (CV) varied between 2.6 and 7.2. In this study, 2DE provided reliable qualitative and quantitative assessment of cardiac anatomy and function

  15. A Programmable Microkernel for Real-Time Systems

    Science.gov (United States)

    2003-06-01

    A Programmable Microkernel for Real - Time Systems Christoph M. Kirsch Thomas A. Henzinger Marco A.A. Sanvido Report No. UCB/CSD-3-1250 June 2003...TITLE AND SUBTITLE A Programmable Microkernel for Real - Time Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 A Programmable Microkernel for Real - Time Systems ∗ Christoph M

  16. Real-Time GPU Implementation of Transverse Oscillation Vector Velocity Flow Imaging

    DEFF Research Database (Denmark)

    Bradway, David; Pihl, Michael Johannes; Krebs, Andreas

    2014-01-01

    Rapid estimation of blood velocity and visualization of complex flow patterns are important for clinical use of diagnostic ultrasound. This paper presents real-time processing for two-dimensional (2-D) vector flow imaging which utilizes an off-the-shelf graphics processing unit (GPU). In this work...... vector flow acquisition takes 2.3 milliseconds seconds on an Advanced Micro Devices Radeon HD 7850 GPU card. The detected velocities are accurate to within the precision limit of the output format of the display routine. Because this tool was developed as a module external to the scanner’s built...

  17. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks

    Science.gov (United States)

    Abdeljaber, Osama; Avci, Onur; Kiranyaz, Serkan; Gabbouj, Moncef; Inman, Daniel J.

    2017-02-01

    Structural health monitoring (SHM) and vibration-based structural damage detection have been a continuous interest for civil, mechanical and aerospace engineers over the decades. Early and meticulous damage detection has always been one of the principal objectives of SHM applications. The performance of a classical damage detection system predominantly depends on the choice of the features and the classifier. While the fixed and hand-crafted features may either be a sub-optimal choice for a particular structure or fail to achieve the same level of performance on another structure, they usually require a large computation power which may hinder their usage for real-time structural damage detection. This paper presents a novel, fast and accurate structural damage detection system using 1D Convolutional Neural Networks (CNNs) that has an inherent adaptive design to fuse both feature extraction and classification blocks into a single and compact learning body. The proposed method performs vibration-based damage detection and localization of the damage in real-time. The advantage of this approach is its ability to extract optimal damage-sensitive features automatically from the raw acceleration signals. Large-scale experiments conducted on a grandstand simulator revealed an outstanding performance and verified the computational efficiency of the proposed real-time damage detection method.

  18. Making real-time reactive systems reliable

    Science.gov (United States)

    Marzullo, Keith; Wood, Mark

    1990-01-01

    A reactive system is characterized by a control program that interacts with an environment (or controlled program). The control program monitors the environment and reacts to significant events by sending commands to the environment. This structure is quite general. Not only are most embedded real time systems reactive systems, but so are monitoring and debugging systems and distributed application management systems. Since reactive systems are usually long running and may control physical equipment, fault tolerance is vital. The research tries to understand the principal issues of fault tolerance in real time reactive systems and to build tools that allow a programmer to design reliable, real time reactive systems. In order to make real time reactive systems reliable, several issues must be addressed: (1) How can a control program be built to tolerate failures of sensors and actuators. To achieve this, a methodology was developed for transforming a control program that references physical value into one that tolerates sensors that can fail and can return inaccurate values; (2) How can the real time reactive system be built to tolerate failures of the control program. Towards this goal, whether the techniques presented can be extended to real time reactive systems is investigated; and (3) How can the environment be specified in a way that is useful for writing a control program. Towards this goal, whether a system with real time constraints can be expressed as an equivalent system without such constraints is also investigated.

  19. Beneficial aspects of real time flow measurements for the management of acute right ventricular heart failure following continuous flow ventricular assist device implantation

    Directory of Open Access Journals (Sweden)

    Spiliopoulos Sotirios

    2012-11-01

    Full Text Available Abstract Background Optimal management of acute right heart failure following the implantation of a left ventricular assist device requires a reliable estimation of left ventricular preload and contractility. This is possible by real-time pump blood flow measurements. Clinical case We performed implantation of a continuous flow left ventricular assist device in a 66 years old female patient with an end-stage heart failure on the grounds of a dilated cardiomyopathy. Real-time pump blood flow was directly measured by an ultrasonic flow probe placed around the outflow graft. Diagnosis The progressive decline of real time flow and the loss of pulsatility were associated with an increase of central venous pressure, inotropic therapy and progressive renal failure suggesting the presence of an acute right heart failure. Diagnosis was validated by echocardiography and thermodilution measurements. Treatment Temporary mechanical circulatory support of the right ventricle was successfully performed. Real time flow measurement proved to be a useful tool for the diagnosis and ultimately for the management of right heart failure including the weaning from extracorporeal membrane oxygenation.

  20. Real-time shadows

    CERN Document Server

    Eisemann, Elmar; Assarsson, Ulf; Wimmer, Michael

    2011-01-01

    Important elements of games, movies, and other computer-generated content, shadows are crucial for enhancing realism and providing important visual cues. In recent years, there have been notable improvements in visual quality and speed, making high-quality realistic real-time shadows a reachable goal. Real-Time Shadows is a comprehensive guide to the theory and practice of real-time shadow techniques. It covers a large variety of different effects, including hard, soft, volumetric, and semi-transparent shadows.The book explains the basics as well as many advanced aspects related to the domain

  1. Real-Time Control of a Video Game Using Eye Movements and Two Temporal EEG Sensors.

    Science.gov (United States)

    Belkacem, Abdelkader Nasreddine; Saetia, Supat; Zintus-art, Kalanyu; Shin, Duk; Kambara, Hiroyuki; Yoshimura, Natsue; Berrached, Nasreddine; Koike, Yasuharu

    2015-01-01

    EEG-controlled gaming applications range widely from strictly medical to completely nonmedical applications. Games can provide not only entertainment but also strong motivation for practicing, thereby achieving better control with rehabilitation system. In this paper we present real-time control of video game with eye movements for asynchronous and noninvasive communication system using two temporal EEG sensors. We used wavelets to detect the instance of eye movement and time-series characteristics to distinguish between six classes of eye movement. A control interface was developed to test the proposed algorithm in real-time experiments with opened and closed eyes. Using visual feedback, a mean classification accuracy of 77.3% was obtained for control with six commands. And a mean classification accuracy of 80.2% was obtained using auditory feedback for control with five commands. The algorithm was then applied for controlling direction and speed of character movement in two-dimensional video game. Results showed that the proposed algorithm had an efficient response speed and timing with a bit rate of 30 bits/min, demonstrating its efficacy and robustness in real-time control.

  2. Dependable Real-Time Systems

    Science.gov (United States)

    1991-09-30

    0196 or 413 545-0720 PI E-mail Address: krithi@nirvan.cs.umass.edu, stankovic(ocs.umass.edu Grant or Contract Title: Dependable Real - Time Systems Grant...Dependable Real - Time Systems " Grant or Contract Number: N00014-85-k-0398 L " Reporting Period: 1 Oct 87 - 30 Sep 91 , 2. Summary of Accomplishments ’ 2.1 Our...in developing a sound approach to scheduling tasks in complex real - time systems , (2) developed a real-time operating system kernel, a preliminary

  3. LabVIEW Real-Time

    CERN Multimedia

    CERN. Geneva; Flockhart, Ronald Bruce; Seppey, P

    2003-01-01

    With LabVIEW Real-Time, you can choose from a variety of RT Series hardware. Add a real-time data acquisition component into a larger measurement and automation system or create a single stand-alone real-time solution with data acquisition, signal conditioning, motion control, RS-232, GPIB instrumentation, and Ethernet connectivity. With the various hardware options, you can create a system to meet your precise needs today, while the modularity of the system means you can add to the solution as your system requirements grow. If you are interested in Reliable and Deterministic systems for Measurement and Automation, you will profit from this seminar. Agenda: Real-Time Overview LabVIEW RT Hardware Platforms - Linux on PXI Programming with LabVIEW RT Real-Time Operating Systems concepts Timing Applications Data Transfer

  4. Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration

    Science.gov (United States)

    Zhu, Lin; Cao, Yiping; He, Dawu; Chen, Cheng

    2017-02-01

    A real-time tricolor phase measuring profilometry (RTPMP) based on charge coupled device (CCD) sensitivity calibration is proposed. Only one colour fringe pattern whose red (R), green (G) and blue (B) components are, respectively, coded as three sinusoidal phase-shifting gratings with an equivalent shifting phase of 2π/3 is needed and sent to an appointed flash memory on a specialized digital light projector (SDLP). A specialized time-division multiplexing timing sequence actively controls the SDLP to project the fringe patterns in R, G and B channels sequentially onto the measured object in one over seventy-two of a second and meanwhile actively controls a high frame rate monochrome CCD camera to capture the corresponding deformed patterns synchronously with the SDLP. So the sufficient information for reconstructing the three-dimensional (3D) shape in one over twenty-four of a second is obtained. Due to the different spectral sensitivity of the CCD camera to RGB lights, the captured deformed patterns from R, G and B channels cannot share the same peak and valley, which will lead to lower accuracy or even failing to reconstruct the 3D shape. So a deformed pattern amending method based on CCD sensitivity calibration is developed to guarantee the accurate 3D reconstruction. The experimental results verify the feasibility of the proposed RTPMP method. The proposed RTPMP method can obtain the 3D shape at over the video frame rate of 24 frames per second, avoid the colour crosstalk completely and be effective for measuring real-time changing object.

  5. Demo: Distributed Real-Time Generative 3D Hand Tracking using Edge GPGPU Acceleration

    DEFF Research Database (Denmark)

    Qammaz, Ammar; Kosta, Sokol; Kyriazis, Nikolaos

    2018-01-01

    computations locally. The network connection takes the place of a GPGPU accelerator and sharing resources with a larger workstation becomes the acceleration mechanism. The unique properties of a generative optimizer are examined and constitute a challenging use-case, since the requirement for real......This work demonstrates a real-time 3D hand tracking application that runs via computation offloading. The proposed framework enables the application to run on low-end mobile devices such as laptops and tablets, despite the fact that they lack the sufficient hardware to perform the required...

  6. Three-dimensional real-time synthetic aperture imaging using a rotating phased array transducer

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Dufait, Remi; Schoisswohl, Armin

    2002-01-01

    phased array, which is rotated over the volume of interest. The data is acquired using coded signals and synthetic transmit aperture imaging. Only one group of elements transmits at a time. The delays are set such as to form a cylindrical wave. The back-scattered signal carries information not only from......Current 3D real-time imaging is done either with sparse 2D arrays, or with mechanically moved phased arrays. The former results in a poor resolution and contrast due to a limited amount of elements. The latter has the disadvantage of low frame rates due to the sequential acquisition of the volume...... line-by-line and plane-by-plane. This paper describes an approach which combines mechanically moved phased array with synthetic transmit aperture imaging, resulting in high volume acquisition rates without a trade-off in image quality. The scan method uses a conventional fully populated 64 element...

  7. Real-time control environment for the RFX experiment

    International Nuclear Information System (INIS)

    Barana, O.; Cavinato, M.; Luchetta, A.; Manduchi, G.; Taliercio, C.

    2005-01-01

    A comprehensive set of control schemes can be presently implemented on RFX due to the enhanced load assembly and renewed power supply system. The schemes include: plasma equilibrium control and resistive wall mode stabilization, aiming at controlling actively the discharge when the passive action of the shell vanishes; the rotation of the localised helical deformation to minimize the enhanced plasma-wall interaction; the MHD mode control and the 'intelligent shell', aiming at achieving a better comprehension of the underlying physics. To the purpose, an integrated, distributed, digital system has been developed consisting of a set of computing nodes. Each node can act either as pre-processing or control station, the former acquiring raw data and computing intermediate control parameters, the latter executing control algorithms and driving the power amplifiers. An overview of the system architecture is presented in the paper with reference to the software real-time environment providing both basic functions, such as data read-out and real-time communication, and useful tools to program control algorithms, to perform simulations and to commission the system. To simulate the control schemes, the real-time environment is extended to include a so called 'simulation mode', in which the real-time nodes exchange their input/output signals with one station running a suitable model of the experiment, for instance the two dimensional FEM code MAXFEA in the case of the equilibrium control. In this way the control system can be tested offline and the time needed for the commissioning of algorithms reduced

  8. Concepts of real time and semi-real time material control

    International Nuclear Information System (INIS)

    Lovett, J.E.

    1975-01-01

    After a brief consideration of the traditional material balance accounting on an MBA basis, this paper explores the basic concepts of real time and semi-real time material control, together with some of the major problems to be solved. Three types of short-term material control are discussed: storage, batch processing, and continuous processing. (DLC)

  9. Real Time Systems

    DEFF Research Database (Denmark)

    Christensen, Knud Smed

    2000-01-01

    Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems.......Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems....

  10. Real time expert systems

    International Nuclear Information System (INIS)

    Asami, Tohru; Hashimoto, Kazuo; Yamamoto, Seiichi

    1992-01-01

    Recently, aiming at the application to the plant control for nuclear reactors and traffic and communication control, the research and the practical use of the expert system suitable to real time processing have become conspicuous. In this report, the condition for the required function to control the object that dynamically changes within a limited time is presented, and the technical difference between the real time expert system developed so as to satisfy it and the expert system of conventional type is explained with the actual examples and from theoretical aspect. The expert system of conventional type has the technical base in the problem-solving equipment originating in STRIPS. The real time expert system is applied to the fields accompanied by surveillance and control, to which conventional expert system is hard to be applied. The requirement for the real time expert system, the example of the real time expert system, and as the techniques of realizing real time processing, the realization of interruption processing, dispersion processing, and the mechanism of maintaining the consistency of knowledge are explained. (K.I.)

  11. Performance evaluation of near-real-time accounting systems

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Examples are given illustrating the application of near-real-time accounting concepts and principles to actual nuclear facilities. Experience with prototypical systems at the AGNS reprocessing plant and the Los Alamos plutonium facility is described using examples of actual data to illustrate the performance and effectiveness of near-real-time systems. The purpose of the session is to enable participants to: (1) identify the major components of near-real-time accounting systems; (2) describe qualitatively the advantages, limitations, and performance of such systems in real nuclear facilities; (3) identify process and facility design characteristics that affect the performance of near-real-time systems; and (4) describe qualitatively the steps necessary to implement a near-real-time accounting and control system in a nuclear facility

  12. American Society of Echocardiography

    Science.gov (United States)

    American Society of Echocardiography Join Ase Renew Member Portal Log In Membership Member Portal Log In Join ASE Renew Benefits Rates FASE – Fellow of the American Society of Echocardiography Member Referral Program FAQs Initiatives Advocacy Awards, Grants, ...

  13. Color M-mode and pulsed wave tissue Doppler echocardiography

    DEFF Research Database (Denmark)

    Møller, J E; Søndergaard, E; Poulsen, S H

    2001-01-01

    To assess the association between color M-mode flow propagation velocity and the early diastolic mitral annular velocity (E(m)) obtained with tissue Doppler echocardiography and to assess the prognostic implications of the indexes, echocardiography was performed on days 1 and 5, and 1 and 3 month...

  14. Real-time Holographic Display Based on a Super Fast Response Thin Film

    International Nuclear Information System (INIS)

    Gao, Hongyue; Li, Xiao; He, Zhenghong; Su, Yikai; Poon, Ting-Chung

    2013-01-01

    Real-time dynamic holographic display is obtained with super fast response in a thin film without any applied electric field. Holograms can be refreshed in the order of a millisecond and there is no cross talk between the recorded holograms because the hologram formed in the film is transient and can be completely self erased, and the hologram formation time and self-erasure time are both ∼1 ms. Holographic video display is achieved, which shows the real-time holographic image display capability of the thin film, and its much higher resolution than those of commercially available spatial light modulators. Furthermore, multiplexed hologram display using two polarization directions of a recorded light and multiple color holographic display at different laser wavelengths are presented, which demonstrate the feasibility of a RGB color holographic three-dimensional display with the thin film. Because the sample is easy to be fabricated into a large size screen and needs no external applied electric field, we think that the film can be developed into a large-size, dynamic, and color holographic three-dimensional display in the future.

  15. Perceptual Real-Time 2D-to-3D Conversion Using Cue Fusion.

    Science.gov (United States)

    Leimkuhler, Thomas; Kellnhofer, Petr; Ritschel, Tobias; Myszkowski, Karol; Seidel, Hans-Peter

    2018-06-01

    We propose a system to infer binocular disparity from a monocular video stream in real-time. Different from classic reconstruction of physical depth in computer vision, we compute perceptually plausible disparity, that is numerically inaccurate, but results in a very similar overall depth impression with plausible overall layout, sharp edges, fine details and agreement between luminance and disparity. We use several simple monocular cues to estimate disparity maps and confidence maps of low spatial and temporal resolution in real-time. These are complemented by spatially-varying, appearance-dependent and class-specific disparity prior maps, learned from example stereo images. Scene classification selects this prior at runtime. Fusion of prior and cues is done by means of robust MAP inference on a dense spatio-temporal conditional random field with high spatial and temporal resolution. Using normal distributions allows this in constant-time, parallel per-pixel work. We compare our approach to previous 2D-to-3D conversion systems in terms of different metrics, as well as a user study and validate our notion of perceptually plausible disparity.

  16. SU-C-201-04: Noise and Temporal Resolution in a Near Real-Time 3D Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Rilling, M [Department of physics, engineering physics and optics, Universite Laval, Quebec City, QC (Canada); Centre de recherche sur le cancer, Universite Laval, Quebec City, QC (Canada); Radiation oncology department, CHU de Quebec, Quebec City, QC (Canada); Center for optics, photonics and lasers, Universite Laval, Quebec City, Quebec (Canada); Goulet, M [Radiation oncology department, CHU de Quebec, Quebec City, QC (Canada); Beaulieu, L; Archambault, L [Department of physics, engineering physics and optics, Universite Laval, Quebec City, QC (Canada); Centre de recherche sur le cancer, Universite Laval, Quebec City, QC (Canada); Radiation oncology department, CHU de Quebec, Quebec City, QC (Canada); Thibault, S [Center for optics, photonics and lasers, Universite Laval, Quebec City, Quebec (Canada)

    2016-06-15

    Purpose: To characterize the performance of a real-time three-dimensional scintillation dosimeter in terms of signal-to-noise ratio (SNR) and temporal resolution of 3D dose measurements. This study quantifies its efficiency in measuring low dose levels characteristic of EBRT dynamic treatments, and in reproducing field profiles for varying multileaf collimator (MLC) speeds. Methods: The dosimeter prototype uses a plenoptic camera to acquire continuous images of the light field emitted by a 10×10×10 cm{sup 3} plastic scintillator. Using EPID acquisitions, ray tracing-based iterative tomographic algorithms allow millimeter-sized reconstruction of relative 3D dose distributions. Measurements were taken at 6MV, 400 MU/min with the scintillator centered at the isocenter, first receiving doses from 1.4 to 30.6 cGy. Dynamic measurements were then performed by closing half of the MLCs at speeds of 0.67 to 2.5 cm/s, at 0° and 90° collimator angles. A reference static half-field was obtained for measured profile comparison. Results: The SNR steadily increases as a function of dose and reaches a clinically adequate plateau of 80 at 10 cGy. Below this, the decrease in light collected and increase in pixel noise diminishes the SNR; nonetheless, the EPID acquisitions and the voxel correlation employed in the reconstruction algorithms result in suitable SNR values (>75) even at low doses. For dynamic measurements at varying MLC speeds, central relative dose profiles are characterized by gradients at %D{sub 50} of 8.48 to 22.7 %/mm. These values converge towards the 32.8 %/mm-gradient measured for the static reference field profile, but are limited by the dosimeter’s current acquisition rate of 1Hz. Conclusion: This study emphasizes the efficiency of the 3D dose distribution reconstructions, while identifying limits of the current prototype’s temporal resolution in terms of dynamic EBRT parameters. This work paves the way for providing an optimized, second

  17. SU-C-201-04: Noise and Temporal Resolution in a Near Real-Time 3D Dosimeter

    International Nuclear Information System (INIS)

    Rilling, M; Goulet, M; Beaulieu, L; Archambault, L; Thibault, S

    2016-01-01

    Purpose: To characterize the performance of a real-time three-dimensional scintillation dosimeter in terms of signal-to-noise ratio (SNR) and temporal resolution of 3D dose measurements. This study quantifies its efficiency in measuring low dose levels characteristic of EBRT dynamic treatments, and in reproducing field profiles for varying multileaf collimator (MLC) speeds. Methods: The dosimeter prototype uses a plenoptic camera to acquire continuous images of the light field emitted by a 10×10×10 cm"3 plastic scintillator. Using EPID acquisitions, ray tracing-based iterative tomographic algorithms allow millimeter-sized reconstruction of relative 3D dose distributions. Measurements were taken at 6MV, 400 MU/min with the scintillator centered at the isocenter, first receiving doses from 1.4 to 30.6 cGy. Dynamic measurements were then performed by closing half of the MLCs at speeds of 0.67 to 2.5 cm/s, at 0° and 90° collimator angles. A reference static half-field was obtained for measured profile comparison. Results: The SNR steadily increases as a function of dose and reaches a clinically adequate plateau of 80 at 10 cGy. Below this, the decrease in light collected and increase in pixel noise diminishes the SNR; nonetheless, the EPID acquisitions and the voxel correlation employed in the reconstruction algorithms result in suitable SNR values (>75) even at low doses. For dynamic measurements at varying MLC speeds, central relative dose profiles are characterized by gradients at %D_5_0 of 8.48 to 22.7 %/mm. These values converge towards the 32.8 %/mm-gradient measured for the static reference field profile, but are limited by the dosimeter’s current acquisition rate of 1Hz. Conclusion: This study emphasizes the efficiency of the 3D dose distribution reconstructions, while identifying limits of the current prototype’s temporal resolution in terms of dynamic EBRT parameters. This work paves the way for providing an optimized, second-generational real-time 3D

  18. A 10-Fr ultrasound catheter with integrated micromotor for 4-D intracardiac echocardiography.

    Science.gov (United States)

    Lee, Warren; Griffin, Weston; Wildes, Douglas; Buckley, Donald; Topka, Terry; Chodakauskas, Thaddeus; Langer, Mark; Calisti, Serge; Bergstøl, Svein; Malacrida, Jean-Pierre; Lanteri, Frédéric; Maffre, Jennifer; McDaniel, Ben; Shivkumar, Kalyanam; Cummings, Jennifer; Callans, David; Silvestry, Frank; Packer, Douglas

    2011-07-01

    We developed prototype real-time 3-D intracardiac echocardiography catheters with integrated micromotors, allowing internal oscillation of a low-profile 64-element, 6.2-MHz phased-array transducer in the elevation direction. Components were designed to facilitate rotation of the array, including a low-torque flexible transducer interconnect and miniature fixtures for the transducer and micromotor. The catheter tip prototypes were integrated with two-way deflectable 10-Fr catheters and used in in vivo animal testing at multiple facilities. The 4-D ICE catheters were capable of imaging a 90° azimuth by up to 180° elevation field of view. Volume rates ranged from 1 vol/sec (180° elevation) to approximately 10 vol/sec (60° elevation). We successfully imaged electrophysiology catheters, atrial septal puncture procedures, and detailed cardiac anatomy. The elevation oscillation enabled 3-D visualization of devices and anatomy, providing new clinical information and perspective not possible with current 2-D imaging catheters.

  19. Multithreaded real-time 3D image processing software architecture and implementation

    Science.gov (United States)

    Ramachandra, Vikas; Atanassov, Kalin; Aleksic, Milivoje; Goma, Sergio R.

    2011-03-01

    Recently, 3D displays and videos have generated a lot of interest in the consumer electronics industry. To make 3D capture and playback popular and practical, a user friendly playback interface is desirable. Towards this end, we built a real time software 3D video player. The 3D video player displays user captured 3D videos, provides for various 3D specific image processing functions and ensures a pleasant viewing experience. Moreover, the player enables user interactivity by providing digital zoom and pan functionalities. This real time 3D player was implemented on the GPU using CUDA and OpenGL. The player provides user interactive 3D video playback. Stereo images are first read by the player from a fast drive and rectified. Further processing of the images determines the optimal convergence point in the 3D scene to reduce eye strain. The rationale for this convergence point selection takes into account scene depth and display geometry. The first step in this processing chain is identifying keypoints by detecting vertical edges within the left image. Regions surrounding reliable keypoints are then located on the right image through the use of block matching. The difference in the positions between the corresponding regions in the left and right images are then used to calculate disparity. The extrema of the disparity histogram gives the scene disparity range. The left and right images are shifted based upon the calculated range, in order to place the desired region of the 3D scene at convergence. All the above computations are performed on one CPU thread which calls CUDA functions. Image upsampling and shifting is performed in response to user zoom and pan. The player also consists of a CPU display thread, which uses OpenGL rendering (quad buffers). This also gathers user input for digital zoom and pan and sends them to the processing thread.

  20. Magnetic resonance pharmacological stress for detecting coronary disease. Comparison with echocardiography

    International Nuclear Information System (INIS)

    Baer, F.M.; Crnac, J.; Jochims, M.; Schneider, C.; Erdmann, E.; Schmidt, M.; Theissen, P.; Schicha, H.

    2000-01-01

    Stress testing is the cornerstone in the diagnosis of patients with suspected coronary artery disease (CAD). Although exercise ECG remains the primary approach for the detection of ischemia in patients with chest pain syndromes, its sensitivity and specificity is limited and exercise ECG does not provide detailed information about the localisation and extent of CAD. Stress echocardiography has been used for the detection of ischemia for more than a decade and has become an increasingly popular noninvasive method for the detection of CAD. In experienced hands wall motion analysis based on stress echocardiography has proved to be as sensitive and specific for the detection of myocardial ischemia as scintigraphic techniques. Recent technical improvements, namely the availability of ultrafast imaging sequences with a significant reduction of imaging time have initiated several studies which examined the combination of pharmacological stress and magnetic resonance imaging (MRI) for the detection of suspected CAD. The most well developed stress-MRI technique is wall motion imaging during dobutamine stress. This technique is analogous to stress echocardiography, but MRI has the inherent advantages of better resolution, higher reproducibility and true long and short axis imaging with contiguous parallel slices. However, the clinical impact of MRI for the diagnosis of CAD is still low. Further technical developments including real time imaging and a reliable automated quantitative analysis of left ventricular function are required before stress-MRI becomes a serious challenge to stressechocardiography in the clinical arena. Currently, only a few MRI facilities and physicians are dedicated to pharmacological stress testing with MRI and the future clinical impact of this promising technique will depend on its potential to provide information beyond myocardial function including perfusion, metabolism and coronary anatomy in form of a ''one-stop''-shop for the cardiac patient

  1. We live in the quantum 4-dimensional Minkowski space-time

    OpenAIRE

    Hwang, W-Y. Pauchy

    2015-01-01

    We try to define "our world" by stating that "we live in the quantum 4-dimensional Minkowski space-time with the force-fields gauge group $SU_c(3) \\times SU_L(2) \\times U(1) \\times SU_f(3)$ built-in from the outset". We begin by explaining what "space" and "time" are meaning for us - the 4-dimensional Minkowski space-time, then proceeding to the quantum 4-dimensional Minkowski space-time. In our world, there are fields, or, point-like particles. Particle physics is described by the so-called ...

  2. Geomagnetic Observatory Data for Real-Time Applications

    Science.gov (United States)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  3. Echocardiography in the adult's congenital cardiopaties

    International Nuclear Information System (INIS)

    Escobar Q, Carlos I; Jaramillo U, Mario; Tenorio, Luis F; Molina V, Claudia; Saldarriaga A, Marcela; Arango, Angela M

    2003-01-01

    The number of adults with congenital heart disease is steadily increasing in the course of time. We ignore the prevalence and the most frequent diagnoses in our environment. A descriptive prospective study is presented. Between November 1 1999 and July 31 2001, 8871 Tran-thoracic and Tran-esophageal echocardiographies were performed in the Clinica Cardiovascular Santa Maria's echocardiography service. We found 143 congenital cardiopathies (1.6%) in 74 men and 69 women with a mean age of 37.7 +/- 18.4 years. the most frequent diagnoses were bicuspid aortic valve, atrial septal defect, ventricular septal defect, patent ductus arteriosus and Ebstein's anomaly. these findings agree with world wide data

  4. Relevance of tissue Doppler in the quantification of stress echocardiography for the detection of myocardial ischemia in clinical practice

    Directory of Open Access Journals (Sweden)

    Sicari Rosa

    2005-01-01

    Full Text Available Abstract In the present article we review the main published data on the application of Tissue Doppler Imaging (TDI to stress echocardiography for the detection of myocardial ischemia. TDI has been applied to stress echocardiography in order to overcome the limitations of visual analysis for myocardial ischemia. The introduction of a new technology for clinical routine use should pass through the different phases of scientific assessment from feasibility studies to large multicenter studies, from efficacy to effectiveness studies. Nonetheless the pro-technology bias plays a major role in medicine and expensive and sophisticated techniques are accepted before their real usefulness and incremental value to the available ones is assessed. Apparently, TDI is not exempted by this approach : its applications are not substantiated by strong and sound results. Nonetheless, conventional stress echocardiography for myocardial ischemia detection is heavily criticized on the basis of its subjectivity. Stress echocardiography has a long lasting history and the evidence collected over 20 years positioned it as an established tool for the detection and prognostication of coronary artery disease. The quantitative assessment of myocardial ischemia remains a scientific challenge and a clinical goal but time has not come for these newer ultrasonographic techniques which should be restricted to research laboratories.

  5. Speckle tracking echocardiography in mature Irish Wolfhound dogs

    DEFF Research Database (Denmark)

    Westrup, Ulrik; McEvoy, Fintan

    2013-01-01

    Two-dimensional strain measurements obtained by speckle tracking echocardiography (STE) have been reported in both humans and dogs. Incorporation of this technique into canine clinical practice requires the availability of measurements from clinically normal dogs, ideally of the same breed, taken...... under normal clinical conditions.The aims of this prospective study were to assess if it is possible to obtain STE data during a routine echocardiographic examination in Irish Wolfhound dogs and that these data will provide reference values and an estimation of measurement error....

  6. A real-time 3D end-to-end augmented reality system (and its representation transformations)

    Science.gov (United States)

    Tytgat, Donny; Aerts, Maarten; De Busser, Jeroen; Lievens, Sammy; Rondao Alface, Patrice; Macq, Jean-Francois

    2016-09-01

    The new generation of HMDs coming to the market is expected to enable many new applications that allow free viewpoint experiences with captured video objects. Current applications usually rely on 3D content that is manually created or captured in an offline manner. In contrast, this paper focuses on augmented reality applications that use live captured 3D objects while maintaining free viewpoint interaction. We present a system that allows live dynamic 3D objects (e.g. a person who is talking) to be captured in real-time. Real-time performance is achieved by traversing a number of representation formats and exploiting their specific benefits. For instance, depth images are maintained for fast neighborhood retrieval and occlusion determination, while implicit surfaces are used to facilitate multi-source aggregation for both geometry and texture. The result is a 3D reconstruction system that outputs multi-textured triangle meshes at real-time rates. An end-to-end system is presented that captures and reconstructs live 3D data and allows for this data to be used on a networked (AR) device. For allocating the different functional blocks onto the available physical devices, a number of alternatives are proposed considering the available computational power and bandwidth for each of the components. As we will show, the representation format can play an important role in this functional allocation and allows for a flexible system that can support a highly heterogeneous infrastructure.

  7. Feasibility of the integration of CRONOS, a 3-D neutronics code, into real-time simulators

    International Nuclear Information System (INIS)

    Ragusa, J.C.

    2001-01-01

    In its effort to contribute to nuclear power plant safety, CEA proposes the integration of an engineering grade 3-D neutronics code into a real-time plant analyser. This paper describes the capabilities of the neutronics code CRONOS to achieve a fast running performance. First, we will present current core models in simulators and explain their drawbacks. Secondly, the mean features of CRONOS's spatial-kinetics methods will be reviewed. We will then present an optimum core representation with respect to mesh size, choice of finite elements (FE) basis and execution time, for accurate results as well as the multi 1-D thermal-hydraulics (T/H) model developed to take into account 3-D effects in updating the cross-sections. A Main Steam Line Break (MSLB) End-of-Life (EOL) Hot-Zero-Power (HZP) accident will be used as an example, before we conclude with the perspectives of integrating CRONOS's 3-D core model into real-time simulators. (author)

  8. Feasibility of the integration of CRONOS, a 3-D neutronics code, into real-time simulators

    Energy Technology Data Exchange (ETDEWEB)

    Ragusa, J.C. [CEA Saclay, Dept. de Mecanique et de Technologie, 91 - Gif-sur-Yvette (France)

    2001-07-01

    In its effort to contribute to nuclear power plant safety, CEA proposes the integration of an engineering grade 3-D neutronics code into a real-time plant analyser. This paper describes the capabilities of the neutronics code CRONOS to achieve a fast running performance. First, we will present current core models in simulators and explain their drawbacks. Secondly, the mean features of CRONOS's spatial-kinetics methods will be reviewed. We will then present an optimum core representation with respect to mesh size, choice of finite elements (FE) basis and execution time, for accurate results as well as the multi 1-D thermal-hydraulics (T/H) model developed to take into account 3-D effects in updating the cross-sections. A Main Steam Line Break (MSLB) End-of-Life (EOL) Hot-Zero-Power (HZP) accident will be used as an example, before we conclude with the perspectives of integrating CRONOS's 3-D core model into real-time simulators. (author)

  9. Role of echocardiography for catheter-based management of valvular heart disease.

    Science.gov (United States)

    Shiota, Takahiro

    2017-01-01

    Catheter-based treatment of valvular heart disease, such as transvalvular aortic valve replacement (TAVR) or mitral clip procedure, has been increasingly accepted as a treatment choice for the past several years. Such new treatment options have been changing the management of patients with valvular heart disease drastically while socio-economic factors regarding their application need to be taken into consideration. The use of echocardiography, including transesophageal echocardiography (TEE), for such catheter-based treatments is essential for the success of the procedures. Severe hypotension after TAVR is a life-threatening emergency. Rapid assessment and diagnosis in the catheterization or hybrid laboratory is essential for safety and a positive outcome. Possible diagnoses in this critical situation would include severe left ventricular dysfunction due to coronary obstruction, cardiac tamponade, aortic rupture, acute severe aortic and/or mitral valve regurgitation, and hypovolemia due to bleeding. Although new types of TAVR valves reduce para-valvular aortic regurgitation (AR) significantly, it is still important to judge the severity of para-valvular AR correctly in the laboratory. As for mitral clip procedure, TEE is vital for guiding and monitoring the entire process. Accurate identification of the location and the geometry of the regurgitant orifice is necessary for proper placement of the clip. Real-time 3D TEE provides helpful en face view of the mitral valve and clip together to this end. Residual mitral regurgitation (MR) after the first clip is not uncommon. Quick and precise imaging of the residual MR (location and severity) with TEE is extremely important for the interventionist to place the second clip and possibly third clip properly. After the completion of the clip procedure, mitral valve stenosis and also iatrogenic atrial septal defect need to be checked by TEE. Echocardiography, especially TEE, is also vital for the success of other newer trans

  10. Clinical applications of contrast echocardiography

    International Nuclear Information System (INIS)

    Jorge, Leon Galindo

    2005-01-01

    The echocardiography is the technique more used for the diagnosis and pursuit of the cardiovascular illnesses; therefore, their diagnostic precision has acquired a vital importance in the handling of the patients with cardiovascular pathologies. However, with relative frequency, the diagnostic capacity of the echocardiography exam is diminished by limitations of the acoustic window, mainly in-patient with obesity, lung illnesses and alterations of the thoracic wall. This can be obviated with the use of the intra-esophagus echocardiography, although this it is a procedure semi-invasive and not very practical of carrying out in all the patients with problems of acoustic window. In this article the clinical applications are revised more common of the contrast echocardiography

  11. Universality and the dynamical space-time dimensionality in the Lorentzian type IIB matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yuta [KEK Theory Center, High Energy Accelerator Research Organization,1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Nishimura, Jun [KEK Theory Center, High Energy Accelerator Research Organization,1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Graduate University for Advanced Studies (SOKENDAI),1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Tsuchiya, Asato [Department of Physics, Shizuoka University,836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan)

    2017-03-27

    The type IIB matrix model is one of the most promising candidates for a nonperturbative formulation of superstring theory. In particular, its Lorentzian version was shown to exhibit an interesting real-time dynamics such as the spontaneous breaking of the 9-dimensional rotational symmetry to the 3-dimensional one. This result, however, was obtained after regularizing the original matrix integration by introducing “infrared” cutoffs on the quadratic moments of the Hermitian matrices. In this paper, we generalize the form of the cutoffs in such a way that it involves an arbitrary power (2p) of the matrices. By performing Monte Carlo simulation of a simplified model, we find that the results become independent of p and hence universal for p≳1.3. For p as large as 2.0, however, we find that large-N scaling behaviors do not show up, and we cannot take a sensible large-N limit. Thus we find that there is a certain range of p in which a universal large-N limit can be taken. Within this range of p, the dynamical space-time dimensionality turns out to be (3+1), while for p=2.0, where we cannot take a sensible large-N limit, we observe a (5+1)d structure.

  12. Aortic root segmentation in 4D transesophageal echocardiography

    Science.gov (United States)

    Chechani, Shubham; Suresh, Rahul; Patwardhan, Kedar A.

    2018-02-01

    The Aortic Valve (AV) is an important anatomical structure which lies on the left side of the human heart. The AV regulates the flow of oxygenated blood from the Left Ventricle (LV) to the rest of the body through aorta. Pathologies associated with the AV manifest themselves in structural and functional abnormalities of the valve. Clinical management of pathologies often requires repair, reconstruction or even replacement of the valve through surgical intervention. Assessment of these pathologies as well as determination of specific intervention procedure requires quantitative evaluation of the valvular anatomy. 4D (3D + t) Transesophageal Echocardiography (TEE) is a widely used imaging technique that clinicians use for quantitative assessment of cardiac structures. However, manual quantification of 3D structures is complex, time consuming and suffers from inter-observer variability. Towards this goal, we present a semiautomated approach for segmentation of the aortic root (AR) structure. Our approach requires user-initialized landmarks in two reference frames to provide AR segmentation for full cardiac cycle. We use `coarse-to-fine' B-spline Explicit Active Surface (BEAS) for AR segmentation and Masked Normalized Cross Correlation (NCC) method for AR tracking. Our method results in approximately 0.51 mm average localization error in comparison with ground truth annotation performed by clinical experts on 10 real patient cases (139 3D volumes).

  13. Comparison of Hyperemic Impedance Echocardiography with Dobutamine Stress Echocardiography to Detect Inducible Myocardial Ischemia: A Pilot Study.

    Science.gov (United States)

    Patel, Jijibhoy J; Gupta, Ankur; Nanda, Navin C

    2016-03-01

    Stress echocardiography using exercise or pharmacological stressors is either contraindicated or associated with significant side effects in some patients. This pilot study was designed to evaluate a new technique, hyperemic impedance echocardiography (HIE). It is based on reactive coronary hyperemia when transient limb ischemia is induced by tourniquet inflation. We hypothesized that this physiologic coronary hyperemia can identify inducible myocardial ischemia by assessment of regional wall motion abnormalities on echocardiography when compared with dobutamine stress echocardiography (DSE). Twenty consecutive outpatients with suspected stable coronary artery disease (CAD) who underwent clinically indicated DSE were recruited for performance of HIE after informed consent was obtained. Standard graded dobutamine infusion protocol from 5 to 40 μg/kg per min was used for DSE. HIE was performed by inflating tourniquets at a pressure of 10 mmHg below the systolic blood pressure for 1 minute in three of four extremities at a time for total of four cycles. Echocardiography was performed immediately after the last rotating tourniquet deflation. DSE and HIE were classified as abnormal for development of new or worsening wall motion abnormality in at least one myocardial segment. Test characteristics were also determined for a subset of these patients (n = 12) who underwent clinically indicated coronary angiography. Hyperemic impedance echocardiography showed 86% sensitivity, 67% specificity, 86% positive predictive value, and 67% negative predictive value with a test accuracy of 80% to detect inducible myocardial wall motion abnormalities when compared with DSE. HIE also showed 83% sensitivity, 75% negative predictive value with a test accuracy of 66.7% for detection of significant (≥50% diameter stenosis) CAD on coronary angiography. In this pilot study, HIE was a feasible, safe, and promising method for detection of inducible myocardial ischemia by assessment of

  14. Process algebra with timing : real time and discrete time

    NARCIS (Netherlands)

    Baeten, J.C.M.; Middelburg, C.A.; Bergstra, J.A.; Ponse, A.J.; Smolka, S.A.

    2001-01-01

    We present real time and discrete time versions of ACP with absolute timing and relative timing. The starting-point is a new real time version with absolute timing, called ACPsat, featuring urgent actions and a delay operator. The discrete time versions are conservative extensions of the discrete

  15. Process algebra with timing: Real time and discrete time

    NARCIS (Netherlands)

    Baeten, J.C.M.; Middelburg, C.A.

    1999-01-01

    We present real time and discrete time versions of ACP with absolute timing and relative timing. The startingpoint is a new real time version with absolute timing, called ACPsat , featuring urgent actions and a delay operator. The discrete time versions are conservative extensions of the discrete

  16. Head-to-head comparison of peak supine bicycle exercise echocardiography and treadmill exercise echocardiography at peak and at post-exercise for the detection of coronary artery disease.

    Science.gov (United States)

    Peteiro, Jesús; Bouzas-Mosquera, Alberto; Estevez, Rodrigo; Pazos, Pablo; Piñeiro, Miriam; Castro-Beiras, Alfonso

    2012-03-01

    Supine bicycle exercise (SBE) echocardiography and treadmill exercise (TME) echocardiography have been used for evaluation of coronary artery disease (CAD). Although peak imaging acquisition has been considered unfeasible with TME, higher sensitivity for the detection of CAD has been recently found with this method compared with post-TME echocardiography. However, peak TME echocardiography has not been previously compared with the more standardized peak SBE echocardiography. The aim of this study was to compare peak TME echocardiography, peak SBE echocardiography, and post-TME echocardiography for the detection of CAD. A series of 116 patients (mean age, 61 ± 10 years) referred for evaluation of CAD underwent SBE (starting at 25 W, with 25-W increments every 2-3 min) and TME with peak and postexercise imaging acquisition, in a random sequence. Digitized images at baseline, at peak TME, after TME, and at peak SBE were interpreted in a random and blinded fashion. All patients underwent coronary angiography. Maximal heart rate was higher during TME, whereas systolic blood pressure was higher during SBE, resulting in similar rate-pressure products. On quantitative angiography, 75 patients had coronary stenosis (≥50%). In these patients, wall motion score indexes at maximal exercise were higher at peak TME (median, 1.45; interquartile range [IQR], 1.13-1.75) than at peak SBE (median, 1.25; IQR, 1.0-1.56) or after TME (median, 1.13; IQR, 1.0-1.38) (P = .002 between peak TME and peak SBE imaging, P peak TME (median, 5; IQR, 2-12) compared with peak SBE (median, 3; IQR, 0-8) or after TME (median, 2; IQR, 0-4) (P peak TME and peak SBE imaging, P peak TME, peak SBE, and post-TME echocardiography for CAD was 84%, 75%, and 60% (P = .001 between post-TME and peak TME echocardiography, P = .055 between post-TME and peak SBE echocardiography), with specificity of 63%, 80%, and 78%, respectively (P = NS) and accuracy of 77%, 77%, and 66%, respectively (P = NS). Peak TME

  17. Fetal echocardiography

    International Nuclear Information System (INIS)

    Chaubal, Nitin G.; Chaubal, Jyoti

    2009-01-01

    USG performed with a high-end machine, using a good cine-loop facility is extremely helpful in the diagnosis of fetal cardiac anomalies. In fetal echocardiography, the four-chamber view and the outflow-tract view are used to diagnose cardiac anomalies. The most important objective during a targeted anomaly scan is to identify those cases that need a dedicated fetal echocardiogram. Associated truncal and chromosomal anomalies need to be identified. This review shows how fetal echocardiography, apart from identifying structural defects in the fetal heart, can be used to look at rhythm abnormalities and other functional aspects of the fetal heart

  18. Real-time Avatar Animation from a Single Image.

    Science.gov (United States)

    Saragih, Jason M; Lucey, Simon; Cohn, Jeffrey F

    2011-01-01

    A real time facial puppetry system is presented. Compared with existing systems, the proposed method requires no special hardware, runs in real time (23 frames-per-second), and requires only a single image of the avatar and user. The user's facial expression is captured through a real-time 3D non-rigid tracking system. Expression transfer is achieved by combining a generic expression model with synthetically generated examples that better capture person specific characteristics. Performance of the system is evaluated on avatars of real people as well as masks and cartoon characters.

  19. SLStudio: Open-source framework for real-time structured light

    DEFF Research Database (Denmark)

    Wilm, Jakob; Olesen, Oline Vinter; Larsen, Rasmus

    2014-01-01

    that this software makes real-time 3D scene capture more widely accessible and serves as a foundation for new structured light scanners operating in real-time, e.g. 20 depth images per second and more. The use cases for such scanners are plentyfull, however due to the computational constraints, all public......An open-source framework for real-time structured light is presented. It is called “SLStudio”, and enables real-time capture of metric depth images. The framework is modular, and extensible to support new algorithms for scene encoding/decoding, triangulation, and aquisition hardware. It is the aim...... implementations so far are limited to offline processing. With “SLStudio”, we are making a platform available which enables researchers from many different fields to build application specific real time 3D scanners. The software is hosted at http://compute.dtu.dk/~jakw/slstudio....

  20. Real-time radiography

    International Nuclear Information System (INIS)

    Bossi, R.H.; Oien, C.T.

    1981-01-01

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components

  1. Real-time vision systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  2. SIBYLLE: an expert system for the interpretation in real time of mono-dimensional signals; application to vocal signal

    International Nuclear Information System (INIS)

    Minault, Sophie

    1987-01-01

    This report presents an interactive tool for computer aided building of signals processing and interpretation systems. This tool includes three main parts: - an expert system, - a rule compiler, - a real time procedural system. The expert system allows the acquisition of knowledge about the signal. Knowledge has to be formalized as a set of rewriting rules (or syntaxical rules) and is introduced with an interactive interface. The compiler makes a compilation of the knowledge base (the set of rules) and generates a procedural system, which is equivalent to the expert system. The generated procedural system is a fixed one but is much faster than the expert system: it can work in real time. The expert system is used along the experimental phase on a small corpus of data: the knowledge base is then tested and possibly modified thanks to the interactive interface. Once the knowledge base is steady enough, the procedural system is generated and tested on a bigger data corpus. This allows to perform significant statistical studies which generally induce some corrections at the expert system level. The overall constitutes a tool which conciliates the expert systems flexibility with the procedural systems speed. It has been used for building a set of recognition rules modules on vocal signal - module of sound-silence detection - module of voiced-unvoiced segmentation - module of synchronous pitch detection. Its possibilities are not limited to the study of vocal signal, but can be enlarged to any mono-dimensional signal processing. A feasibility study has been realised for an electrocardiograms application. (author) [fr

  3. Performance Evaluation of RIPng, EIGRPv6 and OSPFv3 for Real Time Applications

    Directory of Open Access Journals (Sweden)

    Sama Salam Samaan

    2018-01-01

    Full Text Available In this modern Internet era and the transition to IPv6, routing protocols must adjust to assist this transformation. RIPng, EIGRPv6 and OSPFv3 are the dominant IPv6 IGRP (Interior Gateway Routing Protocols. Selecting the best routing protocol among the available is a critical task, which depends upon the network requirement and performance parameters of different real time applications. The primary motivation of this paper is to estimate the performance of these protocols in real time applications. The evaluation is based on a number of criteria including: network convergence duration, Http Page Response Time, DB Query Response Time, IPv6 traffic dropped, video packet delay variation and video packet end to end delay. After examining the simulation results, a conclusion will be extracted to reveal the findings of which protocol performs the best upon implementation within a IPv6 WAN. OPNET modeler simulator is used to evaluate the accomplishment of these protocols. To get the results, three scenarios are designed, one for each protocol.

  4. Trends in pediatric echocardiography and the yield for congenital heart disease in a major cardiac referral hospital in Cameroon.

    Science.gov (United States)

    Nkoke, Clovis; Balti, Eric; Menanga, Alain; Dzudie, Anastase; Lekoubou, Alain; Kingue, Samuel; Kengne, Andre Pascal

    2017-01-01

    Congenital heart disease (CHD) is a common condition in children in Sub-Saharan Africa (SSA), where it is associated with poor outcomes. Diagnosis of CHD in SSA depends essentially on echocardiography, which is available only in few urban referral centers. Our aim was to assess time changes in the pattern of referral for pediatric echocardiography and the subsequent diagnosis of structural CHD in a major SSA city. All pediatric echocardiography performed between 2004 and 2013 at the echocardiography laboratory of the Yaounde General Hospital were reviewed. The primary indication of the study and the presence of structural CHD were recorded. Between 2004 and 2013, 9,390 echocardiograms were performed and 834 (8.9%) children aged 1 day to 15 years underwent echocardiography at the center, and 227 (27.2%) cases of definite structural CHD were diagnosed, with 123 (54.2%) in boys. The most frequent indications for echocardiography were heart murmurs (40%) and the suspicion of CHD (37.4%). The commonest CHD was ventricular septal defect (VSD) (30%) with tetralogy of Fallot being the most frequent cyanotic heart lesion (5.3%). The proportion of pediatric echocardiography decreased from 13.3% in 2004-2005 to 6.1% in 2012-2013 (P=0.001) but not in a linear fashion (P=0.072 for linear trend).The diagnosis of structural CHD increased from 25.1% in 2004-2005 to 27.1% in 2012-2013. This increase however was non-significant (P=0.523) and did not follow a linear trend (P=0.230). The pattern of referral for pediatric echocardiography at this center has changed over time, but diagnosis of structural CHD has remained the same. Improving access to this diagnostic procedure and subsequent treatment of diagnosed CHD will help improving the outcome of the disease in this setting.

  5. Echocardiography derived three-dimensional printing of normal and abnormal mitral annuli

    Directory of Open Access Journals (Sweden)

    Feroze Mahmood

    2014-01-01

    Full Text Available Aims and Objectives: The objective of this study was to assess the clinical feasibility of using echocardiographic data to generate three-dimensional models of normal and pathologic mitral valve annuli before and after repair procedures. Materials and Methods: High-resolution transesophageal echocardiographic data from five patients was analyzed to delineate and track the mitral annulus (MA using Tom Tec Image-Arena software. Coordinates representing the annulus were imported into Solidworks software for constructing solid models. These solid models were converted to stereolithographic (STL file format and three-dimensionally printed by a commercially available Maker Bot Replicator 2 three-dimensional printer. Total time from image acquisition to printing was approximately 30 min. Results: Models created were highly reflective of known geometry, shape and size of normal and pathologic mitral annuli. Post-repair models also closely resembled shapes of the rings they were implanted with. Compared to echocardiographic images of annuli seen on a computer screen, physical models were able to convey clinical information more comprehensively, making them helpful in appreciating pathology, as well as post-repair changes. Conclusions: Three-dimensional printing of the MA is possible and clinically feasible using routinely obtained echocardiographic images. Given the short turn-around time and the lack of need for additional imaging, a technique we describe here has the potential for rapid integration into clinical practice to assist with surgical education, planning and decision-making.

  6. Near-real time 3D probabilistic earthquakes locations at Mt. Etna volcano

    Science.gov (United States)

    Barberi, G.; D'Agostino, M.; Mostaccio, A.; Patane', D.; Tuve', T.

    2012-04-01

    Automatic procedure for locating earthquake in quasi-real time must provide a good estimation of earthquakes location within a few seconds after the event is first detected and is strongly needed for seismic warning system. The reliability of an automatic location algorithm is influenced by several factors such as errors in picking seismic phases, network geometry, and velocity model uncertainties. On Mt. Etna, the seismic network is managed by INGV and the quasi-real time earthquakes locations are performed by using an automatic-picking algorithm based on short-term-average to long-term-average ratios (STA/LTA) calculated from an approximate squared envelope function of the seismogram, which furnish a list of P-wave arrival times, and the location algorithm Hypoellipse, with a 1D velocity model. The main purpose of this work is to investigate the performances of a different automatic procedure to improve the quasi-real time earthquakes locations. In fact, as the automatic data processing may be affected by outliers (wrong picks), the use of a traditional earthquake location techniques based on a least-square misfit function (L2-norm) often yield unstable and unreliable solutions. Moreover, on Mt. Etna, the 1D model is often unable to represent the complex structure of the volcano (in particular the strong lateral heterogeneities), whereas the increasing accuracy in the 3D velocity models at Mt. Etna during recent years allows their use today in routine earthquake locations. Therefore, we selected, as reference locations, all the events occurred on Mt. Etna in the last year (2011) which was automatically detected and located by means of the Hypoellipse code. By using this dataset (more than 300 events), we applied a nonlinear probabilistic earthquake location algorithm using the Equal Differential Time (EDT) likelihood function, (Font et al., 2004; Lomax, 2005) which is much more robust in the presence of outliers in the data. Successively, by using a probabilistic

  7. Developments in real-time monitoring for geologic hazard warnings (Invited)

    Science.gov (United States)

    Leith, W. S.; Mandeville, C. W.; Earle, P. S.

    2013-12-01

    Real-time data from global, national and local sensor networks enable prompt alerts and warnings of earthquakes, tsunami, volcanic eruptions, geomagnetic storms , broad-scale crustal deformation and landslides. State-of-the-art seismic systems can locate and evaluate earthquake sources in seconds, enabling 'earthquake early warnings' to be broadcast ahead of the damaging surface waves so that protective actions can be taken. Strong motion monitoring systems in buildings now support near-real-time structural damage detection systems, and in quiet times can be used for state-of-health monitoring. High-rate GPS data are being integrated with seismic strong motion data, allowing accurate determination of earthquake displacements in near-real time. GPS data, combined with rainfall, groundwater and geophone data, are now used for near-real-time landslide monitoring and warnings. Real-time sea-floor water pressure data are key for assessing tsunami generation by large earthquakes. For monitoring remote volcanoes that lack local ground-based instrumentation, the USGS uses new technologies such as infrasound arrays and the worldwide lightning detection array to detect eruptions in progress. A new real-time UV-camera system for measuring the two dimensional SO2 flux from volcanic plumes will allow correlations with other volcano monitoring data streams to yield fundamental data on changes in gas flux as an eruption precursor, and how magmas de-gas prior to and during eruptions. Precision magnetic field data support the generation of real-time indices of geomagnetic disturbances (Dst, K and others), and can be used to model electrical currents in the crust and bulk power system. Ground-induced electrical current monitors are used to track those currents so that power grids can be effectively managed during geomagnetic storms. Beyond geophysical sensor data, USGS is using social media to rapidly detect possible earthquakes and to collect firsthand accounts of the impacts of

  8. A comparison of the real-time and the imaginary-time formalisms of finite temperature field theory for 2,3, and 4-point Green's functions

    International Nuclear Information System (INIS)

    Aurenche, P.; Becherrawy, T.

    1991-07-01

    The predictions of the real-time and the imaginary-time formalisms of Finite Temperature Field Theory is compared. Retarded and advanced amplitudes are constructed in the real-time formalism which are linear combinations of the usual time-ordered thermo-field dynamics amplitudes. These amplitudes can be easily compared to the various analytically continued amplitudes of the imaginary-time formalism. Explicit calculation of the 2,3 and 4-point Green's functions in φ 3 field theory is done in the one and two-loop approximations, and the compatibility of the two formalisms is shown. (author) 17 refs., 12 figs

  9. Real-time respiration monitoring using the radiotherapy treatment beam and four-dimensional computed tomography (4DCT)-a conceptual study

    International Nuclear Information System (INIS)

    Lu Weiguo; Ruchala, Kenneth J; Chen, Ming-Li; Chen, Quan; Olivera, Gustavo H

    2006-01-01

    Real-time knowledge of intra-fraction motion, such as respiration, is essential for four-dimensional (4D) radiotherapy. Surrogate-based and internal-fiducial-based methods may suffer from one or many drawbacks such as false correlation, being invasive, delivering extra patient radiation, and requiring complicated hardware and software development and implementation. In this paper we develop a simple non-surrogate, non-invasive method to monitor respiratory motion during radiotherapy treatments in real time. This method directly utilizes the treatment beam and thus imposes no additional radiation to the patient. The method requires a pre-treatment 4DCT and a real-time detector system. The method combines off-line processes with on-line processes. The off-line processes include 4DCT imaging and pre-calculating detector signals at each phase of the 4DCT based on the planned fluence map and the detector response function. The on-line processes include measuring detector signal from the treatment beam, and correlating the measured detector signal with the pre-calculated signals. The respiration phase is determined as the position of peak correlation. We tested our method with extensive simulations based on a TomoTherapy machine and a 4DCT of a lung cancer patient. Three types of simulations were implemented to mimic the clinical situations. Each type of simulation used three different TomoTherapy delivery sinograms, each with 800 to 1000 projections, as input fluences. Three arbitrary breathing patterns were simulated and two dose levels, 2 Gy/fraction and 2 cGy/fraction, were used for simulations to study the robustness of this method against detector quantum noise. The algorithm was used to determine the breathing phases and this result was compared with the simulated breathing patterns. For the 2 Gy/fraction simulations, the respiration phases were accurately determined within one phase error in real time for most projections of the treatment, except for a few

  10. Recommendations for fetal echocardiography in twin pregnancy in 2016

    Directory of Open Access Journals (Sweden)

    Leszczyńska Katarzyna

    2016-01-01

    Full Text Available Progress in the fields of fetal cardiology and fetal surgery have been seen not only in singleton pregnancies but also in multiple pregnancies. Proper interpretation of prenatal echocardiography is critical to clinical decision making, family counseling and perinatal management for obstetricians, maternal fetal medicine specialists, neonatologists and pediatric cardiologists. Fetal echocardiography is one of the most challenging and time-consuming prenatal examinations to perform, especially in multiple gestations. Performing just the basic fetal exam in twin gestations may take an hour or more. Thus, it is not practical to perform this exam in all cases of multiple gestations. Therefore our review and recommendations are related to fetal echocardiography in twin gestation.

  11. Real-Time Control of a Video Game Using Eye Movements and Two Temporal EEG Sensors

    Directory of Open Access Journals (Sweden)

    Abdelkader Nasreddine Belkacem

    2015-01-01

    Full Text Available EEG-controlled gaming applications range widely from strictly medical to completely nonmedical applications. Games can provide not only entertainment but also strong motivation for practicing, thereby achieving better control with rehabilitation system. In this paper we present real-time control of video game with eye movements for asynchronous and noninvasive communication system using two temporal EEG sensors. We used wavelets to detect the instance of eye movement and time-series characteristics to distinguish between six classes of eye movement. A control interface was developed to test the proposed algorithm in real-time experiments with opened and closed eyes. Using visual feedback, a mean classification accuracy of 77.3% was obtained for control with six commands. And a mean classification accuracy of 80.2% was obtained using auditory feedback for control with five commands. The algorithm was then applied for controlling direction and speed of character movement in two-dimensional video game. Results showed that the proposed algorithm had an efficient response speed and timing with a bit rate of 30 bits/min, demonstrating its efficacy and robustness in real-time control.

  12. Two-dimensional echocardiographic and RI angiographic features of aneurysm of the ascending aorta in patients with annuloaortic ectasia

    International Nuclear Information System (INIS)

    Nakamura, Kenji; Suzuki, Shin; Satomi, Gengi

    1981-01-01

    The purpose of this study was to compare the diagnostic value of two-dimensional echocardiography with that of other methods in the detection and localization of aneurysm involving the ascending aorta in patients with annuloaortic ectasia. Two-dimensional echocardiography, RI angiography, CT scan and aortography were performed in 19 patients (12 patients with Marfan's syndrome, 4 with aortitis syndrome and 3 with postoperative perivalvular aneurysm). Eight of 12 patients with Marfan's syndrome had dissection in the ascending aorta which was confirmed at surgery or autopsy. The following observations were obtained. 1) Dissection of the ascending aorta was clearly demonstrated on the two-dimensional echocardiogram in 7 patients by recording the intinal tear and flap, and in these cases the short axis two-dimensional echocardiogram of the ascending aorta was more useful in identifying the site and extent of dissection. 2) In patients with postoperative perivalvular aneurysms, RI angiography proved to be a more useful and sensitive technique in differentiating a leakage into the aneurysm from clots in the aneurysm. 3) CT scanning proved to be an insensitive technique to detect dissection of the ascending aneurysm and to differentiate a leakage from clots in the perivalvular aneurysm. From these observations, we concluded that two-dimensional echocardiography and RI angiography proved to be sensitive techniques in detecting dissection of the ascending aneurysm and evaluating a postoperative aneurysm in patients with annuloaortic ectasia. (author)

  13. Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy.

    Science.gov (United States)

    Shibata, Mikihiro; Nishimasu, Hiroshi; Kodera, Noriyuki; Hirano, Seiichi; Ando, Toshio; Uchihashi, Takayuki; Nureki, Osamu

    2017-11-10

    The CRISPR-associated endonuclease Cas9 binds to a guide RNA and cleaves double-stranded DNA with a sequence complementary to the RNA guide. The Cas9-RNA system has been harnessed for numerous applications, such as genome editing. Here we use high-speed atomic force microscopy (HS-AFM) to visualize the real-space and real-time dynamics of CRISPR-Cas9 in action. HS-AFM movies indicate that, whereas apo-Cas9 adopts unexpected flexible conformations, Cas9-RNA forms a stable bilobed structure and interrogates target sites on the DNA by three-dimensional diffusion. These movies also provide real-time visualization of the Cas9-mediated DNA cleavage process. Notably, the Cas9 HNH nuclease domain fluctuates upon DNA binding, and subsequently adopts an active conformation, where the HNH active site is docked at the cleavage site in the target DNA. Collectively, our HS-AFM data extend our understanding of the action mechanism of CRISPR-Cas9.

  14. Real-Time Hand Position Sensing Technology Based on Human Body Electrostatics

    Directory of Open Access Journals (Sweden)

    Kai Tang

    2018-05-01

    Full Text Available Non-contact human-computer interactions (HCI based on hand gestures have been widely investigated. Here, we present a novel method to locate the real-time position of the hand using the electrostatics of the human body. This method has many advantages, including a delay of less than one millisecond, low cost, and does not require a camera or wearable devices. A formula is first created to sense array signals with five spherical electrodes. Next, a solving algorithm for the real-time measured hand position is introduced and solving equations for three-dimensional coordinates of hand position are obtained. A non-contact real-time hand position sensing system was established to perform verification experiments, and the principle error of the algorithm and the systematic noise were also analyzed. The results show that this novel technology can determine the dynamic parameters of hand movements with good robustness to meet the requirements of complicated HCI.

  15. Observations on Real-Time Prostate Gland Motion Using Electromagnetic Tracking

    International Nuclear Information System (INIS)

    Langen, Katja M.; Willoughby, Twyla R.; Meeks, Sanford L.; Santhanam, Anand; Cunningham, Alexis; Levine, Lisa; Kupelian, Patrick A.

    2008-01-01

    Purpose: To quantify and describe the real-time movement of the prostate gland in a large data set of patients treated with radiotherapy. Methods and Materials: The Calypso four-dimensional localization system was used for target localization in 17 patients, with electromagnetic markers implanted in the prostate of each patient. We analyzed a total of 550 continuous tracking sessions. The fraction of time that the prostate was displaced by >3, >5, >7, and >10 mm was calculated for each session and patient. The frequencies of displacements after initial patient positioning were analyzed over time. Results: Averaged over all patients, the prostate was displaced >3 and >5 mm for 13.6% and 3.3% of the total treatment time, respectively. For individual patients, the corresponding maximal values were 36.2% and 10.9%. For individual fractions, the corresponding maximal values were 98.7% and 98.6%. Displacements >3 mm were observed at 5 min after initial alignment in about one-eighth of the observations, and increased to one-quarter by 10 min. For individual patients, the maximal value of the displacements >3 mm at 5 and 10 min after initial positioning was 43% and 75%, respectively. Conclusion: On average, the prostate was displaced by >3 mm and >5 mm approximately 14% and 3% of the time, respectively. For individual patients, these values were up to three times greater. After the initial positioning, the likelihood of displacement of the prostate gland increased with elapsed time. This highlights the importance of initiating treatment shortly after initially positioning the patient

  16. Memory controllers for real-time embedded systems predictable and composable real-time systems

    CERN Document Server

    Akesson, Benny

    2012-01-01

      Verification of real-time requirements in systems-on-chip becomes more complex as more applications are integrated. Predictable and composable systems can manage the increasing complexity using formal verification and simulation.  This book explains the concepts of predictability and composability and shows how to apply them to the design and analysis of a memory controller, which is a key component in any real-time system. This book is generally intended for readers interested in Systems-on-Chips with real-time applications.   It is especially well-suited for readers looking to use SDRAM memories in systems with hard or firm real-time requirements. There is a strong focus on real-time concepts, such as predictability and composability, as well as a brief discussion about memory controller architectures for high-performance computing. Readers will learn step-by-step how to go from an unpredictable SDRAM memory, offering highly variable bandwidth and latency, to a predictable and composable shared memory...

  17. A multi-frequency electrical impedance tomography system for real-time 2D and 3D imaging

    Science.gov (United States)

    Yang, Yunjie; Jia, Jiabin

    2017-08-01

    This paper presents the design and evaluation of a configurable, fast multi-frequency Electrical Impedance Tomography (mfEIT) system for real-time 2D and 3D imaging, particularly for biomedical imaging. The system integrates 32 electrode interfaces and the current frequency ranges from 10 kHz to 1 MHz. The system incorporates the following novel features. First, a fully adjustable multi-frequency current source with current monitoring function is designed. Second, a flexible switching scheme is developed for arbitrary sensing configuration and a semi-parallel data acquisition architecture is implemented for high-frame-rate data acquisition. Furthermore, multi-frequency digital quadrature demodulation is accomplished in a high-capacity Field Programmable Gate Array. At last, a 3D imaging software, visual tomography, is developed for real-time 2D and 3D image reconstruction, data analysis, and visualization. The mfEIT system is systematically tested and evaluated from the aspects of signal to noise ratio (SNR), frame rate, and 2D and 3D multi-frequency phantom imaging. The highest SNR is 82.82 dB on a 16-electrode sensor. The frame rate is up to 546 fps at serial mode and 1014 fps at semi-parallel mode. The evaluation results indicate that the presented mfEIT system is a powerful tool for real-time 2D and 3D imaging.

  18. Toward real-time virtual biopsy of oral lesions using confocal laser endomicroscopy interfaced with embedded computing.

    Science.gov (United States)

    Thong, Patricia S P; Tandjung, Stephanus S; Movania, Muhammad Mobeen; Chiew, Wei-Ming; Olivo, Malini; Bhuvaneswari, Ramaswamy; Seah, Hock-Soon; Lin, Feng; Qian, Kemao; Soo, Khee-Chee

    2012-05-01

    Oral lesions are conventionally diagnosed using white light endoscopy and histopathology. This can pose a challenge because the lesions may be difficult to visualise under white light illumination. Confocal laser endomicroscopy can be used for confocal fluorescence imaging of surface and subsurface cellular and tissue structures. To move toward real-time "virtual" biopsy of oral lesions, we interfaced an embedded computing system to a confocal laser endomicroscope to achieve a prototype three-dimensional (3-D) fluorescence imaging system. A field-programmable gated array computing platform was programmed to enable synchronization of cross-sectional image grabbing and Z-depth scanning, automate the acquisition of confocal image stacks and perform volume rendering. Fluorescence imaging of the human and murine oral cavities was carried out using the fluorescent dyes fluorescein sodium and hypericin. Volume rendering of cellular and tissue structures from the oral cavity demonstrate the potential of the system for 3-D fluorescence visualization of the oral cavity in real-time. We aim toward achieving a real-time virtual biopsy technique that can complement current diagnostic techniques and aid in targeted biopsy for better clinical outcomes.

  19. A Prototype PZT Matrix Transducer With Low-Power Integrated Receive ASIC for 3-D Transesophageal Echocardiography.

    Science.gov (United States)

    Chen, Chao; Raghunathan, Shreyas B; Yu, Zili; Shabanimotlagh, Maysam; Chen, Zhao; Chang, Zu-yao; Blaak, Sandra; Prins, Christian; Ponte, Jacco; Noothout, Emile; Vos, Hendrik J; Bosch, Johan G; Verweij, Martin D; de Jong, Nico; Pertijs, Michiel A P

    2016-01-01

    This paper presents the design, fabrication, and experimental evaluation of a prototype lead zirconium titanate (PZT) matrix transducer with an integrated receive ASIC, as a proof of concept for a miniature three-dimensional (3-D) transesophageal echocardiography (TEE) probe. It consists of an array of 9 ×12 piezoelectric elements mounted on the ASIC via an integration scheme that involves direct electrical connections between a bond-pad array on the ASIC and the transducer elements. The ASIC addresses the critical challenge of reducing cable count, and includes front-end amplifiers with adjustable gains and micro-beamformer circuits that locally process and combine echo signals received by the elements of each 3 ×3 subarray. Thus, an order-of-magnitude reduction in the number of receive channels is achieved. Dedicated circuit techniques are employed to meet the strict space and power constraints of TEE probes. The ASIC has been fabricated in a standard 0.18-μm CMOS process and consumes only 0.44 mW/channel. The prototype has been acoustically characterized in a water tank. The ASIC allows the array to be presteered across ±37° while achieving an overall dynamic range of 77 dB. Both the measured characteristics of the individual transducer elements and the performance of the ASIC are in good agreement with expectations, demonstrating the effectiveness of the proposed techniques.

  20. Left atrial volume assessment in atrial fibrillation using multimodality imaging: a comparison of echocardiography, invasive three-dimensional CARTO and cardiac magnetic resonance imaging.

    Science.gov (United States)

    Rabbat, Mark G; Wilber, David; Thomas, Kevin; Malick, Owais; Bashir, Atif; Agrawal, Anoop; Biswas, Santanu; Sanagala, Thriveni; Syed, Mushabbar A

    2015-06-01

    Left atrial size in atrial fibrillation is a strong predictor of successful ablation and cardiovascular events. Cardiac magnetic resonance multislice method (CMR-MSM) is the current gold standard for left atrial volume (LAV) assessment but is time consuming. We investigated whether LAV with more rapid area-length method by echocardiography (Echo-AL) or cardiac magnetic resonance (CMR-AL) and invasive measurement by 3D-CARTO mapping during ablation correlate with the CMR-MSM. We studied 250 consecutive patients prior to atrial fibrillation ablation. CMR images were acquired on 3T scanner to measure LAV by MSM and biplane area-length method. Standard echocardiography views were used to calculate LAV by biplane area-length method. LAV during ablation was measured by 3D-CARTO mapping. LAV was compared using intra-class correlation (ICC), Pearson's correlation and Bland-Altman plots. CMR-MSM was used as the reference standard. Mean LAV using CMR-MSM was 112.7 ± 36.7 ml. CMR-AL method overestimated LAV by 13.3 ± 21.8 ml (11.2%, p atrial fibrillation. CMR-AL and 3D-CARTO correlated and agreed well with CMR-MSM (r = 0.87 and 0.74, ICC = 0.80 and 0.77 respectively). However, Echo-AL had poor correlation and agreement with CMR-MSM (r = 0.66 and ICC = 0.48). Bland-Altman plots confirmed these findings. CMR-AL method may be used as an alternative to CMR-MSM, as it is non-invasive, rapid, and correlates well with CMR-MSM. LAV by different modalities should not be used interchangeably.

  1. Recent achievements in real-time computational seismology in Taiwan

    Science.gov (United States)

    Lee, S.; Liang, W.; Huang, B.

    2012-12-01

    Real-time computational seismology is currently possible to be achieved which needs highly connection between seismic database and high performance computing. We have developed a real-time moment tensor monitoring system (RMT) by using continuous BATS records and moment tensor inversion (CMT) technique. The real-time online earthquake simulation service is also ready to open for researchers and public earthquake science education (ROS). Combine RMT with ROS, the earthquake report based on computational seismology can provide within 5 minutes after an earthquake occurred (RMT obtains point source information ROS completes a 3D simulation real-time now. For more information, welcome to visit real-time computational seismology earthquake report webpage (RCS).

  2. Scene data fusion: Real-time standoff volumetric gamma-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barnowski, Ross [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720, United States of America (United States); Haefner, Andrew; Mihailescu, Lucian [Lawrence Berkeley National Lab - Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720, United States of America (United States); Vetter, Kai [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720, United States of America (United States); Lawrence Berkeley National Lab - Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720, United States of America (United States)

    2015-11-11

    An approach to gamma-ray imaging has been developed that enables near real-time volumetric (3D) imaging of unknown environments thus improving the utility of gamma-ray imaging for source-search and radiation mapping applications. The approach, herein dubbed scene data fusion (SDF), is based on integrating mobile radiation imagers with real-time tracking and scene reconstruction algorithms to enable a mobile mode of operation and 3D localization of gamma-ray sources. A 3D model of the scene, provided in real-time by a simultaneous localization and mapping (SLAM) algorithm, is incorporated into the image reconstruction reducing the reconstruction time and improving imaging performance. The SDF concept is demonstrated in this work with a Microsoft Kinect RGB-D sensor, a real-time SLAM solver, and a cart-based Compton imaging platform comprised of two 3D position-sensitive high purity germanium (HPGe) detectors. An iterative algorithm based on Compton kinematics is used to reconstruct the gamma-ray source distribution in all three spatial dimensions. SDF advances the real-world applicability of gamma-ray imaging for many search, mapping, and verification scenarios by improving the tractiblity of the gamma-ray image reconstruction and providing context for the 3D localization of gamma-ray sources within the environment in real-time.

  3. Guideline from Japanese Society of Echocardiography: 2018 focused update incorporated into Guidance for the Management and Maintenance of Echocardiography Equipment.

    Science.gov (United States)

    Daimon, Masao; Akaishi, Makoto; Asanuma, Toshihiko; Hashimoto, Shuji; Izumi, Chisato; Iwanaga, Shiro; Kawai, Hiroya; Toide, Hiroyuki; Hayashida, Akihiro; Yamada, Hirotsugu; Murata, Mitsushige; Hirano, Yutaka; Suzuki, Kengo; Nakatani, Satoshi

    2018-03-01

    Echocardiography plays a pivotal role as an imaging modality in the modern cardiology practice. Information derived from echocardiography is definitely helpful for a patient care. The Japanese Society of Echocardiography has promoted echocardiography for a routine clinical and research use. One of the missions of the Society is to provide information that is useful for high-quality examinations. To ensure it, we believe equipment in good conditions and a comfortable environment are important for both a patient and an examiner. Thus, the Committee for Guideline Writing, the Japanese Society of Echocardiography published brief guidance for the routine use of echocardiography equipment in 2015. Recently, the importance of international standardization has been emphasized in the medical laboratories. Accordingly, the committee has revised and updated our guidance for the routine use of echocardiography equipment.

  4. Real time evolution at finite temperatures with operator space matrix product states

    International Nuclear Information System (INIS)

    Pižorn, Iztok; Troyer, Matthias; Eisler, Viktor; Andergassen, Sabine

    2014-01-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model. (paper)

  5. Real time evolution at finite temperatures with operator space matrix product states

    Science.gov (United States)

    Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias

    2014-07-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.

  6. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments

    International Nuclear Information System (INIS)

    Szoke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-01-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation’s lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers. IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry. This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors. (paper)

  7. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.

    Science.gov (United States)

    Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-06-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors.

  8. Dynamic Three-Dimensional Geometry of the Aortic Valve Apparatus-A Feasibility Study

    NARCIS (Netherlands)

    Khamooshian, Arash; Amador, Yannis; Hai, Ting; Jeganathan, Jelliffe; Saraf, Maria; Mahmood, Eitezaz; Matyal, Robina; Khabbaz, Kamal R.; Mariani, Massimo; Mahmood, Feroze

    OBJECTIVE: To provide (1) an overview of the aortic valve (AV) apparatus anatomy and nomenclature, and (2) data regarding the normal AV apparatus geometry and dynamism during the cardiac cycle obtained from three-dimensional transesophageal echocardiography (3D TEE). DESIGN: Retrospective

  9. Detection of congenital heart disease by fetal echocardiography

    International Nuclear Information System (INIS)

    Fayyaz, A.; Majeed, S.M.I.

    2013-01-01

    Objective: The objective of the study was to determine the sensitivity, specificity, accuracy and predictive value of fetal echocardiography in our set up using postnatal echocardiography as gold standard. Study Design: Validation study. Place and Duration of study: This is an ongoing study in the Radiology department of CMH Rawalpindi and Armed Forces Institute of Cardiology (AFIC) Rawalpindi and the data collected from January 2007 to Jan 2012 is presented. Patients and Methods: Two hundred eighty seven patients reported for fetal echocardiography. Two hundred twenty nine patients were subsequently included in the study. These included patients of all ages who reported to the Radiology department of CMH Rawalpindi for fetal echocardiography. Fetal echo was done on Toshiba Aplio with 3.5 MHz probe having Doppler facility. Post natal evaluation was done by a pediatric cardiologist. Results: There were 207 (90.4%) true negative cases, 15 (6.6%) true positive, 2 (0.9%) false positive and 6 (2.2%) false negative cases. The sensitivity, specificity, positive and negative predictive values were 75%, 99%, 88%, 97% respectively. Conclusion: Fetal echocardiography has high specificity, negative predictive values and accuracy and cases diagnosed as normal can reassure the parents about the normal cardiac status of the fetus. (author)

  10. Real-time generation of the Wigner distribution of complex functions using phase conjugation in photorefractive materials.

    Science.gov (United States)

    Sun, P C; Fainman, Y

    1990-09-01

    An optical processor for real-time generation of the Wigner distribution of complex amplitude functions is introduced. The phase conjugation of the input signal is accomplished by a highly efficient self-pumped phase conjugator based on a 45 degrees -cut barium titanate photorefractive crystal. Experimental results on the real-time generation of Wigner distribution slices for complex amplitude two-dimensional optical functions are presented and discussed.

  11. Intraoperative echocardiography of a dislodged Björk-Shiley mitral valve disc.

    Science.gov (United States)

    Tanaka, M; Abe, T; Takeuchi, E; Watanabe, T; Tamaki, S

    1991-02-01

    The successful management of a patient who suffered an outlet strut fracture of a Björk-Shiley 60-degree convexo-concave mitral valve prosthesis is reported. Emergency operation was life-saving. Preoperative echocardiography assisted in making a prompt diagnosis, and intraoperative echocardiography allowed the detection and removal of the dislodged disc from the left ventricle at the time of the operation. The role of intraoperative echocardiography in the diagnosis of prosthetic strut fracture is emphasized.

  12. Six-dimensional real and reciprocal space small-angle X-ray scattering tomography.

    Science.gov (United States)

    Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz

    2015-11-19

    When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.

  13. Fusion of three-dimensional X-ray angiography and three-dimensional echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Rasche, Volker [University of Ulm, Department of Internal Medicine II, Ulm (Germany); Philips Medical Systems, Bothell, WA (United States); Mansour, Moussa; Reddy, Vivek; Singh, Jagmeet P.; Ruskin, Jeremy [Massachusetts General Hospital, Harvard Medical School, Cardiac Arrhythmia Service, Boston, MA (United States); Qureshi, Answer [Massachusetts General Hospital, Harvard Medical School, Echocardiography, Boston, MA (United States); Manzke, Robert; Sokka, Sham [Philips Research North America, Clinical Sites Research, Briacliff Manor, NY (United States)

    2008-03-15

    Cardiovascular intervention guidance requires knowledge of heart function relative to its blood supply or venous drainage. Functional and vascular anatomic data are usually generated on different imaging systems, so fusion of the data is necessary to simultaneously visualize the results for intervention planning and guidance. The objective of this work is to establish the feasibility of fusing volumetric ultrasound (U/S) data with three-dimensional (3D) X-ray imaging data for visualization of cardiac morphology, function and coronary venous drainage. Temporally resolved U/S volume data was registered with the 3D reconstruction of vascular structures derived from X-ray modeling and reconstruction. U/S image registration was obtained by optical tracking fiducial markers with simultaneous X-ray imaging. The proposed technique was applied to phantom data for accuracy assessment of the registration process and to biventricular pacemaker implantation as clinical example. Fusion of U/S data with 3D X-ray reconstruction data produced an RMS registration error below 2 mm. Preliminary clinical feasibility of U/S-derived data synchronously with X-ray derived 3D coronary venography was established. This technique can be applied for fusion of functional U/S data with 3D anatomic X-ray data of the coronary veins during a biventricular pacemaker implantation procedures. (orig.)

  14. Fusion of three-dimensional X-ray angiography and three-dimensional echocardiography

    International Nuclear Information System (INIS)

    Rasche, Volker; Mansour, Moussa; Reddy, Vivek; Singh, Jagmeet P.; Ruskin, Jeremy; Qureshi, Answer; Manzke, Robert; Sokka, Sham

    2008-01-01

    Cardiovascular intervention guidance requires knowledge of heart function relative to its blood supply or venous drainage. Functional and vascular anatomic data are usually generated on different imaging systems, so fusion of the data is necessary to simultaneously visualize the results for intervention planning and guidance. The objective of this work is to establish the feasibility of fusing volumetric ultrasound (U/S) data with three-dimensional (3D) X-ray imaging data for visualization of cardiac morphology, function and coronary venous drainage. Temporally resolved U/S volume data was registered with the 3D reconstruction of vascular structures derived from X-ray modeling and reconstruction. U/S image registration was obtained by optical tracking fiducial markers with simultaneous X-ray imaging. The proposed technique was applied to phantom data for accuracy assessment of the registration process and to biventricular pacemaker implantation as clinical example. Fusion of U/S data with 3D X-ray reconstruction data produced an RMS registration error below 2 mm. Preliminary clinical feasibility of U/S-derived data synchronously with X-ray derived 3D coronary venography was established. This technique can be applied for fusion of functional U/S data with 3D anatomic X-ray data of the coronary veins during a biventricular pacemaker implantation procedures. (orig.)

  15. Essays in real-time forecasting

    OpenAIRE

    Liebermann, Joelle

    2012-01-01

    This thesis contains three essays in the field of real-time econometrics, and more particularlyforecasting.The issue of using data as available in real-time to forecasters, policymakers or financialmarkets is an important one which has only recently been taken on board in the empiricalliterature. Data available and used in real-time are preliminary and differ from ex-postrevised data, and given that data revisions may be quite substantial, the use of latestavailable instead of real-time can s...

  16. Real-time face and gesture analysis for human-robot interaction

    Science.gov (United States)

    Wallhoff, Frank; Rehrl, Tobias; Mayer, Christoph; Radig, Bernd

    2010-05-01

    Human communication relies on a large number of different communication mechanisms like spoken language, facial expressions, or gestures. Facial expressions and gestures are one of the main nonverbal communication mechanisms and pass large amounts of information between human dialog partners. Therefore, to allow for intuitive human-machine interaction, a real-time capable processing and recognition of facial expressions, hand and head gestures are of great importance. We present a system that is tackling these challenges. The input features for the dynamic head gestures and facial expressions are obtained from a sophisticated three-dimensional model, which is fitted to the user in a real-time capable manner. Applying this model different kinds of information are extracted from the image data and afterwards handed over to a real-time capable data-transferring framework, the so-called Real-Time DataBase (RTDB). In addition to the head and facial-related features, also low-level image features regarding the human hand - optical flow, Hu-moments are stored into the RTDB for the evaluation process of hand gestures. In general, the input of a single camera is sufficient for the parallel evaluation of the different gestures and facial expressions. The real-time capable recognition of the dynamic hand and head gestures are performed via different Hidden Markov Models, which have proven to be a quick and real-time capable classification method. On the other hand, for the facial expressions classical decision trees or more sophisticated support vector machines are used for the classification process. These obtained results of the classification processes are again handed over to the RTDB, where other processes (like a Dialog Management Unit) can easily access them without any blocking effects. In addition, an adjustable amount of history can be stored by the RTDB buffer unit.

  17. Prediction of Tubal Ectopic Pregnancy Using Offline Analysis of 3-Dimensional Transvaginal Ultrasonographic Data Sets: An Interobserver and Diagnostic Accuracy Study.

    Science.gov (United States)

    Infante, Fernando; Espada Vaquero, Mercedes; Bignardi, Tommaso; Lu, Chuan; Testa, Antonia C; Fauchon, David; Epstein, Elisabeth; Leone, Francesco P G; Van den Bosch, Thierry; Martins, Wellington P; Condous, George

    2017-12-08

    To assess interobserver reproducibility in detecting tubal ectopic pregnancies by reading data sets from 3-dimensional (3D) transvaginal ultrasonography (TVUS) and comparing it with real-time 2-dimensional (2D) TVUS. Images were initially classified as showing pregnancies of unknown location or tubal ectopic pregnancies on real time 2D TVUS by an experienced sonologist, who acquired 5 3D volumes. Data sets were analyzed offline by 5 observers who had to classify each case as ectopic pregnancy or pregnancy of unknown location. The interobserver reproducibility was evaluated by the Fleiss κ statistic. The performance of each observer in predicting ectopic pregnancies was compared to that of the experienced sonologist. Women were followed until they were reclassified as follows: (1) failed pregnancy of unknown location; (2) intrauterine pregnancy; (3) ectopic pregnancy; or (4) persistent pregnancy of unknown location. Sixty-one women were included. The agreement between reading offline 3D data sets and the first real-time 2D TVUS was very good (80%-82%; κ = 0.89). The overall interobserver agreement among observers reading offline 3D data sets was moderate (κ = 0.52). The diagnostic performance of experienced observers reading offline 3D data sets had accuracy of 78.3% to 85.0%, sensitivity of 66.7% to 81.3%, specificity of 79.5% to 88.4%, positive predictive value of 57.1% to 72.2%, and negative predictive value of 87.5% to 91.3%, compared to the experienced sonologist's real-time 2D TVUS: accuracy of 94.5%, sensitivity of 94.4%, specificity of 94.5%, positive predictive value of 85.0%, and negative predictive value of 98.1%. The diagnostic accuracy of 3D TVUS by reading offline data sets for predicting ectopic pregnancies is dependent on experience. Reading only static 3D data sets without clinical information does not match the diagnostic performance of real time 2D TVUS combined with clinical information obtained during the scan. © 2017 by the American

  18. Improved real-time dosimetry using the radioluminescence signal from Al2O3:C

    International Nuclear Information System (INIS)

    Damkjaer, S.M.S.; Andersen, C.E.; Aznar, M.C.

    2008-01-01

    Carbon-doped aluminum oxide (Al 2 O 3 :C) is a highly sensitive luminescence material for ionizing radiation dosimetry, and it is well established that the optically stimulated luminescence (OSL) signal from Al 2 O 3 :C can be used for absorbed-dose measurements. During irradiation, Al 2 O 3 :C also emits prompt radioluminescence (RL) which allows for real-time dose verification. The RL-signal is not linear in the absorbed dose due to sensitivity changes and the presence of shallow traps. Despite this the signal can be processed to obtain a reliable dose rate signal in real time. Previously a simple algorithm for correcting the RL-signal has been published and here we report two improvements: a better and more stable calibration method which is independent of a reference dose rate and a correction for the effect of the shallow traps. Good agreement was found between reference doses and doses derived from the RL-signal using the new algorithm (the standard deviation of the residuals were ∼2% including phantom positioning errors). The RL-algorithm was found to greatly reduce the influence of shallow traps in the range from 0 to 3 Gy and the RL dose-rate measurements with a time resolution of 0.1 s closely matched dose-rate changes monitored with an ionization chamber

  19. Network Dynamics with BrainX3: A Large-Scale Simulation of the Human Brain Network with Real-Time Interaction

    OpenAIRE

    Xerxes D. Arsiwalla; Riccardo eZucca; Alberto eBetella; Enrique eMartinez; David eDalmazzo; Pedro eOmedas; Gustavo eDeco; Gustavo eDeco; Paul F.M.J. Verschure; Paul F.M.J. Verschure

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  20. Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction

    OpenAIRE

    Arsiwalla, Xerxes D.; Zucca, Riccardo; Betella, Alberto; Martínez, Enrique, 1961-; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F. M. J.

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  1. Mechanisms of valve competency after mitral valve annuloplasty for ischaemic mitral regurgitation using the Geoform ring: insights from three-dimensional echocardiography.

    Science.gov (United States)

    Armen, Todd A; Vandse, Rashmi; Crestanello, Juan A; Raman, Subha V; Bickle, Katherine M; Nathan, Nadia S

    2009-01-01

    Left ventricular remodelling leads to functional mitral regurgitation resulting from annular dilatation, leaflet tethering, tenting, and decreased leaflet coaptation. Mitral valve annuloplasty restores valve competency, improving the patient's functional status and ventricular function. This study was designed to evaluate the mechanisms underlying mitral valve competency after the implantation of a Geoform annuloplasty ring using three-dimensional (3D) echocardiography. Seven patients (mean age of 65 years) with ischaemic mitral regurgitation underwent mitral valve annuloplasty with the Geoform ring and coronary artery bypass surgery. Pre- and post-operative 3D echocardiograms were performed. Following mitral annuloplasty, mitral regurgitation decreased from 3.4+/-0.2 to 0.9+/-0.3 (P-value<0.0001), mitral valve tenting volume from 13+/-1.7 to 3.2+/-0.3 mL (P-value<0.001), annulus area from 12.6+/-1.0 to 3.3+/-0.2 cm2 (P-value<0.0001), valve circumference from 13+/-0.5 to 7.3+/-0.3 cm (P-value<0.0001), septolateral distance from 2.1+/-0.1 to 1.4+/-0.06 cm (P-value<0.01) and intercommissural distance from 3.4+/-0.1 to 2.7+/-0.03 cm (P-value<0.03). There was significant decrease in the septolateral distance at the level of A2-P2 with respect to other regions. These geometric changes were associated with the improvement in the NYHA class from 3.1+/-0.3 to 1.3+/-0.3 (P-value<0.002). The mitral valve annuloplasty with the Geoform ring restores leaflet coaptation and eliminates mitral regurgitation by effectively modifying the mitral annular geometry.

  2. Development of three-dimensional computed tomography system using TNRF2 of JRR-3M

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Yutaka; Mochiki, Koh-ichi [Musashi Inst. of Tech., Tokyo (Japan); Matsubayashi, Masahito

    1998-01-01

    A three-dimensional filtering engine, a convolution engine, and a back projection engine were developed for real-time signal processing of three-dimensional computed tomography. The performance of the system was measured and through-put of 0.5 second per one cross sectional data processing was attained. (author)

  3. Real-time inextensible surgical thread simulation.

    Science.gov (United States)

    Xu, Lang; Liu, Qian

    2018-03-27

    This paper discusses a real-time simulation method of inextensible surgical thread based on the Cosserat rod theory using position-based dynamics (PBD). The method realizes stable twining and knotting of surgical thread while including inextensibility, bending, twisting and coupling effects. The Cosserat rod theory is used to model the nonlinear elastic behavior of surgical thread. The surgical thread model is solved with PBD to achieve a real-time, extremely stable simulation. Due to the one-dimensional linear structure of surgical thread, the direct solution of the distance constraint based on tridiagonal matrix algorithm is used to enhance stretching resistance in every constraint projection iteration. In addition, continuous collision detection and collision response guarantee a large time step and high performance. Furthermore, friction is integrated into the constraint projection process to stabilize the twining of multiple threads and complex contact situations. Through comparisons with existing methods, the surgical thread maintains constant length under large deformation after applying the direct distance constraint in our method. The twining and knotting of multiple threads correspond to stable solutions to contact and friction forces. A surgical suture scene is also modeled to demonstrate the practicality and simplicity of our method. Our method achieves stable and fast simulation of inextensible surgical thread. Benefiting from the unified particle framework, the rigid body, elastic rod, and soft body can be simultaneously simulated. The method is appropriate for applications in virtual surgery that require multiple dynamic bodies.

  4. Multi-particle three-dimensional coordinate estimation in real-time optical manipulation

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Perch-Nielsen, Ivan R.; Palima, Darwin

    2009-01-01

    We have previously shown how stereoscopic images can be obtained in our three-dimensional optical micromanipulation system [J. S. Dam et al, Opt. Express 16, 7244 (2008)]. Here, we present an extension and application of this principle to automatically gather the three-dimensional coordinates for...

  5. Front-end receiver electronics for a matrix transducer for 3-D transesophageal echocardiography.

    Science.gov (United States)

    Yu, Zili; Blaak, Sandra; Chang, Zu-yao; Yao, Jiajian; Bosch, Johan G; Prins, Christian; Lancée, Charles T; de Jong, Nico; Pertijs, Michiel A P; Meijer, Gerard C M

    2012-07-01

    There is a clear clinical need for creating 3-D images of the heart. One promising technique is the use of transesophageal echocardiography (TEE). To enable 3-D TEE, we are developing a miniature ultrasound probe containing a matrix piezoelectric transducer with more than 2000 elements. Because a gastroscopic tube cannot accommodate the cables needed to connect all transducer elements directly to an imaging system, a major challenge is to locally reduce the number of channels, while maintaining a sufficient signal-to-noise ratio. This can be achieved by using front-end receiver electronics bonded to the transducers to provide appropriate signal conditioning in the tip of the probe. This paper presents the design of such electronics, realizing time-gain compensation (TGC) and micro-beamforming using simple, low-power circuits. Prototypes of TGC amplifiers and micro-beamforming cells have been fabricated in 0.35-μm CMOS technology. These prototype chips have been combined on a printed circuit board (PCB) to form an ultrasound-receiver system capable of reading and combining the signals of three transducer elements. Experimental results show that this design is a suitable candidate for 3-D TEE.

  6. A Comparison of Iterative 2D-3D Pose Estimation Methods for Real-Time Applications

    DEFF Research Database (Denmark)

    Grest, Daniel; Krüger, Volker; Petersen, Thomas

    2009-01-01

    This work compares iterative 2D-3D Pose Estimation methods for use in real-time applications. The compared methods are available for public as C++ code. One method is part of the openCV library, namely POSIT. Because POSIT is not applicable for planar 3Dpoint congurations, we include the planar P...

  7. Ovation Prime Real-Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ovation Prime Real-Time (OPRT) product is a real-time forecast and nowcast model of auroral power and is an operational implementation of the work by Newell et...

  8. Simulation model for transcervical laryngeal injection providing real-time feedback.

    Science.gov (United States)

    Ainsworth, Tiffiny A; Kobler, James B; Loan, Gregory J; Burns, James A

    2014-12-01

    This study aimed to develop and evaluate a model for teaching transcervical laryngeal injections. A 3-dimensional printer was used to create a laryngotracheal framework based on de-identified computed tomography images of a human larynx. The arytenoid cartilages and intrinsic laryngeal musculature were created in silicone from clay casts and thermoplastic molds. The thyroarytenoid (TA) muscle was created with electrically conductive silicone using metallic filaments embedded in silicone. Wires connected TA muscles to an electrical circuit incorporating a cell phone and speaker. A needle electrode completed the circuit when inserted in the TA during simulated injection, providing real-time feedback of successful needle placement by producing an audible sound. Face validation by the senior author confirmed appropriate tactile feedback and anatomical realism. Otolaryngologists pilot tested the model and completed presimulation and postsimulation questionnaires. The high-fidelity simulation model provided tactile and audio feedback during needle placement, simulating transcervical vocal fold injections. Otolaryngology residents demonstrated higher comfort levels with transcervical thyroarytenoid injection on postsimulation questionnaires. This is the first study to describe a simulator for developing transcervical vocal fold injection skills. The model provides real-time tactile and auditory feedback that aids in skill acquisition. Otolaryngologists reported increased confidence with transcervical injection after using the simulator. © The Author(s) 2014.

  9. On the Feasibility of Real-Time 3D Hand Tracking using Edge GPGPU Acceleration

    DEFF Research Database (Denmark)

    Qammaz, A.; Kosta, S.; Kyriazis, N.

    2018-01-01

    This paper presents the case study of a non-intrusive porting of a monolithic C++ library for real-time 3D hand tracking, to the domain of edge-based computation. Towards a proof of concept, the case study considers a pair of workstations, a computationally powerful and a computationally weak one...

  10. Comparative study between MRI and echocardiography in noncompaction of ventricular myocardium

    International Nuclear Information System (INIS)

    Sun Ziyan; Xia Liming; Wang Chengyuan; Rao Jingjing; Shenyu Weihui

    2007-01-01

    Objective: To investigate the MRI and echocardiography manifestations of noncompaction of ventricular myocardium(NVM) and assess the role of MR1 in the diagnosis of NVM by comparing it with echocardiography. Methods: Fourteen cases of NVM diagnosed by echocardiography were examined with MRI, including scanning of black-blood sequences, double inversion recovery fast spin echo (DIBFSE) and triple inversion recovery fast spin echo (TIRFSE), and white blood sequence: fast imaging employ steady state acquisition (FIESTA). Scanning plane includes short axis view, four-chamber view and long axis view. Results: Both MRI and echocardiography displayed involvement of left ventricles in thirteen cases and involvement of double ventricles in one case. Apexes of heart and the intermedius are commonly affected. MRI showed 54 segments and echocardiography showed 53 segments affected, and there is no significant difference between the capability of MRI and echocardiography (P=1,000). The affected myocardium consisted of two layers: subendocardial noncompacted myocardium and epicardial compacted myocardium, and the ratio measurement of N/C by MRI was 3.37±0.89 and it was 3.19±0.82 by echocardiography. Noncompacted myocardium was characterized by prominent and excessive myocardial trabeculations and deep intratrabecular recesses, in which the blood flow was communicated with the ventricle. One case was complicated with ventricular aneurysm, and coronary arteriography was performed with unremarkable findings. One case underwent heart transplantation because of progressive heart failure, Gross findings demonstrated prominent muscular' trabeculations with deep intratrabecular recesses, which coincided well with MRI findings. Conclusion: The MRI manifestation of NVM is characteristic, and MRI with multiple series and planes is helpful in the diagnose of NVM. Compared with echocardiography, MRI could display the pathological cardiac muscle more clearly, because of its high soft

  11. Real-time deep-tissue thermal sensing with sub-degree resolution by thermally improved Nd{sup 3+}:LaF{sub 3} multifunctional nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Uéslen, E-mail: ueslen.silva@fis.ufal.br [Fluorescence Imaging Group, Departamento de Física de Materiales C-04, Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid (Spain); Jacinto, Carlos; Kumar, Kagola Upendra [Grupo de Fotônica e Fluidos Complexos, Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas (Brazil); López, Fernando J.; Bravo, David; Solé, José García [Fluorescence Imaging Group, Departamento de Física de Materiales C-04, Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid (Spain); Jaque, Daniel, E-mail: daniel.jaque@uam.es [Fluorescence Imaging Group, Departamento de Física de Materiales C-04, Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid (Spain); Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramon y Cajal, Madrid 28034 (Spain)

    2016-07-15

    Nd{sup 3+} ion doped LaF{sub 3} dielectric nanoparticles have recently emerged as very attractive multifunctional nanoparticles capable of simultaneous sub-tissue heating and thermal sensing. Although they have been already used for selective photothermal treatment of cancer tumors in animal models, their real application as self-monitored photothermal agents require further optimization and development. Dynamic adjustment of the therapy parameters is mandatory for non-selective damage minimization. It would require real-time (sub-second) thermal sensing with a sub-degree thermal resolution. In this work we demonstrate that meeting this challenge is, indeed, possible by performing controlled thermal treatment on as-synthesized Nd{sup 3+} doped LaF{sub 3} nanoparticles. Temperature induced lattice ordering and defect re-combination have been concluded to induce, simultaneously, a line fluorescence narrowing, fluorescence brightness enhancement and a remarkable increment in thermal sensitivity. Ex-vivo experiments have demonstrated that, thanks to this multi-parameter optimization, Neodymium doped LaF{sub 3} nanoparticles are capable of real time sub-tissue thermal reading with a temperature resolution as low as 0.7 °C.

  12. Image-guided radiotherapy in near real time with intensity-modulated radiotherapy megavoltage treatment beam imaging.

    Science.gov (United States)

    Mao, Weihua; Hsu, Annie; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Luxton, Gary; King, Christopher; Xing, Lei; Solberg, Timothy

    2009-10-01

    To utilize image-guided radiotherapy (IGRT) in near real time by obtaining and evaluating the online positions of implanted fiducials from continuous electronic portal imaging device (EPID) imaging of prostate intensity-modulated radiotherapy (IMRT) delivery. Upon initial setup using two orthogonal images, the three-dimensional (3D) positions of all implanted fiducial markers are obtained, and their expected two-dimensional (2D) locations in the beam's-eye-view (BEV) projection are calculated for each treatment field. During IMRT beam delivery, EPID images of the megavoltage treatment beam are acquired in cine mode and subsequently analyzed to locate 2D locations of fiducials in the BEV. Simultaneously, 3D positions are estimated according to the current EPID image, information from the setup portal images, and images acquired at other gantry angles (the completed treatment fields). The measured 2D and 3D positions of each fiducial are compared with their expected 2D and 3D setup positions, respectively. Any displacements larger than a predefined tolerance may cause the treatment system to suspend the beam delivery and direct the therapists to reposition the patient. Phantom studies indicate that the accuracy of 2D BEV and 3D tracking are better than 1 mm and 1.4 mm, respectively. A total of 7330 images from prostate treatments were acquired and analyzed, showing a maximum 2D displacement of 6.7 mm and a maximum 3D displacement of 6.9 mm over 34 fractions. This EPID-based, real-time IGRT method can be implemented on any external beam machine with portal imaging capabilities without purchasing any additional equipment, and there is no extra dose delivered to the patient.

  13. VERSE - Virtual Equivalent Real-time Simulation

    Science.gov (United States)

    Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel

    2005-01-01

    Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.

  14. Real-time 3D vectorcardiography: an application for didactic use

    International Nuclear Information System (INIS)

    Daniel, G; Lissa, G; Redondo, D Medina; Vasquez, L; Zapata, D

    2007-01-01

    The traditional approach to teach the physiological basis of electrocardiography, based only on textbooks, turns out to be insufficient or confusing for students of biomedical sciences. The addition of laboratory practice to the curriculum enables students to approach theoretical aspects from a hands-on experience, resulting in a more efficient and deeper knowledge of the phenomena of interest. Here, we present the development of a PC-based application meant to facilitate the understanding of cardiac bioelectrical phenomena by visualizing in real time the instantaneous 3D cardiac vector. The system uses 8 standard leads from a 12-channel electrocardiograph. The application interface has pedagogic objectives, and facilitates the observation of cardiac depolarization and repolarization and its temporal relationship with the ECG, making it simpler to interpret

  15. Real-time interactive treatment planning

    International Nuclear Information System (INIS)

    Otto, Karl

    2014-01-01

    The goal of this work is to develop an interactive treatment planning platform that permits real-time manipulation of dose distributions including DVHs and other dose metrics. The hypothesis underlying the approach proposed here is that the process of evaluating potential dose distribution options and deciding on the best clinical trade-offs may be separated from the derivation of the actual delivery parameters used for the patient’s treatment. For this purpose a novel algorithm for deriving an Achievable Dose Estimate (ADE) was developed. The ADE algorithm is computationally efficient so as to update dose distributions in effectively real-time while accurately incorporating the limits of what can be achieved in practice. The resulting system is a software environment for interactive real-time manipulation of dose that permits the clinician to rapidly develop a fully customized 3D dose distribution. Graphical navigation of dose distributions is achieved by a sophisticated method of identifying contributing fluence elements, modifying those elements and re-computing the entire dose distribution. 3D dose distributions are calculated in ∼2–20 ms. Including graphics processing overhead, clinicians may visually interact with the dose distribution (e.g. ‘drag’ a DVH) and display updates of the dose distribution at a rate of more than 20 times per second. Preliminary testing on various sites shows that interactive planning may be completed in ∼1–5 min, depending on the complexity of the case (number of targets and OARs). Final DVHs are derived through a separate plan optimization step using a conventional VMAT planning system and were shown to be achievable within 2% and 4% in high and low dose regions respectively. With real-time interactive planning trade-offs between Target(s) and OARs may be evaluated efficiently providing a better understanding of the dosimetric options available to each patient in static or adaptive RT. (paper)

  16. Satellite on-board real-time SAR processor prototype

    Science.gov (United States)

    Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François

    2017-11-01

    A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and

  17. Real-time tumor-tracking radiotherapy for adrenal tumors

    International Nuclear Information System (INIS)

    Katoh, Norio; Onimaru, Rikiya; Sakuhara, Yusuke; Abo, Daisuke; Shimizu, Shinichi; Taguchi, Hiroshi; Watanabe, Yoshiaki; Shinohara, Nobuo; Ishikawa, Masayori; Shirato, Hiroki

    2008-01-01

    Purpose: To investigate the three-dimensional movement of internal fiducial markers near the adrenal tumors using a real-time tumor-tracking radiotherapy (RTRT) system and to examine the feasibility of high-dose hypofractionated radiotherapy for the adrenal tumors. Materials and methods: The subjects considered in this study were 10 markers of the 9 patients treated with RTRT. A total of 72 days in the prone position and 61 treatment days in the supine position for nine of the 10 markers were analyzed. All but one patient were prescribed 48 Gy in eight fractions at the isocenter. Results: The average absolute amplitude of the marker movement in the prone position was 6.1 ± 4.4 mm (range 2.3-14.4), 11.1 ± 7.1 mm (3.5-25.2), and 7.0 ± 3.5 mm (3.9-12.5) in the left-right (LR), craniocaudal (CC), and anterior-posterior (AP) directions, respectively. The average absolute amplitude in the supine position was 3.4 ± 2.9 mm (0.6-9.1), 9.9 ± 9.8 mm (1.1-27.1), and 5.4 ± 5.2 mm (1.7-26.6) in the LR, CC, and AP directions, respectively. Of the eight markers, which were examined in both the prone and supine positions, there was no significant difference in the average absolute amplitude between the two positions. No symptomatic adverse effects were observed within the median follow-up period of 16 months (range 5-21 months). The actuarial freedom-from-local-progression rate was 100% at 12 months. Conclusions: Three-dimensional motion of a fiducial marker near the adrenal tumors was detected. Hypofractionated RTRT for adrenal tumors was feasible for patients with metastatic tumors

  18. Design considerations of a real-time clinical confocal microscope

    Science.gov (United States)

    Masters, Barry R.

    1991-06-01

    A real-time clinical confocal light microscope provides the ophthalmologist with a new tool for the observation of the cornea and the ocular lens. In addition, the ciliary body, the iris, and the sclera can be observed. The real-time light microscopic images have high contrast and resolution. The transverse resolution is about one half micron and the range resolution is one micron. The following observations were made with visible light: corneal epithelial cells, wing cells, basal cells, Bowman's membrane, nerve fibers, basal lamina, fibroblast nuclei, Descemet's membrane, endothelial cells. Observation of the in situ ocular lens showed lens capsule, lens epithelium, lens fibrils, the interior of lens fibrils. The applications of the confocal microscope include: eye banking, laser refractive surgery, observation of wound healing, observation of the iris, the sciera, the ciliary body, the ocular lens, and the intraocular lens. Digital image processing can produce three-dimensional reconstructions of the cornea and the ocular lens.

  19. Real-time microradiology of disintegration of iron ore sinteres

    International Nuclear Information System (INIS)

    Kim, Jong Ryun; Kang, H.S.; Lee, Ho Jun; Je, Jung Ho; Jeong, S.K.; Tsai, W.-L.; Hsu, P.C.; Hwu, Y.

    2003-01-01

    We first present real-time microradiology of disintegration of self-fluxing iron ore sinters in low temperature reduction using highly collimated synchrotron source. The experiments were performed on the 5C1 beamline at PLS (Pohang Light Source, Pohang, Korea), operating at 2.5 GeV. We used unmonochromatized ('white') light with no optical elements except beryllium windows. The images of the crack superimpose, on the two-dimensional projection of a three-dimensional phenomenon, suggest that cracks are always initiated from pores in the sinters and propagate along neighboring pores. Interestingly, cracking occurs mostly on macropores (>800 μm), preferentially initiated from stress concentrated sites on pore surfaces. This dynamic study of the disintegration of sinters clearly shows that the crack initiation temperature is as low as 450 deg. C

  20. Real-time particle image velocimetry based on FPGA technology;Velocimetria PIV en tiempo real basada en logica programable FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Iriarte Munoz, Jose Miguel [Universidad Nacional de Cuyo, Instituto Balseiro, Centro Atomico Bariloche (Argentina)

    2008-07-01

    Particle image velocimetry (PIV), based on laser sheet, is a method for image processing and calculation of distributed velocity fields.It is well established as a fluid dynamics measurement tool, being applied to liquid, gases and multiphase flows.Images of particles are processed by means of computationally demanding algorithms, what makes its real-time implementation difficult.The most probable displacements are found applying two dimensional cross-correlation function. In this work, we detail how it is possible to achieve real-time visualization of PIV method by designing an adaptive embedded architecture based on FPGA technology.We show first results of a physical field of velocity calculated by this platform system in a real-time approach.;La velocimetria por imagenes de particulas (PIV), basada en plano laser, es una potente herramienta de medicion en dinamica de fluidos, capaz de medir sin grandes errores, un campo de velocidades distribuido en liquidos, gases y flujo multifase.Los altos requerimientos computacionales de los algoritmos PIV dificultan su empleo en tiempo-real.En este trabajo presentamos el diseno de una plataforma basada en tecnologia FPGA para capturar video y procesar en tiempo real el algoritmo de correlacion cruzada bidimensional.Mostramos resultados de un primer abordaje de la captura de imagenes y procesamiento de un campo fisico de velocidades en tiempo real.

  1. Two-dimensional echocardiographic and RI angiographic features of aneurysm of the ascending aorta in patients with annuloaortic ectasia

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K.; Suzuki, S.; Satomi, G. (Tokyo Women' s Medical Coll. (Japan). Heart Inst. and Hospital)

    1981-03-01

    The purpose of this study was to compare the diagnostic value of two-dimensional echocardiography with that of other methods in the detection and localization of aneurysm involving the ascending aorta in patients with annuloaortic ectasia. Two-dimensional echocardiography, RI angiography, CT scan and aortography were performed in 19 patients (12 patients with Marfan's syndrome, 4 with aortitis syndrome and 3 with postoperative perivalvular aneurysm). Eight of 12 patients with Marfan's syndrome had dissection in the ascending aorta which was confirmed at surgery or autopsy. The following observations were obtained. 1) Dissection of the ascending aorta was clearly demonstrated on the two-dimensional echocardiogram in 7 patients by recording the intinal tear and flap, and in these cases the short axis two-dimensional echocardiogram of the ascending aorta was more useful in identifying the site and extent of dissection. 2) In patients with postoperative perivalvular aneurysms, RI angiography proved to be a more useful and sensitive technique in differentiating a leakage into the aneurysm from clots in the aneurysm. 3) CT scanning proved to be an insensitive technique to detect dissection of the ascending aneurysm and to differentiate a leakage from clots in the perivalvular aneurysm. From these observations, we concluded that two-dimensional echocardiography and RI angiography proved to be sensitive techniques in detecting dissection of the ascending aneurysm and evaluating a postoperative aneurysm in patients with annuloaortic ectasia.

  2. Planning Study Comparison of Real-Time Target Tracking and Four-Dimensional Inverse Planning for Managing Patient Respiratory Motion

    International Nuclear Information System (INIS)

    Zhang Peng; Hugo, Geoffrey D.; Yan Di

    2008-01-01

    Purpose: Real-time target tracking (RT-TT) and four-dimensional inverse planning (4D-IP) are two potential methods to manage respiratory target motion. In this study, we evaluated each method using the cumulative dose-volume criteria in lung cancer radiotherapy. Methods and Materials: Respiration-correlated computed tomography scans were acquired for 4 patients. Deformable image registration was applied to generate a displacement mapping for each phase image of the respiration-correlated computed tomography images. First, the dose distribution for the organs of interest obtained from an idealized RT-TT technique was evaluated, assuming perfect knowledge of organ motion and beam tracking. Inverse planning was performed on each phase image separately. The treatment dose to the organs of interest was then accumulated from the optimized plans. Second, 4D-IP was performed using the probability density function of respiratory motion. The beam arrangement, prescription dose, and objectives were consistent in both planning methods. The dose-volume and equivalent uniform dose in the target volume, lung, heart, and spinal cord were used for the evaluation. Results: The cumulative dose in the target was similar for both techniques. The equivalent uniform dose of the lung, heart, and spinal cord was 4.6 ± 2.2, 11 ± 4.4, and 11 ± 6.6 Gy for RT-TT with a 0-mm target margin, 5.2 ± 3.1, 12 ± 5.9, and 12 ± 7.8 Gy for RT-TT with a 2-mm target margin, and 5.3 ± 2.3, 11.9 ± 5.0, and 12 ± 5.6 Gy for 4D-IP, respectively. Conclusion: The results of our study have shown that 4D-IP can achieve plans similar to those achieved by RT-TT. Considering clinical implementation, 4D-IP could be a more reliable and practical method to manage patient respiration-induced motion

  3. Development of monograph titled "augmented chemistry aldehida & keton" with 3 dimensional (3D) illustration as a supplement book on chemistry learning

    Science.gov (United States)

    Damayanti, Latifah Adelina; Ikhsan, Jaslin

    2017-05-01

    Integration of information technology in education more rapidly performed in a medium of learning. Three-dimensional (3D) molecular modeling was performed in Augmented Reality as a tangible manifestation of increasingly modern technology utilization. Based on augmented reality, three-dimensional virtual object is projected in real time and the exact environment. This paper reviewed the uses of chemical learning supplement book of aldehydes and ketones which are equipped with three-dimensional molecular modeling by which students can inspect molecules from various viewpoints. To plays the 3D illustration printed on the book, smartphones with the open-source software of the technology based integrated Augmented Reality can be used. The aims of this research were to develop the monograph of aldehydes and ketones with 3 dimensional (3D) illustrations, to determine the specification of the monograph, and to determine the quality of the monograph. The quality of the monograph is evaluated by experiencing chemistry teachers on the five aspects of contents/materials, presentations, language and images, graphs, and software engineering, resulted in the result that the book has a very good quality to be used as a chemistry learning supplement book.

  4. ISTTOK real-time architecture

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ivo S., E-mail: ivoc@ipfn.ist.utl.pt; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.

    2014-03-15

    Highlights: • All real-time diagnostics and actuators were integrated in the same control platform. • A 100 μs control cycle was achieved under the MARTe framework. • Time-windows based control with several event-driven control strategies implemented. • AC discharges with exception handling on iron core flux saturation. • An HTML discharge configuration was developed for configuring the MARTe system. - Abstract: The ISTTOK tokamak was upgraded with a plasma control system based on the Advanced Telecommunications Computing Architecture (ATCA) standard. This control system was designed to improve the discharge stability and to extend the operational space to the alternate plasma current (AC) discharges as part of the ISTTOK scientific program. In order to accomplish these objectives all ISTTOK diagnostics and actuators relevant for real-time operation were integrated in the control system. The control system was programmed in C++ over the Multi-threaded Application Real-Time executor (MARTe) which provides, among other features, a real-time scheduler, an interrupt handler, an intercommunications interface between code blocks and a clearly bounded interface with the external devices. As a complement to the MARTe framework, the BaseLib2 library provides the foundations for the data, code introspection and also a Hypertext Transfer Protocol (HTTP) server service. Taking advantage of the modular nature of MARTe, the algorithms of each diagnostic data processing, discharge timing, context switch, control and actuators output reference generation, run on well-defined blocks of code named Generic Application Module (GAM). This approach allows reusability of the code, simplified simulation, replacement or editing without changing the remaining GAMs. The ISTTOK control system GAMs run sequentially each 100 μs cycle on an Intel{sup ®} Q8200 4-core processor running at 2.33 GHz located in the ATCA crate. Two boards (inside the ATCA crate) with 32 analog

  5. ISTTOK real-time architecture

    International Nuclear Information System (INIS)

    Carvalho, Ivo S.; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.

    2014-01-01

    Highlights: • All real-time diagnostics and actuators were integrated in the same control platform. • A 100 μs control cycle was achieved under the MARTe framework. • Time-windows based control with several event-driven control strategies implemented. • AC discharges with exception handling on iron core flux saturation. • An HTML discharge configuration was developed for configuring the MARTe system. - Abstract: The ISTTOK tokamak was upgraded with a plasma control system based on the Advanced Telecommunications Computing Architecture (ATCA) standard. This control system was designed to improve the discharge stability and to extend the operational space to the alternate plasma current (AC) discharges as part of the ISTTOK scientific program. In order to accomplish these objectives all ISTTOK diagnostics and actuators relevant for real-time operation were integrated in the control system. The control system was programmed in C++ over the Multi-threaded Application Real-Time executor (MARTe) which provides, among other features, a real-time scheduler, an interrupt handler, an intercommunications interface between code blocks and a clearly bounded interface with the external devices. As a complement to the MARTe framework, the BaseLib2 library provides the foundations for the data, code introspection and also a Hypertext Transfer Protocol (HTTP) server service. Taking advantage of the modular nature of MARTe, the algorithms of each diagnostic data processing, discharge timing, context switch, control and actuators output reference generation, run on well-defined blocks of code named Generic Application Module (GAM). This approach allows reusability of the code, simplified simulation, replacement or editing without changing the remaining GAMs. The ISTTOK control system GAMs run sequentially each 100 μs cycle on an Intel ® Q8200 4-core processor running at 2.33 GHz located in the ATCA crate. Two boards (inside the ATCA crate) with 32 analog

  6. Real time three-dimensional space video rate sensors for millimeter waves imaging based very inexpensive plasma LED lamps

    Science.gov (United States)

    Levanon, Assaf; Yitzhaky, Yitzhak; Kopeika, Natan S.; Rozban, Daniel; Abramovich, Amir

    2014-10-01

    In recent years, much effort has been invested to develop inexpensive but sensitive Millimeter Wave (MMW) detectors that can be used in focal plane arrays (FPAs), in order to implement real time MMW imaging. Real time MMW imaging systems are required for many varied applications in many fields as homeland security, medicine, communications, military products and space technology. It is mainly because this radiation has high penetration and good navigability through dust storm, fog, heavy rain, dielectric materials, biological tissue, and diverse materials. Moreover, the atmospheric attenuation in this range of the spectrum is relatively low and the scattering is also low compared to NIR and VIS. The lack of inexpensive room temperature imaging systems makes it difficult to provide a suitable MMW system for many of the above applications. In last few years we advanced in research and development of sensors using very inexpensive (30-50 cents) Glow Discharge Detector (GDD) plasma indicator lamps as MMW detectors. This paper presents three kinds of GDD sensor based lamp Focal Plane Arrays (FPA). Those three kinds of cameras are different in the number of detectors, scanning operation, and detection method. The 1st and 2nd generations are 8 × 8 pixel array and an 18 × 2 mono-rail scanner array respectively, both of them for direct detection and limited to fixed imaging. The last designed sensor is a multiplexing frame rate of 16x16 GDD FPA. It permits real time video rate imaging of 30 frames/ sec and comprehensive 3D MMW imaging. The principle of detection in this sensor is a frequency modulated continuous wave (FMCW) system while each of the 16 GDD pixel lines is sampled simultaneously. Direct detection is also possible and can be done with a friendly user interface. This FPA sensor is built over 256 commercial GDD lamps with 3 mm diameter International Light, Inc., Peabody, MA model 527 Ne indicator lamps as pixel detectors. All three sensors are fully supported

  7. Gestational changes in left ventricular myocardial contractile function: new insights from two-dimensional speckle tracking echocardiography.

    Science.gov (United States)

    Sengupta, Shantanu P; Bansal, Manish; Hofstra, Leonard; Sengupta, Partho P; Narula, Jagat

    2017-01-01

    The goal of this study was to evaluate the impact of pregnancy and labor on left ventricular (LV) myocardial mechanics using speckle tracking echocardiography (STE). Pregnancy is characterized by profound hormonal and hemodynamic alterations that directly or indirectly influence cardiac structure and function. However, the impact of these changes on left ventricular (LV) myocardial contractile function has not been fully elucidated. In this prospective, longitudinal study, 35 pregnant women underwent serial clinical and echocardiographic evaluation during each trimester and at labor. Two dimensional STE was performed to measure global LV longitudinal, circumferential and radial strain (GLS, GCS and GRS, respectively). Similar data obtained from 20 nulliparous, age-matched women were used as control. All strain values during pregnancy were adjusted for age and hemodynamic parameters. There was a progressive increase in heart rate, systolic and diastolic blood pressure, cardiac output and LV stroke-work during pregnancy. LV end-diastolic and end-systolic volumes also increased progressively but LV ejection fraction remained unaltered, except for slight reduction during the second trimester. Compared to the controls, GLS and GCS were reduced in the first trimester itself (GLS -22.39 ± 5.43 % vs. -18.66 ± 0.64 %, P 0.0002; GCS -20.84 ± 3.20 vs. -17.88 ± 0.09, P counterbalancing changes in the myocardial mechanics. LV longitudinal and circumferential strain are reduced whereas radial strain is increased. These counterbalancing changes serve to maintain overall LV ejection performance within a normal range and enable the maternal heart to meet the hemodynamic demands of pregnancy and labor.

  8. An Embedded Real-Time Red Peach Detection System Based on an OV7670 Camera, ARM Cortex-M4 Processor and 3D Look-Up Tables

    Directory of Open Access Journals (Sweden)

    Marcel Tresanchez

    2012-10-01

    Full Text Available This work proposes the development of an embedded real-time fruit detection system for future automatic fruit harvesting. The proposed embedded system is based on an ARM Cortex-M4 (STM32F407VGT6 processor and an Omnivision OV7670 color camera. The future goal of this embedded vision system will be to control a robotized arm to automatically select and pick some fruit directly from the tree. The complete embedded system has been designed to be placed directly in the gripper tool of the future robotized harvesting arm. The embedded system will be able to perform real-time fruit detection and tracking by using a three-dimensional look-up-table (LUT defined in the RGB color space and optimized for fruit picking. Additionally, two different methodologies for creating optimized 3D LUTs based on existing linear color models and fruit histograms were implemented in this work and compared for the case of red peaches. The resulting system is able to acquire general and zoomed orchard images and to update the relative tracking information of a red peach in the tree ten times per second.

  9. An embedded real-time red peach detection system based on an OV7670 camera, ARM cortex-M4 processor and 3D look-up tables.

    Science.gov (United States)

    Teixidó, Mercè; Font, Davinia; Pallejà, Tomàs; Tresanchez, Marcel; Nogués, Miquel; Palacín, Jordi

    2012-10-22

    This work proposes the development of an embedded real-time fruit detection system for future automatic fruit harvesting. The proposed embedded system is based on an ARM Cortex-M4 (STM32F407VGT6) processor and an Omnivision OV7670 color camera. The future goal of this embedded vision system will be to control a robotized arm to automatically select and pick some fruit directly from the tree. The complete embedded system has been designed to be placed directly in the gripper tool of the future robotized harvesting arm. The embedded system will be able to perform real-time fruit detection and tracking by using a three-dimensional look-up-table (LUT) defined in the RGB color space and optimized for fruit picking. Additionally, two different methodologies for creating optimized 3D LUTs based on existing linear color models and fruit histograms were implemented in this work and compared for the case of red peaches. The resulting system is able to acquire general and zoomed orchard images and to update the relative tracking information of a red peach in the tree ten times per second.

  10. Real-time physics-based 3D biped character animation using an inverted pendulum model.

    Science.gov (United States)

    Tsai, Yao-Yang; Lin, Wen-Chieh; Cheng, Kuangyou B; Lee, Jehee; Lee, Tong-Yee

    2010-01-01

    We present a physics-based approach to generate 3D biped character animation that can react to dynamical environments in real time. Our approach utilizes an inverted pendulum model to online adjust the desired motion trajectory from the input motion capture data. This online adjustment produces a physically plausible motion trajectory adapted to dynamic environments, which is then used as the desired motion for the motion controllers to track in dynamics simulation. Rather than using Proportional-Derivative controllers whose parameters usually cannot be easily set, our motion tracking adopts a velocity-driven method which computes joint torques based on the desired joint angular velocities. Physically correct full-body motion of the 3D character is computed in dynamics simulation using the computed torques and dynamical model of the character. Our experiments demonstrate that tracking motion capture data with real-time response animation can be achieved easily. In addition, physically plausible motion style editing, automatic motion transition, and motion adaptation to different limb sizes can also be generated without difficulty.

  11. Real-time 2D/3D registration using kV-MV image pairs for tumor motion tracking in image guided radiotherapy.

    Science.gov (United States)

    Furtado, Hugo; Steiner, Elisabeth; Stock, Markus; Georg, Dietmar; Birkfellner, Wolfgang

    2013-10-01

    Intra-fractional respiratory motion during radiotherapy leads to a larger planning target volume (PTV). Real-time tumor motion tracking by two-dimensional (2D)/3D registration using on-board kilo-voltage (kV) imaging can allow for a reduction of the PTV though motion along the imaging beam axis cannot be resolved using only one projection image. We present a retrospective patient study investigating the impact of paired portal mega-voltage (MV) and kV images on registration accuracy. Material and methods. We used data from 10 patients suffering from non-small cell lung cancer (NSCLC) undergoing stereotactic body radiation therapy (SBRT) lung treatment. For each patient we acquired a planning computed tomography (CT) and sequences of kV and MV images during treatment. We compared the accuracy of motion tracking in six degrees-of-freedom (DOF) using the anterior-posterior (AP) kV sequence or the sequence of kV-MV image pairs. Results. Motion along cranial-caudal direction could accurately be extracted when using only the kV sequence but in AP direction we obtained large errors. When using kV-MV pairs, the average error was reduced from 2.9 mm to 1.5 mm and the motion along AP was successfully extracted. Mean registration time was 188 ms. Conclusion. Our evaluation shows that using kV-MV image pairs leads to improved motion extraction in six DOF and is suitable for real-time tumor motion tracking with a conventional LINAC.

  12. Linux real-time framework for fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Andre [Associacao Euratom-IST, Instituto de Plasmas e Fusao Nuclear, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)], E-mail: andre.neto@cfn.ist.utl.pt; Sartori, Filippo; Piccolo, Fabio [Euratom-UKAEA, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Barbalace, Antonio [Euratom-ENEA Association, Consorzio RFX, 35127 Padova (Italy); Vitelli, Riccardo [Dipartimento di Informatica, Sistemi e Produzione, Universita di Roma, Tor Vergata, Via del Politecnico 1-00133, Roma (Italy); Fernandes, Horacio [Associacao Euratom-IST, Instituto de Plasmas e Fusao Nuclear, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2009-06-15

    A new framework for the development and execution of real-time codes is currently being developed and commissioned at JET. The foundations of the system are Linux, the Real Time Application Interface (RTAI) and a wise exploitation of the new i386 multi-core processors technology. The driving motivation was the need to find a real-time operating system for the i386 platform able to satisfy JET Vertical Stabilisation Enhancement project requirements: 50 {mu}s cycle time. Even if the initial choice was the VxWorks operating system, it was decided to explore an open source alternative, mostly because of the costs involved in the commercial product. The work started with the definition of a precise set of requirements and milestones to achieve: Linux distribution and kernel versions to be used for the real-time operating system; complete characterization of the Linux/RTAI real-time capabilities; exploitation of the multi-core technology; implementation of all the required and missing features; commissioning of the system. Latency and jitter measurements were compared for Linux and RTAI in both user and kernel-space. The best results were attained using the RTAI kernel solution where the time to reschedule a real-time task after an external interrupt is of 2.35 {+-} 0.35 {mu}s. In order to run the real-time codes in the kernel-space, a solution to provide user-space functionalities to the kernel modules had to be designed. This novel work provided the most common functions from the standard C library and transparent interaction with files and sockets to the kernel real-time modules. Kernel C++ support was also tested, further developed and integrated in the framework. The work has produced very convincing results so far: complete isolation of the processors assigned to real-time from the Linux non real-time activities, high level of stability over several days of benchmarking operations and values well below 3 {mu}s for task rescheduling after external interrupt. From

  13. Linux real-time framework for fusion devices

    International Nuclear Information System (INIS)

    Neto, Andre; Sartori, Filippo; Piccolo, Fabio; Barbalace, Antonio; Vitelli, Riccardo; Fernandes, Horacio

    2009-01-01

    A new framework for the development and execution of real-time codes is currently being developed and commissioned at JET. The foundations of the system are Linux, the Real Time Application Interface (RTAI) and a wise exploitation of the new i386 multi-core processors technology. The driving motivation was the need to find a real-time operating system for the i386 platform able to satisfy JET Vertical Stabilisation Enhancement project requirements: 50 μs cycle time. Even if the initial choice was the VxWorks operating system, it was decided to explore an open source alternative, mostly because of the costs involved in the commercial product. The work started with the definition of a precise set of requirements and milestones to achieve: Linux distribution and kernel versions to be used for the real-time operating system; complete characterization of the Linux/RTAI real-time capabilities; exploitation of the multi-core technology; implementation of all the required and missing features; commissioning of the system. Latency and jitter measurements were compared for Linux and RTAI in both user and kernel-space. The best results were attained using the RTAI kernel solution where the time to reschedule a real-time task after an external interrupt is of 2.35 ± 0.35 μs. In order to run the real-time codes in the kernel-space, a solution to provide user-space functionalities to the kernel modules had to be designed. This novel work provided the most common functions from the standard C library and transparent interaction with files and sockets to the kernel real-time modules. Kernel C++ support was also tested, further developed and integrated in the framework. The work has produced very convincing results so far: complete isolation of the processors assigned to real-time from the Linux non real-time activities, high level of stability over several days of benchmarking operations and values well below 3 μs for task rescheduling after external interrupt. From being the

  14. 3D real-time monitoring system for LHD plasma heating experiment

    International Nuclear Information System (INIS)

    Emoto, M.; Narlo, J.; Kaneko, O.; Komori, A.; Iima, M.; Yamaguchi, S.; Sudo, S.

    2001-01-01

    The JAVA-based real-time monitoring system has been in use at the National Institute for Fusion Science, Japan, since the end of March 1988 to maintain stable operations. This system utilizes JAVA technology to realize its platform-independent nature. The main programs are written as JAVA applets and provide human-friendly interfaces. In order to enhance the system's easy-recognition nature, a 3D feature is added. Since most of the system is written mainly in JAVA language, we adopted JAVA3D technology, which was easy to incorporate into the current running systems. With this 3D feature, the operator can more easily find the malfunctioning parts of complex instruments, such as LHD vacuum vessels. This feature is also helpful for recognizing physical phenomena. In this paper, we present an example in which the temperature increases of a vacuum vessel after NBI are visualized

  15. The diagnostic ability of echocardiography for infective endocarditis and its associated complications.

    Science.gov (United States)

    Vilacosta, Isidre; Olmos, Carmen; de Agustín, Alberto; López, Javier; Islas, Fabián; Sarriá, Cristina; Ferrera, Carlos; Ortiz-Bautista, Carlos; Sánchez-Enrique, Cristina; Vivas, David; San Román, Alberto

    2015-11-01

    Echocardiography, transthoracic and transoesophageal, plays a key role in the diagnosis and prognosis assessment of patients with infective endocarditis. It constitutes a major Duke criterion and is pivotal in treatment guiding. Seven echocardiographic findings are major criteria in the diagnosis of infective endocarditis (IE) (vegetation, abscess, pseudoaneurysm, fistulae, new dehiscence of a prosthetic valve, perforation and valve aneurysm). Echocardiography must be performed as soon as endocarditis is suspected. Transoesophageal echocardiography should be done in most cases of left-sided endocarditis to better define the anatomic lesions and to rule out local complications. Transoesophageal echocardiography is not necessary in isolated right-sided native valve IE with good quality transthoracic examination and unequivocal echocardiographic findings. Echocardiography is a very useful tool to assess the prognosis of patients with IE at any time during the course of the disease. Echocardiographic predictors of poor outcome include presence of periannular complications, prosthetic dysfunction, low left ventricular ejection fraction, pulmonary hypertension and very large vegetations.

  16. Real-time beam profile imaging system for actinotherapy accelerator

    International Nuclear Information System (INIS)

    Lin Yong; Wang Jingjin; Song Zheng; Zheng Putang; Wang Jianguo

    2003-01-01

    This paper describes a real-time beam profile imaging system for actinotheraphy accelerator. With the flash X-ray imager and the technique of digital image processing, a real-time 3-dimension dosage image is created from the intensity profile of the accelerator beam in real time. This system helps to obtain all the physical characters of the beam in any section plane, such as FWHM, penumbra, peak value, symmetry and homogeneity. This system has been used to acquire a 3-dimension dosage distribution of dynamic wedge modulator and the transient process of beam dosage. The system configure and the tested beam profile images are also presented

  17. Orbit determination using real tracking data from FY3C-GNOS

    Science.gov (United States)

    Xiong, Chao; Lu, Chuanfang; Zhu, Jun; Ding, Huoping

    2017-08-01

    China is currently developing the BeiDou Navigation Satellite System, also known as BDS. The nominal constellation of BDS (regional), which had been able to provide preliminary regional positioning and navigation functions, was composed of fourteen satellites, including 5 GEO, 5 IGSO and 4 MEO satellites, and was realized by the end of 2013. Global navigation satellite system occultation sounder (GNOS) on board the Fengyun3C (FY3C) satellite, which is the first BDS/GPS compatible radio occultation (RO) sounder in the world, was launched on 23 September 2013. The GNOS instrument is capable of tracking up to 6 BeiDou satellites and more than 8 GPS satellites. We first present a quality analysis using 1-week onboard BDS/GPS measurements collected by GNOS. Satellite visibility, multipath combination and the ratio of cycle slips are analyzed. The analysis of satellite visibility shows that for one week the BDS receiver can track up to 6 healthy satellites. The analysis of multipath combinations (MPC) suggests more multipath present for BDS than GPS for the CA code (B1 MPC is 0.597 m, L1 MPC is 0.326 m), but less multipath for the P code (B2 MPC is 0.421 m, L2 MPC is 0.673 m). More cycle slips occur for the BDS than for the GPS receiver as shown by the ratio of total satellites/cycle slips observed over a 24 h period. Both the maximum value and average of the ratio of cycle slips based on BDS measurements is 72/50.29, which is smaller than 368/278.71 based on GPS measurements. Second, the results of reduced dynamic orbit determination using BDS/GPS code and phase measurements, standalone BDS SPP (Single Point Positioning) kinematic solution and real-time orbit determination using BDS/GPS code measurements are presented and analyzed. Using an overlap analysis, the orbit consistency of FY3C-GNOS is about 3.80 cm. The precision of BDS only solutions is about 22 cm. The precision of FY3C-GNOS orbit with the Helmert variance component estimation are improved slightly after

  18. Real-time graphics for the Space Station Freedom cupola, developed in the Systems Engineering Simulator

    Science.gov (United States)

    Red, Michael T.; Hess, Philip W.

    1989-01-01

    Among the Lyndon B. Johnson Space Center's responsibilities for Space Station Freedom is the cupola. Attached to the resource node, the cupola is a windowed structure that will serve as the space station's secondary control center. From the cupola, operations involving the mobile service center and orbital maneuvering vehicle will be conducted. The Systems Engineering Simulator (SES), located in building 16, activated a real-time man-in-the-loop cupola simulator in November 1987. The SES cupola is an engineering tool with the flexibility to evolve in both hardware and software as the final cupola design matures. Two workstations are simulated with closed-circuit television monitors, rotational and translational hand controllers, programmable display pushbuttons, and graphics display with trackball and keyboard. The displays and controls of the SES cupola are driven by a Silicon Graphics Integrated Raster Imaging System (IRIS) 4D/70 GT computer. Through the use of an interactive display builder program, SES, cupola display pages consisting of two dimensional and three dimensional graphics are constructed. These display pages interact with the SES via the IRIS real-time graphics interface. The focus is on the real-time graphics interface applications software developed on the IRIS.

  19. 3D Display of Spacecraft Dynamics Using Real Telemetry

    Directory of Open Access Journals (Sweden)

    Sanguk Lee

    2002-12-01

    Full Text Available 3D display of spacecraft motion by using telemetry data received from satellite in real-time is described. Telemetry data are converted to the appropriate form for 3-D display by the real-time preprocessor. Stored playback telemetry data also can be processed for the display. 3D display of spacecraft motion by using real telemetry data provides intuitive comprehension of spacecraft dynamics.

  20. Real-time quantitative phase reconstruction in off-axis digital holography using multiplexing.

    Science.gov (United States)

    Girshovitz, Pinhas; Shaked, Natan T

    2014-04-15

    We present a new approach for obtaining significant speedup in the digital processing of extracting unwrapped phase profiles from off-axis digital holograms. The new technique digitally multiplexes two orthogonal off-axis holograms, where the digital reconstruction, including spatial filtering and two-dimensional phase unwrapping on a decreased number of pixels, can be performed on both holograms together, without redundant operations. Using this technique, we were able to reconstruct, for the first time to our knowledge, unwrapped phase profiles from off-axis holograms with 1 megapixel in more than 30 frames per second using a standard single-core personal computer on a MATLAB platform, without using graphic-processing-unit programming or parallel computing. This new technique is important for real-time quantitative visualization and measurements of highly dynamic samples and is applicable for a wide range of applications, including rapid biological cell imaging and real-time nondestructive testing. After comparing the speedups obtained by the new technique for holograms of various sizes, we present experimental results of real-time quantitative phase visualization of cells flowing rapidly through a microchannel.