A two-phase charge-density real-space-pairing model of high-T{sub c} superconductivity
Humphreys, C.J. [Cambridge Univ. (United Kingdom). Dept. of Metallurgy and Materials Science
1999-03-01
It is usually assumed that high-T{sub c} superconductors have a periodic band structure and a periodic charge density, although amorphous low-T{sub c} superconductors are known. In this paper, it is suggested that the CuO{sub 2} conduction planes of cuprate superconductors consist of regions of two different charge densities which do not normally repeat periodically. It is suggested that the pairing of holes occurs in real space in cuprate superconductors. It is proposed that the hole-pairing mechanism is magnetic exchange coupling and the pairing force is strong, the pairing energy being greater than kT at room temperature. The bound hole pair is essentially a bipolaron. A real-space model is very tentatively suggested in which the CuO{sub 2} planes of YBa{sub 2}Cu{sub 3}O{sub 7} contain nanodomains of a 3 x 3 hole lattice surrounded by interfaces one unit cell wide in which the holes are paired. In the superconducting state in this model, the existing hole pairs condense and move coherently and collectively around the insulating nanodomains, like trams running around blocks of houses, with one hole on each tramline. The hole pairs move in an elegant manner with hole pairs hopping from oxygen to oxygen via adjacent copper sites. The model explains the superconducting current being in the ab plane and it also explains the very short coherence lengths. Because the pairing force is strong, the model suggests that room-temperature superconductivity might be possible in carefully designed new oxide materials. (orig.) 22 refs.
A two-phase charge-density real-space-pairing model of high-Tc superconductivity.
Humphreys
1999-03-01
It is usually assumed that high-T(c) superconductors have a periodic band structure and a periodic charge density, although amorphous low-T(c) superconductors are known. In this paper, it is suggested that the CuO(2) conduction planes of cuprate superconductors consist of regions of two different charge densities which do not normally repeat periodically. It is suggested that the pairing of holes occurs in real space in cuprate superconductors. It is proposed that the hole-pairing mechanism is magnetic exchange coupling and the pairing force is strong, the pairing energy being greater than kT at room temperature. The bound hole pair is essentially a bipolaron. A real-space model is very tentatively suggested in which the CuO(2) planes of YBa(2)Cu(3)O(7) contain nanodomains of a 3 x 3 hole lattice surrounded by interfaces one unit cell wide in which the holes are paired. In the superconducting state in this model, the existing hole pairs condense and move coherently and collectively around the insulating nanodomains, like trams running around blocks of houses, with one hole on each tramline. The hole pairs move in an elegant manner with hole pairs hopping from oxygen to oxygen via adjacent copper sites. The model explains the superconducting current being in the ab plane and it also explains the very short coherence lengths. Because the pairing force is strong, the model suggests that room-temperature superconductivity might be possible in carefully designed new oxide materials.
J. Spałek
2010-01-01
Full Text Available We use the concept of generalized (almost localized Fermi Liquid composed of nonstandard quasiparticles with spin-dependence effective masses and the effective field induced by electron correlations. This Fermi liquid is obtained within the so-called statistically-consistent Gutzwiller approximation (SGA proposed recently [cf. J. Jędrak et al., arXiv: 1008.0021] and describes electronic states of the correlated quantum liquid. Particular emphasis is put on real space pairing driven by the electronic correlations, the Fulde-Ferrell state of the heavy-fermion liquid, and the d-wave superconducting state of high temperature curate superconductors in the overdoped limit. The appropriate phase diagrams are discussed showing in particular the limits of stability of the Bardeen-Cooper-Schrieffer (BCS type of state.
Pauling resonant structures in real space through electron number probability distributions.
Pendas, A Martín; Francisco, E; Blanco, M A
2007-02-15
A general hierarchy of the coarsed-grained electron probability distributions induced by exhaustive partitions of the physical space is presented. It is argued that when the space is partitioned into atomic regions the consideration of these distributions may provide a first step toward an orbital invariant treatment of resonant structures. We also show that, in this case, the total molecular energy and its components may be partitioned into structure contributions, providing a fruitful extension of the recently developed interacting quantum atoms approach (J. Chem. Theory Comput. 2005, 1, 1096). The above ideas are explored in the hydrogen molecule, where a complete statistical and energetic decomposition into covalent and ionic terms is presented.
Cosmological Density Distribution Function from the Ellipsoidal Collapse Model in Real Space
Ohta, Y; Taruya, A; Ohta, Yasuhiro; Kayo, Issha; Taruya, Atsushi
2004-01-01
We calculate the one-point probability distribution function (PDF) for cosmic density in non-linear regime of the gravitational evolution. Under the local approximation that the evolution of cosmic fluid fields can be characterized by the Lagrangian local dynamics with finite degrees of freedom, the analytic expressions of PDF are derived taking account of the smoothing effect. The validity and the usefulness of the local approximation are then discussed comparing those results with N-body simulations in a Gaussian initial condition. Adopting the ellipsoidal collapse model (ECM) and the spherical collapse model (SCM) as Lagrangian local dynamics, we found that the PDFs from the local approximation excellently match the simulation results in the case of the cold dark matter initial spectrum. As for the scale-free initial spectra given by $P(k)\\propto k^n$, N-body result suffers from spurious numerical effects, which prevent us to give a detailed comparison. Nevertheless, at the quality of N-body data, the mode...
A Real Space Cellular Automaton Laboratory
Rozier, O.; Narteau, C.
2013-12-01
Investigations in geomorphology may benefit from computer modelling approaches that rely entirely on self-organization principles. In the vast majority of numerical models, instead, points in space are characterised by a variety of physical variables (e.g. sediment transport rate, velocity, temperature) recalculated over time according to some predetermined set of laws. However, there is not always a satisfactory theoretical framework from which we can quantify the overall dynamics of the system. For these reasons, we prefer to concentrate on interaction patterns using a basic cellular automaton modelling framework, the Real Space Cellular Automaton Laboratory (ReSCAL), a powerful and versatile generator of 3D stochastic models. The objective of this software suite released under a GNU license is to develop interdisciplinary research collaboration to investigate the dynamics of complex systems. The models in ReSCAL are essentially constructed from a small number of discrete states distributed on a cellular grid. An elementary cell is a real-space representation of the physical environment and pairs of nearest neighbour cells are called doublets. Each individual physical process is associated with a set of doublet transitions and characteristic transition rates. Using a modular approach, we can simulate and combine a wide range of physical, chemical and/or anthropological processes. Here, we present different ingredients of ReSCAL leading to applications in geomorphology: dune morphodynamics and landscape evolution. We also discuss how ReSCAL can be applied and developed across many disciplines in natural and human sciences.
Real-space renormalization yields finite correlations.
Barthel, Thomas; Kliesch, Martin; Eisert, Jens
2010-07-02
Real-space renormalization approaches for quantum lattice systems generate certain hierarchical classes of states that are subsumed by the multiscale entanglement renormalization Ansatz (MERA). It is shown that, with the exception of one spatial dimension, MERA states are actually states with finite correlations, i.e., projected entangled pair states (PEPS) with a bond dimension independent of the system size. Hence, real-space renormalization generates states which can be encoded with local effective degrees of freedom, and MERA states form an efficiently contractible class of PEPS that obey the area law for the entanglement entropy. It is further pointed out that there exist other efficiently contractible schemes violating the area law.
Schnell, M; Sarriugarte, P; Neuman, T; Khanikaev, A B; Shvets, G; Aizpurua, J; Hillenbrand, R
2016-01-13
Chiral antennas and metasurfaces can be designed to react differently to left- and right-handed circularly polarized light, which enables novel optical properties such as giant optical activity and negative refraction. Here, we demonstrate that the underlying chiral near-field distributions can be directly mapped with scattering-type scanning near-field optical microscopy employing circularly polarized illumination. We apply our technique to visualize, for the first time, the circular-polarization selective nanofocusing of infrared light in Archimedean spiral antennas, and explain this chiral optical effect by directional launching of traveling waves in analogy to antenna theory. Moreover, we near-field image single-layer rosette and asymmetric dipole-monopole metasurfaces and find negligible and strong chiral optical near-field contrast, respectively. Our technique paves the way for near-field characterization of optical chirality in metal nanostructures, which will be essential for the future development of chiral antennas and metasurfaces and their applications.
Top pair production distributions at the Tevatron
Takeuchi Yuji
2013-05-01
Full Text Available At the Tevatron, the top quark is mainly produced in pairs through the strong interaction and decays before forming hadrons. Thus the kinematical distributions at top pair production possess rich information on the tt¯$tar t$ production vertex including polarizations of top and anti-top quarks. In this article, recent measurements on top quark pair production distributions at Tevatron (CDF and DO are presented.
Zegrodnik, Michał; Spałek, Józef
2017-08-01
We study the effect of the correlated hopping term and the intersite Coulomb interaction term on principal features of the d -wave superconducting (SC) state, in both the electron- and hole-doped regimes within the t -J -U model. In our analysis, we use the approach based on the diagrammatic expansion of the Gutzwiller wave function (DE-GWF), which allows us to go beyond the renormalized mean-field theory (RMFT). We show that the correlated hopping term enhances the pairing at the electron-doped side of the phase diagram. Moreover, the so-called non-BCS regime (which manifests itself by the negative kinetic energy gain at the transition to the SC phase) is narrowed down with the increasing magnitude of the correlated hopping ˜K . Also, the doping dependencies of the nodal Fermi velocity and Fermi momentum, as well as the average number of double occupancies, are analyzed with reference to the experimental data for selected values of the parameter K . For the sake of completeness, the influence of the intersite Coulomb repulsion on the obtained results is provided. Additionally, selected results concerning the Hubbard-model case are also presented. A complete model with all two-site interactions is briefly discussed in Appendix for reference.
Asymmetric pair distribution functions in catalysts
Clausen, B. S.; Nørskov, Jens Kehlet
2000-01-01
The structural parameters, i.e., coordination numbers, bond distances and disorder obtained from the analysis of EXAFS spectra may sometimes be significantly influenced by errors introduced due to the inadequacy of the analysis method applied. Especially in the case of heterogeneous catalysts...... it has been realized that often there is a need to use an improved EXAFS data analysis compared to the simple harmonic approach which works well for well-defined bulk structures. This is due to the fact that catalysts contain highly dispersed or disordered structures with pair distribution functions......, will be described. The method is based on an analysis of the pair distribution functions derived from molecular dynamics simulations of small metal particles and its reliability is demonstrated by comparing structural parameters obtained from independent X-ray diffraction experiments....
Pair distribution of ions in Coulomb lattice
Witt, H E D; Chugunov, A I; Baiko, D A; Yakovlev, D G
2003-01-01
The pair distribution function g(r) ident to g(x, y, z) and the radial pair distribution function g(r) of ions in body-centred-cubic and face-centred-cubic Coulomb crystals are calculated within the harmonic-lattice (HL) approximation in a wide temperature range, from the high-temperature classical limit (T >> h-bar w sub p , w sub p being the ion plasma frequency) to the low-temperature quantum limit (T || h-bar w sub p). In the classical limit, g(r) is also calculated by the Monte Carlo (MC) method. MC and HL results are demonstrated to be in good agreement. With decreasing T, the correlation peaks of g(r) and g(r) become narrower. At T || h-bar w sub p they become temperature independent (determined by zero-point ion vibrations).
Pair distribution functions of silicon/silicon nitride interfaces
Cao, Deng; Bachlechner, Martina E.
2006-03-01
Using molecular dynamics simulations, we investigate different mechanical and structural properties of the silicon/silicon nitride interface. One way to characterize the structure as tensile strain is applied parallel to the interface is to calculate pair distribution functions for specific atom types. The pair distribution function gives the probability of finding a pair of atoms a distance r apart, relative to the probability expected for a completely random distribution at the same density. The pair distribution functions for bulk silicon nitride reflect the fracture of the silicon nitride film at about 8 % and the fact that the centerpiece of the silicon nitride film returns to its original structure after fracture. The pair distribution functions for interface silicon atoms reveal the formation of bonds for originally unbound atom pairs, which is indicative of the interstitial-vacancy defect that causes failure in silicon.
Bugnet, Matthieu; Löffler, Stefan; Hawthorn, David; Dabkowska, Hanna A; Luke, Graeme M; Schattschneider, Peter; Sawatzky, George A; Radtke, Guillaume; Botton, Gianluigi A
2016-03-01
Understanding the physical properties of the chain-ladder Sr3Ca11Cu24O41 hole-doped superconductor has been precluded by the unknown hole distribution among chains and ladders. We use electron energy-loss spectrometry (EELS) in a scanning transmission electron microscope (STEM) at atomic resolution to directly separate the contributions of chains and ladders and to unravel the hole distribution from the atomic scale variations of the O-K near-edge structures. The experimental data unambiguously demonstrate that most of the holes lie within the chain layers. A quantitative interpretation supported by inelastic scattering calculations shows that about two holes are located in the ladders, and about four holes in the chains, shedding light on the electronic structure of Sr3Ca11Cu24O41. Combined atomic resolution STEM-EELS and inelastic scattering calculations is demonstrated as a powerful approach toward a quantitative understanding of the electronic structure of cuprate superconductors, offering new possibilities for elucidating their physical properties.
Understanding Tools and Practices for Distributed Pair Programming
Schümmer, T.; Lukosch, S.G.
2009-01-01
When considering the principles for eXtreme Programming, distributed eXtreme Programming, especially distributed pair programming, is a paradox predetermined to failure. However, global software development as well as the outsourcing of software development are integral parts of software projects.
Understanding Tools and Practices for Distributed Pair Programming
Schümmer, T.; Lukosch, S.G.
2009-01-01
When considering the principles for eXtreme Programming, distributed eXtreme Programming, especially distributed pair programming, is a paradox predetermined to failure. However, global software development as well as the outsourcing of software development are integral parts of software projects. H
Real-space renormalization yields finitely correlated states
Barthel, Thomas; Eisert, Jens
2010-01-01
Real-space renormalization approaches for quantum lattice systems generate certain hierarchical classes of states that are subsumed by the multi-scale entanglement renormalization ansatz (MERA). It is shown that, with the exception of one dimension, MERA states can be efficiently mapped to finitely-correlated states, also known as projected entangled pair states (PEPS), with a bond dimension independent of the system size. Hence, MERA states form an efficiently contractible class of PEPS and obey an area law for the entanglement entropy. It is shown further that there exist other efficiently contractible schemes violating the area law.
Multi-user distribution of polarization entangled photon pairs
Trapateau, J.; Orieux, A.; Diamanti, E.; Zaquine, I., E-mail: isabelle.zaquine@telecom-paristech.fr [LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, 75013 Paris (France); Ghalbouni, J. [Applied Physics Laboratory, Faculty of Sciences 2, Lebanese University, Campus Fanar, BP 90656 Jdeidet (Lebanon)
2015-10-14
We experimentally demonstrate multi-user distribution of polarization entanglement using commercial telecom wavelength division demultiplexers. The entangled photon pairs are generated from a broadband source based on spontaneous parametric down conversion in a periodically poled lithium niobate crystal using a double path setup employing a Michelson interferometer and active phase stabilisation. We test and compare demultiplexers based on various technologies and analyze the effect of their characteristics, such as losses and polarization dependence, on the quality of the distributed entanglement for three channel pairs of each demultiplexer. In all cases, we obtain a Bell inequality violation, whose value depends on the demultiplexer features. This demonstrates that entanglement can be distributed to at least three user pairs of a network from a single source. Additionally, we verify for the best demultiplexer that the violation is maintained when the pairs are distributed over a total channel attenuation corresponding to 20 km of optical fiber. These techniques are therefore suitable for resource-efficient practical implementations of entanglement-based quantum key distribution and other quantum communication network applications.
Multi-user distribution of polarization entangled photon pairs
Trapateau, J.; Ghalbouni, J.; Orieux, A.; Diamanti, E.; Zaquine, I.
2015-10-01
We experimentally demonstrate multi-user distribution of polarization entanglement using commercial telecom wavelength division demultiplexers. The entangled photon pairs are generated from a broadband source based on spontaneous parametric down conversion in a periodically poled lithium niobate crystal using a double path setup employing a Michelson interferometer and active phase stabilisation. We test and compare demultiplexers based on various technologies and analyze the effect of their characteristics, such as losses and polarization dependence, on the quality of the distributed entanglement for three channel pairs of each demultiplexer. In all cases, we obtain a Bell inequality violation, whose value depends on the demultiplexer features. This demonstrates that entanglement can be distributed to at least three user pairs of a network from a single source. Additionally, we verify for the best demultiplexer that the violation is maintained when the pairs are distributed over a total channel attenuation corresponding to 20 km of optical fiber. These techniques are therefore suitable for resource-efficient practical implementations of entanglement-based quantum key distribution and other quantum communication network applications.
Prill, Dragica; Juhás, Pavol; Billinge, Simon J L; Schmidt, Martin U
2016-01-01
A method towards the solution and refinement of organic crystal structures by fitting to the atomic pair distribution function (PDF) is developed. Approximate lattice parameters and molecular geometry must be given as input. The molecule is generally treated as a rigid body. The positions and orientations of the molecules inside the unit cell are optimized starting from random values. The PDF is obtained from carefully measured X-ray powder diffraction data. The method resembles `real-space' methods for structure solution from powder data, but works with PDF data instead of the diffraction pattern itself. As such it may be used in situations where the organic compounds are not long-range-ordered, are poorly crystalline, or nanocrystalline. The procedure was applied to solve and refine the crystal structures of quinacridone (β phase), naphthalene and allopurinol. In the case of allopurinol it was even possible to successfully solve and refine the structure in P1 with four independent molecules. As an example of a flexible molecule, the crystal structure of paracetamol was refined using restraints for bond lengths, bond angles and selected torsion angles. In all cases, the resulting structures are in excellent agreement with structures from single-crystal data.
Local structure studies using the pair distribution function
Bordet Pierre
2015-01-01
Full Text Available The pair distribution analysis method is a fast spreading structural analysis method allowing to go beyond classical crystallographic analysis by providing quantitative information about local as well as meso-structure. It based on powder diffraction data fourier transformed to direct space. We will present here the main characteristics of the method, and its domain of application.
Real Space Approach to CMB deboosting
Yoho, Amanda; Starkman, Glenn D.; Pereira, Thiago S.
2013-01-01
The effect of our Galaxy's motion through the Cosmic Microwave Background rest frame, which aberrates and Doppler shifts incoming photons measured by current CMB experiments, has been shown to produce mode-mixing in the multipole space temperature coefficients. However, multipole space determinations are subject to many difficulties, and a real-space analysis can provide a straightforward alternative. In this work we describe a numerical method for removing Lorentz- boost effects from real-space temperature maps. We show that to deboost a map so that one can accurately extract the temperature power spectrum requires calculating the boost kernel at a finer pixelization than one might naively expect. In idealized cases that allow for easy comparison to analytic results, we have confirmed that there is indeed mode mixing among the spherical harmonic coefficients of the temperature. We find that using a boost kernel calculated at Nside=8192 leads to a 1% bias in the binned boosted power spectrum at l~2000, while ...
Distance distributions of photogenerated charge pairs in organic photovoltaic cells.
Barker, Alex J; Chen, Kai; Hodgkiss, Justin M
2014-08-27
Strong Coulomb interactions in organic photovoltaic cells dictate that charges must separate over relatively long distances in order to circumvent geminate recombination and produce photocurrent. In this article, we measure the distance distributions of thermalized charge pairs by accessing a regime at low temperature where charge pairs are frozen out following the primary charge separation step and recombine monomolecularly via tunneling. The exponential attenuation of tunneling rate with distance provides a sensitive probe of the distance distribution of primary charge pairs, reminiscent of electron transfer studies in proteins. By fitting recombination dynamics to distributions of recombination rates, we identified populations of charge-transfer states and well-separated charge pairs. For the wide range of materials we studied, the yield of separated charges in the tunneling regime is strongly correlated with the yield of free charges measured via their intensity-dependent bimolecular recombination dynamics at room temperature. We therefore conclude that populations of free charges are established via long-range charge separation within the thermalization time scale, thus invoking early branching between free and bound charges across an energetic barrier. Subject to assumed values of the electron tunneling attenuation constant, we estimate critical charge separation distances of ∼3-4 nm in all materials. In some blends, large fullerene crystals can enhance charge separation yields; however, the important role of the polymers is also highlighted in blends that achieved significant charge separation with minimal fullerene concentration. We expect that our approach of isolating the intrinsic properties of primary charge pairs will be of considerable value in guiding new material development and testing the validity of proposed mechanisms for long-range charge separation.
Imaging Hydrogen Bond in Real Space
Chen, Xiu; Liu, Lacheng; Liu, Xiaoqing; Cai, Yingxing; Liu, Nianhua; Wang, Li
2013-01-01
Hydrogen bond is often assumed to be a purely electrostatic interaction between a electron-deficient hydrogen atom and a region of high electron density. Here, for the first time, we directly image hydrogen bond in real space by room-temperature scanning tunneling microscopy (STM) with the assistance of resonant tunneling effect in double barrier mode. STM observations demonstrate that the C=O:HO hydrogen bonds lifted several angstrom meters above metal surfaces appear shuttle-like features with a significant contrast along the direction connected the oxygen and hydrogen atoms of a single hydrogen bond. The off-center location of the summit and the variance of the appearance height for the hydrogen bond with scanning bias reveal that there are certain hybridizations between the electron orbitals of the involved oxygen and hydrogen atoms in the C=O:HO hydrogen bond.
Research on the hydraulic transformer with new distribution pairs
2008-01-01
A new distribution pairs of the hydraulic transformer (HT) has been proposed to extend its output pressure range. A common pressure rail (CPR) test-rig was built to test the performance of the HT. The simulation and the test were carried out to explore the output pressure, the displacement and the speed stability of the HT. The research results have shown as follows. Firstly, the designed HT can realize regu- lating the pressure, and its output pressure is determined by the control angle of the port plate and affected by the load. The ratio of the load pressure (pB) to the supply pressure (pA) of the HT varies from 0 to 1.2. Secondly, the HT is a hydraulic component of variable displacement, and the displacement of the every port of the HT depends on the control angle and is not affected by loads. Finally, the speed stability of the HT becomes better with the control angle rising, and the movement zone exists while the control angle is lower than 15°. The high pulsation of the driving torque of the HT results in the poor speed stability. The research will contribute to the improvement of the HT performance in the future.
Research on the hydraulic transformer with new distribution pairs
OUYANG XiaoPing; YANG HuaYong; XU Bing; XU XiuHua
2008-01-01
A new distribution pairs of the hydraulic transformer (HT) has been proposed to extend its output pressure range. A common pressure rail (CPR) test-rig was built to test the performance of the HT. The simulation and the test were carried out to explore the output pressure, the displacement and the speed stability of the HT. The research results have shown as follows. Firstly, the designed HT can realize regulating the pressure, and its output pressure is determined by the control angle of the port plate and affected by the load. The ratio of the load pressure (PB) to the supply pressure (PA) of the HT varies from 0 to 1.2. Secondly, the HT is a hydraulic component of variable displacement, and the displacement of the every port of the HT depends on the control angle and is not affected by loads. Finally, the speed stability of the HT becomes better with the control angle rising, and the movement zone exists while the control angle is lower than 15°. The high pulsation of the driving torque of the HT results in the poor speed stability. The research will contribute to the improvement of the HT performance in the future.
A Fast Algorithm for Phase Grating Preparation by Real Space Method
无
2001-01-01
Based on a definitely integral formula, an expression ofcalculating atomic potential distribution function U(Υ) in a unit cell is derived as follows: Making use of this expression to calculate the phase grating in high resolution image simulation can greatly reduce the calculating time. In this paper, the derivation of the expression is introduced, and then the computer routine is explained in details. Finally the potential projection map of Mg44Rh7 along [001] direction is shown as an illustration. All operations are carried out in real space, so we call the calculation method as the real space method.
Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.; Martinez-Inesta, Maria
2017-04-13
The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately and
Performance of Photon-Pair Quantum Key Distribution Systems
Walton, Z D; Atatüre, M; Saleh, B E A; Teich, M C
2001-01-01
We analyze the quantitative improvement in performance provided by a novel quantum key distribution (QKD) system that employs a correlated photon source (CPS) and a photon-number resolving detector (PNR). Our calculations suggest that given current technology, the CPR implementation offers an improvement of several orders of magnitude in secure bit rate over previously described implementations.
LUBRICATION BASIS THEORY OF WORM PAIR AND TEMPERATURE DISTRIBUTION ON WORM GEAR SURFACE
1998-01-01
The lubrication basis theory of worm pair is given. The lubrication state of worm gear is analyzed. It is found that the temperature distribution on the tooth surface of worm gear is closely related with the lubrication state and that the temperature on the tooth surface of worm gear is consistent with the characteristic term of mesh and motion of worm pair.
Distributed Pair Programming Using Collaboration Scripts: An Educational System and Initial Results
Tsompanoudi, Despina; Satratzemi, Maya; Xinogalos, Stelios
2015-01-01
Since pair programming appeared in the literature as an effective method of teaching computer programming, many systems were developed to cover the application of pair programming over distance. Today's systems serve personal, professional and educational purposes allowing distributed teams to work together on the same programming project. The…
Quantum phase transition induced by real-space topology
Li, C.; Zhang, G.; Lin, S.; Song, Z.
2016-12-01
A quantum phase transition (QPT), including both topological and symmetry breaking types, is usually induced by the change of global parameters, such as external fields or global coupling constants. In this work, we demonstrate the existence of QPT induced by the real-space topology of the system. We investigate the groundstate properties of the tight-binding model on a honeycomb lattice with the torus geometry based on exact results. It is shown that the ground state experiences a second-order QPT, exhibiting the scaling behavior, when the torus switches to a tube, which reveals the connection between quantum phase and the real-space topology of the system.
Quantum phase transition induced by real-space topology.
Li, C; Zhang, G; Lin, S; Song, Z
2016-12-22
A quantum phase transition (QPT), including both topological and symmetry breaking types, is usually induced by the change of global parameters, such as external fields or global coupling constants. In this work, we demonstrate the existence of QPT induced by the real-space topology of the system. We investigate the groundstate properties of the tight-binding model on a honeycomb lattice with the torus geometry based on exact results. It is shown that the ground state experiences a second-order QPT, exhibiting the scaling behavior, when the torus switches to a tube, which reveals the connection between quantum phase and the real-space topology of the system.
Meiling, Yu; Lianshou, Liu
2008-01-01
Pair distribution function for delocalized quarks in the strongly coupled quark gluon plasma (sQGP) as well as in the states at intermediate stages of crossover from hadronic matter to sQGP are calculated using a molecule-like aggregation model. The shapes of the obtained pair distribution functions exhibit the character of liquid. The increasing correlation length in the process of crossover indicates a diminishing viscosity of the fluid system.
Zhou, Zhi-Yuan; Jiang, Yun-Kun; Ding, Dong-Sheng; Shi, Bao-Sen; Guo, Guang-Can
2013-04-01
We have demonstrated experimentally a nondegenerate polarization-entangled photon-pair distribution in a commercial telecom dense wave-division multiplexing device (DWDM) with eight channels. A promising point of this experiment is that an entangled photon pair is obtained via spontaneous parametric down conversion in a single type-II periodically poled KTiOPO4 crystal without postselection. Another promising advantage is that we can actively switch the distribution of the photon pair between different channel pairs in DWDM at will. There is no crosstalk between different channel pairs because of a limited emission bandwidth of the source. Maximum raw visibility of 97.88%±0.86% obtained in a Bell-type interference experiment and a Clauser-Horne-Shimony-Holt (CHSH) inequality S parameter of 2.63±0.08 calculated prove high entanglement of our source. Our work is helpful for building quantum communication networks.
Three real-space discretization techniques in electronic structure calculations
Torsti, T; Eirola, T; Enkovaara, J; Hakala, T; Havu, P; Havu, [No Value; Hoynalanmaa, T; Ignatius, J; Lyly, M; Makkonen, [No Value; Rantala, TT; Ruokolainen, J; Ruotsalainen, K; Rasanen, E; Saarikoski, H; Puska, MJ
2006-01-01
A characteristic feature of the state-of-the-art of real-space methods in electronic structure calculations is the diversity of the techniques used in the discretization of the relevant partial differential equations. In this context, the main approaches include finite-difference methods, various ty
Real space electrostatics for multipoles. III. Dielectric Properties
Lamichhane, Madan; Newman, Kathie E; Gezelter, J Daniel
2016-01-01
In the first two papers in this series, we developed new shifted potential (SP), gradient shifted force (GSF), and Taylor shifted force (TSF) real-space methods for multipole interactions in condensed phase simulations. Here, we discuss the dielectric properties of fluids that emerge from simulations using these methods. Most electrostatic methods (including the Ewald sum) require correction to the conducting boundary fluctuation formula for the static dielectric constants, and we discuss the derivation of these corrections for the new real space methods. For quadrupolar fluids, the analogous material property is the quadrupolar susceptibility. As in the dipolar case, the fluctuation formula for the quadrupolar susceptibility has corrections that depend on the electrostatic method being utilized. One of the most important effects measured by both the static dielectric and quadrupolar susceptibility is the ability to screen charges embedded in the fluid. We use potentials of mean force between solvated ions to...
Real-space Berry phases: Skyrmion soccer (invited)
Everschor-Sitte, Karin; Sitte, Matthias
2014-05-01
Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.
Real-space Berry phases: Skyrmion soccer (invited)
Everschor-Sitte, Karin, E-mail: karin@physics.utexas.edu; Sitte, Matthias [The University of Texas at Austin, Department of Physics, 2515 Speedway, Austin, Texas 78712 (United States)
2014-05-07
Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.
Entangled-Pair Transmission Improvement Using Distributed Phase-Sensitive Amplification
Anjali Agarwal
2014-12-01
Full Text Available We demonstrate the transmission of time-bin entangled photon pairs through a distributed optical phase-sensitive amplifier (OPSA. We utilize four-wave mixing at telecom wavelengths in a 5-km dispersion-shifted fiber OPSA operating in the low-gain limit. Measurements of two-photon interference curves show no statistically significant degradation in the fringe visibility at the output of the OPSA. In addition, coincidence counting rates are higher than direct passive transmission because of constructive interference between amplitudes of input photon pairs and those generated in the OPSA. Our results suggest that application of distributed phase-sensitive amplification to transmission of entangled photon pairs could be highly beneficial towards advancing the rate and scalability of future quantum communications systems.
Entangled-Pair Transmission Improvement Using Distributed Phase-Sensitive Amplification
Agarwal, Anjali; Dailey, James M.; Toliver, Paul; Peters, Nicholas A.
2014-10-01
We demonstrate the transmission of time-bin entangled photon pairs through a distributed optical phase-sensitive amplifier (OPSA). We utilize four-wave mixing at telecom wavelengths in a 5-km dispersion-shifted fiber OPSA operating in the low-gain limit. Measurements of two-photon interference curves show no statistically significant degradation in the fringe visibility at the output of the OPSA. In addition, coincidence counting rates are higher than direct passive transmission because of constructive interference between amplitudes of input photon pairs and those generated in the OPSA. Our results suggest that application of distributed phase-sensitive amplification to transmission of entangled photon pairs could be highly beneficial towards advancing the rate and scalability of future quantum communications systems.
Piazza, Francesco
2002-01-01
In this paper we develop a technique for determining interatomic potentials in materials in the quantum regime from single--shell Extended X-ray Absorption Spectroscopy (EXAFS) spectra. We introduce a pair distribution function, based on ordinary quantum time--independent perturbation theory. In the proposed scheme, the model potential parameters enter the distribution through a fourth--order Taylor expansion of the potential, and are directly refined in the fit of the model signal to the exp...
Hansen, Flemming Yssing; Carneiro, K.
1977-01-01
A simple numerical method, which unifies the calculation of structure factors from X-ray or neutron diffraction data with the calculation of reliable pair distribution functions, is described. The objective of the method is to eliminate systematic errors in the normalizations and corrections of t...
Reconstructing interaction potentials in thin films from real-space images.
Gienger, Jonas; Severin, Nikolai; Rabe, Jürgen P; Sokolov, Igor M
2016-04-01
We demonstrate that an inverse Monte Carlo approach allows one to reconstruct effective interaction potentials from real-space images. The method is exemplified on monomolecular ethanol-water films imaged with scanning force microscopy, which provides the spatial distribution of the molecules. Direct Monte Carlo simulations with the reconstructed potential allow for obtaining characteristics of the system which are unavailable in the experiment, such as the heat capacity of the monomolecularly thin film, and for a prediction of the critical temperature of the demixing transition.
Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances
Zhang, Yan [Northeastern Univ., Boston, MA (United States); Inouye, Hideyo [Northeastern Univ., Boston, MA (United States); Crowley, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yu, Leiming [Northeastern Univ., Boston, MA (United States); Kaeli, David [Northeastern Univ., Boston, MA (United States); Makowski, Lee [Northeastern Univ., Boston, MA (United States)
2016-10-14
Intensity simulation of X-ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X-ray diffraction patterns from complex fibrils using atom-type-specific pair-distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair-distance data set. These quantized pair-distance arrays are used with a modified and vectorized Debye formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. This algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement.
A Real-Space Cellular Automaton Laboratory for the modeling of complex dunefields
Rozier, Olivier; Narteau, Clement
2013-04-01
Using applications in the physics of sand dunes, we explore the capabilities of a Real Space Cellular Automaton Laboratory (ReSCAL), a generator of 3D stochastic cellular automaton stochastic cellular automaton models with continuous time. The objective of this software is to develop interdisciplinary research collaboration to investigate the dynamics of complex systems. In the vast majority of numerical models, any point in space is entirely characterized by a local set of physical variables (e. g. temperature, pressure, velocity) that are recalculated over time according to some predetermined set of fundamental laws. However, there is not always a satisfactory theoretical framework from which we can try to quantify the overall dynamics of the system. For this reason, we prefer concentrate on features of organization and ReSCAL is entirely constructed from a finite number of discrete states that represent the different phases of matter involved in the system under consideration. Then, an elementary cell is a real-space representation of the physical environment. Pairs of nearest neighbor cells are called doublets and each individual physical process is associated with a set of doublet transitions and a characteristic transition rate. Using a modular approach, we show how it is possible to model and combine a wide range of physical, chemical and/or anthropological processes. As an example, we discuss different dune morphologies with respect to rotating wind conditions.
A Real Space Cellular Automaton Laboratory (ReSCAL) to analyze complex geophysical systems
Rozier, O.; Narteau, C.
2012-04-01
The Real Space Cellular Automaton Laboratory (ReSCAL) is a generator of 3D multiphysics, markovian and stochastic cellular automata with continuous time. The objective of this new software released under a GNU licence is to develop interdisciplinary research collaboration to investigate the dynamics of complex geophysical systems. In a vast majority of cases, a numerical model is a set of physical variables (temperature, pressure, velocity, etc...) that are recalculated over time according to some predetermined rules or equations. Then, any point in space is entirely characterized by a local set of parameters. This is not the case in ReSCAL where the only local variable is a state-parameter that represent the different phases involved in the problem. An elementary cell represent a given volume of real-space. Pairs of nearest neighbour cells are called doublet. For each individual physical process that we take into account, there is a set of doublet transitions. Using this approach we can model a wide range of physical-chemical or anthropological processes. Here, we present different ingredients of ReSCAL using published applications in geosciences (Narteau et al. 2001 and 2009). We also show how ReSCAL can be developped and used across many displines in geophysics and physical geography. Supplementary informations: Sources files of ReSCAL can be download on http://www.ipgp.fr/~rozier/ReSCAL/rescal-en.html
Entanglement renormalization for quantum fields in real space.
Haegeman, Jutho; Osborne, Tobias J; Verschelde, Henri; Verstraete, Frank
2013-03-08
We show how to construct renormalization group (RG) flows of quantum field theories in real space, as opposed to the usual Wilsonian approach in momentum space. This is achieved by generalizing the multiscale entanglement renormalization ansatz to continuum theories. The variational class of wave functions arising from this RG flow are translation invariant and exhibits an entropy-area law. We illustrate the construction for a free nonrelativistic boson model, and argue that the full power of the construction should emerge in the case of interacting theories.
Dynamical real space renormalization group applied to sandpile models.
Ivashkevich, E V; Povolotsky, A M; Vespignani, A; Zapperi, S
1999-08-01
A general framework for the renormalization group analysis of self-organized critical sandpile models is formulated. The usual real space renormalization scheme for lattice models when applied to nonequilibrium dynamical models must be supplemented by feedback relations coming from the stationarity conditions. On the basis of these ideas the dynamically driven renormalization group is applied to describe the boundary and bulk critical behavior of sandpile models. A detailed description of the branching nature of sandpile avalanches is given in terms of the generating functions of the underlying branching process.
Pinning down the large-x gluon with NNLO top-quark pair differential distributions
Czakon, Michał; Mitov, Alexander; Nocera, Emanuele R; Rojo, Juan
2016-01-01
Top-quark pair production at the LHC is directly sensitive to the gluon PDF at large x. While total cross-section data is already included in several PDF determinations, differential distributions are not, because the corresponding NNLO calculations have become available only recently. In this work we study the impact on the large-x gluon of top-quark pair differential distributions measured by ATLAS and CMS at $\\sqrt{s}=8$ TeV. Our analysis, performed in the NNPDF3.0 framework at NNLO accuracy, allows us to identify the optimal combination of LHC top-quark pair measurements that maximize the constraints on the gluon, as well as to assess the compatibility between ATLAS and CMS data. We find that differential distributions from top-quark pair production provide significant constraints on the large-x gluon, comparable to those obtained from inclusive jet production data, and thus should become an important ingredient for the next generation of global PDF fits.
R Saravanan; K S Syed Ali; S Israel
2008-04-01
The local, average and electronic structure of the semiconducting materials Si and Ge has been studied using multipole, maximum entropy method (MEM) and pair distribution function (PDF) analyses, using X-ray powder data. The covalent nature of bonding and the interaction between the atoms are clearly revealed by the two-dimensional MEM maps plotted on (1 0 0) and (1 1 0) planes and one-dimensional density along [1 0 0], [1 1 0] and [1 1 1] directions. The mid-bond electron densities between the atoms are 0.554 e/Å3 and 0.187 e/Å3 for Si and Ge respectively. In this work, the local structural information has also been obtained by analyzing the atomic pair distribution function. An attempt has been made in the present work to utilize the X-ray powder data sets to refine the structure and electron density distribution using the currently available versatile methods, MEM, multipole analysis and determination of pair distribution function for these two systems.
Real-space imaging of fractional quantum Hall liquids.
Hayakawa, Junichiro; Muraki, Koji; Yusa, Go
2013-01-01
Electrons in semiconductors usually behave like a gas--as independent particles. However, when confined to two dimensions under a perpendicular magnetic field at low temperatures, they condense into an incompressible quantum liquid. This phenomenon, known as the fractional quantum Hall (FQH) effect, is a quantum-mechanical manifestation of the macroscopic behaviour of correlated electrons that arises when the Landau-level filling factor is a rational fraction. However, the diverse microscopic interactions responsible for its emergence have been hidden by its universality and macroscopic nature. Here, we report real-space imaging of FQH liquids, achieved with polarization-sensitive scanning optical microscopy using trions (charged excitons) as a local probe for electron spin polarization. When the FQH ground state is spin-polarized, the triplet/singlet intensity map exhibits a spatial pattern that mirrors the intrinsic disorder potential, which is interpreted as a mapping of compressible and incompressible electron liquids. In contrast, when FQH ground states with different spin polarization coexist, domain structures with spontaneous quasi-long-range order emerge, which can be reproduced remarkably well from the disorder patterns using a two-dimensional random-field Ising model. Our results constitute the first reported real-space observation of quantum liquids in a class of broken symmetry state known as the quantum Hall ferromagnet.
Real-space renormalized dynamical mean field theory
Kubota, Dai; Sakai, Shiro; Imada, Masatoshi
2016-05-01
We propose real-space renormalized dynamical mean field theory (rr-DMFT) to deal with large clusters in the framework of a cluster extension of the DMFT. In the rr-DMFT, large clusters are decomposed into multiple smaller clusters through a real-space renormalization. In this work, the renormalization effect is taken into account only at the lowest order with respect to the intercluster coupling, which nonetheless reproduces exactly both the noninteracting and atomic limits. Our method allows us large cluster-size calculations which are intractable with the conventional cluster extensions of the DMFT with impurity solvers, such as the continuous-time quantum Monte Carlo and exact diagonalization methods. We benchmark the rr-DMFT for the two-dimensional Hubbard model on a square lattice at and away from half filling, where the spatial correlations play important roles. Our results on the spin structure factor indicate that the growth of the antiferromagnetic spin correlation is taken into account beyond the decomposed cluster size. We also show that the self-energy obtained from the large-cluster solver is reproduced by our method better than the solution obtained directly for the smaller cluster. When applied to the Mott metal-insulator transition, the rr-DMFT is able to reproduce the reduced critical value for the Coulomb interaction comparable to the large cluster result.
Katsuta, Shoichi; Yamaguchi, Naoko; Ogawa, Ryuji; Kudo, Yoshihiro; Takeda, Yasuyuki
2008-10-01
The distribution behavior of the salts of a series of 1-alkyl-3-methylimidazolium cations (RMeIm(+); R = butyl, hexyl, and octyl) with tetrafluoroborate (BF(4)(-)), hexafluorophosphate (PF(6)(-)), bis(trifluoromethanesulfonyl)amide (NTf(2)(-)), and 2,4,6-trinitrophenolate (Pic(-)) anions has been investigated in a dichloromethane-water system at 25 degrees C. The distribution constants (K(D)) of the ion pairs and the transfer activity coefficients ((o)gamma(w)) of the single ions were determined. For the ion pairs with a given anion, the log K(D) value increases linearly with the number of methylene groups (N(CH2)) in the cation, which can be explained by using the regular solution theory. A similar relationship was observed between log (o)gamma(w) and N(CH2) for the free RMeIm(+) ions, and the result was discussed by decomposing the transfer activity coefficient into the Born-type electrostatic contribution and the non-electrostatic one. For the free anions and their ion pairs with a given cation, the (o)gamma(w) and K(D) values increase with increasing molar volume of the anion: i.e., BF(4)(-) ion-pair formation in water are also discussed by comparing the present results with those of tetraalkylammonium salts previously reported.
Sridhar, Srivatsan; Maurogordato, Sophie; Benoist, Christophe; Cappi, Alberto; Marulli, Federico
2017-04-01
Context. The next generation of galaxy surveys will provide cluster catalogues probing an unprecedented range of scales, redshifts, and masses with large statistics. Their analysis should therefore enable us to probe the spatial distribution of clusters with high accuracy and derive tighter constraints on the cosmological parameters and the dark energy equation of state. However, for the majority of these surveys, redshifts of individual galaxies will be mostly estimated by multiband photometry which implies non-negligible errors in redshift resulting in potential difficulties in recovering the real-space clustering. Aims: We investigate to which accuracy it is possible to recover the real-space two-point correlation function of galaxy clusters from cluster catalogues based on photometric redshifts, and test our ability to detect and measure the redshift and mass evolution of the correlation length r0 and of the bias parameter b(M,z) as a function of the uncertainty on the cluster redshift estimate. Methods: We calculate the correlation function for cluster sub-samples covering various mass and redshift bins selected from a 500 deg2 light-cone limited to H z=0)=\\frac{σz{1+z_c} = 0.005,0.010,0.030} and 0.050, in order to cover the typical values expected in forthcoming surveys. The correlation function in real-space is then computed through estimation and deprojection of wp(rp). Four mass ranges (from Mhalo > 2 × 1013h-1M⊙ to Mhalo > 2 × 1014h-1M⊙) and six redshift slices covering the redshift range [0, 2] are investigated, first using cosmological redshifts and then for the four photometric redshift configurations. Results: From the analysis of the light-cone in cosmological redshifts we find a clear increase of the correlation amplitude as a function of redshift and mass. The evolution of the derived bias parameter b(M,z) is in fair agreement with theoretical expectations. We calculate the r0-d relation up to our highest mass, highest redshift sample
An efficient algorithm for generating random number pairs drawn from a bivariate normal distribution
Campbell, C. W.
1983-01-01
An efficient algorithm for generating random number pairs from a bivariate normal distribution was developed. Any desired value of the two means, two standard deviations, and correlation coefficient can be selected. Theoretically the technique is exact and in practice its accuracy is limited only by the quality of the uniform distribution random number generator, inaccuracies in computer function evaluation, and arithmetic. A FORTRAN routine was written to check the algorithm and good accuracy was obtained. Some small errors in the correlation coefficient were observed to vary in a surprisingly regular manner. A simple model was developed which explained the qualities aspects of the errors.
A real-space approach to the X-ray phase problem
Liu, Xiangan
Over the past few decades, the phase problem of X-ray crystallography has been explored in reciprocal space in the so called direct methods . Here we investigate the problem using a real-space approach that bypasses the laborious procedure of frequent Fourier synthesis and peak picking. Starting from a completely random structure, we move the atoms around in real space to minimize a cost function. A Monte Carlo method named simulated annealing (SA) is employed to search the global minimum of the cost function which could be constructed in either real space or reciprocal space. In the hybrid minimal principle, we combine the dual space costs together. One part of the cost function monitors the probability distribution of the phase triplets, while the other is a real space cost function which represents the discrepancy between measured and calculated intensities. Compared to the single space cost functions, the dual space cost function has a greatly improved landscape and therefore could prevent the system from being trapped in metastable states. Thus, the structures of large molecules such as virginiamycin (C43H 49N7O10 · 3CH0OH), isoleucinomycin (C60H102N 6O18) and hexadecaisoleucinomycin (HEXIL) (C80H136 N8O24) can now be solved, whereas it would not be possible using the single cost function. When a molecule gets larger, the configurational space becomes larger, and the requirement of CPU time increases exponentially. The method of improved Monte Carlo sampling has demonstrated its capability to solve large molecular structures. The atoms are encouraged to sample the high density regions in space determined by an approximate density map which in turn is updated and modified by averaging and Fourier synthesis. This type of biased sampling has led to considerable reduction of the configurational space. It greatly improves the algorithm compared to the previous uniform sampling. Hence, for instance, 90% of computer run time could be cut in solving the complex
Dustin Scheinost
Full Text Available We present a novel voxel-based connectivity approach for paired functional magnetic resonance imaging (fMRI data collected under two different conditions labeled the Coupled Intrinsic Connectivity Distribution (coupled-ICD. Our proposed method jointly models both conditions to incorporate additional paired information into the connectivity metric. Voxel-based connectivity holds promise as a clinical tool to characterize a wide range of neurological and psychiatric diseases, and monitor their treatment. As such, examining paired connectivity data such as scans acquired pre- and post-intervention is an important application for connectivity methodologically. When presented with data from paired conditions, conventional voxel-based methods analyze each condition separately. However, summarizing each connection separately can misrepresent patterns of changes in connectivity. We show that commonly used methods can underestimate functional changes and subsequently introduce and evaluate our solution to this problem, the coupled-ICD metric, using two studies: 1 healthy controls scanned awake and under anesthesia, and 2 cocaine-dependent subjects and healthy controls scanned while being presented with relaxing or drug-related imagery cues. The coupled-ICD approach detected differences between paired conditions in similar brain regions as the conventional approaches while also revealing additional changes in regions not identified using conventional voxel-based connectivity analyses. Follow-up seed-based analyses on data independent from the voxel-based results also showed connectivity differences between conditions in regions detected by coupled-ICD. This approach of jointly analyzing paired resting-state scans provides a new and important tool with many applications for clinical and basic neuroscience research.
Real space renormalization group theory of disordered models of glasses.
Angelini, Maria Chiara; Biroli, Giulio
2017-03-28
We develop a real space renormalization group analysis of disordered models of glasses, in particular of the spin models at the origin of the random first-order transition theory. We find three fixed points, respectively, associated with the liquid state, with the critical behavior, and with the glass state. The latter two are zero-temperature ones; this provides a natural explanation of the growth of effective activation energy scale and the concomitant huge increase of relaxation time approaching the glass transition. The lower critical dimension depends on the nature of the interacting degrees of freedom and is higher than three for all models. This does not prevent 3D systems from being glassy. Indeed, we find that their renormalization group flow is affected by the fixed points existing in higher dimension and in consequence is nontrivial. Within our theoretical framework, the glass transition results in an avoided phase transition.
Modeling solvation effects in real-space and real-time within density functional approaches
Delgado, Alain [Istituto Nanoscienze - CNR, Centro S3, via Campi 213/A, 41125 Modena (Italy); Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Calle 30 # 502, 11300 La Habana (Cuba); Corni, Stefano; Pittalis, Stefano; Rozzi, Carlo Andrea [Istituto Nanoscienze - CNR, Centro S3, via Campi 213/A, 41125 Modena (Italy)
2015-10-14
The Polarizable Continuum Model (PCM) can be used in conjunction with Density Functional Theory (DFT) and its time-dependent extension (TDDFT) to simulate the electronic and optical properties of molecules and nanoparticles immersed in a dielectric environment, typically liquid solvents. In this contribution, we develop a methodology to account for solvation effects in real-space (and real-time) (TD)DFT calculations. The boundary elements method is used to calculate the solvent reaction potential in terms of the apparent charges that spread over the van der Waals solute surface. In a real-space representation, this potential may exhibit a Coulomb singularity at grid points that are close to the cavity surface. We propose a simple approach to regularize such singularity by using a set of spherical Gaussian functions to distribute the apparent charges. We have implemented the proposed method in the OCTOPUS code and present results for the solvation free energies and solvatochromic shifts for a representative set of organic molecules in water.
Effectiveness of installing two pairs of distribution surge arresters in parallel
Sugimoto, Hitoshi; Asakawa, Akira; Yokoyama, Shigeru [Central Research Institute of Electric Power Industry (Japan); Nakada, Kazuo [Hokurika Electric Power Co. (Japan)
1999-07-01
Lightning strokes with a large amount of energy sometimes occur on the Sea of Japan coast in winter. Winter lightning often damages overhead power distribution lines, in particular, those supplying power to high structures located in mountainous areas. We have investigated that the ratio of surge arrester outages with respect to all damaged installations on such power distribution lines is largest at approximately 50%. We have examined the effectiveness of installing two pairs of surge arresters in parallel on a single pole as a method for preventing distribution surge arrester outages experimentally. We have clarified that to install surge arresters in parallel is effective in reducing the energy absorbed by surge arresters if these surge arresters have almost the same discharge voltage and voltage-current characteristics. (author)
A density functional for liquid {sup 4}He including the pair distribution function
Szybisz, Leszek [Laboratorio TANDAR, Departamento de Fisica, Comision Nacional de Energia Atomica, Av. del Libertador 8250, RA-1429 Buenos Aires (Argentina) and Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, RA-1428 Buenos Aires (Argentina) and Consejo Nacional de Investigaciones Cientificas y Tecnicas, Av. Rivadavia 1917, RA-1033 Buenos Aires (Argentina)]. E-mail: szybisz@tandar.cnea.gov.ar; Urrutia, Ignacio [Laboratorio TANDAR, Departamento de Fisica, Comision Nacional de Energia Atomica, Av. del Libertador 8250, RA-1429 Buenos Aires (Argentina) and Comision de Investigaciones Cientificas de la Prov. de Buenos Aires, Calle 526 entre 10 y 11, RA-1900 La Plata (Argentina)]. E-mail: iurrutia@cnea.gov.ar
2005-04-25
A new semi-microscopic functional for studying adsorption of {sup 4}He on solid surfaces is presented. In this proposal the helium-helium interaction is screened at small distances by the pair distribution function g(r) and, in addition, the contribution which plays an important role in the interpretation of the experimental static response function is written in terms of the gradient of g(r). This functional reproduces the usual test properties. Moreover, a detailed comparison with results of the Orsay-Trento density functional is performed.
Angular distribution of positrons in coherent pair production in deformed crystals
Parazian, V V
2008-01-01
We investigate the angular distribution of positrons in the coherent process electron-positron pair creation process by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for ${\\mathrm{SiO}}_{2}$ single crystal and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of S -type.
Angular distribution of positrons in coherent pair production in deformed crystals.
Parazian, V V
2009-05-01
We investigate the angular distribution of positrons in the coherent process electron-positron pair creation process by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross section is derived for an arbitrary deformation field. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for SiO(2) and diamond single crystals and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by an acoustic wave of S-type.
Stefanov Valeri T
2002-05-01
Full Text Available Abstract Background Pairs of related individuals are widely used in linkage analysis. Most of the tests for linkage analysis are based on statistics associated with identity by descent (IBD data. The current biotechnology provides data on very densely packed loci, and therefore, it may provide almost continuous IBD data for pairs of closely related individuals. Therefore, the distribution theory for statistics on continuous IBD data is of interest. In particular, distributional results which allow the evaluation of p-values for relevant tests are of importance. Results A technology is provided for numerical evaluation, with any given accuracy, of the cumulative probabilities of some statistics on continuous genome data for pairs of closely related individuals. In the case of a pair of full-sibs, the following statistics are considered: (i the proportion of genome with 2 (at least 1 haplotypes shared identical-by-descent (IBD on a chromosomal segment, (ii the number of distinct pieces (subsegments of a chromosomal segment, on each of which exactly 2 (at least 1 haplotypes are shared IBD. The natural counterparts of these statistics for the other relationships are also considered. Relevant Maple codes are provided for a rapid evaluation of the cumulative probabilities of such statistics. The genomic continuum model, with Haldane's model for the crossover process, is assumed. Conclusions A technology, together with relevant software codes for its automated implementation, are provided for exact evaluation of the distributions of relevant statistics associated with continuous genome data on closely related individuals.
Observation of dynamic atom-atom correlation in liquid helium in real space.
Dmowski, W; Diallo, S O; Lokshin, K; Ehlers, G; Ferré, G; Boronat, J; Egami, T
2017-05-04
Liquid (4)He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom-atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that (4)He atoms in the Bose-Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDF peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom-atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.
Measurement device-independent quantum key distribution with heralded pair coherent state
Chen, Dong; Shang-Hong, Zhao; Lei, Shi
2016-10-01
The original measurement device-independent quantum key distribution is reviewed, and a modified protocol using heralded pair coherent state (HPCS) is proposed to overcome the quantum bit error rate associated with the dark count rate of the detectors in long-distance quantum key distribution. Our simulation indicates that the secure transmission distance can be improved evidently with HPCS owing to the lower probability of vacuum events when compared with weak coherent source scenario, while the secure key rate can be increased with HPCS due to the higher probability of single-photon events when compared with heralded single-photon source scenario. Furthermore, we apply the finite key analysis to the decoy state MDI-QKD with HPCS and obtain a practical key rate.
SUePDF: a program to obtain quantitative pair distribution functions from electron diffraction data
Tran, Dung Trung; Svensson, Gunnar; Tai, Cheuk-Wai
2017-01-01
SUePDF is a graphical user interface program written in MATLAB to achieve quantitative pair distribution functions (PDFs) from electron diffraction data. The program facilitates structural studies of amorphous materials and small nanoparticles using electron diffraction data from transmission electron microscopes. It is based on the physics of electron scattering as well as the total scattering methodology. A method of background modeling is introduced to treat the intensity tail of the direct beam, inelastic scattering and incoherent multiple scattering. Kinematical electron scattering intensity is scaled using the electron scattering factors. The PDFs obtained after Fourier transforms are normalized with respect to number density, nanoparticle form factor and the non-negativity of probability density. SUePDF is distributed as free software for academic users. PMID:28190994
Sakurai, Masahiro; Souto-Casares, Jaime; Chelikowsky, James R.
2016-07-01
We examine the structural stability and magnetization for nickel clusters containing up to 500 atoms by performing first-principles calculations based on pseudopotential in real space computed within density-functional theory. After structural relaxation, Ni clusters in this size range favor either an fcc structure, which is a crystal structure in bulk, or an icosahedral structure, which is expected for small clusters. The calculated total magnetic moments per atom of energetically stable clusters agree well with experiment, wherein the moments decrease nonmonotonically toward the bulk value as the cluster size increases. We analyze the spatial distribution of the local magnetic moment, which explains why the magnetic moments of Ni clusters are enhanced compared to their bulk value.
Real-space formulation of the electrostatic potential and total energy of solids
Pask, J E; Sterne, P A
2004-05-12
We develop expressions for the electrostatic potential and total energy of crystalline solids which are amenable to direct evaluation in real space. Unlike conventional reciprocal space formulations, no Fourier transforms or reciprocal lattice summations are required, and the formulation is well suited for large-scale, parallel computations. The need for reciprocal space expressions is eliminated by replacing long-range potentials by equivalent localized charge distributions and incorporating long-range interactions into boundary conditions on the unit cell. In so doing, a simplification of the conventional reciprocal space formalism is obtained. The equivalence of the real- and reciprocal space formalisms is demonstrated by direct comparison in self-consistent density-functional calculations.
Eliciting hyperparameters of prior distributions for the parameters of paired comparison models
Nasir Abbas
2013-02-01
Full Text Available Normal 0 false false false EN-US X-NONE AR-SA In the study of paired comparisons (PC, items may be ranked or issues may be prioritized through subjective assessment of certain judges. PC models are developed and then used to serve the purpose of ranking. The PC models may be studied through classical or Bayesian approach. Bayesian inference is a modern statistical technique used to draw conclusions about the population parameters. Its beauty lies in incorporating prior information about the parameters into the analysis in addition to current information (i.e. data. The prior and current information are formally combined to yield a posterior distribution about the population parameters, which is the work bench of the Bayesian statisticians. However, the problems the Bayesians face correspond to the selection and formal utilization of prior distribution. Once the type of prior distribution is decided to be used, the problem of estimating the parameters of the prior distribution (i.e. elicitation still persists. Different methods are devised to serve the purpose. In this study an attempt is made to use Minimum Chi-square (hence forth MCS for the elicitation purpose. Though it is a classical estimation technique, but is used here for the election purpose. The entire elicitation procedure is illustrated through a numerical data set.
The Real-Space Renormalization Group Applied to Diffusion in Inhomogeneous Media
Kawasaki, Mitsuhiro
2002-01-01
The real-space renormalization group technique is introduced to evaluate the effective diffusion constant for diffusion in inhomogeneous media, which has been obtained by singular perturbation methods. Our method is formulated on a discretized real space and hence it can be easily combined with numerical studies for partial differential equations.
Real-space grid implementation of the projector augmented wave method
Mortensen, Jens Jørgen; Hansen, Lars Bruno; Jacobsen, Karsten Wedel
2005-01-01
A grid-based real-space implementation of the projector augmented wave sPAWd method of Blöchl fPhys. Rev. B 50, 17953 s1994dg for density functional theory sDFTd calculations is presented. The use of uniform three-dimensional s3Dd real-space grids for representing wave functions, densities...
Bartels, Ludwig; Ernst, Karl-Heinz
2012-09-01
This issue is dedicated to Karl-Heinz Rieder on the occasion of his 70th birthday. It contains contributions written by his former students and colleagues from all over the world. Experimental techniques based on free electrons, such as photoelectron spectroscopy, electron microscopy and low energy electron diffraction (LEED), were foundational to surface science. While the first revealed the band structures of materials, the second provided nanometer scale imagery and the latter elucidated the atomic scale periodicity of surfaces. All required an (ultra-)high vacuum, and LEED illustrated impressively that adsorbates, such as carbon monoxide, hydrogen or oxygen, can markedly and periodically restructure surfaces from their bulk termination, even at pressures ten orders of magnitude or more below atmospheric. Yet these techniques were not generally able to reveal atomic scale surface defects, nor could they faithfully show adsorption of light atoms such as hydrogen. Although a complete atom, helium can also be regarded as a wave with a de Broglie wavelength that allows the study of surface atomic periodicities at a delicateness and sensitivity exceeding that of electrons-based techniques. In combination, these and other techniques generated insight into the periodicity of surfaces and their vibrational properties, yet were limited to simple and periodic surface setups. All that changed with the advent of scanning tunneling microscopy (STM) roughly 30 years ago, allowing real space access to surface defects and individual adsorbates. Applied at low temperatures, not only can STM establish a height profile of surfaces, but can also perform spectroscopy and serve as an actuator capable of rearranging individual species at atomic scale resolution. The direct and intuitive manner in which STM provided access as a spectator and as an actor to the atomic scale was foundational to today's surface science and to the development of the concepts of nanoscience in general. The
Emerging operando and x-ray pair distribution function methods for energy materials development
Chapman, Karena W.
2016-03-01
Our energy needs drive widespread materials research. Advances in materials characterization are critical to this research effort. Using new characterization tools that allow us to probe the atomic structure of energy materials in situ as they operate, we can identify how their structure is linked to their functional properties and performance. These fundamental insights serve as a roadmap to enhance performance in the next generation of advanced materials. In the last decade, developments in synchrotron instrumentation have made the pair distribution function (PDF) method and operando x-ray studies more readily accessible tools capable of providing valuable insights into complex materials systems. Here, the emergence of the PDF method as a versatile structure characterization tool and the further enhancement of this method through developments in operando capabilities and multivariate data analytics are described. These advances in materials characterization are demonstrated by several highlighted studies focused on energy storage in batteries.
Dalgic, Seyfettin; Gonzalez, Luis Enrique; Baer, Shalom; Silbert, Moises
2002-12-01
We present the results of calculations of the static structure factor S(k) and the pair distribution function g(r) of the tetrahedral amorphous semiconductors germanium, silicon and carbon using the structural diffusion model (SDM). The results obtained with the SDM for S(k) and g(r) are of comparable quality with those obtained by the unconstrained Reverse Monte Carlo simulations and existing ab initio molecular dynamics simulations for these systems. We have found that g(r) exhibits a small peak, or shoulder, a weak remnant of the prominent third neighbour peak present in the crystalline phase of these systems. This feature has been experimentally found to be present in recently reported high energy X-ray experiments of amorphous silicon (Phys. Rev. B 60 (1999) 13520), as well as in the previous X-ray diffraction of as-evaporated amorphous germanium (Phys. Rev. B 50 (1994) 539)
Cliffe, Matthew J; Goodwin, Andrew L
2013-11-13
We present a detailed study of the mechanism by which the INVERT method (Cliffe et al 2010 Phys. Rev. Lett. 104 125501) guides structure refinement of disordered materials. We present a number of different possible implementations of the central algorithm and explore the question of algorithm weighting. Our analysis includes quantification of the relative contributions of variance and fit-to-data terms during structure refinement, which leads us to study the roles of density fluctuations and configurational jamming in the RMC fitting process. We present a parametric study of the pair distribution function solution space for C60, a-Si and a-SiO2, which serves to highlight the difficulties faced in developing a transferable weighting scheme.
The total scattering atomic pair distribution function: New methodology for nanostructure analysis
Masadeh, Ahmad
The conventional xray diffration (XRD) methods probe for the presence of long-range order (periodic structure) which are reflected in the Bragg peaks. Local structural deviations or disorder mainly affect the diffuse scattering intensity. In order to obtain structural information about both long-range order and local structure disorder, a technique that takes in account both Bragg and diffuse scattering need to be employed, such as the atomic pair distribution function (PDF) technique. This work introduces a PDF based methodology to quantitatively investigate nanostructure materials in general. The introduced methodology can be applied to extract quantitatively structural information about structure, crystallinity level, core/shell size, nanoparticle size, and inhomogeneous internal strain in the measured nanoparticles. This method is generally applicable to the characterization of the nano-scale solid, many of which may exhibit complex disorder and strain
Beckman, S.P. [Departments of Physics and Chemical Engineering, Center of Computational Materials, Institute of Computational Engineering and Sciences, University of Texas, Austin, TX 78712 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855 (United States)], E-mail: spbeckman@gmail.com; Chelikowsky, James R. [Departments of Physics and Chemical Engineering, Center of Computational Materials, Institute of Computational Engineering and Sciences, University of Texas, Austin, TX 78712 (United States)
2007-12-15
The structure and properties of vacancies in a 2 nm Si nano-crystal are studied using a real space density functional theory/pseudopotential method. It is observed that a vacancy's electronic properties and energy of formation are directly related to the local symmetry of the vacancy site. The formation energy for vacancies and Frenkel pair are calculated. It is found that both defects have lower energy in smaller crystals. In a 2 nm nano-crystal the energy to form a Frenkel pair is 1.7 eV and the energy to form a vacancy is no larger than 2.3 eV. The energy barrier for vacancy diffusion is examined via a nudged elastic band algorithm.
Pair-flowered cymes in the Lamiales: structure, distribution and origin
Weber, Anton
2013-01-01
Background and Aims In the Lamiales, indeterminate thyrses (made up of axillary cymes) represent a significant inflorescence type. However, it has been largely overlooked that there occur two types of cymes: (1) ordinary cymes, and (2) ‘pair-flowered cymes’ (PFCs), with a flower pair (terminal and front flower) topping each cyme unit. PFCs are unique to the Lamiales and their distribution, origin and phylogeny are not well understood. Methods The Lamiales are screened as to the occurrence of PFCs, ordinary cymes and single flowers (constituting racemic inflorescences). Key Results PFCs are shown to exhibit a considerable morphological and developmental diversity and are documented to occur in four neighbouring taxa of Lamiales: Calceolariaceae, Sanango, Gesneriaceae and Plantaginaceae. They are omnipresent in the Calceolariaceae and almost so in the Gesneriaceae. In the Plantaginaceae, PFCs are restricted to the small sister tribes Russelieae and Cheloneae (while the large remainder has single flowers in the leaf/bract axils; ordinary cymes do not occur). Regarding the origin of PFCs, the inflorescences of the genus Peltanthera (unplaced as to family; sister to Calceolariaceae, Sanango and Gesneriaceae in most molecular phylogenies) support the idea that PFCs have originated from paniculate systems, with the front-flowers representing remnant flowers. Conclusions From the exclusive occurrence of PFCs in the Lamiales and the proximity of the respective taxa in molecular phylogenies it may be expected that PFCs have originated once, representing a synapomorphy for this group of taxa and fading out within the Plantaginaceae. However, molecular evidence is ambiguous. Depending on the position of Peltanthera (depending in turn on the kind and number of genes and taxa analysed) a single, a double (the most probable scenario) or a triple origin appears conceivable. PMID:23884395
Pair-flowered cymes in the Lamiales: structure, distribution and origin.
Weber, Anton
2013-11-01
In the Lamiales, indeterminate thyrses (made up of axillary cymes) represent a significant inflorescence type. However, it has been largely overlooked that there occur two types of cymes: (1) ordinary cymes, and (2) 'pair-flowered cymes' (PFCs), with a flower pair (terminal and front flower) topping each cyme unit. PFCs are unique to the Lamiales and their distribution, origin and phylogeny are not well understood. The Lamiales are screened as to the occurrence of PFCs, ordinary cymes and single flowers (constituting racemic inflorescences). PFCs are shown to exhibit a considerable morphological and developmental diversity and are documented to occur in four neighbouring taxa of Lamiales: Calceolariaceae, Sanango, Gesneriaceae and Plantaginaceae. They are omnipresent in the Calceolariaceae and almost so in the Gesneriaceae. In the Plantaginaceae, PFCs are restricted to the small sister tribes Russelieae and Cheloneae (while the large remainder has single flowers in the leaf/bract axils; ordinary cymes do not occur). Regarding the origin of PFCs, the inflorescences of the genus Peltanthera (unplaced as to family; sister to Calceolariaceae, Sanango and Gesneriaceae in most molecular phylogenies) support the idea that PFCs have originated from paniculate systems, with the front-flowers representing remnant flowers. From the exclusive occurrence of PFCs in the Lamiales and the proximity of the respective taxa in molecular phylogenies it may be expected that PFCs have originated once, representing a synapomorphy for this group of taxa and fading out within the Plantaginaceae. However, molecular evidence is ambiguous. Depending on the position of Peltanthera (depending in turn on the kind and number of genes and taxa analysed) a single, a double (the most probable scenario) or a triple origin appears conceivable.
Davis, Timur D.
2011-12-01
In the development of new medicinal products, poor oral bioavailability, due to the low solubilities of many active pharmaceutical ingredients (APIs), is increasingly a barrier for treatments to be administered using tablet or capsule formulations and one of the main challenges facing the pharmaceutical industry. Non-crystalline phases such as the amorphous and nanostructured states can confer increased solubility to a drug, and therefore, have recently garnered a lot of interest from pharmaceutical researchers. However, little is known about local ordering in non-crystalline pharmaceuticals due to the lack of reliable experimental probes, hindering the clinical application of these compounds. The powerful tools of crystallography begin to lose their potency for structures on the nanoscale; conventional X-ray powder diffraction (XRPD) patterns become broad and featureless in these cases and are not useful for differentiating between different local molecular packing arrangements. In this thesis, we introduce the use of high energy X-rays coupled with total scattering pair distribution function (TSPDF) and fingerprinting analysis to investigate the local structures of non-crystalline pharmaceutical compounds. The high energy X-rays allow us to experimentally collect diffuse scattering intensities, which contain information about a sample's local ordering, in addition to the Bragg scattering available in conventional XRPD experiments, while the TSPDF allows us to view the intra- and inter-molecular correlations in real space. The goal of this study was to address some fundamental problems involving fingerprinting non-crystalline APIs using TSPDF in order to lay the groundwork for the proper use of the technique by the pharmaceutical community. We achieved this by developing the methodology as well as the exploring the scientific implications. On the methodology side, we introduced PDFGetX3, a new software program for calculating TSPDFs that simplifies the procedure
Type distribution pattern and pairing of ordinary chondrites from Grove Mountains, Antarctica
无
2003-01-01
Twenty-eight meteorites were collected on blue ice in the Grove Mountains region, Antarctica, by the 16th Chinese Antarctic Research Expedition (CHINARE). 26 out of the stones are ordinary chondrites, and their chemical-petrographic types are assigned based on electron probe microanalyses, petrography and mineralogy. 6 of them are unequilibrated L-chondrites, and the other 20 chondrites are equilibrated, including 6 H-group (3 H4, 1 H5 and 2 H6), 9 L-group (3 L4, 1 L5 and 5 L6) and 5 LL-group (2 LL4 and 3 LL5). Detailed comparative study suggests that 10 of them (including other 2 chondrites collected by the 15th CHINARE) could be paired, and represent 5 individual fall events. Hence, all 32 meteorites collected from the Grove Mountains probably belong to 27 fall events, suggestive of meteorite transferring and concentrating processes. The Grove Mountains are likely a new meteorite-enriched region. Distribution patterns of chemical-petrographic type and mass of the Grove Mountains meteorites are significantly distinct from those found in other regions, indicative of their unique sources and/or concentration mechanism. However, more studies are required in order to clarify these differences.
Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources
Wang, Le; Zhao, Shengmei
2017-04-01
Round-robin differential-phase-shift (RRDPS) quantum key distribution (QKD) scheme provides an effective way to overcome the signal disturbance from the transmission process. However, most RRDPS-QKD schemes use weak coherent pulses (WCPs) as the replacement of the perfect single-photon source. Considering the heralded pair-coherent source (HPCS) can efficiently remove the shortcomings of WCPs, we propose a RRDPS-QKD scheme with HPCS in this paper. Both infinite-intensity decoy-state method and practical three-intensity decoy-state method are adopted to discuss the tight bound of the key rate of the proposed scheme. The results show that HPCS is a better candidate for the replacement of the perfect single-photon source, and both the key rate and the transmission distance are greatly increased in comparison with those results with WCPs when the length of the pulse trains is small. Simultaneously, the performance of the proposed scheme using three-intensity decoy states is close to that result using infinite-intensity decoy states when the length of pulse trains is small.
Hiroshi Suzuki
2016-01-01
Full Text Available The deformation of nanostructure of calcium silicate hydrate (C-S-H in Portland cement (PC paste under compression was characterized by the atomic pair distribution function (PDF, measured using synchrotron X-ray diffraction. The PDF of the PC paste exhibited a unique deformation behavior for a short-range order below 2.0 nm, close to the size of the C-S-H globule, while the deformation for a long-range order was similar to that of a calcium hydroxide phase measured by Bragg peak shift. The compressive deformation of the C-S-H nanostructure was comprised of three stages with different interactions between globules. This behavior would originate from the granular nature of C-S-H, which deforms with increasing packing density by slipping the interfaces between globules, rearranging the overall C-S-H nanostructure. This new approach will lead to increasing applications of the PDF technique to understand the deformation mechanism of C-S-H in PC-based materials.
Fock-exchange for periodic structures in the real-space formalism and the KLI approximation.
Natan, Amir
2015-12-21
The calculation of Fock-exchange interaction is an important task in the computation of molecule and solid properties. In this work we describe how we implement the Fock exchange in the real-space formalism using the KLI approximation for the OEP equation for 3D periodic systems. The implementation is demonstrated within the PARSEC real-space pseudopotential code that uses a discrete uniform grid and norm conserving pseudopotentials for the ionic potentials.
Copy number variation distribution in six monozygotic twin pairs discordant for schizophrenia.
Castellani, Christina A; Awamleh, Zain; Melka, Melkaye G; O'Reilly, Richard L; Singh, Shiva M
2014-04-01
We have evaluated copy number variants (CNVs) in six monozygotic twin pairs discordant for schizophrenia. The data from Affymetrix® Human SNP 6.0 arrays™ were analyzed using Affymetrix® Genotyping Console™, Partek® Genomics Suite™, PennCNV, and Golden Helix SVS™. This yielded both program-specific and overlapping results. Only CNVs called by Affymetrix Genotyping Console, Partek Genomics Suite, and PennCNV were used in further analysis. This analysis included an assessment of calls in each of the six twin pairs towards identification of unique CNVs in affected and unaffected co-twins. Real time polymerase chain reaction (PCR) experiments confirmed one CNV loss at 7q11.21 that was found in the affected patient but not in the unaffected twin. The results identified CNVs and genes that were previously implicated in mental abnormalities in four of the six twin pairs. It included PYY (twin pairs 1 and 5), EPHA3 (twin pair 3), KIAA1211L (twin pair 4), and GPR139 (twin pair 5). They represent likely candidate genes and CNVs for the discordance of four of the six monozygotic twin pairs for this heterogeneous neurodevelopmental disorder. An explanation for these differences is ontogenetic de novo events that differentiate in the monozygotic twins during development.
Boussarie, R; Szymanowski, L; Wallon, S
2016-01-01
We propose and study the photoproduction of a $\\gamma\\,\\rho$ pair with a large invariant mass and a small transverse momentum of the final nucleon, as a way to access generalized parton distributions. In the kinematics of JLab 12-GeV, we demonstrate the feasibility of this measurement.
Petkov, Valeri; Prasai, Binay; Shan, Shiyao; Ren, Yang; Wu, Jinfang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian
2016-05-01
Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE-XRD) we tracked the evolution of the atomic structure and activity of noble metal-transition metal (NM-TM) nanocatalysts for ORR as they function at the cathode of a fully operational proton exchange membrane fuel cell (PEMFC). Experimental HE-XRD data were analysed in terms of atomic pair distribution functions (PDFs) and compared to the current output of the PEMFC, which was also recorded during the experiments. The comparison revealed that under actual operating conditions, NM-TM nanocatalysts can undergo structural changes that differ significantly in both length-scale and dynamics and so can suffer losses in their ORR activity that differ significantly in both character and magnitude. Therefore we argue that strategies for reducing ORR activity losses should implement steps for achieving control not only over the length but also over the time-scale of the structural changes of NM-TM NPs that indeed occur during PEMFC operation. Moreover, we demonstrate how such a control can be achieved and thereby the performance of PEMFCs improved considerably. Last but not least, we argue that the unique capabilities of in operando HE-XRD coupled to atomic PDF analysis to characterize active nanocatalysts inside operating fuel cells both in a time-resolved manner and with atomic level resolution, i.e. in 4D, can serve well the ongoing search for nanocatalysts that deliver more with less platinum.Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE
Petkov, Valeri; Prasai, Binay; Shan, Shiyao; Ren, Yang; Wu, Jinfang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian
2016-05-19
Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE-XRD) we tracked the evolution of the atomic structure and activity of noble metal-transition metal (NM-TM) nanocatalysts for ORR as they function at the cathode of a fully operational proton exchange membrane fuel cell (PEMFC). Experimental HE-XRD data were analysed in terms of atomic pair distribution functions (PDFs) and compared to the current output of the PEMFC, which was also recorded during the experiments. The comparison revealed that under actual operating conditions, NM-TM nanocatalysts can undergo structural changes that differ significantly in both length-scale and dynamics and so can suffer losses in their ORR activity that differ significantly in both character and magnitude. Therefore we argue that strategies for reducing ORR activity losses should implement steps for achieving control not only over the length but also over the time-scale of the structural changes of NM-TM NPs that indeed occur during PEMFC operation. Moreover, we demonstrate how such a control can be achieved and thereby the performance of PEMFCs improved considerably. Last but not least, we argue that the unique capabilities of in operando HE-XRD coupled to atomic PDF analysis to characterize active nanocatalysts inside operating fuel cells both in a time-resolved manner and with atomic level resolution, i.e. in 4D, can serve well the ongoing search for nanocatalysts that deliver more with less platinum.
White, Claire E; Provis, John L; Bloomer, Breaunnah; Henson, Neil J; Page, Katharine
2013-06-14
With the ever-increasing environmentally-driven demand for technologically advanced structural materials, geopolymer cement is fast becoming a viable alternative to traditional cements due to its proven engineering characteristics and the reduction in CO2 emitted during manufacturing (as much as 80% less CO2 emitted in manufacture, compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of reaction responsible for nanostructural evolution during the geopolymerisation process. Here, in situ X-ray total scattering measurements and pair distribution function (PDF) analysis are used to quantify the extent of reaction as a function of time for alkali-activated metakaolin/slag geopolymer binders, including the impact of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerisation reaction. Quantifying the reaction process in situ from X-ray PDF data collected during the initial ten hours can provide an estimate of the total reaction extent, but when combined with data obtained at longer times (128 days here) enables more accurate determination of the overall rate of reaction. To further assess the initial stages of the geopolymerisation reaction process, a pseudo-single step first order rate equation is fitted to the extent of reaction data, which reveals important mechanistic information regarding the role of free silica in the activators in the evolution of the binder systems. Hence, it is shown that in situ X-ray PDF analysis is an ideal experimental local structure tool to probe the reaction kinetics of complex reacting systems involving transitions between disordered/amorphous phases, of which geopolymerisation is an important example.
Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip; Floyd, Bertram M.; Lind, Alexander J.;
2016-01-01
A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nanometer pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nanometer photons are up-converted to a single 532-nanometer photon in the first stage. In the second stage, the 532-nanometer photon is down-converted to an entangled photon-pair at 800 nanometer and 1600 nanometer which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.
Aerial Breeding Pair Surveys of the Arctic Coastal Plain of Alaska : Distribution and Abundance 1995
US Fish and Wildlife Service, Department of the Interior — An aerial breeding pair survey was conducted on the Arctic Coastal Plain of Alaska for the 10th consecutive year in 1995. The population estimate for the northern...
Peng, Cheng-Zhi; Yang, Tao; Bao, Xiao-Hui; Zhang, Jun; Jin, Xian-Min; Feng, Fa-Yong; Yang, Bin; Yang, Jian; Yin, Juan; Zhang, Qiang; Li, Nan; Tian, Bao-Li; Pan, Jian-Wei
2005-04-22
We report free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km. It is shown that the desired entanglement can still survive after both entangled photons have passed through the noisy ground atmosphere with a distance beyond the effective thickness of the aerosphere. This is confirmed by observing a spacelike separated violation of Bell inequality of 2.45+/-0.09. On this basis, we exploit the distributed entangled photon source to demonstrate the Bennett-Brassard 1984 quantum cryptography scheme. The distribution distance of entangled photon pairs achieved in the experiment is for the first time well beyond the effective thickness of the aerosphere, hence presenting a significant step towards satellite-based global quantum communication.
Zhu, Feng; Zhang, Chun-Hui; Liu, Ai-Ping [Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003 (China); Wang, Qin, E-mail: qinw@njupt.edu.cn [Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003 (China); Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026 (China)
2016-04-01
In this paper, we propose to implement the heralded pair-coherent source into the measurement-device-independent quantum key distribution. By comparing its performance with other existing schemes, we demonstrate that our new scheme can overcome many shortcomings existing in current schemes, and show excellent behavior in the quantum key distribution. Moreover, even when taking the statistical fluctuation into account, we can still obtain quite high key generation rate at very long transmission distance by using our new scheme. - Highlights: • Implement the heralded pair-coherent source into the measurement-device-independent quantum key distribution. • Overcome many shortcomings existing in current schemes and show excellent behavior. • Obtain quite high key generation rate even when taking statistical fluctuation into account.
Key, Baris
The universally used negative electrode material in a LIB is carbon, because of its moderate capacity (372 mAhg-1 for graphite), cyclability and high rate capability. However, new, low cost, safe electrode materials with higher capacities are still urgently required for both portable and transportation applications. Silicon anodes are particularly attractive alternatives to carbon with extremely high gravimetric energy densities (3572 mAhg-1). Compared to graphite, silicon has a massive volumetric capacity of 8322 mAhcm-3 (calculated based on the original volume of silicon) which is approximately ten times that graphite. At room temperature, upon electrochemical lithiation, silicon undergoes a crystalline to amorphous phase transition forming a lithiated amorphous silicide phase. Unfortunately, due to the amorphous nature of the lithiated silicides, it is not possible to monitor all the structural changes that occur during lithium insertion/removal with conventional methods such as diffraction. The short range order of the amorphous materials remains unknown, preventing attempts to optimize performance based on electrochemical-structure correlations. In this work, a combination of local structure probes, ex-situ 7Li nuclear magnetic resonance (NMR) studies and pair distribution function (PDF) analysis of X-ray data was applied to investigate the changes in short range order that occur during the initial charge and discharge cycles. The distinct electrochemical profiles observed subsequent to the 1 st discharge have been shown to be associated with the formation of distinct amorphous lithiated silicide structures. A (de)lithiation model consisting of four different mechanisms, each being valid for regions of the charge or discharge process is proposed to explain the hysteresis and the steps in the electrochemical profile observed during lithiation and delithiation of Si. A spontaneous reaction of the fully lithiated lithium silicide with the electrolyte is directly
Studies of some problems related to atomic ordering, molecular motion and pair distribution function
Levashov, Valentin A.
In this thesis the results of my work on three out of four projects on which I was working during my Ph.D. under supervision of Prof. M. F. Thorpe are summarized. The first project was devoted to the study of properties of a model that was developed to reproduce the ordering of ions in layered double hydroxides. In the model two types of positive ions occupy the sites of triangular lattice. The ordering of ions is assumed to occur due to the long-range Coulomb interaction. The charge neutrality is provided by the negative background charge, which is assumed to be the same at every site of the lattice. General properties of the model in 1d and 2d were studied and the phase diagrams were obtained. The obtained results predict multiple phase separations in this system of charges that can, in particularly, affect the stability of the layered double hydroxides. Some properties of the atomic pair distribution function (PDF) were studied during my work on the second project. Traditionally PDF was used to study atomic ordering at small distances, while it was assumed that at large distances PDF is featureless. Puzzled by the observation that PDF calculated for the crystalline Ni does not decay at large distances we studied the behavior, in particularly the origin of decay, of PDF at large distances. The obtained results potentially could be used to measure the amount of imperfections in crystalline materials and to test instrumental resolution in X-ray and neutron diffraction experiments. During my work on the third project we were developing a technique that would allow accurate calculation of PDF for the flexible molecules. Since quantum mechanical calculations are complicated and computationally demanding in calculations of PDF for molecules in liquid or gaseous phases, classical methods, like molecular dynamics are usually employed. Thus, quantum mechanical effects, like zero-point atomic motion, are usually ignored. However, it is necessary to take into account the
Pair distribution function analysis of La(Fe{sub 1−x}Ru{sub x})AsO compounds
Martinelli, A., E-mail: alberto.martinelli@spin.cnr.it [SPIN-CNR, C.so Perrone 24, I-16152 Genova (Italy); Palenzona, A.; Ferdeghini, C. [SPIN-CNR, C.so Perrone 24, I-16152 Genova (Italy); Mazzani, M.; Bonfa' , P.; Allodi, G. [Dept. of Physics and Earth Sciences, University of Parma, Parma (Italy)
2014-12-15
The local structures of La(Fe{sub 1−x}Ru{sub x})AsO (0.00≤x≤0.80) compounds were investigated by means of pair distribution function analysis at room temperature; as a result, no phase separation or clustering takes place. Local distortions are no longer correlated beyond ∼15 Å for both pure and substituted samples, indicating that the presence of Ru atoms does not determine a notable variation in the length scale of the local distortion. Different types of short range correlation between Fe and Ru atoms do not produce significant changes in the pair distribution function. - Graphical abstract: Fe–As and Ru–As bond length distributions as obtained by pair distribution function analysis of La(Fe{sub 0.70}Ru{sub 0.30})AsO; As atoms (purple spheres) undergo a random shifting around their crystallographic positions (red spheres: Fe/Ru atoms). - Highlights: • No phase separation or clustering takes place in La(Fe{sub 1−x}Ru{sub x})AsO solid solutions. • Local distortions are no longer correlated beyond ∼15 Å. • Ru displays a tendency towards local enrichment in the transition metal sublattice.
Kuriki, Satoshi
2010-01-01
Let $A$ be a real skew-symmetric Gaussian random matrix whose upper triangular elements are independently distributed according to the standard normal distribution. We provide the distribution of the largest singular value $\\sigma_1$ of $A$. Moreover, by acknowledging the fact that the largest singular value can be regarded as the maximum of a Gaussian field, we deduce the distribution of the standardized largest singular value $\\sigma_1/\\sqrt{\\mathrm{tr}(A'A)/2}$. These distributional results are utilized in Scheff\\'{e}'s paired comparisons model. We propose tests for the hypothesis of subtractivity based on the largest singular value of the skew-symmetric residual matrix. Professional baseball league data are analyzed as an illustrative example.
Incorporation of an Adaptive Real Space Grid in the Projector Augmented Wave Method
Tackett, A. R.; Dunning, R. B.; Matthews, G. Eric; Holzwarth, N. A. W.
1997-03-01
We report initial efforts to incorporate a real space adaptive grid into the projector augmented wave (PAW) method developed by Blöchl(P. Blöchl, Phys. Rev. B50,17953 (1994).). The PAW method allows straightforward treatment of valence electrons while offering computational efficiency similar to pseudopotential methods. Real space adaptive grid methods have been shown to improve speed and decrease storage requirements. The adaptive grid also allows an effective increased plane wave energy cutoff in the vicinity of the ions. In this work, we use a real space adapative grid to solve for the potential, while using a transformed plane wave basis for the wavefunctions, as described by Gygi(F. Gygi, Europhysics Letters 19, 617 (1992).).
Fry-Petit, A. M., E-mail: mcqueen@jhu.edu, E-mail: afry@fullerton.edu; Sheckelton, J. P.; McQueen, T. M., E-mail: mcqueen@jhu.edu, E-mail: afry@fullerton.edu [Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218 (United States); Institute for Quantum Matter and Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218 (United States); Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Rebola, A. F.; Fennie, C. J. [Department of Applied Physics, Cornell University, Ithaca, New York 14853 (United States); Mourigal, M.; Valentine, M.; Drichko, N. [Institute for Quantum Matter and Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218 (United States)
2015-09-28
For over a century, vibrational spectroscopy has enhanced the study of materials. Yet, assignment of particular molecular motions to vibrational excitations has relied on indirect methods. Here, we demonstrate that applying group theoretical methods to the dynamic pair distribution function analysis of neutron scattering data provides direct access to the individual atomic displacements responsible for these excitations. Applied to the molecule-based frustrated magnet with a potential magnetic valence-bond state, LiZn{sub 2}Mo{sub 3}O{sub 8}, this approach allows direct assignment of the constrained rotational mode of Mo{sub 3}O{sub 13} clusters and internal modes of MoO{sub 6} polyhedra. We anticipate that coupling this well known data analysis technique with dynamic pair distribution function analysis will have broad application in connecting structural dynamics to physical properties in a wide range of molecular and solid state systems.
C.Valverde; A.T.Avelar; B.Baseia
2012-01-01
We propose a scheme to transmit information via the statistical distribution of excitations of a nanomechanical resonator.It employs a controllable coupling between this system and a Cooper pair box.The success probability and the fidelity are calculated and compared with those obtained in an atom-field system in different regimes.Addtionaly,the scheme can also be applied to prepare low excited Fock states.
Electronic transport through nanowires: a real-space finite-difference approach
Khomyakov, Petr
2006-01-01
Nanoelectronics is a fast developing ¯eld. Therefore understanding of the electronic transport at the nanoscale is currently of great interest. This thesis "Electronic transport through nanowires: a real-space ¯nite-difference approach" aims at a general theoretical treatment of coherent electronic
Chen, Jingzhe; Thygesen, Kristian S.; Jacobsen, Karsten W.
2012-01-01
over k points and real space makes the code highly efficient and applicable to systems containing several hundreds of atoms. The method is applied to a number of different systems, demonstrating the effects of bias and gate voltages, multiterminal setups, nonequilibrium forces, and spin transport....
Real-space renormalization-group approach to field evolution equations.
Degenhard, Andreas; Rodríguez-Laguna, Javier
2002-03-01
An operator formalism for the reduction of degrees of freedom in the evolution of discrete partial differential equations (PDE) via real-space renormalization group is introduced, in which cell overlapping is the key concept. Applications to (1+1)-dimensional PDEs are presented for linear and quadratic equations that are first order in time.
Maji, Jaya; Bhattacharjee, Somendra M
2012-10-01
We study the melting of three-stranded DNA by using the real-space renormalization group and exact recursion relations. The prediction of an unusual Efimov-analog three-chain bound state, that appears at the critical melting of two-chain DNA, is corroborated by the zeros of the partition function. The distribution of the zeros has been studied in detail for various situations. We show that the Efimov DNA can occur even if the three-chain (i.e., three-monomer) interaction is repulsive in nature. In higher dimensions, a striking result that emerged in this repulsive zone is a continuous transition from the critical state to the Efimov DNA.
Riedrich-Möller, Janine; Becher, Christoph
2010-01-01
We present the design of two-dimensional photonic crystal microcavities in thin diamond membranes well suited for coupling of color centers in diamond. By comparing simulated and ideal field distributions in Fourier and real space and by according modification of air hole positions and size, we optimize the cavity structure yielding high quality factors up to Q = 320000 with a modal volume of V = 0.35 (lambda/n)^3. Using the very same approach we also improve previous designs of a small modal volume microcavity in silicon, gaining a factor of 3 in cavity Q. In view of practical realization of photonic crystals in synthetic diamond films, it is necessary to investigate the influence of material absorption on the quality factor. We show that this influence can be predicted by a simple model, replacing time consuming simulations.
Measurements of Correlated Pair Momentum Distributions in {sup 3}He(e,e{prime}pp)n with CLAS
Rustam Niyazov
2003-05-01
We have measured the {sup 3}He(e,e{prime}pp)n reaction at 2.2 and 4.4 GeV over a wide kinematic range. The kinetic energy distribution for ''fast'' nucleons (p > 250 MeV/c) peaks where two nucleons each have 20% or less and the third or ''leading'' nucleon carries most of the transferred energy. These fast nucleon pairs (both pp and pn) are back-to-back and carry very little momentum along {rvec q}, indicating that they are spectators. Experimental and theoretical evidence indicates that we have measured NN correlations in {sup 3}He(e,e{prime}pp)n by striking the third nucleon and detecting the spectator correlated pair.
Measurements of Correlated Pair Momentum Distributions in ^{3}He(e,e'pp)n with CLAS
Niyazov, Rustam [Old Dominion Univ., Norfolk, VA (United States)
2003-05-01
We have measured the ^{3}He(e,e'pp)n reaction at 2.2 and 4.4 GeV over a wide kinematic range. The kinetic energy distribution for ''fast'' nucleons (p > 250 MeV/c) peaks where two nucleons each have 20% or less and the third or ''leading'' nucleon carries most of the transferred energy. These fast nucleon pairs (both pp and pn) are back-to-back and carry very little momentum along $\\vec{q}$, indicating that they are spectators. Experimental and theoretical evidence indicates that we have measured NN correlations in ^{3}He(e,e'pp)n by striking the third nucleon and detecting the spectator correlated pair.
The Differential cross section distribution of Drell-Yan dielectron pairs in the z boson mass region
Han, Jiyeon [Univ. of Rochester, NY (United States)
2008-01-01
We report on a measurement of the rapidity distribution, dσ/dy, for Z=Drell-Yan → ee events produced in p$\\bar{p}$ collisions at √s = 1.96 TeV. The data sample consists of 2.13 fb^{-1} corresponding to about 160,000 Z/Drell-Yan → ee candidates in the Z boson mass region collected by the Collider Detector at Fermilab. The dσ/dy distribution, which is measured over the full kinematic range for e^{+}e^{-} pairs in the invariant mass range 66 < M_{ee} < 116 GeV/c^{2}, is compared with theory predictions. There is good agreement between the data and predictions of Quantum Chromodynamics in Next to Leading Order with the CTEQ6.1M Parton Distribution Functions.
Mehmet Yaman; Gokce Kaya; Hayrettin Yekeler
2007-01-01
AIM: To assess whether trace metal concentrations (which influence metabolism as both essential and non-essential elements) are increased or decreased in cancerous tissues and to understand the precise role of these metals in carcinogenesis.METHODS: Concentrations of trace metals including Cd,Ni, Cu, Zn, Fe, Mg and Ca in both cancerous and noncancerous stomach tissue samples were determined by atomic absorption spectrometry (AAS). Tissue samples were digested using microwave energy. Slotted tube atom trap was used to improve the sensitivity of copper and cadmium in flame AAS determinations.RESULTS: From the obtained data in this study,the concentrations of nickel, copper and iron in the cancerous human stomach were found to be significantly higher than those in the non-cancerous tissues, by using t-test for the paired samples. Furthermore, the average calcium concentrations in the cancerous stomach tissue samples were found to be significantly lower than those in the non-cancerous stomach tissue samples by using t-test. Exceedingly high Zn concentrations (207-826 mg/kg) were found in two paired stomach tissue samples from both cancerous and non-cancerous parts.CONCLUSION: In contrast to the literature data for Cu and Fe, the concentrations of copper, iron and nickel in cancerous tissue samples are higher than those in the non-cancerous samples. Furthermore, the Ca levels are lower in cancerous tissue samples than in non-cancerous tissue samples.
Measurement of the top pair invariant mass distribution and search for New Physics
Blekman, Freya
2012-01-01
Searches are presented for a massive particle decaying to a $\\mathrm{t\\bar{t}}$ pair, using the full CMS 2011 dataset of proton-proton collisions at a center of mass energy of 7 TeV, corresponding to an integrated luminosity of up to 5 fb$^{-1}$. The searches focus on resonant particles decaying to a top quark pair, generally referred to as a Z$^\\prime$. Top quark decays to electrons, muons and hadrons are considered, leading to searches in final states using fully hadronic final states and final states with one and two leptons. The searches for Z$^\\prime$ resonances look for resonant particles that are sufficiently massive to produce highly Lorentz-boosted top quarks, which yield collimated decay products that may be partially or fully merged. 95\\% confidence level upper limits up to 2.0 TeV/$c^2$ are set on the product of the production cross section and branching fraction for topcolor Z$^\\prime$ modelled for several widths, as well as for Randall--Sundrum Kaluza--Klein gluons, which are excluded to value...
A Modified Pair Wise Key Distribution Schemes and There Effect On Network Performances
Dheeraj Patel
2015-08-01
Full Text Available Key distribution schemes has always played a pivotal role in the security of wireless sensor networks. In this research work we focus mainly on the security aspect of WSN . We have developed a modified key distribution scheme which uses the concepts of post as well as pre distribution scheme and thus he proved to be a better alternative then the rest of two schemes. Simulation study has been carried out using matlab. The effort turned out to be fruitful s our modified scheme showed less dead nodes per round of data transfer as compared to post deployment scheme.
A novel real space scattering theory: efficient characterization of colloidal crystals
Cabrillo, C; Capitan, M J [Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid (Spain); Enciso, E; Cabanas, A [Facultad de Ciencias Quimicas, Departamento de Quimica Fisica I, Universidad Complutense, E-28040, Madrid (Spain); Torralvo, M J [Facultad de Ciencias QuImicas, Departamento de Quimica Inorganica, Universidad Complutense, E-28040, Madrid (Spain); Alvarez, J [Departamento de Fisica de la Materia Condensada, Facultad de Ciencias, Universidad Autonoma de Madrid, Fco. Tomas y Valiente 7, E-28049, Madrid (Spain); Bermejo, F J, E-mail: ccabrilo@foton0.iem.csic.e [Instituto de Estructura de la Materia, Unidad Asociada CSIC, Facultad de Ciencia y TecnologIa, Universidad del PaIs Vasco / EHU, P. Box 644, E-48080, Bilbao (Spain)
2010-10-01
Recent advances in self-organized 3D ordered structures of submicron particles as colloidal crystals demand a precise quantitative characterization of the produced nano-structures. Small angle scattering is the technique of choice for such a task but a comprehensive quantitative modeling of the measurements is far from being straightforward. We have developed a theory based in the pair distances distribution which take into the account orientational, positional and staking disorder as well as finite size effects. We show also how the radial scattering length density of the constituent particles, essential for a comprehensive modeling of the experimental data, can be estimated from the position of the form factor local minima. The results reduce to sums of analytical functions over the distribution of pair distances and as such, are suitable for easy (automatic) parallelization.
Quasi-stationary distributions of a pair of Markov chains related to time evolution of a DNA locus
Bobrowski, A.
2004-01-01
We consider a pair of Markov chains representing statistics of the Fisher-Wright-Moran model with mutations and drift. The chains have absorbing state at 0 and are related by the fact that some random time τ ago they were identical, evolving as a single Markov chain with values in {0,1,...}; from that time on they began to evolve independently, conditional on a state at the time of split, according to the same transition probabilities. The distribution of τ is a function ...
All-pairs Shortest Path Algorithm based on MPI+CUDA Distributed Parallel Programming Model
Qingshuang Wu
2013-12-01
Full Text Available In view of the problem that computing shortest paths in a graph is a complex and time-consuming process, and the traditional algorithm that rely on the CPU as computing unit solely can't meet the demand of real-time processing, in this paper, we present an all-pairs shortest paths algorithm using MPI+CUDA hybrid programming model, which can take use of the overwhelming computing power of the GPU cluster to speed up the processing. This proposed algorithm can combine the advantages of MPI and CUDA programming model, and can realize two-level parallel computing. In the cluster-level, we take use of the MPI programming model to achieve a coarse-grained parallel computing between the computational nodes of the GPU cluster. In the node-level, we take use of the CUDA programming model to achieve a GPU-accelerated fine grit parallel computing in each computational node internal. The experimental results show that the MPI+CUDA-based parallel algorithm can take full advantage of the powerful computing capability of the GPU cluster, and can achieve about hundreds of time speedup; The whole algorithm has good computing performance, reliability and scalability, and it is able to meet the demand of real-time processing of massive spatial shortest path analysis
Wiktor, Julia; Jomard, Gérald; Torrent, Marc; Bertolus, Marjorie
2017-01-01
We performed first-principles calculations of the momentum distributions of annihilating electron-positron pairs in vacancies in uranium dioxide. Full atomic relaxation effects (due to both electronic and positronic forces) were taken into account and self-consistent two-component density functional theory schemes were used. We present one-dimensional momentum distributions (Doppler-broadened annihilation radiation line shapes) along with line-shape parameters S and W. We studied the effect of the charge state of the defect on the Doppler spectra. The effect of krypton incorporation in the vacancy was also considered and it was shown that it should be possible to observe the fission gas incorporation in defects in UO2 using positron annihilation spectroscopy. We suggest that the Doppler broadening measurements can be especially useful for studying impurities and dopants in UO2 and of mixed actinide oxides.
A stability analysis of a real space split operator method for the Klein-Gordon equation
Blumenthal, Frederick
2011-01-01
We carry out a stability analysis for the real space split operator method for the propagation of the time-dependent Klein-Gordon equation that has been proposed in J. Comput. Phys. 228 (24) (2009) 9092-9106. The region of algebraic stability is determined analytically by means of a von-Neumann stability analysis for systems with homogeneous scalar and vector potentials. Algebraic stability implies convergence of the real space split operator method for smooth absolutely integrable initial conditions. In the limit of small spatial grid spacings h in each of the d spatial dimensions and small temporal steps, the stability condition becomes h/{\\tau}>\\surddc for second order finite differences and \\surd3h/(2{\\tau})>\\surddc for fourth order finite differences, respectively, with c denoting the speed of light. Furthermore, we demonstrate numerically that the stability region for systems with inhomogeneous potentials coincides almost with the region of algebraic stability for homogeneous potentials.
Real-space renormalization group study of the Hubbard model on a non-bipartite lattice
R. D. Levine
2002-01-01
Full Text Available Abstract: We present the real-space block renormalization group equations for fermion systems described by a Hubbard Hamiltonian on a triangular lattice with hexagonal blocks. The conditions that keep the equations from proliferation of the couplings are derived. Computational results are presented including the occurrence of a first-order metal-insulator transition at the critical value of U/t Ã¢Â‰Âˆ 12.5.
Electronic transport through nanowires: a real-space finite-difference approach
Khomyakov, Petr
2006-01-01
Nanoelectronics is a fast developing ¯eld. Therefore understanding of the electronic transport at the nanoscale is currently of great interest. This thesis "Electronic transport through nanowires: a real-space ¯nite-difference approach" aims at a general theoretical treatment of coherent electronic transport in mesoscopic and mi- croscopic systems by means of Green's function and mode-matching techniques. A general method has been developed for conductance calculations on the basis of the mod...
A stability analysis of a real space split operator method for the Klein-Gordon equation
Blumenthal, Frederick; Bauke, Heiko
2012-01-01
We carry out a stability analysis for the real space split operator method for the propagation of the time-dependent Klein-Gordon equation that has been proposed in Ruf et al. [M. Ruf, H. Bauke, C.H. Keitel, A real space split operator method for the Klein-Gordon equation, Journal of Computational Physics 228 (24) (2009) 9092-9106, doi:10.1016/j.jcp.2009.09.012]. The region of algebraic stability is determined analytically by means of a von-Neumann stability analysis for systems with homogeneous scalar and vector potentials. Algebraic stability implies convergence of the real space split operator method for smooth absolutely integrable initial conditions. In the limit of small spatial grid spacings h in each of the d spatial dimensions and small temporal steps τ, the stability condition becomes h/τ>√{d}c for second order finite differences and √{3}h/(2τ)>√{d}c for fourth order finite differences, respectively, with c denoting the speed of light. Furthermore, we demonstrate numerically that the stability region for systems with inhomogeneous potentials coincides almost with the region of algebraic stability for homogeneous potentials.
The real space clustering of galaxies in SDSS DR7: I. Two point correlation functions
Shi, Feng; Wang, Huiyuan; Zhang, Youcai; Mo, H J; Bosch, Frank C van den; Li, Shijie; Liu, Chengze; Lu, Yi; Tweed, Dylan; Yang, Lei
2016-01-01
Using a method to correct redshift space distortion (RSD) for individual galaxies, we present the measurements of real space two-point correlation functions (2PCFs) of galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). Galaxy groups selected from the SDSS are used as proxies of dark matter halos to correct the virial motions of galaxies in dark matter halos, and to reconstruct the large-scale velocity field. We use an ensemble of mock catalogs to demonstrate the reliability of our method. Over the range $0.2 < r < 20 h^{-1}{\\rm {Mpc}}$, the 2PCF measured directly in reconstructed real space is better than the measurement error due to cosmic variance, if the reconstruction uses the correct cosmology. Applying the method to the SDSS DR7, we construct a real space version of the main galaxy catalog, which contains 396,068 galaxies in the North Galactic Cap with redshifts in the range $0.01 \\leq z \\leq 0.12$. The Sloan Great Wall, the largest known structure in the nearby Universe, is not...
A real-space stochastic density matrix approach for density functional electronic structure.
Beck, Thomas L
2015-12-21
The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.
First principles study of the electron density distribution in a pair of bare metallic electrodes
Ma, Chun-Lan [Suzhou University of Science and Technology, School of Mathematics and Physics, Suzhou (China); Chen, Yu-Chang; Nghiem, Diu; Tseng, Allen; Huang, Pao-Chieh [National Chiao Tung University, Department of Electrophysics, Hsinchu (China)
2011-07-15
Self-consistent calculations of electron density distribution from first principles for a series of semi-infinite metals show that the electron density almost drops to zero at 8.5 a.u. away from a metal surface. The electron densities in a series of bimetallic-electrode systems with a distance between the two electrodes of 21.7 a.u. are further investigated. Spin-polarized calculations of electron density for nonmagnetic and magnetic bimetallic-electrode systems are compared. Our work is helpful for first principles investigation of spin-dependent metal-molecule-metal tunneling junctions. (orig.)
Rohlmann, A; Calisse, J; Bergmann, G; Radvan, J; Mayer, H M
1996-06-01
The load distribution between two internal spinal fixation devices depends, besides other factors, on their stiffness. The stiffness ranges were determined experimentally for the clamps of the AO internal fixator with lateral nut and with posterior nut as well as for the clamps of the SOCON fixator. The stiffness of eight devices each differed by a factor of 3.1 for the clamp with lateral nut, by a factor of 1.5 for the clamp with posterior nut, and by a factor of 1.4 for the clamp of the SOCON fixator. For the AO clamp with lateral nut, the influence of the nut-tightening torque on the stiffness was determined. Using instrumented internal spinal fixation devices mounted to plastic vertebrae and simulating a corpectomy, the load distribution between the implants was measured for different tightening torques. It could be shown that, for the AO internal fixator whose clamps have a lateral nut, a nut-tightening torque > 5 Nm has only a negligible influence on load-sharing between the implants. Tooth damage occurs when the teeth of the clamp body and clamping jaw of the clamp with lateral nut do not gear together exactly, which leads to changes in the clamping stiffness and load-sharing between the two implants.
Fisher, D S; Le Doussal, P; Monthus, C
2001-12-01
The nonequilibrium dynamics of classical random Ising spin chains with nonconserved magnetization are studied using an asymptotically exact real space renormalization group (RSRG). We focus on random field Ising model (RFIM) spin chains with and without a uniform applied field, as well as on Ising spin glass chains in an applied field. For the RFIM we consider a universal regime where the random field and the temperature are both much smaller than the exchange coupling. In this regime, the Imry-Ma length that sets the scale of the equilibrium correlations is large and the coarsening of domains from random initial conditions (e.g., a quench from high temperature) occurs over a wide range of length scales. The two types of domain walls that occur diffuse in opposite random potentials, of the form studied by Sinai, and domain walls annihilate when they meet. Using the RSRG we compute many universal asymptotic properties of both the nonequilibrium dynamics and the equilibrium limit. We find that the configurations of the domain walls converge rapidly toward a set of system-specific time-dependent positions that are independent of the initial conditions. Thus the behavior of this nonequilibrium system is pseudodeterministic at long times because of the broad distributions of barriers that occur on the long length scales involved. Specifically, we obtain the time dependence of the energy, the magnetization, and the distribution of domain sizes (found to be statistically independent). The equilibrium limits agree with known exact results. We obtain the exact scaling form of the two-point equal time correlation function and the two-time autocorrelations . We also compute the persistence properties of a single spin, of local magnetization, and of domains. The analogous quantities for the +/-J Ising spin glass in an applied field are obtained from the RFIM via a gauge transformation. In addition to these we compute the two-point two-time correlation function which can in
The Peak Pairs algorithm for strain mapping from HRTEM images
Galindo, Pedro L. [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain)], E-mail: pedro.galindo@uca.es; Kret, Slawomir [Institute of Physics, PAS, AL. Lotnikow 32/46, 02-668 Warsaw (Poland); Sanchez, Ana M. [Departamento de Ciencia de los Materiales e Ing. Metalurgica y Q. Inorganica, Facultad de Ciencias, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain); Laval, Jean-Yves [Laboratoire de Physique du Solide, UPR5 CNRS-ESPCI, Paris (France); Yanez, Andres; Pizarro, Joaquin; Guerrero, Elisa [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain); Ben, Teresa; Molina, Sergio I. [Departamento de Ciencia de los Materiales e Ing. Metalurgica y Q. Inorganica, Facultad de Ciencias, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain)
2007-11-15
Strain mapping is defined as a numerical image-processing technique that measures the local shifts of image details around a crystal defect with respect to the ideal, defect-free, positions in the bulk. Algorithms to map elastic strains from high-resolution transmission electron microscopy (HRTEM) images may be classified into two categories: those based on the detection of peaks of intensity in real space and the Geometric Phase approach, calculated in Fourier space. In this paper, we discuss both categories and propose an alternative real space algorithm (Peak Pairs) based on the detection of pairs of intensity maxima in an affine transformed space dependent on the reference area. In spite of the fact that it is a real space approach, the Peak Pairs algorithm exhibits good behaviour at heavily distorted defect cores, e.g. interfaces and dislocations. Quantitative results are reported from experiments to determine local strain in different types of semiconductor heterostructures.
Winges, Sara A.; Johnston, Jamie A.; Santello, Marco
2007-01-01
To gain insight into the synergistic control of hand muscles, we have recently quantified the strength of correlated neural activity across motor units from extrinsic digit flexors during a five-digit object-hold task. We found stronger synchrony and coherence across motor units from thumb and index finger flexor muscle compartment than between the thumb flexor and other finger flexor muscle compartments. The present study of two-digit object hold was designed to determine the extent to which such distribution of common input among thumb-finger flexor muscle compartments, revealed by holding an object with five digits, is preserved when varying the functional role of a given digit pair. We recorded normal force exerted by the digits and electrical activity of single motor units from muscle flexor pollicis longus (FPL) and two compartments of the m. flexor digitorum profundus (FDP2 and FDP3; index and middle finger, respectively). Consistent with our previous results from five-digit grasping, synchrony and coherence across motor units from FPL-FDP2 was significantly stronger than in FPL-FDP3 during object hold with two digits [common input strength: 0.49 ± 0.02 and 0.35 ± 0.02 (means ± SE), respectively; peak coherence: 0.0054 and 0.0038, respectively]. This suggests that the distribution of common neural input is muscle-pair specific regardless of grip type. However, the strength of coherence, but not synchrony, was significantly stronger in two- versus five-digit object hold for both muscle combinations, suggesting the periodicity of common input is sensitive to grip type. PMID:16723414
Stoessel, J.P.; Wolynes, P.G.
1989-01-01
With analogy to the ''highly accurate'' summation of cluster diagrams for hard sphere fluids a la Carnahan-Starling, we present a simple, real space free energy density functional for arbitrary potential systems, based on the generalization of the second virial coefficient to inhomogeneous systems which, when applied to hard sphere, soft-sphere, and Lennard-Jones freezing, yield melting characteristics in remarkable agreement with experiment. Implications for the liquid-glass transition in all three potential systems are also presented. 45 refs., 7 figs., 1 tab.
Circuit Modeling of Tunneling Real-Space Transfer Transistors: Toward Terahertz Frequency Operation
Huang, Wen; Yu, Xin; ZHANG, SHI-LIN; Mao, Lu-Hong; Leburton, Jean-Pierre
2011-01-01
High frequency operation of tunneling real-space transfer transistor (TRSTT) in the negative differential resistance (NDR) regime is assessed by calculating the device common source unity current gain frequency (fT) range with a small signal equivalent circuit model including tunneling. Our circuit model is based on an In0.2Ga0.8As and delta-doped GaAs dual channel structure with various gate lengths. The calculated TRSTT fT agrees very well with experimental data, limiting factor being the r...
Real-space decoupling transformation for quantum many-body systems.
Evenbly, G; Vidal, G
2014-06-06
We propose a real-space renormalization group method to explicitly decouple into independent components a many-body system that, as in the phenomenon of spin-charge separation, exhibits separation of degrees of freedom at low energies. Our approach produces a branching holographic description of such systems that opens the path to the efficient simulation of the most entangled phases of quantum matter, such as those whose ground state violates a boundary law for entanglement entropy. As in the coarse-graining transformation of Vidal [Phys. Rev. Lett. 99, 220405 (2007).
Duality with real-space renormalization and its application to bond percolation.
Ohzeki, Masayuki
2013-01-01
We obtain the exact solution of the bond-percolation thresholds with inhomogeneous probabilities on the square lattice. Our method is based on the duality analysis with real-space renormalization, which is a profound technique invented in the spin-glass theory. Our formulation is a more straightforward way than that of a very recent study on the same problem [R. M. Ziff et al., J. Phys. A: Math. Theor. 45, 494005 (2012)]. The resultant generic formulas from our derivation can give several estimations for the bond-percolation thresholds on other lattices rather than the square lattice.
Monthus, Cécile
2017-07-01
When random quantum spin chains are submitted to some periodic Floquet driving, the eigenstates of the time-evolution operator over one period can be localized in real space. For the case of periodic quenches between two Hamiltonians (or periodic kicks), where the time-evolution operator over one period reduces to the product of two simple transfer matrices, we propose a block-self-dual renormalization procedure to construct the localized eigenstates of the Floquet dynamics. We also discuss the corresponding strong disorder renormalization procedure, that generalizes the RSRG-X procedure to construct the localized eigenstates of time-independent Hamiltonians.
Real space renormalization group for twisted lattice N=4 super Yang-Mills
Catterall, Simon
2014-01-01
A necessary ingredient for our previous results on the form of the long distance effective action of the twisted lattice N=4 super Yang-Mills theory is the existence of a real space renormalization group which preserves the lattice structure, both the symmetries and the geometric interpretation of the fields. In this brief article we provide an explicit example of such a blocking scheme and illustrate its practicality in the context of a small scale Monte Carlo renormalization group calculation. We also discuss the implications of this result, and the possible ways in which to use it in order to obtain further information about the long distance theory.
Symmetry-respecting real-space renormalization for the quantum Ashkin-Teller model.
O'Brien, Aroon; Bartlett, Stephen D; Doherty, Andrew C; Flammia, Steven T
2015-10-01
We use a simple real-space renormalization-group approach to investigate the critical behavior of the quantum Ashkin-Teller model, a one-dimensional quantum spin chain possessing a line of criticality along which critical exponents vary continuously. This approach, which is based on exploiting the on-site symmetry of the model, has been shown to be surprisingly accurate for predicting some aspects of the critical behavior of the quantum transverse-field Ising model. Our investigation explores this approach in more generality, in a model in which the critical behavior has a richer structure but which reduces to the simpler Ising case at a special point. We demonstrate that the correlation length critical exponent as predicted from this real-space renormalization-group approach is in broad agreement with the corresponding results from conformal field theory along the line of criticality. Near the Ising special point, the error in the estimated critical exponent from this simple method is comparable to that of numerically intensive simulations based on much more sophisticated methods, although the accuracy decreases away from the decoupled Ising model point.
ATLAS: A Real-Space Finite-Difference Implementation of Orbital-Free Density Functional Theory
Mi, Wenhui; Sua, Chuanxun; Zhoua, Yuanyuan; Zhanga, Shoutao; Lia, Quan; Wanga, Hui; Zhang, Lijun; Miao, Maosheng; Wanga, Yanchao; Ma, Yanming
2015-01-01
Orbital-free density functional theory (OF-DFT) is a promising method for large-scale quantum mechanics simulation as it provides a good balance of accuracy and computational cost. Its applicability to large-scale simulations has been aided by progress in constructing kinetic energy functionals and local pseudopotentials. However, the widespread adoption of OF-DFT requires further improvement in its efficiency and robustly implemented software. Here we develop a real-space finite-difference method for the numerical solution of OF-DFT in periodic systems. Instead of the traditional self-consistent method, a powerful scheme for energy minimization is introduced to solve the Euler--Lagrange equation. Our approach engages both the real-space finite-difference method and a direct energy-minimization scheme for the OF-DFT calculations. The method is coded into the ATLAS software package and benchmarked using periodic systems of solid Mg, Al, and Al$_{3}$Mg. The test results show that our implementation can achieve ...
Pair potential trend of alkali metals under external pressure
Rahman, S. M. Mujibur
1987-09-01
Structural phase stability of certain alkali metals under external pressure is investigated by looking at their pair potential trend. The effective pair potentials occurring in the real space representation of the band structure contribution relevant to a second-order theory are calculated by using an appropriate dielectric function and a simple empty-core pseudopotential. The relative positions of the neighboring atoms with respect to the minima in the pair potentials uphold a qualitative picture of the phase stability in these systems.
Luccas, R.F.; Granados, X.; Obradors, X.; Puig, T.
2014-10-15
Highlights: • A model based on real space vortex image is proposed to analyze energy densities of an arbitrary array of vortices. • A map of interaction energies is the base for identifying defects pinning strengths. • Vortex interactions with twin boundaries and surface nanoscratches are compared to pristine untwined crystals. • The combined study presented should assess in future engineering vortex pinning novel devices. - Abstract: A methodology based on real space vortex image analysis is presented able to estimate semi-quantitatively the relevant energy densities of an arbitrary array of vortices, map the interaction energy distributions and evaluate the pinning energy associated to particular defects. The combined study using nanostructuration tools, a vortex visualization technique and the energy method is seen as an opportunity to estimate vortex pinning potentials strengths. Particularly, spatial distributions of vortex energy densities induced by surface nanoindented scratches are evaluated and compared to those of twin boundaries. This comparative study underlines the remarkable role of surface nanoscratches in pinning vortices and its potentiality in the design of novel devices for pinning and guiding vortex motion.
Reardon, Hazel; Iversen, Bo Brummerstedt; Blichfeld, Anders Bank
Powder X-ray diffraction (PXRD) has been a steadfast tool for detailed crystal structure determination in thermoelectrics materials research. PXRD provides a description of the long-range periodic order, meanwhile, local structure information can be obtained from total scattering data, i.e., by m......Powder X-ray diffraction (PXRD) has been a steadfast tool for detailed crystal structure determination in thermoelectrics materials research. PXRD provides a description of the long-range periodic order, meanwhile, local structure information can be obtained from total scattering data, i.......e., by measuring both the Bragg and diffuse scattering from a sample. This method has rarely been exploited by the non-oxide thermoelectrics community. , , Treating total scattering data by the Pair Distribution Function method is a logical approach to understanding defects, disorder and amorphous components...... in thermoelectric materials. Moreover, in situ studies can enable an understanding of how high temperature influences the structure (and properties) at the local scale. If we can understand the local modifications in a structure prior to, during, and after restructuring as a thermoelectric material is exposed...
Frandsen, Benjamin A.; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.
2016-05-01
We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ˜1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.
Scalable real space pseudopotential-density functional codes for materials applications
Chelikowsky, James R.; Lena, Charles; Schofield, Grady; Saad, Yousef; Deslippe, Jack; Yang, Chao
2015-03-01
Real-space pseudopotential density functional theory has proven to be an efficient method for computing the properties of matter in many different states and geometries, including liquids, wires, slabs and clusters with and without spin polarization. Fully self-consistent solutions have been routinely obtained for systems with thousands of atoms. However, there are still systems where quantum mechanical accuracy is desired, but scalability proves to be a hindrance, such as large biological molecules or complex interfaces. We will present an overview of our work on new algorithms, which offer improved scalability by implementing another layer of parallelism, and by optimizing communication and memory management. Support provided by the SciDAC program, Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences. Grant Numbers DE-SC0008877 (Austin) and DE-FG02-12ER4 (Berkeley).
Single-cone real-space finite difference schemes for the Dirac von Neumann equation
Schreilechner, Magdalena
2015-01-01
Two finite difference schemes for the numerical treatment of the von Neumann equation for the (2+1)D Dirac Hamiltonian are presented. Both utilize a single-cone staggered space-time grid which ensures a single-cone energy dispersion to formulate a numerical treatment of the mixed-state dynamics within the von Neumann equation. The first scheme executes the time-derivative according to the product rule for "bra" and "ket" indices of the density operator. It therefore directly inherits all the favorable properties of the difference scheme for the pure-state Dirac equation and conserves positivity. The second scheme proposed here performs the time-derivative in one sweep. This direct scheme is investigated regarding stability and convergence. Both schemes are tested numerically for elementary simulations using parameters which pertain to topological insulator surface states. Application of the schemes to a Dirac Lindblad equation and real-space-time Green's function formulations are discussed.
Study on the mapping of dark matter clustering from real space to redshift space
Zheng, Yi
2016-01-01
The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the Redshift Space Distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger--of--God effect due to the randomness of the peculiar velocity field. %Furthermore, the rigorous test of this mapping formula is contaminated by the unknown non--linearity of the density and velocity fields, including their auto- and cross-correlations, for calculating which our theoretical calculation breaks down beyond some scales. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non--linear density and velocity field...
Facilitated spin models in one dimension: a real-space renormalization group study.
Whitelam, Stephen; Garrahan, Juan P
2004-10-01
We use a real-space renormalization group (RSRG) to study the low-temperature dynamics of kinetically constrained Ising chains (KCICs). We consider the cases of the Fredrickson-Andersen (FA) model, the East model, and the partially asymmetric KCIC. We show that the RSRG allows one to obtain in a unified manner the dynamical properties of these models near their zero-temperature critical points. These properties include the dynamic exponent, the growth of dynamical length scales, and the behavior of the excitation density near criticality. For the partially asymmetric chain, the RG predicts a crossover, on sufficiently large length and time scales, from East-like to FA-like behavior. Our results agree with the known results for KCICs obtained by other methods.
Minimalistic real-space renormalization of Ising and Potts Models in two dimensions
Gary eWillis
2015-06-01
Full Text Available We introduce and discuss a real-space renormalization group (RSRG procedure on very small lattices, which in principle does not require any of the usual approximations, e.g. a cut-off in the expansion of the Hamiltonian in powers of the field. The procedure is carried out numerically on very small lattices (4x4 to 2x2 and implemented for the Ising Model and the q=3,4,5 Potts Models. Nevertheless, the resulting estimates of the correlation length exponent and the magnetization exponent are typically within 3% to 7% of the exact values. The 4-state Potts Model generates a third magnetic exponent which seems to be unknown in the literature. A number of questions about the meaning of certain exponents and the procedure itself arise from its use of symmetry principles and its application to the q=5 Potts Model.
Real Space Renormalization of Majorana Fermions in Quantum Nano-Wire Superconductors
Jafari, R.; Langari, A.; Akbari, Alireza; Kim, Ki-Seok
2017-02-01
We develop the real space quantum renormalization group (QRG) approach for majorana fermions. As an example we focus on the Kitaev chain to investigate the topological quantum phase transition (TQPT) in the one-dimensional spinless p-wave superconductor. Studying the behaviour of local compressibility and ground-state fidelity, show that the TQPT is signalled by the maximum of local compressibility at the quantum critical point tuned by the chemical potential. Moreover, a sudden drop of the ground-state fidelity and the divergence of fidelity susceptibility at the topological quantum critical point are used as proper indicators for the TQPT, which signals the appearance of Majorana fermions. Finally, we present the scaling analysis of ground-state fidelity near the critical point that manifests the universal information about the TQPT, which reveals two different scaling behaviors as we approach the critical point and thermodynamic limit.
Probing critical surfaces in momentum space using real-space entanglement entropy: Bose versus Fermi
Lai, Hsin-Hua; Yang, Kun
2016-03-01
A codimension-one critical surface in momentum space can be either a familiar Fermi surface, which separates occupied states from empty ones in the noninteracting fermion case, or a novel Bose surface, where gapless bosonic excitations are anchored. The presence of such surfaces gives rise to logarithmic violation of entanglement entropy area law. When they are convex, we show that the shape of these critical surfaces can be determined by inspecting the leading logarithmic term of real-space entanglement entropy. The fundamental difference between a Fermi surface and a Bose surface is revealed by the fact that the logarithmic terms in entanglement entropies differ by a factor of 2: SlogBose=2 SlogFermi , even when they have identical geometry. Our method has remarkable similarity with determining Fermi surface shape using quantum oscillation. We also discuss possible probes of concave critical surfaces in momentum space.
Probing the Nodal Structure of Landau Level Wave Functions in Real Space.
Bindel, J R; Ulrich, J; Liebmann, M; Morgenstern, M
2017-01-06
The inversion layer of p-InSb(110) obtained by Cs adsorption of 1.8% of a monolayer is used to probe the Landau level wave functions within smooth potential valleys by scanning tunneling spectroscopy at 14 T. The nodal structure becomes apparent as a double peak structure of each spin polarized first Landau level, while the zeroth Landau level exhibits a single peak per spin level only. The real space data show single rings of the valley-confined drift states for the zeroth Landau level and double rings for the first Landau level. The result is reproduced by a recursive Green function algorithm using the potential landscape obtained experimentally. We show that the result is generic by comparing the local density of states from the Green function algorithm with results from a well-controlled analytic model based on the guiding center approach.
New real-space renormalization-group calculation for the critical properties of lattice spin systems
Hecht, Charles E.; Kikuchi, Ryoichi
1982-05-01
In evaluating the critical properties of lattice spin systems in the real-space renormalization-group theory we use the cluster variation method. A configuration in the transformed system is constrained and the probability of occurrence of this configuration is calculated both in the transformed system and in the original system. By equating the two probabilities and forming ratios of two such equalities (for two or more constrained configurations) the fixed point of the renormalization transformation is evaluated. The method can avoid the trouble due to different singularities in the original and transformed systems, and hence can obviate the possible development of spurious singularities in the transformation at low temperatures. The two-dimensional triangular Ising model is treated with numerical results comparable with those obtained by the cluster treatment of Niemeijer and van Leeuwen who used more and larger cluster types than those we introduce.
Bøtker, Johan P; Karmwar, Pranav; Strachan, Clare J; Cornett, Claus; Tian, Fang; Zujovic, Zoran; Rantanen, Jukka; Rades, Thomas
2011-09-30
The aim of this study was to investigate the usefulness of the atomic pair-wise distribution function (PDF) to detect the extension of disorder/amorphousness induced into a crystalline drug using a cryo-milling technique, and to determine the optimal milling times to achieve amorphisation. The PDF analysis was performed on samples of indomethacin obtained by cryogenic ball milling (cryo-milling) for different periods of time. X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), polarised light microscopy (PLM) and solid state nuclear magnetic resonances (ss-NMR) were also used to analyse the cryo-milled samples. The high similarity between the γ-indomethacin cryogenic ball milled samples and the crude γ-indomethacin indicated that milled samples retained residual order of the γ-form. The PDF analysis encompassed the capability of achieving a correlation with the physical properties determined from DSC, ss-NMR and stability experiments. Multivariate data analysis (MVDA) was used to visualize the differences in the PDF and XRPD data. The MVDA approach revealed that PDF is more efficient in assessing the introduced degree of disorder in γ-indomethacin after cryo-milling than MVDA of the corresponding XRPD diffractograms. The PDF analysis was able to determine the optimal cryo-milling time that facilitated the highest degree of disorder in the samples. Therefore, it is concluded that the PDF technique may be used as a complementary tool to other solid state methods and that further investigations are warranted to elucidate the capabilities of this technique.
Andrade, Xavier; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J T; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A L; Rubio, Ángel
2015-01-01
Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schr\\"odinger equation for low-dimensionality systems.
Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J. T.; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J.; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A. L.; Rubio, Angel
Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schr\\"odinger equation for low-dimensionality systems.
Andrade, Xavier
2013-01-01
We discuss the application of graphical processing units (GPUs) to accelerate real-space density functional theory (DFT) calculations. To make our implementation efficient, we have developed a scheme to expose the data parallelism available in the DFT approach; this is applied to the different procedures required for a real-space DFT calculation. We present results for current-generation GPUs from AMD and Nvidia, which show that our scheme, implemented in the free code OCTOPUS, can reach a sustained performance of up to 90 GFlops for a single GPU, representing an important speed-up when compared to the CPU version of the code. Moreover, for some systems our implementation can outperform a GPU Gaussian basis set code, showing that the real-space approach is a competitive alternative for DFT simulations on GPUs.
Andrade, Xavier; Aspuru-Guzik, Alán
2013-10-01
We discuss the application of graphical processing units (GPUs) to accelerate real-space density functional theory (DFT) calculations. To make our implementation efficient, we have developed a scheme to expose the data parallelism available in the DFT approach; this is applied to the different procedures required for a real-space DFT calculation. We present results for current-generation GPUs from AMD and Nvidia, which show that our scheme, implemented in the free code Octopus, can reach a sustained performance of up to 90 GFlops for a single GPU, representing a significant speed-up when compared to the CPU version of the code. Moreover, for some systems, our implementation can outperform a GPU Gaussian basis set code, showing that the real-space approach is a competitive alternative for DFT simulations on GPUs.
Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J T; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A L; Rubio, Angel
2015-12-21
Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality systems.
Numerical study of pair creation by ultraintense lasers
Nakashima, K
2002-01-01
Now that intensity of lasers has reached 10 sup 2 sup 0 W/cm sup 2 , electron-positron pairs can be created by the irradiation of such ultraintense lasers on a thin gold foil. The energy of electrons produced by ultraintense lasers reaches more than several tens of MeV. Such high energy electrons become a source for creating electron-positron pairs via interaction with nuclei. There are a few processes that create electron-positron pairs in this situation. Two processes, call the trident process and the Bethe-Heitler process, are considered in this study. A numerical simulation code based on a relativistic Fokker-Planck equation is developed for studying the hot electron transport. The equation is solved by assuming one-dimensional real space and two-dimensional momentum space with axial symmetry. It is found that the total positron yield increases logarithmically with the increase of the laser intensity, and the resultant energy distribution of the created positron is found to have a peak near the energy of ...
Briggs, Emil; Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry; Li, Yan
RMG is a cross platform open source package for ab initio electronic structure calculations that uses real-space grids, multigrid pre-conditioning, and subspace diagonalization to solve the Kohn-Sham equations. The code has been successfully used for a wide range of problems ranging from complex bulk materials to multifunctional electronic devices and biological systems. RMG makes efficient use of GPU accelerators, if present, but does not require them. Recent work has extended GPU support to systems with multiple GPU's per computational node, as well as optimized both CPU and GPU memory usage to enable large problem sizes, which are no longer limited by the memory of the GPU board. Additional enhancements include increased portability, scalability and performance. New versions of the code are regularly released at sourceforge.net/projects/rmgdft/. The releases include binaries for Linux, Windows and MacIntosh systems, automated builds for clusters using cmake, as well as versions adapted to the major supercomputing installations and platforms.
Stochastic, real-space, imaginary-time evaluation of third-order Feynman-Goldstone diagrams.
Willow, Soohaeng Yoo; Hirata, So
2014-01-14
A new, alternative set of interpretation rules of Feynman-Goldstone diagrams for many-body perturbation theory is proposed, which translates diagrams into algebraic expressions suitable for direct Monte Carlo integrations. A vertex of a diagram is associated with a Coulomb interaction (rather than a two-electron integral) and an edge with the trace of a Green's function in real space and imaginary time. With these, 12 diagrams of third-order many-body perturbation (MP3) theory are converted into 20-dimensional integrals, which are then evaluated by a Monte Carlo method. It uses redundant walkers for convergence acceleration and a weight function for importance sampling in conjunction with the Metropolis algorithm. The resulting Monte Carlo MP3 method has low-rank polynomial size dependence of the operation cost, a negligible memory cost, and a naturally parallel computational kernel, while reproducing the correct correlation energies of small molecules within a few mEh after 10(6) Monte Carlo steps.
Scalable real space pseudopotential density functional codes for materials in the exascale regime
Lena, Charles; Chelikowsky, James; Schofield, Grady; Biller, Ariel; Kronik, Leeor; Saad, Yousef; Deslippe, Jack
Real-space pseudopotential density functional theory has proven to be an efficient method for computing the properties of matter in many different states and geometries, including liquids, wires, slabs, and clusters with and without spin polarization. Fully self-consistent solutions using this approach have been routinely obtained for systems with thousands of atoms. Yet, there are many systems of notable larger sizes where quantum mechanical accuracy is desired, but scalability proves to be a hindrance. Such systems include large biological molecules, complex nanostructures, or mismatched interfaces. We will present an overview of our new massively parallel algorithms, which offer improved scalability in preparation for exascale supercomputing. We will illustrate these algorithms by considering the electronic structure of a Si nanocrystal exceeding 104 atoms. Support provided by the SciDAC program, Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences. Grant Numbers DE-SC0008877 (Austin) and DE-FG02-12ER4 (Berkeley).
Real-Space x-ray tomographic reconstruction of randomly oriented objects with sparse data frames
Ayyer, Kartik; Tate, Mark W; Elser, Veit; Gruner, Sol M
2013-01-01
Schemes for X-ray imaging single protein molecules using new x-ray sources, like x-ray free electron lasers (XFELs), require processing many frames of data that are obtained by taking temporally short snapshots of identical molecules, each with a random and unknown orientation. Due to the small size of the molecules and short exposure times, average signal levels of much less than 1 photon/pixel/frame are expected, much too low to be processed using standard methods. One approach to process the data is to use statistical methods developed in the EMC algorithm (Loh & Elser, Phys. Rev. E, 2009) which processes the data set as a whole. In this paper we apply this method to a real-space tomographic reconstruction using sparse frames of data (below $10^{-2}$ photons/pixel/frame) obtained by performing x-ray transmission measurements of a low-contrast, randomly-oriented object. This extends the work by Philipp et al. (Optics Express, 2012) to three dimensions and is one step closer to the single molecule recons...
Yang, Lun; Dayal, Kaushik
2012-04-01
Piezoresponse force microscopy (PFM) is a powerful scanning-probe technique used to characterize important aspects of the microstructure in ferroelectrics. It has been widely applied to understand domain patterns, domain nucleation and the structure of domain walls. In this paper, we apply a real-space phase-field model to consistently simulate various PFM configurations. We model the PFM tip as a charged region that is external to the ferroelectric, and implement a boundary element method to efficiently and accurately account for the external stray fields that mediate the interactions between the tip and the ferroelectric. Our phase-field model and the solution method together are able to account for the electrical fields both within the specimen as well as those outside, and also consistently solve for the resulting electromechanical response with the same phase-field model. We apply this to various problems: first, the effect of crystal lattice orientation on the induced tip displacement and rotation; second, PFM scanning of a 90° domain wall that emerges at a free surface; third, the effect of closure domain microstructure on PFM response; fourth, the effect of surface modulations on PFM response; and fifth, the effect of surface charge compensation on PFM response.
Myers, Adam D; Ball, Nicholas M
2009-01-01
The use of photometric redshifts in cosmology is increasing. Often, however these photo-zs are treated like spectroscopic observations, in that the peak of the photometric redshift, rather than the full probability density function (PDF), is used. This overlooks useful information inherent in the full PDF. We introduce a new real-space estimator for one of the most used cosmological statistics, the 2-point correlation function, that weights by the PDF of individual photometric objects in a manner that is optimal when Poisson statistics dominate. As our estimator does not bin based on the PDF peak it substantially enhances the clustering signal by usefully incorporating information from all photometric objects that overlap the redshift bin of interest. As a real-world application, we measure QSO clustering in the Sloan Digital Sky Survey (SDSS) and find that our estimator improves the clustering signal by a factor equivalent to increasing the survey size by a factor of 2 to 3. Our technique uses spectroscopic ...
A divide and conquer real space finite-element Hartree-Fock method
Alizadegan, R.; Hsia, K. J.; Martinez, T. J.
2010-01-01
Since the seminal contribution of Roothaan, quantum chemistry methods are traditionally expressed using finite basis sets comprised of smooth and continuous functions (atom-centered Gaussians) to describe the electronic degrees of freedom. Although this approach proved quite powerful, it is not well suited for large basis sets because of linear dependence problems and ill conditioning of the required matrices. The finite element method (FEM), on the other hand, is a powerful numerical method whose convergence is also guaranteed by variational principles and can be achieved systematically by increasing the number of degrees of freedom and/or the polynomial order of the shape functions. Here we apply the real-space FEM to Hartree-Fock calculations in three dimensions. The method produces sparse, banded Hermitian matrices while allowing for variable spatial resolution. This local-basis approach to electronic structure theory allows for systematic convergence and promises to provide an accurate and efficient way toward the full ab initio analysis of materials at larger scales. We introduce a new acceleration technique for evaluating the exchange contribution within FEM and explore the accuracy and robustness of the method for some selected test atoms and molecules. Furthermore, we applied a divide-and-conquer (DC) method to the finite-element Hartree-Fock ab initio electronic-structure calculations in three dimensions. This DC approach leads to facile parallelization and should enable reduced scaling for large systems.
An atomic model of brome mosaic virus using direct electron detection and real-space optimization.
Wang, Zhao; Hryc, Corey F; Bammes, Benjamin; Afonine, Pavel V; Jakana, Joanita; Chen, Dong-Hua; Liu, Xiangan; Baker, Matthew L; Kao, Cheng; Ludtke, Steven J; Schmid, Michael F; Adams, Paul D; Chiu, Wah
2014-09-04
Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure.
Real-Space Imaging of the Atomic Structure of Organic-Inorganic Perovskite.
Ohmann, Robin; Ono, Luis K; Kim, Hui-Seon; Lin, Haiping; Lee, Michael V; Li, Youyong; Park, Nam-Gyu; Qi, Yabing
2015-12-30
Organic-inorganic perovskite is a promising class of materials for photovoltaic applications and light emitting diodes. However, so far commercialization is still impeded by several drawbacks. Atomic-scale effects have been suggested to be possible causes, but an unequivocal experimental view at the atomic level is missing. Here, we present a low-temperature scanning tunneling microscopy study of single crystal methylammonium lead bromide CH3NH3PbBr3. Topographic images of the in situ cleaved perovskite surface reveal the real-space atomic structure. Compared to the bulk we observe modified arrangements of atoms and molecules on the surface. With the support of density functional theory we explain these by surface reconstruction and a substantial interplay of the orientation of the polar organic cations (CH3NH3)(+) with the position of the hosting anions. This leads to structurally and electronically distinct domains with ferroelectric and antiferroelectric character. We further demonstrate local probing of defects, which may also impact device performance.
Real-space renormalization group method for quantum 1/2 spins on the pyrochlore lattice.
Garcia-Adeva, Angel J
2014-04-02
A simple phenomenological real-space renormalization group method for quantum Heisenberg spins with nearest and next nearest neighbour interactions on a pyrochlore lattice is presented. Assuming a scaling law for the order parameter of two clusters of different sizes, a set of coupled equations that gives the fixed points of the renormalization group transformation and, thus, the critical temperatures and ordered phases of the system is found. The particular case of spins 1/2 is studied in detail. Furthermore, to simplify the mathematical details, from all the possible phases arising from the renormalization group transformation, only those phases in which the magnetic lattice is commensurate with a subdivision of the crystal lattice into four interlocked face-centred cubic sublattices are considered. These correspond to a quantum spin liquid, ferromagnetic order, or non-collinear order in which the total magnetic moment of a tetrahedral unit is zero. The corresponding phase diagram is constructed and the differences with respect to the classical model are analysed. It is found that this method reproduces fairly well the phase diagram of the pyrochlore lattice under the aforementioned constraints.
Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy
Bose, Riya
2016-05-26
Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.
Ljungberg, M.P.; Mortensen, Jens Jørgen; Pettersson, L.G.M.
2011-01-01
We describe the implementation of K-shell core level spectroscopies (X-ray absorption (XAS), X-ray emission (XES), and X-ray photoemission (XPS)) in the real-space-grid-based Projector Augmented Wave (PAW) GPAW code. The implementation for XAS is based on the Haydock recursion method avoiding com...
Real Space Imaging of Nanoparticle Assembly at Liquid-Liquid Interfaces with Nanoscale Resolution.
Costa, Luca; Li-Destri, Giovanni; Thomson, Neil H; Konovalov, Oleg; Pontoni, Diego
2016-09-14
Bottom up self-assembly of functional materials at liquid-liquid interfaces has recently emerged as method to design and produce novel two-dimensional (2D) nanostructured membranes and devices with tailored properties. Liquid-liquid interfaces can be seen as a "factory floor" for nanoparticle (NP) self-assembly, because NPs are driven there by a reduction of interfacial energy. Such 2D assembly can be characterized by reciprocal space techniques, namely X-ray and neutron scattering or reflectivity. These techniques have drawbacks, however, as the structural information is averaged over the finite size of the radiation beam and nonperiodic isolated assemblies in 3D or defects may not be easily detected. Real-space in situ imaging methods are more appropriate in this context, but they often suffer from limited resolution and underperform or fail when applied to challenging liquid-liquid interfaces. Here, we study the surfactant-induced assembly of SiO2 nanoparticle monolayers at a water-oil interface using in situ atomic force microscopy (AFM) achieving nanoscale resolved imaging capabilities. Hitherto, AFM imaging has been restricted to solid-liquid interfaces because applications to liquid interfaces have been hindered by their softness and intrinsic dynamics, requiring accurate sample preparation methods and nonconventional AFM operational schemes. Comparing both AFM and grazing incidence X-ray small angle scattering data, we unambiguously demonstrate correlation between real and reciprocal space structure determination showing that the average interfacial NP density is found to vary with surfactant concentration. Additionally, the interaction between the tip and the interface can be exploited to locally determine the acting interfacial interactions. This work opens up the way to studying complex nanostructure formation and phase behavior in a range of liquid-liquid and complex liquid interfaces.
Real-space investigation of energy transfer in heterogeneous molecular dimers
Imada, Hiroshi; Miwa, Kuniyuki; Imai-Imada, Miyabi; Kawahara, Shota; Kimura, Kensuke; Kim, Yousoo
2016-10-01
Given its central role in photosynthesis and artificial energy-harvesting devices, energy transfer has been widely studied using optical spectroscopy to monitor excitation dynamics and probe the molecular-level control of energy transfer between coupled molecules. However, the spatial resolution of conventional optical spectroscopy is limited to a few hundred nanometres and thus cannot reveal the nanoscale spatial features associated with such processes. In contrast, scanning tunnelling luminescence spectroscopy has revealed the energy dynamics associated with phenomena ranging from single-molecule electroluminescence, absorption of localized plasmons and quantum interference effects to energy delocalization and intervalley electron scattering with submolecular spatial resolution in real space. Here we apply this technique to individual molecular dimers that comprise a magnesium phthalocyanine and a free-base phthalocyanine (MgPc and H2Pc) and find that locally exciting MgPc with the tunnelling current of the scanning tunnelling microscope generates a luminescence signal from a nearby H2Pc molecule as a result of resonance energy transfer from the former to the latter. A reciprocating resonance energy transfer is observed when exciting the second singlet state (S2) of H2Pc, which results in energy transfer to the first singlet state (S1) of MgPc and final funnelling to the S1 state of H2Pc. We also show that tautomerization of H2Pc changes the energy transfer characteristics within the dimer system, which essentially makes H2Pc a single-molecule energy transfer valve device that manifests itself by blinking resonance energy transfer behaviour.
Real-space investigation of energy transfer in heterogeneous molecular dimers.
Imada, Hiroshi; Miwa, Kuniyuki; Imai-Imada, Miyabi; Kawahara, Shota; Kimura, Kensuke; Kim, Yousoo
2016-10-20
Given its central role in photosynthesis and artificial energy-harvesting devices, energy transfer has been widely studied using optical spectroscopy to monitor excitation dynamics and probe the molecular-level control of energy transfer between coupled molecules. However, the spatial resolution of conventional optical spectroscopy is limited to a few hundred nanometres and thus cannot reveal the nanoscale spatial features associated with such processes. In contrast, scanning tunnelling luminescence spectroscopy has revealed the energy dynamics associated with phenomena ranging from single-molecule electroluminescence, absorption of localized plasmons and quantum interference effects to energy delocalization and intervalley electron scattering with submolecular spatial resolution in real space. Here we apply this technique to individual molecular dimers that comprise a magnesium phthalocyanine and a free-base phthalocyanine (MgPc and H2Pc) and find that locally exciting MgPc with the tunnelling current of the scanning tunnelling microscope generates a luminescence signal from a nearby H2Pc molecule as a result of resonance energy transfer from the former to the latter. A reciprocating resonance energy transfer is observed when exciting the second singlet state (S2) of H2Pc, which results in energy transfer to the first singlet state (S1) of MgPc and final funnelling to the S1 state of H2Pc. We also show that tautomerization of H2Pc changes the energy transfer characteristics within the dimer system, which essentially makes H2Pc a single-molecule energy transfer valve device that manifests itself by blinking resonance energy transfer behaviour.
Lee, M.; Leiter, K.; Eisner, C.; Breuer, A.; Wang, X.
2017-09-01
In this work, we investigate a block Jacobi-Davidson (J-D) variant suitable for sparse symmetric eigenproblems where a substantial number of extremal eigenvalues are desired (e.g., ground-state real-space quantum chemistry). Most J-D algorithm variations tend to slow down as the number of desired eigenpairs increases due to frequent orthogonalization against a growing list of solved eigenvectors. In our specification of block J-D, all of the steps of the algorithm are performed in clusters, including the linear solves, which allows us to greatly reduce computational effort with blocked matrix-vector multiplies. In addition, we move orthogonalization against locked eigenvectors and working eigenvectors outside of the inner loop but retain the single Ritz vector projection corresponding to the index of the correction vector. Furthermore, we minimize the computational effort by constraining the working subspace to the current vectors being updated and the latest set of corresponding correction vectors. Finally, we incorporate accuracy thresholds based on the precision required by the Fermi-Dirac distribution. The net result is a significant reduction in the computational effort against most previous block J-D implementations, especially as the number of wanted eigenpairs grows. We compare our approach with another robust implementation of block J-D (JDQMR) and the state-of-the-art Chebyshev filter subspace (CheFSI) method for various real-space density functional theory systems. Versus CheFSI, for first-row elements, our method yields competitive timings for valence-only systems and 4-6× speedups for all-electron systems with up to 10× reduced matrix-vector multiplies. For all-electron calculations on larger elements (e.g., gold) where the wanted spectrum is quite narrow compared to the full spectrum, we observe 60× speedup with 200× fewer matrix-vector multiples vs. CheFSI.
Muehlbauer, Martin Johann
2013-07-19
This work is concerned with the investigation of inhomogeneities in materials with length scales of the order of micrometers by means of neutrons. In real space this is done by neutron imaging methods measuring the transmitted signal while for Ultra Small Angle Neutron Scattering (USANS) the signal of the scattered neutrons is assigned to a spatial frequency distribution in reciprocal space. The part about neutron imaging is focused on time-resolved neutron radiography on an injection nozzle similar to the ones used for modern diesel truck engines. The associated experiments have been carried out at the neutron imaging facility ANTARES at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) of the Technische Universitaet Muenchen in Garching near Munich. Especially the demands on the detector system were high. Therefore different detection methods and detector configurations have been tested. On the one hand the detector should allow for a time resolution high enough to record the injection process lasting about 900 μs. On the other hand it needed to offer a spatial resolution sufficient to resolve the test oil inside the spray hole of a maximum diameter of less than 200 μm. An advanced aim of this work is the visualization of cavitation phenomena which may occur during the injection process inside of the spray hole. In order to operate the injector at conditions as close to reality as possible a high pressure pump supplying the injector with test oil at a pressure of 1600 bar was needed in addition to the specially developed control electronics, the recuperation tank and the exhaust gas equipment for the escaping atomized spray. A second part of the work describes USANS experiments based on the idea of Dr. Roland Gaehler and carried out at the instrument D11 at the Institut Laue-Langevin in Grenoble. For this purpose a specific multi-beam geometry was applied, where a multi-slit aperture replaced the standard source aperture and the sample aperture was
Real-space renormalization group for the transverse-field Ising model in two and three dimensions.
Miyazaki, Ryoji; Nishimori, Hidetoshi; Ortiz, Gerardo
2011-05-01
The two- and three-dimensional transverse-field Ising models with ferromagnetic exchange interactions are analyzed by means of the real-space renormalization-group method. The basic strategy is a generalization of a method developed for the one-dimensional case, which exploits the exact invariance of the model under renormalization and is known to give the exact values of the critical point and critical exponent ν. The resulting values of the critical exponent ν in two and three dimensions are in good agreement with those for the classical Ising model in three and four dimensions. To the best of our knowledge, this is the first example in which a real-space renormalization group on (2+1)- and (3+1)-dimensional Bravais lattices yields accurate estimates of the critical exponents.
van Saarloos, Wim
1983-05-01
When differential real-space renormalization-grup theory was proposed by Hilhorst, Schick, and van Leeuwen, they suggested that their approach could only be applied to lattice models for which a star-triangle transformation exists. However, differential renormalization-group equations for the square Ising model have recently been proposed whose derivation does not involve the star-triangle transformation. We show that the latter equations are not exact renormalization-group equations by an analysis that reveals some essential limitations of the present formulation of differential real-space renormalization. We investigate the structure of the renormalization-group flow equations obtained in this method and uncover a strong property of these equations that simplifies the calculations in actual applications of the theory. However, the status and implications of this property, which embodies the crux of the theory, are not yet fully understood.
Yothers, Mitchell P; Bumm, Lloyd A
2016-01-01
We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly-resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors (NNs) are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform (DHCT). Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional re...
Real Space Renormalization Group Study of the S=1/2 XXZ Chains with Fibonacci Exchange Modulation
飛田, 和男
2004-01-01
Ground state properties of the S = 1/2 antiferromagnetic XXZ chain with Fibonacci exchange modulation are studied using the real space renormalization group method for strong modulation. The quantum dynamical critical behavior with a new universality class is predicted in the isotropic case. Combining our results with the weak coupling renormalization group results by Vidal et al., the ground state phase diagram is obtained.
A non-perturbative real-space renormalization group scheme for the spin-1/2 XXX Heisenberg model
Degenhard, Andreas
1999-01-01
In this article we apply a recently invented analytical real-space renormalization group formulation which is based on numerical concepts of the density matrix renormalization group. Within a rigorous mathematical framework we construct non-perturbative renormalization group transformations for the spin-1/2 XXX Heisenberg model in the finite temperature regime. The developed renormalization group scheme allows for calculating the renormalization group flow behaviour in the temperature depende...
Real-space multiple-scattering theory of XMCD including spin-orbit interaction in scattering process
Koide, Akihiro; Niki, Kaori; Sakai, Seiji; Fujikawa, Takashi
2016-05-01
The effects of the spin-orbit interaction on surrounding atoms for XMCD spectra are studied by a real-space multiple-scattering theory. The present numerical calculation for Fe K-edge XMCD spectra from BCC iron demonstrates the importance of the spin-orbit interaction on scattering atoms, which has been disregarded in previous works. These effects will be inevitable for K-edge XMCD analyses of light elements surrounded by heavy magnetic atoms.
Real Space Renormalization Group Study of the S=1/2 XXZ Chains with Fibonacci Exchange Modulation
Hida, Kazuo
2004-08-01
Ground state properties of the S=1/2 antiferromagnetic XXZ chain with Fibonacci exchange modulation are studied using the real space renormalization group method for strong modulation. The quantum dynamical critical behavior with a new universality class is predicted in the isotropic case. Combining our results with the weak coupling renormalization group results by Vidal et al., the ground state phase diagram is obtained.
Orban, Chris
2012-01-01
In setting up initial conditions for cosmological N-body simulations there are, fundamentally, two choices: either maximizing the correspondence of the initial density field to the assumed fourier-space clustering or, instead, matching to the real-space clustering. As a stringent test of both approaches, I perform ensembles of simulations using power law models and exploit the self-similarity of these initial conditions to quantify the accuracy of the results. Originally proposed by Pen 1997 and implemented by Sirko 2005, I show that the real-space motivated approach, which allows the DC mode to vary, performs well in exhibiting the expected self-similar behavior in the mean xi(r) and P(k) and in both methods this behavior extends below the scale of the initial mean interparticle spacing. I also test the real-space method with simulations of a simplified, powerlaw model for baryon acoustic oscillations, again with success, and mindful of the need to generate mock catalogs using simulations I show extensive po...
Hochmann, David; Houser, Donald R.; Thomas, Jacob
1991-05-01
Because the reduction of gear noise in next-generation rotorcraft depends on the reduction of transmission errors, attention is presently given to the prediction of such errors and the load distributions of both a spur-gear pair and a double helical gear train used in a split-path helicopter transmission. Two cases are examined: (1) the spur gear mesh between the spur shaft and the lower spur/helical shaft, and (2) the double helical gear mesh between the lower spur/helical shaft and the output bull bear shaft.
Naylor, Mark; Touati, Sarah; Main, Ian; Bell, Andrew
2010-05-01
Seismic activity is routinely quantified using event rates or their inverse, interevent times, which are more stable to extreme events [1]. It is common practice to model regional earthquake interevent times using a gamma distribution [2]. However, the use of this gamma distribution is empirically based, not physical. Our recent work has shown that the gamma distribution is an approximation that drops out of a physically based model after the commonly applied filtering of the raw data [3]. We show that in general, interevent time distributions have a fundamentally bimodal shape caused by the mixing of two contributions: correlated aftershocks, which have short interevent times and produce a gamma distribution; and independent events, which tend to be separated by longer intervals and are described by a Poisson distribution. The power-law segment of the gamma distribution arises at the cross over between these distributions. This physically based model is transferable to other fields to explain the form of cascading interevent time series with varying proportions of independent and dependent daughter events. We have found that when the independent or background rate of earthquakes is high, as is the case for earthquake catalogues spanning large regions, significant overlapping of separate aftershock sequences within the time series "masks" the effects of these aftershock sequences on the temporal statistics. The time series qualitatively appears more random; this is confirmed in the interevent time distribution, in the convergence of the mean interevent time, and in the poor performance of temporal ETAS parameter inversions on synthetic catalogues within this regime [4]. The aftershock-triggering characteristics within the data are thus hidden from observation in the time series by a high independent rate of events; spatial information about event occurrence is needed in this case to uncover the triggering structure in the data. We show that earthquake interevent
Filippov, Alexander E.; Popov, Valentin L.; Gorb, Stanislav N.
2015-01-01
Microstructures responsible for temporary arresting of contacting surfaces are widely distributed on surfaces in different organisms. Recent morphological studies show that these structures have different density of outgrowths and not ideal distribution pattern on both complementary parts of the contact. One can suggest that this difference is optimized by natural selection to get stronger mechanical arrest within the system. In this paper, we simulate such a system numerically, both in the frames of continuous contact and discrete dynamical models to prove this hypothesis and elucidate other aspects of optimization of such mechanical adhesive systems. PMID:25533090
HI 21-cm absorption survey of quasar-galaxy pairs: Distribution of cold gas around z<0.4 galaxies
Dutta, R; Gupta, N; Momjian, E; Noterdaeme, P; Petitjean, P; Rahmani, H
2016-01-01
We present the results from our survey of HI 21-cm absorption, using GMRT, VLA and WSRT, in a sample of 55 z<0.4 galaxies towards radio sources with impact parameters (b) in the range ~0-35 kpc. In our primary sample (defined for statistical analyses) of 40 quasar-galaxy-pairs (QGPs), probed by 45 sightlines, we have found seven HI 21-cm absorption detections, two of which are reported here for the first time. Combining our primary sample with measurements having similar optical depth sensitivity ($\\int\\tau dv$ <= 0.3 km/s) from the literature, we find a weak anti-correlation (rank correlation coefficient = -0.20 at 2.42sigma level) between $\\int\\tau dv$ and b, consistent with previous literature results. The covering factor of HI 21-cm absorbers (C_21) is estimated to be 0.24 (+0.12/-0.08) at b <= 15 kpc and 0.06 (+0.09/-0.04) at b = 15-35 kpc. $\\int\\tau dv$ and C_21 show similar declining trend with radial distance along the galaxy's major axis and distances scaled with the effective HI radius. The...
Multi-pair states in electron-positron pair creation
Wöllert, Anton; Bauke, Heiko; Keitel, Christoph H.
2016-09-01
Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron-positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron-positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron-positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron-positron pairs.
Enkovaara, J [CSC-IT Center for Science Ltd, PO Box 405 FI-02101 Espoo (Finland); Rostgaard, C; Mortensen, J J; Chen, J; Dulak, M; Glinsvad, C; Hansen, H A; Larsen, A H; Moses, P G; Petzold, V [Center for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Ferrighi, L; Kristoffersen, H H [Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Gavnholt, J; Olsen, T [Danish National Research Foundation' s Center for Individual Nanoparticle Functionality (CINF), Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Haikola, V; Lehtovaara, L [Department of Applied Physics, Aalto University School of Science and Technology, PO Box 11000, FIN-00076 Aalto, Espoo (Finland); Kuisma, M; Ojanen, J [Department of Physics, Tampere University of Technology, PO Box 692, FI-33101 Tampere (Finland); Ljungberg, M [FYSIKUM, Stockholm University, Albanova University Center, SE-10691 Stockholm (Sweden); Lopez-Acevedo, O [Departments of Physics and Chemistry, Nanoscience Center, University of Jyvaeskylae, PO Box 35 (YFL), FI-40014 (Finland)
2010-06-30
Electronic structure calculations have become an indispensable tool in many areas of materials science and quantum chemistry. Even though the Kohn-Sham formulation of the density-functional theory (DFT) simplifies the many-body problem significantly, one is still confronted with several numerical challenges. In this article we present the projector augmented-wave (PAW) method as implemented in the GPAW program package (https://wiki.fysik.dtu.dk/gpaw) using a uniform real-space grid representation of the electronic wavefunctions. Compared to more traditional plane wave or localized basis set approaches, real-space grids offer several advantages, most notably good computational scalability and systematic convergence properties. However, as a unique feature GPAW also facilitates a localized atomic-orbital basis set in addition to the grid. The efficient atomic basis set is complementary to the more accurate grid, and the possibility to seamlessly switch between the two representations provides great flexibility. While DFT allows one to study ground state properties, time-dependent density-functional theory (TDDFT) provides access to the excited states. We have implemented the two common formulations of TDDFT, namely the linear-response and the time propagation schemes. Electron transport calculations under finite-bias conditions can be performed with GPAW using non-equilibrium Green functions and the localized basis set. In addition to the basic features of the real-space PAW method, we also describe the implementation of selected exchange-correlation functionals, parallelization schemes, {Delta}SCF-method, x-ray absorption spectra, and maximally localized Wannier orbitals. (topical review)
Enkovaara, J; Rostgaard, C; Mortensen, J J; Chen, J; Dułak, M; Ferrighi, L; Gavnholt, J; Glinsvad, C; Haikola, V; Hansen, H A; Kristoffersen, H H; Kuisma, M; Larsen, A H; Lehtovaara, L; Ljungberg, M; Lopez-Acevedo, O; Moses, P G; Ojanen, J; Olsen, T; Petzold, V; Romero, N A; Stausholm-Møller, J; Strange, M; Tritsaris, G A; Vanin, M; Walter, M; Hammer, B; Häkkinen, H; Madsen, G K H; Nieminen, R M; Nørskov, J K; Puska, M; Rantala, T T; Schiøtz, J; Thygesen, K S; Jacobsen, K W
2010-06-30
Electronic structure calculations have become an indispensable tool in many areas of materials science and quantum chemistry. Even though the Kohn-Sham formulation of the density-functional theory (DFT) simplifies the many-body problem significantly, one is still confronted with several numerical challenges. In this article we present the projector augmented-wave (PAW) method as implemented in the GPAW program package (https://wiki.fysik.dtu.dk/gpaw) using a uniform real-space grid representation of the electronic wavefunctions. Compared to more traditional plane wave or localized basis set approaches, real-space grids offer several advantages, most notably good computational scalability and systematic convergence properties. However, as a unique feature GPAW also facilitates a localized atomic-orbital basis set in addition to the grid. The efficient atomic basis set is complementary to the more accurate grid, and the possibility to seamlessly switch between the two representations provides great flexibility. While DFT allows one to study ground state properties, time-dependent density-functional theory (TDDFT) provides access to the excited states. We have implemented the two common formulations of TDDFT, namely the linear-response and the time propagation schemes. Electron transport calculations under finite-bias conditions can be performed with GPAW using non-equilibrium Green functions and the localized basis set. In addition to the basic features of the real-space PAW method, we also describe the implementation of selected exchange-correlation functionals, parallelization schemes, ΔSCF-method, x-ray absorption spectra, and maximally localized Wannier orbitals.
Linscheid, A; Sanna, A; Floris, A; Gross, E K U
2015-08-28
We show that the superconducting order parameter and condensation energy density of phonon-mediated superconductors can be calculated in real space from first principles density functional theory for superconductors. This method highlights the connection between the chemical bonding structure and the superconducting condensation and reveals new and interesting properties of superconducting materials. Understanding this connection is essential to describe nanostructured superconducting systems where the usual reciprocal space analysis hides the basic physical mechanism. In a first application we present results for MgB2, CaC6 and hole-doped graphane.
N. Hedley
2012-07-01
Full Text Available The research described in this paper reports on the design, rationale, development and implementation of a set of new geospatial interfaces that combine multi-touch interaction, portable virtual environments, 'geosimulation gaming', and mobile augmented reality. The result is a set of new ways for us to combine the capabilities of geospatial virtual environments, augmented realitiy and geosimulation. These new hybrid interfaces deliver new geospatial information experiences – new ways of connecting spatial data, simulations, and abstract concepts to real spaces. Their potential to enhance environmental perception and learning must be explored.
Snoek, M; Titvinidze, I; Toeke, C; Hofstetter, W [Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, 60438 Frankfurt/Main (Germany); Byczuk, K [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute for Physics, University of Augsburg, 86135 Augsburg (Germany)], E-mail: snoek@itp.uni-frankfurt.de
2008-09-15
We apply dynamical mean-field theory to strongly interacting fermions in an inhomogeneous environment. With the help of this real-space dynamical mean-field theory (R-DMFT) we investigate antiferromagnetic states of repulsively interacting fermions with spin1/2 in a harmonic potential. Within R-DMFT, antiferromagnetic order is found to be stable in spatial regions with total particle density close to one, but persists also in parts of the system where the local density significantly deviates from half filling. In systems with spin imbalance, we find that antiferromagnetism is gradually suppressed and phase separation emerges beyond a critical value of the spin imbalance.
Reimers, Jeffrey R; Hush, Noel S
2004-04-01
We apply our four-state 70-vibration vibronic-coupling model for the properties of the photosynthetic special-pair radical cation to: (1) interpret the observed correlations between the midpoint potential and the distribution of spin density between the two bacteriochlorophylls for 30 mutants of Rhodobacter sphaeroides, (2) interpret the observed average intervalence hole-transfer absorption energies as a function of spin density for six mutants, and (3) simulate the recently obtained intervalence electroabsorption Stark spectrum of the wild-type reaction center. While three new parameters describing the location of the sites of mutation with respect to the special pair are required to describe the midpoint-potential data, a priori predictions are made for the transition energies and the Stark spectrum. In general, excellent predictions are made of the observed quantities, with deviations being typically of the order of twice the experimental uncertainties. A unified description of many chemical and spectroscopic properties of the bacterial reaction center is thus provided. Central to the analysis is the assumption that the perturbations made to the reaction center, either via mutations of protein residues or by application of an external electric field, act only to independently modify the oxidation potentials of the two halves of the special pair and hence the redox asymmetry E0. While this appears to be a good approximation, clear evidence is presented that effects of mutation can be more extensive than what is allowed for. A thorough set of analytical equations describing the observed properties is obtained using the Born-Oppenheimer adiabatic approximation. These equations are generally appropriate for intervalence charge-transfer problems and include, for the first time, full treatment of both symmetric and antisymmetric vibrational motions. The limits of validity of the adiabatic approach to the full nonadiabatic problem are obtained.
Diffractive charged meson pair production
Lehmann-Dronke, B; Schäfer, S; Stein, E; Schäfer, A
1999-01-01
We investigate the possibility to measure the nonforward gluon distribution function by means of diffractively produced charged pion and kaon pairs in polarized lepton nucleon scattering. The resulting cross sections are sizable and are dominated by the gluonic contribution. We find large spin asymmetries, both for pion pairs and for kaon pairs.
Revealing the Microscopic Real-Space Excursion of a Laser-Driven Electron
Heiko G. Kurz
2016-08-01
Full Text Available High-order harmonic spectroscopy allows one to extract information on fundamental quantum processes, such as the exit time in the tunneling of an electron through a barrier with attosecond time resolution and molecular structure with angstrom spatial resolution. Here, we study the spatial motion of the electron during high-order harmonic generation in an in situ pump-probe measurement using high-density liquid water droplets as a target. We show that molecules adjacent to the emitting electron-ion pair can disrupt the electron’s trajectory when positioned within the range of the maximum electronic excursion distance. This allows us to use the parent ion and the neighboring molecules as boundaries for the electronic motion to measure the maximum electronic excursion distance during the high-order harmonic generation process. Our analysis of the process is relevant for optimizing high-harmonic yields in dense media.
Bilateral matrix-exponential distributions
Bladt, Mogens; Esparza, Luz Judith R; Nielsen, Bo Friis
2012-01-01
In this article we define the classes of bilateral and multivariate bilateral matrix-exponential distributions. These distributions have support on the entire real space and have rational moment-generating functions. These distributions extend the class of bilateral phasetype distributions of [1]...
Wan-shu Peng; Chao Qi; Hong Zhang; Mei-ling Gao; Hong Wang; Fei Ren; Xia-qing Li
2015-01-01
Paired immunoglobulin-like receptor B (PirB) is a functional receptor of myelin-associated in-hibitors for axonal regeneration and synaptic plasticity in the central nervous system, and thus suppresses nerve regeneration. The regulatory effect of PirB on injured nerves has received a lot of attention. To better understand nerve regeneration inability after spinal cord injury, this study aimed to investigate the distribution of PirB (via immunolfuorescence) in the central nervous system and peripheral nervous system 10 days after injury. Immunoreactivity for PirB increased in the dorsal root ganglia, sciatic nerves, and spinal cord segments. In the dorsal root ganglia and sciatic nerves, PirB was mainly distributed along neuronal and axonal membranes. PirB was found to exhibit a diffuse, intricate distribution in the dorsal and ventral regions. Immunore-activity for PirB was enhanced in some cortical neurons located in the bilateral precentral gyri. Overall, the ifndings suggest a pattern of PirB immunoreactivity in the nervous system after uni-lateral spinal transection injury, and also indicate that PirB may suppress repair after injury.
Dzuba, Sergei A.
2016-08-01
Pulsed double electron-electron resonance technique (DEER, or PELDOR) is applied to study conformations and aggregation of peptides, proteins, nucleic acids, and other macromolecules. For a pair of spin labels, experimental data allows for the determination of their distance distribution function, P(r). P(r) is derived as a solution of a first-kind Fredholm integral equation, which is an ill-posed problem. Here, we suggest regularization by increasing the distance discretization length to its upper limit where numerical integration still provides agreement with experiment. This upper limit is found to be well above the lower limit for which the solution instability appears because of the ill-posed nature of the problem. For solving the integral equation, Monte Carlo trials of P(r) functions are employed; this method has an obvious advantage of the fulfillment of the non-negativity constraint for P(r). The regularization by the increasing of distance discretization length for the case of overlapping broad and narrow distributions may be employed selectively, with this length being different for different distance ranges. The approach is checked for model distance distributions and for experimental data taken from literature for doubly spin-labeled DNA and peptide antibiotics.
Meral, Cagla
2011-07-01
Significant progress was achieved with the application of Rietveld method to characterize the crystalline phases in portland cement paste. However, to obtain detailed information on the amorphous or poorly crystalline phases, it is necessary to analyze the total scattering data. The pair distribution function (PDF) method has been successfully used in the study of liquids and amorphous solids. The method takes the Sine Fourier transform of the measured structure factor over a wide momentum transfer range, providing a direct measure of the probability of finding an atom surrounding a central atom at a radial distance away. The obtained experimental characteristic distances can be also used to validate the predictions by the theoretical models, such as, molecular dynamics, ab initio simulations and density functional theory. The paper summarizes recent results of PDF analysis on silica fume, rice husk ash, fly ash, ASR gel, C-S-H and geopolymers. © 2011 Elsevier Ltd. All rights reserved.
Booth, C H; Bauer, E D; Bozin, E S; Billinge, S J L; Walter, M D
2010-07-20
The Cp{sup *}{sub 2} Yb(L) class of compounds, where Cp{sup *}=pentamethylcyclopentadienyl = C{sub 5}Me{sub 5} and L is either a 1,4-diazabutadiene or bipy = 2,2'bipyridine related ligand, have provided excellent analogies to the Kondo state on the nanoscale. Cp{sup *}{sub 2} Yb(4,4'-Me{sub 2}-bipy) furthers this analogy by demonstrating a valence transition as the sample is cooled below 200 K. Here, pair-distribution function (PDF) analysis of x-ray powder diffraction data demonstrate that the Cp{sup *}{sub 2}Yb(4,4'Me{sub 2}-bipy) molecule is virtually unchanged through the valence transition. However, the molecule’s stacking arrangement is altered through the valence transition.
Grangeon, Sylvain; Baronnet, Alain; Marty, Nicolas; Poulain, Agnieszka; Elkaïm, Erik; Roosz, Cédric; Gaboreau, Stéphane; Henocq, Pierre; Claret, Francis
2017-01-01
The structural evolution of nanocrystalline calcium silicate hydrate (C–S–H) as a function of its calcium to silicon (Ca/Si) ratio has been probed using qualitative and quantitative X-ray atomic pair distribution function analysis of synchrotron X-ray scattering data. Whatever the Ca/Si ratio, the C–S–H structure is similar to that of tobermorite. When the Ca/Si ratio increases from ∼0.6 to ∼1.2, Si wollastonite-like chains progressively depolymerize through preferential omission of Si bridging tetrahedra. When the Ca/Si ratio approaches ∼1.5, nanosheets of portlandite are detected in samples aged for 1 d, while microcrystalline portlandite is detected in samples aged for 1 year. High-resolution transmission electron microscopy imaging shows that the tobermorite-like structure is maintained to Ca/Si > 3.
Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel
2015-12-15
The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron-photon interactions in terms of effective Kohn-Sham potentials. In this work, we numerically construct the exact electron-photon Kohn-Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light-matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account.
Mitchell, Andrew K.; Becker, Michael; Bulla, Ralf
2011-09-01
The existence of a length scale ξK˜1/TK (with TK the Kondo temperature) has long been predicted in quantum impurity systems. At low temperatures T≪TK, the standard interpretation is that a spin-(1)/(2) impurity is screened by a surrounding “Kondo cloud” of spatial extent ξK. We argue that renormalization group (RG) flow between any two fixed points (FPs) results in a characteristic length scale, observed in real space as a crossover between physical behavior typical of each FP. In the simplest example of the Anderson impurity model, three FPs arise, and we show that “free orbital,” “local moment,” and “strong coupling” regions of space can be identified at zero temperature. These regions are separated by two crossover length scales ξLM and ξK, with the latter diverging as the Kondo effect is destroyed on increasing temperature through TK. One implication is that moment formation occurs inside the “Kondo cloud”, while the screening process itself occurs on flowing to the strong coupling FP at distances ˜ξK. Generic aspects of the real-space physics are exemplified by the two-channel Kondo model, where ξK now separates local moment and overscreening clouds.
Towards sub-nanometer real-space observation of spin and orbital magnetism at the Fe/MgO interface.
Thersleff, Thomas; Muto, Shunsuke; Werwiński, Mirosław; Spiegelberg, Jakob; Kvashnin, Yaroslav; Hjӧrvarsson, Björgvin; Eriksson, Olle; Rusz, Ján; Leifer, Klaus
2017-03-24
While the performance of magnetic tunnel junctions based on metal/oxide interfaces is determined by hybridization, charge transfer, and magnetic properties at the interface, there are currently only limited experimental techniques with sufficient spatial resolution to directly observe these effects simultaneously in real-space. In this letter, we demonstrate an experimental method based on Electron Magnetic Circular Dichroism (EMCD) that will allow researchers to simultaneously map magnetic transitions and valency in real-space over interfacial cross-sections with sub-nanometer spatial resolution. We apply this method to an Fe/MgO bilayer system, observing a significant enhancement in the orbital to spin moment ratio that is strongly localized to the interfacial region. Through the use of first-principles calculations, multivariate statistical analysis, and Electron Energy-Loss Spectroscopy (EELS), we explore the extent to which this enhancement can be attributed to emergent magnetism due to structural confinement at the interface. We conclude that this method has the potential to directly visualize spin and orbital moments at buried interfaces in magnetic systems with unprecedented spatial resolution.
Fission: statistical nucleon pair breaking
Montoya, M. (Instituto Peruano de Energia Nuclear, Lima (Peru))
1984-06-01
In order to explain the odd-even effect observed in low energy fission fragment distributions it has been recently required a double mechanism of nucleon pair breaking: before scission (early pair breaking) and at scission (late pair breaking), respectively. In the present work we show that, using the same formulae but considering only the early pair breaking mechanism, one can reproduce fairly well all the available experimental data on the odd-even effects.
CRITIC2: A program for real-space analysis of quantum chemical interactions in solids
Otero-de-la-Roza, A.; Johnson, Erin R.; Luaña, Víctor
2014-03-01
We present CRITIC2, a program for the analysis of quantum-mechanical atomic and molecular interactions in periodic solids. This code, a greatly improved version of the previous CRITIC program (Otero-de-la Roza et al., 2009), can: (i) find critical points of the electron density and related scalar fields such as the electron localization function (ELF), Laplacian, … (ii) integrate atomic properties in the framework of Bader’s Atoms-in-Molecules theory (QTAIM), (iii) visualize non-covalent interactions in crystals using the non-covalent interactions (NCI) index, (iv) generate relevant graphical representations including lines, planes, gradient paths, contour plots, atomic basins, … and (v) perform transformations between file formats describing scalar fields and crystal structures. CRITIC2 can interface with the output produced by a variety of electronic structure programs including WIEN2k, elk, PI, abinit, Quantum ESPRESSO, VASP, Gaussian, and, in general, any other code capable of writing the scalar field under study to a three-dimensional grid. CRITIC2 is parallelized, completely documented (including illustrative test cases) and publicly available under the GNU General Public License. Catalogue identifier: AECB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 11686949 No. of bytes in distributed program, including test data, etc.: 337020731 Distribution format: tar.gz Programming language: Fortran 77 and 90. Computer: Workstations. Operating system: Unix, GNU/Linux. Has the code been vectorized or parallelized?: Shared-memory parallelization can be used for most tasks. Classification: 7.3. Catalogue identifier of previous version: AECB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 157 Nature of problem: Analysis of quantum
Spałek, Józef; Zegrodnik, Michał; Kaczmarczyk, Jan
2017-01-01
Selected universal experimental properties of high-temperature superconducting (HTS) cuprates have been singled out in the last decade. One of the pivotal challenges in this field is the designation of a consistent interpretation framework within which we can describe quantitatively the universal features of those systems. Here we analyze in a detailed manner the principal experimental data and compare them quantitatively with the approach based on a single-band model of strongly correlated electrons supplemented with strong antiferromagnetic (super)exchange interaction (the so-called t -J -U model). The model rationale is provided by estimating its microscopic parameters on the basis of the three-band approach for the Cu-O plane. We use our original full Gutzwiller wave-function solution by going beyond the renormalized mean-field theory (RMFT) in a systematic manner. Our approach reproduces very well the observed hole doping (δ ) dependence of the kinetic-energy gain in the superconducting phase, one of the principal non-Bardeen-Cooper-Schrieffer features of the cuprates. The calculated Fermi velocity in the nodal direction is practically δ -independent and its universal value agrees very well with that determined experimentally. Also, a weak doping dependence of the Fermi wave vector leads to an almost constant value of the effective mass in a pure superconducting phase which is both observed in experiment and reproduced within our approach. An assessment of the currently used models (t -J , Hubbard) is carried out and the results of the canonical RMFT as a zeroth-order solution are provided for comparison to illustrate the necessity of the introduced higher-order contributions.
Real space tests of the statistical isotropy and Gaussianity of the three year WMAP data
Lew, Bartosz
2008-01-01
CONTEXT: Gaussianity will become a strong observational tool allowing to constrain viable inflationary models. AIMS: In this paper, we introduce and analyze a new method for testing SI and Gaussianity and apply it to the 3 years WMAP CMB data. METHODS: We use an original pixelization scheme to divide the sky into regions of varying size and shape. We then measure the first four moments of the one-point distribution within these regions and using their simulated spatial distributions we test the statistical isotropy and Gaussianity hypotheses. By randomly varying orientations of these regions, their angular size and shape, we sample the underlying CMB field in a new manner, that offers a richer exploration of data the content. In our analysis we account for all correlations between different regions and also show the impact on the results when these correlations are neglected. The statistical significance is assessed via comparison with realistic Monte-Carlo simulations of the observed data. RESULTS: We find t...
Feldman, Baruch
2016-01-01
We present an eigenspectrum partitioning scheme without inversion for the recently described real-space electronic transport code, TRANSEC. The primary advantage of TRANSEC is its highly parallel algorithm, which enables studying conductance in large systems. The present scheme adds a new source of parallelization, significantly enhancing TRANSEC's parallel scalability, especially for systems with many electrons. In principle, partitioning could enable super-linear parallel speedup, as we demonstrate in calculations within TRANSEC. In practical cases, we report better than five-fold improvement in CPU time and similar improvements in wall time, compared to previously-published large calculations. Importantly, the suggested scheme is relatively simple to implement. It can be useful for general large Hermitian or weakly non-Hermitian eigenvalue problems, whenever relatively accurate inversion via direct or iterative linear solvers is impractical.
Wu, H. H.; Pramanick, A.; Ke, Y. B.; Wang, X.-L.
2016-11-01
A real-space phase field model combining Landau-Lifshitz-Gilbert equation and time-dependent Ginzburg-Landau equation is developed to investigate the evolution of ferromagnetic domains and martensitic twin structures in a ferromagnetic shape memory alloy at different lengthscales. Both domain and twin structures are obtained by simultaneously solving for minimization of magnetic, elastic, and magnetoelastic coupling energy terms via a nonlinear finite element method. The model is applied to simulate magneto-structural evolution within a nanoparticle and a bulk single-crystal of the alloy Ni2MnGa, which are subjected to mechanical strains. It is shown that a nanoparticle contains magnetic vortex structures within a single twin variant, whereas for a bulk crystal both 90° and 180° domain structures are present within multiple twin variants.
Feldman, Baruch; Zhou, Yunkai
2016-10-01
We present an eigenspectrum partitioning scheme without inversion for the recently described real-space electronic transport code, TRANSEC. The primary advantage of TRANSEC is its highly parallel algorithm, which enables studying conductance in large systems. The present scheme adds a new source of parallelization, significantly enhancing TRANSEC's parallel scalability, especially for systems with many electrons. In principle, partitioning could enable super-linear parallel speedup, as we demonstrate in calculations within TRANSEC. In practical cases, we report better than five-fold improvement in CPU time and similar improvements in wall time, compared to previously-published large calculations. Importantly, the suggested scheme is relatively simple to implement. It can be useful for general large Hermitian or weakly non-Hermitian eigenvalue problems, whenever relatively accurate inversion via direct or iterative linear solvers is impractical.
Alemany, Manuel M. G. [Universidad de Santiago de Compostela; Longo, Roberto [Universidad de Santiago de Compostela; Gallego, Luis [Universidad de Santiago de Compostela; Gonzales, D. J. [Universidad de Valladolid; Gonzales, L. E. [Universidad de Valladolid; Tiago, Murilo L [ORNL; Chelikowsky, James [University of Texas, Austin
2007-01-01
We performed a comprehensive study of the static, dynamic and electronic properties of liquid Pb at T = 650 kelvins, density 0.0309 angstroms^{-3} by means of 216-particle ab initio molecular dynamics simulations based on a real-space implementation of pseudopotentials constructed within density-functional theory. The predicted results and available experimental data are very in good agreement, which confirms the adequacy of this technique to achieve a reliable description of the behavior of liquid metals, including their dynamic properties. Although some of the computed properties of liquid Pb are similar to those of simple liquid metals, others differ markedly. Our results show that an appropriate description of liquid Pb requires the inclusion of relativistic effects in the determination of the pseudopotentials of Pb.
Balcan, D; Erzan, A
2005-02-01
We have defined a type of clustering scheme preserving the connectivity of the nodes in a network, ignored by the conventional Migdal-Kadanoff bond moving process. In high dimensions, our clustering scheme performs better for correlation length and dynamical critical exponents than the conventional Migdal-Kadanoff bond moving scheme. In two and three dimensions we find the dynamical critical exponents for the kinetic Ising model to be z=2.13 and z=2.09 , respectively, at the pure Ising fixed point. These values are in very good agreement with recent Monte Carlo results. We investigate the phase diagram and the critical behavior of randomly bond diluted lattices in d=2 and 3 in the light of this transformation. We also provide exact correlation exponent and dynamical critical exponent values on hierarchical lattices with power-law and Poissonian degree distributions.
Localization properties of random-mass Dirac fermions from real-space renormalization group.
Mkhitaryan, V V; Raikh, M E
2011-06-24
Localization properties of random-mass Dirac fermions for a realization of mass disorder, commonly referred to as the Cho-Fisher model, are studied on the D-class chiral network. We show that a simple renormalization group (RG) description captures accurately a rich phase diagram: thermal metal and two insulators with quantized σ(xy), as well as transitions (including critical exponents) between them. Our main finding is that, even with small transmission of nodes, the RG block exhibits a sizable portion of perfect resonances. Delocalization occurs by proliferation of these resonances to larger scales. Evolution of the thermal conductance distribution towards a metallic fixed point is synchronized with evolution of signs of transmission coefficients, so that delocalization is accompanied with sign percolation.
H I 21-cm absorption survey of quasar-galaxy pairs: distribution of cold gas around z < 0.4 galaxies
Dutta, R.; Srianand, R.; Gupta, N.; Momjian, E.; Noterdaeme, P.; Petitjean, P.; Rahmani, H.
2017-02-01
We present the results from our survey of H I 21-cm absorption, using Giant Metrewave Radio Telescope, Very Large Array and Westerbork Radio Synthesis Telescope, in a sample of 55 z level) between ∫τdv and b, consistent with previous literature results. The covering factor of H I 21-cm absorbers (C21) is estimated to be 0.24^{+0.12}_{-0.08} at b ≤ 15 kpc and 0.06^{+0.09}_{-0.04} at b = 15-35 kpc. ∫τdv and C21 show similar declining trend with radial distance along the galaxy's major axis and distances scaled with the effective H I radius. There is also tentative indication that most of the H I 21-cm absorbers could be co-planar with the extended H I discs. No significant dependence of ∫τdv and C21 on galaxy luminosity, stellar mass, colour and star formation rate is found, though the H I 21-cm absorbing gas cross-section may be larger for the luminous galaxies. The higher detection rate (by a factor of ˜4) of H I 21-cm absorption in z < 1 damped Lyman-α systems compared to the quasar-galaxy pairs indicates towards small covering factor and patchy distribution of cold gas clouds around low-z galaxies.
Hainline, Kevin N; Chen, Chien-Ting; Carroll, Christopher M; Jones, Mackenzie L; Zervos, Alexandros S; Goulding, Andrew D
2016-01-01
We explore the gas ionization and kinematics, as well as the optical--IR spectral energy distributions for UGC 11185, a nearby pair of merging galaxies hosting obscured active galactic nuclei (AGNs), also known as SDSS J181611.72+423941.6 and J181609.37+423923.0 (J1816NE and J1816SW, $z \\approx 0.04$). Due to the wide separation between these interacting galaxies ($\\sim 23$ kpc), observations of these objects provide a rare glimpse of the concurrent growth of supermassive black holes at an early merger stage. We use BPT line diagnostics to show that the full extent of the narrow line emission in both galaxies is photoionized by an AGN and confirm the existence of a 10-kpc-scale ionization cone in J1816NE, while in J1816SW the AGN narrow-line region is much more compact (1--2 kpc) and relatively undisturbed. Our observations also reveal the presence of ionized gas that nearly spans the entire distance between the galaxies which is likely in a merger-induced tidal stream. In addition, we carry out a spectral an...
Allan, P. K.; Chapman, K. W.; Chupas, P. J.; Hriljac, J. A.; Renouf, C. L.; Lucas, T. C. A.; Morris, R. E. (X-Ray Science Division); (Univ. of St. Andrews); (Univ. of Birmingham)
2012-01-01
Flexible metal-organic frameworks (MOFs) are materials of great current interest. A small class of MOFs show flexibility driven by reversible bonding rearrangements that lead directly to unusual properties. Cu-SIP-3 is a MOF based on the 5-sulfoisophthalate ligand, where the strong copper-carboxylate bonds ensure that the three-dimensional integrity of the structure is retained while allowing bonding changes to occur at the more weakly bonding sulfonate group leading to unusual properties such as the ultra-selective adsorption of only certain gases. While the integrity of the framework remains intact during bonding changes, crystalline order is not retained at all times during the transformations. X-Ray diffraction reveals that highly crystalline single crystals lose order during the transformation before regaining crystallinity once it is complete. Here we show how X-ray pair distribution function analysis can be used to reveal the mechanism of the transformations in Cu-SIP-3, identifying the sequence of atomic displacements that occur in the disordered phase. A similar approach reveals the underlying mechanism of Cu-SIP-3's ultra-selective gas adsorption.
Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S.; Weidner, Donald J.
2016-02-01
We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K-B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10-15 μm) has been achieved at energies of 66 and 81 keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71 GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. The coupling of sagittally bent Laue crystals with K-B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source.
Bonnet, L; Corchado, J
2015-01-01
Ten years ago, Liu and co-workers measured pair-correlated product speed and angular distributions for the OH+CH4/CD4 reactions at the collision energy of ~ 10 kcal/mol [B. Zhang, W. Shiu, J. J. Lin and K. Liu, J. Chem. Phys 122, 131102 (2005); B. Zhang, W. Shiu and K. Liu, J. Phys. Chem. A 2005, 109, 8989]. Recently, two of us could semi-quantitatively reproduce these measurements by performing full-dimensional classical trajectory calculations in a quantum spirit on an ab-initio potential energy surface of their own [J. Espinosa-Garcia and J. C. Corchado, Theor Chem Acc, 2015, 134, 6 ; J. Phys. Chem. B, Article ASAP, DOI: 10.1021/acs.jpcb.5b04290]. The goal of the present work is to show that these calculations can be significantly improved by adding a few more constraints to better comply with the experimental conditions. Overall, the level of agreement between theory and experiment is remarkable considering the large dimensionality of the processes under scrutiny.
Achilles, C. N.; Bish, D. L.; Rampe, E. B.; Morris, R. V.
2015-01-01
Soils on Mars have been analyzed by the Mars Exploration Rovers (MER) and most recently by the Mars Science Laboratory (MSL) rover. Chemical analyses from a majority of soil samples suggest that there is a relatively uniform global soil composition across much of the planet. A soil site, Rocknest, was sampled by the MSL science payload including the CheMin X-ray diffractometer and the Alpha Particle X-ray Spectrometer (APXS). Che- Min X-ray diffraction (XRD) data revealed crystalline phases and a broad, elevated background, indicating the presence of amorphous or poorly ordered materials (Fig 1). Based on the chemical composition of the bulk soil measured by APXS and the composition of crystalline phases derived from unit-cell parameters determined with CheMin data, the percentages of crystalline and amorphous phases were calculated at 51% and 49%, respectively. Attempts to model the amorphous contribution to CheMin XRD patterns were made using amorphous standards and full-pattern fitting methods and show that the broad, elevated background region can be fitted by basaltic glass, allophane, and palagonite. However, the modeling shows only that these phases have scattering patterns similar to that for the soil, not that they represent unique solutions. Here, we use pair distribution function (PDF) analysis to determine the short-range order of amorphous analogs in martian soils and better constrain the amorphous material detected by CheMin.
Chen, Shuang; Sheikh, Ahmad Y; Ho, Raimundo
2014-12-01
Pharmaceutical unit operations such as milling and compaction can often generate disordered regions in crystals of active pharmaceutical ingredients (APIs). This may lead to changes in a number of important pharmaceutical properties including dissolution, stability, hygroscopicity, and so on. It is therefore important for pharmaceutical industry to evaluate the effects of pharmaceutical processing on API structural orders, and to investigate and develop analytical tools that are capable of accurately detecting and assessing subtle process-induced structural disorders in pharmaceutical crystals. In this study, nanoindentation was first used to determine the intrinsic mechanical properties including hardness and Young's modulus of two API crystals, compounds 1 and 2. These crystals of different mechanical properties were then milled and compacted under various conditions. The resulting structural disorders in these crystals were subsequently evaluated using synchrotron-based high-resolution total scattering pair distribution function (TS-PDF) analysis. Furthermore, principal component analysis was applied to the PDF data to assess the relative extents of disorders in the API crystals, which showed a good correlation with the process conditions. The study demonstrates that high-resolution TS-PDF analysis coupled with nanoindentation measurement is a valuable and effective tool for detecting and assessing process-induced subtle structural disorders in API crystals. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Kirsten M. Ø. Jensen
2015-09-01
Full Text Available By means of normal-incidence, high-flux and high-energy X-rays, total scattering data for pair distribution function (PDF analysis have been obtained from thin films (tf, suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. The `tfPDF' method is illustrated through studies of as-deposited (i.e. amorphous and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows the prediction of whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.
Allan, Phoebe K; Griffin, John M; Darwiche, Ali; Borkiewicz, Olaf J; Wiaderek, Kamila M; Chapman, Karena W; Morris, Andrew J; Chupas, Peter J; Monconduit, Laure; Grey, Clare P
2016-02-24
Operando pair distribution function (PDF) analysis and ex situ (23)Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from (23)Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na(3-x)Sb (x ≈ 0.4-0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na(1.7)Sb, a highly amorphous structure featuring some Sb-Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na(3-x)Sb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na(1.7)Sb, then a-Na(3-x)Sb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na(3-x)Sb without the formation of a-Na(1.7)Sb. a-Na(3-x)Sb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature (23)Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.
Claudia Schillinger
Full Text Available The polymicrobial nature of periodontal diseases is reflected by the diversity of phylotypes detected in subgingival plaque and the finding that consortia of suspected pathogens rather than single species are associated with disease development. A number of these microorganisms have been demonstrated in vitro to interact and enhance biofilm integration, survival or even pathogenic features. To examine the in vivo relevance of these proposed interactions, we extended the spatial arrangement analysis tool of the software daime (digital image analysis in microbial ecology. This modification enabled the quantitative analysis of microbial co-localization in images of subgingival biofilm species, where the biomass was confined to fractions of the whole-image area, a situation common for medical samples. Selected representatives of the disease-associated red and orange complexes that were previously suggested to interact with each other in vitro (Tannerella forsythia with Fusobacterium nucleatum and Porphyromonas gingivalis with Prevotella intermedia were chosen for analysis and labeled with specific fluorescent probes via fluorescence in situ hybridization. Pair cross-correlation analysis of in vivo grown biofilms revealed tight clustering of F. nucleatum/periodonticum and T. forsythia at short distances (up to 6 µm with a pronounced peak at 1.5 µm. While these results confirmed previous in vitro observations for F. nucleatum and T. forsythia, random spatial distribution was detected between P. gingivalis and P. intermedia in the in vivo samples. In conclusion, we successfully employed spatial arrangement analysis on the single cell level in clinically relevant medical samples and demonstrated the utility of this approach for the in vivo validation of in vitro observations by analyzing statistically relevant numbers of different patients. More importantly, the culture-independent nature of this approach enables similar quantitative analyses for "as
诸葛勤
1994-01-01
To hear people talk, there are "black holes" all around us: the U. S.deficit, the Russian economy, the residence of Japan’s Prime Minister.They are found wherever things seem to disappear without leaving a trace.Ever since Princeton physicist John Wheeler coined the term in 1967 to de-scribe an object whose gravily is so powerful that it swallows everythingaround it even light-this bizarre concept, which first emerged from E-
Do, V. Nam; Le, H. Anh; Vu, V. Thieu
2017-04-01
We propose a computational approach to combining the plane-wave method and the real-space treatment to describe the periodic variation in the material plane and the decay of wave functions from the material surfaces. The proposed approach is natural for two-dimensional material systems and thus may circumvent some intrinsic limitations involving the artificial replication of material layers in traditional supercell methods. In particular, we show that the proposed method is easy to implement and, especially, computationally effective since low-cost computational algorithms, such as iterative and recursive techniques, can be used to treat matrices with block tridiagonal structure. Using this approach we show first-principles features that supplement the current knowledge of some fundamental issues in bilayer graphene systems, including the coupling between the two graphene layers, the preservation of the σ band of monolayer graphene in the electronic structure of the bilayer system, and the differences in low-energy band structure between the AA- and AB-stacked configurations.
Majorosi, Szilárd; Czirják, Attila
2016-11-01
We present a novel numerical method and algorithm for the solution of the 3D axially symmetric time-dependent Schrödinger equation in cylindrical coordinates, involving singular Coulomb potential terms besides a smooth time-dependent potential. We use fourth order finite difference real space discretization, with special formulae for the arising Neumann and Robin boundary conditions along the symmetry axis. Our propagation algorithm is based on merging the method of the split-operator approximation of the exponential operator with the implicit equations of second order cylindrical 2D Crank-Nicolson scheme. We call this method hybrid splitting scheme because it inherits both the speed of the split step finite difference schemes and the robustness of the full Crank-Nicolson scheme. Based on a thorough error analysis, we verified both the fourth order accuracy of the spatial discretization in the optimal spatial step size range, and the fourth order scaling with the time step in the case of proper high order expressions of the split-operator. We demonstrate the performance and high accuracy of our hybrid splitting scheme by simulating optical tunneling from a hydrogen atom due to a few-cycle laser pulse with linear polarization.
Majorosi, Szilárd
2016-01-01
We present a novel numerical method and algorithm for the solution of the 3D axially symmetric time-dependent Schr\\"odinger equation in cylindrical coordinates, involving singular Coulomb potential terms besides a smooth time-dependent potential. We use fourth order finite difference real space discretization, with special formulae for the arising Neumann and Robin boundary conditions along the symmetry axis. Our propagation algorithm is based on merging the method of the split-operator approximation of the exponential operator with the implicit equations of second order cylindrical 2D Crank-Nicolson scheme. We call this method hybrid splitting scheme because it inherits both the speed of the split step finite difference schemes and the robustness of the full Crank-Nicolson scheme. Based on a thorough error analysis, we verified both the fourth order accuracy of the spatial discretization in the optimal spatial step size range, and the fourth order scaling with the time step in the case of proper high order e...
Iwase, Shigeru; Hoshi, Takeo; Ono, Tomoya
2015-06-01
We propose an efficient procedure to obtain Green's functions by combining the shifted conjugate orthogonal conjugate gradient (shifted COCG) method with the nonequilibrium Green's function (NEGF) method based on a real-space finite-difference (RSFD) approach. The bottleneck of the computation in the NEGF scheme is matrix inversion of the Hamiltonian including the self-energy terms of electrodes to obtain the perturbed Green's function in the transition region. This procedure first computes unperturbed Green's functions and calculates perturbed Green's functions from the unperturbed ones using a mathematically strict relation. Since the matrices to be inverted to obtain the unperturbed Green's functions are sparse, complex-symmetric, and shifted for a given set of sampling energy points, we can use the shifted COCG method, in which once the Green's function for a reference energy point has been calculated the Green's functions for the other energy points can be obtained with a moderate computational cost. We calculate the transport properties of a C(60)@(10,10) carbon nanotube (CNT) peapod suspended by (10,10)CNTs as an example of a large-scale transport calculation. The proposed scheme opens the possibility of performing large-scale RSFD-NEGF transport calculations using massively parallel computers without the loss of accuracy originating from the incompleteness of the localized basis set.
Sharatchandra, H S
2016-01-01
Real-Space renormalization group techniques are developed for tackling large curvature fluctuations in quantum gravity. Within cells of invariant volume $a^4$, only certain types of fluctuations are allowed. Normal coordinates are used to avoid redundancy of the degrees of freedom. The relevant integration measure is read off from the metric on metrics. All fluctuations in a group of cells are averaged over to get an effective action for the larger cell. In this paper the simplest type of fluctuations are kept. The measure is simply an integration over independent components of the curvature tensor at the center of each cell. Terms of higher order in $a$ are required for convergence in case of Einstein-Hilbert action. With only next order (in $a$) contribution to the action, there is no renormalization of Newton's or cosmological constants. The `massless Gaussian surface' in the renormalization group space is given by actions that have linear and quadratic terms in curvature and determines the evolution of co...
Catching the electron in action in real space inside a Ge-Si core-shell nanowire transistor.
Jaishi, Meghnath; Pati, Ranjit
2017-09-21
Catching the electron in action in real space inside a semiconductor Ge-Si core-shell nanowire field effect transistor (FET), which has been demonstrated (J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan and C. M. Lieber, Nature, 2006, 441, 489) to outperform the state-of-the-art metal oxide semiconductor FET, is central to gaining unfathomable access into the origin of its functionality. Here, using a quantum transport approach that does not make any assumptions on electronic structure, charge, and potential profile of the device, we unravel the most probable tunneling pathway for electrons in a Ge-Si core-shell nanowire FET with orbital level spatial resolution, which demonstrates gate bias induced decoupling of electron transport between the core and the shell region. Our calculation yields excellent transistor characteristics as noticed in the experiment. Upon increasing the gate bias beyond a threshold value, we observe a rapid drop in drain current resulting in a gate bias driven negative differential resistance behavior and switching in the sign of trans-conductance. We attribute this anomalous behavior in drain current to the gate bias induced modification of the carrier transport pathway from the Ge core to the Si shell region of the nanowire channel. A new experiment involving a four probe junction is proposed to confirm our prediction on gate bias induced decoupling.
Leder, Martin; Grossert, Christopher; Sitta, Lukas; Genske, Maximilian; Rosch, Achim; Weitz, Martin
2016-10-01
To describe a mobile defect in polyacetylene chains, Su, Schrieffer and Heeger formulated a model assuming two degenerate energy configurations that are characterized by two different topological phases. An immediate consequence was the emergence of a soliton-type edge state located at the boundary between two regions of different configurations. Besides giving first insights in the electrical properties of polyacetylene materials, interest in this effect also stems from its close connection to states with fractional charge from relativistic field theory. Here, using a one-dimensional optical lattice for cold rubidium atoms with a spatially chirped amplitude, we experimentally realize an interface between two spatial regions of different topological order in an atomic physics system. We directly observe atoms confined in the edge state at the intersection by optical real-space imaging and characterize the state as well as the size of the associated energy gap. Our findings hold prospects for the spectroscopy of surface states in topological matter and for the quantum simulation of interacting Dirac systems.
Kolar, Patrick S.; Wiens, J. David
2017-03-22
The substantial numbers of golden eagles (Aquila chrysaetos) killed by collisions with oldgeneration wind turbines each year at the Altamont Pass Wind Resource Area (APWRA) in California has been well documented from previous studies. Few eagle nests have been documented in the APWRA, however, and adults and subadults 3+ years of age killed by turbines were generally not associated with nearby territories. We searched a subset of randomly selected survey plots for territorial pairs of golden eagles and associated nesting attempts within the APWRA as part of a broader investigation of population dynamics in the surrounding northern Diablo Range. In contrast to limited historical observations from 1988 to 2013, our surveys documented up to 15 territorial pairs within 3.2 kilometers (km) of wind turbines at the APWRA annually, 9 of which were not previously documented or only observed intermittently during historical surveys. We found evidence of nesting activity by adult pairs at least once during our study at six of these territories. We also determined that 23–36 percent of territories identified within 3.2 km of the APWRA had a subadult pair member, but that no pairs with a subadult member attempted to nest. These data will be useful to developers, wildlife managers, and future raptor studies in the area to evaluate and minimize the potential effects of wind energy or other development activities on previously unknown territorial pairs in the area.
Multi-pair states in electron–positron pair creation
Anton Wöllert
2016-09-01
Full Text Available Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.
Lan, Mai Thi; Thuy Duong, Tran; Iitaka, Toshiaki; Van Hong, Nguyen
2017-06-01
The structural organization of CaSiO3 glass at 600 K and under pressure of 0-100 GPa is investigated by molecular dynamics simulation (MDS). Results show that the atomic structure of CaSiO3 comprises SiO n and CaO m units considered as basic structural polyhedra. At low pressure, most of the basic structural polyhedra are SiO4, CaO5, CaO6 and CaO7. At high pressure most of the basic structural polyhedra are SiO5, SiO6 and CaO9, CaO10 and CaO11. The distribution of basic structural polyhedra is not uniform resulting in formation of Ca-rich and Si-rich regions. The distribution of SiO4, SiO5 and SiO6 polyhedra is also not uniform, but it tends to form SiO4-, SiO5-, and SiO6-clusters. For the Si-O network, under compression there is a gradual transition from the tetrahedral network (SiO4) to the octahedral network (SiO6) via SiO5 polyhedra. The SiO5-clusters are the same as immediate-phase in the transformation process. The size and shape of SiO4 tetrahedra change strongly under compression. While the size of SiO5 and SiO6 has also changed significantly, but the shape is almost unchanged under compression. The SiO n polyhedra can connect to each other via one common oxygen ion (corner-sharing bond), two common oxygen ions (edge-sharing bond) or three common oxygen ions (face-sharing bond). The Si-Si bond length in corner-sharing bonds is much longer than the ones in edge-sharing and face-sharing bonds. The change of intermediate range order (IRO) structure under compression relating to edge- and face-sharing bonds amongst SiO n at high pressure is the origin of the first peak splitting of the radial distribution functions of Si-Si pair. Under compression, the number of non-bridging oxygen (NBO) decreases. This makes the Si-O network more polymerized. At low pressure, most of the Ca2+ ions incorporate into the Si-O network via NBOs. At high pressure, the amount of NBO decreases, Ca2+ ions mainly incorporate into the Si-O network via bridging oxygen (BO) that
2016-01-01
Operando pair distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from 23Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na3–xSb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na1.7Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na3–xSb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na1.7Sb, then a-Na3–xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na3–xSb without the formation of a-Na1.7Sb. a-Na3–xSb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature 23Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes. PMID:26824406
Gil-Marín, Héctor [Institut de Ciències de l' Espai (ICE), Facultat de Ciències, Campus UAB (IEEC-CSIC), Bellaterra E-08193 (Spain); Wagner, Christian; Verde, Licia; Jimenez, Raul [Institut de Ciències del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, Barcelona E-08028 (Spain); Porciani, Cristiano, E-mail: hectorgil@icc.ub.edu, E-mail: cwagner@icc.ub.edu, E-mail: liciaverde@icc.ub.edu, E-mail: porciani@astro.uni-bonn.de, E-mail: raul.jimenez@icc.ub.edu [Argelander Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany)
2012-11-01
We investigate the accuracy of Eulerian perturbation theory for describing the matter and galaxy power spectra in real and redshift space in light of future observational probes for precision cosmology. Comparing the analytical results with a large suite of N-body simulations (160 independent boxes of 13.8 (Gpc/h){sup 3} volume each, which are publicly available), we find that re-summing terms in the standard perturbative approach predicts the real-space matter power spectrum with an accuracy of ∼<2% for k ≤ 0.20 h/Mpc at redshifts z∼<1.5. This is obtained following the widespread technique of writing the resummed propagator in terms of 1-loop contributions. We show that the accuracy of this scheme increases by considering higher-order terms in the resummed propagator. By combining resummed perturbation theories with several models for the mappings from real to redshift space discussed in the literature, the multipoles of the dark-matter power spectrum can be described with sub-percent deviations from N-body results for k ≤ 0.15 h/Mpc at z∼<1. As a consequence, the logarithmic growth rate, f, can be recovered with sub-percent accuracy on these scales. Extending the models to massive dark-matter haloes in redshift space, our results describe the monopole term from N-body data within 2% accuracy for scales k ≤ 0.15 h/Mpc at z∼<0.5; here f can be recovered within < 5% when the halo bias is known. We conclude that these techniques are suitable to extract cosmological information from future galaxy surveys.
Woetzel, Nils; Lindert, Steffen; Stewart, Phoebe L; Meiler, Jens
2011-09-01
Cryo-electron microscopy (cryoEM) can visualize large macromolecular assemblies at resolutions often below 10Å and recently as good as 3.8-4.5 Å. These density maps provide important insights into the biological functioning of molecular machineries such as viruses or the ribosome, in particular if atomic-resolution crystal structures or models of individual components of the assembly can be placed into the density map. The present work introduces a novel algorithm termed BCL::EM-Fit that accurately fits atomic-detail structural models into medium resolution density maps. In an initial step, a "geometric hashing" algorithm provides a short list of likely placements. In a follow up Monte Carlo/Metropolis refinement step, the initial placements are optimized by their cross correlation coefficient. The resolution of density maps for a reliable fit was determined to be 10 Å or better using tests with simulated density maps. The algorithm was applied to fitting of capsid proteins into an experimental cryoEM density map of human adenovirus at a resolution of 6.8 and 9.0 Å, and fitting of the GroEL protein at 5.4 Å. In the process, the handedness of the cryoEM density map was unambiguously identified. The BCL::EM-Fit algorithm offers an alternative to the established Fourier/Real space fitting programs. BCL::EM-Fit is free for academic use and available from a web server or as downloadable binary file at http://www.meilerlab.org.
First-principles real-space study of electronic and optical excitations in rutile TiO2 nanocrystals
Hung, Linda; Baishya, Kopinjol; Ã-ǧüt, Serdar
2014-10-01
We model rutile titanium dioxide nanocrystals (NCs) up to ˜1.5 nm in size to study the effects of quantum confinement on their electronic and optical properties. Ionization potentials (IPs) and electron affinities (EAs) are obtained via the perturbative GW approximation (G0W0) and ΔSCF method for NCs up to 24 and 64 TiO2 formula units, respectively. These demanding GW computations are made feasible by using a real-space framework that exploits quantum confinement to reduce the number of empty states needed in GW summations. Time-dependent density functional theory (TDDFT) is used to predict the optical properties of NCs up to 64 TiO2 units. For a NC containing only 2 TiO2 units, the offsets of the IP and the EA from the corresponding bulk limits are of similar magnitude. However, as NC size increases, the EA is found to converge more slowly to the bulk limit than the IP. The EA values computed at the G0W0 and ΔSCF levels of theory are found to agree fairly well with each other, while the IPs computed with ΔSCF are consistently smaller than those computed with G0W0 by a roughly constant amount. TDDFT optical gaps exhibit weaker size dependence than GW quasiparticle gaps, and result in exciton binding energies on the order of eV. Altering the dimensions of a fixed-size NC can change electronic and optical excitations up to several tenths of an eV. The largest NCs modeled are still quantum confined and do not yet have quasiparticle levels or optical gaps at bulk values. Nevertheless, we find that classical Mie-Gans theory can quite accurately reproduce the line shape of TDDFT absorption spectra, even for (anisotropic) TiO2 NCs of subnanometer size.
Dalal, E. N.; Handley, J. C.; Wu, W.; Wang, J.
2008-01-01
The method of paired comparisons is often used in image quality evaluations. Psychometric scale values for quality judgments are modeled using Thurstone's Law of Comparative Judgment in which distance in a psychometric scale space is a function of the probability of preference. The transformation from psychometric space to probability is a cumulative probability distribution. The major drawback of a complete paired comparison experiment is that every treatment is compared to every other, thus the number of comparisons grows quadratically. We ameliorate this difficulty by performing paired comparisons in two stages, by precisely estimating anchors in the psychometric scale space which are spaced apart to cover the range of scale values and comparing treatments against those anchors. In this model, we employ a generalized linear model where the regression equation has a constant offset vector determined by the anchors. The result of this formulation is a straightforward statistical model easily analyzed using any modern statistics package. This enables model fitting and diagnostics. This method was applied to overall preference evaluations of color pictorial hardcopy images. The results were found to be compatible with complete paired comparison experiments, but with significantly less effort.
Pairing Learners in Pair Work Activity
Storch, Neomy; Aldosari, Ali
2013-01-01
Although pair work is advocated by major theories of second language (L2) learning and research findings suggest that pair work facilitates L2 learning, what is unclear is how to best pair students in L2 classes of mixed L2 proficiency. This study investigated the nature of pair work in an English as a Foreign Language (EFL) class in a college in…
Qin, Tao; Hofstetter, Walter
2017-08-01
We present a systematic study of the spectral functions of a time-periodically driven Falicov-Kimball Hamiltonian. In the high-frequency limit, this system can be effectively described as a Harper-Hofstadter-Falicov-Kimball model. Using real-space Floquet dynamical mean-field theory (DMFT), we take into account the interaction effects and contributions from higher Floquet bands in a nonperturbative way. Our calculations show a high degree of similarity between the interacting driven system and its effective static counterpart with respect to spectral properties. However, as also illustrated by our results, one should bear in mind that Floquet DMFT describes a nonequilibrium steady state, while an effective static Hamiltonian describes an equilibrium state. We further demonstrate the possibility of using real-space Floquet DMFT to study edge states on a cylinder geometry.
Abdelmadjid Maireche
2016-01-01
A novel theoretical study for the exact solvability of nonrelativistic quantum spectrum systems for potential containing coulomb and quadratic terms is discussed used both Boopp’s shift method and standard perturbation theory in both noncommutativity two dimensional real space and phase (NC-2D: RSP), it has been observed that the exact corrections for the ground states spectrum of studied potential was depended on two infinitesimals parameters and which plays an opposite rolls, and we ha...
刘涛; 谢剑薇; 龚雪晶; 赵兴国
2012-01-01
针对当前影像数据存储格式不能适应海量影像数据快速访问的情况，研究设计了大幅面立体像对的逻辑四叉树存储格式，并通过立体像对的逻辑四叉树剖分算法把普通格式的立体像对格式快速转换成逻辑四叉树存储格式。由于单机显示无法满足大幅面立体像对的高分辨率、高沉浸感的显示，因此系统研究了大幅面立体像对快速浏览的分布式结构，包括硬件选择、分布式策略和通信方式等方面。由于当前分布式网络不足以支持大规模数据的实时传输，根据帧相关性原理，研究提出了大幅面立体像对的分布式缓冲机制。最后通过实验证明该方法能够实现大幅面立体像对的实时浏览。%The current image data format cannot fit the fast access of the massive image data, so the logistic quad-tree structure has been designed for the large scale stereo image pair, and the ordinary form of stereo image pair can be fast changed into logistic quad-tree structure ones through the split method of the logistic quad-tree structure. The single machine display cannot meet the high resolution and high immersion display of the large scale stereo image pair, so the distributed structure has been studied to the fast browsing of the large scale stereo image pair, including hardware choice, distributed strategy, communications method, and so on. Because the current distributed network is insufficient to support the real-time transmission of the large-scale data, the data management mechanism has been proposed for the large scale stereo image pair according to the flame relevant principle, including distributed cache mechanism and fast access algorithm. The experiment proves that the application above technology to the fast rendering for the great width stereo image pair has realized real-time roams in the large screen stereo display.
Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J. -F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J. -B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.
2016-05-23
Distributions of transverse momentum p$ℓℓ\\atop{T}$ and the related angular variable Φ$*\\atop{η}$ of DrellΓÇôYan lepton pairs are measured in 20.3$\\perp$áfb^{-1} of protonΓÇôproton collisions at √s=8$\\perp$áTeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in protonΓÇôproton collisions at √s=7$\\perp$áTeV, these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z-boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of Φ$*\\atop{η}$<1 the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of Φ$*\\atop{η}$ this is not the case. Monte Carlo generators based on the parton-shower approach are unable to describe the data over the full range of pℓℓTpTℓℓ while the fixed-order prediction of Dynnlo falls below the data at high values of p$ℓℓ\\atop{T}$ . ResBos and the parton-shower Monte Carlo generators provide a much better description of the evolution of the Φ$*\\atop{η}$ and p$ℓℓ\\atop{T}$ distributions as a function of lepton-pair mass and rapidity than the basic shape of the data.
Aad, G. [CPPM, Aix-Marseille Univ. et CNRS/IN2P3, Marseille (France); Abbott, B. [Oklahoma Univ., Norman, OK (United States). Homer L. Dodge Dept. of Physics and Astronomy; Abdallah, J. [Academia Sinica, Taipei (China). Inst. of Physics; Collaboration: Atlas Collaboration; and others
2016-05-15
Distributions of transverse momentum p{sub T}{sup ll} and the related angular variable φ{sub η}{sup *} of DrellΓCoYan lepton pairs are measured in 20.3 fb{sup -1} of proton-proton collisions at √(s) = 8 TeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in protonΓCoproton collisions at √(s) = 7 TeV, these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z-boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of φ{sub η}{sup *} < 1 the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of φ{sub η}{sup *} this is not the case. Monte Carlo generators based on the parton-shower approach are unable to describe the data over the full range of p{sub T}{sup ll} while the fixed-order prediction of Dynnlo falls below the data at high values of p{sub T}{sup ll}. ResBos and the parton-shower Monte Carlo generators provide a much better description of the evolution of the φ{sub η}{sup *} and p{sub T}{sup ll} distributions as a function of lepton-pair mass and rapidity than the basic shape of the data. (orig.)
Banerjee, Chitradip
2016-01-01
Electron-positron pair production by means of vacuum polarization in the presence of strong electromagnetic (EM) field of two counterpropagating laser pulses is studied. A 3-dimensional model of the focused laser pulses based on the solution of the Maxwell's equations proposed by Narozhny and Fofanov is used to find the structure of EM field of the circularly polarized counterpropagating pulses. Analytical calculations show that the electric and magnetic fields are almost parallel to each other in the focal region when pulses are completely transverse either in electric (e-wave) or magnetic (h-wave) field. On the other hand the electric and magnetic fields are almost orthogonal when the counterpropagating pulses are made up of equal mixture of e- and h- polarized waves. It is found that while the latter configuration of the colliding pulses has much larger threshold for pair production it can provide much shorter electron/positron pulses compared to the former case. The dependence of pair production and its s...
Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Ryzhov, Andrey; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz
2016-01-01
Distributions of transverse momentum $p_T^{ll}$ and the angular variable $\\phi^*_\\eta$ of Drell--Yan lepton pairs are measured in 20.3 fb$^{-1}$ of proton--proton collisions at $\\sqrt{s}=8$ TeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in proton--proton collisions at $\\sqrt{s}=7$ TeV, these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z-boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of $\\phi^*_\\eta < 1$ the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of $\\phi^*_\\eta$ this is not generally the case. Monte Carlo generators based on the parton-shower approach are unabl...
Fision: Nucleon pair breaking before scission
Montoya, Modesto
1984-01-01
In order to explain the odd-even effect observed in low energy fission fragment distributions it has been recently required a double mechanism of nucleon pair breaking: before scission (early pair breaking) and at scission (late pair breaking), respectively. In the present work we show that, using the same formulae but considering only the early pair breaking mechanism, one can reproduce fairly well all the available experimental data on the odd-even effects.
Instantons in lepton pair production
Brandenburg, A.; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Utermann, A. [Vrije Univ., Amsterdam (Netherlands). Dept. of Physics and Astronomy
2006-05-15
We consider QCD instanton-induced contributions to lepton pair production in hadron-hadron collisions. We relate these contributions to those known from deep inelastic scattering and demonstrate that they can be calculated reliably for sufficiently large momentum transfer. We observe that the instanton contribution to the angular distribution of the lepton pairs at finite momentum transfer strongly violates the Lam-Tung relation - a relation between coefficient functions of the angular distribution which is valid within the framework of ordinary perturbation theory. The drastic violation of this relation, as seen in experimental data, might be related to such instanton-induced effects. (Orig.)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Dvornikov, O.; Makarenko, V.; Mossolov, V.; Suarez Gonzalez, J.; Zykunov, V.; Shumeiko, N.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Chagas, E. Belchior Batista Das; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; De Souza, S. Fonseca; Guativa, L. M. Huertas; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Ruan, M.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Bihan, A.-C. Le; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Khvedelidze, A.; Lomidze, D.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Zenaiev, O.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Katkov, I.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Kousouris, K.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Antunes De Oliveira, A. Carvalho; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, U.; Gonella, F.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Mariani, V.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. H.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Danilov, M.; Popova, E.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Korneeva, N.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Volkov, P.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chen, Y.; Cimmino, A.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Donato, S.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. F.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Weber, M.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Bunn, J.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Bein, S.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Perry, T.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Forthomme, L.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. T.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.
2017-07-01
Normalized double-differential cross sections for top quark pair (t\\overline{t}) production are measured in pp collisions at a centre-of-mass energy of 8 {TeV} with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7 {fb}^{-1}. The measurement is performed in the dilepton e^{± }μ ^{∓ } final state. The t\\overline{t} cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and t\\overline{t} system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. The inclusion of the measured t\\overline{t} cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution.
Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; König, A; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Strauss, J; Waltenberger, W; Wulz, C-E; Dvornikov, O; Makarenko, V; Mossolov, V; Suarez Gonzalez, J; Zykunov, V; Shumeiko, N; Alderweireldt, S; De Wolf, E A; Janssen, X; Lauwers, J; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Lowette, S; Moortgat, S; Moreels, L; Olbrechts, A; Python, Q; Skovpen, K; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Brun, H; Clerbaux, B; De Lentdecker, G; Delannoy, H; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Luetic, J; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Vannerom, D; Yonamine, R; Zenoni, F; Zhang, F; Cornelis, T; Dobur, D; Fagot, A; Gul, M; Khvastunov, I; Poyraz, D; Salva, S; Schöfbeck, R; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Bakhshiansohi, H; Bondu, O; Brochet, S; Bruno, G; Caudron, A; De Visscher, S; Delaere, C; Delcourt, M; Francois, B; Giammanco, A; Jafari, A; Komm, M; Krintiras, G; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Piotrzkowski, K; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Wertz, S; Beliy, N; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Chagas, E Belchior Batista Das; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; De Oliveira Martins, C; De Souza, S Fonseca; Guativa, L M Huertas; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Torres Da Silva De Araujo, F; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Cheng, T; Jiang, C H; Leggat, D; Liu, Z; Romeo, F; Ruan, M; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Zhao, J; Ban, Y; Chen, G; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; González Hernández, C F; Ruiz Alvarez, J D; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Sculac, T; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Mesic, B; Susa, T; Ather, M W; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Finger, M; Finger, M; Carrera Jarrin, E; Ellithi Kamel, A; Mahmoud, M A; Radi, A; Kadastik, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Järvinen, T; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Kucher, I; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Abdulsalam, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Granier de Cassagnac, R; Jo, M; Lisniak, S; Miné, P; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sirois, Y; Stahl Leiton, A G; Strebler, T; Yilmaz, Y; Zabi, A; Zghiche, A; Agram, J-L; Andrea, J; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Bihan, A-C Le; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fay, J; Finco, L; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Khvedelidze, A; Lomidze, D; Autermann, C; Beranek, S; Feld, L; Kiesel, M K; Klein, K; Lipinski, M; Preuten, M; Schomakers, C; Schulz, J; Verlage, T; Albert, A; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hamer, M; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A
2017-01-01
Normalized double-differential cross sections for top quark pair ([Formula: see text]) production are measured in pp collisions at a centre-of-mass energy of 8[Formula: see text] with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the dilepton [Formula: see text] final state. The [Formula: see text] cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and [Formula: see text] system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. The inclusion of the measured [Formula: see text] cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution.
Hot-electron real-space transfer and longitudinal transport in dual AlGaN/AlN/{AlGaN/GaN} channels
Šermukšnis, E.; Liberis, J.; Matulionis, A.; Avrutin, V.; Ferreyra, R.; Özgür, Ü.; Morkoç, H.
2015-03-01
Real-space transfer of hot electrons is studied in dual-channel GaN-based heterostructure operated at or near plasmon-optical phonon resonance in order to attain a high electron drift velocity at high current densities. For this study, pulsed electric field is applied in the channel plane of a nominally undoped Al0.3Ga0.7N/AlN/{Al0.15Ga0.85N/GaN} structure with a composite channel of Al0.15Ga0.85N/GaN, where the electrons with a sheet density of 1.4 × 1013 cm-2, estimated from the Hall effect measurements, are confined. The equilibrium electrons are situated predominantly in the Al0.15Ga0.85N layer as confirmed by capacitance-voltage experiment and Schrödinger-Poisson modelling. The main peak of the electron density per unit volume decreases as more electrons occupy the GaN layer at high electric fields. The associated decrease in the plasma frequency induces the plasmon-assisted decay of non-equilibrium optical phonons (hot phonons) confirmed by the decrease in the measured hot-phonon lifetime from 0.95 ps at low electric fields down below 200 fs at fields of E \\gt 4 kV cm-1 as the plasmon-optical phonon resonance is approached. The onset of real-space transfer is resolved from microwave noise measurements: this source of noise dominates for E \\gt 8 kV cm-1. In this range of fields, the longitudinal current exceeds the values measured for a mono channel reference Al0.3Ga0.7N/AlN/GaN structure. The results are explained in terms of the ultrafast decay of hot phonons and reduced alloy scattering caused by the real-space transfer in the composite channel.
Pairing mechanisms for binary stars
Kouwenhoven, M B N; Goodwin, S P; Zwart, S F Portegies; Kaper, L; 10.1002/asna.200811061
2008-01-01
Knowledge of the binary population in stellar groupings provides important information about the outcome of the star forming process in different environments. Binarity is also a key ingredient in stellar population studies and is a prerequisite to calibrate the binary evolution channels. In these proceedings we present an overview of several commonly used methods to pair individual stars into binary systems, which we refer to as the pairing function. Many pairing functions are frequently used by observers and computational astronomers, either for the mathematical convenience, or because they roughly describe the expected outcome of the star forming process. We discuss the consequences of each pairing function for the interpretation of observations and numerical simulations. The binary fraction and mass ratio distribution generally depend strongly on the selection of the range in primary spectral type in a sample. These quantities, when derived from a binary survey with a mass-limited sample of target stars, ...
Toby, B. H.; Dmowski, W.; Egami, T.; Jorgensen, J. D.; Subramanian, M. A.; Gopalakrishnan, J.; Sleight, A. W.; Parise, J. B.
1989-12-01
Rietveld analysis indicates that the only long-range structural variation in Tl 2CaBa 2Cu 2O 8 with temperature is a shift of O(2) away from Cu and toward Ba with increasing T. Atomic pair distribution function analysis on two samples of Tl 2Ba 2CuO 6, one superconducting, the other not, shows substantial differences in their short range structure, but similar medium range structures, while Rietveld analysis shows very similar lattice constants and long-range structures.
Superconductivity on a quasiperiodic lattice: Extended-to-localized crossover of Cooper pairs
Sakai, Shiro; Takemori, Nayuta; Koga, Akihisa; Arita, Ryotaro
2017-01-01
We study a possible superconductivity in quasiperiodic systems by portraying the issue within the attractive Hubbard model on a Penrose lattice. Applying a real-space dynamical mean-field theory to the model consisting of 4181 sites, we find a superconducting phase at low temperatures. Reflecting the nonperiodicity of the Penrose lattice, the superconducting state exhibits an inhomogeneity. According to the type of the inhomogeneity, the superconducting phase is categorized into three different regions which cross over each other. Among them, the weak-coupling region exhibits spatially extended Cooper pairs, which are nevertheless distinct from the conventional pairing of two electrons with opposite momenta.
Superconductivity in repulsively interacting fermions on a diamond chain: Flat-band-induced pairing
Kobayashi, Keita; Okumura, Masahiko; Yamada, Susumu; Machida, Masahiko; Aoki, Hideo
2016-12-01
To explore whether a flat-band system can accommodate superconductivity, we consider repulsively interacting fermions on the diamond chain, a simplest possible quasi-one-dimensional system that contains a flat band. Exact diagonalization and the density-matrix renormalization group are used to show that we have a significant binding energy of a Cooper pair with a long-tailed pair-pair correlation in real space when the total band filling is slightly below 1/3, where a filled dispersive band interacts with the flat band that is empty but close to EF. Pairs selectively formed across the outer sites of the diamond chain are responsible for the pairing correlation. At exactly 1/3-filling an insulating phase emerges, where the entanglement spectrum indicates the particles on the outer sites are highly entangled and topological. These come from a peculiarity of the flat band in which "Wannier orbits" are not orthogonalizable.
Powered Tate Pairing Computation
Kang, Bo Gyeong; Park, Je Hong
In this letter, we provide a simple proof of bilinearity for the eta pairing. Based on it, we show an efficient method to compute the powered Tate pairing as well. Although efficiency of our method is equivalent to that of the Tate pairing on the eta pairing approach, but ours is more general in principle.
Pairings on hyperelliptic curves
Balakrishnan, Jennifer; Chisholm, Sarah; Eisentraeger, Kirsten; Stange, Katherine; Teske, Edlyn
2009-01-01
We assemble and reorganize the recent work in the area of hyperelliptic pairings: We survey the research on constructing hyperelliptic curves suitable for pairing-based cryptography. We also showcase the hyperelliptic pairings proposed to date, and develop a unifying framework. We discuss the techniques used to optimize the pairing computation on hyperelliptic curves, and present many directions for further research.
The identification of physical close galaxy pairs
Soares, D S L
2007-01-01
A classification scheme for close pairs of galaxies is proposed. The scheme is motivated by the fact that the majority of apparent close pairs are in fact wide pairs in three-dimensional space. This is demonstrated by means of numerical simulations of random samples of binary galaxies and the scrutiny of the resulting projected and spatial separation distributions. Observational strategies for classifying close pairs according to the scheme are suggested. As a result, physical -- i.e., bound and spatially -- close pairs are identified.
100__; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Agnew, James P; Alexeev, Guennadi D; Alkhazov, Georgiy D; Alton, Andrew K; Askew, Andrew Warren; Atkins, Scott; Augsten, Kamil; Avila, Carlos A; Badaud, Frederique; Bagby, Linda F; Baldin, Boris; Bandurin, Dmitry V; Banerjee, Sunanda; Barberis, Emanuela; Baringer, Philip S; Bartlett, JFrederick; Bassler, Ursula Rita; Bazterra, Victor; Bean, Alice L; Begalli, Marcia; Bellantoni, Leo; Beri, Suman B; Bernardi, Gregorio; Bernhard, Ralf Patrick; Bertram, Iain A; Besancon, Marc; Beuselinck, Raymond; Bhat, Pushpalatha C; Bhatia, Sudeep; Bhatnagar, Vipin; Blazey, Gerald Charles; Blessing, Susan K; Bloom, Kenneth A; Boehnlein, Amber S; Boline, Daniel Dooley; Boos, Edward E; Borissov, Guennadi; Borysova, Maryna; Brandt, Andrew; Brandt, Oleg; Brock, Raymond L; Bross, Alan D; Brown, Duncan Paul; Bu, Xue-Bing; Buehler, Marc; Buescher, Volker; Bunichev, Viacheslav Yevgenyevich; Burdin, Sergey; Buszello, Claus Peter; Camacho-Perez, Enrique; Casey, Brendan Cameron Kieran; Castilla-Valdez, Heriberto; Caughron, Seth Aaron; Chakrabarti, Subhendu; Chan, Kwok Ming Leo; Chandra, Avdhesh; Chapon, Emilien; Chen, Guo; Cho, Sung-Woong; Choi, Suyong; Choudhary, Brajesh C; Cihangir, Selcuk; Claes, Daniel R; Clutter, Justace Randall; Cooke, Michael P; Cooper, William Edward; Corcoran, Marjorie D; Couderc, Fabrice; Cousinou, Marie-Claude; Cutts, David; Das, Amitabha; Davies, Gavin John; de Jong, Sijbrand Jan; De La Cruz-Burelo, Eduard; Deliot, Frederic; Demina, Regina; Denisov, Dmitri S; Denisov, Sergei P; Desai, Satish Vijay; Deterre, Cecile; DeVaughan, Kayle Otis; Diehl, HThomas; Diesburg, Michael; Ding, Pengfei; Dominguez, DAaron M; Dubey, Abhinav Kumar; Dudko, Lev V; Duperrin, Arnaud; Dutt, Suneel; Eads, Michael T; Edmunds, Daniel L; Ellison, John A; Elvira, VDaniel; Enari, Yuji; Evans, Harold G; Evdokimov, Valeri N; Faure, Alexandre; Feng, Lei; Ferbel, Thomas; Fiedler, Frank; Filthaut, Frank; Fisher, Wade Cameron; Fisk, HEugene; Fortner, Michael R; Fox, Harald; Fuess, Stuart C; Garbincius, Peter H; Garcia-Bellido, Aran; Garcia-Gonzalez, Jose Andres; Gavrilov, Vladimir B; Geng, Weigang; Gerber, Cecilia Elena; Gershtein, Yuri S; Ginther, George E; Gogota, Olga; Golovanov, Georgy Anatolievich; Grannis, Paul D; Greder, Sebastien; Greenlee, Herbert B; Grenier, Gerald Jean; Gris, Phillipe Luc; Grivaz, Jean-Francois; Grohsjean, Alexander; Gruenendahl, Stefan; Gruenewald, Martin Werner; Guillemin, Thibault; Gutierrez, Gaston R; Gutierrez, Phillip; Haley, Joseph Glenn Biddle; Han, Liang; Harder, Kristian; Harel, Amnon; Hauptman, John Michael; Hays, Jonathan M; Head, Tim; Hebbeker, Thomas; Hedin, David R; Hegab, Hatim; Heinson, Ann; Heintz, Ulrich; Hensel, Carsten; Heredia-De La Cruz, Ivan; Herner, Kenneth Richard; Hesketh, Gavin G; Hildreth, Michael D; Hirosky, Robert James; Hoang, Trang; Hobbs, John D; Hoeneisen, Bruce; Hogan, Julie; Hohlfeld, Mark; Holzbauer, Jenny Lyn; Howley, Ian James; Hubacek, Zdenek; Hynek, Vlastislav; Iashvili, Ia; Ilchenko, Yuriy; Illingworth, Robert A; Ito, Albert S; Jabeen, Shabnam; Jaffre, Michel J; Jayasinghe, Ayesh; Jeong, Min-Soo; Jesik, Richard L; Jiang, Peng; Johns, Kenneth Arthur; Johnson, Emily; Johnson, Marvin E; Jonckheere, Alan M; Jonsson, Per Martin; Joshi, Jyoti; Jung, Andreas Werner; Juste, Aurelio; Kajfasz, Eric; Karmanov, Dmitriy Y; Katsanos, Ioannis; Kaur, Manbir; Kehoe, Robert Leo Patrick; Kermiche, Smain; Khalatyan, Norayr; Khanov, Alexander; Kharchilava, Avto; Kharzheev, Yuri N; Kiselevich, Ivan Lvovich; Kohli, Jatinder M; Kozelov, Alexander V; Kraus, James Alexander; Kumar, Ashish; Kupco, Alexander; Kurca, Tibor; Kuzmin, Valentin Alexandrovich; Lammers, Sabine Wedam; Lebrun, Patrice; Lee, Hyun-Su; Lee, Seh-Wook; Lee, William M; Lei, Xiaowen; Lellouch, Jeremie; Li, Dikai; Li, Hengne; Li, Liang; Li, Qi-Zhong; Li, Xingguo; Lim, Jeong Ku; Lincoln, Donald W; Linnemann, James Thomas; Lipaev, Vladimir V; Lipton, Ronald J; Liu, Huanzhao; Liu, Yanwen; Lobodenko, Alexandre; Lokajicek, Milos; Lopes de Sa, Rafael; Luna-Garcia, Rene; Lyon, Adam Leonard; Maciel, Arthur KA; Madar, Romain; Magana-Villalba, Ricardo; Malik, Sudhir; Malyshev, Vladimir L; Mansour, Jason; Martinez-Ortega, Jorge; McCarthy, Robert L; Mcgivern, Carrie Lynne; Meijer, Melvin M; Melnitchouk, Alexander S; Menezes, Diego D; Mercadante, Pedro Galli; Merkin, Mikhail M; Meyer, Arnd; Meyer, Jorg Manfred; Miconi, Florian; Mondal, Naba K; Mulhearn, Michael James; Nagy, Elemer; Narain, Meenakshi; Nayyar, Ruchika; Neal, Homer A; Negret, Juan Pablo; Neustroev, Petr V; Nguyen, Huong Thi; Nunnemann, Thomas P; Orduna, Jose de Jesus Hernandez; Osman, Nicolas Ahmed; Osta, Jyotsna; Pal, Arnab; Parashar, Neeti; Parihar, Vivek; Park, Sung Keun; Partridge, Richard A; Parua, Nirmalya; Patwa, Abid; Penning, Bjoern; Perfilov, Maxim Anatolyevich; Peters, Reinhild Yvonne Fatima; Petridis, Konstantinos; Petrillo, Gianluca; Petroff, Pierre; Pleier, Marc-Andre; Podstavkov, Vladimir M; Popov, Alexey V; Prewitt, Michelle; Price, Darren; Prokopenko, Nikolay N; Qian, Jianming; Qin, Yang; Quadt, Arnulf; Quinn, Gene Breese; Ratoff, Peter N; Razumov, Ivan A; Ripp-Baudot, Isabelle; Rizatdinova, Flera; Rominsky, Mandy Kathleen; Ross, Anthony; Royon, Christophe; Rubinov, Paul Michael; Ruchti, Randal C; Sajot, Gerard; Sanchez-Hernandez, Alberto; Sanders, Michiel P; Santos, Angelo Souza; Savage, David G; Savitskyi, Mykola; Sawyer, HLee; Scanlon, Timothy P; Schamberger, RDean; Scheglov, Yury A; Schellman, Heidi M; Schwanenberger, Christian; Schwienhorst, Reinhard H; Sekaric, Jadranka; Severini, Horst; Shabalina, Elizaveta K; Shary, Viacheslav V; Shaw, Savanna; Shchukin, Andrey A; Simak, Vladislav J; Skubic, Patrick Louis; Slattery, Paul F; Smirnov, Dmitri V; Snow, Gregory R; Snow, Joel Mark; Snyder, Scott Stuart; Soldner-Rembold, Stefan; Sonnenschein, Lars; Soustruznik, Karel; Stark, Jan; Stoyanova, Dina A; Strauss, Michael G; Suter, Louise; Svoisky, Peter V; Titov, Maxim; Tokmenin, Valeriy V; Tsai, Yun-Tse; Tsybychev, Dmitri; Tuchming, Boris; Tully, Christopher George T; Uvarov, Lev; Uvarov, Sergey L; Uzunyan, Sergey A; Van Kooten, Richard J; van Leeuwen, Willem M; Varelas, Nikos; Varnes, Erich W; Vasilyev, Igor A; Verkheev, Alexander Yurievich; Vertogradov, Leonid S; Verzocchi, Marco; Vesterinen, Mika; Vilanova, Didier; Vokac, Petr; Wahl, Horst D; Wang, Michael HLS; Warchol, Jadwiga; Watts, Gordon Thomas; Wayne, Mitchell R; Weichert, Jonas; Welty-Rieger, Leah Christine; Williams, Mark Richard James; Wilson, Graham Wallace; Wobisch, Markus; Wood, Darien Robert; Wyatt, Terence R; Xie, Yunhe; Yamada, Ryuji; Yang, Siqi; Yasuda, Takahiro; Yatsunenko, Yuriy A; Ye, Wanyu; Ye, Zhenyu; Yin, Hang; Yip, Kin; Youn, Sungwoo; Yu, Jiaming; Zennamo, Joseph; Zhao, Tianqi Gilbert; Zhou, Bing; Zhu, Junjie; Zielinski, Marek; Zieminska, Daria; Zivkovic, Lidija
2015-01-01
We present a measurement of the distribution of the variable $\\phi^*_\\eta$ for muon pairs with masses between 30 and 500 GeV, using the complete Run II data set collected by the D0 detector at the Fermilab Tevatron proton-antiproton collider. This corresponds to an integrated luminosity of 10.4 fb$^{-1}$ at $\\sqrt{s}$ = 1.96 TeV. The data are corrected for detector effects and presented in bins of dimuon rapidity and mass. The variable $\\phi^*_\\eta$ probes the same physical effects as the $Z/\\gamma^*$ boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. These are the first measurements at any collider of the $\\phi^*_\\eta$ distributions for dilepton masses away from the $Z\\rightarrow \\ell^+\\ell^-$ boson mass peak. The data are compared to QCD predictions based on the resummation of multiple soft gluons.
Counting pairs of faint galaxies
Woods, D; Richer, H B; Woods, David; Fahlman, Gregory G; Richer, Harvey B
1995-01-01
The number of close pairs of galaxies observed to faint magnitude limits, when compared to nearby samples, determines the interaction or merger rate as a function of redshift. The prevalence of mergers at intermediate redshifts is fundamental to understanding how galaxies evolve and the relative population of galaxy types. Mergers have been used to explain the excess of galaxies in faint blue counts above the numbers expected from no-evolution models. Using deep CFHT (I\\leq24) imaging of a ``blank'' field we find a pair fraction which is consistent with the galaxies in our sample being randomly distributed with no significant excess of ``physical'' close pairs. This is contrary to the pair fraction of 34\\%\\pm9\\% found by Burkey {\\it et al.} for similar magnitude limits and using an identical approach to the pair analysis. Various reasons for this discrepancy are discussed. Colors and morphologies of our close pairs are consistent with the bulk of them being random superpositions although, as indicators of int...
Mebs, Stefan; Chilleck, Maren Annika; Meindl, Kathrin; Hübschle, Christian Bertram
2014-06-19
Despite numerous advanced and widely distributed bonding theories such as MO, VB, NBO, AIM, and ELF/ELI-D, complex modes of bonding such as M-Cp*((R)) interactions (hapticities) in asymmetrical metallocenes or weak intramolecular interactions (e.g., hydrogen-hydrogen (H···H) bonds) still remain a challenge for these theories in terms of defining whether or not an atom-atom interaction line (a "chemical bond") should be drawn. In this work the intramolecular Zn-C(Cp*(R)) (R = Me, -(CH2)2NMe2, and -(CH2)3NMe2) and H···H connectivity of a systematic set of 12 zincocene-related compounds is analyzed in terms of AIM and ELI-D topology combined with the recently introduced aspherical stockholder fragment (ASF) surfaces. This computational analysis unravels a distinct dependency of the AIM and ELI-D topology against the molecular geometry for both types of interactions, which confirms and extends earlier findings on smaller sets of compounds. According to these results the complete real-space topology including strong, medium, and weak interactions of very large compounds such as proteins may be reliably predicted by sole inspection of accurately determined molecular geometries, which would on the one hand afford new applications (e.g., accurate estimation of numbers, types, and strengths of intra- and intermolecular interactions) and on the other hand have deep implications on the significance of the method.
1993-01-01
Expressions are developed for weak single pair emission probability and strong emission average number of pairs. The water transparency cutoff is closely realized, showing that the fundamental time scale is even shorter.
Sirunyan, Albert M; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Dvornikov, Oleg; Makarenko, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; Zykunov, Vladimir; Shumeiko, Nikolai; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Cheng, Tongguang; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Ruan, Manqi; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Miné, Philippe; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Stahl Leiton, Andre Govinda; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Finco, Linda; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Khvedelidze, Arsen; Lomidze, David; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Schomakers, Christian; Schulz, Johannes; Verlage, Tobias; Albert, Andreas; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Spannagel, Simon; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Zenaiev, Oleksandr; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hoffmann, Malte; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Kurz, Simon; Lapsien, Tobias; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Sonneveld, Jory; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baur, Sebastian; Baus, Colin; Berger, Joram; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Fink, Simon; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Goldenzweig, Pablo; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Kassel, Florian; Katkov, Igor; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Kousouris, Konstantinos; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Filipovic, Nicolas; Pasztor, Gabriella; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Bhowmik, Sandeep; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Kole, Gouranga; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Dewanjee, Ram Krishna; Ganguly, Sanmay; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Nardo, Guglielmo; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Ugo; Gonella, Franco; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Rossin, Roberto; Simonetto, Franco; Torassa, Ezio; Ventura, Sandro; Zanetti, Marco; Zotto, Pierluigi; Braghieri, Alessandro; Fallavollita, Francesco; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Ressegotti, Martina; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Mariani, Valentina; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Jeongeun; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Kim, Hyunchul; Brochero Cifuentes, Javier Andres; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Lee, Haneol; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pyskir, Andrzej; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Calpas, Betty; Di Francesco, Agostino; Faccioli, Pietro; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Chtchipounov, Leonid; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Murzin, Victor; Oreshkin, Vadim; Sulimov, Valentin; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Aushev, Tagir; Bylinkin, Alexander; Danilov, Mikhail; Popova, Elena; Rusinov, Vladimir; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Klyukhin, Vyacheslav; Korneeva, Natalia; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Perfilov, Maxim; Savrin, Viktor; Volkov, Petr; Blinov, Vladimir; Skovpen, Yuri; Shtol, Dmitry; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Barrio Luna, Mar; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Erice, Carlos; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Suárez Andrés, Ignacio; Vischia, Pietro; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bloch, Philippe; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; Chen, Yi; Cimmino, Anna; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fartoukh, Stephane; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Gulhan, Doga; Gundacker, Stefan; Guthoff, Moritz; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kieseler, Jan; Kirschenmann, Henning; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Verweij, Marta; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Wiederkehr, Stephan Albert; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; De Cosa, Annapaola; Donato, Silvio; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Seitz, Claudia; Yang, Yong; Zucchetta, Alberto; Candelise, Vieri; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Boran, Fatma; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Jesus, Orduna; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Spencer, Eric; Syarif, Rizki; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Squires, Michael; Stolp, Dustin; Tos, Kyle; Tripathi, Mani; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Weber, Matthias; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Si, Weinan; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Holzner, André; Klein, Daniel; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mullin, Sam Daniel; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Duarte, Javier; Lawhorn, Jay Mathew; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Apresyan, Artur; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cremonesi, Matteo; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Wu, Yujun; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Rank, Douglas; Shchutska, Lesya; Sperka, David; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Bein, Samuel; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Kolberg, Ted; Perry, Thomas; Prosper, Harrison; Santra, Arka; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Cavanaugh, Richard; Chen, Xuan; Evdokimov, Olga; Gerber, Cecilia Elena; Hangal, Dhanush Anil; Hofman, David Jonathan; Jung, Kurt; Kamin, Jason; Sandoval Gonzalez, Irving Daniel; Trauger, Hallie; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Forthomme, Laurent; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Apyan, Aram; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Tatar, Kaya; Velicanu, Dragos; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Malta Rodrigues, Alan; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Rupprecht, Nathaniel; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Lange, David; Luo, Jingyu; Marlow, Daniel; Medvedeva, Tatiana; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Svyatkovskiy, Alexey; Tully, Christopher; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Schulte, Jan-Frederik; Shi, Xin; Sun, Jian; Wang, Fuqiang; Xie, Wei; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Montalvo, Roy; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Juska, Evaldas; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Damgov, Jordan; De Guio, Federico; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Sturdy, Jared; Zaleski, Shawn; Belknap, Donald; Buchanan, James; Caillol, Cécile; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Hussain, Usama; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel
2017-01-01
Normalized double-differential cross sections for top quark pair ($ \\mathrm{ t \\bar{t} } $) production are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7 fb$^{-1}$. The measurement is performed in the dilepton $\\mathrm{ e }^{\\pm}\\mu^{\\mp}$ final state. The $ \\mathrm{ t \\bar{t} } $ cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and $ \\mathrm{ t \\bar{t} } $ system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions ar...
Schmid, Maximilian P; Kirisits, Christian; Nesvacil, Nicole; Dimopoulos, Johannes C A; Berger, Daniel; Pötter, Richard
2011-09-01
It has been shown that a cumulative dose of ≥87 Gy (EQD2) of external beam radiotherapy (EBRT) and image guided adaptive brachytherapy (IGABT) to the high risk clinical target volume (HR CTV) confer a local control rate >95% in locally advanced cervical cancer. This study examines the dose distribution within the HR CTV and intermediate (IR) CTV in patients with cervical cancer treated with definitive EBRT +/- concomitant chemotherapy and MRI-based IGABT between patients with local recurrence (LR) and patients in continuous complete local remission (CCLR). From 1998 to 2010, 265 patients were treated with definitive EBRT +/- concomitant chemotherapy and IGABT. Twenty-four LRs were documented. For the statistical analysis all patients with LR were matched to patients in CCLR from our database according to the following criteria: FIGO stage, histology, lymph node status, tumour size and chemotherapy. DVH parameters (D50, D90, D98, D100) were reported for HR CTV and IR CTV. In order to report the minimum dose in the region where the recurrence occurred, the HR CTV/IR CTV were divided into four quadrants on transversal planes. The minimum dose at the HR CTV/IR CTV contour was measured (within the corresponding quadrant closest to the LR) in the treatment planning system. A mean minimum point dose (MPD) was calculated by averaging these measurements on four consecutive slices at the level of the recurrence for each of the 4 brachytherapy fractions. EQD2 doses were calculated by summation of all BT and external beam therapy fractions. For each matched patient in the control group the measurements were performed on the same quadrant and at the same level. Sufficient image data were available for 21 LRs. Eight central failures and 13 non-central failures were observed. The mean D90 and D100 for HR CTV were 77 Gy and 61 Gy for patients with LR and 95 Gy and 71 Gy for patients in CCLR, respectively (p<0.01). The MPD for HR CTV was 72 Gy for patients in the LR arm and 99 Gy
Yoshida, Tsuneya; Kawakami, Norio
2017-01-01
One of the remarkable interaction effects on topological insulators is the reduction of topological classification in free-fermion systems. We address this issue in a bilayer honeycomb lattice model by taking into account temperature effects on the reduction. Our analysis, based on the real-space dynamical mean-field theory, elucidates the following results. (i) Even when the reduction occurs, the winding number defined by the Green's function can take a nontrivial value at zero temperature. (ii) The winding number taking the nontrivial value becomes consistent with the absence of gapless edge modes due to Mott behaviors emerging only at the edges. (iii) Temperature effects can restore the gapless edge modes, provided that the energy scale of interactions is smaller than the bulk gap. In addition, we observe the topological edge Mott behavior only in some finite-temperature region.
Real-space and reciprocal-space Berry phases in the Hall effect of Mn(1-x)Fe(x)Si.
Franz, C; Freimuth, F; Bauer, A; Ritz, R; Schnarr, C; Duvinage, C; Adams, T; Blügel, S; Rosch, A; Mokrousov, Y; Pfleiderer, C
2014-05-09
We report an experimental and computational study of the Hall effect in Mn(1-x)Fe(x)Si, as complemented by measurements in Mn(1-x)Co(x)Si, when helimagnetic order is suppressed under substitutional doping. For small x the anomalous Hall effect (AHE) and the topological Hall effect (THE) change sign. Under larger doping the AHE remains small and consistent with the magnetization, while the THE grows by over a factor of 10. Both the sign and the magnitude of the AHE and the THE are in excellent agreement with calculations based on density functional theory. Our study provides the long-sought material-specific microscopic justification that, while the AHE is due to the reciprocal-space Berry curvature, the THE originates in real-space Berry phases.
Nishioka, S., E-mail: nishioka@ppl.appi.keio.ac.jp; Goto, I.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [School of Natural and Living Sciences Education, Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Fukano, A. [Toshiba, 33 Isogo-chou, Isogo-ku, Yokohama-shi, Kanagawa 235-001 (Japan)
2014-02-15
Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result.
Jalabert, D., E-mail: denis.jalabert@cea.fr [CEA-INAC/UJF-Grenoble 1 UMR-E, SP2M, LEMMA, Minatec Grenoble F-38054 (France)
2012-01-01
A three-dimensional medium energy ion scattering (3D-MEIS) method has been developed using a commercial MEIS apparatus. This method consists of filtering the energy of the ions scattered by the sample and measuring their two-dimensional angular distribution over a large region. These cartographies of the scattered particles reveal the angular positions of the crystallographic directions and atomic planes. The method is also element sensitive and allows depth profiling by selecting the energy of the scattered particles. As an example, the MEIS cartography technique is applied on a 49 nm thick compressively strained Si{sub 0.7}Ge{sub 0.3} layer deposited on a Si (1 0 0) wafer.
A stabilized pairing functional
Erler, J; Reinhard, P --G
2008-01-01
We propose a modified pairing functional for nuclear structure calculations which avoids the abrupt phase transition between pairing and non-pairing states. The intended application is the description of nuclear collective motion where the smoothing of the transition is compulsory to remove singularities. The stabilized pairing functional allows a thoroughly variational formulation, unlike the Lipkin-Nogami (LN) scheme which is often used for the purpose of smoothing. First applications to nuclear ground states and collective excitations prove the reliability and efficiency of the proposed stabilized pairing.
Pairing of a few Fermi atoms in one dimension
D'Amico, Pino; Rontani, Massimo
2015-04-01
We study a few Fermi atoms interacting through attractive contact forces in a one-dimensional trap by means of numerical exact diagonalization. From the combined analysis of energies and wave functions of correlated ground and excited states we find evidence of BCS-like pairing even for very few atoms. For moderate interaction strength, we reproduce the even-odd oscillation of the separation energy observed in Zürn, Wenz, Murmann, Bergschneider, Lompe, and Jochim, Phys. Rev. Lett. 111, 175302 (2013), 10.1103/PhysRevLett.111.175302. For strong interatomic attraction the arrangement of dimers in the trap differs from the homogeneous case as a consequence of Pauli blockade in real space.
Theiler, James P [Los Alamos National Laboratory
2009-01-01
Following an analogous distinction in statistical hypothesis testing, we investigate variants of machine learning where the training set comes in matched pairs. We demonstrate that even conventional classifiers can exhibit improved performance when the input data has a matched-pair structure. Online algorithms, in particular, converge quicker when the data is presented in pairs. In some scenarios (such as the weak signal detection problem), matched pairs can be generated from independent samples, with the effect not only doubling the nominal size of the training set, but of providing the structure that leads to better learning. A family of 'dipole' algorithms is introduced that explicitly takes advantage of matched-pair structure in the input data and leads to further performance gains. Finally, we illustrate the application of matched-pair learning to chemical plume detection in hyperspectral imagery.
Lakhno, Victor D.
2016-01-01
It is shown that Cooper pairs are a solution of the bipolaron problem for model Fr\\"{o}hlich Hamiltonian. The total energy of a pair for the initial Fr\\"{o}hlich Hamiltonian is found. Differences between the solutions for the model and initial two-particle problems are discussed.
Lakhno, Victor
2016-11-01
It is shown that Cooper pairs are a solution of the bipolaron problem for model Fröhlich Hamiltonian. The total energy of a pair for the initial Fröhlich Hamiltonian is found. Differences between the solutions for the model and initial two-particle problems are discussed.
Critical Schwinger Pair Production.
Gies, Holger; Torgrimsson, Greger
2016-03-04
We investigate Schwinger pair production in spatially inhomogeneous electric backgrounds. A critical point for the onset of pair production can be approached by fields that marginally provide sufficient electrostatic energy for an off-shell long-range electron-positron fluctuation to become a real pair. Close to this critical point, we observe features of universality which are analogous to continuous phase transitions in critical phenomena with the pair-production rate serving as an order parameter: electric backgrounds can be subdivided into universality classes and the onset of pair production exhibits characteristic scaling laws. An appropriate design of the electric background field can interpolate between power-law scaling, essential Berezinskii-Kosterlitz-Thouless-type scaling, and a power-law scaling with log corrections. The corresponding critical exponents only depend on the large-scale features of the electric background, whereas the microscopic details of the background play the role of irrelevant perturbations not affecting criticality.
Vogt, Frédéric
2011-01-01
Stereoscopic visualization is seldom used in Astrophysical publications and presentations compared to other scientific fields, e.g., Biochemistry, where it has been recognized as a valuable tool for decades. We put forth the view that stereo pairs can be a useful tool for the Astrophysics community in communicating a truer representation of astrophysical data. Here, we review the main theoretical aspects of stereoscopy, and present a tutorial to easily create stereo pairs using Python. We then describe how stereo pairs provide a way to incorporate 3D data in 2D publications of standard journals. We illustrate the use of stereo pairs with one conceptual and two Astrophysical science examples: an integral field spectroscopy study of a supernova remnant, and numerical simulations of a relativistic AGN jet. We also use these examples to make the case that stereo pairs are not merely an ostentatious way to present data, but an enhancement in the communication of scientific results in publications because they prov...
Critical Schwinger pair production
Gies, Holger
2015-01-01
We investigate Schwinger pair production in spatially inhomogeneous electric backgrounds. A critical point for the onset of pair production can be approached by fields that marginally provide sufficient electrostatic energy for an off-shell long-range electron-positron fluctuation to become a real pair. Close to this critical point, we observe features of universality which are analogous to continuous phase transitions in critical phenomena with the pair-production rate serving as an order parameter: electric backgrounds can be subdivided into universality classes and the onset of pair production exhibits characteristic scaling laws. An appropriate design of the electric background field can interpolate between power-law scaling, essential BKT-type scaling and a power-law scaling with log corrections. The corresponding critical exponents only depend on the large-scale features of the electric background, whereas the microscopic details of the background play the role of irrelevant perturbations not affecting ...
Ram Seshadri
2001-10-01
In this mini-review, I discuss some recent work on the stereochemistry and bonding of lone pairs of electrons in divalent compounds of the heavier carbon group elements (SnII, PbII) and in trivalent compounds of the heavier nitrogen group elements (BiIII). Recently developed methods that permit the real-space visualization of bonding patterns on the basis of density functional calculations of electronic structure, reveal details of the nature of selectron lone pairs in compounds of the heavier main group elements - their stereochemistry and their inertness (or lack thereof). An examination of tetragonal 4/ SnO, -PbO and BiOF, and cubic $\\bar{3}$ PbS provides a segue into perovskite phases of technological significance, including ferroelectric PbTiO3 and antiferroelectric/piezoelectric PbZrO3, in both of which the lone pairs on Pb atoms play a pivotal rôle.
Sasaki, Akira; Kojo, Masashi; Hirose, Kikuji; Goto, Hidekazu
2011-11-02
The path-integral renormalization group and direct energy minimization method of practical first-principles electronic structure calculations for multi-body systems within the framework of the real-space finite-difference scheme are introduced. These two methods can handle higher dimensional systems with consideration of the correlation effect. Furthermore, they can be easily extended to the multicomponent quantum systems which contain more than two kinds of quantum particles. The key to the present methods is employing linear combinations of nonorthogonal Slater determinants (SDs) as multi-body wavefunctions. As one of the noticeable results, the same accuracy as the variational Monte Carlo method is achieved with a few SDs. This enables us to study the entire ground state consisting of electrons and nuclei without the need to use the Born-Oppenheimer approximation. Recent activities on methodological developments aiming towards practical calculations such as the implementation of auxiliary field for Coulombic interaction, the treatment of the kinetic operator in imaginary-time evolutions, the time-saving double-grid technique for bare-Coulomb atomic potentials and the optimization scheme for minimizing the total-energy functional are also introduced. As test examples, the total energy of the hydrogen molecule, the atomic configuration of the methylene and the electronic structures of two-dimensional quantum dots are calculated, and the accuracy, availability and possibility of the present methods are demonstrated.
Monthus, Cécile
2016-04-01
The finite temperature dynamics of the Dyson hierarchical classical spins models is studied via real-space renormalization rules concerning the couplings and the relaxation times. For the ferromagnetic model involving long-ranged coupling J(r)\\propto {{r}-1-σ} in the region 1/2mean-field-like thermal ferromagnetic-paramagnetic transition, the RG flows are explicitly solved: the characteristic relaxation time τ (L) follows the critical power-law τ (L)\\propto {{L}{{z\\text{c}}(σ )}} at the phase transition and the activated law \\ln τ (L)\\propto {{L}\\psi} with \\psi =1-σ in the ferromagnetic phase. For the spin-glass model involving random long-ranged couplings of variance \\overline{{{J}2}(r)}\\propto {{r}-2σ} in the region 2/3mean-field-like thermal spin-glass-paramagnetic transition, the coupled RG flows of the couplings and of the relaxation times are studied numerically: the relaxation time τ (L) follows some power-law τ (L)\\propto {{L}{{z\\text{c}}(σ )}} at criticality and the activated law \\ln τ (L)\\propto {{L}\\psi} in the spin-glass phase with the dynamical exponent \\psi =1-σ =θ coinciding with the droplet exponent governing the flow of the couplings J(L)\\propto {{L}θ} .
Sun, Jingya
2015-09-14
In the fields of photocatalysis and photovoltaics, ultrafast dynamical processes, including carrier trapping and recombination on material surfaces, are among the key factors that determine the overall energy conversion efficiency. A precise knowledge of these dynamical events on the nanometer (nm) and femtosecond (fs) scales was not accessible until recently. The only way to access such fundamental processes fully is to map the surface dynamics selectively in real space and time. In this study, we establish a second generation of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and demonstrate the ability to record time-resolved images (snapshots) of material surfaces with 650 fs and ∼5 nm temporal and spatial resolutions, respectively. In this method, the surface of a specimen is excited by a clocking optical pulse and imaged using a pulsed primary electron beam as a probe pulse, generating secondary electrons (SEs), which are emitted from the surface of the specimen in a manner that is sensitive to the local electron/hole density. This method provides direct and controllable information regarding surface dynamics. We clearly demonstrate how the surface morphology, grains, defects, and nanostructured features can significantly impact the overall dynamical processes on the surface of photoactive-materials. In addition, the ability to access two regimes of dynamical probing in a single experiment and the energy loss of SEs in semiconductor-nanoscale materials will also be discussed.
Khan, Jafar Iqbal
2016-03-03
Managing trap states and understanding their role in ultrafast charge-carrier dynamics, particularly at surface and interfaces, remains a major bottleneck preventing further advancements and commercial exploitation of nanowire (NW)-based devices. A key challenge is to selectively map such ultrafast dynamical processes on the surfaces of NWs, a capability so far out of reach of time-resolved laser techniques. Selective mapping of surface dynamics in real space and time can only be achieved by applying four-dimensional scanning ultrafast electron microscopy (4D S-UEM). Charge carrier dynamics are spatially and temporally visualized on the surface of InGaN NW arrays before and after surface passivation with octadecylthiol (ODT). The time-resolved secondary electron images clearly demonstrate that carrier recombination on the NW surface is significantly slowed down after ODT treatment. This observation is fully supported by enhancement of the performance of the light emitting device. Direct observation of surface dynamics provides a profound understanding of the photophysical mechanisms on materials\\' surfaces and enables the formulation of effective surface trap state management strategies for the next generation of high-performance NW-based optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rademacher, Nadine; Bayarjargal, Lkhamsuren; Morgenroth, Wolfgang; Winkler, Björn; Ciezak-Jenkins, Jennifer; Batyrev, Iskander G; Milman, Victor
2014-09-01
The local atomic structures of liquid and polymerized CO and its decomposition products were analyzed at pressures up to 30 GPa in diamond anvil cells by X-ray diffraction, pair distribution function (PDF) analysis, single-crystal diffraction, and Raman spectroscopy. The structural models were obtained by density functional calculations. Analysis of the PDF of a liquid CO-rich phase revealed that the local structure has a pronounced short-range order. The PDFs of polymerized amorphous CO at several pressures revealed the compression of the molecular structure; covalent bond lengths did not change significantly with pressure. Experimental PDFs could be reproduced with simulations from DFT-optimized structural models. Likely structural features of polymerized CO are thus 4- to 6-membered rings (lactones, cyclic ethers, and rings decorated with carbonyl groups) and long bent chains with carbonyl groups and bridging atoms. Laser heating polymerized CO at pressures of 7 to 9 GPa and 20 GPa resulted in the formation of CO(2). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evolution of closely linked gene pairs in vertebrate genomes
Franck, E.; Hulsen, T.; Huynen, M.A.; Jong, de W.W.; Lunsen, N.H.; Madsen, O.
2008-01-01
The orientation of closely linked genes in mammalian genomes is not random: there are more head-to-head (h2h) gene pairs than expected. To understand the origin of this enrichment in h2h gene pairs, we have analyzed the phylogenetic distribution of gene pairs separated by less than 600 bp of interge
Adaptive Pairing Reversible Watermarking.
Dragoi, Ioan-Catalin; Coltuc, Dinu
2016-05-01
This letter revisits the pairwise reversible watermarking scheme of Ou et al., 2013. An adaptive pixel pairing that considers only pixels with similar prediction errors is introduced. This adaptive approach provides an increased number of pixel pairs where both pixels are embedded and decreases the number of shifted pixels. The adaptive pairwise reversible watermarking outperforms the state-of-the-art low embedding bit-rate schemes proposed so far.
Vogt, Frédéric; Wagner, Alexander Y.
2012-01-01
Stereoscopic visualization is seldom used in Astrophysical publications and presentations compared to other scientific fields, e.g., Biochemistry, where it has been recognized as a valuable tool for decades. We put forth the view that stereo pairs can be a useful tool for the Astrophysics community in communicating a truer representation of astrophysical data. Here, we review the main theoretical aspects of stereoscopy, and present a tutorial to easily create stereo pairs using Python. We then describe how stereo pairs provide a way to incorporate 3D data in 2D publications of standard journals. We illustrate the use of stereo pairs with one conceptual and two Astrophysical science examples: an integral field spectroscopy study of a supernova remnant, and numerical simulations of a relativistic AGN jet. We also use these examples to make the case that stereo pairs are not merely an ostentatious way to present data, but an enhancement in the communication of scientific results in publications because they provide the reader with a realistic view of multi-dimensional data, be it of observational or theoretical nature. In recognition of the ongoing 3D expansion in the commercial sector, we advocate an increased use of stereo pairs in Astrophysics publications and presentations as a first step towards new interactive and multi-dimensional publication methods.
Loginov Andrey
2013-05-01
Full Text Available An overview of latest ATLAS measurements of top pair (tt̅ production in proton-proton collisions at the LHC at centre-of-mass energies of 7 and 8 TeV is presented. Measurements of the tt̅ production cross section (σtt̅ in various decay channels, including analyses of differential σtt̅ distributions and a study of jet multiplicity in tt̅ production, as well as searches for tt̅ resonances using boosted top techniques and standard methods, are discussed.
Hung, Linda; da Jornada, Felipe H.; Souto-Casares, Jaime; Chelikowsky, James R.; Louie, Steven G.; Ã-ǧüt, Serdar
2016-08-01
We present first-principles calculations on the vertical ionization potentials (IPs), electron affinities (EAs), and singlet excitation energies on an aromatic-molecule test set (benzene, thiophene, 1,2,5-thiadiazole, naphthalene, benzothiazole, and tetrathiafulvalene) within the G W and Bethe-Salpeter equation (BSE) formalisms. Our computational framework, which employs a real-space basis for ground-state and a transition-space basis for excited-state calculations, is well suited for high-accuracy calculations on molecules, as we show by comparing against G0W0 calculations within a plane-wave-basis formalism. We then generalize our framework to test variants of the G W approximation that include a local density approximation (LDA)-derived vertex function (ΓLDA) and quasiparticle-self-consistent (QS) iterations. We find that ΓLDA and quasiparticle self-consistency shift IPs and EAs by roughly the same magnitude, but with opposite sign for IPs and the same sign for EAs. G0W0 and QS G W ΓLDA are more accurate for IPs, while G0W0ΓLDA and QS G W are best for EAs. For optical excitations, we find that perturbative G W -BSE underestimates the singlet excitation energy, while self-consistent G W -BSE results in good agreement with previous best-estimate values for both valence and Rydberg excitations. Finally, our work suggests that a hybrid approach, in which G0W0 energies are used for occupied orbitals and G0W0ΓLDA for unoccupied orbitals, also yields optical excitation energies in good agreement with experiment but at a smaller computational cost.
Classes of source pairs in interference and diffraction
Castaneda, R
2003-01-01
A description of interference and diffraction based on the concept of class of source pairs is presented. It is the set of pairs of sources whose contributions to the interference or diffraction patterns exhibit the same phase difference. Each class of source pairs provides a specific cosine-like modulation on the intensity distribution of pattern, in such a way that the set provides an expansion of the intensity distribution of the pattern in an orthogonal basis. From this point of view, the classes of source pairs are the effective elementary sources for those intensity distributions. The characteristics of the classes of source pairs can be accurately determined by Fourier transforming the intensity distribution of the patterns. The central value of this Fourier spectrum is related to the number of individual sources. The remaining values will provide two crucial descriptors of the classes: their positions on the Fourier transform domain will be corresponding to the separation vector of the class of pairs ...
Junctionless Cooper pair transistor
Arutyunov, K. Yu., E-mail: konstantin.yu.arutyunov@jyu.fi [National Research University Higher School of Economics , Moscow Institute of Electronics and Mathematics, 101000 Moscow (Russian Federation); P.L. Kapitza Institute for Physical Problems RAS , Moscow 119334 (Russian Federation); Lehtinen, J.S. [VTT Technical Research Centre of Finland Ltd., Centre for Metrology MIKES, P.O. Box 1000, FI-02044 VTT (Finland)
2017-02-15
Highlights: • Junctionless Cooper pair box. • Quantum phase slips. • Coulomb blockade and gate modulation of the Coulomb gap. - Abstract: Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current–voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.
Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel
2015-01-01
In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...
Minimal Pairs: Minimal Importance?
Brown, Adam
1995-01-01
This article argues that minimal pairs do not merit as much attention as they receive in pronunciation instruction. There are other aspects of pronunciation that are of greater importance, and there are other ways of teaching vowel and consonant pronunciation. (13 references) (VWL)
Dalgas, Karina Märcher
2015-01-01
Since 2000, thousands of young Filipino migrants have come to Denmark as au pairs. Officially, they are there to “broaden their cultural horizons” by living temporarily with a Danish host family, but they also conduct domestic labor in exchange for food and money, which allows them to send import...... the Danish au pair scheme therefore speaks to current research on domestic work migration, the transnational family relations of young Filipina migrants and the forms of self-transformation that Filipino migration might engender.......Since 2000, thousands of young Filipino migrants have come to Denmark as au pairs. Officially, they are there to “broaden their cultural horizons” by living temporarily with a Danish host family, but they also conduct domestic labor in exchange for food and money, which allows them to send...... ethnographic component of the dissertation consists of four articles, all emphasizing the au pairs’ agency by viewing their migration as a dynamic personal and social experience. Arguing that Filipina au pairs tend to be understood primarily from the perspective of their precarious situation as domestic...
Młynarczyk, A.K.
2004-01-01
The received view on Slavic aspect is that it is intrinsically complex, and that there is little hope of discerning any substantial regularity. We argue that this view is mistaken. We argue that the vast majority of Polish verbs really do come in aspectual pairs and that far from being a mysterious
Isolated Main Galaxy Pairs from the SDSS Data Release 4
Xin-Fa Deng; Yi-Qing Chen; Ping Wu; Cheng-Hong Luo; Ji-Zhou He
2006-01-01
From the Main galaxy data of the SDSS Data Release 4 (SDSS4), we have identified close galaxy pairs at neighbourhood radius R = 100 kpc by three-dimensional cluster analysis. Using the criterion that an "isolated galaxy pair" must be separated from its "nearest neighbor" by more than 500 kpc, we constructed an isolated galaxy pair sample of 1158 pairs.We also constructed a random pair sample by randomly selecting 1158 galaxy pairs from the Main galaxy sample, which has the same redshift distribution as the isolated galaxy pair sample, and in which the two components of any pair have the same redshifts. Comparative studies of luminosity and size between the members of the galaxy pairs are performed. We find and further confirm there is no tendency for paired galaxies to have similar luminosities or sizes. From the isolated pair sample we also selected a subsample with the magnitude limit of the primary raised by 2 magnitudes, so as to include pairs in which the secondary is 2 magnitudes fainter than the primary. This subsample contains 82 pairs. A random pair sample is similarly constructed.
Lopez-Arrietea, M. G.; Solis, M. A.; De Llano, M. [Universidad Nacional Autonoma de Mexico, Mexico, D.F (Mexico)
2001-02-01
Excited cooper pairs formed in a many-fermion system are those with nonzero total center-of mass momentum (CMM). They are normally neglected in the standard Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity for being too few compared with zero CMM pairs. However, a Bose-Einstein condensation picture requires both zero and nonzero CMM pairs. Assuming a BCS model interaction between fermions we determine the populations for all CMM values of Cooper pairs by actually calculating the number of nonzero-CMM pairs relative to that of zero-CMM ones in both 2D and 3D. Although this ratio decreases rapidly with CMM, the number of Cooper pairs for any specific CMM less than the maximum (or breakup of the pair) momentum turns out to be typically larger than about 95% of those with zero-CMM at zero temperature T. Even at T {approx}100 K this fraction en 2D is still as large as about 70% for typical quasi-2D cuprate superconductor parameters. [Spanish] Los pares de cooper excitados formados en un sistema de muchos electrones, son aquellos con momentos de centro de masa (CMM) diferente de cero. Normalmente estos no son tomados en cuenta en la teoria estandar de la superconductividad de Bardeen-Cooper-Schrieffer (BCS) al suponer que su numero es muy pequeno comparados con los pares de centro de masa igual a cero. Sin embargo, un esquema de condensacion Bose-Einstein requiere de ambos pares, con CMM cero y diferente de cero. Asumiendo una interaccion modelo BCS entre los fermiones, determinamos la poblacion de pares cooper con cada uno de todos los posibles valores del CMM calculando el numero de pares con momentos de centro de masa diferente de cero relativo a los pares de CMM igual a cero, en 2D y 3D. Aunque esta razon decrece rapidamente con el CMM, el numero de pares de cooper para cualquier CMM especifico menor que el momento maximo (o rompimiento de par) es tipicamente mas grande que el 95% de aquellos con CMM cero. Aun a T {approx}100 K esta fraccion en 2D es
Colors of Dynamically Associated Asteroid Pairs
Moskovitz, Nicholas
2012-01-01
Recent dynamical studies have identified pairs of asteroids that reside in nearly identical heliocentric orbits. Possible formation scenarios for these systems include dissociation of binary asteroids, collisional disruption of a single parent body, or spin-up and rotational fission of a rubble-pile. Aside from detailed dynamical analyses and measurement of rotational light curves, little work has been done to investigate the colors or spectra of these unusual objects. A photometric and spectroscopic survey was conducted to determine the reflectance properties of asteroid pairs. New observations were obtained for a total of 34 individual asteroids. Additional photometric measurements were retrieved from the Sloan Digital Sky Survey Moving Object Catalog. Colors or spectra for a total of 42 pair components are presented here. The main findings of this work are: (1) the components in the observed pair systems have the same colors within the uncertainties of this survey, and (2) the color distribution of asteroi...
Tsujimoto, Yoshiaki; Sugiura, Yukihiro; Ando, Makoto; Katsuse, Daisuke; Ikuta, Rikizo; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki
2015-05-18
We experimentally demonstrated entanglement extraction scheme by using photons at the telecommunication band for optical-fiber-based quantum communications. We generated two pairs of non-degenerate polarization entangled photons at 780 nm and 1551 nm by spontaneous parametric down-conversion and distributed the two photons at 1551 nm through a collective phase damping channel which gives the same amount of random phase shift on the two photons. Through local operation and classical communication, we extracted an entangled photon pair from two phase-disturbed photon pairs. An observed fidelity of the extracted photon pair to a maximally entangled photon pair was 0.73 ± 0.07 which clearly shows the recovery of entanglement.
Junctionless Cooper pair transistor
Arutyunov, K. Yu.; Lehtinen, J. S.
2017-02-01
Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current-voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.
Bell, Matthew; Zhang, Wenyuan; Ioffe, Lev; Gershenson, Michael
2014-03-01
We have studied the coherent flux tunneling in a qubit containing two submicron Josephson junctions shunted by a superinductor (a dissipationless inductor with an impedance much greater than the resistance quantum). The two low energy quantum states of this device, " open="|"> 0 and " open="|"> 1, are represented by even and odd number of fluxes in the loop, respectively. This device is dual to the charge pairing Josephson rhombi qubit. The spectrum of the device, studied by microwave spectroscopy, reflects the interference between coherent quantum phase slips in the two junctions (the Aharonov-Casher effect). The time domain measurements demonstrate the suppression of the qubit's energy relaxation in the protected regime, which illustrates the potential of this flux pairing device as a protected quantum circuit. Templeton Foundation, NSF, and ARO.
Pair Production in Low Luminosity Galactic Nuclei
Moscibrodzka, Monika; Dolence, Joshua C; Shiokawa, Hotaka
2011-01-01
Electron-positron pairs may be produced near accreting black holes by a variety of physical processes, and the resulting pair plasma may be accelerated and collimated into a relativistic jet. Here we use a self-consistent dynamical and radiative model to investigate pair production by \\gamma\\gamma collisions in weakly radiative accretion flows around a black hole of mass M and accretion rate \\dot{M}. Our flow model is drawn from general relativistic magnetohydrodynamic simulations, and our radiation field is computed by a Monte Carlo transport scheme assuming the electron distribution function is thermal. We argue that the pair production rate scales as r^{-6} M^{-1} \\dot{M}^{6}. We confirm this numerically and calibrate the scaling relation. This relation is self-consistent in a wedge in M, \\dot{M} parameter space. If \\dot{M} is too low the implied pair density over the poles of the black hole is below the Goldreich-Julian density and \\gamma\\gamma pair production is relatively unimportant; if \\dot{M} is too ...
Dalgas, Karina Märcher
2016-01-01
Ethnographers are increasingly making use of Facebook to acquire access and general acquaintance with their field of study. However, little has been written on how Facebook is used methodologically in research that does not have social media sites as the main focus of interest. This article argues...... that engagement with Facebook as a methodological tool can be useful in research among migrants in highly politicised fields. Pointing to a discursive construction of Filipina au pairs as victims of labour exploitation, the article shows how fieldwork on Facebook enables the exploration of the ways in which...... and on Facebook....
Multispecies pair annihilation reactions.
Deloubrière, Olivier; Hilhorst, Henk J; Täuber, Uwe C
2002-12-16
We consider diffusion-limited reactions A(i)+A(j)--> (12 and d> or =2, we argue that the asymptotic density decay for such mutual annihilation processes with equal rates and initial densities is the same as for single-species pair annihilation A+A-->. In d=1, however, particle segregation occurs for all q< infinity. The total density decays according to a q dependent power law, rho(t) approximately t(-alpha(q)). Within a simplified version of the model alpha(q)=(q-1)/2q can be determined exactly. Our findings are supported through Monte Carlo simulations.
Dalgas, Karina Märcher
2016-01-01
Ethnographers are increasingly making use of Facebook to acquire access and general acquaintance with their field of study. However, little has been written on how Facebook is used methodologically in research that does not have social media sites as the main focus of interest. This article argues...... that engagement with Facebook as a methodological tool can be useful in research among migrants in highly politicised fields. Pointing to a discursive construction of Filipina au pairs as victims of labour exploitation, the article shows how fieldwork on Facebook enables the exploration of the ways in which...... and on Facebook....
Subthreshold pair production in short laser pulses
Nousch, T; Kampfer, B; Titov, A I
2012-01-01
The $e^+e^-$ pair production by a probe photon traversing a linearly polarized laser pulse is treated as generalized nonlinear Breit-Wheeler process. For short laser pulses with very few oscillations of the electromagnetic field we find below the perturbative weak-field threshold $\\sqrt{s} = 2m$ a similar enhancement of the pair production rate as for circular polarization. The strong subthreshold enhancement is traced back to the finite bandwidth of the laser pulse. A folding model is developed which accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.
Fallon, Lisa; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Becherini, Y.; Behera, B.; Bernlühr, K.; Bochow, A.; Boisson, C.; Bolmont, J.; Borrel, V.; Brucker, J.; Brun, F.; Brun, P.; Bühler, R.; Bulik, T.; Büsching, I.; Boutelier, T.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Conrad, J.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Domainko, A. Djannati-Ataü W.; Drury, L. O'c.; Dubois, F.; Dubus, G.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fürster, A.; Fontaine, G.; Füssling, M.; Gabici, S.; Gallant, Y. A.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Güring, D.; Hampf, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holleran, M.; Hoppe, S.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jung, I.; Katarzynski, K.; Katz, U.; Kaufmann, S.; Kerschhaggl, M.; Khangulyan, D.; Khálifi, B.; Keogh, D.; Klochkov, D.; Kluzniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Lamanna, G.; Lenain, J.-P.; Lohse, T.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Mau-Rin, D.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; Olive, J.-F.; de Ona Wilhelmi, E.; Opitz, B.; Orford, K. J.; Ostrowski, M.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raubenheimer, B. C.; Raue, M.; Rayner, S. M.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Ryde, F.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schück, F. M.; Schünwald, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sushch, I.; Sikora, M.; Skilton, J. L.; Sol, H.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Szostek, A.; Tam, P. H.; Tavernet, J.-P.; Terrier, R.; Tibolla, O.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Venter, L.; Vialle, J. P.; Viana, A.; Vincent, P.; Vivier, M.; Vülk, H. J.; Volpe, F.; Vorobiov, S.; Wagner, S. J.; Ward, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.
We have conducted a search for the giant Pair Halo structures which are inevitably formed around TeV sources due to interactions of very high energy gamma-rays with the Extragalactic Background Light (EBL). The resulting electron/positron pairs are Compton upscattered on photons of the 2.7 K Cosmic Microwave Background Radiation to produce a second generation of gamma-rays which again interact with the EBL; thus an electromagnetic cascade develops. If the magnetic fields on Mpc scales surrounding the central source are sufficiently strong (10-11 G or more), electrons are effectively isotropised before interacting with radiation fields. In this case an extended halo is produced around the source. Using H.E.S.S. observations of Active Galactic Nuclei, including data from PKS 2155-304, 1ES 1101-232 and 1ES 0229+200, we have completed a detailed analysis of these sources. I will present and discuss the astrophysical implications of these results.
On random flights with non-uniformly distributed directions
De Gregorio, Alessandro
2011-01-01
This paper deals with a new class of random flights $\\underline{\\bf X}_d(t),t>0,$ defined in the real space $\\mathbb{R}^d, d\\geq 2,$ characterized by non-uniform probability distributions on the multidimensional sphere. These random motions differ from similar models appeared in literature which take directions according to the uniform law. The family of angular probability distributions introduced in this paper depends on a parameter $\
The inverse problem for Schwinger pair production
Hebenstreit, F., E-mail: hebenstreit@itp.unibe.ch
2016-02-10
The production of electron–positron pairs in time-dependent electric fields (Schwinger mechanism) depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.
An inverse problem for Schwinger pair production
Hebenstreit, Florian
2016-01-01
The production of electron-positron pairs in time-dependent electric fields (Schwinger mechanism) depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.
The inverse problem for Schwinger pair production
F. Hebenstreit
2016-02-01
Full Text Available The production of electron–positron pairs in time-dependent electric fields (Schwinger mechanism depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.
Application of Acupoints in Pairs
季扬
2004-01-01
@@ Application of acupoints in pairs is a kind of point association in which only a pair of compatible points is used. Based on the principle of compatibility, the author of this article often uses the "pair-point needling" to treat some common diseases, and have obtained very good therapeutic results. Some examples are introduced below.
De Xu ZHOU
2009-01-01
Assume that S is an almost excellent extension of R. Using functors Hom R(S,-) and -(×)R S, we establish some connections between classes of modules (L)R and (L)S, cotorsion pairs ((A)R, (A)R)and ((A)S, (B)S). If (L)S is a T-extension or (and) H-extension of (L)R, we show that (L)S is a (resp., monomorphic, epimorphic, special) preenveloping class if and only if so is (L)R. If (S, S) is a TH-extension of ((A)R,(B)R), we obtain that ((A)S,(B)S) is complete (resp., of finite type, of cofinite type, hereditary, perfect, n-tilting) if and only if so is ((A)R,(B)R).
Experimental many-pairs nonlocality
Poh, Hou Shun; Cerè, Alessandro; Bancal, Jean-Daniel; Cai, Yu; Sangouard, Nicolas; Scarani, Valerio; Kurtsiefer, Christian
2017-08-01
Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs.
Ingo Klein
2016-07-01
Full Text Available A new kind of entropy will be introduced which generalizes both the differential entropy and the cumulative (residual entropy. The generalization is twofold. First, we simultaneously define the entropy for cumulative distribution functions (cdfs and survivor functions (sfs, instead of defining it separately for densities, cdfs, or sfs. Secondly, we consider a general “entropy generating function” φ, the same way Burbea et al. (IEEE Trans. Inf. Theory 1982, 28, 489–495 and Liese et al. (Convex Statistical Distances; Teubner-Verlag, 1987 did in the context of φ-divergences. Combining the ideas of φ-entropy and cumulative entropy leads to the new “cumulative paired φ-entropy” ( C P E φ . This new entropy has already been discussed in at least four scientific disciplines, be it with certain modifications or simplifications. In the fuzzy set theory, for example, cumulative paired φ-entropies were defined for membership functions, whereas in uncertainty and reliability theories some variations of C P E φ were recently considered as measures of information. With a single exception, the discussions in the scientific disciplines appear to be held independently of each other. We consider C P E φ for continuous cdfs and show that C P E φ is rather a measure of dispersion than a measure of information. In the first place, this will be demonstrated by deriving an upper bound which is determined by the standard deviation and by solving the maximum entropy problem under the restriction of a fixed variance. Next, this paper specifically shows that C P E φ satisfies the axioms of a dispersion measure. The corresponding dispersion functional can easily be estimated by an L-estimator, containing all its known asymptotic properties. C P E φ is the basis for several related concepts like mutual φ-information, φ-correlation, and φ-regression, which generalize Gini correlation and Gini regression. In addition, linear rank tests for scale that
Are all Linear Paired Comparison Models Equivalent
1990-09-01
Previous authors (Jackson and Fleckenstein 1957, Mosteller 1958, Noether 1960) have found that different models of paired comparisons data lead to simi...ponential distribution with a location parameter (Mosteller 1958, Noether 1960). Formal statements describing the limiting behavior of the gamma...that are not convolu- tion type linear models (the uniform model considered by Smith (1956), Mosteller (1958), Noether (1960)) and other convolution
Ionica, Sorina
2011-01-01
Isogeny volcanoes are graphs whose vertices are elliptic curves and whose edges are $\\ell$-isogenies. Algorithms allowing to travel on these graphs were developed by Kohel in his thesis (1996) and later on, by Fouquet and Morain (2001). However, up to now, no method was known, to predict, before taking a step on the volcano, the direction of this step. Hence, in Kohel's and Fouquet-Morain algorithms, many steps are taken before choosing the right direction. In particular, ascending or horizontal isogenies are usually found using a trial-and-error approach. In this paper, we propose an alternative method that efficiently finds all points $P$ of order $\\ell$ such that the subgroup generated by $P$ is the kernel of an horizontal or an ascending isogeny. In many cases, our method is faster than previous methods. This is an extended version of a paper published in the proceedings of ANTS 2010. In addition, we treat the case of 2-isogeny volcanoes and we derive from the group structure of the curve and the pairing ...
Romero, Vicente Jose
2011-11-01
This report explores some important considerations in devising a practical and consistent framework and methodology for utilizing experiments and experimental data to support modeling and prediction. A pragmatic and versatile 'Real Space' approach is outlined for confronting experimental and modeling bias and uncertainty to mitigate risk in modeling and prediction. The elements of experiment design and data analysis, data conditioning, model conditioning, model validation, hierarchical modeling, and extrapolative prediction under uncertainty are examined. An appreciation can be gained for the constraints and difficulties at play in devising a viable end-to-end methodology. Rationale is given for the various choices underlying the Real Space end-to-end approach. The approach adopts and refines some elements and constructs from the literature and adds pivotal new elements and constructs. Crucially, the approach reflects a pragmatism and versatility derived from working many industrial-scale problems involving complex physics and constitutive models, steady-state and time-varying nonlinear behavior and boundary conditions, and various types of uncertainty in experiments and models. The framework benefits from a broad exposure to integrated experimental and modeling activities in the areas of heat transfer, solid and structural mechanics, irradiated electronics, and combustion in fluids and solids.
Mated Fingerprint Card Pairs 2 (MFCP2)
NIST Mated Fingerprint Card Pairs 2 (MFCP2) (PC database for purchase) NIST Special Database 14 is being distributed for use in development and testing of automated fingerprint classification and matching systems on a set of images which approximate a natural horizontal distribution of the National Crime Information Center (NCIC) fingerprint classes. A newer version of the compression/decompression software on the CDROM can be found at the website http://www.nist.gov/itl/iad/ig/nigos.cfm as part of the NBIS package.
Pair correlation function for spin glasses
Fernández, Julio F.; Alonso, Juan J.
2012-10-01
We extract a pair correlation function (PCF) from probability distributions of the spin-overlap parameter q. The distributions come from Monte Carlo simulations. A measure, w, of the thermal fluctuations of magnetic patterns follows from the PCFs. We also obtain rms deviations (over different system samples) δp away from average probabilities for q. For the linear system sizes L that we have studied, w and δp are independent of L in the Edwards-Anderson model but scale as 1/L and L, respectively, in the Sherrington-Kirkpatrick model.
Multiple origins of asteroid pairs
Jacobson, Seth A
2015-01-01
Rotationally fissioned asteroids produce unbound daughter asteroids that have very similar heliocentric orbits. Backward integration of their current heliocentric orbits provides an age of closest proximity that can be used to date the rotational fission event. Most asteroid pairs follow a predicted theoretical relationship between the primary spin period and the mass ratio of the two pair members that is a direct consequence of the YORP-induced rotational fission hypothesis. If the progenitor asteroid has strength, asteroid pairs may have high mass ratios with possibly fast rotating primaries. However, secondary fission leaves the originally predicted trend unaltered. We also describe the characteristics of pair members produced by four alternative routes from a rotational fission event to an asteroid pair. Unlike direct formation from the event itself, the age of closest proximity of these pairs cannot generally be used to date the rotational fission event since considerable time may have passed.
Pulsar Pair Cascades in Magnetic Fields with Offset Polar Caps
Harding, Alice K.; Muslimov, Alex G.
2012-01-01
Neutron star magnetic fields may have polar caps (PC) that are offset from the dipole axis, through field-line sweepback near the light cylinder or non-symmetric currents within the star. The effects of such offsets on electron-positron pair cascades are investigated, using simple models of dipole magnetic fields with small distortions that shift the PCs by different amounts or directions. Using a Monte Carlo pair cascade simulation, we explore the changes in the pair spectrum, multiplicity and energy flux across the PC, as well as the trends in pair flux and pair energy flux with spin-down luminosity, L(sub sd). We also give an estimate of the distribution of heating flux from returning positrons on the PC for different offsets. We find that even modest offsets can produce significant increases in pair multiplicity, especially for pulsars that are near or beyond the pair death lines for centered PCs, primarily because of higher accelerating fields. Pair spectra cover several decades in energy, with the spectral range of millisecond pulsars (MSPs) two orders of magnitude higher than for normal pulsars, and PC offsets allow significant extension of all spectra to lower pair energies. We find that the total PC pair luminosity L(sub pair) is proportional to L(sub sd), with L(sub pair) approximates 10(exp -3) L(sub sd) for normal pulsars and L(sub pair) approximates 10(exp -2) L(sub sd) for MSPs. Remarkably, the total PC heating luminosity for even large offsets increases by less than a factor of two, even though the PC area increases by much larger factors, because most of the heating occurs near the magnetic axis.
Pair Correlation Function Integrals
Wedberg, Nils Hejle Rasmus Ingemar; O'Connell, John P.; Peters, Günther H.J.;
2011-01-01
numerical tests complementing previous results. Pure molecular fluids are here studied in the isothermal-isobaric ensemble with isothermal compressibilities evaluated from the total correlation function integrals and compared with values derived from volume fluctuations. For systems where the radial......We describe a method for extending radial distribution functions obtained from molecular simulations of pure and mixed molecular fluids to arbitrary distances. The method allows total correlation function integrals to be reliably calculated from simulations of relatively small systems. The long......, and J. Abildskov, Mol. Simul. 36, 1243 (2010); Fluid Phase Equilib. 302, 32 (2011)], but describe here its theoretical basis more thoroughly and derive long-distance approximations for the direct correlation functions. We describe the numerical implementation of the method in detail, and report...
PERIODIC COMPLEMENTARY BINARY SEQUENCE PAIRS
XuChengqian; ZhaoXiaoqun
2002-01-01
A new set of binary sequences-Periodic Complementary Binary Sequence Pair (PCSP)is proposed .A new class of block design-Difference Family Pair (DFP)is also proposed .The relationship between PCSP and DFP,the properties and exising conditions of PCSP and the recursive constructions for PCSP are given.
PERIODIC COMPLEMENTARY BINARY SEQUENCE PAIRS
Xu Chengqian; Zhao Xiaoqun
2002-01-01
A new set of binary sequences-Periodic Complementary Binary Sequence Pair (PCSP) is proposed. A new class of block design-Difference Family Pair (DFP) is also proposed.The relationship between PCSP and DFP, the properties and existing conditions of PCSP and the recursive constructions for PCSP are given.
Assessment Strategies for Pair Programming
Hahn, Jan Hendrik; Mentz, Elsa; Meyer, Lukas
2009-01-01
Although pair programming has proved its usefulness in teaching and learning programming skills, it is difficult to assess the individual roles and abilities of students whilst programming in pairs. (Note that within this manuscript, the term assessment refers to evaluating individual student performance.) Assessing only the outcomes of a pair…
Instability of vortex pair leapfrogging
Tophøj, Laust; Aref, Hassan
2013-01-01
pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L...
Kramers Pairs in configuration interaction
Avery, John Scales; Avery, James Emil
2003-01-01
The theory of symmetry-preserving Kramers pair creation operators is reviewed and formulas for applying these operators to configuration interaction calculations are derived. A new and more general type of symmetry-preserving pair creation operator is proposed and shown to commute with the total...
Stereo Pair: Patagonia, Argentina
2000-01-01
This view of northern Patagonia, near El Cain, Argentina shows complexly eroded volcanic terrain, with basalt mesas, sinkholes, landslide debris, playas, and relatively few integrated drainage channels. Surrounding this site (but also extending far to the east) is a broad plateau capped by basalt, the Meseta de Somuncura. Here, near the western edge of the plateau, erosion has broken through the basalt cap in a variety of ways. On the mesas, water-filled sinkholes (lower left) are most likely the result of the collapse of old lava tubes. Along the edges of the mesas (several locations) the basalt seems to be sliding away from the plateau in a series of slices. Water erosion by overland flow is also evident, particularly in canyons where vegetation blankets the drainage channels (green patterns, bottom of image). However, overland water flow does not extend very far at any location. This entire site drains to local playas, some of which are seen here (blue). While the water can reach the playas and then evaporate, what becomes of the eroded rock debris? Wind might excavate some of the finer eroded debris, but the fate of much of the missing bedrock remains mysterious.This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7 satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7
Moriya, Maki; Miyahara, Masahiko; Hokazono, Mana; Sasaki, Hirokazu; Nemoto, Atsushi; Katayama, Shingo; Akimoto, Yuji; Hirano, Shin-ichi; Ren, Yang
2014-10-01
The stable cycling performance with a high discharge capacity of similar to 190 mAh g(-1) in a carbon-hybridized Li2MnSiO4 nanostructured powder has prompted an experimental investigation of the charged/discharged structures using synchrotron-based and laboratory-based X-rays and atomic-pair distributionfunction (PDF) analyses. A novel method of in-situ spray pyrolysis of a precursor solution with glucose as a carbon source enabled the successful synthesis of the carbon-hybridized Li2(M)nSiO(4) nanoparticles. The XRD patters of the discharged (lithiated) samples exhibit a long-range ordered structure characteristic of the (beta) Li2MnSiO4 crystalline phase (space group Pmn2(1)) which dissipates in the charged (delithiated) samples. However, upon discharging the long-range ordered structure recovers in each cycle. The disordered structure, according to the PDF analysis, is mainly due to local distortions of the MnO4 tetrahedra which show a mean Mn-O nearest neighbor distance shorter than that of the long-range ordered phase. These results corroborate the notion of the smaller Mn3+/Mn4+ ionic radii in the Li extracted phase versus the larger Mn2+ ionic radius in Li inserted phase. Thus Li extraction/insertion drives the fluctuation between the disordered and the long-range ordered structures. (C) 2014 Elsevier B.V. All rights reserved.
Webb, Samuel; Scott, Matthias; Lin, Tai-Hua [Johannes-Gutenberg-Universitaet Mainz (Germany)
2016-07-01
Measurements of Z-boson transverse momentum (p{sub T}{sup ll}), spectra in Drell-Yan events are important tests of QCD - at high p{sub T}{sup ll} the spectra may be described by fixed-order perturbative QCD predictions and at lower p{sub T}{sup ll} using soft-gluon resummation together with a non-perturbative contribution from the parton intrinsic transverse momentum. The correct modelling of p{sub T}{sup ll} is also important for physics analyses at the LHC for which the production of W and/or Z bosons constitutes a background and is a crucial ingredient for a precise measurement of the W-boson mass. A complementary observable φ{sup *}{sub η}, defined in terms of the well-measured decay-lepton directions, can be used to probe the low p{sub T}{sup ll} domain with higher precision. Measurements of p{sub T}{sup ll} and φ{sup *}{sub η} using ATLAS data at a centre of mass energy of √(s) = 8 TeV are presented. These measurements are performed in bins of lepton-pair mass above, around and below the Z-boson mass peak and are compared to a variety of theoretical predictions including from ResBos and DYNNLO.
Dual Resolution Images from Paired Fingerprint Cards
NIST Dual Resolution Images from Paired Fingerprint Cards (PC database for purchase) NIST Special Database 30 is being distributed for use in development and testing of fingerprint compression and fingerprint matching systems. The database allows the user to develop and evaluate data compression algorithms for fingerprint images scanned at both 19.7 ppmm (500 dpi) and 39.4 ppmm (1000 dpi). The data consist of 36 ten-print paired cards with both the rolled and plain images scanned at 19.7 and 39.4 pixels per mm. A newer version of the compression/decompression software on the CDROM can be found at the website http://www.nist.gov/itl/iad/ig/nigos.cfm as part of the NBIS package.
Lee, Junseok; Sorescu, Dan C.; Lee, Jae-Gook; Dougherty, Dan
2016-10-01
The adsorption of 2,6-dimethylpyridine (2,6-DMP) on Cu(110) has been studied using low temperature scanning tunneling microscopy (LT-STM), time-of-flight electron stimulated desorption ion angular distribution (TOF-ESDIAD), and density functional theory (DFT) calculations. At low temperatures (T surface direction. At near-saturation coverage, a c(6 × 2) long-range ordered structure was observed. Upon annealing to T = 200 K, the 2,6-DMP molecules adopt an upright configuration with their pyridine ring plane oriented parallel to the azimuth. These upright 2,6-DMP molecules produce extended molecular chains where the repulsive interactions between the molecular chains give rise to coverage-dependent interchain distances.
Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Vázquez, F.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration
2014-05-01
We report on a study of the dijet invariant-mass distribution in events with one identified lepton, a significant imbalance in the total event transverse momentum, and two jets. This distribution is sensitive to the possible production of a new particle in association with a W boson, where the boson decays leptonically. We use the full data set of proton-antiproton collisions at 1.96 TeV center-of-mass energy collected by the Collider Detector at the Fermilab Tevatron, corresponding to an integrated luminosity of 8.9 fb-1. The data are found to be consistent with standard model expectations, and a 95% confidence level upper limit is set on the production cross section of a W boson in association with a new particle decaying into two jets.
Aaltonen, T; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K.R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H.S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y.C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M.E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C.A.; Cox, D.J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J.R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernandez Ramos, J.P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J.C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A.F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C.M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; Gonzalez Lopez, O.; Gorelov, I.; Goshaw, A.T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R.C.; Guimaraes da Costa, J.; Hahn, S.R.; Han, J.Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R.F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R.E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E.J.; Jindariani, S.; Jones, M.; Joo, K.K.; Jun, S.Y.; Junk, T.R.; Kambeitz, M.; Kamon, T.; Karchin, P.E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D.H.; Kim, H.S.; Kim, J.E.; Kim, M.J.; Kim, S.H.; Kim, S.B.; Kim, Y.J.; Kim, Y.K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D.J.; Konigsberg, J.; Kotwal, A.V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A.T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H.S.; Lee, J.S.; Leo, S.; Leone, S.; Lewis, J.D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Luca, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Martinez, M.; Matera, K.; Mattson, M.E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C.S.; Moore, R.; Morello, M.J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S.Y.; Norniella, O.; Oakes, L.; Oh, S.H.; Oh, Y.D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T.J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernandez, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J.L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W.K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E.E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S.Z.; Shears, T.; Shepard, P.F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J.R.; Snider, F.D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P.K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vazquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizan, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S.M.; Waters, D.; Wester, W.C., III; Whiteson, D.; Wicklund, A.B.; Wilbur, S.; Williams, H.H.; Wilson, J.S.; Wilson, P.; Winer, B.L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U.K.; Yang, Y.C.; Yao, W.M.; Yeh, G.P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G.B.; Yu, I.; Zanetti, A.M.; Zeng, Y.; Zhou, C.; Zucchelli, S.
2014-01-01
We report on a study of the dijet invariant-mass distribution in events with one identified lepton, a significant imbalance in the total event transverse momentum, and two jets. This distribution is sensitive to the possible production of a new particle in association with a $W$ boson, where the boson decays leptonically. We use the full data set of proton-antiproton collisions at 1.96 TeV center-of-mass energy collected by the Collider Detector at the Fermilab Tevatron and corresponding to an integrated luminosity of 8.9 fb$^{-1}$. The data are found to be consistent with standard-model expectations, and a 95$\\%$ confidence level upper limit is set on the cross section for a $W$ boson produced in association with a new particle decaying into two jets.
Pairing correlations in exotic nuclei
Sagawa, H
2012-01-01
The BCS and HFB theories which can accommodate the pairing correlations in the ground states of atomic nuclei are presented. As an application of the pairing theories, we investigate the spatial extension of weakly bound Ne and C isotopes by taking into account the pairing correlation with the Hartree-Fock-Bogoliubov (HFB) method and a 3-body model, respectively. We show that the odd-even staggering in the reaction cross sections of $^{30,31,32}$Ne and $^{14,15,16}$C are successfully reproduced, and thus the staggering can be attributed to the unique role of pairing correlations in nuclei far from the stability line. A correlation between a one-neutron separation energy and the anti-halo effect is demonstrated for $s$- and p-waves using the HFB wave functions. We also propose effective density-dependent pairing interactions which reproduce both the neutron-neutron ($nn$) scattering length at zero density and the neutron pairing gap in uniform matter. Then, we apply these interactions to study pairing gaps in ...
Pairing Correlations at High Spins
Ma, Hai-Liang; Dong, Bao-Guo; Zhang, Yan; Fan, Ping; Yuan, Da-Qing; Zhu, Shen-Yun; Zhang, Huan-Qiao; Petrache, C. M.; Ragnarsson, I.; Carlsson, B. G.
The pairing correcting energies at high spins in 161Lu and 138Nd are studied by comparing the results of the cranked-Nilsson-Strutinsky (CNS) and cranked-Nilsson-Strutinsky-Bogoliubov (CNSB) models. It is concluded that the Coriolis effect rather than the rotational alignment effect plays a major role in the reduction of the pairing correlations in the high spin region. Then we proposed an average pairing correction method which not only better reproduces the experimental data comparing with the CNS model but also enables a clean-cut tracing of the configurations thus the full-spin-range discussion on the various rotating bands.
Exploring the consequences of pairing algorithms for binary stars
Kouwenhoven, M B N; Goodwin, S P; Zwart, S F Portegies; Kaper, L
2008-01-01
Knowledge of the binary population in stellar groupings provides important information about the outcome of the star forming process in different environments (see, e.g., Blaauw 1991, and references therein). Binarity is also a key ingredient in stellar population studies, and is a prerequisite to calibrate the binary evolution channels. In this paper we present an overview of several commonly used methods to pair individual stars into binary systems, which we refer to as pairing functions. These pairing functions are frequently used by observers and computational astronomers, either for their mathematical convenience, or because they roughly describe the expected outcome of the star forming process. We discuss the consequences of each pairing function for the interpretation of observations and numerical simulations. The binary fraction and mass ratio distribution generally depend strongly on the selection of the range in primary spectral type in a sample. The mass ratio distribution and binary fraction deriv...
Exact solution for generalized pairing
Pan, Feng; J.P. Draayer
1997-01-01
An infinite dimensional algebra, which is useful for deriving exact solutions of the generalized pairing problem, is introduced. A formalism for diagonalizing the corresponding Hamiltonian is also proposed. The theory is illustrated with some numerical examples.
Pairing versus quarteting coherence length
Delion, Doru S
2015-01-01
We systematically analyse the coherence length in even-even nuclei. The pairing coherence length in the spin-singlet channel for the effective density dependent delta (DDD) and Gaussian interaction is estimated. We consider in our calculations bound states as well as narrow resonances. It turns out that the pairing gaps given by the DDD interaction are similar to those of the Gaussian potential if one renormalizes the radial width to the nuclear radius. The correlations induced by the pairing interaction have in all considered cases a long range character inside the nucleus and decrease towards the surface. The mean coherence length is larger than the geometrical radius for light nuclei and approaches this value for heavy nuclei. The effect of the temperature and states in continuum is investigated. Strong shell effects are evidenced, especially for protons. We generalize this concept to quartets by considering similar relations, but between proton and neutron pairs. The quartet coherence length has a similar...
Atomic pair-state interferometer
Nipper, J.; Balewski, Jonathan B.; Krupp, Alexander T.
2012-01-01
to measure the phase shift. Although the coupling between pair states is coherent on the time scale of the experiment, a loss of visibility occurs as a pair-state interferometer involves three simultaneously interfering paths and only one of them is phase shifted by the mutual interaction. Despite additional...... dephasing mechanisms, a pulsed Förster coupling sequence allows for observation of coherent dynamics around the Förster resonance....
Gay-Balmaz, François
2010-01-01
This paper is a rigorous study of the dual pair structure of the ideal fluid and the dual pair structure for the $n$-dimensional Camassa-Holm (EPDiff) equation, including the proofs of the necessary transitivity results. In the case of the ideal fluid, we show that a careful definition of the momentum maps leads naturally to central extensions of diffeomorphism groups such as the group of quantomorphisms and the Ismagilov central extension.
Pair programming: more than just working together in pairs.
Elsa Mentz
2012-03-01
Full Text Available Pair programming originated in the industry where focus is placed on the development of a programme at the most costand time-effective manner, and within the parameters of quality. In this context, a specific programming code is not developed individually; rather, two people work together in order to ensure a higher quality programming code and to motivate each other to work at a faster pace. The problem with this approach was that novice programmers lacked the social skills to work in pairs as they had not been exposed to this sufficiently at tertiary level. The demand of the industry, especially in terms of programmers needing to be able to programme together, led to the incorporation of pair programming at tertiary level in the late nineties. The pedagogical principles on which any teaching-learning strategy should be built were, however, largely overlooked during this process. This article firstly looks into the semantic and ontological differences between co-operative and collaborative learning and secondly argues that pair programming, within the context of a social constructivist approach to teaching and learning, can be seen as a co-operative teaching-learning strategy. Pair programming is more than just allowing two students to work together on a programming task. The more structured way, in which pair programming needs to be implemented, concur with the principles of co-operative learning. The article concludes that the correct pedagogical application of pair programming as a co-operative teaching-learning strategy in tertiary education will result in improved learning capital.
Stochastic number projection method in the pairing-force problem
Capote, R; Capote, Roberto; Gonzalez, Augusto
1999-01-01
A new stochastic number projection method is proposed. The component of the BCS wave function corresponding to the right number of particles is obtained by means of a Metropolis algorithm in which the weight functions are constructed from the single-particle occupation probability. Either standard BCS or Lipkin-Nogami probability distributions can be used, thus the method is applicable for any pairing strength. The accuracy of the method is tested in the computation of pairing energies of model and real systems.
Docaj, A. [Physics Department, Texas Tech University, Lubbock, TX 79409-1051 (United States); Estreicher, S.K., E-mail: Stefan.Estreicher@ttu.edu [Physics Department, Texas Tech University, Lubbock, TX 79409-1051 (United States)
2012-08-01
Carbon impurities in Si are common in floating-zone and cast-Si materials. The simplest and most discussed carbon complex is the interstitial-substitutional C{sub i}C{sub s} pair, which readily forms when self-interstitials are present in the material. This pair has three possible configurations, each of which is electrically active. The less common C{sub s}C{sub s} pair has been studied in irradiated material but has also recently been seen in as-grown C-rich cast-Si, which is commonly used to fabricate solar cells. The third pair consists of two interstitial C atoms: C{sub i}C{sub i}. Although its formation probability is low for several reasons, the C{sub i}C{sub i} pair is very stable and electrically inactive. In this contribution, we report preliminary results of first-principles calculations of these three C pairs in Si. The structures, binding energies, vibrational spectra, and electrical activity are predicted.
The ATLAS collaboration
2016-01-01
Searches for resonances using the dijet invariant mass spectrum with two jets identified as $b$-jets are performed with the ATLAS detector at the Large Hadron Collider. The dataset consists of an integrated luminosity of 3.2 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\\sqrt{s} = 13$~TeV. The dijet mass distribution from 0.57~TeV to 1.2~TeV is studied. No significant deviations from the Standard Model expectation have been observed in the data. These results are used to exclude $Z'$ bosons at the 95% credibility level in the inspected mass range. Contributions of a Gaussian shaped signal with visible cross sections ranging from approximately 0.3 to 0.02 pb are also excluded.
Exclusive production of W pairs in CMS
Silveira Da
2014-04-01
Full Text Available We report the results on the search for exclusive production of W pairs in the LHC with data collected by the Compact Muon Solenoid detector in proton-proton collisions at √s = 7 TeV. The analysis comprises the two-photon production of a W pairs, pp → pW+ W− p → p νe± νµ∓ p. Two events are observed in data for pT(ℓ > 4 GeV, |η(ℓ| 20 GeV, in agreement with the standard model prediction of 2.2 ± 0.4 signal events with 0.84 ± 0.15 background events. Moreover, a study of the tail of the lepton pair transverse momentum distribution is performed to search for an evidence of anomalous quartic gauge couplings in the γγ → W+ W− vertex. As no events are observed in data, it results in a model-independent upper limits for the anomalous W quartic gauge couplings aW0,C/Λ2, which are of the order of 10−4.
Superconductivity: The persistence of pairs
Edelman, Alex; Littlewood, Peter
2015-05-20
Superconductivity stems from a weak attraction between electrons that causes them to form bound pairs and behave much like bosons. These so-called Cooper pairs are phase coherent, which leads to the astonishing properties of zero electrical resistance and magnetic flux expulsion typical of superconducting materials. This coherent state may be qualitatively understood within the Bose–Einstein condensate (BEC) model, which predicts that a gas of interacting bosons will become unstable below a critical temperature and condense into a phase of matter with a macroscopic, coherent population in the lowest energy state, as happens in ^{4}He or cold atomic gases. The successful theory proposed by Bardeen, Cooper and Schrieffer (BCS) predicts that at the superconducting transition temperature T_{c}, electrons simultaneously form pairs and condense, with no sign of pairing above T_{c}. Theorists have long surmised that the BCS and BEC models are opposite limits of a single theory and that strong interactions or low density can, in principle, drive the system to a paired state at a temperature Tpair higher than T_{c}, making the transition to the superconducting state BEC-like (Fig. 1). Yet most superconductors to date are reasonably well described by BCS theory or its extensions, and there has been scant evidence in electronic materials for the existence of pairing independent of the full superconducting state (though an active debate rages over the cuprate superconductors). Writing in Nature, Jeremy Levy and colleagues have now used ingenious nanostructured devices to provide evidence for electron pairing1. Perhaps surprisingly, the material they have studied is a venerable, yet enigmatic, low-temperature superconductor, SrTiO_{3}.
Paired structures in knowledge representation
Montero, J.; Bustince, H.; Franco de los Ríos, Camilo;
2016-01-01
In this position paper we propose a consistent and unifying view to all those basic knowledge representation models that are based on the existence of two somehow opposite fuzzy concepts. A number of these basic models can be found in fuzzy logic and multi-valued logic literature. Here it is clai......In this position paper we propose a consistent and unifying view to all those basic knowledge representation models that are based on the existence of two somehow opposite fuzzy concepts. A number of these basic models can be found in fuzzy logic and multi-valued logic literature. Here...... of paired structures, generated from two paired concepts together with their associated neutrality, all of them to be modeled as fuzzy sets. In this way, paired structures can be viewed as a standard basic model from which different models arise. This unifying view should therefore allow a deeper analysis...
Organometallic frustrated Lewis pair chemistry.
Erker, Gerhard
2011-08-07
Frustrated Lewis pairs are playing an increasingly important role in organometallic chemistry. Examples are presented and discussed where organometallic systems themselves serve as the Lewis base or Lewis acid components in frustrated Lewis pair chemistry, mostly through their attached functional groups. Activation of dihydrogen takes place easily in many of these systems. This may lead to the generation of novel catalyst systems but also in many cases to the occurrence of specific reactions at the periphery of the organometallic frameworks. Increasingly, FLP reactions are used to carry out functional group conversions in organometallic systems under mild reaction conditions. The limits of typical FLP reactivity are explored with selected organometallic examples, a discussion that points toward new developments, such as the discovery of facile new 1,1-carboboration reactions. Learning more and more about the broad spectrum of frustrated Lewis pair chemistry helps us to find novel reactions and applications.
Exlusive charmed meson pair production
Berezhnoy, A V
2004-01-01
The experimental data of BELLE Collaboration on the exclusive charmed meson pair production in the process of monophotonic $e^+e^-$-annihilation ($e^+e^-\\to \\gamma^* \\to D\\bar D$) has been studied. It has been shown that these data is described satisfactorily in the frame work of constituent quark model. Our studies have demonstrated that the central production process $e^+e^-\\to e^+e^-\\gamma\\gamma \\to e^+e^-D\\bar D +X$ and the process of monophotonic $e^+e^-$-annihilation yield comparable numbers of the charmed meson pairs.
How Cooper pairs vanish approaching the Mott insulator in Bi2Sr2CaCu2O8+delta.
Kohsaka, Y; Taylor, C; Wahl, P; Schmidt, A; Lee, Jhinhwan; Fujita, K; Alldredge, J W; McElroy, K; Lee, Jinho; Eisaki, H; Uchida, S; Lee, D-H; Davis, J C
2008-08-28
The antiferromagnetic ground state of copper oxide Mott insulators is achieved by localizing an electron at each copper atom in real space (r-space). Removing a small fraction of these electrons (hole doping) transforms this system into a superconducting fluid of delocalized Cooper pairs in momentum space (k-space). During this transformation, two distinctive classes of electronic excitations appear. At high energies, the mysterious 'pseudogap' excitations are found, whereas, at lower energies, Bogoliubov quasi-particles-the excitations resulting from the breaking of Cooper pairs-should exist. To explore this transformation, and to identify the two excitation types, we have imaged the electronic structure of Bi(2)Sr(2)CaCu(2)O(8+delta) in r-space and k-space simultaneously. We find that although the low-energy excitations are indeed Bogoliubov quasi-particles, they occupy only a restricted region of k-space that shrinks rapidly with diminishing hole density. Concomitantly, spectral weight is transferred to higher energy r-space states that lack the characteristics of excitations from delocalized Cooper pairs. Instead, these states break translational and rotational symmetries locally at the atomic scale in an energy-independent way. We demonstrate that these unusual r-space excitations are, in fact, the pseudogap states. Thus, as the Mott insulating state is approached by decreasing the hole density, the delocalized Cooper pairs vanish from k-space, to be replaced by locally translational- and rotational-symmetry-breaking pseudogap states in r-space.
Electron pair creation by photons
Holtwijk, Theodoor
1960-01-01
In our experiment on the creation of electron pairs a 5 MeV betatron was used as radiation source and a cloud chamber (with magnetic field) was used as detection instrument. The experimental arrangement is described in section 2.1. The cloud chamber was of the overcompression type so that the recove
Christensen, Ole; Goh, Say Song
2012-01-01
is needed. The purpose of the present paper is to provide constructions of dual pairs of frames in the setting of the Hilbert space of periodic functions L2(0,2π). The frames constructed are given explicitly as trigonometric polynomials, which allows for an efficient calculation of the coefficients...
Electron pair creation by photons
Holtwijk, Theodoor
1960-01-01
In our experiment on the creation of electron pairs a 5 MeV betatron was used as radiation source and a cloud chamber (with magnetic field) was used as detection instrument. The experimental arrangement is described in section 2.1. The cloud chamber was of the overcompression type so that the recove
Sadhukhan, Banasree; Singh, Prashant; Nayak, Arabinda; Datta, Sujoy; Johnson, Duane D.; Mookerjee, Abhijit
2017-08-01
We present a real-space formulation for calculating the electronic structure and optical conductivity of random alloys based on Kubo-Greenwood formalism interfaced with augmented space recursion technique [Mookerjee, J. Phys. C 6, 1340 (1973), 10.1088/0022-3719/6/8/003] formulated with the tight-binding linear muffin-tin orbital basis with the van Leeuwen-Baerends corrected exchange potential [Singh, Harbola, Hemanadhan, Mookerjee, and Johnson, Phys. Rev. B 93, 085204 (2016), 10.1103/PhysRevB.93.085204]. This approach has been used to quantitatively analyze the effect of chemical disorder on the configuration averaged electronic properties and optical response of two-dimensional honeycomb siliphene SixC1 -x beyond the usual Dirac-cone approximation. We predicted the quantitative effect of disorder on both the electronic structure and optical response over a wide energy range, and the results are discussed in the light of the available experimental and other theoretical data. Our proposed formalism may open up a facile way for planned band-gap engineering in optoelectronic applications.
Kodama, Wataru; Nakasako, Masayoshi
2011-08-01
Coherent x-ray diffraction microscopy is a novel technique in the structural analyses of particles that are difficult to crystallize, such as the biological particles composing living cells. As water is indispensable for maintaining particles in functional structures, sufficient hydration of targeted particles is required during sample preparation for diffraction microscopy experiments. However, the water enveloping particles also contributes significantly to the diffraction patterns and reduces the electron-density contrast of the sample particles. In this study, we propose a protocol for the structural analyses of particles in water by applying a three-dimensional reconstruction method in real space for the projection images phase-retrieved from diffraction patterns, together with a developed density modification technique. We examined the feasibility of the protocol through three simulations involving a protein molecule in a vacuum, and enveloped in either a droplet or a cube-shaped water. The simulations were carried out for the diffraction patterns in the reciprocal planes normal to the incident x-ray beam. This assumption and the simulation conditions corresponded to experiments using x-ray wavelengths of shorter than 0.03 Å. The analyses demonstrated that our protocol provided an interpretable electron-density map. Based on the results, we discuss the advantages and limitations of the proposed protocol and its practical application for experimental data. In particular, we examined the influence of Poisson noise in diffraction patterns on the reconstructed three-dimensional electron density in the proposed protocol.
Dependence of Two-proton Radioactivity on Nuclear Pairing Models
Oishi, Tomohiro; Pastore, Alessandro
2016-01-01
The sensitivity of two-proton emitting decays to the nuclear pairing correlation is discussed within a time-dependent three-body model. We focus on the $^6$Be nucleus assuming $\\alpha + p + p$ configuration, and its decay process is described as a time-evolution of the three-body resonance state. A noticeable model-dependence of two-proton decay width is found by utilizing schematic density-dependent contact (SDDC) and the finite-range Minnesota pairing models. The model-dependence with the SDDC pairing interaction can be understood from the density distribution of the resonance state, which reflects a synergy of participating interactions. Our result suggests that two-proton decay width may be a suitable reference quantity to sophisticate the nuclear pairing model beyond the nucleon driplines.
Role of triplet polaron pairs in conjugated polymer photophysics
Wesely, Elizabeth; Rothberg, Lewis; Marchetti, Alfred; Chen, Shaw; Geng, Yanhou; Culligan, Sean
2007-03-01
We measure the decay of the long-lived fluorescence of a conjugated oligofluorene at temperatures from 300 K to 20 K. We conclude that nearly all of this emission arises from geminate recombination of photogenerated polaron pairs to reform the singlet exciton, and that charge pair recombination represents a significant contribution to the overall fluorescence quantum yield. The unusual nonmonotonic decay dynamics of the delayed fluorescence can be explained if we assume interconversion between singlet and triplet polaron pairs on the submicrosecond time scale. (˜500 ns.) We are able to model the decay of the delayed fluorescence by assuming activated recombination from a Gaussian energy distribution of singlet polaron pairs centered 0.2 eV below the excited state and having a standard deviation of 0.12 eV. The model is relevant to recent work involving the measurement of singlet-triplet branching ratios and to the yields of electroluminescent devices.
Sequence alignments and pair hidden Markov models using evolutionary history.
Knudsen, Bjarne; Miyamoto, Michael M
2003-10-17
This work presents a novel pairwise statistical alignment method based on an explicit evolutionary model of insertions and deletions (indels). Indel events of any length are possible according to a geometric distribution. The geometric distribution parameter, the indel rate, and the evolutionary time are all maximum likelihood estimated from the sequences being aligned. Probability calculations are done using a pair hidden Markov model (HMM) with transition probabilities calculated from the indel parameters. Equations for the transition probabilities make the pair HMM closely approximate the specified indel model. The method provides an optimal alignment, its likelihood, the likelihood of all possible alignments, and the reliability of individual alignment regions. Human alpha and beta-hemoglobin sequences are aligned, as an illustration of the potential utility of this pair HMM approach.
Boosted Top Quark Pair Production in Soft Collinear Effective Theory
Ferroglia, Andrea; Pecjak, Ben D; Yang, Li Lin
2014-01-01
We review a Soft Collinear Effective Theory approach to the study of factorization and resummation of QCD effects in top-quark pair production. In particular, we consider differential cross sections such as the top-quark pair invariant mass distribution and the top-quark transverse momentum and rapidity distributions. Furthermore, we focus our attention on the large invariant mass and large transverse momentum kinematic regions, characteristic of boosted top quarks. We discuss the factorization of the differential cross section in the double soft gluon emission and small top-quark mass limit, both in Pair Invariant Mass (PIM) and One Particle Inclusive (1PI) kinematics. The factorization formulas can be employed in order to implement the simultaneous resummation of soft emission and small mass effects up to next-to-next-to-leading logarithmic accuracy. The results are also used to construct improved next-to-next-to-leading order approximations for the differential cross sections.
Skew Pairs of Idempotents in Transformation Semigroups
T. S. BLYTH; M. H. ALMEIDA SANTOS
2006-01-01
An ordered pair (e, f) of idempotents of a regular semigroup is called a skew pair if ef is not idempotent whereas fe is idempotent. We have shown previously that there are four distinct types of skew pairs of idempotents. Here we investigate the ubiquity of such skew pairs in full transformation semigroups.
Paired comparison product testing when individual preferences are stochastic
B. Wierenga (Berend)
1974-01-01
textabstractThe preference of an individual in a paired comparison product test is stochastic, i.e. the probability p, that he will prefer one of the two alternatives, is not 0 or 1, but lies somewhere between these values. It is shown that the distribution of p, when approximated by a beta distribu
The additon of screws and the axodes of gear pairs
ZHANG Wen-xiang
2001-01-01
In the light of screw addition, the distribution of instantaneous axes along the common perpendicular of the two screws is determined and all possible sorts of axodes are derived cinematically with the pitch of the relative-motio n screw in the gear pair as the basis and the transmission ratio i as an inde pendent variable.
The additon of screws and the axodes of gear pairs
张文祥
2001-01-01
In the light of screw addition, the distribution of instantaneous axes along the common perpendicular of the two screws is determined and all possible sorts of axodes are derived cinematically with the pitch of the relative-motion screw in the gear pair as the basis and the transmission ratio i as an independent variable.
Pairing theory of striped superconductivity
Loder, Florian; Kampf, Arno P.; Kopp, Thilo; Graser, Siegfried [Center for Electronic Correlations and Magnetism, Institute of Physics, Augsburg (Germany)
2011-07-01
Striped high-T{sub c} superconductors such as La{sub 7/8}Ba{sub 1/8}CuO{sub 4} show a fascinating competition between spin and charge order on the one hand and superconductivity on the other. A theory for these systems therefore has to capture both the spin correlations in an antiferromagnet and the pair-correlation of a superconductor. For this purpose we have developed an effective Hartree-Fock theory by merging electron pairing with finite center-of-mass momentum and antiferromagnetism. We show that this theory reproduces the key experimental features such as the formation of the antiferromagnetic stripe patterns at 7/8 band filling or the quasi one-dimensional electronic structure observed by photoemission spectroscopy.
Collisions of Vortex Filament Pairs
Banica, Valeria; Faou, Erwan; Miot, Evelyne
2014-12-01
We consider the problem of collisions of vortex filaments for a model introduced by Klein et al. (J Fluid Mech 288:201-248, 1995) and Zakharov (Sov Phys Usp 31(7):672-674, 1988, Lect. Notes Phys 536:369-385, 1999) to describe the interaction of almost parallel vortex filaments in three-dimensional fluids. Since the results of Crow (AIAA J 8:2172-2179, 1970) examples of collisions are searched as perturbations of antiparallel translating pairs of filaments, with initial perturbations related to the unstable mode of the linearized problem; most results are numerical calculations. In this article, we first consider a related model for the evolution of pairs of filaments, and we display another type of initial perturbation leading to collision in finite time. Moreover, we give numerical evidence that it also leads to collision through the initial model. We finally study the self-similar solutions of the model.
Septin pairs, a complex choreography.
Ewers, Helge
2011-06-13
Septins form a filamentous collar at the mother-bud neck in budding yeast. In cytokinesis, this collar splits into two rings and the septin complexes undergo a dramatic reorientation. Using fluorescence polarization microscopy, DeMay et al. (2011. J. Cell Biol. doi:10.1083/jcb.201012143) now demonstrate that septin complexes assemble as paired filaments in vivo and reveal new insights into septin organization during cytokinesis.
Triplet Pairing in Neutron Matter
Khodel, V V; Clark, J W
2001-01-01
The separation method developed earlier by us [Nucl. Phys. {\\bf A598} 390 (1996)] to calculate and analyze solutions of the BCS gap equation for $^1$S$_0$ pairing is extended and applied to $^3$P$_2$--$^3$F$_2$ pairing in pure neutron matter. The pairing matrix elements are written as a separable part plus a remainder that vanishes when either momentum variable is on the Fermi surface. This decomposition effects a separation of the problem of determining the dependence of the gap components in a spin-angle representation on the magnitude of the momentum (described by a set of functions independent of magnetic quantum number) from the problem of determining the dependence of the gap on angle or magnetic projection. The former problem is solved through a set of nonsingular, quasilinear integral equations, providing inputs for solution of the latter problem through a coupled system of algebraic equations for a set of numerical coefficients. An incisive criterion is given for finding the upper critical density fo...
Wentworth, Richard A
2010-01-01
We study the Morse theory of the Yang-Mills-Higgs functional on the space of pairs $(A,\\Phi)$, where $A$ is a unitary connection on a rank 2 hermitian vector bundle over a compact Riemann surface, and $\\Phi$ is a holomorphic section of $(E, d_A")$. We prove that a certain explicitly defined substratification of the Morse stratification is perfect in the sense of $\\G$-equivariant cohomology, where $\\G$ denotes the unitary gauge group. As a consequence, Kirwan surjectivity holds for pairs. It also follows that the twist embedding into higher degree induces a surjection on equivariant cohomology. This may be interpreted as a rank 2 version of the analogous statement for symmetric products of Riemann surfaces. Finally, we compute the $\\G$-equivariant Poincar\\'e polynomial of the space of $\\tau$-semistable pairs. In particular, we recover an earlier result of Thaddeus. The analysis provides an interpretation of the Thaddeus flips in terms of a variation of Morse functions.
Mediators of homologous DNA pairing.
Zelensky, Alex; Kanaar, Roland; Wyman, Claire
2014-10-09
Homologous DNA pairing and strand exchange are at the core of homologous recombination. These reactions are promoted by a DNA-strand-exchange protein assembled into a nucleoprotein filament comprising the DNA-pairing protein, ATP, and single-stranded DNA. The catalytic activity of this molecular machine depends on control of its dynamic instability by accessory factors. Here we discuss proteins known as recombination mediators that facilitate formation and functional activation of the DNA-strand-exchange protein filament. Although the basics of homologous pairing and DNA-strand exchange are highly conserved in evolution, differences in mediator function are required to cope with differences in how single-stranded DNA is packaged by the single-stranded DNA-binding protein in different species, and the biochemical details of how the different DNA-strand-exchange proteins nucleate and extend into a nucleoprotein filament. The set of (potential) mediator proteins has apparently expanded greatly in evolution, raising interesting questions about the need for additional control and coordination of homologous recombination in more complex organisms. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.
Pairing in bulk nuclear matter beyond BCS
Ding, D; Dickhoff, W H; Dussan, H; Rios, A; Polls, A
2014-01-01
The influence of short-range correlations on the spectral distribution of neutrons is incorporated in the solution of the gap equation for the ${}^3P_2-{}^3F_2$ coupled channel in pure neutron matter. This effect is studied for different realistic interactions including one based on chiral perturbation theory. The gap in this channel vanishes at all relevant densities due to the treatment of these correlations. We also consider the effect of long-range correlations by including polarization terms in addition to the bare interaction which allow the neutrons to exchange density and spin fluctuations governed by the strength of Landau parameters allowed to have reasonable values consistent with the available literature. Preliminary results indicate that reasonable values of these parameters do not generate a gap in the ${}^3P_2-{}^3F_2$ coupled channel either for all three realistic interactions although the pairing interaction becomes slightly more attractive.
Photogeneration of polaron pairs in conducting polymers
Conwell, E. M.; Mizes, H. A.
1995-03-01
It is usually assumed that when photogeneration in a conducting polymer results in an electron and hole on separate chains they form negative and positive polarons that can move independently of each other. We show, on the basis of the small carrier yield per photon seen in picosecond photoconductivity, the different behavior of photoinduced absorption (PA) in dilute solution and thin films, and the spectral distribution of the PA in thin films, that photogenerated positive and negative polarons in poly(p-phenylene vinylene), polythiophene, and polyacetylene are, for the most part, bound in pairs by their Coulomb attraction. We also show that PA data give evidence for a gap of 2.8 eV, and thus an exciton binding energy of 0.4 eV, in poly(p-phenylene vinylene).
Numerical studies of pair creation in counterpropagating laser fields
Ruf, Matthias
2009-05-27
Pair creation from vacuum induced by electromagnetic fields is probably one of the most intriguing phenomena in physics. If the fields are sufficiently strong, the QED vacuum become unstable. Due to the remarkable progress in laser technology during recent years an experimental investigation of pair creation by pure laser light is coming into reach. The focus of this thesis is on pair creation in counterpropagating laser beams. The pair creation probability is calculated employing the numerically obtained solutions of the Dirac equation. This numerical ansatz has the capability of calculating the momentum distribution of the created pairs in a single propagation, for pure time dependent field configurations. Furthermore, it allows to take the magnetic component of the laser fields into account, which is usually neglected. The latter strongly affects the creation process at high laser frequency. The involved numerical calculations are rather time consuming, therefore the second project of this thesis was to develop a highly efficient code for solving relativistic quantum mechanical problems. This is accomplished by adopting the split-operator method to the Klein-Gordon equation. Here the possibility arises to use parallel computing. However the corresponding spin-statistics becomes crucial in the case of pair creation, demonstrated in several examples. (orig.)
Numerical studies of pair creation in counterpropagating laser fields
Ruf, Matthias
2009-05-27
Pair creation from vacuum induced by electromagnetic fields is probably one of the most intriguing phenomena in physics. If the fields are sufficiently strong, the QED vacuum become unstable. Due to the remarkable progress in laser technology during recent years an experimental investigation of pair creation by pure laser light is coming into reach. The focus of this thesis is on pair creation in counterpropagating laser beams. The pair creation probability is calculated employing the numerically obtained solutions of the Dirac equation. This numerical ansatz has the capability of calculating the momentum distribution of the created pairs in a single propagation, for pure time dependent field configurations. Furthermore, it allows to take the magnetic component of the laser fields into account, which is usually neglected. The latter strongly affects the creation process at high laser frequency. The involved numerical calculations are rather time consuming, therefore the second project of this thesis was to develop a highly efficient code for solving relativistic quantum mechanical problems. This is accomplished by adopting the split-operator method to the Klein-Gordon equation. Here the possibility arises to use parallel computing. However the corresponding spin-statistics becomes crucial in the case of pair creation, demonstrated in several examples. (orig.)
Charge Aspects of Composite Pair Superconductivity
Flint, Rebecca
2014-03-01
Conventional Cooper pairs form from well-defined electronic quasiparticles, making the internal structure of the pair irrelevant. However, in the 115 family of superconductors, the heavy electrons are forming as they pair and the internal pair structure becomes as important as the pairing mechanism. Conventional spin fluctuation mediated pairing cannot capture the direct transition from incoherent local moments to heavy fermion superconductivity, but the formation of composite pairs favored by the two channel Kondo effect can. These composite pairs are local d-wave pairs formed by two conduction electrons in orthogonal Kondo channels screening the same local moment. Composite pairing shares the same symmetries as magnetically mediated pairing, however, only composite pairing necessarily involves a redistribution of charge within the unit cell originating from the internal pair structure, both as a monopole (valence change) and a quadrupole effect. This redistribution will onset sharply at the superconducting transition temperature. A smoking gun test for composite pairing is therefore a sharp signature at Tc - for example, a cusp in the Mossbauer isomer shift in NpPd5Al2 or in the NQR shift in (Ce,Pu)CoIn5.
Top quark pair production at the LHC
Baernreuther, Peter
2012-06-28
One of the most interesting and manifold processes in the Standard Model of elementary particle physics is the top quark pair production. It enabled the discovery of the top quark at the Tevatron in 1995 and the determination of many of its properties. By means of a precise measurement and calculation of the cross section of top quark pair production it is possible to extract the top quark mass. Improvements in the gluon parton distribution functions (important for the Higgs boson production) or improvements in the prediction of the Higgs mass are also closely linked with the top quark pair production. Furthermore, the production process plays an important role in the discovery of new physics. On the one hand the top quark pair decays form the largest part of the background in many BSM models, on the other hand BSM physics can be detected directly in the decay process by investigating the charge symmetry or the invariant mass spectrum. At the LHC it will be possible for the first time to produce a large amount of top quarks; thereby the statistical errors of the observables will be strongly reduced. The enormous increase in the production rate has two reasons. On the one hand, the acceleration energy of the LHC (14 TeV and 7 TeV) is significantly greater than that of the Tevatron (1.96 Tev). This leads to an increase of the cross section by a factor of 100 ({proportional_to}7.3 pb at the Tevatron to {proportional_to}800 pb at 14 TeV LHC). On the other hand, the luminosity of the LHC outperforms the Tevatron by a factor of 10-100. The reduced experimental errors for the observables demand an improvement of the theoretical error. The experimental accuracy of the LHC and the great relevance of the process led to an intensive activity of different research groups in order to improve the calculation of the cross section of top quark pair production. This work presents for the first time a complete numerical result for the full NNLO correction for the top quark pair
Pair Tunneling through Single Molecules
Raikh, Mikhail
2007-03-01
Coupling to molecular vibrations induces a polaronic shift, and can lead to a negative charging energy, U. For negative U, the occupation of the ground state of the molecule is even. In this situation, virtual pair transitions between the molecule and the leads can dominate electron transport. At low temperature, T, these transitions give rise to the charge-Kondo effect [1]. We developed the electron transport theory through the negative-U molecule [2] at relatively high T, when the Kondo correlations are suppressed. Two physical ingredients distinguish our theory from the transport through a superconducting grain coupled to the normal leads [3]: (i) in parallel with sequential pair-tunneling processes, single-particle cotunneling processes take place; (ii) the electron pair on the molecule can be created (or annihilated) by two electrons tunneling in from (or out to) opposite leads. We found that, even within the rate-equation description, the behavior of differential conductance through the negative-U molecule as function of the gate voltage is quite peculiar: the height of the peak near the degeneracy point is independent of temperature, while its width is proportional to T. This is in contrast to the ordinary Coulomb-blockade conductance peak, whose integral strength is T-independent. At finite source-drain bias, V>>T, the width of the conductance peak is ˜V, whereas the conventional Coulomb-blockade peak at finite V splits into two sharp peaks at detunings V/2, and -V/2. Possible applications to the gate-controlled current rectification and switching will be discussed. [1] A. Taraphder and P. Coleman, Phys. Rev. Lett. 66, 2814 (1991). [2] J. Koch, M. E. Raikh, and F. von Oppen, Phys. Rev. Lett. 96, 056803 (2006). [3] F. W. J. Hekking, L. I. Glazman, K. A. Matveev, and R. I. Shekhter, Phys. Rev. Lett. 70, 4138 (1993).
Endocrine factors of pair bonding.
Stárka, L
2007-01-01
Throughout literature--fiction and poetry, fine arts and music--falling in love and enjoying romantic love plays a central role. While several psychosocial conceptions of pair attachment consider the participation of hormones, human endocrinology has dealt with this theme only marginally. According to some authors in addictology, falling in love shows some signs of hormonal response to stressors with changes in dopamine and serotonin signalling and neurotrophin (transforming growth factor b) concentration. Endorphins, oxytocin and vasopressin may play a role during the later phases of love. However, proof of hormonal events associated with love in humans has, until recently, been lacking.
Measurement of the Charge Asymmetry in Top Quark Pair Production
Böser Christian
2012-06-01
Full Text Available We present a measurement of the charge asymmetry in top quark pair production using an integrated luminosity of 1.09 fb−1 collected with the CMS detector. Top quark pairs with a signature of one electron or muon and four or more jets, at least one of them b tagged, are selected. At the LHC a small charge asymmetry in the rapidity distributions of top and antitop quarks is predicted. Therein slightly broader rapidity distributions for top quarks are expected, while antitop quarks are produced more centrally and possess narrower rapidity distributions. We determine the charge asymmetry based on two different sensitive variables and the results are compared with the most precise standard model theory predictions using a dedicated unfolding technique.
Dalgas, Karina Märcher
2016-01-01
Most Filipina au pairs in Denmark send remittances back home, and for many, au pairing forms part of longer-term migration trajectories. This article explores how Filipina au pairs try to carve out a future for themselves abroad. It shows that they navigate within tight webs of financial interdep......Most Filipina au pairs in Denmark send remittances back home, and for many, au pairing forms part of longer-term migration trajectories. This article explores how Filipina au pairs try to carve out a future for themselves abroad. It shows that they navigate within tight webs of financial...
Study of tau-pair production at HERA
Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Cracow (Poland). Faculty of Physics and Applied Computer Science; Adamus, M. [Institute for Nuclear Studies, Warsaw (PL)] (and others)
2010-12-15
A study of events containing two tau leptons with high transverse momentum has been performed with the ZEUS detector at HERA, using a data sample corresponding to an integrated luminosity of 0.33 fb{sup -1}. The tau candidates were identified from their decays into electrons, muons or hadronic jets. The number of tau-pair candidates has been compared with the prediction from the Standard Model, where the largest contribution is expected from Bethe-Heitler processes. The total visible cross section was extracted. Standard Model expectations agree well with the measured distributions, also at high invariant mass of the tau pair. (orig.)
Thomson scattering off a pair (electron-positron) plasma
Zheng Jian
2006-01-01
Thomson scattering off a pair (electron-positron) plasma is theoretically investigated in the collisionless and collisional limits respectively. Our calculations show that the power spectrum of the Thomson scattering offa collisionless pair plasma is just proportional to the velocity distribution function of the particles in the plasma. Collective modes in the plasma do not have any effects on the Thomson scattering spectrum because of the correlation between the negatively- and positively-charged particles. In the collisional limit, the power spectrum of the Thomson scattering presents three spikes: two peaks correspond to two contra-propagating sound waves and one peak corresponds to an entropy wave.
Pair production in short laser pulses near threshold
Nousch, T. [Helmholtz-Zentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, 01062 Dresden (Germany); Seipt, D., E-mail: d.seipt@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, 01062 Dresden (Germany); Kaempfer, B. [Helmholtz-Zentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, 01062 Dresden (Germany); Titov, A.I. [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna 141980 (Russian Federation)
2012-08-29
The e{sup +}e{sup -} pair production by a probe photon traversing a linearly polarized laser pulse is treated as generalized nonlinear Breit-Wheeler process. For short laser pulses with very few oscillations of the electromagnetic field we find below the perturbative weak-field threshold {radical}(s)=2m a similar enhancement of the pair production rate as for circular polarization. The strong enhancement below the weak-field threshold is traced back to the finite bandwidth of the laser pulse. A folding model is developed which accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.
Pair production in short laser pulses near threshold
Nousch, T.; Seipt, D.; Kämpfer, B.; Titov, A. I.
2012-08-01
The e+e- pair production by a probe photon traversing a linearly polarized laser pulse is treated as generalized nonlinear Breit-Wheeler process. For short laser pulses with very few oscillations of the electromagnetic field we find below the perturbative weak-field threshold √{ s} = 2 m a similar enhancement of the pair production rate as for circular polarization. The strong enhancement below the weak-field threshold is traced back to the finite bandwidth of the laser pulse. A folding model is developed which accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.
Plain and Rolled Images from Paired Fingerprint Cards
NIST Plain and Rolled Images from Paired Fingerprint Cards (PC database for purchase) NIST Special Database 29 is being distributed for use in development and testing fingerprint matching systems. The data consist of 216 ten-print fingerprint card pairs with both the rolled and plains (from a bottom of the fingerprint card) scanned at 19.7 pixels per mm. A newer version of the compression/decompression software on the CDROM can be found at the website http://www.nist.gov/itl/iad/ig/nigos.cfm as part of the NBIS package.
Plasmon switching effect based on graphene nanoribbon pair arrays
Liu, Dan; Wu, Lingxi; Liu, Qiong; Zhou, Renlong; Xie, Suxia; Chen, Jiangjiamin; Wu, Mengxiong; Zeng, Lisan
2016-10-01
We theoretically demonstrate the existence of plasmon switching effect in graphene nanostructure. By using finite-difference time-domain (FDTD) method, the plasmon resonance modes are studied in graphene nanoribbon pair arrays with the change of Fermi level, graphene width, and carrier mobility. It is found that the Fermi level and graphene width play an important role in changing the distribution of electric energy on different graphene nanoribbons, resulting in a significant plasmon switching effect. Moreover, we study the characteristic of resonance mode of one graphene ribbon by using glass rod with different shape. The effect of kerr material sandwiched between graphene nanoribbon pair is also considered.
Pairing phase transition and thermodynamical quantities in 148,149Sm
Razavi, R.; Behkami, A. N.; Dehghani, V.
2014-10-01
The nuclear level densities and entropies in 148,149Sm have been calculated in the framework of the superconducting theory that includes modified nuclear pairing gap. For modified pairing gap parameter the smooth transition from the BCS to the Fermi type distributions is used. By applying modified pairing gap, the extracted S-shaped heat capacity as a function of nuclear temperature exhibits a physical and smoother behavior instead of the singular behavior predicted by the BCS equations at critical temperature.
Pairing phase transition and thermodynamical quantities in {sup 148,149}Sm
Razavi, R., E-mail: rrazavin@ihu.ac.ir [Department of Physics, Faculty of Science, Imam Hossein Comprehensive University, Tehran (Iran, Islamic Republic of); Behkami, A.N. [Fars Science and Research Center, Islamic Azad University, Shiraz (Iran, Islamic Republic of); Dehghani, V. [Physics Department, Faculty of Science, University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of)
2014-10-15
The nuclear level densities and entropies in {sup 148,149}Sm have been calculated in the framework of the superconducting theory that includes modified nuclear pairing gap. For modified pairing gap parameter the smooth transition from the BCS to the Fermi type distributions is used. By applying modified pairing gap, the extracted S-shaped heat capacity as a function of nuclear temperature exhibits a physical and smoother behavior instead of the singular behavior predicted by the BCS equations at critical temperature.
Bound Polaron Pair Formation in Poly (phenylenevinylenes)
Rothberg, Lewis
The following sections are included: * INTRODUCTION * PHOTOGENERATED YIELD OF SINGLET EXCITONS * AGGREGRATION EFFECTS ON EXCITED STATE PHOTO-GENERATION * ASSIGNMENT TO BOUND POLARON PAIRS AND DISCUSSION * PROBLEMS WITH THE BOUND POLARON PAIR PICTURE AND CONCLUSION * REFERENCES
Exact potential-density pairs for flattened dark haloes
Baes, Maarten
2008-01-01
Cosmological simulations suggest that dark matter haloes are not spherical, but typically moderately to strongly triaxial systems. We investigate methods to convert spherical potential-density pairs into axisymmetric ones, in which the basic characteristics of the density profile (such as the slope at small and large radii) are retained. We achieve this goal by replacing the spherical radius r by an oblate radius m in the expression of the gravitational potential. We extend and formalize the approach pioneered by Miyamoto & Nagai (1975) to be applicable to arbitrary potential-density pairs. Unfortunately, an asymptotic study demonstrates that, at large radii, such models always show a R^(-3) disc superposed on a smooth roughly spherical density distribution. As a result, this recipe cannot be used to construct simple flattened potential-density pairs for dynamical systems such as dark matter haloes. Therefore we apply a modification of our original recipe that cures the problem of the discy behaviour. An ...
Pair production in short intense laser pulses near threshold
Nousch, Tobias; Seipt, Daniel; Kaempfer, Burkhart [Helmholtz-Zentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, 01062 Dresden (Germany); Titov, Alexander I. [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna 141980 (Russian Federation)
2013-07-01
We study finite-size effects in the process of e{sup +}e{sup -} pair production via the non-linear Breit-Wheeler process in ultra short laser pulses. Based on the Nikishov-Ritus method we use laser dressed electron and positron wave functions to derive the differential and total pair production cross section, focusing on the effects of a finite pulse duration. For short laser pulses with very few oscillations of the electromagnetic field we find an increase of the pair production rate below the perturbative weak-field threshold. The strong enhancement below the weak-field threshold is traced back to the finite bandwidth of the laser pulse. A folding model accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.
Samiran Ghosh; Nikhil Chakrabarti; Manoranjan Khan; M R Gupta
2013-02-01
The conditions for the existence of low-frequency electrostatic drift wave in pair-ion plasma are discussed. It is shown that the temperature and/or mass difference of both species could produce drift wave in a pair-ion plasma. The results are discussed in the context of the fullerene pair-ion plasma experiment.
2007-01-01
Motivated by the concept of a torsion pair in a pre-triangulated category induced by Beligiannis and Reiten, the notion of a left (right) torsion pair in the left (right) triangulated category is introduced and investigated. We provide new connections between different aspects of torsion pairs in one-sided triangulated categories, pre-triangulated categories, stable categories and derived categories.
Homolog pairing and segregation in Drosophila meiosis.
McKee, B D
2009-01-01
Pairing of homologous chromosomes is fundamental to their reliable segregation during meiosis I and thus underlies sexual reproduction. In most eukaryotes homolog pairing is confined to prophase of meiosis I and is accompanied by frequent exchanges, known as crossovers, between homologous chromatids. Crossovers give rise to chiasmata, stable interhomolog connectors that are required for bipolar orientation (orientation to opposite poles) of homologs during meiosis I. Drosophila is unique among model eukaryotes in exhibiting regular homolog pairing in mitotic as well as meiotic cells. I review the results of recent molecular studies of pairing in both mitosis and meiosis in Drosophila. These studies show that homolog pairing is continuous between pre-meiotic mitosis and meiosis but that pairing frequencies and patterns are altered during the mitotic-meiotic transition. They also show that, with the exception of X-Y pairing in male meiosis, which is mediated specifically by the 240-bp rDNA spacer repeats, chromosome pairing is not restricted to specific sites in either mitosis or meiosis. Instead, virtually all chromosome regions, both heterochromatic and euchromatic, exhibit autonomous pairing capacity. Mutations that reduce the frequencies of both mitotic and meiotic pairing have been recently described, but no mutations that abolish pairing completely have been discovered, and the genetic control of pairing in Drosophila remains to be elucidated.
In Search of Fresh Material on Asteroid Pairs
Polishook, David; Moskovitz, N.; Binzel, R. P.; DeMeo, F.; Vokrouhlicky, D.
2013-10-01
Asteroid Pairs are those found to share almost identical orbital elements. Studies have shown that each pair had a single progenitor that split in the last ~1 Myrs due to rotational-fission of a ‘rubble-pile’ structured body. This process may have exposed non-weathered sub-surface material, thus examining pairs' reflectance spectra could inform us about the physics of the rotational-fission mechanism. We report near-IR spectroscopic observations of a sample of 25 asteroid pairs, performed with the IRTF and Magellan telescopes. Since the rough division of the spectral taxonomy has arbitrary borders, and in order to quantify the extent of weathering, we analyzed the features of the spectra: the slope and the center and width of the 1-micron absorption band. We compared these values to those of asteroids of the background population that were measured in the same manner and were chosen to match the range of absolute magnitude and an orbit within the main belt. While the preliminary results show that the pairs’ band parameters are distributed most similarly to those of fresh objects (Q-type) than of weathered asteroids (S-type), a careful examination reveals that asteroid pairs of the Ordinary Chondrite type may be observationally biased towards Olivine-rich asteroids (the meteoritic LL-type) that share some of the band parameters of Q-type asteroids. Since Olivine-rich asteroids are more common in the inner main belt (the Flora family) they are just easier to observe, therefore more pairs are identified within this group, even though other types of asteroids can split by rotational-fission as well. The spectral slope distributions of asteroid pairs and of the background population resemble one another with no significant distinction. This suggests that on average, there may be no readily evident for excess in fresh material that is excavated and exposed on the surfaces of asteroid pairs. This leads to a model of a gentle breakup of the fast rotating progenitor
QUANTUM CRYPTOGRAPHY WITH PHOTON PAIRS
Anand Sharma,
2010-07-01
Full Text Available Quantum cryptographic systems use quantum mechanical concepts that are based on qubit superposition of states, and on the no cloning or no copying theorem to establish unbreakable cipher keys. The basic idea of quantum cryptography is to send the key in the form of photons over a public channel, encoding the zeros and one on quantum states in such a way that any eavesdropping attempt can be detected. Using optical communications the most commonly quantum mechanical property used is the polarization state of photon. However, in most quantum cryptographic algorithms a random polarization state is required. The photons are ideal for low loss transport, either in free space or in optical fibers, i.e. we have the full arsenal of fiber optic technology at our disposal. In this paper we are describing the process of quantum cryptography with photon pairs.
Perturbations of vortex ring pairs
Gubser, Steven S; Parikh, Sarthak
2015-01-01
We study pairs of co-axial vortex rings starting from the action for a classical bosonic string in a three-form background. We complete earlier work on the phase diagram of classical orbits by explicitly considering the case where the circulations of the two vortex rings are equal and opposite. We then go on to study perturbations, focusing on cases where the relevant four-dimensional transfer matrix splits into two-dimensional blocks. When the circulations of the rings have the same sign, instabilities are mostly limited to wavelengths smaller than a dynamically generated length scale at which single-ring instabilities occur. When the circulations have the opposite sign, larger wavelength instabilities can occur.
Cristofano, Gerardo E-mail: gerardo.cristofano@na.infn.it; Maiella, Giuseppe E-mail: giuseppe.maiella@na.infn.it; Marotta, Vincenzo E-mail: vincenzo.marotta@na.infn.it; Niccoli, Giuliano E-mail: giuliano.niccoli@na.infn.it
2002-10-14
We analyze the modular properties of the effective CFT description for paired states, proposed in G. Cristofano, G. Maiella, V. Marrota, Mod. Phys. Lett. A 15 (2000) 1679, corresponding to the non-standard filling {nu}=((1)/(p+1)). We construct its characters for the twisted and the untwisted sector and the diagonal partition function. We show that the degrees of freedom entering our partition function naturally go to complete a Z{sub 2}-orbifold construction of the CFT for the Halperin state. Different behaviours for the p even and p odd cases are also studied. Finally it is shown that the tunneling phenomenon selects out a twist invariant CFT which is identified with the Moore-Read model.
Pairing correlations and transitions in nuclear systems
Belic, A; Hjorth-Jensen, M
2004-01-01
We discuss several pairing-related phenomena in nuclear systems, ranging from superfluidity in neutron stars to the gradual breaking of pairs in finite nuclei. We describe recent experimental evidence that points to a relation between pairing and phase transitions (or transformations) in finite nuclear systems. A simple pairing interaction model is used in order to study and classify an eventual pairing phase transition in finite fermionic systems such as nuclei. We show that systems with as few as 10-16 fermions can exhibit clear features reminiscent of a phase transition.
Factors affecting home range of mallard pairs
Riechmann, J.H.
1976-06-01
Certain habitat and social factors were investigated for their effect on home range size of mallard (Anas platyhynchos) pairs breeding in a forested region of north-central Minnesota during the spring of 1971--72. Data from 31 radio-marked hens and drakes were used, but primary emphasis was placed on 8 pairs (5 with both members of the pair marked). Pairs were radio-tracked on river marsh areas, river channels, and large sand lakes to provide comparative data for evaluating home range size differences. Home ranges varied from an average of 53 ha for pairs using primarily river habitat to 871 ha for pairs using only large sand lakes. River and lake shorelines varied considerably in species and density of vegetation. Interaction between pairs as well as density of flocked males appeared to be influenced by these habitat differences with resultant effects on home range sizes.
On Minus Paired-Domination in Graphs
邢化明; 孙良
2003-01-01
The study of minus paired-domination of a graph G=(V,E) is initiated. Let SV be any paired-dominating set of G, a minus paired-dominating function is a function of the form f∶V→{-1,0,1} such that f(v)=1 for v∈S, f(v)≤0 for v∈V-S, and f(N[v])≥1 for all v∈V. The weight of a minus paired-dominating function f is w(f)=∑f(v), over all vertices v∈V. The minus paired-domination number of a graph G is γ-p(G)=min{w(f)|f is a minus paired-dominating function of G}. On the basis of the minus paired-domination number of a graph G defined, some of its properties are discussed.
Broadband illumination of superconducting pair breaking photon detectors
Guruswamy, T.; Goldie, D. J.; Withington, S.
2016-04-01
Understanding the detailed behaviour of superconducting pair breaking photon detectors such as Kinetic Inductance Detectors (KIDs) requires knowledge of the nonequilibrium quasiparticle energy distributions. We have previously calculated the steady state distributions resulting from uniform absorption of monochromatic sub gap and above gap frequency radiation by thin films. In this work, we use the same methods to calculate the effect of illumination by broadband sources, such as thermal radiation from astrophysical phenomena or from the readout system. Absorption of photons at multiple above gap frequencies is shown to leave unchanged the structure of the quasiparticle energy distribution close to the superconducting gap. Hence for typical absorbed powers, we find the effects of absorption of broadband pair breaking radiation can simply be considered as the sum of the effects of absorption of many monochromatic sources. Distribution averaged quantities, like quasiparticle generation efficiency η, match exactly a weighted average over the bandwidth of the source of calculations assuming a monochromatic source. For sub gap frequencies, however, distributing the absorbed power across multiple frequencies does change the low energy quasiparticle distribution. For moderate and high absorbed powers, this results in a significantly larger η-a higher number of excess quasiparticles for a broadband source compared to a monochromatic source of equal total absorbed power. Typically in KIDs the microwave power absorbed has a very narrow bandwidth, but in devices with broad resonance characteristics (low quality factors), this increase in η may be measurable.
The interacting galaxy pair KPG 390: H$\\alpha$ kinematics
Repetto, P; Gabbasov, R; Fuentes-Carrera, I
2010-01-01
In this work we present scanning Fabry-Perot H$\\alpha$ observations of the isolated interacting galaxy pair NGC 5278/79 obtained with the PUMA Fabry-Perot interferometer. We derived velocity fields and rotation curves for both galaxies. For NGC 5278 we also obtained the residual velocity map to investigate the non-circular motions, and estimated its mass by fitting the rotation curve with a disk+halo components. We test three different types of halo (pseudo-isothermal, Hernquist and Navarro Frenk White) and obtain satisfactory fits to the rotation curve for all profiles. The amount of dark matter required by pseudo-isothermal profile is about ten times smaller than, that for the other two halo distributions. Finally, our kinematical results together with the analysis of dust lanes distribution and of surface brightness profiles along the minor axis allowed us to determine univocally that both components of the interacting pair are trailing spirals.
Transversity Signal in two Hadron Pair Production in COMPASS
Wollny, H
2009-01-01
Measuring single spin asymmetries in semi-inclusive deep-inelastic scattering (SIDIS) on a transversely polarized target gives a handle to investigate the transversity distribution and transverse momentum dependent distribution functions. In the years 2002, 2003 and 2004 COMPASS took data with a transversely polarized deuteron target and in the year 2007 with a proton target. Three channels for accessing transversity have been analysed. Azimuthal asymmetries in the production of hadron pairs, involving the polarized two hadron interference fragmentation function, azimuthal asymmetries in the production of single hadrons, involving the Collins fragmentation function and polarization measurements of spin-${1/2} \\hbar$ particles like $\\Lambda$-Hyperons via their self analyzing weak decay. In the following we will focus on new preliminary results from the analysis of two hadron pair asymmetries measured with the proton target.
Angular Dependence of the Nuclear Enhancement of Drell-Yan Pairs
Fries, R J; Schäfer, A; Stein, E
1999-01-01
We calculate the nuclear enhancement in the angular distribution of Drell-Yan pairs produced in proton-nucleus reactions. Nuclear effects are encoded in universal twist-4 parton correlation functions. We find that the Lam-Tung relation for the angular coefficients of the lepton-pair distribution holds for the double-hard, but not for the soft-hard contribution. We also predict that nuclear enhancement effects at RHIC energies can be large.
Adams, J.; Aggarwal, M. M.; Ahammed, Z.; Amonett, J.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Bekele, S.; Belaga, V. V.; Bellwied, R.; Berger, J.; Bezverkhny, B. I.; Bharadwaj, S.; Bhatia, V. S.; Bichsel, H.; Billmeier, A.; Bland, L. C.; Blyth, C. O.; Bonner, B. E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Bystersky, M.; Cadman, R. V.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón; Carroll, J.; Castillo, J.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopdhyay, S.; Chen, H. F.; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J. P.; Cormier, T. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Das, S.; Moura, M. M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Dong, W. J.; Dong, X.; Draper, J. E.; Du, F.; Dubey, A. K.; Dunin, V. B.; Dunlop, J. C.; Mazumdar, M. R.; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faivre, J.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Foley, K. J.; Fomenko, K.; Fu, J.; Gagliardi, C. A.; Gans, J.; Ganti, M. S.; Gaudichet, L.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J. E.; Grachov, O.; Grebenyuk, O.; Grosnick, D.; Guertin, S. M.; Guo, Y.; Gupta, A.; Gutierrez, T. D.; Hallman, T. J.; Hamed, A.; Hardtke, D.; Harris, J. W.; Heinz, M.; Henry, T. W.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G. W.; Huang, H. Z.; Huang, S. L.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W. W.; Janik, M.; Jiang, H.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kaplan, M.; Keane, D.; Khodyrev, V. Yu.; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klay, J.; Klein, S. R.; Klyachko, A.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kramer, M.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kunz, C. L.; Kutuev, R. Kh.; Kuznetsov, A. A.; Lamont, M. A.; Landgraf, J. M.; Lange, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lehocka, S.; Levine, M. J.; Li, C.; Li, Q.; Li, Y.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, L.; Liu, Q. J.; Liu, Z.; Ljubicic, T.; Llope, W. J.; Long, H.; Longacre, R. S.; Lopez-Noriega, M.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Magestro, D.; Mahajan, S.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Marx, J. N.; Matis, H. S.; Matulenko, Yu. A.; McClain, C. J.; McShane, T. S.; Meissner, F.; Melnick, Yu.; Meschanin, A.; Miller, M. L.; Milosevich, Z.; Minaev, N. G.; Mironov, C.; Mischke, A.; Mishra, D.; Mitchell, J.; Mohanty, B.; Molnar, L.; Moore, C. F.; Mora-Corral, M. J.; Morozov, D. A.; Morozov, V.; Munhoz, M. G.; Nandi, B. K.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Nikitin, V. A.; Nogach, L. V.; Norman, B.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Pal, S. K.; Panebratsev, Y.; Panitkin, S. Y.; Pavlinov, A. I.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Petrov, V. A.; Phatak, S. C.; Picha, R.; Planinic, M.; Pluta, J.; Porile, N.; Porter, J.; Poskanzer, A. M.; Potekhin, M.; Potrebenikova, E.; Potukuchi, B. V.; Prindle, D.; Pruneau, C.; Putschke, J.; Rai, G.; Rakness, G.; Raniwala, R.; Raniwala, S.; Ravel, O.; Ray, R. L.; Razin, S. V.; Reichhold, D.; Reid, J. G.; Renault, G.; Retiere, F.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Savin, I.; Sazhin, P. S.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Schroeder, L. S.; Schweda, K.; Seger, J.; Seyboth, P.; Shahaliev, E.; Shao, M.; Shao, W.; Sharma, M.; Shen, W. Q.; Shestermanov, K. E.; Shimanskiy, S. S.; Simon, F.; Singaraju, R. N.; Skoro, G.; Smirnov, N.; Snellings, R.; Sood, G.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D.; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A.; Sugarbaker, E.; Suire, C.; Sumbera, M.; Surrow, B.; Symons, T. J.; Toledo, A. Szanto; Szarwas, P.; Tai, A.; Takahashi, J.; Tang, A. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Trentalange, S.; Tribble, R. E.; Tsai, O.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Urkinbaev, A.; Buren, G. Van; Leeuwen, M. Van; Molen, A. M.; Varma, R.; Vasilevski, I. M.; Vasiliev, A. N.; Vernet, R.; Vigdor, S. E.; Viyogi, V. P.; Vokal, S.; Voloshin, S. A.; Vznuzdaev, M.; Waggoner, B.; Wang, F.; Wang, G.; Wang, G.; Wang, X. L.; Wang, Y.; Wang, Y.; Wang, Z. M.; Ward, H.; Watson, J. W.; Webb, J. C.; Wells, R.; Westfall, G. D.; Wetzler, A.; Whitten, C.; Wieman, H.; Wissink, S. W.; Witt, R.; Wood, J.; Wu, J.; Xu, N.; Xu, Z.; Xu, Z. Z.; Yamamoto, E.; Yepes, P.; Yurevich, V. I.; Zanevsky, Y. V.; Zhang, H.; Zhang, W. M.; Zhang, Z. P.; Zolnierczuk, P. A.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zubarev, A. N.
2004-09-01
We present data on e+ e- pair production accompanied by nuclear breakup in ultraperipheral gold-gold collisions at a center of mass energy of 200 GeV per nucleon pair. The nuclear breakup requirement selects events at small impact parameters, where higher-order diagrams for pair production should be enhanced. We compare the data with two calculations: one based on the equivalent photon approximation, and the other using lowest-order quantum electrodynamics (QED). The data distributions agree with both calculations, except that the pair transverse momentum spectrum disagrees with the equivalent photon approach. We set limits on higher-order contributions to the cross section.
Single-diffractive Drell-Yan pair production at LHC
Ceccopieri, Federico Alberto
2016-01-01
We present predictions for single-diffractive low-mass Drell-Yan pair production in $pp$ collisions at LHC at $\\sqrt{s}=13$ TeV. Predictions are obtained adopting a factorised form for the relevant cross sections and are based on a new set of diffractive parton distributions resulting from the QCD analysis of combined HERA leading proton data. We discuss a number of observables useful to characterise the expected factorisation breaking effects.
Pulsational-Pair Instability Supernovae
Woosley, S E
2016-01-01
The final evolution of stars in the mass range 60 - 150 solar masses is explored. Depending upon their mass loss and rotation rates, many of these stars will end their lives as pulsational pair-instability supernovae. Even a non-rotating 70 solar mass star is pulsationally unstable during oxygen shell burning and can power a sub-luminous supernova. Rotation decreases the limit further. For more massive stars, the pulsations are less frequent, span a longer time, and are more powerful. Violent pulsations eject not only any residual low density envelope, but also that fraction of the helium core mass outside about 35 - 50 solar masses. The remaining core of helium and heavy elements continues to evolve, ultimately forming an iron core of about 2.5 solar masses that probably collapses to a black hole. A variety of observational transients result with total durations ranging from days to 10,000 years, and luminosities from 10$^{41}$ to 10$^{44}$ erg s$^{-1}$. Many transients resemble ordinary Type IIp supernovae,...
Report on Pairing-based Cryptography.
Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily
2015-01-01
This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST's position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed.
Parameswaran, S A; Kivelson, S A; Shankar, R; Sondhi, S L; Spivak, B Z
2012-12-07
We study the structure of Bogoliubov quasiparticles, bogolons, the fermionic excitations of paired superfluids that arise from fermion (BCS) pairing, including neutral superfluids, superconductors, and paired quantum Hall states. The naive construction of a stationary quasiparticle in which the deformation of the pair field is neglected leads to a contradiction: it carries a net electrical current even though it does not move. However, treating the pair field self-consistently resolves this problem: in a neutral superfluid, a dipolar current pattern is associated with the quasiparticle for which the total current vanishes. When Maxwell electrodynamics is included, as appropriate to a superconductor, this pattern is confined over a penetration depth. For paired quantum Hall states of composite fermions, the Maxwell term is replaced by a Chern-Simons term, which leads to a dipolar charge distribution and consequently to a dipolar current pattern.
Arbitrated Quantum Signature protocol using EPR pairs
Jun Zhang
2012-11-01
Full Text Available Arbitrated signature provides that the signatory signs a message with his private key by quantum cryptography, while the signature receiver verifies the signature with the arbitrator’s assistance. In this work, security analysis was given to the arbitrated quantum signature (AQS and results showed that the receiver Bob and the attacker can forge the signature. Then this paper gives a new quantum one-time pads encryption method, which is suit for the quantum signature. At last, a new AQS protocol using Einstein-Podoisky-Rosen (EPR pairs is proposed. By using of quantum key distribution (QKD and new quantum one-time pads, the new scheme can resist Shor’s attack. The new scheme has following advantages: (1 The scheme reduces the complexity of implementation and provides a higher efficiency in transmission; (2 Compares with some AQS schemes, the scheme can avoid being disavowed by the receiver; (3 Compares with other AQS schemes, the scheme also guarantees the arbitrator cannot forge the signature and it also ensure the receiver and other attacker cannot forge the signature.
Ensemble treatments of thermal pairing in nuclei
Hung, Nguyen Quang; Dang, Nguyen Dinh
2009-10-01
A systematic comparison is conducted for pairing properties of finite systems at nonzero temperature as predicted by the exact solutions of the pairing problem embedded in three principal statistical ensembles, namely the grandcanonical ensemble, canonical ensemble and microcanonical ensemble, as well as the unprojected (FTBCS1+SCQRPA) and Lipkin-Nogami projected (FTLN1+SCQRPA) theories that include the quasiparticle number fluctuation and coupling to pair vibrations within the self-consistent quasiparticle random-phase approximation. The numerical calculations are performed for the pairing gap, total energy, heat capacity, entropy, and microcanonical temperature within the doubly-folded equidistant multilevel pairing model. The FTLN1+SCQRPA predictions are found to agree best with the exact grand-canonical results. In general, all approaches clearly show that the superfluid-normal phase transition is smoothed out in finite systems. A novel formula is suggested for extracting the empirical pairing gap in reasonable agreement with the exact canonical results.
Dalgas, Karina Märcher
2016-01-01
Most Filipina au pairs in Denmark send remittances back home, and for many, au pairing forms part of longer-term migration trajectories. This article explores how Filipina au pairs try to carve out a future for themselves abroad. It shows that they navigate within tight webs of financial interdep...... by including the migrants’ broader social network within the frame of research.......Most Filipina au pairs in Denmark send remittances back home, and for many, au pairing forms part of longer-term migration trajectories. This article explores how Filipina au pairs try to carve out a future for themselves abroad. It shows that they navigate within tight webs of financial...... interdependence, whilst they continuously form their trajectories in relation to opportunities and restraints posed along the way by their local and transnational social relations. The article argues that examinations of migration trajectories benefit from broadening the research out in both time and space...
Pair programming in education: a literature review
Hanks, Brian; Fitzgerald, Sue; McCauley, Renée; Murphy, Laurie; Zander, Carol
2011-06-01
This article provides a review of educational research literature focused on pair programming in the undergraduate computer science curriculum. Research suggests that the benefits of pair programming include increased success rates in introductory courses, increased retention in the major, higher quality software, higher student confidence in solutions, and improvement in learning outcomes. Moreover, there is some evidence that women, in particular, benefit from pair programming. The literature also provides evidence that the transition from paired to solo programming is easy for students. The greatest challenges for paired students appear to concern scheduling and partner compatibility. This review also considers practical issues such as assigning partners, teaching students to work in pairs, and assessing individual contributions, and concludes with a discussion of open research questions.
Ordered pairing in liquid metallic hydrogen
Carlsson, A. E.; Ashcroft, N. W.
1983-01-01
We study two possible types of pairing involving the protons of a proposed low-temperature liquid phase metallic hydrogen. Electron-proton pairing, which can result in an insulating phase, is investigated by using an approximate solution of an Eliashberg-type equation for the anomalous self-energy. A very low estimate of the transition temperature is obtained by including proton correlations in the effective interaction. For proton-proton pairing, we derive a new proton pair potential based on the Abrikosov wave function. This potential includes the electron-proton interaction to all orders and has a much larger well depth than is obtained with linear screening methods. This suggests the possibility of either a superfluid paired phase analogous to that in He-3, or alternatively a phase with true molecular pairing.
Galaxy pairs align with galactic filaments
Tempel, Elmo
2015-01-01
Context. Gravitational collapse theory and numerical simulations suggest that the velocity field within large-scale galaxy filaments is dominated by motions along the filaments. Aims. Our aim is to check whether observational data reveal any preferred orientation of galaxy pairs with respect to the underlying filaments as a result of the expectedly anisotropic velocity field. Methods. We use galaxy pairs and galaxy filaments identified from the Sloan Digital Sky Survey data. For filament extraction, we use the Bisous model that is based the marked point process technique. During the filament detection, we use the centre point of each pair instead of the positions of galaxies to avoid a built-in influence of pair orientation on the filament construction. For pairs lying within filaments (3012 cases), we calculate the angle between the line connecting galaxies of each pair and their host filament. To avoid redshift-space distortions, the angle is measured in the plain of the sky. Results. The alignment analysis...
Multipair approach to pairing in nuclei
Sambataro, M
2012-01-01
The ground state of a general pairing Hamiltonian for a finite nuclear system is constructed as a product of collective, real, distinct pairs. These are determined sequentially via an iterative variational procedure that resorts to diagonalizations of the Hamiltonian in restricted model spaces. Different applications of the method are provided that include comparisons with exact and projected BCS results. The quantities that are examined are correlation energies, occupation numbers and pair transfer matrix elements. In a first application within the picket-fence model, the method is seen to generate the exact ground state for pairing strengths confined in a given range. Further applications of the method concern pairing in spherically symmetric mean fields and include simple exactly solvable models as well as some realistic calculations for middle-shell Sn isotopes. In the latter applications, two different ways of defining the pairs are examined: either with J=0 or with no well-defined angular momentum. The ...
An Entropic Approach for Pair Trading
Daisuke Yoshikawa
2017-06-01
Full Text Available In this paper, we derive the optimal boundary for pair trading. This boundary defines the points of entry into or exit from the market for a given stock pair. However, if the assumed model contains uncertainty, the resulting boundary could result in large losses. To avoid this, we develop a more robust strategy by accounting for the model uncertainty. To incorporate the model uncertainty, we use the relative entropy as a penalty function in the expected profit from pair trading.
An Entropic Approach for Pair Trading
Daisuke Yoshikawa
2017-01-01
In this paper, we derive the optimal boundary for pair trading. This boundary defines the points of entry into or exit from the market for a given stock pair. However, if the assumed model contains uncertainty, the resulting boundary could result in large losses. To avoid this, we develop a more robust strategy by accounting for the model uncertainty. To incorporate the model uncertainty, we use the relative entropy as a penalty function in the expected profit from pair trading.
Dual origin of pairing in nuclei
Idini, A. [University of Jyvaskyla, Department of Physics (Finland); Potel, G. [Michigan State University, National Superconducting Cyclotron Laboratory (United States); Barranco, F. [Escuela Superior de Ingenieros, Universidad de Sevilla, Departamento de Fìsica Aplicada III (Spain); Vigezzi, E., E-mail: enrico.vigezzi@mi.infn.it [INFN Sezione di Milano (Italy); Broglia, R. A. [Università di Milano, Dipartimento di Fisica (Italy)
2016-11-15
The pairing correlations of the nucleus {sup 120}Sn are calculated by solving the Nambu–Gor’kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong {sup 1}S{sub 0} short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- (v{sub p}{sup bare}) and long-range (v{sub p}{sup ind}) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.
Lax pairs for deformed Minkowski spacetimes
Kyono, Hideki; Yoshida, Kentaroh
2015-01-01
We proceed to study Yang-Baxter deformations of 4D Minkowski spacetime based on a conformal embedding. We first revisit a Melvin background and argue a Lax pair by adopting a simple replacement law invented in 1509.00173. This argument enables us to deduce a general expression of Lax pair. Then the anticipated Lax pair is shown to work for arbitrary classical $r$-matrices with Poinca\\'e generators. As other examples, we present Lax pairs for pp-wave backgrounds, the Hashimoto-Sethi background, the Spradlin-Takayanagi-Volovich background.
Lax pairs for deformed Minkowski spacetimes
Kyono, Hideki; Sakamoto, Jun-ichi; Yoshida, Kentaroh [Department of Physics, Kyoto University,Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan)
2016-01-25
We proceed to study Yang-Baxter deformations of 4D Minkowski spacetime based on a conformal embedding. We first revisit a Melvin background and argue a Lax pair by adopting a simple replacement law invented in 1509.00173. This argument enables us to deduce a general expression of Lax pair. Then the anticipated Lax pair is shown to work for arbitrary classical r-matrices with Poincaré generators. As other examples, we present Lax pairs for pp-wave backgrounds, the Hashimoto-Sethi background, the Spradlin-Takayanagi-Volovich background.
Transrelativistic pair plasmas in AGN jets
Bottcher, M.; Pohl, M.; Schlickeiser, R.
1999-01-01
Models of relativistic jets filled with ultrarelativistic pair plasma are very successful in explaining the broadband radiation of gamma-ray blazars. Assuming that the initial injection and cooling of ultrarelativistic pair plasma in an AGN jet has occurred, producing the observed high-energy gamma......-ray radiation, we investigate the further evolution of the pair plasma as it continues to move out from the central engine. The effects of thermalization and reacceleration, the emission of pair bremsstrahlung and annihilation radiation and the bulk Compton process, and the possible application to MeV blazars...
COTORSION PAIRS OVER FINITE GROUP GRADED RINGS
MENG Fan-yun; SUN Ju-xiang
2015-01-01
In this paper, we study the relation of cotorsion pairs between the graded and ungraded cases. By using the graded theory and the relative homological algebra, we first consider the relationship of cotorsion pairs in R-mod and S = R∗G-mod when R is any ring and G is a finite group. Then we study rigid cotorsion pairs in R-gr and consider the relationship of cotorsion pairs between R-gr and R-mod when R is a ring graded by a finite group G with|G|−1 ∈R.
Joint Modeling of Disease Pairs
Gergely TÓTH
2012-03-01
Full Text Available Aim: Exploring the spatial patterns in joint distribution of incidences of two diseases. Material and method: A Poisson-Binomial regression model was used in analysing hospitalisation counts data in Hungary, 2008. Model parameters were estimated by MCMC implemented in WinBUGS. Results: Spatial patterns of laryngeal and hypopharyngeal cancer differ significantly from that of their ratio. Conclusion: The Poisson-Binomial model proposed here might help clarify us the different spatial dependencies of the sum and the ratio of incidences of two diseases.
Metal Absorption Systems in Spectra of Pairs of QSOs
Tytler, David; Melis, Carl; Chapman, Angela; Kirkman, David; Lubin, Dan; Paschos, Pascal; Jena, Tridivesh; Crotts, Arlin P S
2007-01-01
We present the first large sample of absorption systems in paired QSOs consisting of 691 absorption systems in the spectra of 310 QSOs including 170 pairings. All these absorption systems have metal lines, usually C IV or Mg II. We see 17 cases of absorption in one line-of-sight within 200kms (1 Mpc) of absorption in the paired line-of-sight with the probability at least approx 50% at 100kpc, declining rapidly to 23% at 100 - 200kpc. We detect clustering on 0.5Mpc scales and see a hint of the "fingers of God" redshift-space distortion. The distribution matches absorbers arising in galaxies at z=2 with a normal correlation function and systematic infall velocities but unusually low random pair-wise velocity differences. Absorption in gas flowing out from galaxies at a mean velocity of 250kms would produce vastly more elongation than we see. The UV absorption from fast winds that Adelberger et al. 2005 see in spectra of LBGs is not representative of the absorption that we see. Either the winds are confined to L...
Inferring relationships between pairs of individuals from locus heterozygosities
Spinetti Isabella
2002-11-01
Full Text Available Abstract Background The traditional exact method for inferring relationships between individuals from genetic data is not easily applicable in all situations that may be encountered in several fields of applied genetics. This study describes an approach that gives affordable results and is easily applicable; it is based on the probabilities that two individuals share 0, 1 or both alleles at a locus identical by state. Results We show that these probabilities (zi depend on locus heterozygosity (H, and are scarcely affected by variation of the distribution of allele frequencies. This allows us to obtain empirical curves relating zi's to H for a series of common relationships, so that the likelihood ratio of a pair of relationships between any two individuals, given their genotypes at a locus, is a function of a single parameter, H. Application to large samples of mother-child and full-sib pairs shows that the statistical power of this method to infer the correct relationship is not much lower than the exact method. Analysis of a large database of STR data proves that locus heterozygosity does not vary significantly among Caucasian populations, apart from special cases, so that the likelihood ratio of the more common relationships between pairs of individuals may be obtained by looking at tabulated zi values. Conclusions A simple method is provided, which may be used by any scientist with the help of a calculator or a spreadsheet to compute the likelihood ratios of common alternative relationships between pairs of individuals.
Partition function and base pairing probabilities of RNA heterodimers
Stadler Peter F
2006-03-01
Full Text Available Abstract Background RNA has been recognized as a key player in cellular regulation in recent years. In many cases, non-coding RNAs exert their function by binding to other nucleic acids, as in the case of microRNAs and snoRNAs. The specificity of these interactions derives from the stability of inter-molecular base pairing. The accurate computational treatment of RNA-RNA binding therefore lies at the heart of target prediction algorithms. Methods The standard dynamic programming algorithms for computing secondary structures of linear single-stranded RNA molecules are extended to the co-folding of two interacting RNAs. Results We present a program, RNAcofold, that computes the hybridization energy and base pairing pattern of a pair of interacting RNA molecules. In contrast to earlier approaches, complex internal structures in both RNAs are fully taken into account. RNAcofold supports the calculation of the minimum energy structure and of a complete set of suboptimal structures in an energy band above the ground state. Furthermore, it provides an extension of McCaskill's partition function algorithm to compute base pairing probabilities, realistic interaction energies, and equilibrium concentrations of duplex structures. Availability RNAcofold is distributed as part of the Vienna RNA Package, http://www.tbi.univie.ac.at/RNA/. Contact Stephan H. Bernhart – berni@tbi.univie.ac.at
Open string pair creation from worldsheet instantons
Schubert, Christian [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Muehlenberg 1, D-14476 Potsdam (Germany); Torrielli, Alessandro [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands)
2010-10-08
Worldline instantons provide a particularly elegant way to derive Schwinger's well-known formula for the pair creation rate due to a constant electric field in quantum electrodynamics. In this communication, we show how to extend this method to the corresponding problem of open string pair creation. (fast track communication)
Exploring Pair Programming Benefits for MIS Majors
Dongo, Tendai; Reed, April H.; O'Hara, Margaret
2016-01-01
Pair programming is a collaborative programming practice that places participants in dyads, working in tandem at one computer to complete programming assignments. Pair programming studies with Computer Science (CS) and Software Engineering (SE) majors have identified benefits such as technical productivity, program/design quality, academic…
Prime pairs and the zeta function
Korevaar, J.
2009-01-01
Are there infinitely many prime pairs with given even difference? Most mathematicians think so. Using a strong arithmetic hypothesis, Goldston, Pintz and Yildirim have recently shown that there are infinitely many pairs of primes differing by at most sixteen. There is extensive numerical support for
Bidirectional Synonym Ratings of 464 Noun Pairs.
Whitten, William B.; And Others
1979-01-01
Each of 464 noun pairs was rated for synonymy on a seven-point scale by college students to provide an extensive set of synonym pairs for use as stimuli in experiments, and to evaluate the effects of word encoding order on perceived synonymy. (SW)
Kinetic energy driven pairing in cuprate superconductors
Maier, TA; Jarrell, M; Macridin, A; Slezak, C
2004-01-01
Pairing occurs in conventional superconductors through a reduction of the electronic potential energy accompanied by an increase in kinetic energy. In the underdoped cuprates, optical experiments show that pairing is driven by a reduction of the electronic kinetic energy. Using the dynamical cluster
Exploring Pair Programming Benefits for MIS Majors
Dongo, Tendai; Reed, April H.; O'Hara, Margaret
2016-01-01
Pair programming is a collaborative programming practice that places participants in dyads, working in tandem at one computer to complete programming assignments. Pair programming studies with Computer Science (CS) and Software Engineering (SE) majors have identified benefits such as technical productivity, program/design quality, academic…
Prime pairs and the zeta function
Korevaar, J.
2009-01-01
Are there infinitely many prime pairs with given even difference? Most mathematicians think so. Using a strong arithmetic hypothesis, Goldston, Pintz and Yildirim have recently shown that there are infinitely many pairs of primes differing by at most sixteen. There is extensive numerical support for
Optimal scaling of paired comparison data
van de Velden, M.
2004-01-01
In this paper we consider the analysis of paired comparisons using optimal scaling techniques. In particular, we will, inspired by Guttman's approach for quantifying paired comparisons, formulate a new method to obtain optimal scaling values for the subjects. We will compare our results with those o
Photoproduction ofeta-pi pairs off nucleons and deuterons
Kaeser, A; Ahrens, J; Annand, J R M; Arends, H J; Bantawa, K; Bartolome, P A; Beck, R; Braghieri, A; Briscoe, W J; Cherepnya, S; Costanza, S; Dieterle, M; Downie, E J; Drexler, P; Fil'kov, L V; Fix, A; Garni, S; Glazier, D I; Hamilton, D; Hornidge, D; Howdle, D; Huber, G M; Jaegle, I; Jude, T C; Kashevarov, V L; Keshelashvili, I; Kondratiev, R; Korolija, M; Krusche, B; Lisin, V; Livingston, K; MacGregor, I J D; Maghrbi, Y; Mancell, J; Manley, D M; Marinides, Z; McGeorge, J C; McNicoll, E; Mekterovic, D; Metag, V; Micanovic, S; Middleton, D G; Mushkarenkov, A; Nikolaev, A; Novotny, R; Oberle, M; Ostrick, M; Otte, P; Oussena, B; Pedroni, P; Pheron, F; Polonski, A; Prakhov, S; Robinson, J; Rostomyan, T; Schumann, S; Sikora, M H; Sober, D; Starostin, A; Strub, Th; Supek, I; Thiel, M; Thomas, A; Unverzagt, M; Walford, N K; Watts, D P; Werthmueller, D; Witthauer, L
2016-01-01
Quasi-free photoproduction of $\\pi\\eta$-pairs has been investigated from threshold up to incident photon energies of 1.4 GeV, respectively up to photon-nucleon invariant masses up to 1.9 GeV. Total cross sections, angular distributions, invariant-mass distributions of the $\\pi\\eta$ and meson-nucleon pairs, and beam-helicity asymmetries have been measured for the reactions $\\gamma p\\rightarrow p\\pi^0\\eta$, $\\gamma n\\rightarrow n\\pi^0\\eta$, $\\gamma p\\rightarrow n\\pi^+\\eta$, and $\\gamma n\\rightarrow p\\pi^-\\eta$ from nucleons bound inside the deuteron. For the $\\gamma p$ initial state data for free protons have also been analyzed. Finally, the total cross sections for quasi-free production of $\\pi^0\\eta$ pairs from nucleons bound in $^3$He nuclei have been investigated in view of final state interaction (FSI) effects. The experiments were performed at the tagged photon beam facility of the Mainz MAMI accelerator using an almost $4\\pi$ covering electromagnetic calorimeter composed of the Crystal Ball and TAPS dete...
Muon pair production in relativistic nuclear collisions
Hencken, K; Serbo, V G
2006-01-01
The exclusive production of one $\\mu^+\\mu^-$ pair in collisions of two ultra-relativistic nuclei is considered. We present the simple method for calculation of the Born cross section for this process. Then we found that the Coulomb corrections to this cross section (which correspond to multi-photon exchange of the produced $\\mu^{\\pm}$ with nuclei) are small while the unitarity corrections are large. This is in sharp contrast to the exclusive $e^+e^-$ pair production where the Coulomb corrections to the Born cross section are large while the unitarity corrections are small. We calculated also the cross section for the production of one $\\mu^+\\mu^-$ pair and several $e^+e^-$ pairs in the leading logarithmic approximation. Using this cross section we found that the inclusive production of $\\mu^+\\mu^-$ pair coincides in this approximation with its Born value.
Maier, T A; Staar, P; Mishra, V; Chatterjee, U; Campuzano, J C; Scalapino, D J
2016-06-17
In the traditional Bardeen-Cooper-Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin-fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.
Solubilization and fractionation of paired helical filaments.
González, P J; Correas, I; Avila, J
1992-09-01
Paired helical filaments isolated from brains of two different patients with Alzheimer's disease were extensively treated with the ionic detergent, sodium dodecyl sulphate. Filaments were solubilized at different extents, depending on the brain examined, thus suggesting the existence of two types of paired helical filaments: sodium dodecyl sulphate-soluble and insoluble filaments. In the first case, the number of structures resembling paired helical filaments greatly decreased after the detergent treatment, as observed by electron microscopy. Simultaneously, a decrease in the amount of sedimentable protein was also observed upon centrifugation of the sodium dodecyl sulfate-treated paired helical filaments. A sodium dodecyl sulphate-soluble fraction was isolated as a supernatant after low-speed centrifugation of the sodium dodecyl sulphate-treated paired helical filaments. The addition of the non-ionic detergent Nonidet-P40 to this fraction resulted in the formation of paired helical filament-like structures. When the sodium dodecyl sulphate-soluble fraction was further fractionated by high-speed centrifugation, three subfractions were observed: a supernatant, a pellet and a thin layer between these two subfractions. No paired helical filaments were observed in any of these subfractions, even after addition of Nonidet P-40. However, when they were mixed back together, the treatment with Nonidet P-40 resulted in the visualization of paired helical filament-like structures. These results suggest that at least two different components are needed for the reconstitution of paired helical filaments as determined by electron microscopy. The method described here may allow the study of the components involved in the formation of paired helical filaments and the identification of possible factors capable of blocking this process.
Entanglement Distribution in Optical Networks
Ciurana, Alex; Martinez-Mateo, Jesus; Schrenk, Bernhard; Peev, Momtchil; Poppe, Andreas
2014-01-01
The ability to generate entangled photon-pairs over a broad wavelength range opens the door to the simultaneous distribution of entanglement to multiple users in a network by using centralized sources and flexible wavelength-division multiplexing schemes. Here we show the design of a metropolitan optical network consisting of tree-type access networks whereby entangled photon-pairs are distributed to any pair of users, independent of their location. The network is constructed employing commercial off-the-shelf components and uses the existing infrastructure, which allows for moderate deployment costs. We further develop a channel plan and a network-architecture design to provide a direct optical path between any pair of users, thus allowing classical and one-way quantum communication as well as entanglement distribution. This allows the simultaneous operation of multiple quantum information technologies. Finally, we present a more flexible backbone architecture that pushes away the load limitations of the ori...
Coefficient of friction of a starved lubricated spur gear pair
Liu, Huaiju; Zhu, Caichao; Sun, Zhangdong; Zhang, Yuanyuan; Song, Chaosheng [Chongqing University, Chongqing (China)
2016-05-15
The frictional power loss issue of gear pairs becomes an important concern in both industry and academia due to the requirement of the energy saving and the improvement of power density of gear drives. A thermal starved elastohydrodynamic lubrication model is developed to study the tribological performance of a spur gear pair under starved lubrication conditions. The contact pressure, the film thickness, the temperature rise, the frictional power loss, as well as the coefficient of friction are evaluated by considering the variation of the curvature radius, the sliding/rolling motion, and the load distribution of gear tooth within the meshing period. Effects of lubrication starvation condition, load and speed on the coefficient of friction are studied.
Joint resummation for slepton pair production at hadron colliders
Bozzi, Giuseppe; Fuks, Benjamin; Klasen, Michael
2008-05-01
We present a precision calculation of the transverse-momentum and invariant-mass distributions for supersymmetric particle pair production at hadron colliders, focusing on Drell-Yan like slepton pair and slepton-sneutrino associated production at the CERN Large Hadron Collider. We implement the joint resummation formalism at the next-to-leading logarithmic accuracy with a process-independent Sudakov form factor, thus ensuring a universal description of soft-gluon emission, and consistently match the obtained result with the pure perturbative result at the first order in the strong coupling constant, i.e. at O(α). We also implement three different recent parameterizations of non-perturbative effects. Numerically, we give predictions for ee˜R∗ production and compare the resummed cross section with the perturbative result. The dependence on unphysical scales is found to be reduced, and non-perturbative contributions remain small.
Joint resummation for slepton pair production at hadron colliders
Bozzi, G; Klasen, M
2007-01-01
We present a precision calculation of the transverse-momentum and invariant-mass distributions for supersymmetric particle pair production at hadron colliders, focusing on Drell-Yan like slepton pair and slepton-sneutrino associated production at the CERN Large Hadron Collider. We implement the joint resummation formalism at the next-to-leading logarithmic accuracy with a process-independent Sudakov form factor, thus ensuring a universal description of soft-gluon emission, and consistently match the obtained result with the pure perturbative result at the first order in the strong coupling constant, i.e. at O(alpha_s). We also implement three different recent parameterizations of non-perturbative effects. Numerically, we give predictions for ~e_R ~e_R^* production and compare the resummed cross section with the perturbative result. The dependence on unphysical scales is found to be reduced, and non-perturbative contributions remain small.
Joint resummation for slepton pair production at hadron colliders
Bozzi, Giuseppe [Institut fuer Theoretische Physik, Universitaet Karlsruhe, Postfach 6980, D-76128 Karlsruhe (Germany); Fuks, Benjamin [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier/CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France); Klasen, Michael [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier/CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France)], E-mail: klasen@lpsc.in2p3.fr
2008-05-01
We present a precision calculation of the transverse-momentum and invariant-mass distributions for supersymmetric particle pair production at hadron colliders, focusing on Drell-Yan like slepton pair and slepton-sneutrino associated production at the CERN Large Hadron Collider. We implement the joint resummation formalism at the next-to-leading logarithmic accuracy with a process-independent Sudakov form factor, thus ensuring a universal description of soft-gluon emission, and consistently match the obtained result with the pure perturbative result at the first order in the strong coupling constant, i.e. at O({alpha}{sub s}). We also implement three different recent parameterizations of non-perturbative effects. Numerically, we give predictions for e-tilde{sub R}e-tilde{sub R}* production and compare the resummed cross section with the perturbative result. The dependence on unphysical scales is found to be reduced, and non-perturbative contributions remain small.
Generalizations of the Fuoss Approximation for Ion Pairing
Zhu, P; Pratt, L R; Papadopoulos, K D
2010-01-01
An elementary statistical observation identifies generalizations of the Fuoss approximation for the probability distribution function that describes ion clustering in electrolyte solutions. By exploiting measurable inter-ionic correlation functions, this generalization is correct at the closest pair distances, extends beyond primitive electrolyte solution models, and includes non-ionic interactions and solvation effects. The proposed generalization is relevant also for the computational analysis of bi-molecular reactive processes in solution. Comparisons with direct numerical simulation results show that the simplest generalization is accurate for a slightly supersaturated solution of tetraethylammonium tetrafluoroborate in propylene carbonate ([tea][BF4]/PC), and also for a primitive model associated with the [tea][BF4]/PC results. For [tea][BF4]/PC, the atomically detailed results identify solvent-separated nearest-neighbor ion-pairs. This generalization is examined also for the ionic liquid 1-butyl-3-methy...
Eigenstate localization in an asymmetric coupled quantum well pair
Mialitsin, Aleksej; Schmult, Stefan; Solov'yov, Ilia;
2012-01-01
exclusively either in the wide or the narrow parts of the well pair. The energy of the narrow-well localized state determines the minimal excitation energy for optically pumped charge carriers separation. In a previously used design [Guliamov et al., PRB 64 035314 (2001)] this narrow well transition energy......Optical pumping of a type-I/type-II coupled asymmetric quantum well pair induces a spatially separated two dimensional charge carriers plasma in the well’s wide and narrow parts. Treating the two coupled wells as a single system we find that the eigenstate probability distribution localizes...... was measured to correspond to a wavelength of 646 nm. We propose modifications to the design suggested earlier with the purpose of pushing up the energy required for the optical pumping of the two-dimensional plasma into the green and blue regions of the visible spectrum....
Correlations in bottom quark pair production at the Fermilab Tevatron
Galyardt, Jason Edward [Carnegie Mellon Univ., Pittsburgh, PA (United States)
2009-01-01
I present an analysis of b$\\bar{b}$ pair production correlations, using dimuon-triggered data collected with the Collider Detector at Fermilab (CDF) in p$\\bar{p}$ collisions at √s = 1.96 TeV during Run II of the TeVatron. The leading order (LO) and next-to-leading order (NLO) b quark production processes are discriminated by the angular and momentum correlations between the b{bar b} pair. Track-level jets containing a muon are classified by b quark content and used to estimate the momentum vector of the progenitor b quark. The theoretical distributions given by the MC@NLO event generator are tested against the data.
Henning Soller
2012-07-01
Full Text Available Background: Splitting of Cooper pairs has recently been realized experimentally for s-wave Cooper pairs. A split Cooper pair represents an entangled two-electron pair state, which has possible application in on-chip quantum computation. Likewise the spin-activity of interfaces in nanoscale tunnel junctions has been investigated theoretically and experimentally in recent years. However, the possible implications of spin-active interfaces in Cooper pair splitters so far have not been investigated.Results: We analyze the current and the cross correlation of currents in a superconductor–ferromagnet beam splitter, including spin-active scattering. Using the Hamiltonian formalism, we calculate the cumulant-generating function of charge transfer. As a first step, we discuss characteristics of the conductance for crossed Andreev reflection in superconductor–ferromagnet beam splitters with s-wave and p-wave superconductors and no spin-active scattering. In a second step, we consider spin-active scattering and show how to realize p-wave splitting using only an s-wave superconductor, through the process of spin-flipped crossed Andreev reflection. We present results for the conductance and cross correlations.Conclusion: Spin-activity of interfaces in Cooper pair splitters allows for new features in ordinary s-wave Cooper pair splitters, that can otherwise only be realized by using p-wave superconductors. In particular, it provides access to Bell states that are different from the typical spin singlet state.
Pure Pairing Modes in Trapped Fermion Systems
Capuzzi, P.; Hernández, E. S.; Szybisz, L.
2013-05-01
We present numerical predictions for the shape of the pairing fluctuations in harmonically trapped atomic 6Li with two spin projections, based on the fluiddynamical description of cold fermions with pairing interactions. In previous works it has been shown that when the equilibrium of a symmetric mixture is perturbed, the linearized fluiddynamic equations decouple into two sets, one containing the sound mode of fermion superfluids and the other the pairing mode. The latter corresponds to oscillations of the modulus of the complex gap and is driven by the kinetic energy densities of the particles and of the pairs. Assuming proportionality between the heat flux and the energy gradient, the particle kinetic energy undergoes a diffusive behavior and the diffusion parameter is the key parameter for the relaxation time scale. We examine a possible range of values for this parameter and find that the shape of the pairing oscillation is rather insensitive to the precise value of the transport coefficient. Moreover, the pairing fluctuation is largely confined to the center of the trap, and the energy of the pairing mode is consistent with the magnitude of the equilibrium gap.
String pair production in non homogeneous backgrounds
Bolognesi, S. [Department of Physics “E. Fermi” University of Pisa, and INFN - Sezione di Pisa,Largo Pontecorvo, 3, Ed. C, 56127 Pisa (Italy); Rabinovici, E. [Racah Institute of Physics, The Hebrew University of Jerusalem,91904 Jerusalem (Israel); Tallarita, G. [Departamento de Ciencias, Facultad de Artes Liberales,Universidad Adolfo Ibáñez, Santiago 7941169 (Chile)
2016-04-28
We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.
Exploring Pair Programming Benefits for MIS Majors
April H. Reed
2016-12-01
Full Text Available Pair programming is a collaborative programming practice that places participants in dyads, working in tandem at one computer to complete programming assignments. Pair programming studies with Computer Science (CS and Software Engineering (SE majors have identified benefits such as technical productivity, program/design quality, academic performance, and increased satisfaction for their participants. In this paper, pair programming is studied with Management Information Systems (MIS majors, who (unlike CS and SE majors taking several programming courses typically take only one programming course and often struggle to develop advanced programming skills within that single course. The researchers conducted two pair programming experiments in an introductory software development course for MIS majors over three semesters to determine if pair programming could enhance learning for MIS students. The program results, researchers’ direct observations, and participants’ responses to a survey questionnaire were analyzed after each experiment. The results indicate that pair programming appears to be beneficial to MIS students’ technical productivity and program design quality, specifically the ability to create programs using high-level concepts. Additionally, results confirmed increased student satisfaction and reduced frustration, as the pairs worked collaboratively to produce a program while actively communicating and enjoying the process.
An Easy-To-Use Combination Four-Terminal-Pair/Two-Terminal-Pair AC Transformer Bridge.
Jeffery, A; Shields, J Q; Lee, L H
1998-01-01
A new four-terminal-pair bridge, capable of achieving a relative standard uncertainty of 1×10(-9), was constructed at the National Institute of Standards and Technology by converting a two-terminal-pair bridge. The conversion requires only the addition of components which are easily removed if two-terminal-pair measurements are to be made. The design and testing of this bridge is described. The new four-terminal-pair bridge requires fewer auxiliary balances than the present four-terminal-pair bridge employed at NIST, which makes it much easier to use. This new design can be used to compare capacitance, resistance, and inductance standards.
English for au pairs the au pair's guide to learning English
Curtis, Lucy
2014-01-01
English for Au Pairs has interlinked stories about a group of au pairs new to England. Marta, an 18-year-old from Poland arrives in the UK to work as an au pair. Throughout her year-long stay she has many different experiences - some bad, some good - but with the support of her host family she finds new friends and improves her English. English for Au Pairs offers insight into the joys and difficulties of being an au pair while at the same time reinforcing English language learning through grammar explanations and exercises.
Pair supersolid with atom-pair hopping on the state-dependent triangular lattice
Zhang, Wanzhou; Yin, Ruoxi; Wang, Yancheng
2013-11-01
We systematically study an extended Bose-Hubbard model with atom hopping and atom-pair hopping in the presence of a three-body constraint on the triangular lattice. By means of large-scale quantum Monte Carlo simulations, the ground-state phase diagram is studied. We find a first-order transition between the atomic superfluid phase and the pair superfluid phase when the ratio of the atomic hopping and the atom-pair hopping is adapted. The first-order transition remains unchanged under various conditions. We then focus on the interplay among the atom-pair hopping, the on-site repulsion, and the nearest-neighbor repulsion. With on-site repulsion present, we observe first-order transitions between the Mott insulators and pair superfluid driven by the pair hopping. With the nearest-neighbor repulsion turning on, three typical solid phases with 2/3, 1, and 4/3 filling emerge at small atom-pair hopping region. A stable pair supersolid phase is found at small on-site repulsion. This is due to the three-body constraint and the pair hopping, which essentially make the model a quasihardcore boson system. Thus the pair supersolid state emerges basing on the order-by-disorder mechanism, by which hardcore bosons avoid classical frustration on the triangular lattice. Without on-site repulsion, the transitions between the pair supersolid and the atom superfluid or pair superfluid are first order, except for the particle-hole symmetric point. With weak on-site repulsion and atom hopping turning on, the transition between the pair supersolid and pair superfluid phase becomes continuous. The transition between solid and pair supersolid is three-dimensional XY university, with dynamical exponent z=1 and correlation exponent ν=0.67155. The thermal melting of pair supersolid belongs to the two-dimensional Ising university. We check both energetic and mechanical balance of pair supersolid phase. Lowering the three-body constraint, no pair supersolid is found due to the absence of
Pair Creation at Large Inherent Angles
Chen, P.; Tauchi, T.; Schroeder, D.V.; /SLAC
2007-04-25
In the next-generation linear colliders, the low-energy e{sup +}e{sup -} pairs created during the collision of high-energy e{sup +}e{sup -} beams would cause potential deleterious background problems to the detectors. At low collider energies, the pairs are made essentially by the incoherent process, where the pair is created by the interaction of beamstrahlung photons on the individual particles in the oncoming beam. This problem was first identified by Zolotarev, et al[1]. At energies where the beamstrahlung parameter {Upsilon} lies approximately in the range 0.6 {approx}< {Upsilon} {approx}< 100, pair creation from the beamstrahlung photons is dominated by a coherent process, first noted by Chen[2]. The seriousness of this pair creation problem lies in the transverse momenta that the pair particles carry when leaving the interaction point (IP) with large angles. One source of transverse momentum is from the kick by the field of the oncoming beam which results in an outcoming angle {theta} {proportional_to} 1/{radical}x, where x is the fractional energy of the particle relative to the initial beam particle energy[2,3]. As was shown in Ref. 131, there in fact exists an energy threshold for the coherent pairs, where x{sub th} {approx}> 1/2{Upsilon}. Thus within a tolerable exiting angle, there exists an upper limit for {Upsilon} where all coherent pairs would leave the detector through the exhaust port[4]. A somewhat different analysis has been done by Schroeder[5]. In the next generation of linear colliders, as it occurs, the coherent pairs can be exponentially suppressed[2] by properly choosing the {Upsilon}({approx}< 0.6). When this is achieved, the incoherent pairs becomes dominant. Since the central issue is the transverse momentum for particles with large angles, we notice that there is another source for it. Namely, when the pair particles are created at low energies, the intrinsic angles of these pairs when produced may already be large. This issue was
Pair creation in heavy ion channeling
N.A. Belov
2016-04-01
Full Text Available Heavy ions channeled through crystals with multi-GeV kinetic energies can create electron–positron pairs. In the framework of the ion, the energy of virtual photons arising from the periodic crystal potential may exceed the threshold 2mec2. The repeated periodic collisions with the crystal ions yield high pair production rates. When the virtual photon frequency matches a nuclear transition in the ion, the production rate can be resonantly increased. In this two-step excitation-pair conversion scheme, the excitation rates are coherently enhanced, and scale approximately quadratically with the number of crystal sites along the channel.
Implementation of Cryptosystems Based on Tate Pairing
Lei Hu; Jun-Wu Dong; Ding-Yi Pei
2005-01-01
Tate pairings over elliptic curves are important in cryptography since they can be used to construct efficient identity-based cryptosystems, and their implementation dominantly determines the efficiencies of the cryptosystems. In this paper, the implementation of a cryptosystem is provided based on the Tate pairing over a supersingular elliptic curve of MOV degree 3. The implementation is primarily designed to re-use low-level codes developed in implementation of usual elliptic curve cryptosystems. The paper studies how to construct the underlying ground field and its extension to accelerate the finite field arithmetic, and presents a technique to speedup the time-consuming powering in the Tate pairing algorithm.
Becoming independent through au pair migration
Dalgas, Karina Märcher
2015-01-01
. This article argues that, despite this critique, au pairing does play an important formative role for young Filipinas because it opens up for experiences abroad that enable them to be recognised as independent adults in Philippine society. Rather than autonomy, however, au pairs define their independence...... in terms of their capacity to assume responsibility for others, thereby achieving a position of social respect. Based on ethnographic fieldwork in Denmark and the Philippines, this article explores how young Filipinas use the social, economic, and cultural resources they gain from their au pair stay abroad...
Islam, SK Firoz; Saha, Arijit
2017-09-01
Motivated by the recent experiments [Scientific Reports 6, 23051 (2016), 10.1038/srep23051; Phys. Rev. Lett. 114, 096602 (2015), 10.1103/PhysRevLett.114.096602], we theoretically investigate Cooper pair splitting current in a graphene-based Cooper pair beam splitter geometry. By considering the graphene-based superconductor as an entangler device, instead of normal [two-dimensional (2D)] BCS superconductor, we show that the Cooper pair splitting current mediated by the crossed Andreev process is amplified compared to its normal superconductor counterpart. This amplification is attributed to the strong suppression of the local normal Andreev reflection process (arising from the Cooper pair splitting) from the graphene-based superconductor to lead via the same quantum dot, in comparison to the usual 2D superconductor. Due to the vanishing density of states at the Dirac point of undoped graphene, a doped graphene-based superconductor is considered here and it is observed that Cooper pair splitting current is very insensitive to the doping level in comparison to the usual 2D superconductor. The transport process of nonlocal spin-entangled electrons also depends on the type of pairing, i.e., whether the electron-hole pairing is onsite, intersublattice or the combination of both. The intersublattice pairing of graphene causes the maximum nonlocal Cooper pair splitting current, whereas the presence of both pairings reduces the Cooper pair splitting current.
HARSIMARJEET KHURANA
2011-01-01
Full Text Available This paper reports on a study in which persona for the category of paired and solo students were compared on the parameter like program clarity, presentation, satisfaction level and confidence level, also the effectiveness of pairs in a JAVA programming language and the impact of pairs on each other. In this study same programs were given to all the category of paired and solo students. Finding reported in this paper are that pairing students were more likely to turn in working programs, and these programs were correctly implemented with more required features as compared to solo students. It has been observed that pairing of intelligent, average and poor with themselves has not shown significant differences but we have seen significant differences with combination of pairs.
Wave Propagation and Diffusive Transition of Oscillations in Pair Plasmas with Dust Impurities
Atamaniuk, Barbara
2008-01-01
In view of applications to electron-positron pair-plasmas and fullerene pair-ion-plasmas containing charged dust impurities a thorough discussion is given of three-component Plasmas. Space-time responses of multi-component linearized Vlasov plasmas on the basis of multiple integral equations are invoked. An initial-value problem for Vlasov-Poisson -Ampere equations is reduced to the one multiple integral equation and the solution is expressed in terms of forcing function and its space-time convolution with the resolvent kernel. The forcing function is responsible for the initial disturbance and the resolvent is responsible for the equilibrium velocity distributions of plasma species. By use of resolvent equations, time-reversibility, space-reflexivity and the other symmetries are revealed. The symmetries carry on physical properties of Vlasov pair plasmas, e.g., conservation laws. Properly choosing equilibrium distributions for dusty pair plasmas, we can reduce the resolvent equation to: (i) the undamped disp...
2010-04-01
... equivalent and a personality profile. Such personality profile will be based upon a psychometric test... such academic course work in an amount not to exceed $1,000 for EduCare au pair participants and in an...
On the concept of frustrated Lewis pairs.
Fontaine, Frédéric-Georges; Stephan, Douglas W
2017-08-28
In this concept article, we consider the notion of 'frustrated Lewis pairs' (FLPs). While the original use of the term referred to steric inhibition of dative bond formation in a Lewis pair, work in the intervening decade demonstrates the limitation of this simplistic view. Analogies to known transition metal chemistry and the applications in other areas of chemistry are considered. In the light of these findings, we present reflections on the criteria for a definition of the term 'frustrated Lewis pair'. Segregation of the Lewis acid and base and the kinetic nature of FLP reactivity are discussed. We are led to the conclusion that, while an all-inclusive definition of FLP is challenging, the notion of 'FLP chemistry' is more readily recognized.This article is part of the themed issue 'Frustrated Lewis pair chemistry'. © 2017 The Author(s).
Pairing properties of realistic effective interactions
Gargano A.
2016-01-01
Full Text Available We investigate the pairing properties of an effective shell-model interaction defined within a model space outside 132Sn and derived by means of perturbation theory from the CD-Bonn free nucleon-nucleon potential. It turns out that the neutron pairing component of the effective interaction is significantly weaker than the proton one, which accounts for the large pairing gap difference observed in the two-valence identical particle nuclei 134Sn and 134Te. The role of the contribution arising from one particle-one hole excitations in determining the pairing force is discussed and its microscopic structure is also analyzed in terms of the multipole decomposition.
Comments on Coulomb pairing in aromatic hydrocarbons
Huber, D L
2013-01-01
Recently reported anomalies in the double-photonionization spectra of aromatic molecules such as benzene, naphthalene, anthracene and coronene are attributed to Coulomb-pair resonances of pi electrons.
Four square mile survey pair count instructions
US Fish and Wildlife Service, Department of the Interior — This standard operating procedure (SOP) provides guidance for conducting bird pair count measurements on wetlands for the HAPETs Four-Square-Mile survey. This set of...
Array-Based Discovery of Aptamer Pairs
2014-12-11
18460−18465. (25) Liu, Y.; Adams, J. D.; Turner, K.; Cochran, F. V.; Gambhir, S. S.; Soh, H. T. Lab Chip 2009, 9, 1033−1036. (26) Katilius, E.; Flores, C...discovery of aptamer pairs. We use microfluidic selection and high-throughput sequencing to obtain an enriched pool of aptamer sequences. Next, we...overcomes this problem to achieve efficient discovery of aptamer pairs. We use microfluidic selection and high- throughput sequencing to obtain an
Alternative DNA base pairing through metal coordination.
Clever, Guido H; Shionoya, Mitsuhiko
2012-01-01
Base-pairing in the naturally occurring DNA and RNA oligonucleotide duplexes is based on π-stacking, hydrogen bonding, and shape complementarity between the nucleobases adenine, thymine, guanine, and cytosine as well as on the hydrophobic-hydrophilic balance in aqueous media. This complex system of multiple supramolecular interactions is the product of a long-term evolutionary process and thus highly optimized to serve its biological functions such as information storage and processing. After the successful implementation of automated DNA synthesis, chemists have begun to introduce artificial modifications inside the core of the DNA double helix in order to study various aspects of base pairing, generate new base pairs orthogonal to the natural ones, and equip the biopolymer with entirely new functions. The idea to replace the hydrogen bonding interactions with metal coordination between ligand-like nucleosides and suitable transition metal ions culminated in the development of a plethora of artificial base-pairing systems termed "metal base-pairs" which were shown to strongly enhance the DNA duplex stability. Furthermore, they show great potential for the use of DNA as a molecular wire in nanoscale electronic architectures. Although single electrons have proven to be transmitted by natural DNA over a distance of several base pairs, the high ohmic resistance of unmodified oligonucleotides was identified as a serious obstacle. By exchanging some or all of the Watson-Crick base pairs in DNA with metal complexes, this problem may be solved. In the future, these research efforts are supposed to lead to DNA-like materials with superior conductivity for nano-electronic applications. Other fields of potential application such as DNA-based supramolecular architecture and catalysis may be strongly influenced by these developments as well. This text is meant to illustrate the basic concepts of metal-base pairing and give an outline over recent developments in this field.
Subthreshold pair production in short laser pulses
Nousch, T.; Seipt, D.; Kampfer, B.; Titov, A. I.
2012-01-01
The $e^+e^-$ pair production by a probe photon traversing a linearly polarized laser pulse is treated as generalized nonlinear Breit-Wheeler process. For short laser pulses with very few oscillations of the electromagnetic field we find below the perturbative weak-field threshold $\\sqrt{s} = 2m$ a similar enhancement of the pair production rate as for circular polarization. The strong subthreshold enhancement is traced back to the finite bandwidth of the laser pulse. A folding model is develo...
Roy, Santanu; Baer, Marcel D.; Mundy, Christopher J.; Schenter, Gregory K.
2017-08-08
We present a theory for ion pair dissociation and association, motivated by the concepts of the Marcus theory of electron transfer. Despite the extensive research on ion-pairing in many chemical and biological processes, much can be learned from the exploration of collective reaction coordinates. To this end, we explore two reaction coordinates, ion pair distance and coordination number. The study of the correlation between these reaction coordinates provides a new insight into the mechanism and kinetics of ion pair dissociation and association in water. The potential of mean force on these 2D-surfaces computed from molecular dynamics simulations of different monovalent ion pairs reveal a Marcus-like mechanism for ion-pairing: Water molecules rearrange forming an activated coordination state prior to ion pair dissociation or association, followed by relaxation of the coordination state due to further water rearrangement. Like Marcus theory, we find the existence of an inverted region where the transition rates are slower with increasing exergonicity. This study provides a new perspective for the future investigations of ion-pairing and transport. SR, CJM, and GKS were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). The research was performed using PNNL Institutional Computing. PNNL is a multi-program national laboratory operated by Battelle for the U.S. Department of Energy.
Migration of helium-pair in metals
Cao, J.L.; Geng, W.T., E-mail: geng@ustb.edu.cn
2016-09-15
We have carried out a first-principles density functional theory investigation into the migration of both a single interstitial He and an interstitial He-pair in Fe, Mo, W, Cu, Pd, and Pt. We find the migration trajectories and barriers are determined predominantly by low-energy He-pair configurations which depend mainly on the energy state of a single He in different interstices. The migration barrier for a He-pair in bcc metals is always slightly higher than for a single He. Configurations of a He-pair in fcc metals are very complicated, due to the existence of interstitial sites with nearly identical energy for a single He. The migration barrier for a He-pair is slightly lower than (in Cu), or similar to (in Pd and Pt) a single He. The collective migrations of a He-pair are ensured by strong He−He interactions with strength-versus-distance forms resembling chemical bonds and can be described with Morse potentials.
Seniority zero pair coupled cluster doubles theory.
Stein, Tamar; Henderson, Thomas M; Scuseria, Gustavo E
2014-06-07
Coupled cluster theory with single and double excitations accurately describes weak electron correlation but is known to fail in cases of strong static correlation. Fascinatingly, however, pair coupled cluster doubles (p-CCD), a simplified version of the theory limited to pair excitations that preserve the seniority of the reference determinant (i.e., the number of unpaired electrons), has mean field computational cost and is an excellent approximation to the full configuration interaction (FCI) of the paired space provided that the orbital basis defining the pairing scheme is adequately optimized. In previous work, we have shown that optimization of the pairing scheme in the seniority zero FCI leads to a very accurate description of static correlation. The same conclusion extends to p-CCD if the orbitals are optimized to make the p-CCD energy stationary. We here demonstrate these results with numerous examples. We also explore the contributions of different seniority sectors to the coupled cluster doubles (CCD) correlation energy using different orbital bases. We consider both Hartree-Fock and Brueckner orbitals, and the role of orbital localization. We show how one can pair the orbitals so that the role of the Brueckner orbitals at the CCD level is retained at the p-CCD level. Moreover, we explore ways of extending CCD to accurately describe strongly correlated systems.
Formation of asteroid pairs by rotational fission.
Pravec, P; Vokrouhlický, D; Polishook, D; Scheeres, D J; Harris, A W; Galád, A; Vaduvescu, O; Pozo, F; Barr, A; Longa, P; Vachier, F; Colas, F; Pray, D P; Pollock, J; Reichart, D; Ivarsen, K; Haislip, J; Lacluyze, A; Kusnirák, P; Henych, T; Marchis, F; Macomber, B; Jacobson, S A; Krugly, Yu N; Sergeev, A V; Leroy, A
2010-08-26
Pairs of asteroids sharing similar heliocentric orbits, but not bound together, were found recently. Backward integrations of their orbits indicated that they separated gently with low relative velocities, but did not provide additional insight into their formation mechanism. A previously hypothesized rotational fission process may explain their formation-critical predictions are that the mass ratios are less than about 0.2 and, as the mass ratio approaches this upper limit, the spin period of the larger body becomes long. Here we report photometric observations of a sample of asteroid pairs, revealing that the primaries of pairs with mass ratios much less than 0.2 rotate rapidly, near their critical fission frequency. As the mass ratio approaches 0.2, the primary period grows long. This occurs as the total energy of the system approaches zero, requiring the asteroid pair to extract an increasing fraction of energy from the primary's spin in order to escape. We do not find asteroid pairs with mass ratios larger than 0.2. Rotationally fissioned systems beyond this limit have insufficient energy to disrupt. We conclude that asteroid pairs are formed by the rotational fission of a parent asteroid into a proto-binary system, which subsequently disrupts under its own internal system dynamics soon after formation.
Photon-pair generation in photonic crystal fibrebre with a 1.5GHz modelocked VECSEL
Morris, Oliver J; Wilcox, Keith G; Tropper, Anne C; Mosley, Peter J
2014-01-01
Four-wave mixing (FWM) in optical fibre is a leading technique for generating high-quality photon pairs. We report the generation of photon pairs by spontaneous FWM in photonic crystal fibre pumped by a 1.5 GHz repetition-rate vertical-external-cavity surface-emitting laser (VECSEL). The photon pairs exhibit high count rates and a coincidence-to-accidental ratio of over 80. The VECSEL's high repetition-rate, high average power, tunability, and small footprint make this an attractive source for quantum key distribution and photonic quantum-state engineering.
Nonlinear Bethe-Heitler Pair Creation in an Intense Two-Mode Laser Field
Augustin, Sven
2013-01-01
We investigate electron-positron pair creation in the interaction of a nuclear Coulomb field and a highly intense two-mode laser field. For bichromatic laser fields, we examine the differences arising for commensurable and incommensurable frequencies in a continuous variation of the laser frequency ratio and the quantum interference effects, which may occur in the commensurable case. We show that the interference manifests in the angular distributions and the total pair-production rates of the created particles. Additionally, by varying the amplitudes of the two modes we study pair creation in a monochromatic laser wave of arbitrarily elliptical polarization.
Interference Effects in Bethe-Heitler Pair Creation in a Bichromatic Laser Field
Augustin, Sven
2013-01-01
We study the creation of electron-positron pairs in the superposition of a nuclear Coulomb field and a two-color laser field of high intensity. Our focus lies on quantum interference effects, which may arise if the two laser frequencies are commensurable. We show that the interference manifests in the angular distributions of the created particles, which are discussed in the nuclear rest frame and the laboratory frame. Additionally, we demonstrate that the total pair-production rates can be affected by interference and identify the relative phase between the two laser modes, which optimizes the pair-production yield.
Enhanced photon emission and pair production in laser-irradiated plasmas
Wan, Feng; Lv, Chong; Jia, Moran; Xie, Baisong
2017-07-01
Enhanced photon emission and pair production due to heavy ion mass in the interaction of an ultraintense laser with overdense plasmas is explored by particle-in-cell simulation. It is found that plasmas with heavier ion mass can excite a higher and broader electrostatic field, which causes the enhancement of backward photon emission. The pair yields are then enhanced due to the increase of backwards photons colliding with the incoming laser pulse. By examining the density evolution and angle distribution of each particle species, the origin of pair yield enhancement is clarified.
Photon pairs: Quantum chromodynamics continuum and the Higgs boson
Edmond L Berger
2007-11-01
A new QCD calculation is summarized for the transverse momentum distribution of photon pairs produced by QCD subprocesses, including all-orders soft-gluon resummation valid at next-to-next-to-leading logarithmic accuracy. Resummation is needed to obtain reliable predictions in the range of transverse momentum where the cross-section is the largest. Results are compared with data from the Fermilab Tevatron and predictions are made for the large hadron collider. The QCD continuum is shown to have a softer spectrum than the Higgs boson signal at the LHC.
Evidence for pair correlation effects in heavy ion reactions
Auditore, L; D'Amico, V; De Pasquale, D; Trifiró, A; Trimarchi, M; Italiano, A
2003-01-01
The study of the sup 1 sup 2 C( sup 1 sup 4 N, sup 1 sup 4 N) sup 1 sup 2 C reaction was performed at 28 and 35 MeV beam energies. The results were analyzed in the frame of the EFRDWBA (Exact-Finite-Range Distorted Wave Born Approximation) assuming the simultaneous and sequential transfer of a np pair. The angular distributions, fairly reproduced in the first case, confirm the validity of the generalized BCS (Bardeen-Cooper-Schrieffer) theory to explain this behaviour. Moreover, this process could be regarded as a possible Nuclear Josephson Effect. (author)
Top-quark pair production in a running mass scheme
Dowling, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik
2013-11-15
Between the Tevatron and LHC, top-quark physics is now becoming an area for precision physics. This has lead to an increase in theoretical activity to match the experimental accuracy of top anti-top production. We discuss the difficulty in properly defining the top-quark mass as measured by experiments and present results for differential distributions of top-quark pair production in a running mass scheme. The use of such a scheme shows better convergence in the perturbative expansion and improves the scale dependence as opposed to the typical on-shell scheme.
Turbulent pair dispersion as a continuous-time random walk
Thalabard, Simon; Bec, Jeremie
2014-01-01
The phenomenology of turbulent relative dispersion is revisited. A heuristic scenario is proposed, in which pairs of tracers undergo a succession of independent ballistic separations during time intervals whose lengths fluctuate. This approach suggests that the logarithm of the distance between tracers self-averages and performs a continuous-time random walk. This leads to specific predictions for the probability distribution of separations, that differ from those obtained using scale-dependent eddy-diffusivity models (e.g. in the framework of Richardson's approach). Such predictions are tested against high-resolution simulations and shed new lights on the explosive separation between tracers.
Ideal synchronizer for marked pairs in fork-join network
Vyshenski, S V; Dubenskaya, Yu Yu
2008-01-01
We introduce a new functional element (synchronizer for marked pairs) meant to join results of parallel processing in two-branch fork-join queueing network. Approximations for distribution of sojourn time at the synchronizer are derived along with a validity domain. Calculations are performed assuming that: arrivals to the network form a Poisson process, each branch operates like an M/M/N queueing system. It is shown that a mean quantity of jobs in the synchronizer is bounded below by the value, defined by parameters of the network (which contains the synchronizer) and does not depend upon performance and particular properties of the synchronizer.
QCD threshold corrections for gluino pair production at hadron colliders
Langenfeld, Ulrich [Wuerzburg Univ. (Germany); Moch, Sven-Olaf; Pfoh, Torsten [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2012-11-15
We present the complete threshold enhanced predictions in QCD for the total cross section of gluino pair production at hadron colliders at next-to-next-to-leading order. Thanks to the computation of the required one-loop hard matching coefficients our results are accurate to the next-to-next-to-leading logarithm. In a brief phenomenological study we provide predictions for the total hadronic cross sections at the LHC and we discuss the uncertainties arising from scale variations and the parton distribution functions.
Dunning, Thom H., E-mail: thdjr@uw.edu; Xu, Lu T.; Takeshita, Tyler Y. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801 (United States)
2015-01-21
The number of singly occupied orbitals in the ground-state atomic configuration of an element defines its nominal valence. For carbon and sulfur, with two singly occupied orbitals in their {sup 3}P ground states, the nominal valence is two. However, in both cases, it is possible to form more bonds than indicated by the nominal valence—up to four bonds for carbon and six bonds for sulfur. In carbon, the electrons in the 2s lone pair can participate in bonding, and in sulfur the electrons in both the 3p and 3s lone pairs can participate. Carbon 2s and sulfur 3p recoupled pair bonds are the basis for the tetravalence of carbon and sulfur, and 3s recoupled pair bonds enable sulfur to be hexavalent. In this paper, we report generalized valence bond as well as more accurate calculations on the a{sup 4}Σ{sup −} states of CF and SF, which are archetypal examples of molecules that possess recoupled pair bonds. These calculations provide insights into the fundamental nature of recoupled pair bonds and illustrate the key differences between recoupled pair bonds formed with the 2s lone pair of carbon, as a representative of the early p-block elements, and recoupled pair bonds formed with the 3p lone pair of sulfur, as a representative of the late p-block elements.
Carroll, Ian M; Ahmed, Niyaz; Beesley, Sarah M; Khan, Aleem A; Ghousunnissa, Sheikh; Moráin, Colm A O; Habibullah, C M; Smyth, Cyril J
2004-07-01
Sequence variations located at the signal sequence and mid-region within the vacA gene, the 3'-end of the cagA gene, the indel motifs at the 3'-end of the cag pathogenicity island and the regions upstream of the vacA and ribA genes were determined by PCR in 19 paired antral or antrum and corpus Helicobacter pylori isolates obtained at the same endoscopic session, and three antral pairs taken sequentially. Random amplification of polymorphic DNA (RAPD)-PCR and fluorescent amplified fragment length polymorphism (FAFLP)-PCR fingerprinting were applied to these paired clinical isolates. The FAFLP-PCR profiles generated were phylogenetically analysed. For the 22 paired isolates there were no differences within pairs at five of the genetic loci studied. However, six pairs of isolates (27%), of which four were antrum and corpus pairs, showed differences in the numbers of repeats located at the 3'-end of the cagA gene. RAPD-PCR fingerprinting showed that 16 (73%) pairs, nine of which were antrum and corpus pairs, possessed identical profiles, while six (27%) displayed distinctly different profiles, indicating mixed infections. Three of the six pairs showing differences at the 3'-end of the cagA gene yielded identical RAPD-PCR fingerprints. FAFLP-PCR fingerprinting and phylogenetic analysis revealed that all 16 pairs that displayed identical RAPD-PCR profiles had highly similar, but not identical, fingerprints, demonstrating that these pairs were ancestrally related but had undergone minor genomic alterations. Two antrum and corpus pairs of isolates, within the latter group, were isolates obtained from two siblings from the same family. This analysis demonstrated that each sibling was colonized by ancestrally related strains that exhibited differences in vacA genotype characteristics.
Influence of pairing correlations on the radius of neutron-rich nuclei
Zhang, Ying; Chen, Ying; Meng, Jie; Ring, Peter
2017-01-01
The influence of pairing correlations on the neutron root mean square (rms) radius of nuclei is investigated in the framework of self-consistent Skyrme Hartree-Fock-Bogoliubov calculations. The continuum is treated appropriately by the Green's function techniques. As an example the nucleus 124Zr is treated for a varying strength of pairing correlations. We find that, as the pairing strength increases, the neutron rms radius first shrinks, reaches a minimum, and beyond this point it expands again. The shrinkage is due to the the so-called pairing antihalo effect, i.e., due to the decrease of the asymptotic density distribution with increasing pairing. However, in some cases, increasing pairing correlations can also lead to an expansion of the nucleus due to a growing occupation of so-called halo orbits, i.e., weakly bound states and resonances in the continuum with low-ℓ values. In this case, the neutron radii are extended just by the influence of pairing correlations, since these halo orbits cannot be occupied without pairing. The term "antihalo effect" is not justified in such cases. For a full understanding of this complicated interplay, self-consistent calculations are necessary.
Paired galaxies with different activity levels and their supernovae
Nazaryan, T A; Hakobyan, A A; Adibekyan, V Zh; Kunth, D; Mamon, G A; Turatto, M; Aramyan, L S
2013-01-01
We investigate the influence of close neighbor galaxies on the properties of supernovae (SNe) and their host galaxies using 56 SNe located in pairs of galaxies with different levels of star formation (SF) and nuclear activity. The statistical study of SN hosts shows that there is no significant difference between morphologies of hosts in our sample and the larger general sample of SN hosts in the Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8). The mean distance of type II SNe from nuclei of hosts is greater by about a factor of 2 than that of type Ibc SNe. The distributions and mean distances of SNe are consistent with previous results compiled with the larger sample. For the first time it is shown that SNe Ibc are located in pairs with significantly smaller difference of radial velocities between components than pairs containing SNe Ia and II. We consider this as a result of higher star formation rate (SFR) of these closer systems of galaxies. SN types are not correlated with the luminosity ratio of ho...
Top quark pair production and modeling via QCD in CMS
Gonzalez Fernandez, Juan Rodrigo
2017-01-01
Measurements of the inclusive and differential top quark pair ($\\textrm{t}\\bar{\\textrm{t}}$~) production cross section at centre-of-mass energies of 13 TeV and 5.02 TeV are presented, performed using CMS data collected in 2015 and 2016. The inclusive cross section is measured in the lepton+jets, dilepton and fully hadronic channels. Top quark pair differential cross sections are measured and are given as functions of various kinematic observables of (anti)top quark, the $\\textrm{t}\\bar{\\textrm{t}}$~ system, and of the jets and leptons in the final state. Furthermore, the multiplicity and kinematic distributions of the additional jets produced in $\\textrm{t}\\bar{\\textrm{t}}$~ events are also investigated and its modeling is compared for several generators. A new tune of parameters is developed for some of the generators. In addition, first measurements of top quark pair production with additional b quarks in the final state are presented. Furthermore, searches for four top quark production in CMS are also pres...
Alternative radical pairs for cryptochrome-based magnetoreception
Lee, Alpha A.; Lau, Jason C. S.; Hogben, Hannah J.; Biskup, Till; Kattnig, Daniel R.; Hore, P. J.
2014-01-01
There is growing evidence that the remarkable ability of animals, in particular birds, to sense the direction of the Earth's magnetic field relies on magnetically sensitive photochemical reactions of the protein cryptochrome. It is generally assumed that the magnetic field acts on the radical pair [FAD•− TrpH•+] formed by the transfer of an electron from a group of three tryptophan residues to the photo-excited flavin adenine dinucleotide cofactor within the protein. Here, we examine the suitability of an [FAD•− Z•] radical pair as a compass magnetoreceptor, where Z• is a radical in which the electron spin has no hyperfine interactions with magnetic nuclei, such as hydrogen and nitrogen. Quantum spin dynamics simulations of the reactivity of [FAD•− Z•] show that it is two orders of magnitude more sensitive to the direction of the geomagnetic field than is [FAD•− TrpH•+] under the same conditions (50 µT magnetic field, 1 µs radical lifetime). The favourable magnetic properties of [FAD•− Z•] arise from the asymmetric distribution of hyperfine interactions among the two radicals and the near-optimal magnetic properties of the flavin radical. We close by discussing the identity of Z• and possible routes for its formation as part of a spin-correlated radical pair with an FAD radical in cryptochrome. PMID:24671932
Generalized pairing strategies-a bridge from pairing strategies to colorings
Győrffy Lajos
2016-12-01
Full Text Available In this paper we define a bridge between pairings and colorings of the hypergraphs by introducing a generalization of pairs called t-cakes for t ∈ ℕ, t ≥ 2. For t = 2 the 2-cakes are the same as the well-known pairs of system of distinct representatives, that can be turned to pairing strategies in Maker-Breaker hypergraph games, see Hales and Jewett [12]. The two-colorings are the other extremity of t-cakes, in which the whole ground set of the hypergraph is one big cake that we divide into two parts (color classes. Starting from the pairings (2-cake placement and two-colorings we define the generalized t-cake placements where we pair p elements by q elements (p, q ∈ ℕ, 1 ≤ p, q < t, p + q = t.
Tempelaar, Roel; Reichman, David R.
2017-05-01
Recent time-resolved spectroscopic experiments have indicated that vibronic coupling plays a vital role in facilitating the process of singlet fission. In this work, which forms the first article of a series, we set out to unravel the mechanisms underlying singlet fission through a vibronic exciton theory. We formulate a model in which both electronic and vibrational degrees of freedom are treated microscopically and non-perturbatively. Using pentacene as a prototypical material for singlet fission, we subject our theory to comparison with measurements on polarization-resolved absorption of single crystals, and employ our model to characterize the excited states underlying the absorption band. Special attention is given to the convergence of photophysical observables with respect to the basis size employed, through which we determine the optimal basis for more expensive calculations to be presented in subsequent work. We furthermore evaluate the energetic separation between the optically prepared singlet excited state and the correlated triplet pair state, as well as provide a real-space characterization of the latter, both of which are of key importance in the discussion of fission dynamics. We discuss our results in the context of recent experimental studies.
Theoretical study of pair density wave superconductors
Zheng, Zhichao
In conventional superconductors, the Cooper pairs are formed from quasiparticles. We explore another type of superconducting state, a pair density wave (PDW) order, which spontaneously breaks some of the translational and point group symmetries. In a PDW superconductor, the order parameter is a periodic function of the center-of-mass coordinate, and the spatial average value of the superconducting order parameter vanishes. In the early 1960s, following the success of the BCS theory of superconductivity, Fulde and Ferrell and Larkin and Ovchinnikov (FFLO) developed theories of inhomogeneous superconducting states. Because of this Zeeman splitting in a magnetic field, the Cooper pairs having a nonzero center-of-mass momentum are more stable than the normal pairing, leading to the FFLO state. Experiments suggest possible occurrence of the FFLO state in the heavy-fermion compound CeCoIn5, and in quasi-low-dimensional organic superconductors. FFLO phases have also been argued to be of importance in understanding ultracold atomic Fermi gases and in the formation of color superconductivity in high density quark matter. In all Fermi superfluids known at the present time, Cooper pairs are composed of particles with spin 1/2. The spin component of a pair wave function can be characterized by its total spin S = 0 (singlet) and S = 1 (triplet). In the discovered broken inversion superconductors CePt3Si, Li2Pt3B, and Li2Pd3B, the magnetic field leads to novel inhomogeneous superconducting states, namely the helical phase and the multiple-q phase. Its order parameter exhibits periodicity similar to FFLO phase, and the consequences of both phases are same: the enhancement of transition temperature as a function of magnetic field. We have studied the PDW phases in broken parity superconductors with vortices included. By studying PDW vortex states, we find the usual Abrikosov vortex solution is unstable against a new solution with fractional vortex pairs. We have also studied the
Petrenko, Y M
2015-01-01
Ab initio quantum mechanics studies for the detection of structure and dipole structure peculiarities of Hoogsteen base pairs relative to Watson-Crick base pairs, were performed during our work. These base pairs are formed as a result of complementary interactions. It was revealed, that adenine-thymine Hoogsteen base pair and adenine-thymine Watson-Crick base pairs can be formed depending on initial configuration. Cytosine-guanine Hoogsteen pairs are formed only when cytosine was originally protonated. Both types of Hoogsteen pairs have noticeable difference in the bond distances and angles. These differences appeared in purine as well as in pyrimidine parts of the pairs. Hoogsteen pairs have mostly shorter hydrogen bond lengths and significantly larger angles of hydrogen bonds and larger angles between the hydrogen bonds than Watson-Crick base pairs. Notable differences are also observed with respect to charge distribution and dipole moment. Quantitative data on these differences are shown in our work. It is also reported that the values of local parameters (according to Cambridge classification of the parameters which determine DNA properties) in Hoogsteen base pairs, are greatly different from Watson-Crick ones.
String pair production in non homogeneous backgrounds
Bolognesi, Stefano; Tallarita, Gianni
2016-01-01
We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is les...
Pairing instabilities of Dirac composite fermions
Milovanović, M. V.; Ćirić, M. Dimitrijević; Juričić, V.
2016-09-01
Recently, a Dirac (particle-hole symmetric) description of composite fermions in the half-filled Landau level (LL) was proposed [D. T. Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027], and we study its possible consequences on BCS (Cooper) pairing of composite fermions (CFs). One of the main consequences is the existence of anisotropic states in single-layer and bilayer systems, which was previously suggested in Jeong and Park [J. S. Jeong and K. Park, Phys. Rev. B 91, 195119 (2015), 10.1103/PhysRevB.91.195119]. We argue that in the half-filled LL in the single-layer case the gapped states may sustain anisotropy, because isotropic pairings may coexist with anisotropic ones. Furthermore, anisotropic pairings with the addition of a particle-hole symmetry-breaking mass term may evolve into rotationally symmetric states, i.e., Pfaffian states of Halperin-Lee-Read (HLR) ordinary CFs. On the basis of the Dirac formalism, we argue that in the quantum Hall bilayer at total filling factor 1, with decreasing distance between the layers, weak pairing of p -wave paired CFs is gradually transformed from Dirac to ordinary, HLR-like, with a concomitant decrease in the CF number. Global characterization of low-energy spectra based on the Dirac CFs agrees well with previous calculations performed by exact diagonalization on a torus. Finally, we discuss features of the Dirac formalism when applied in this context.
Pairing and specific heat in hot nuclei
Gambacurta, Danilo; Sandulescu, Nicu
2013-01-01
The thermodynamics of pairing phase-transition in nuclei is studied in the canonical ensemble and treating the pairing correlations in a finite-temperature variation after projection BCS approach (FT-VAP). Due to the restoration of particle number conservation, the pairing gap and the specific heat calculated in the FT-VAP approach vary smoothly with the temperature, indicating a gradual transition from the superfluid to the normal phase, as expected in finite systems. We have checked that the predictions of the FT-VAP approach are very accurate when compared to the results obtained by an exact diagonalization of the pairing Hamiltonian. The influence of pairing correlations on specific heat is analysed for the isotopes $^{161,162}$Dy and $^{171,172}$Yb. It is shown that the FT-VAP approach, applied with a level density provided by mean field calculations and supplemented, at high energies, by the level density of the back-shifted Fermi gas model, can approximate reasonably well the main properties of specifi...
The environment of low redshift quasar pairs
Sandrinelli, Angela; Treves, Aldo; Farina, Emanuele Paolo; Uslenghi, Michela
2014-01-01
We investigate the properties of the galaxy environment of a sample of 14 low redshift (z $<$ 0.85) quasar physical pairs extracted from SDSS DR10 archives. The pairs have a systemic radial velocity difference $\\Delta V_\\parallel \\leqslant$ 600 $km \\ s^{-1}$ (based on [OIII]5007 \\AA \\ line) and projected distance $ R_\\bot \\leqslant$ 600 kpc. The physical association of the pairs is statistically confirmed at a level of $\\sim$ 90 %. For most of the images of these quasars we are able to resolve their host galaxies that turn out to be on average similar to those of quasars not in pairs. We also found that quasars in a pair are on average in region of modest galaxy overdensity extending up 0.5 Mpc from the QSO. This galaxy overdensity is indistinguishable from that of a homogeneous sample of isolated quasars at the same redshift and with similar host galaxy luminosity. These results, albeit derived from a small (but homogeneous) sample of objects, suggest that the rare activation of two quasars with small phy...
Vector boson pair production at hadron colliders
Adamson, K L
2002-01-01
We calculate the contribution of gluon-gluon induced processes to vector boson pair production at hadron colliders, specifically the production of WZ, W gamma and Z gamma pairs. We calculate the tree level processes gg -> WZqq-bqr, gg -> W gamma qq-bar and gg -> Z gamma qq-bar, and the one loop process gg -> Z gamma. We use the helicity method and include the decay of the W and Z bosons into leptons in the narrow width approximation. We include anomalous triple gauge couplings in all of our vector boson pair production calculations. In order to integrate over the qq-bar final state phase space we use an extended version of the subtraction method to NNLO and cancel collinear singularities explicitly. The general subtraction terms that are obtained apply to all vector boson pair production processes. Due to the large gluon density at low x, the gluon induced terms of vector boson pair production are expected to be the dominant NNLO QCD correction, relevant at LHC energies. However, we show that due to a cancell...
Photoproduction of ηπ pairs off nucleons and deuterons
Kaeser, A.; Mueller, F.; Dieterle, M.; Garni, S.; Jaegle, I.; Keshelashvili, I.; Krusche, B.; Maghrbi, Y.; Oberle, M.; Pheron, F.; Rostomyan, T.; Strub, T.; Walford, N.K.; Witthauer, L. [University of Basel, Department of Physics, Basel (Switzerland); Ahrens, J.; Arends, H.J.; Bartolome, P.A.; Ostrick, M.; Otte, P.; Thomas, A. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); Annand, J.R.M.; Hamilton, D.; Howdle, D.; Livingston, K.; MacGregor, I.J.D.; Mancell, J.; McGeorge, J.C.; McNicoll, E.; Robinson, J. [University of Glasgow, SUPA School of Physics and Astronomy, Glasgow (United Kingdom); Bantawa, K.; Manley, D.M. [Kent State University, Kent, OH (United States); Beck, R.; Nikolaev, A.; Schumann, S.; Unverzagt, M. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); University Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Braghieri, A.; Costanza, S.; Mushkarenkov, A.; Pedroni, P. [INFN Sezione di Pavia, Pavia (Italy); Briscoe, W.J.; Marinides, Z. [The George Washington University, Center for Nuclear Studies, Washington (United States); Cherepnya, S.; Fil' kov, L.V. [Lebedev Physical Institute, Moscow (Russian Federation); Downie, E.J. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); University of Glasgow, SUPA School of Physics and Astronomy, Glasgow (United Kingdom); The George Washington University, Center for Nuclear Studies, Washington (United States); Drexler, P.; Metag, V.; Novotny, R.; Thiel, M. [University of Giessen, II. Physikalisches Institut, Giessen (Germany); Fix, A. [Tomsk Polytechnic University, Laboratory of Mathematical Physics, Tomsk (Russian Federation); Glazier, D.I. [University of Glasgow, SUPA School of Physics and Astronomy, Glasgow (United Kingdom); University of Edinburgh, SUPA School of Physics, Edinburgh (United Kingdom); Hornidge, D.; Middleton, D.G. [Mount Allison University, Sackville, New Brunswick (Canada); Huber, G.M. [University of Regina, Regina (Canada); Jude, T.C.; Sikora, M.H.; Watts, D.P. [University of Edinburgh, SUPA School of Physics, Edinburgh (United Kingdom); Kashevarov, V.L. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); Lebedev Physical Institute, Moscow (Russian Federation); Kondratiev, R.; Lisin, V.; Polonski, A. [Institute for Nuclear Research, Moscow (Russian Federation); Korolija, M.; Mekterovic, D.; Micanovic, S.; Supek, I. [Rudjer Boskovic Institute, Zagreb (Croatia); Oussena, B. [University of Mainz, Institut fuer Kernphysik, Mainz (Germany); The George Washington University, Center for Nuclear Studies, Washington (United States); Prakhov, S.; Starostin, A. [University of California Los Angeles, Los Angeles, California (United States); Sober, D. [The Catholic University of America, Washington (United States); Werthmueller, D. [University of Basel, Department of Physics, Basel (Switzerland); University of Glasgow, SUPA School of Physics and Astronomy, Glasgow (United Kingdom); Collaboration: The A2 Collaboration
2016-09-15
Quasi-free photoproduction of πη-pairs has been investigated from threshold up to incident photon energies of 1.4 GeV, respectively up to photon-nucleon invariant masses up to 1.9 GeV. Total cross sections, angular distributions, invariant-mass distributions of the πη and meson-nucleon pairs, and beam-helicity asymmetries have been measured for the reactions γp → pπ{sup 0}η, γn → nπ{sup 0}η, γp → nπ{sup +}η, and γn → pπ{sup -}η from nucleons bound inside the deuteron. For the γp initial-state data for free protons have also been analyzed. Finally, the total cross sections for quasi-free production of π{sup 0}η pairs from nucleons bound in {sup 3} He nuclei have been investigated in view of final state interaction (FSI) effects. The experiments were performed at the tagged photon beam facility of the Mainz MAMI accelerator using an almost 4π covering electromagnetic calorimeter composed of the Crystal Ball and TAPS detectors. The shapes of all differential cross section data and the asymmetries are very similar for protons and neutrons and agree with the conjecture that the reactions are dominated by the sequential Δ*3/2{sup -} → ηΔ(1232) → πηN decay chain, mainly with Δ(1700)3/2{sup -} and Δ(1940)3/2{sup -}. The ratios of the magnitude of the total cross sections also agree with this assumption. However, the absolute magnitudes of the cross sections are reduced by FSI effects with respect to free proton data. (orig.)