WorldWideScience

Sample records for real-space dft code

  1. Self-consistent DFT +U method for real-space time-dependent density functional theory calculations

    Science.gov (United States)

    Tancogne-Dejean, Nicolas; Oliveira, Micael J. T.; Rubio, Angel

    2017-12-01

    We implemented various DFT+U schemes, including the Agapito, Curtarolo, and Buongiorno Nardelli functional (ACBN0) self-consistent density-functional version of the DFT +U method [Phys. Rev. X 5, 011006 (2015), 10.1103/PhysRevX.5.011006] within the massively parallel real-space time-dependent density functional theory (TDDFT) code octopus. We further extended the method to the case of the calculation of response functions with real-time TDDFT+U and to the description of noncollinear spin systems. The implementation is tested by investigating the ground-state and optical properties of various transition-metal oxides, bulk topological insulators, and molecules. Our results are found to be in good agreement with previously published results for both the electronic band structure and structural properties. The self-consistent calculated values of U and J are also in good agreement with the values commonly used in the literature. We found that the time-dependent extension of the self-consistent DFT+U method yields improved optical properties when compared to the empirical TDDFT+U scheme. This work thus opens a different theoretical framework to address the nonequilibrium properties of correlated systems.

  2. Development of a global toroidal gyrokinetic Vlasov code with new real space field solver

    International Nuclear Information System (INIS)

    Obrejan, Kevin; Imadera, Kenji; Li, Ji-Quan; Kishimoto, Yasuaki

    2015-01-01

    This work introduces a new full-f toroidal gyrokinetic (GK) Vlasov simulation code that uses a real space field solver. This solver enables us to compute the gyro-averaging operators in real space to allow proper treatment of finite Larmor radius (FLR) effects without requiring any particular hypothesis and in any magnetic field configuration (X-point, D-shaped etc). The code was well verified through benchmark tests such as toroidal Ion Temperature Gradient (ITG) instability and collisionless damping of zonal flow. (author)

  3. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems

    Science.gov (United States)

    Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J. T.; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J.; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A. L.; Rubio, Angel

    Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schr\\"odinger equation for low-dimensionality systems.

  4. Scalable real space pseudopotential density functional codes for materials in the exascale regime

    Science.gov (United States)

    Lena, Charles; Chelikowsky, James; Schofield, Grady; Biller, Ariel; Kronik, Leeor; Saad, Yousef; Deslippe, Jack

    Real-space pseudopotential density functional theory has proven to be an efficient method for computing the properties of matter in many different states and geometries, including liquids, wires, slabs, and clusters with and without spin polarization. Fully self-consistent solutions using this approach have been routinely obtained for systems with thousands of atoms. Yet, there are many systems of notable larger sizes where quantum mechanical accuracy is desired, but scalability proves to be a hindrance. Such systems include large biological molecules, complex nanostructures, or mismatched interfaces. We will present an overview of our new massively parallel algorithms, which offer improved scalability in preparation for exascale supercomputing. We will illustrate these algorithms by considering the electronic structure of a Si nanocrystal exceeding 104 atoms. Support provided by the SciDAC program, Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences. Grant Numbers DE-SC0008877 (Austin) and DE-FG02-12ER4 (Berkeley).

  5. Real space process algebra

    NARCIS (Netherlands)

    Bergstra, J.A.; Baeten, J.C.M.

    1993-01-01

    The real time process algebra of Baeten and Bergstra [Formal Aspects of Computing, 3, 142-188 (1991)] is extended to real space by requiring the presence of spatial coordinates for each atomic action, in addition to the required temporal attribute. It is found that asynchronous communication

  6. Modeling solvation effects in real-space and real-time within density functional approaches

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Alain [Istituto Nanoscienze - CNR, Centro S3, via Campi 213/A, 41125 Modena (Italy); Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Calle 30 # 502, 11300 La Habana (Cuba); Corni, Stefano; Pittalis, Stefano; Rozzi, Carlo Andrea [Istituto Nanoscienze - CNR, Centro S3, via Campi 213/A, 41125 Modena (Italy)

    2015-10-14

    The Polarizable Continuum Model (PCM) can be used in conjunction with Density Functional Theory (DFT) and its time-dependent extension (TDDFT) to simulate the electronic and optical properties of molecules and nanoparticles immersed in a dielectric environment, typically liquid solvents. In this contribution, we develop a methodology to account for solvation effects in real-space (and real-time) (TD)DFT calculations. The boundary elements method is used to calculate the solvent reaction potential in terms of the apparent charges that spread over the van der Waals solute surface. In a real-space representation, this potential may exhibit a Coulomb singularity at grid points that are close to the cavity surface. We propose a simple approach to regularize such singularity by using a set of spherical Gaussian functions to distribute the apparent charges. We have implemented the proposed method in the OCTOPUS code and present results for the solvation free energies and solvatochromic shifts for a representative set of organic molecules in water.

  7. Real space renormalization tecniques for disordered systems

    International Nuclear Information System (INIS)

    Anda, E.V.

    1984-01-01

    Real space renormalization techniques are applied to study different disordered systems, with an emphasis on the understanding of the electronic properties of amorphous matter, mainly semiconductors. (Authors) [pt

  8. Hybrid PAPR reduction scheme with Huffman coding and DFT-spread technique for direct-detection optical OFDM systems

    Science.gov (United States)

    Peng, Miao; Chen, Ming; Zhou, Hui; Wan, Qiuzhen; Jiang, LeYong; Yang, Lin; Zheng, Zhiwei; Chen, Lin

    2018-01-01

    High peak-to-average power ratio (PAPR) of the transmit signal is a major drawback in optical orthogonal frequency division multiplexing (OOFDM) system. In this paper, we propose and experimentally demonstrate a novel hybrid scheme, combined the Huffman coding and Discrete Fourier Transmission-Spread (DFT-spread), in order to reduce high PAPR in a 16-QAM short-reach intensity-modulated and direct-detection OOFDM (IMDD-OOFDM) system. The experimental results demonstrated that the hybrid scheme can reduce the PAPR by about 1.5, 2, 3 and 6 dB, and achieve 1.5, 1, 2.5 and 3 dB receiver sensitivity improvement compared to clipping, DFT-spread and Huffman coding and original OFDM signals, respectively, at an error vector magnitude (EVM) of -10 dB after transmission over 20 km standard single-mode fiber (SSMF). Furthermore, the throughput gain can be of the order of 30% by using the hybrid scheme compared with the cases of without applying the Huffman coding.

  9. Real space renormalization techniques for disordered systems

    International Nuclear Information System (INIS)

    Anda, E.V.

    1985-01-01

    Real Space renormalization techniques are applied to study different disordered systems, with an emphasis on the under-standing of the electronic properties of amorphous matter, mainly semiconductors. (author) [pt

  10. Bose-Einstein condensation in real space

    International Nuclear Information System (INIS)

    Valencia, J.J.; Llano, M. de; Solis, M.A.

    2004-01-01

    We show how Bose-Einstein condensation (BEC) occurs not only in momentum space but also in coordinate (or real) space. Analogies between the isotherms of a van der Waals classical gas of extended (or finite-diameter) identical atoms and the point (or zero-diameter) particles of an ideal BE gas allow concluding that, in contrast with the classical case, the volume per particle vanishes in the pure BE condensate phase precisely because the boson diameters are zero. Thus a BE condensate forms in real space without exhibiting a liquid branch as does the classical gas. (Author)

  11. Asynchronous communication in real space process algebra

    NARCIS (Netherlands)

    Baeten, J.C.M.; Bergstra, J.A.

    1991-01-01

    A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a

  12. Asynchronous communication in real space process algebra

    NARCIS (Netherlands)

    Bergstra, J.A.; Baeten, J.C.M.

    1992-01-01

    A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a

  13. A brief comparison between grid based real space algorithms and spectrum algorithms for electronic structure calculations

    International Nuclear Information System (INIS)

    Wang, Lin-Wang

    2006-01-01

    Quantum mechanical ab initio calculation constitutes the biggest portion of the computer time in material science and chemical science simulations. As a computer center like NERSC, to better serve these communities, it will be very useful to have a prediction for the future trends of ab initio calculations in these areas. Such prediction can help us to decide what future computer architecture can be most useful for these communities, and what should be emphasized on in future supercomputer procurement. As the size of the computer and the size of the simulated physical systems increase, there is a renewed interest in using the real space grid method in electronic structure calculations. This is fueled by two factors. First, it is generally assumed that the real space grid method is more suitable for parallel computation for its limited communication requirement, compared with spectrum method where a global FFT is required. Second, as the size N of the calculated system increases together with the computer power, O(N) scaling approaches become more favorable than the traditional direct O(N 3 ) scaling methods. These O(N) methods are usually based on localized orbital in real space, which can be described more naturally by the real space basis. In this report, the author compares the real space methods versus the traditional plane wave (PW) spectrum methods, for their technical pros and cons, and the possible of future trends. For the real space method, the author focuses on the regular grid finite different (FD) method and the finite element (FE) method. These are the methods used mostly in material science simulation. As for chemical science, the predominant methods are still Gaussian basis method, and sometime the atomic orbital basis method. These two basis sets are localized in real space, and there is no indication that their roles in quantum chemical simulation will change anytime soon. The author focuses on the density functional theory (DFT), which is the

  14. Pseudo-atomic orbitals as basis sets for the O(N) DFT code CONQUEST

    Energy Technology Data Exchange (ETDEWEB)

    Torralba, A S; Brazdova, V; Gillan, M J; Bowler, D R [Materials Simulation Laboratory, UCL, Gower Street, London WC1E 6BT (United Kingdom); Todorovic, M; Miyazaki, T [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Choudhury, R [London Centre for Nanotechnology, UCL, 17-19 Gordon Street, London WC1H 0AH (United Kingdom)], E-mail: david.bowler@ucl.ac.uk

    2008-07-23

    Various aspects of the implementation of pseudo-atomic orbitals (PAOs) as basis functions for the linear scaling CONQUEST code are presented. Preliminary results for the assignment of a large set of PAOs to a smaller space of support functions are encouraging, and an important related proof on the necessary symmetry of the support functions is shown. Details of the generation and integration schemes for the PAOs are also given.

  15. Real Space Approach to CMB deboosting

    CERN Document Server

    Yoho, Amanda; Starkman, Glenn D.; Pereira, Thiago S.

    2013-01-01

    The effect of our Galaxy's motion through the Cosmic Microwave Background rest frame, which aberrates and Doppler shifts incoming photons measured by current CMB experiments, has been shown to produce mode-mixing in the multipole space temperature coefficients. However, multipole space determinations are subject to many difficulties, and a real-space analysis can provide a straightforward alternative. In this work we describe a numerical method for removing Lorentz- boost effects from real-space temperature maps. We show that to deboost a map so that one can accurately extract the temperature power spectrum requires calculating the boost kernel at a finer pixelization than one might naively expect. In idealized cases that allow for easy comparison to analytic results, we have confirmed that there is indeed mode mixing among the spherical harmonic coefficients of the temperature. We find that using a boost kernel calculated at Nside=8192 leads to a 1% bias in the binned boosted power spectrum at l~2000, while ...

  16. Asynchronous communication in real space process algebra

    OpenAIRE

    Baeten, JCM Jos; Bergstra, JA Jan

    1990-01-01

    A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a priority mechanism allows to express the broadcasting mechanism. As an application, a protocol is specified in which the receiver moves with respect to the sender.

  17. Real-space mapping of electronic orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Löffler, Stefan, E-mail: stefan.loeffler@tuwien.ac.at [Department for Materials Science and Engineering, McMaster University, 1280 Main Street West, L8S 4M1 Hamilton, Ontario (Canada); University Service Centre for Transmission Electron Microscopy, TU Vienna, Wiedner Hauptstraße 8-10/E057B, 1040 Wien (Austria); Institute for Solid State Physics, TU Vienna, Wiedner Hauptstraße 8-10/E138, 1040 Wien (Austria); Bugnet, Matthieu; Gauquelin, Nicolas [Department for Materials Science and Engineering, McMaster University, 1280 Main Street West, L8S 4M1 Hamilton, Ontario (Canada); Lazar, Sorin [FEI Electron Optics, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands); Assmann, Elias; Held, Karsten [Institute for Solid State Physics, TU Vienna, Wiedner Hauptstraße 8-10/E138, 1040 Wien (Austria); Botton, Gianluigi A. [Department for Materials Science and Engineering, McMaster University, 1280 Main Street West, L8S 4M1 Hamilton, Ontario (Canada); Schattschneider, Peter [University Service Centre for Transmission Electron Microscopy, TU Vienna, Wiedner Hauptstraße 8-10/E057B, 1040 Wien (Austria); Institute for Solid State Physics, TU Vienna, Wiedner Hauptstraße 8-10/E138, 1040 Wien (Austria)

    2017-06-15

    Highlights: • Electronic orbitals in Rutile are mapped using STEM-EELS. • Inelastic scattering simulations are performed for the experimental conditions. • The experiments and the simulations are found to be in excellent agreement. - Abstract: Electronic states are responsible for most material properties, including chemical bonds, electrical and thermal conductivity, as well as optical and magnetic properties. Experimentally, however, they remain mostly elusive. Here, we report the real-space mapping of selected transitions between p and d states on the Ångström scale in bulk rutile (TiO{sub 2}) using electron energy-loss spectrometry (EELS), revealing information on individual bonds between atoms. On the one hand, this enables the experimental verification of theoretical predictions about electronic states. On the other hand, it paves the way for directly investigating electronic states under conditions that are at the limit of the current capabilities of numerical simulations such as, e.g., the electronic states at defects, interfaces, and quantum dots.

  18. VLSI Architectures for Computing DFT's

    Science.gov (United States)

    Truong, T. K.; Chang, J. J.; Hsu, I. S.; Reed, I. S.; Pei, D. Y.

    1986-01-01

    Simplifications result from use of residue Fermat number systems. System of finite arithmetic over residue Fermat number systems enables calculation of discrete Fourier transform (DFT) of series of complex numbers with reduced number of multiplications. Computer architectures based on approach suitable for design of very-large-scale integrated (VLSI) circuits for computing DFT's. General approach not limited to DFT's; Applicable to decoding of error-correcting codes and other transform calculations. System readily implemented in VLSI.

  19. DFT calculation for elastic constants of orthorhombic structure within WIEN2K code: A new package (ortho-elastic)

    International Nuclear Information System (INIS)

    Reshak, Ali H.; Jamal, Morteza

    2012-01-01

    Highlights: ► A new package for calculating elastic constants of orthorhombic structure is released. ► The package called ortho-elastic. ► It is compatible with [FP-(L)APW+lo] method implemented in WIEN2k code. ► Several orthorhombic structure compounds were used to test the new package. ► Elastic constants calculated using this package show good agreement with experiment. - Abstract: A new package for calculating the elastic constants of orthorhombic structure is released. The package called ortho-elastic. The formalism of calculating the ortho-elastic constants is described in details. The package is compatible with the highly accurate all-electron full-potential (linearized) augmented plane-wave plus local orbital [FP-(L)APW+lo] method implemented in WIEN2k code. Several orthorhombic structure compounds were used to test the new package. We found that the calculated elastic constants using the new package show better agreement with the available experimental data than the previous theoretical results used different methods. In this package the second-order derivative E ″ (ε) of polynomial fit E=E(ε) of energy vs strains at zero strain (ε=0), used to calculate the orthorhombic elastic constants.

  20. Real-space renormalization group approach to driven diffusive systems

    Energy Technology Data Exchange (ETDEWEB)

    Hanney, T [SUPA and School of Physics, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ (United Kingdom); Stinchcombe, R B [Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP (United Kingdom)

    2006-11-24

    We introduce a real-space renormalization group procedure for driven diffusive systems which predicts both steady state and dynamic properties. We apply the method to the boundary driven asymmetric simple exclusion process and recover exact results for the steady state phase diagram, as well as the crossovers in the relaxation dynamics for each phase.

  1. Real-space renormalization group approach to driven diffusive systems

    International Nuclear Information System (INIS)

    Hanney, T; Stinchcombe, R B

    2006-01-01

    We introduce a real-space renormalization group procedure for driven diffusive systems which predicts both steady state and dynamic properties. We apply the method to the boundary driven asymmetric simple exclusion process and recover exact results for the steady state phase diagram, as well as the crossovers in the relaxation dynamics for each phase

  2. Renormalization group in statistical physics - momentum and real spaces

    International Nuclear Information System (INIS)

    Yukalov, V.I.

    1988-01-01

    Two variants of the renormalization group approach in statistical physics are considered, the renormalization group in the momentum and the renormalization group in the real spaces. Common properties of these methods and their differences are cleared up. A simple model for investigating the crossover between different universality classes is suggested. 27 refs

  3. Ab initio nonequilibrium quantum transport and forces with the real-space projector augmented wave method

    DEFF Research Database (Denmark)

    Chen, Jingzhe; Thygesen, Kristian S.; Jacobsen, Karsten W.

    2012-01-01

    We present an efficient implementation of a nonequilibrium Green's function method for self-consistent calculations of electron transport and forces in nanostructured materials. The electronic structure is described at the level of density functional theory using the projector augmented wave method...... over k points and real space makes the code highly efficient and applicable to systems containing several hundreds of atoms. The method is applied to a number of different systems, demonstrating the effects of bias and gate voltages, multiterminal setups, nonequilibrium forces, and spin transport....

  4. Real-space Berry phases: Skyrmion soccer (invited)

    Science.gov (United States)

    Everschor-Sitte, Karin; Sitte, Matthias

    2014-05-01

    Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.

  5. Real-space Berry phases: Skyrmion soccer (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Everschor-Sitte, Karin, E-mail: karin@physics.utexas.edu; Sitte, Matthias [The University of Texas at Austin, Department of Physics, 2515 Speedway, Austin, Texas 78712 (United States)

    2014-05-07

    Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.

  6. Real-space Berry phases: Skyrmion soccer (invited)

    International Nuclear Information System (INIS)

    Everschor-Sitte, Karin; Sitte, Matthias

    2014-01-01

    Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects

  7. Real space renormalization group for spectra and density of states

    International Nuclear Information System (INIS)

    Wiecko, C.; Roman, E.

    1984-09-01

    We discuss the implementation of the Real Space Renormalization Group Decimation Technique for 1-d tight-binding models with long range interactions with or without disorder and for the 2-d regular square lattice. The procedure follows the ideas developed by Southern et al. Some new explicit formulae are included. The purpose of this study is to calculate spectra and densities of states following the procedure developed in our previous work. (author)

  8. Real-space imaging of fractional quantum Hall liquids

    Science.gov (United States)

    Hayakawa, Junichiro; Muraki, Koji; Yusa, Go

    2013-01-01

    Electrons in semiconductors usually behave like a gas--as independent particles. However, when confined to two dimensions under a perpendicular magnetic field at low temperatures, they condense into an incompressible quantum liquid. This phenomenon, known as the fractional quantum Hall (FQH) effect, is a quantum-mechanical manifestation of the macroscopic behaviour of correlated electrons that arises when the Landau-level filling factor is a rational fraction. However, the diverse microscopic interactions responsible for its emergence have been hidden by its universality and macroscopic nature. Here, we report real-space imaging of FQH liquids, achieved with polarization-sensitive scanning optical microscopy using trions (charged excitons) as a local probe for electron spin polarization. When the FQH ground state is spin-polarized, the triplet/singlet intensity map exhibits a spatial pattern that mirrors the intrinsic disorder potential, which is interpreted as a mapping of compressible and incompressible electron liquids. In contrast, when FQH ground states with different spin polarization coexist, domain structures with spontaneous quasi-long-range order emerge, which can be reproduced remarkably well from the disorder patterns using a two-dimensional random-field Ising model. Our results constitute the first reported real-space observation of quantum liquids in a class of broken symmetry state known as the quantum Hall ferromagnet.

  9. Real space multiple scattering description of alloy phase stability

    International Nuclear Information System (INIS)

    Turchi, P.E.A.; Sluiter, M.

    1992-01-01

    This paper presents a brief overview of the advanced methodology which has been recently developed to study phase stability properties of substitutional alloys, including order-disorder phenomena and structural transformations. The approach is based on the real space version of the Generalized Perturbation Method first introduced by Ducastelle and Gautier, within the Korringa-Kohn-Rostoker multiple scattering formulation of the Coherent Potential Approximation. Temperature effects are taken into account with a generalized meanfield approach, namely the Cluster Variation Method. The viability and the predictive power of such a scheme will be illustrated by a few examples, among them: the ground state properties of alloys, in particular the ordering tendencies for a series of equiatomic bcc-based alloys, the computation of alloy phase diagrams with the case of fcc and bcc-based Ni-Al alloys, the calculation of antiphase boundary energies and interfacial energies, and the stability of artificial ordered superlattices

  10. Oscillatory bistability of real-space transfer in semiconductor heterostructures

    Science.gov (United States)

    Do˙ttling, R.; Scho˙ll, E.

    1992-01-01

    Charge transport parallel to the layers of a modulation-doped GaAs/AlxGa1-xAs heterostructure is studied theoretically. The heating of electrons by the applied electric field leads to real-space transfer of electrons from the GaAs into the adjacent AlxGa1-xAs layer. For sufficiently large dc bias, spontaneous periodic 100-GHz current oscillations, and bistability and hysteretic switching transitions between oscillatory and stationary states are predicted. We present a detailed investigation of complex bifurcation scenarios as a function of the bias voltage U0 and the load resistance RL. For large RL subcritical Hopf bifurcations and global bifurcations of limit cycles are displayed.

  11. Real-space imaging of interfacial water with submolecular resolution

    Science.gov (United States)

    Jiang, Ying; Peking University Team

    2014-03-01

    Water/solid interfaces are vital to our daily lives and also a central theme across an incredibly wide range of scientific disciplines. Resolving the internal structure, i.e. the O-H directionality, of water molecules adsorbed on solid surfaces has been one of the key issues of water science yet remains challenging. Using a low-temperature scanning tunneling microscope (STM), we report the submolecular-resolution imaging of individual water monomers and tetramers on NaCl(001) films supported by a Au(111) substrate at 5 K. The frontier molecular orbitals of adsorbed water were directly visualized, which allowed discriminating the orientation of the monomers and the H-bond directionality of the tetramers in real space. Comparison with ab initio density functional theory calculations reveals that the ability to access the orbital structures of water stems from the electronic decoupling effect provided by the NaCl films and the precisely tunable tip-water coupling. Supported by National Basic Research Programs of China and National Science Foundation of China.

  12. EDITORIAL: From reciprocal space to real space in surface science From reciprocal space to real space in surface science

    Science.gov (United States)

    Bartels, Ludwig; Ernst, Karl-Heinz

    2012-09-01

    This issue is dedicated to Karl-Heinz Rieder on the occasion of his 70th birthday. It contains contributions written by his former students and colleagues from all over the world. Experimental techniques based on free electrons, such as photoelectron spectroscopy, electron microscopy and low energy electron diffraction (LEED), were foundational to surface science. While the first revealed the band structures of materials, the second provided nanometer scale imagery and the latter elucidated the atomic scale periodicity of surfaces. All required an (ultra-)high vacuum, and LEED illustrated impressively that adsorbates, such as carbon monoxide, hydrogen or oxygen, can markedly and periodically restructure surfaces from their bulk termination, even at pressures ten orders of magnitude or more below atmospheric. Yet these techniques were not generally able to reveal atomic scale surface defects, nor could they faithfully show adsorption of light atoms such as hydrogen. Although a complete atom, helium can also be regarded as a wave with a de Broglie wavelength that allows the study of surface atomic periodicities at a delicateness and sensitivity exceeding that of electrons-based techniques. In combination, these and other techniques generated insight into the periodicity of surfaces and their vibrational properties, yet were limited to simple and periodic surface setups. All that changed with the advent of scanning tunneling microscopy (STM) roughly 30 years ago, allowing real space access to surface defects and individual adsorbates. Applied at low temperatures, not only can STM establish a height profile of surfaces, but can also perform spectroscopy and serve as an actuator capable of rearranging individual species at atomic scale resolution. The direct and intuitive manner in which STM provided access as a spectator and as an actor to the atomic scale was foundational to today's surface science and to the development of the concepts of nanoscience in general. The

  13. Comparative study of standard space and real space analysis of quantitative MR brain data.

    Science.gov (United States)

    Aribisala, Benjamin S; He, Jiabao; Blamire, Andrew M

    2011-06-01

    To compare the robustness of region of interest (ROI) analysis of magnetic resonance imaging (MRI) brain data in real space with analysis in standard space and to test the hypothesis that standard space image analysis introduces more partial volume effect errors compared to analysis of the same dataset in real space. Twenty healthy adults with no history or evidence of neurological diseases were recruited; high-resolution T(1)-weighted, quantitative T(1), and B(0) field-map measurements were collected. Algorithms were implemented to perform analysis in real and standard space and used to apply a simple standard ROI template to quantitative T(1) datasets. Regional relaxation values and histograms for both gray and white matter tissues classes were then extracted and compared. Regional mean T(1) values for both gray and white matter were significantly lower using real space compared to standard space analysis. Additionally, regional T(1) histograms were more compact in real space, with smaller right-sided tails indicating lower partial volume errors compared to standard space analysis. Standard space analysis of quantitative MRI brain data introduces more partial volume effect errors biasing the analysis of quantitative data compared to analysis of the same dataset in real space. Copyright © 2011 Wiley-Liss, Inc.

  14. Thermal expansion of an amorphous alloy. Reciprocal-space versus real-space distribution functions

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2007-01-01

    This paper describes the relation between the change in the position of the first X-ray diffraction maximum in reciprocal space and the first maximum of the distribution function in real space for the Ge 50 Al 40 Cr 10 amorphous alloy. It is also shown that the first diffraction maximum of the interference function carries the most significant information about the interatomic distances in real space while the subsequent peaks of the interference function are responsible for the shoulders of the main peak of the real-space distribution function. The results are used to support validity of the method previously used to monitor thermal expansion of the glassy alloys using an X-ray diffraction profile

  15. Seeing real-space dynamics of liquid water through inelastic x-ray scattering.

    Science.gov (United States)

    Iwashita, Takuya; Wu, Bin; Chen, Wei-Ren; Tsutsui, Satoshi; Baron, Alfred Q R; Egami, Takeshi

    2017-12-01

    Water is ubiquitous on earth, but we know little about the real-space motion of molecules in liquid water. We demonstrate that high-resolution inelastic x-ray scattering measurement over a wide range of momentum and energy transfer makes it possible to probe real-space, real-time dynamics of water molecules through the so-called Van Hove function. Water molecules are found to be strongly correlated in space and time with coupling between the first and second nearest-neighbor molecules. The local dynamic correlation of molecules observed here is crucial to a fundamental understanding of the origin of the physical properties of water, including viscosity. The results also suggest that the quantum-mechanical nature of hydrogen bonds could influence its dynamics. The approach used here offers a powerful experimental method for investigating real-space dynamics of liquids.

  16. A real space calculation of absolutely unstable modes for two-plasmon decay in inhomogeneous plasma

    International Nuclear Information System (INIS)

    Powers, L.V.; Berger, R.L.

    1986-01-01

    Growth rates for absolute modes of two-plasmon decay are obtained by solving for eigenmodes of the coupled mode equations for obliquely scattered Langmuir waves in real space. This analysis establishes a connection both to previous analysis in Fourier transform space and to other parametric instabilities, the analysis of which is commonly done in real space. The essential feature of the instability which admits absolute modes in an inhomogeneous plasma is the strong spatial dependence of the coupling coefficients. Landau damping limits the perpendicular wavenumbers of the most unstable modes and raises the instability thresholds for background plasma temperatures above 1 keV. (author)

  17. Hiding and Searching Strategies of Adult Humans in a Virtual and a Real-Space Room

    Science.gov (United States)

    Talbot, Katherine J.; Legge, Eric L. G.; Bulitko, Vadim; Spetch, Marcia L.

    2009-01-01

    Adults searched for or cached three objects in nine hiding locations in a virtual room or a real-space room. In both rooms, the locations selected by participants differed systematically between searching and hiding. Specifically, participants moved farther from origin and dispersed their choices more when hiding objects than when searching for…

  18. First-principles real-space tight-binding LMTO calculation of electronic structures for atomic clusters

    International Nuclear Information System (INIS)

    Xie, Z.L.; Dy, K.S.; Wu, S.Y.

    1997-01-01

    A real-space scheme has been developed for a first-principles calculation of electronic structures and total energies of atomic clusters. The scheme is based on the combination of the tight-binding linear muffin-tin orbital (TBLMTO) method and the method of real-space Green close-quote s function. With this approach, the local electronic density of states can be conveniently determined from the real-space Green close-quote s function. Furthermore, the full electron density of a cluster can be directly calculated in real space. The scheme has been shown to be very efficient due to the incorporation of the method of real-space Green close-quote s function and Delley close-quote s method of evaluating multicenter integrals. copyright 1996 The American Physical Society

  19. Real-space visualization of remnant Mott gap and magnon excitations.

    Science.gov (United States)

    Wang, Y; Jia, C J; Moritz, B; Devereaux, T P

    2014-04-18

    We demonstrate the ability to visualize real-space dynamics of charge gap and magnon excitations in the Mott phase of the single-band Hubbard model and the remnants of these excitations with hole or electron doping. At short times, the character of magnetic and charge excitations is maintained even for large doping away from the Mott and antiferromagnetic phases. Doping influences both the real-space patterns and long timescales of these excitations with a clear carrier asymmetry attributable to particle-hole symmetry breaking in the underlying model. Further, a rapidly oscillating charge-density-wave-like pattern weakens, but persists as a visible demonstration of a subleading instability at half-filling which remains upon doping. The results offer an approach to analyzing the behavior of systems where momentum space is either inaccessible or poorly defined.

  20. Real-space grid implementation of the projector augmented wave method

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hansen, Lars Bruno; Jacobsen, Karsten Wedel

    2005-01-01

    A grid-based real-space implementation of the projector augmented wave sPAWd method of Blöchl fPhys. Rev. B 50, 17953 s1994dg for density functional theory sDFTd calculations is presented. The use of uniform three-dimensional s3Dd real-space grids for representing wave functions, densities...... valence wave functions that can be represented on relatively coarse grids. We demonstrate the accuracy of the method by calculating the atomization energies of 20 small molecules, and the bulk modulus and lattice constants of bulk aluminum. We show that the approach in terms of computational efficiency...... is comparable to standard plane-wave methods, but the memory requirements are higher....

  1. A symmetrical treatment of bradyons and luxons by means of a non-real space

    International Nuclear Information System (INIS)

    Majernik, V.

    1983-01-01

    From the point of view of symmetry, it is interesting to note that there exist two kinds of physical particles - bradyons and luxons. In this connection the question arises whether it is not possible to treat luxons and bradyons in a symmetric way. The characteristic property of luxons is the fact that they move with the velocity of light. On the other hand, the characteristic property of bradyons is their ability to be localized. The bradyon-luxon symmetry would require such physical conditions in which luxons would behave as bradyons and bradyons as luxons. The author speculates that there exists a non-real space in addition to our real space in which bradyons would move with the velocity of light and luxons would be localized. This non-real, three-dimensional space (s-space), together with our three-dimensional real space (r-space), forms a suitable framework for the postulated bradyon-luxon symmetry. Within this framework he attempts to find the fundamental equations for bosons and fermions both in the s- and r-space, and to suggest a new hierarchy among the particles as well as a simple scheme of the fundamental physical interactions. (Auth.)

  2. Reconstruction of real-space linear matter power spectrum from multipoles of BOSS DR12 results

    Science.gov (United States)

    Lee, Seokcheon

    2018-02-01

    Recently, the power spectrum (PS) multipoles using the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) sample are analyzed [1]. The based model for the analysis is the so-called TNS quasi-linear model and the analysis provides the multipoles up to the hexadecapole [2]. Thus, one might be able to recover the real-space linear matter PS by using the combinations of multipoles to investigate the cosmology [3]. We provide the analytic form of the ratio of quadrupole (hexadecapole) to monopole moments of the quasi-linear PS including the Fingers-of-God (FoG) effect to recover the real-space PS in the linear regime. One expects that observed values of the ratios of multipoles should be consistent with those of the linear theory at large scales. Thus, we compare the ratios of multipoles of the linear theory, including the FoG effect with the measured values. From these, we recover the linear matter power spectra in real-space. These recovered power spectra are consistent with the linear matter power spectra.

  3. A real-space stochastic density matrix approach for density functional electronic structure.

    Science.gov (United States)

    Beck, Thomas L

    2015-12-21

    The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.

  4. Periodically driven random quantum spin chains: real-space renormalization for Floquet localized phases

    Science.gov (United States)

    Monthus, Cécile

    2017-07-01

    When random quantum spin chains are submitted to some periodic Floquet driving, the eigenstates of the time-evolution operator over one period can be localized in real space. For the case of periodic quenches between two Hamiltonians (or periodic kicks), where the time-evolution operator over one period reduces to the product of two simple transfer matrices, we propose a block-self-dual renormalization procedure to construct the localized eigenstates of the Floquet dynamics. We also discuss the corresponding strong disorder renormalization procedure, that generalizes the RSRG-X procedure to construct the localized eigenstates of time-independent Hamiltonians.

  5. A three-dimensional radiation image display on a real space image created via photogrammetry

    Science.gov (United States)

    Sato, Y.; Ozawa, S.; Tanifuji, Y.; Torii, T.

    2018-03-01

    The Fukushima Daiichi Nuclear Power Station (FDNPS), operated by Tokyo Electric Power Company Holdings, Inc., went into meltdown after the occurrence of a large tsunami caused by the Great East Japan Earthquake of March 11, 2011. The radiation distribution measurements inside the FDNPS buildings are indispensable to execute decommissioning tasks in the reactor buildings. We have developed a three-dimensional (3D) image reconstruction method for radioactive substances using a compact Compton camera. Moreover, we succeeded in visually recognizing the position of radioactive substances in real space by the integration of 3D radiation images and the 3D photo-model created using photogrammetry.

  6. Real-space decoupling transformation for quantum many-body systems.

    Science.gov (United States)

    Evenbly, G; Vidal, G

    2014-06-06

    We propose a real-space renormalization group method to explicitly decouple into independent components a many-body system that, as in the phenomenon of spin-charge separation, exhibits separation of degrees of freedom at low energies. Our approach produces a branching holographic description of such systems that opens the path to the efficient simulation of the most entangled phases of quantum matter, such as those whose ground state violates a boundary law for entanglement entropy. As in the coarse-graining transformation of Vidal [Phys. Rev. Lett. 99, 220405 (2007).

  7. Lattice dynamics calculations based on density-functional perturbation theory in real space

    Science.gov (United States)

    Shang, Honghui; Carbogno, Christian; Rinke, Patrick; Scheffler, Matthias

    2017-06-01

    A real-space formalism for density-functional perturbation theory (DFPT) is derived and applied for the computation of harmonic vibrational properties in molecules and solids. The practical implementation using numeric atom-centered orbitals as basis functions is demonstrated exemplarily for the all-electron Fritz Haber Institute ab initio molecular simulations (FHI-aims) package. The convergence of the calculations with respect to numerical parameters is carefully investigated and a systematic comparison with finite-difference approaches is performed both for finite (molecules) and extended (periodic) systems. Finally, the scaling tests and scalability tests on massively parallel computer systems demonstrate the computational efficiency.

  8. Real space in situ bond energies: toward a consistent energetic definition of bond strength.

    Science.gov (United States)

    Menéndez-Crespo, Daniel; Costales, Aurora; Francisco, Evelio; Martin Pendas, Angel

    2018-04-14

    A rigorous definition of intrinsic bond strength based on the partitioning of a molecule into real space fragments is presented. Using the domains provided by the quantum theory of atoms in molecules (QTAIM) together with the interacting quantum atoms (IQA) energetic decomposition, we show how an in situ bond strength, matching all the requirements of an intrinsic bond energy, can be defined between each pair of fragments. Total atomization or fragmentation energies are shown to be equal to the sum of these in situ bond energies (ISBEs) if the energies of the fragments are measured with respect to their in-the-molecule state. These energies usually lie above the ground state of the isolated fragments by quantities identified with the standard fragment relaxation or deformation energies, which are also provided by the protocol. Deformation energies bridge dissociation energies with ISBEs, and can be dissected using well-known tools of real space theories of chemical bonding. Similarly, ISBEs can be partitioned into ionic and covalent contributions, and this feature adds to the chemical appeal of the procedure. All the energetic quantities examined are observable and amenable, in principle, to experimental determination. Several systems, exemplifying the role of each energetic term herein presented are used to show the power of the approach. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Generalized gravity from modified DFT

    International Nuclear Information System (INIS)

    Sakatani, Yuho; Uehara, Shozo; Yoshida, Kentaroh

    2017-01-01

    Recently, generalized equations of type IIB supergravity have been derived from the requirement of classical kappa-symmetry of type IIB superstring theory in the Green-Schwarz formulation. These equations are covariant under generalized T-duality transformations and hence one may expect a formulation similar to double field theory (DFT). In this paper, we consider a modification of the DFT equations of motion by relaxing a condition for the generalized covariant derivative with an extra generalized vector. In this modified double field theory (mDFT), we show that the flatness condition of the modified generalized Ricci tensor leads to the NS-NS part of the generalized equations of type IIB supergravity. In particular, the extra vector fields appearing in the generalized equations correspond to the extra generalized vector in mDFT. We also discuss duality symmetries and a modification of the string charge in mDFT.

  10. Generalized gravity from modified DFT

    Energy Technology Data Exchange (ETDEWEB)

    Sakatani, Yuho [Department of Physics, Kyoto Prefectural University of Medicine,Kyoto 606-0823 (Japan); Fields, Gravity and Strings, CTPU,Institute for Basic Sciences, Daejeon 34047 (Korea, Republic of); Uehara, Shozo [Department of Physics, Kyoto Prefectural University of Medicine,Kyoto 606-0823 (Japan); Yoshida, Kentaroh [Department of Physics, Kyoto University,Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan)

    2017-04-20

    Recently, generalized equations of type IIB supergravity have been derived from the requirement of classical kappa-symmetry of type IIB superstring theory in the Green-Schwarz formulation. These equations are covariant under generalized T-duality transformations and hence one may expect a formulation similar to double field theory (DFT). In this paper, we consider a modification of the DFT equations of motion by relaxing a condition for the generalized covariant derivative with an extra generalized vector. In this modified double field theory (mDFT), we show that the flatness condition of the modified generalized Ricci tensor leads to the NS-NS part of the generalized equations of type IIB supergravity. In particular, the extra vector fields appearing in the generalized equations correspond to the extra generalized vector in mDFT. We also discuss duality symmetries and a modification of the string charge in mDFT.

  11. DFT computations of the lattice constant, stable atomic structure and ...

    African Journals Online (AJOL)

    This paper presents the most stable atomic structure and lattice constant of Fullerenes (C60). FHI-aims DFT code was used to predict the stable structure and the computational lattice constant of C60. These were compared with known experimental structures and lattice constants of C60. The results obtained showed that ...

  12. Real-space multiple-scattering theory and the electronic structure of systems with full or reduced symmetry

    International Nuclear Information System (INIS)

    Zhang, X.; Gonis, A.; MacLaren, J.M.

    1989-01-01

    We present a new real-space multiple-scattering-theory method for the solution of the Schroedinger equation and the calculation of the electronic structure of solid materials with full or reduced symmetry. The method is based on the concept of semi-infinite periodicity (SIP), rather than translational invariance, and on the property of removal invariance of the scattering matrix of systems with SIP. This latter property allows one to replace the usual Brillouin-zone integrals in reciprocal space by a self-consistency equation for the t matrix, which is sufficient for the determination of the Green function and related properties. Because it is developed entirely in direct space, the method provides a unified treatment of the electronic structure of bulk materials, surfaces, interfaces and grain boundaries (coherent or incoherent), impurities of interstitial or substitutional kinds, and can be easily extended to treat concentrated, substitutionally disordered alloys. One of its advantages over methods based on Bloch's theorem and reciprocal space is the great simplicity of setting up and running the associated computer codes even for complex structures, and structures with reduced or no symmetry that lie outside the realm of applicability of conventional methods. We present the results of model calculations for one-dimensional and three-dimensional model systems as well as for three-dimensional realistic materials. Where appropriate, these results are compared with those obtained through conventional techniques, and give an indication of the method's flexibility and reliability. Our applications of this method to this point are discussed, and our plans for future development are presented

  13. Real-space renormalization group; application to site percolation in square lattice

    International Nuclear Information System (INIS)

    Tsallis, C.; Schwachheim, G.

    1978-05-01

    The real-space renormalization group proposed by Reynolds, Klein and Stanley 1977 to treat the site percolation is analysed and extended . The best among 3 possible definitions of 'percolating' configurations and among 5 possible methods to weight these configurations, are established for percolation in square lattices. The use of n xn square clusters leads, for n = 2 (RKS), n = 3 and n = 4, to √ sub (p) approximately equal to 1.635, √ sub(p) approximately equal to 1.533 and √ sub(p) approximately equal to 1.498, and also to P sub(c) approximately equal to 0.382, P sub(c) approximately equal to 0.388 and P sub(c) approximately equal to 0.398, exhibiting in this way the correct (but slow) tendency towards the best up to date values [pt

  14. Revealing the correlation between real-space structure and chiral magnetic order at the atomic scale

    Science.gov (United States)

    Hauptmann, Nadine; Dupé, Melanie; Hung, Tzu-Chao; Lemmens, Alexander K.; Wegner, Daniel; Dupé, Bertrand; Khajetoorians, Alexander A.

    2018-03-01

    We image simultaneously the geometric, the electronic, and the magnetic structures of a buckled iron bilayer film that exhibits chiral magnetic order. We achieve this by combining spin-polarized scanning tunneling microscopy and magnetic exchange force microscopy (SPEX) to independently characterize the geometric as well as the electronic and magnetic structures of nonflat surfaces. This new SPEX imaging technique reveals the geometric height corrugation of the reconstruction lines resulting from strong strain relaxation in the bilayer, enabling the decomposition of the real-space from the electronic structure at the atomic level and the correlation with the resultant spin-spiral ground state. By additionally utilizing adatom manipulation, we reveal the chiral magnetic ground state of portions of the unit cell that were not previously imaged with spin-polarized scanning tunneling microscopy alone. Using density functional theory, we investigate the structural and electronic properties of the reconstructed bilayer and identify the favorable stoichiometry regime in agreement with our experimental result.

  15. Real-space formulation of the electrostatic potential and total energy of solids

    International Nuclear Information System (INIS)

    Pask, J E; Sterne, P A

    2004-01-01

    We develop expressions for the electrostatic potential and total energy of crystalline solids which are amenable to direct evaluation in real space. Unlike conventional reciprocal space formulations, no Fourier transforms or reciprocal lattice summations are required, and the formulation is well suited for large-scale, parallel computations. The need for reciprocal space expressions is eliminated by replacing long-range potentials by equivalent localized charge distributions and incorporating long-range interactions into boundary conditions on the unit cell. In so doing, a simplification of the conventional reciprocal space formalism is obtained. The equivalence of the real- and reciprocal space formalisms is demonstrated by direct comparison in self-consistent density-functional calculations

  16. Real-space quasilinear theory of drift waves in a sheared magnetic field

    International Nuclear Information System (INIS)

    1977-02-01

    A real-space quasilinear theory is developed for the collisional and the collisionless drift waves in a plasma with a sheared magnetic field of slab geometry. The equation obtained describes the interaction between many localized modes around different rational surfaces through the density modulation of the energy source region of each mode. The wave amplitudes approach to the stationary values through a relaxation oscillation process. When the width x sub(s) of the energy source region becomes comparable to the spacing Δx of the two adjacent rational surfaces, diffusion coefficient due to the wave is enhanced over the classical value, while the nonlocal heat transport due to the wave propagation is shown to be negligible compared to that associated with the diffusion process. (auth.)

  17. Hot electron and real space transfer in double-quantum-well structures

    International Nuclear Information System (INIS)

    Okuno, Eiichi; Sawaki, Nobuhiko; Akasaki, Isamu; Kano, Hiroyuki; Hashimoto, Masafumi.

    1991-01-01

    The hot electron phenomena and real space transfer (RST) effect are studied in GaAs/AlGaAs double-quantum-well (DQW) structures, in which we have two kind of quantum wells with different widths. The drift velocity and the electron temperature at liquid helium temperature are investigated as a function of the external electric field applied parallel to the heterointerface. By increasing the field, the electron temperature rises and reaches a plateau in the intermediate region, followed by further rise in the high-field region. The appearance of the plateau is attributed to the RST effect between the two quantum wells. The threshold field for the appearance of the plateau is determined by the difference energy between the quantized levels in two wells. The energy loss rate as a function of the electron temperature indicates that the RST is assisted by LO phonon scattering. (author)

  18. A massively-parallel electronic-structure calculations based on real-space density functional theory

    International Nuclear Information System (INIS)

    Iwata, Jun-Ichi; Takahashi, Daisuke; Oshiyama, Atsushi; Boku, Taisuke; Shiraishi, Kenji; Okada, Susumu; Yabana, Kazuhiro

    2010-01-01

    Based on the real-space finite-difference method, we have developed a first-principles density functional program that efficiently performs large-scale calculations on massively-parallel computers. In addition to efficient parallel implementation, we also implemented several computational improvements, substantially reducing the computational costs of O(N 3 ) operations such as the Gram-Schmidt procedure and subspace diagonalization. Using the program on a massively-parallel computer cluster with a theoretical peak performance of several TFLOPS, we perform electronic-structure calculations for a system consisting of over 10,000 Si atoms, and obtain a self-consistent electronic-structure in a few hundred hours. We analyze in detail the costs of the program in terms of computation and of inter-node communications to clarify the efficiency, the applicability, and the possibility for further improvements.

  19. A real-space renormalization approach to the Kubo-Greenwood formula in mirror Fibonacci systems

    International Nuclear Information System (INIS)

    Sanchez, Vicenta; Wang Chumin

    2006-01-01

    An exact real-space renormalization method is developed to address the electronic transport in mirror Fibonacci chains at a macroscopic scale by means of the Kubo-Greenwood formula. The results show that the mirror symmetry induces a large number of transparent states in the dc conductivity spectra, contrary to the simple Fibonacci case. A length scaling analysis over ten orders of magnitude reveals the existence of critically localized states and their ac conduction spectra show a highly oscillating behaviour. For multidimensional quasiperiodic systems, a novel renormalization plus convolution method is proposed. This combined renormalization + convolution method has shown an extremely elevated computing efficiency, being able to calculate electrical conductance of a three-dimensional non-crystalline solid with 10 30 atoms. Finally, the dc and ac conductances of mirror Fibonacci nanowires are also investigated, where a quantized dc-conductance variation with the Fermi energy is found, as observed in gold nanowires

  20. Complementary views on electron spectra: From fluctuation diagnostics to real-space correlations

    Science.gov (United States)

    Gunnarsson, O.; Merino, J.; Schäfer, T.; Sangiovanni, G.; Rohringer, G.; Toschi, A.

    2018-03-01

    We study the relation between the microscopic properties of a many-body system and the electron spectra, experimentally accessible by photoemission. In a recent paper [O. Gunnarsson et al., Phys. Rev. Lett. 114, 236402 (2015), 10.1103/PhysRevLett.114.236402], we introduced the "fluctuation diagnostics" approach to extract the dominant wave-vector-dependent bosonic fluctuations from the electronic self-energy. Here, we first reformulate the theory in terms of fermionic modes to render its connection with resonance valence bond (RVB) fluctuations more transparent. Second, by using a large-U expansion, where U is the Coulomb interaction, we relate the fluctuations to real-space correlations. Therefore, it becomes possible to study how electron spectra are related to charge, spin, superconductivity, and RVB-like real-space correlations, broadening the analysis of an earlier work [J. Merino and O. Gunnarsson, Phys. Rev. B 89, 245130 (2014), 10.1103/PhysRevB.89.245130]. This formalism is applied to the pseudogap physics of the two-dimensional Hubbard model, studied in the dynamical cluster approximation. We perform calculations for embedded clusters with up to 32 sites, having three inequivalent K points at the Fermi surface. We find that as U is increased, correlation functions gradually attain values consistent with an RVB state. This first happens for correlation functions involving the antinodal point and gradually spreads to the nodal point along the Fermi surface. Simultaneously, a pseudogap opens up along the Fermi surface. We relate this to a crossover from a Kondo-type state to an RVB-like localized cluster state and to the presence of RVB and spin fluctuations. These changes are caused by a strong momentum dependence in the cluster bath couplings along the Fermi surface. We also show, from a more algorithmic perspective, how the time-consuming calculations in fluctuation diagnostics can be drastically simplified.

  1. Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach

    International Nuclear Information System (INIS)

    Pask, J.E.; Klein, B.M.; Fong, C.Y.; Sterne, P.A.

    1999-01-01

    We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including electronic band structures and details of the convergence of the method. copyright 1999 The American Physical Society

  2. An implementation of core level spectroscopies in a real space Projector Augmented Wave density functional theory code

    DEFF Research Database (Denmark)

    Ljungberg, M.P.; Mortensen, Jens Jørgen; Pettersson, L.G.M.

    2011-01-01

    computation of unoccupied states. The absolute energy scale is computed with the Delta Kohn–Sham method which is possible using specific PAW setups for the core-hole states. We show computed spectra for selected test cases (gas phase H2O and bulk diamond) and discuss the dependence on grid spacing and box...

  3. Real-Space Multiple-Scattering Theory and Its Applications at Exascale

    Energy Technology Data Exchange (ETDEWEB)

    Eisenbach, Markus [ORNL; Wang, Yang [Pittsburgh Supercomputing Center

    2017-11-01

    In recent decades, the ab initio methods based on density functional theory (DFT) (Hohenberg and Kohn 1964, Kohn and Sham 1965) have become a widely used tool in computational materials science, which allows theoretical prediction of physical properties of materials from the first principles and theoretical interpretation of new physical phenomena found in experiments. In the framework of DFT, the original problem that requires solving a quantum mechanical equation for a many-electron system is reduced to a one-electron problem that involves an electron moving in an effective field, while the effective field potential is made up of an electrostatic potential, also known as Hartree potential, arising from the electronic and ion charge distribution in space and an exchange–correlation potential, which is a function of the electron density and encapsulates the exchange and correlation effects of the many-electron system. Even though the exact functional form of the exchange-correlation potential is formally unknown, a local density approximation (LDA) or a generalized gradient approximation (GGA) is usually applied so that the calculation of the exchange–correlation potential, as well as the exchange–correlation energy, becomes tractable while a required accuracy is retained. Based on DFT, ab initio electronic structure calculations for a material generally involve a self-consistent process that iterates between two computational tasks: (1) solving an one-electron Schrödinger equation, also known as Kohn–Sham equation, to obtain the electron density and, if needed, the magnetic moment density, and (2) solving the Poisson equation to obtain the electrostatic potential corresponding to the electron density and constructing the effective potential by adding the exchange–correlation potential to the electrostatic potential. This self-consistent process proceeds until a convergence criteria is reached.

  4. Real-space description of semiconducting band gaps in substitutional systems

    International Nuclear Information System (INIS)

    Magri, R.; Zunger, A.

    1991-01-01

    The goal of ''band-gap engineering'' in substitutional lattices is to identify atomic configurations that would give rise to a desired value of the band gap. Yet, current theoretical approaches to the problems, based largely on compilations of band structures for various latice configurations, have not yielded simple rules relating structural motifs to band gaps. We show that the band gap of substitutional AlAs/GaAs lattices can be usefully expanded in terms of a hierarchy of contributions from real-space ''atomic figures'' (pairs, triplets, quadruplets) detemined from first-principles band-structure calculations. Pair figures (up to fourth neighbors) and three-body figures are dominant. In analogy with similar cluster expansions of the total energy, this permits a systematic search among all lattice configurations for those having ''special'' band gaps. This approach enables the design of substitutional systems with certain band-gap properties by assembling atomic figures. As an illustration, we predict that the [0 bar 12]-oriented (AlAs) 1 /(GaAs) 4 /(AlAs) 1 /(GaAs) 2 superlattice has the largest band gap among all Al 0.25 Ga 0.75 As lattices with a maximum of ten cations per unit cell

  5. An atomic model of brome mosaic virus using direct electron detection and real-space optimization

    Science.gov (United States)

    Wang, Zhao; Hryc, Corey F.; Bammes, Benjamin; Afonine, Pavel V.; Jakana, Joanita; Chen, Dong-Hua; Liu, Xiangan; Baker, Matthew L.; Kao, Cheng; Ludtke, Steven J.; Schmid, Michael F.; Adams, Paul D.; Chiu, Wah

    2014-09-01

    Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure.

  6. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer

    Science.gov (United States)

    Gross, I.; Akhtar, W.; Garcia, V.; Martínez, L. J.; Chouaieb, S.; Garcia, K.; Carrétéro, C.; Barthélémy, A.; Appel, P.; Maletinsky, P.; Kim, J.-V.; Chauleau, J. Y.; Jaouen, N.; Viret, M.; Bibes, M.; Fusil, S.; Jacques, V.

    2017-09-01

    Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or may produce emergent spin-orbit effects that enable efficient spin-charge interconversion. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive, scanning single-spin magnetometer based on a nitrogen-vacancy defect in diamond, we demonstrate real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature. We image the spin cycloid of a multiferroic bismuth ferrite (BiFeO3) thin film and extract a period of about 70 nanometres, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO3 to manipulate the cycloid propagation direction by an electric field. Besides highlighting the potential of nitrogen-vacancy magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO3 can be used in the design of reconfigurable nanoscale spin textures.

  7. Observation of dynamic atom-atom correlation in liquid helium in real space.

    Science.gov (United States)

    Dmowski, W; Diallo, S O; Lokshin, K; Ehlers, G; Ferré, G; Boronat, J; Egami, T

    2017-05-04

    Liquid 4 He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom-atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4 He atoms in the Bose-Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDF peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom-atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.

  8. Stochastic, real-space, imaginary-time evaluation of third-order Feynman–Goldstone diagrams

    International Nuclear Information System (INIS)

    Willow, Soohaeng Yoo; Hirata, So

    2014-01-01

    A new, alternative set of interpretation rules of Feynman–Goldstone diagrams for many-body perturbation theory is proposed, which translates diagrams into algebraic expressions suitable for direct Monte Carlo integrations. A vertex of a diagram is associated with a Coulomb interaction (rather than a two-electron integral) and an edge with the trace of a Green's function in real space and imaginary time. With these, 12 diagrams of third-order many-body perturbation (MP3) theory are converted into 20-dimensional integrals, which are then evaluated by a Monte Carlo method. It uses redundant walkers for convergence acceleration and a weight function for importance sampling in conjunction with the Metropolis algorithm. The resulting Monte Carlo MP3 method has low-rank polynomial size dependence of the operation cost, a negligible memory cost, and a naturally parallel computational kernel, while reproducing the correct correlation energies of small molecules within a few mE h after 10 6 Monte Carlo steps

  9. Stochastic, real-space, imaginary-time evaluation of third-order Feynman–Goldstone diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Willow, Soohaeng Yoo [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784 (Korea, Republic of); Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, Saitama 332-0012 (Japan)

    2014-01-14

    A new, alternative set of interpretation rules of Feynman–Goldstone diagrams for many-body perturbation theory is proposed, which translates diagrams into algebraic expressions suitable for direct Monte Carlo integrations. A vertex of a diagram is associated with a Coulomb interaction (rather than a two-electron integral) and an edge with the trace of a Green's function in real space and imaginary time. With these, 12 diagrams of third-order many-body perturbation (MP3) theory are converted into 20-dimensional integrals, which are then evaluated by a Monte Carlo method. It uses redundant walkers for convergence acceleration and a weight function for importance sampling in conjunction with the Metropolis algorithm. The resulting Monte Carlo MP3 method has low-rank polynomial size dependence of the operation cost, a negligible memory cost, and a naturally parallel computational kernel, while reproducing the correct correlation energies of small molecules within a few mE{sub h} after 10{sup 6} Monte Carlo steps.

  10. Real-space mapping of topological invariants using artificial neural networks

    Science.gov (United States)

    Carvalho, D.; García-Martínez, N. A.; Lado, J. L.; Fernández-Rossier, J.

    2018-03-01

    Topological invariants allow one to characterize Hamiltonians, predicting the existence of topologically protected in-gap modes. Those invariants can be computed by tracing the evolution of the occupied wave functions under twisted boundary conditions. However, those procedures do not allow one to calculate a topological invariant by evaluating the system locally, and thus require information about the wave functions in the whole system. Here we show that artificial neural networks can be trained to identify the topological order by evaluating a local projection of the density matrix. We demonstrate this for two different models, a one-dimensional topological superconductor and a two-dimensional quantum anomalous Hall state, both with spatially modulated parameters. Our neural network correctly identifies the different topological domains in real space, predicting the location of in-gap states. By combining a neural network with a calculation of the electronic states that uses the kernel polynomial method, we show that the local evaluation of the invariant can be carried out by evaluating a local quantity, in particular for systems without translational symmetry consisting of tens of thousands of atoms. Our results show that supervised learning is an efficient methodology to characterize the local topology of a system.

  11. Real-space observation of nanojet-induced modes in a chain of microspheres

    International Nuclear Information System (INIS)

    Liu, Cheng-Yang; Wang, Po-Kai

    2014-01-01

    The three-dimensional real-space observation of photonic nanojet-induced modes in a chain of microspheres with different diameters is reported. The optical transmission properties of a chain of microspheres are studied by using high resolution finite-difference time-domain calculation. The photonic nanojet-induced modes in different chains of microspheres are measured by using a scanning optical microscope system with an optical-fiber probe. We observe the photonic nanojet-induced modes from optical microscope images for chains of 3 μm, 5 μm, and 8 μm microspheres deposited on a patterned silicon substrate. The incident beam can be periodically reproduced in chains of dielectric microspheres giving rise to lossless periodically optical focusing with period of two diameters. Detailed theoretical and experimental data on the transmission, scattering loss, and field-of-view are presented. This waveguide technique can be used in biomedical microscopy, ultra-precise laser process, microfluidics, and nanophotonic circuits.

  12. Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya

    2016-05-26

    Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  13. Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya; Bera, Ashok; Parida, Manas R.; Adhikari, Aniruddha; Shaheen, Basamat; Alarousu, Erkki; Sun, Jingya; Wu, Tao; Bakr, Osman; Mohammed, Omar F.

    2016-01-01

    Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  14. Real-Space x-ray tomographic reconstruction of randomly oriented objects with sparse data frames.

    Science.gov (United States)

    Ayyer, Kartik; Philipp, Hugh T; Tate, Mark W; Elser, Veit; Gruner, Sol M

    2014-02-10

    Schemes for X-ray imaging single protein molecules using new x-ray sources, like x-ray free electron lasers (XFELs), require processing many frames of data that are obtained by taking temporally short snapshots of identical molecules, each with a random and unknown orientation. Due to the small size of the molecules and short exposure times, average signal levels of much less than 1 photon/pixel/frame are expected, much too low to be processed using standard methods. One approach to process the data is to use statistical methods developed in the EMC algorithm (Loh & Elser, Phys. Rev. E, 2009) which processes the data set as a whole. In this paper we apply this method to a real-space tomographic reconstruction using sparse frames of data (below 10(-2) photons/pixel/frame) obtained by performing x-ray transmission measurements of a low-contrast, randomly-oriented object. This extends the work by Philipp et al. (Optics Express, 2012) to three dimensions and is one step closer to the single molecule reconstruction problem.

  15. Real-space observation of nanojet-induced modes in a chain of microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Yang, E-mail: cyliu@mail.tku.edu.tw; Wang, Po-Kai

    2014-04-01

    The three-dimensional real-space observation of photonic nanojet-induced modes in a chain of microspheres with different diameters is reported. The optical transmission properties of a chain of microspheres are studied by using high resolution finite-difference time-domain calculation. The photonic nanojet-induced modes in different chains of microspheres are measured by using a scanning optical microscope system with an optical-fiber probe. We observe the photonic nanojet-induced modes from optical microscope images for chains of 3 μm, 5 μm, and 8 μm microspheres deposited on a patterned silicon substrate. The incident beam can be periodically reproduced in chains of dielectric microspheres giving rise to lossless periodically optical focusing with period of two diameters. Detailed theoretical and experimental data on the transmission, scattering loss, and field-of-view are presented. This waveguide technique can be used in biomedical microscopy, ultra-precise laser process, microfluidics, and nanophotonic circuits.

  16. Virtual environment navigation with look-around mode to explore new real spaces by people who are blind.

    Science.gov (United States)

    Lahav, Orly; Gedalevitz, Hadas; Battersby, Steven; Brown, David; Evett, Lindsay; Merritt, Patrick

    2018-05-01

    This paper examines the ability of people who are blind to construct a mental map and perform orientation tasks in real space by using Nintendo Wii technologies to explore virtual environments. The participant explores new spaces through haptic and auditory feedback triggered by pointing or walking in the virtual environments and later constructs a mental map, which can be used to navigate in real space. The study included 10 participants who were congenitally or adventitiously blind, divided into experimental and control groups. The research was implemented by using virtual environments exploration and orientation tasks in real spaces, using both qualitative and quantitative methods in its methodology. The results show that the mode of exploration afforded to the experimental group is radically new in orientation and mobility training; as a result 60% of the experimental participants constructed mental maps that were based on map model, compared with only 30% of the control group participants. Using technology that enabled them to explore and to collect spatial information in a way that does not exist in real space influenced the ability of the experimental group to construct a mental map based on the map model. Implications for rehabilitation The virtual cane system for the first time enables people who are blind to explore and collect spatial information via the look-around mode in addition to the walk-around mode. People who are blind prefer to use look-around mode to explore new spaces, as opposed to the walking mode. Although the look-around mode requires users to establish a complex collecting and processing procedure for the spatial data, people who are blind using this mode are able to construct a mental map as a map model. For people who are blind (as for the sighted) construction of a mental map based on map model offers more flexibility in choosing a walking path in a real space, accounting for changes that occur in the space.

  17. Dynamical electron diffraction simulation for non-orthogonal crystal system by a revised real space method.

    Science.gov (United States)

    Lv, C L; Liu, Q B; Cai, C Y; Huang, J; Zhou, G W; Wang, Y G

    2015-01-01

    In the transmission electron microscopy, a revised real space (RRS) method has been confirmed to be a more accurate dynamical electron diffraction simulation method for low-energy electron diffraction than the conventional multislice method (CMS). However, the RRS method can be only used to calculate the dynamical electron diffraction of orthogonal crystal system. In this work, the expression of the RRS method for non-orthogonal crystal system is derived. By taking Na2 Ti3 O7 and Si as examples, the correctness of the derived RRS formula for non-orthogonal crystal system is confirmed by testing the coincidence of numerical results of both sides of Schrödinger equation; moreover, the difference between the RRS method and the CMS for non-orthogonal crystal system is compared at the accelerating voltage range from 40 to 10 kV. Our results show that the CMS method is almost the same as the RRS method for the accelerating voltage above 40 kV. However, when the accelerating voltage is further lowered to 20 kV or below, the CMS method introduces significant errors, not only for the higher-order Laue zone diffractions, but also for zero-order Laue zone. These indicate that the RRS method for non-orthogonal crystal system is necessary to be used for more accurate dynamical simulation when the accelerating voltage is low. Furthermore, the reason for the increase of differences between those diffraction patterns calculated by the RRS method and the CMS method with the decrease of the accelerating voltage is discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  18. Study on the mapping of dark matter clustering from real space to redshift space

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Song, Yong-Seon, E-mail: yizheng@kasi.re.kr, E-mail: ysong@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of)

    2016-08-01

    The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ''one-point' FoG term being independent of the separation vector between two different points, and 2) the ''correlated' FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k ∼ 0.2 Mpc{sup -1}, considering the resolution of future experiments.

  19. Study on the mapping of dark matter clustering from real space to redshift space

    International Nuclear Information System (INIS)

    Zheng, Yi; Song, Yong-Seon

    2016-01-01

    The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ''one-point' FoG term being independent of the separation vector between two different points, and 2) the ''correlated' FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k ∼ 0.2 Mpc -1 , considering the resolution of future experiments.

  20. On the potential of zero-tail DFT-spread-OFDM in 5G networks

    DEFF Research Database (Denmark)

    Berardinelli, Gilberto; Tavares, Fernando Menezes Leitão; Sørensen, Troels Bundgaard

    2014-01-01

    Zero-tail Discrete Fourier Transform -spread OFDM (ZT DFT-s-OFDM) modulation allows to dynamically cope with the delay spread of the multipath channel, thus avoiding the limitations of hard-coded Cyclic Prefix (CP). In this paper, we discuss the potential of ZT DFT-s-OFDM modulation for the envis......, possibility of adopting unified radio numerology among different cells, reduced latency and support of agile link direction switching. The robustness of ZT DFT-s-OFDM towards non-idealities such as phase noise and non-linear power amplifier is also discussed....

  1. Systematic pseudopotentials from reference eigenvalue sets for DFT calculations: Pseudopotential files

    Directory of Open Access Journals (Sweden)

    Pablo Rivero

    2015-06-01

    Full Text Available We present in this article a pseudopotential (PP database for DFT calculations in the context of the SIESTA code [1–3]. Comprehensive optimized PPs in two formats (psf files and input files for ATM program are provided for 20 chemical elements for LDA and GGA exchange-correlation potentials. Our data represents a validated database of PPs for SIESTA DFT calculations. Extensive transferability tests guarantee the usefulness of these PPs.

  2. Application of real space Kerker method in simulating gate-all-around nanowire transistors with realistic discrete dopants*

    International Nuclear Information System (INIS)

    Li Chang-Sheng; Ma Lei; Guo Jie-Rong

    2017-01-01

    We adopt a self-consistent real space Kerker method to prevent the divergence from charge sloshing in the simulating transistors with realistic discrete dopants in the source and drain regions. The method achieves efficient convergence by avoiding unrealistic long range charge sloshing but keeping effects from short range charge sloshing. Numerical results show that discrete dopants in the source and drain regions could have a bigger influence on the electrical variability than the usual continuous doping without considering charge sloshing. Few discrete dopants and the narrow geometry create a situation with short range Coulomb screening and oscillations of charge density in real space. The dopants induced quasi-localized defect modes in the source region experience short range oscillations in order to reach the drain end of the device. The charging of the defect modes and the oscillations of the charge density are identified by the simulation of the electron density. (paper)

  3. Keeping it real: revisiting a real-space approach to running ensembles of cosmological N-body simulations

    International Nuclear Information System (INIS)

    Orban, Chris

    2013-01-01

    In setting up initial conditions for ensembles of cosmological N-body simulations there are, fundamentally, two choices: either maximizing the correspondence of the initial density field to the assumed fourier-space clustering or, instead, matching to real-space statistics and allowing the DC mode (i.e. overdensity) to vary from box to box as it would in the real universe. As a stringent test of both approaches, I perform ensembles of simulations using power law and a ''powerlaw times a bump'' model inspired by baryon acoustic oscillations (BAO), exploiting the self-similarity of these initial conditions to quantify the accuracy of the matter-matter two-point correlation results. The real-space method, which was originally proposed by Pen 1997 [1] and implemented by Sirko 2005 [2], performed well in producing the expected self-similar behavior and corroborated the non-linear evolution of the BAO feature observed in conventional simulations, even in the strongly-clustered regime (σ 8 ∼>1). In revisiting the real-space method championed by [2], it was also noticed that this earlier study overlooked an important integral constraint correction to the correlation function in results from the conventional approach that can be important in ΛCDM simulations with L box ∼ −1 Gpc and on scales r∼>L box /10. Rectifying this issue shows that the fourier space and real space methods are about equally accurate and efficient for modeling the evolution and growth of the correlation function, contrary to previous claims. An appendix provides a useful independent-of-epoch analytic formula for estimating the importance of the integral constraint bias on correlation function measurements in ΛCDM simulations

  4. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images

    Science.gov (United States)

    Yothers, Mitchell P.; Browder, Aaron E.; Bumm, Lloyd A.

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  5. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images.

    Science.gov (United States)

    Yothers, Mitchell P; Browder, Aaron E; Bumm, Lloyd A

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  6. Study of real space wave functions with electron energy loss spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Löffler, S.

    2013-07-01

    In this work, new methods to study the real space wave functions of electrons in a solid using transmission electron microscopy (TEM) and electron energy loss spectrometry (EELS) are presented. To this end, the theory of both elastic and inelastic electron scattering is treated in a density-matrix formalism. In the process, the central quantities of inelastic electron scattering - the mixed dynamic form factor (MDFF) and the double differential scattering cross section (DDSCS) - are introduced. In addition to the formal theory, several approximations and simplifications, as well as their respective validities, are discussed. Furthermore, a method for diagonalizing the mixed dynamic form factor is described, which allows calculating high resolution energy filtered TEM images with unprecedented accuracy. Subsequently, several applications of the aforementioned theory to real-world examples are presented. On the one hand, the example of Silicon serves to demonstrate how the radial wave functions in the bulk can be measured; the agreement with the theoretical predictions proves to be very good. On the other hand, the determination of the wave functions' azimuthal dependence is derived. It turns out that the symmetry of the system under investigation is crucial to the success of this endeavor. With the new techniques presented here, it will be possible to measure electronic properties with atomic resolution, which can be of great importance, particularly in material science. (author) [German] In der vorliegenden Arbeit werden neue Methoden vorgestellt, mit deren Hilfe Elektronenwellenfunktionen in Festkörpern mittels Transmissionselektronenmikroskopie (TEM) und Elektronenenergieverlustspektrometrie (EELS) direkt im Realraum vermessen werden können. Zu diesem Zweck wird sowohl die Theorie der elastischen Elektronenbeugung als auch die der inelastischen Elektronenstreuung im Dichtematrixformalismus dargestellt. Dabei werden die zentralen Größen der inelastischen

  7. EDF: Computing electron number probability distribution functions in real space from molecular wave functions

    Science.gov (United States)

    Francisco, E.; Pendás, A. Martín; Blanco, M. A.

    2008-04-01

    Given an N-electron molecule and an exhaustive partition of the real space ( R) into m arbitrary regions Ω,Ω,…,Ω ( ⋃i=1mΩ=R), the edf program computes all the probabilities P(n,n,…,n) of having exactly n electrons in Ω, n electrons in Ω,…, and n electrons ( n+n+⋯+n=N) in Ω. Each Ω may correspond to a single basin (atomic domain) or several such basins (functional group). In the later case, each atomic domain must belong to a single Ω. The program can manage both single- and multi-determinant wave functions which are read in from an aimpac-like wave function description ( .wfn) file (T.A. Keith et al., The AIMPAC95 programs, http://www.chemistry.mcmaster.ca/aimpac, 1995). For multi-determinantal wave functions a generalization of the original .wfn file has been introduced. The new format is completely backwards compatible, adding to the previous structure a description of the configuration interaction (CI) coefficients and the determinants of correlated wave functions. Besides the .wfn file, edf only needs the overlap integrals over all the atomic domains between the molecular orbitals (MO). After the P(n,n,…,n) probabilities are computed, edf obtains from them several magnitudes relevant to chemical bonding theory, such as average electronic populations and localization/delocalization indices. Regarding spin, edf may be used in two ways: with or without a splitting of the P(n,n,…,n) probabilities into α and β spin components. Program summaryProgram title: edf Catalogue identifier: AEAJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5387 No. of bytes in distributed program, including test data, etc.: 52 381 Distribution format: tar.gz Programming language: Fortran 77 Computer

  8. Strong disorder real-space renormalization for the many-body-localized phase of random Majorana models

    Science.gov (United States)

    Monthus, Cécile

    2018-03-01

    For the many-body-localized phase of random Majorana models, a general strong disorder real-space renormalization procedure known as RSRG-X (Pekker et al 2014 Phys. Rev. X 4 011052) is described to produce the whole set of excited states, via the iterative construction of the local integrals of motion (LIOMs). The RG rules are then explicitly derived for arbitrary quadratic Hamiltonians (free-fermions models) and for the Kitaev chain with local interactions involving even numbers of consecutive Majorana fermions. The emphasis is put on the advantages of the Majorana language over the usual quantum spin language to formulate unified RSRG-X rules.

  9. Real-space mapping of a disordered two-dimensional electron system in the quantum Hall regime

    International Nuclear Information System (INIS)

    Hashimoto, K; Hirayama, Y; Wiebe, J; Wiesendanger, R; Inaoka, T; Morgenstern, M

    2011-01-01

    By using scanning tunnelling spectroscopy, we study the influence of potential disorder on an adsorbate-induced two-dimensional electron system in the integer quantum Hall regime. The real-space imaged local density of states exhibits transition from localized drift states encircling the potential minima to another type of localized drift states encircling the potential maxima. While the former states show regular round shapes, the latter have irregular-shaped patterns. This difference is induced by different sources for the potential minima and maxima, i.e., substrate donors and an inhomogeneous distribution of the adsorbates, respectively.

  10. New real space correlated-basis-functions approach for the electron correlations of the semiconductor inversion layer

    International Nuclear Information System (INIS)

    Feng Weiguo; Wang Hongwei; Wu Xiang

    1989-12-01

    Based on the real space Correlated-Basis-Functions theory and the collective oscillation behaviour of the electron gas with effective Coulomb interaction, the many body wave function is obtained for the quasi-two-dimensional electron system in the semiconductor inversion layer. The pair-correlation function and the correlation energy of the system have been calculated by the integro-differential method in this paper. The comparison with the other previous theoretical results is also made. The new theoretical approach and its numerical results show that the pair-correlation functions are definitely positive and satisfy the normalization condition. (author). 10 refs, 2 figs

  11. CONTROLLING VIRTUAL CLOUDS AND MAKING IT RAIN PARTICLE SYSTEMS IN REAL SPACES USING SITUATED AUGMENTED SIMULATION AND PORTABLE VIRTUAL ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    N. Hedley

    2012-07-01

    Full Text Available The research described in this paper reports on the design, rationale, development and implementation of a set of new geospatial interfaces that combine multi-touch interaction, portable virtual environments, 'geosimulation gaming', and mobile augmented reality. The result is a set of new ways for us to combine the capabilities of geospatial virtual environments, augmented realitiy and geosimulation. These new hybrid interfaces deliver new geospatial information experiences – new ways of connecting spatial data, simulations, and abstract concepts to real spaces. Their potential to enhance environmental perception and learning must be explored.

  12. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method

    DEFF Research Database (Denmark)

    Enkovaara, J.; Rostgaard, Carsten; Mortensen, Jens Jørgen

    2010-01-01

    Electronic structure calculations have become an indispensable tool in many areas of materials science and quantum chemistry. Even though the Kohn-Sham formulation of the density-functional theory (DFT) simplifies the many-body problem significantly, one is still confronted with several numerical...

  13. CRITIC2: A program for real-space analysis of quantum chemical interactions in solids

    Science.gov (United States)

    Otero-de-la-Roza, A.; Johnson, Erin R.; Luaña, Víctor

    2014-03-01

    We present CRITIC2, a program for the analysis of quantum-mechanical atomic and molecular interactions in periodic solids. This code, a greatly improved version of the previous CRITIC program (Otero-de-la Roza et al., 2009), can: (i) find critical points of the electron density and related scalar fields such as the electron localization function (ELF), Laplacian, … (ii) integrate atomic properties in the framework of Bader’s Atoms-in-Molecules theory (QTAIM), (iii) visualize non-covalent interactions in crystals using the non-covalent interactions (NCI) index, (iv) generate relevant graphical representations including lines, planes, gradient paths, contour plots, atomic basins, … and (v) perform transformations between file formats describing scalar fields and crystal structures. CRITIC2 can interface with the output produced by a variety of electronic structure programs including WIEN2k, elk, PI, abinit, Quantum ESPRESSO, VASP, Gaussian, and, in general, any other code capable of writing the scalar field under study to a three-dimensional grid. CRITIC2 is parallelized, completely documented (including illustrative test cases) and publicly available under the GNU General Public License. Catalogue identifier: AECB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 11686949 No. of bytes in distributed program, including test data, etc.: 337020731 Distribution format: tar.gz Programming language: Fortran 77 and 90. Computer: Workstations. Operating system: Unix, GNU/Linux. Has the code been vectorized or parallelized?: Shared-memory parallelization can be used for most tasks. Classification: 7.3. Catalogue identifier of previous version: AECB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 157 Nature of problem: Analysis of quantum

  14. Hydrogen molecule on lithium adsorbed graphene: A DFT study

    International Nuclear Information System (INIS)

    Kaur, Gagandeep; Gupta, Shuchi; Gaganpreet; Dharamvir, Keya

    2016-01-01

    Electronic structure calculations for the adsorption of molecular hydrogen on lithium (Li) decorated and pristine graphene have been studied systematically using SIESTA code [1] within the framework of the first-principle DFT under the Perdew-Burke-Ernzerhof (PBE) form of the generalized gradient approximation (GGA)[2], including spin polarization. The energy of adsorption of hydrogen molecule on graphene is always enhanced by the presence of co-adsorbed lithium. The most efficient adsorption configuration is when H 2 is lying parallel to lithium adsorbed graphene which is in contrast to its adsorption on pristine graphene (PG) where it prefers perpendicular orientation.

  15. Orbital tomography: Molecular band maps, momentum maps and the imaging of real space orbitals of adsorbed molecules

    Energy Technology Data Exchange (ETDEWEB)

    Offenbacher, Hannes; Lüftner, Daniel; Ules, Thomas; Reinisch, Eva Maria; Koller, Georg, E-mail: georg.koller@uni-graz.at; Puschnig, Peter; Ramsey, Michael G., E-mail: michael.ramsey@uni-graz.at

    2015-10-01

    Highlights: • Orbital tomography within the plane wave final state approximation. • One electron orbital predictions versus angle resolved photoemission experiment. • Geometric and electronic structure of organic thin films elucidated by ARUPS. • Influence of molecular conformation and orientation on ARUPS. • Retrieval of sexiphenyl and pentacene orbitals in real space. - Abstract: The frontier orbitals of molecules are the prime determinants of their chemical, optical and electronic properties. Arguably, the most direct method of addressing the (filled) frontier orbitals is ultra-violet photoemission spectroscopy (UPS). Although UPS is a mature technique from the early 1970s on, the angular distribution of the photoemitted electrons was thought to be too complex to be analysed quantitatively. Recently angle resolved UPS (ARUPS) work on conjugated molecules both, in ordered thick films and chemisorbed monolayers, has shown that the angular (momentum) distribution of the photocurrent from orbital emissions can be simply understood. The approach, based on the assumption of a plane wave final state is becoming known as orbital tomography. Here we will demonstrate, with selected examples of pentacene (5A) and sexiphenyl (6P), the potential of orbital tomography. First it will be shown how the full angular distribution of the photocurrent (momentum map) from a specific orbital is related to the real space orbital by a Fourier transform. Examples of the reconstruction of 5A orbitals will be given and the procedure for recovering the lost phase information will be outlined. We then move to examples of sexiphenyl where we interrogate the original band maps of thick sexiphenyl in the light of our understanding of orbital tomography that has developed since then. With comparison to theoretical simulations of the molecular band maps, the molecular conformation and orientation will be concluded. New results for the sexiphenyl monolayer on Al(1 1 0) will then be

  16. Superconducting states in strongly correlated systems with nonstandard quasiparticles and real space pairing: an unconventional Fermi-liquid limit

    Directory of Open Access Journals (Sweden)

    J. Spałek

    2010-01-01

    Full Text Available We use the concept of generalized (almost localized Fermi Liquid composed of nonstandard quasiparticles with spin-dependence effective masses and the effective field induced by electron correlations. This Fermi liquid is obtained within the so-called statistically-consistent Gutzwiller approximation (SGA proposed recently [cf. J. Jędrak et al., arXiv: 1008.0021] and describes electronic states of the correlated quantum liquid. Particular emphasis is put on real space pairing driven by the electronic correlations, the Fulde-Ferrell state of the heavy-fermion liquid, and the d-wave superconducting state of high temperature curate superconductors in the overdoped limit. The appropriate phase diagrams are discussed showing in particular the limits of stability of the Bardeen-Cooper-Schrieffer (BCS type of state.

  17. The structure and properties of vacancies in Si nano-crystals calculated by real space pseudopotential methods

    International Nuclear Information System (INIS)

    Beckman, S.P.; Chelikowsky, James R.

    2007-01-01

    The structure and properties of vacancies in a 2 nm Si nano-crystal are studied using a real space density functional theory/pseudopotential method. It is observed that a vacancy's electronic properties and energy of formation are directly related to the local symmetry of the vacancy site. The formation energy for vacancies and Frenkel pair are calculated. It is found that both defects have lower energy in smaller crystals. In a 2 nm nano-crystal the energy to form a Frenkel pair is 1.7 eV and the energy to form a vacancy is no larger than 2.3 eV. The energy barrier for vacancy diffusion is examined via a nudged elastic band algorithm

  18. Simulated non-contact atomic force microscopy for GaAs surfaces based on real-space pseudopotentials

    International Nuclear Information System (INIS)

    Kim, Minjung; Chelikowsky, James R.

    2014-01-01

    We simulate non-contact atomic force microscopy (AFM) with a GaAs(1 1 0) surface using a real-space ab initio pseudopotential method. While most ab initio simulations include an explicit model for the AFM tip, our method does not introduce the tip modeling step. This approach results in a considerable reduction of computational work, and also provides complete AFM images, which can be directly compared to experiment. By analyzing tip-surface interaction forces in both our results and previous ab initio simulations, we find that our method provides very similar force profile to the pure Si tip results. We conclude that our method works well for systems in which the tip is not chemically active.

  19. Investigating actinide compounds within a hybrid MCSCF-DFT model

    International Nuclear Information System (INIS)

    Fromager, E.; Jensen, H.J.A.; Wahlin, P.; Real, F.; Wahlgren, U.

    2007-01-01

    definition of an optimal μ opt parameter [3], independent of the approximate short-range functional and the approximate (MCSCF) wave function, is applied in this work. Recently reviewed calculations on light elements yielded μ opt ∼ 0.4 a.u [3], which is in agreement with previous calibration studies. A new numerical investigation of μ opt is now presented for actinides. A test set consisting of ThO 2 , PaO 2 + , UO 2 2+ , UCO and UN 2 (representing cases without significant static correlation) as well as NpO 2 3+ and PuO 2 4+ (representing cases with significant static correlation) has been considered. The bending problem of NpO 2 3+ and PuO 2 4+ observed in KS-DFT(B3LYP) is then addressed within the hybrid MCSCF-DFT approach. Calculations have been performed at the scalar relativistic level with the MCSCF-DFT code [4] implemented in a development version of the DALTON program package [5], using short-range LDA and PBE-type functionals [3. References [1] M. Straka, K.G. Dyall, and P. Pyykko, Theor. Chem. Acc., 106, 393 (2001); [2] A. Savin, in Recent Developments and Applications of Modern Density Functional Theory, edited by J.M. Seminario (Elsevier, Amsterdam, 1996), p. 327; [3] E. Fromager, J. Toulouse, and H. J. Aa. Jensen, J. Chem. Phys., in press; [4] J.K. Pedersen and H.J.A. Jensen, J. Chem. Phys., submitted; [5] T. Helgaker, H.J. Aa. Jensen, P. Jorgensen, J. Oelsen, K. Ruud, H. Agren, K.L. Bak, V. Bakken, O. Christiansen, S. Coriani, et al., Dalton release 2.0 (2005), an electronic structure program, www.kjemi.uio.no/software/dalton/dalton.html

  20. Electronic annealing Fermi operator expansion for DFT calculations on metallic systems

    Science.gov (United States)

    Aarons, Jolyon; Skylaris, Chris-Kriton

    2018-02-01

    Density Functional Theory (DFT) calculations with computational effort which increases linearly with the number of atoms (linear-scaling DFT) have been successfully developed for insulators, taking advantage of the exponential decay of the one-particle density matrix. For metallic systems, the density matrix is also expected to decay exponentially at finite electronic temperature and linear-scaling DFT methods should be possible by taking advantage of this decay. Here we present a method for DFT calculations at finite electronic temperature for metallic systems which is effectively linear-scaling (O(N)). Our method generates the elements of the one-particle density matrix and also finds the required chemical potential and electronic entropy using polynomial expansions. A fixed expansion length is always employed to generate the density matrix, without any loss in accuracy by the application of a high electronic temperature followed by successive steps of temperature reduction until the desired (low) temperature density matrix is obtained. We have implemented this method in the ONETEP linear-scaling (for insulators) DFT code which employs local orbitals that are optimised in situ. By making use of the sparse matrix machinery of ONETEP, our method exploits the sparsity of Hamiltonian and density matrices to perform calculations on metallic systems with computational cost that increases asymptotically linearly with the number of atoms. We demonstrate the linear-scaling computational cost of our method with calculation times on palladium nanoparticles with up to ˜13 000 atoms.

  1. Real space mapping of Yu-Shiba-Rusinov states of an extended magnetic scatterer on a conventional superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Etzkorn, Markus; Eltschka, Matthias; Jaeck, Berthold; Topp, Andreas; Ast, Christian R. [Max-Planck-Institute for Solid State Research, 70569 Stuttgart (Germany); Kern, Klaus [Max-Planck-Institute for Solid State Research, 70569 Stuttgart (Germany); Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland)

    2016-07-01

    The interaction of a local magnetic impurity with a superconductor causes the formation of Yu-Shiba-Rusinov (YSR)states in the vicinity of the impurity. These have recently received increasing attention in the context of Majorana Fermions and other exotic states that might be created from the mutual interplay. YSR states have been extensively studied by scanning tunneling microscopy and so far have been discussed mainly in the limit of point scattering impurities. Here we present our investigations of the local properties of single magnetic Copper-Phthalocynane molecules on the (5x1) reconstructed, superconducting V(100) surface measured at 15 mK temperature. We find very intense YSR states with energies that depend on the precise absorbtion geometry of the molecule. At the same time we find no indication of a local suppression of the superconducting gap around the impurity. We follow the state evolution in real space for about 3 nm corresponding to about three orders of magnitude in spectral intensity. The spectra display rich structure with local variations in the electron-hole asymmetries. The observed intensity changes in the spectra can not be described on the basis of a single point like scattering potential.

  2. Evidence of quantum phase transition in real-space vacuum entanglement of higher derivative scalar quantum field theories.

    Science.gov (United States)

    Kumar, S Santhosh; Shankaranarayanan, S

    2017-11-17

    In a bipartite set-up, the vacuum state of a free Bosonic scalar field is entangled in real space and satisfies the area-law- entanglement entropy scales linearly with area of the boundary between the two partitions. In this work, we show that the area law is violated in two spatial dimensional model Hamiltonian having dynamical critical exponent z = 3. The model physically corresponds to next-to-next-to-next nearest neighbour coupling terms on a lattice. The result reported here is the first of its kind of violation of area law in Bosonic systems in higher dimensions and signals the evidence of a quantum phase transition. We provide evidence for quantum phase transition both numerically and analytically using quantum Information tools like entanglement spectra, quantum fidelity, and gap in the energy spectra. We identify the cause for this transition due to the accumulation of large number of angular zero modes around the critical point which catalyses the change in the ground state wave function due to the next-to-next-to-next nearest neighbor coupling. Lastly, using Hubbard-Stratanovich transformation, we show that the effective Bosonic Hamiltonian can be obtained from an interacting fermionic theory and provide possible implications for condensed matter systems.

  3. Using NASA Data in the Classroom: Promoting STEM Learning in Formal Education using Real Space Science Data

    Science.gov (United States)

    Lawton, B.; Hemenway, M. K.; Mendez, B.; Odenwald, S.

    2013-04-01

    Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provides formal educators the opportunity to teach their students real-world applications of the STEM subjects. Combining real space science data with lessons aimed at meeting state and national education standards provides a memorable educational experience that students can build upon throughout their academic careers. Many of our colleagues have adopted the use of real data in their education and public outreach (EPO) programs. There are challenges in creating resources using real data for classroom use that include, but are not limited to, accessibility to computers/Internet and proper instruction. Understanding and sharing these difficulties and best practices with the larger EPO community is critical to the development of future resources. In this session, we highlight three examples of how NASA data is being utilized in the classroom: the Galaxies and Cosmos Explorer Tool (GCET) that utilizes real Hubble Space Telescope data; the computer image-analysis resources utilized by the NASA WISE infrared mission; and the space science derived math applications from SpaceMath@NASA featuring the Chandra and Kepler space telescopes. Challenges and successes are highlighted for these projects. We also facilitate small-group discussions that focus on additional benefits and challenges of using real data in the formal education environment. The report-outs from those discussions are given here.

  4. Advantages of GPU technology in DFT calculations of intercalated graphene

    Science.gov (United States)

    Pešić, J.; Gajić, R.

    2014-09-01

    Over the past few years, the expansion of general-purpose graphic-processing unit (GPGPU) technology has had a great impact on computational science. GPGPU is the utilization of a graphics-processing unit (GPU) to perform calculations in applications usually handled by the central processing unit (CPU). Use of GPGPUs as a way to increase computational power in the material sciences has significantly decreased computational costs in already highly demanding calculations. A level of the acceleration and parallelization depends on the problem itself. Some problems can benefit from GPU acceleration and parallelization, such as the finite-difference time-domain algorithm (FTDT) and density-functional theory (DFT), while others cannot take advantage of these modern technologies. A number of GPU-supported applications had emerged in the past several years (www.nvidia.com/object/gpu-applications.html). Quantum Espresso (QE) is reported as an integrated suite of open source computer codes for electronic-structure calculations and materials modeling at the nano-scale. It is based on DFT, the use of a plane-waves basis and a pseudopotential approach. Since the QE 5.0 version, it has been implemented as a plug-in component for standard QE packages that allows exploiting the capabilities of Nvidia GPU graphic cards (www.qe-forge.org/gf/proj). In this study, we have examined the impact of the usage of GPU acceleration and parallelization on the numerical performance of DFT calculations. Graphene has been attracting attention worldwide and has already shown some remarkable properties. We have studied an intercalated graphene, using the QE package PHonon, which employs GPU. The term ‘intercalation’ refers to a process whereby foreign adatoms are inserted onto a graphene lattice. In addition, by intercalating different atoms between graphene layers, it is possible to tune their physical properties. Our experiments have shown there are benefits from using GPUs, and we reached an

  5. Advantages of GPU technology in DFT calculations of intercalated graphene

    International Nuclear Information System (INIS)

    Pešić, J; Gajić, R

    2014-01-01

    Over the past few years, the expansion of general-purpose graphic-processing unit (GPGPU) technology has had a great impact on computational science. GPGPU is the utilization of a graphics-processing unit (GPU) to perform calculations in applications usually handled by the central processing unit (CPU). Use of GPGPUs as a way to increase computational power in the material sciences has significantly decreased computational costs in already highly demanding calculations. A level of the acceleration and parallelization depends on the problem itself. Some problems can benefit from GPU acceleration and parallelization, such as the finite-difference time-domain algorithm (FTDT) and density-functional theory (DFT), while others cannot take advantage of these modern technologies. A number of GPU-supported applications had emerged in the past several years (www.nvidia.com/object/gpu-applications.html). Quantum Espresso (QE) is reported as an integrated suite of open source computer codes for electronic-structure calculations and materials modeling at the nano-scale. It is based on DFT, the use of a plane-waves basis and a pseudopotential approach. Since the QE 5.0 version, it has been implemented as a plug-in component for standard QE packages that allows exploiting the capabilities of Nvidia GPU graphic cards (www.qe-forge.org/gf/proj). In this study, we have examined the impact of the usage of GPU acceleration and parallelization on the numerical performance of DFT calculations. Graphene has been attracting attention worldwide and has already shown some remarkable properties. We have studied an intercalated graphene, using the QE package PHonon, which employs GPU. The term ‘intercalation’ refers to a process whereby foreign adatoms are inserted onto a graphene lattice. In addition, by intercalating different atoms between graphene layers, it is possible to tune their physical properties. Our experiments have shown there are benefits from using GPUs, and we reached an

  6. Quantum tunneling in real space: Tautomerization of single porphycene molecules on the (111) surface of Cu, Ag, and Au

    Science.gov (United States)

    Kumagai, Takashi; Ladenthin, Janina N.; Litman, Yair; Rossi, Mariana; Grill, Leonhard; Gawinkowski, Sylwester; Waluk, Jacek; Persson, Mats

    2018-03-01

    Tautomerization in single porphycene molecules is investigated on Cu(111), Ag(111), and Au(111) surfaces by a combination of low-temperature scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations. It is revealed that the trans configuration is the thermodynamically stable form of porphycene on Cu(111) and Ag(111), whereas the cis configuration occurs as a meta-stable form. The trans → cis or cis → trans conversion on Cu(111) can be induced in an unidirectional fashion by injecting tunneling electrons from the STM tip or heating the surface, respectively. We find that the cis ↔ cis tautomerization on Cu(111) occurs spontaneously via tunneling, verified by the negligible temperature dependence of the tautomerization rate below ˜23 K. Van der Waals corrected DFT calculations are used to characterize the adsorption structures of porphycene and to map the potential energy surface of the tautomerization on Cu(111). The calculated barriers are too high to be thermally overcome at cryogenic temperatures used in the experiment and zero-point energy corrections do not change this picture, leaving tunneling as the most likely mechanism. On Ag(111), the reversible trans ↔ cis conversion occurs spontaneously at 5 K and the cis ↔ cis tautomerization rate is much higher than on Cu(111), indicating a significantly smaller tautomerization barrier on Ag(111) due to the weaker interaction between porphycene and the surface compared to Cu(111). Additionally, the STM experiments and DFT calculations reveal that tautomerization on Cu(111) and Ag(111) occurs with migration of porphycene along the surface; thus, the translational motion couples with the tautomerization coordinate. On the other hand, the trans and cis configurations are not discernible in the STM image and no tautomerization is observed for porphycene on Au(111). The weak interaction of porphycene with Au(111) is closest to the gas-phase limit and therefore the absence

  7. Applications of Real Space Crystallography in Characterization of Dislocations in Geological Materials in a Scanning Electron Microscope (SEM)

    Science.gov (United States)

    Kaboli, S.; Burnley, P. C.

    2017-12-01

    Imaging and characterization of defects in crystalline materials is of significant importance in various disciplines including geoscience, materials science, and applied physics. Linear defects such as dislocations and planar defects such as twins and stacking faults, strongly influence many of the properties of crystalline materials and also reflect the conditions and degree of deformation. Dislocations have been conventionally imaged in thin foils in a transmission electron microscope (TEM). Since the development of field emission scanning electron microscopes (FE-SEM) with high gun brightness and small spot size, extensive efforts have been dedicated to the imaging and characterization of dislocations in semi-conductors using electron channeling contrast imaging (ECCI) in the SEM. The obvious advantages of using SEM over TEM include easier and non-destructive sample preparation and a large field of view enabling statistical examination of the density and distribution of dislocations and other defects. In this contribution, we extend this technique to geological materials and introduce the Real Space Crystallography methodology for imaging and complete characterization of dislocations based on bend contour contrast obtained by ECCI in FE-SEM. Bend contours map out the distortion in the crystal lattice across a deformed grain. The contrast of dislocations is maximum in the vicinity of bend contours where crystal planes diffract at small and positive deviations from the Bragg positions (as defined by Bragg's law of electron diffraction). Imaging is performed in a commercial FE-SEM equipped with a standard silicon photodiode backscattered (BSE) detector and an electron backscatter diffraction (EBSD) system for crystal orientation measurements. We demonstrate the practice of this technique in characterization of a number of geological materials in particular quartz, forsterite olivine and corundum, experimentally deformed at high pressure-temperature conditions. This

  8. A DFT + DMFT approach for nanosystems

    Energy Technology Data Exchange (ETDEWEB)

    Turkowski, Volodymyr; Kabir, Alamgir; Nayyar, Neha; Rahman, Talat S, E-mail: vturkows@mail.ucf.ed [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States)

    2010-11-24

    We propose a combined density-functional-theory-dynamical-mean-field-theory (DFT + DMFT) approach for reliable inclusion of electron-electron correlation effects in nanosystems. Compared with the widely used DFT + U approach, this method has several advantages, the most important of which is that it takes into account dynamical correlation effects. The formalism is illustrated through different calculations of the magnetic properties of a set of small iron clusters (number of atoms 2 {<=} N {<=} 5). It is shown that the inclusion of dynamical effects leads to a reduction in the cluster magnetization (as compared to results from DFT + U) and that, even for such small clusters, the magnetization values agree well with experimental estimations. These results justify confidence in the ability of the method to accurately describe the magnetic properties of clusters of interest to nanoscience. (fast track communication)

  9. A DFT + DMFT approach for nanosystems

    International Nuclear Information System (INIS)

    Turkowski, Volodymyr; Kabir, Alamgir; Nayyar, Neha; Rahman, Talat S

    2010-01-01

    We propose a combined density-functional-theory-dynamical-mean-field-theory (DFT + DMFT) approach for reliable inclusion of electron-electron correlation effects in nanosystems. Compared with the widely used DFT + U approach, this method has several advantages, the most important of which is that it takes into account dynamical correlation effects. The formalism is illustrated through different calculations of the magnetic properties of a set of small iron clusters (number of atoms 2 ≤ N ≤ 5). It is shown that the inclusion of dynamical effects leads to a reduction in the cluster magnetization (as compared to results from DFT + U) and that, even for such small clusters, the magnetization values agree well with experimental estimations. These results justify confidence in the ability of the method to accurately describe the magnetic properties of clusters of interest to nanoscience. (fast track communication)

  10. Synthesis, Spectroscopic Properties and DFT Calculation of Novel ...

    Indian Academy of Sciences (India)

    density functional theory (DFT) calculations. Keywords. ... time-dependent density functional theory (TD-DFT) calcu- lations. .... reaction, the pH of the solution was adjusted to 7 .... ORTEP diagram for L1 showing 30% probability ellipsoids.

  11. Neutron μstiX. Micrometer structure investigation with real space and reciprocal space crossover using neutron imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Muehlbauer, Martin Johann

    2013-07-19

    This work is concerned with the investigation of inhomogeneities in materials with length scales of the order of micrometers by means of neutrons. In real space this is done by neutron imaging methods measuring the transmitted signal while for Ultra Small Angle Neutron Scattering (USANS) the signal of the scattered neutrons is assigned to a spatial frequency distribution in reciprocal space. The part about neutron imaging is focused on time-resolved neutron radiography on an injection nozzle similar to the ones used for modern diesel truck engines. The associated experiments have been carried out at the neutron imaging facility ANTARES at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) of the Technische Universitaet Muenchen in Garching near Munich. Especially the demands on the detector system were high. Therefore different detection methods and detector configurations have been tested. On the one hand the detector should allow for a time resolution high enough to record the injection process lasting about 900 μs. On the other hand it needed to offer a spatial resolution sufficient to resolve the test oil inside the spray hole of a maximum diameter of less than 200 μm. An advanced aim of this work is the visualization of cavitation phenomena which may occur during the injection process inside of the spray hole. In order to operate the injector at conditions as close to reality as possible a high pressure pump supplying the injector with test oil at a pressure of 1600 bar was needed in addition to the specially developed control electronics, the recuperation tank and the exhaust gas equipment for the escaping atomized spray. A second part of the work describes USANS experiments based on the idea of Dr. Roland Gaehler and carried out at the instrument D11 at the Institut Laue-Langevin in Grenoble. For this purpose a specific multi-beam geometry was applied, where a multi-slit aperture replaced the standard source aperture and the sample aperture was

  12. Neutron μstiX. Micrometer structure investigation with real space and reciprocal space crossover using neutron imaging detectors

    International Nuclear Information System (INIS)

    Muehlbauer, Martin Johann

    2013-01-01

    This work is concerned with the investigation of inhomogeneities in materials with length scales of the order of micrometers by means of neutrons. In real space this is done by neutron imaging methods measuring the transmitted signal while for Ultra Small Angle Neutron Scattering (USANS) the signal of the scattered neutrons is assigned to a spatial frequency distribution in reciprocal space. The part about neutron imaging is focused on time-resolved neutron radiography on an injection nozzle similar to the ones used for modern diesel truck engines. The associated experiments have been carried out at the neutron imaging facility ANTARES at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) of the Technische Universitaet Muenchen in Garching near Munich. Especially the demands on the detector system were high. Therefore different detection methods and detector configurations have been tested. On the one hand the detector should allow for a time resolution high enough to record the injection process lasting about 900 μs. On the other hand it needed to offer a spatial resolution sufficient to resolve the test oil inside the spray hole of a maximum diameter of less than 200 μm. An advanced aim of this work is the visualization of cavitation phenomena which may occur during the injection process inside of the spray hole. In order to operate the injector at conditions as close to reality as possible a high pressure pump supplying the injector with test oil at a pressure of 1600 bar was needed in addition to the specially developed control electronics, the recuperation tank and the exhaust gas equipment for the escaping atomized spray. A second part of the work describes USANS experiments based on the idea of Dr. Roland Gaehler and carried out at the instrument D11 at the Institut Laue-Langevin in Grenoble. For this purpose a specific multi-beam geometry was applied, where a multi-slit aperture replaced the standard source aperture and the sample aperture was

  13. Linked-cluster formulation of electron-hole interaction kernel in real-space representation without using unoccupied states.

    Science.gov (United States)

    Bayne, Michael G; Scher, Jeremy A; Ellis, Benjamin H; Chakraborty, Arindam

    2018-05-21

    Electron-hole or quasiparticle representation plays a central role in describing electronic excitations in many-electron systems. For charge-neutral excitation, the electron-hole interaction kernel is the quantity of interest for calculating important excitation properties such as optical gap, optical spectra, electron-hole recombination and electron-hole binding energies. The electron-hole interaction kernel can be formally derived from the density-density correlation function using both Green's function and TDDFT formalism. The accurate determination of the electron-hole interaction kernel remains a significant challenge for precise calculations of optical properties in the GW+BSE formalism. From the TDDFT perspective, the electron-hole interaction kernel has been viewed as a path to systematic development of frequency-dependent exchange-correlation functionals. Traditional approaches, such as MBPT formalism, use unoccupied states (which are defined with respect to Fermi vacuum) to construct the electron-hole interaction kernel. However, the inclusion of unoccupied states has long been recognized as the leading computational bottleneck that limits the application of this approach for larger finite systems. In this work, an alternative derivation that avoids using unoccupied states to construct the electron-hole interaction kernel is presented. The central idea of this approach is to use explicitly correlated geminal functions for treating electron-electron correlation for both ground and excited state wave functions. Using this ansatz, it is derived using both diagrammatic and algebraic techniques that the electron-hole interaction kernel can be expressed only in terms of linked closed-loop diagrams. It is proved that the cancellation of unlinked diagrams is a consequence of linked-cluster theorem in real-space representation. The electron-hole interaction kernel derived in this work was used to calculate excitation energies in many-electron systems and results

  14. An ab initio and TD DFT

    Indian Academy of Sciences (India)

    The photophysical behaviour of N-(2-hydroxy benzylidene) aniline or most commonly known as salicylideneaniline (SA) has been investigated using the ab initio and DFT levels of theory. The quantum chemical calculations show that the optimized non planar enol (1) form of the SA molecule is the most stable conformer ...

  15. Effective medium super-cell approximation for interacting disordered systems: an alternative real-space derivation of generalized dynamical cluster approximation

    International Nuclear Information System (INIS)

    Moradian, Rostam

    2006-01-01

    We develop a generalized real-space effective medium super-cell approximation (EMSCA) method to treat the electronic states of interacting disordered systems. This method is general and allows randomness both in the on-site energies and in the hopping integrals. For a non-interacting disordered system, in the special case of randomness in the on-site energies, this method is equivalent to the non-local coherent potential approximation (NLCPA) derived previously. Also, for an interacting system the EMSCA method leads to the real-space derivation of the generalized dynamical cluster approximation (DCA) for a general lattice structure. We found that the original DCA and the NLCPA are two simple cases of this technique, so the EMSCA is equivalent to the generalized DCA where there is included interaction and randomness in the on-site energies and in the hopping integrals. All of the equations of this formalism are derived by using the effective medium theory in real space

  16. Code Cactus; Code Cactus

    Energy Technology Data Exchange (ETDEWEB)

    Fajeau, M; Nguyen, L T; Saunier, J [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-09-01

    This code handles the following problems: -1) Analysis of thermal experiments on a water loop at high or low pressure; steady state or transient behavior; -2) Analysis of thermal and hydrodynamic behavior of water-cooled and moderated reactors, at either high or low pressure, with boiling permitted; fuel elements are assumed to be flat plates: - Flowrate in parallel channels coupled or not by conduction across plates, with conditions of pressure drops or flowrate, variable or not with respect to time is given; the power can be coupled to reactor kinetics calculation or supplied by the code user. The code, containing a schematic representation of safety rod behavior, is a one dimensional, multi-channel code, and has as its complement (FLID), a one-channel, two-dimensional code. (authors) [French] Ce code permet de traiter les problemes ci-dessous: 1. Depouillement d'essais thermiques sur boucle a eau, haute ou basse pression, en regime permanent ou transitoire; 2. Etudes thermiques et hydrauliques de reacteurs a eau, a plaques, a haute ou basse pression, ebullition permise: - repartition entre canaux paralleles, couples on non par conduction a travers plaques, pour des conditions de debit ou de pertes de charge imposees, variables ou non dans le temps; - la puissance peut etre couplee a la neutronique et une representation schematique des actions de securite est prevue. Ce code (Cactus) a une dimension d'espace et plusieurs canaux, a pour complement Flid qui traite l'etude d'un seul canal a deux dimensions. (auteurs)

  17. Identifying systematic DFT errors in catalytic reactions

    DEFF Research Database (Denmark)

    Christensen, Rune; Hansen, Heine Anton; Vegge, Tejs

    2015-01-01

    Using CO2 reduction reactions as examples, we present a widely applicable method for identifying the main source of errors in density functional theory (DFT) calculations. The method has broad applications for error correction in DFT calculations in general, as it relies on the dependence...... of the applied exchange–correlation functional on the reaction energies rather than on errors versus the experimental data. As a result, improved energy corrections can now be determined for both gas phase and adsorbed reaction species, particularly interesting within heterogeneous catalysis. We show...... that for the CO2 reduction reactions, the main source of error is associated with the C[double bond, length as m-dash]O bonds and not the typically energy corrected OCO backbone....

  18. An Overview of the Adaptive Robust DFT

    Directory of Open Access Journals (Sweden)

    Djurović Igor

    2010-01-01

    Full Text Available Abstract This paper overviews basic principles and applications of the robust DFT (RDFT approach, which is used for robust processing of frequency-modulated (FM signals embedded in non-Gaussian heavy-tailed noise. In particular, we concentrate on the spectral analysis and filtering of signals corrupted by impulsive distortions using adaptive and nonadaptive robust estimators. Several adaptive estimators of location parameter are considered, and it is shown that their application is preferable with respect to non-adaptive counterparts. This fact is demonstrated by efficiency comparison of adaptive and nonadaptive RDFT methods for different noise environments.

  19. z-transform DFT filters and FFT's

    DEFF Research Database (Denmark)

    Bruun, G.

    1978-01-01

    The paper shows how discrete Fourier transformation can be implemented as a filter bank in a way which reduces the number of filter coefficients. A particular implementation of such a filter bank is directly related to the normal complex FFT algorithm. The principle developed further leads to types...... of DFT filter banks which utilize a minimum of complex coefficients. These implementations lead to new forms of FFT's, among which is acos/sinFFT for a real signal which only employs real coefficients. The new FFT algorithms use only half as many real multiplications as does the classical FFT....

  20. Adaptive DFT-Based Interferometer Fringe Tracking

    Science.gov (United States)

    Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.

    2005-12-01

    An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately [InlineEquation not available: see fulltext.] milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.

  1. Adaptive DFT-Based Interferometer Fringe Tracking

    Directory of Open Access Journals (Sweden)

    Wesley A. Traub

    2005-09-01

    Full Text Available An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms, using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.

  2. A DFT+nonhomogeneous DMFT approach for finite systems

    International Nuclear Information System (INIS)

    Kabir, Alamgir; Turkowski, Volodymyr; Rahman, Talat S

    2015-01-01

    For reliable and efficient inclusion of electron–electron correlation effects in nanosystems we formulate a combined density functional theory/nonhomogeneous dynamical mean-field theory (DFT+DMFT) approach which employs an approximate iterated perturbation theory impurity solver. We further apply the method to examine the size-dependent magnetic properties of iron nanoparticles containing 11–100 atoms. We show that for the majority of clusters the DFT+DMFT solution is in very good agreement with experimental data, much better compared to the DFT and DFT+U results. In particular, it reproduces the oscillations in magnetic moment with size as observed experimentally. We thus demonstrate that the DFT+DMFT approach can be used for accurate and realistic description of nanosystems containing about hundred atoms. (paper)

  3. Challenge for real-time and real-space resolved spectroscopy of surface chemical reactions. Aiming at trace of irreversible and inhomogeneous reactions

    International Nuclear Information System (INIS)

    Amemiya, Kenta

    2015-01-01

    A novel experimental technique, time-resolved wavelength-dispersive soft X-ray imaging spectroscopy, is proposed in order to achieve real-time and real-space resolved spectroscopy for the observation of irreversible and inhomogeneous surface chemical reactions. By combining the wavelength-dispersed soft X rays, in which the X-ray wavelength (photon energy) changes as a function of position on the sample, with the photoelectron emission microscope, the soft X-ray absorption spectra are separately obtained at different positions on the sample without scanning the X-ray monochromator. Therefore, the real-time resolved measurement of site-selective soft X-ray absorption spectroscopy is realized in one event without repeating the chemical reaction. It is expected that the spatial distribution of different chemical species is traced during the surface chemical reaction, which is essential to understand the reaction mechanism. (author)

  4. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, S., E-mail: nishioka@ppl.appi.keio.ac.jp; Goto, I.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [School of Natural and Living Sciences Education, Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Fukano, A. [Toshiba, 33 Isogo-chou, Isogo-ku, Yokohama-shi, Kanagawa 235-001 (Japan)

    2014-02-15

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result.

  5. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    International Nuclear Information System (INIS)

    Nishioka, S.; Goto, I.; Hatayama, A.; Miyamoto, K.; Okuda, S.; Fukano, A.

    2014-01-01

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result

  6. Real-space and reciprocal-space Berry phases in the Hall effect of Mn(1-x)Fe(x)Si.

    Science.gov (United States)

    Franz, C; Freimuth, F; Bauer, A; Ritz, R; Schnarr, C; Duvinage, C; Adams, T; Blügel, S; Rosch, A; Mokrousov, Y; Pfleiderer, C

    2014-05-09

    We report an experimental and computational study of the Hall effect in Mn(1-x)Fe(x)Si, as complemented by measurements in Mn(1-x)Co(x)Si, when helimagnetic order is suppressed under substitutional doping. For small x the anomalous Hall effect (AHE) and the topological Hall effect (THE) change sign. Under larger doping the AHE remains small and consistent with the magnetization, while the THE grows by over a factor of 10. Both the sign and the magnitude of the AHE and the THE are in excellent agreement with calculations based on density functional theory. Our study provides the long-sought material-specific microscopic justification that, while the AHE is due to the reciprocal-space Berry curvature, the THE originates in real-space Berry phases.

  7. A robust variant of block Jacobi-Davidson for extracting a large number of eigenpairs: Application to grid-based real-space density functional theory

    Science.gov (United States)

    Lee, M.; Leiter, K.; Eisner, C.; Breuer, A.; Wang, X.

    2017-09-01

    In this work, we investigate a block Jacobi-Davidson (J-D) variant suitable for sparse symmetric eigenproblems where a substantial number of extremal eigenvalues are desired (e.g., ground-state real-space quantum chemistry). Most J-D algorithm variations tend to slow down as the number of desired eigenpairs increases due to frequent orthogonalization against a growing list of solved eigenvectors. In our specification of block J-D, all of the steps of the algorithm are performed in clusters, including the linear solves, which allows us to greatly reduce computational effort with blocked matrix-vector multiplies. In addition, we move orthogonalization against locked eigenvectors and working eigenvectors outside of the inner loop but retain the single Ritz vector projection corresponding to the index of the correction vector. Furthermore, we minimize the computational effort by constraining the working subspace to the current vectors being updated and the latest set of corresponding correction vectors. Finally, we incorporate accuracy thresholds based on the precision required by the Fermi-Dirac distribution. The net result is a significant reduction in the computational effort against most previous block J-D implementations, especially as the number of wanted eigenpairs grows. We compare our approach with another robust implementation of block J-D (JDQMR) and the state-of-the-art Chebyshev filter subspace (CheFSI) method for various real-space density functional theory systems. Versus CheFSI, for first-row elements, our method yields competitive timings for valence-only systems and 4-6× speedups for all-electron systems with up to 10× reduced matrix-vector multiplies. For all-electron calculations on larger elements (e.g., gold) where the wanted spectrum is quite narrow compared to the full spectrum, we observe 60× speedup with 200× fewer matrix-vector multiples vs. CheFSI.

  8. Combined spectroscopic, DFT, TD-DFT and MD study of newly synthesized thiourea derivative

    Science.gov (United States)

    Menon, Vidya V.; Sheena Mary, Y.; Shyma Mary, Y.; Panicker, C. Yohannan; Bielenica, Anna; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, Christian

    2018-03-01

    A novel thiourea derivative, 1-(3-bromophenyl)-3-[3-(trifluoromethyl)phenyl]thiourea (ANF-22) is synthesized and characterized by FTIR, FT-Raman and NMR spectroscopy experimentally and theoretically. A detailed conformational analysis of the title molecule has been conducted in order to locate the lowest energy geometry, which was further subjected to the detailed investigation of spectroscopic, reactive, degradation and docking studies by density functional theory (DFT) calculations and molecular dynamics (MD) simulations. Time dependent DFT (TD-DFT) calculations have been used also in order to simulate UV spectra and investigate charge transfer within molecule. Natural bond orbital analysis has been performed analyzing the charge delocalization and using HOMO and LUMO energies the electronic properties are analyzed. Molecular electrostatic potential map is used for the quantitative measurement of active sites in the molecule. In order to determine the locations possibly prone to electrophilic attacks we have calculated average local ionization energies and mapped them to the electron density surface. Further insight into the local reactivity properties have been obtained by calculation of Fukui functions, also mapped to the electron density surface. Possible degradation properties by the autoxidation mechanism have been assessed by calculations of bond dissociation energies for hydrogen abstraction. Atoms of title molecule with significant interactions with water molecules have been determined by calculations of radial distribution functions. The title compound can be a lead compound for developing new analgesic drug.

  9. Coding Partitions

    Directory of Open Access Journals (Sweden)

    Fabio Burderi

    2007-05-01

    Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.

  10. Finite-temperature orbital-free DFT molecular dynamics: Coupling PROFESS and QUANTUM ESPRESSO

    Science.gov (United States)

    Karasiev, Valentin V.; Sjostrom, Travis; Trickey, S. B.

    2014-12-01

    Implementation of orbital-free free-energy functionals in the PROFESS code and the coupling of PROFESS with the QUANTUM ESPRESSO code are described. The combination enables orbital-free DFT to drive ab initio molecular dynamics simulations on the same footing (algorithms, thermostats, convergence parameters, etc.) as for Kohn-Sham (KS) DFT. All the non-interacting free-energy functionals implemented are single-point: the local density approximation (LDA; also known as finite-T Thomas-Fermi, ftTF), the second-order gradient approximation (SGA or finite-T gradient-corrected TF), and our recently introduced finite-T generalized gradient approximations (ftGGA). Elimination of the KS orbital bottleneck via orbital-free methodology enables high-T simulations on ordinary computers, whereas those simulations would be costly or even prohibitively time-consuming for KS molecular dynamics (MD) on very high-performance computer systems. Example MD simulations on H over a temperature range 2000 K ≤ T ≤4,000,000 K are reported, with timings on small clusters (16-128 cores) and even laptops. With respect to KS-driven calculations, the orbital-free calculations are between a few times through a few hundreds of times faster.

  11. nmr spectroscopic study and dft calculations of vibrational analyses

    African Journals Online (AJOL)

    Preferred Customer

    2Plant, Drug and Scientific Research Centre, Anadolu University, 26470, ... Density functional theory (DFT) calculations provide excellent agreement with ..... simple correlation between 1JCH and the hybridization of the carbon atom involved; ...

  12. Redox Potentials of Ligands and Complexes – a DFT Approach

    African Journals Online (AJOL)

    NICO

    Electron affinity (EA) of an atom or molecule is the associated energy change that occurs .... As a consequence of the foregoing evidence we resolved to embark on a ... Density functional theory (DFT) calculations were performed using the ...

  13. Redesign of the DFT/MRCI Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Lyskov, Igor; Kleinschmidt, Martin; Marian, Christel M., E-mail: Christel.Marian@hhu.de [Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf (Germany)

    2016-01-21

    The combined density functional theory and multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke [J. Chem. Phys. 111, 5645 (1999)] is a well-established semi-empirical quantum chemical method for efficiently computing excited-state properties of organic molecules. As it turns out, the method fails to treat bi-chromophores owing to the strong dependence of the parameters on the excitation class. In this work, we present an alternative form of correcting the matrix elements of a MRCI Hamiltonian which is built from a Kohn-Sham set of orbitals. It is based on the idea of constructing individual energy shifts for each of the state functions of a configuration. The new parameterization is spin-invariant and incorporates less empirism compared to the original formulation. By utilizing damping techniques together with an algorithm of selecting important configurations for treating static electron correlation, the high computational efficiency has been preserved. The robustness of the original and redesigned Hamiltonians has been tested on experimentally known vertical excitation energies of organic molecules yielding similar statistics for the two parameterizations. Besides that, our new formulation is free from artificially low-lying doubly excited states, producing qualitatively correct and consistent results for excimers. The way of modifying matrix elements of the MRCI Hamiltonian presented here shall be considered as default choice when investigating photophysical processes of bi-chromophoric systems such as singlet fission or triplet-triplet upconversion.

  14. Enhanced Optoelectronic Performance of a Passivated Nanowire-Based Device: Key Information from Real-Space Imaging Using 4D Electron Microscopy

    KAUST Repository

    Khan, Jafar Iqbal

    2016-03-03

    Managing trap states and understanding their role in ultrafast charge-carrier dynamics, particularly at surface and interfaces, remains a major bottleneck preventing further advancements and commercial exploitation of nanowire (NW)-based devices. A key challenge is to selectively map such ultrafast dynamical processes on the surfaces of NWs, a capability so far out of reach of time-resolved laser techniques. Selective mapping of surface dynamics in real space and time can only be achieved by applying four-dimensional scanning ultrafast electron microscopy (4D S-UEM). Charge carrier dynamics are spatially and temporally visualized on the surface of InGaN NW arrays before and after surface passivation with octadecylthiol (ODT). The time-resolved secondary electron images clearly demonstrate that carrier recombination on the NW surface is significantly slowed down after ODT treatment. This observation is fully supported by enhancement of the performance of the light emitting device. Direct observation of surface dynamics provides a profound understanding of the photophysical mechanisms on materials\\' surfaces and enables the formulation of effective surface trap state management strategies for the next generation of high-performance NW-based optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy.

    Science.gov (United States)

    Shibata, Mikihiro; Nishimasu, Hiroshi; Kodera, Noriyuki; Hirano, Seiichi; Ando, Toshio; Uchihashi, Takayuki; Nureki, Osamu

    2017-11-10

    The CRISPR-associated endonuclease Cas9 binds to a guide RNA and cleaves double-stranded DNA with a sequence complementary to the RNA guide. The Cas9-RNA system has been harnessed for numerous applications, such as genome editing. Here we use high-speed atomic force microscopy (HS-AFM) to visualize the real-space and real-time dynamics of CRISPR-Cas9 in action. HS-AFM movies indicate that, whereas apo-Cas9 adopts unexpected flexible conformations, Cas9-RNA forms a stable bilobed structure and interrogates target sites on the DNA by three-dimensional diffusion. These movies also provide real-time visualization of the Cas9-mediated DNA cleavage process. Notably, the Cas9 HNH nuclease domain fluctuates upon DNA binding, and subsequently adopts an active conformation, where the HNH active site is docked at the cleavage site in the target DNA. Collectively, our HS-AFM data extend our understanding of the action mechanism of CRISPR-Cas9.

  16. Real-Space Imaging of Carrier Dynamics of Materials Surfaces by Second-Generation Four-Dimensional Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya

    2015-09-14

    In the fields of photocatalysis and photovoltaics, ultrafast dynamical processes, including carrier trapping and recombination on material surfaces, are among the key factors that determine the overall energy conversion efficiency. A precise knowledge of these dynamical events on the nanometer (nm) and femtosecond (fs) scales was not accessible until recently. The only way to access such fundamental processes fully is to map the surface dynamics selectively in real space and time. In this study, we establish a second generation of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and demonstrate the ability to record time-resolved images (snapshots) of material surfaces with 650 fs and ∼5 nm temporal and spatial resolutions, respectively. In this method, the surface of a specimen is excited by a clocking optical pulse and imaged using a pulsed primary electron beam as a probe pulse, generating secondary electrons (SEs), which are emitted from the surface of the specimen in a manner that is sensitive to the local electron/hole density. This method provides direct and controllable information regarding surface dynamics. We clearly demonstrate how the surface morphology, grains, defects, and nanostructured features can significantly impact the overall dynamical processes on the surface of photoactive-materials. In addition, the ability to access two regimes of dynamical probing in a single experiment and the energy loss of SEs in semiconductor-nanoscale materials will also be discussed.

  17. Speaking Code

    DEFF Research Database (Denmark)

    Cox, Geoff

    Speaking Code begins by invoking the “Hello World” convention used by programmers when learning a new language, helping to establish the interplay of text and code that runs through the book. Interweaving the voice of critical writing from the humanities with the tradition of computing and software...

  18. Muon contact hyperfine field in metals: A DFT calculation

    Science.gov (United States)

    Onuorah, Ifeanyi John; Bonfà, Pietro; De Renzi, Roberto

    2018-05-01

    In positive muon spin rotation and relaxation spectroscopy it is becoming customary to take advantage of density functional theory (DFT) based computational methods to aid the experimental data analysis. DFT-aided muon site determination is especially useful for measurements performed in magnetic materials, where large contact hyperfine interactions may arise. Here we present a systematic analysis of the accuracy of the ab initio estimation of muon's hyperfine contact field on elemental transition metals, performing state-of-the-art spin-polarized plane-wave DFT and using the projector-augmented pseudopotential approach, which allows one to include the core state effects due to the spin ordering. We further validate this method in not-so-simple, noncentrosymmetric metallic compounds, presently of topical interest for their spiral magnetic structure giving rise to skyrmion phases, such as MnSi and MnGe. The calculated hyperfine fields agree with experimental values in all cases, provided the spontaneous spin magnetization of the metal is well reproduced within the approach. To overcome the known limits of the conventional mean-field approximation of DFT on itinerant magnets, we adopt the so-called reduced Stoner theory [L. Ortenzi et al., Phys. Rev. B 86, 064437 (2012), 10.1103/PhysRevB.86.064437]. We establish the accuracy of the estimated muon contact field in metallic compounds with DFT and our results show improved agreement with experiments compared to those of earlier publications.

  19. Coding Labour

    Directory of Open Access Journals (Sweden)

    Anthony McCosker

    2014-03-01

    Full Text Available As well as introducing the Coding Labour section, the authors explore the diffusion of code across the material contexts of everyday life, through the objects and tools of mediation, the systems and practices of cultural production and organisational management, and in the material conditions of labour. Taking code beyond computation and software, their specific focus is on the increasingly familiar connections between code and labour with a focus on the codification and modulation of affect through technologies and practices of management within the contemporary work organisation. In the grey literature of spreadsheets, minutes, workload models, email and the like they identify a violence of forms through which workplace affect, in its constant flux of crisis and ‘prodromal’ modes, is regulated and governed.

  20. FAST TRACK COMMUNICATION A DFT + DMFT approach for nanosystems

    Science.gov (United States)

    Turkowski, Volodymyr; Kabir, Alamgir; Nayyar, Neha; Rahman, Talat S.

    2010-11-01

    We propose a combined density-functional-theory-dynamical-mean-field-theory (DFT + DMFT) approach for reliable inclusion of electron-electron correlation effects in nanosystems. Compared with the widely used DFT + U approach, this method has several advantages, the most important of which is that it takes into account dynamical correlation effects. The formalism is illustrated through different calculations of the magnetic properties of a set of small iron clusters (number of atoms 2 <= N <= 5). It is shown that the inclusion of dynamical effects leads to a reduction in the cluster magnetization (as compared to results from DFT + U) and that, even for such small clusters, the magnetization values agree well with experimental estimations. These results justify confidence in the ability of the method to accurately describe the magnetic properties of clusters of interest to nanoscience.

  1. Conformational, vibrational, NMR and DFT studies of N-methylacetanilide.

    Science.gov (United States)

    Arjunan, V; Santhanam, R; Rani, T; Rosi, H; Mohan, S

    2013-03-01

    A detailed conformational, vibrational, NMR and DFT studies of N-methylacetanilide have been carried out. In DFT, B3LYP method have been used with 6-31G(**), 6-311++G(**) and cc-pVTZ basis sets. The vibrational frequencies were calculated resulting in IR and Raman frequencies together with intensities and Raman depolarisation ratios. The dipole moment derivatives were computed analytically. Owing to the complexity of the molecule, the potential energy distributions of the vibrational modes of the compound are also calculated. Isoelectronic molecular electrostatic potential surface (MEP) and electron density surface were examined. (1)H and (13)C NMR isotropic chemical shifts were calculated and the assignments made are compared with the experimental values. The energies of important MO's of the compound were also determined from TD-DFT method. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Predictions of Physicochemical Properties of Ionic Liquids with DFT

    Directory of Open Access Journals (Sweden)

    Karl Karu

    2016-07-01

    Full Text Available Nowadays, density functional theory (DFT-based high-throughput computational approach is becoming more efficient and, thus, attractive for finding advanced materials for electrochemical applications. In this work, we illustrate how theoretical models, computational methods, and informatics techniques can be put together to form a simple DFT-based throughput computational workflow for predicting physicochemical properties of room-temperature ionic liquids. The developed workflow has been used for screening a set of 48 ionic pairs and for analyzing the gathered data. The predicted relative electrochemical stabilities, ionic charges and dynamic properties of the investigated ionic liquids are discussed in the light of their potential practical applications.

  3. Implementation of DFT application on ternary optical computer

    Science.gov (United States)

    Junjie, Peng; Youyi, Fu; Xiaofeng, Zhang; Shuai, Kong; Xinyu, Wei

    2018-03-01

    As its characteristics of huge number of data bits and low energy consumption, optical computing may be used in the applications such as DFT etc. which needs a lot of computation and can be implemented in parallel. According to this, DFT implementation methods in full parallel as well as in partial parallel are presented. Based on resources ternary optical computer (TOC), extensive experiments were carried out. Experimental results show that the proposed schemes are correct and feasible. They provide a foundation for further exploration of the applications on TOC that needs a large amount calculation and can be processed in parallel.

  4. DFTBaby: A software package for non-adiabatic molecular dynamics simulations based on long-range corrected tight-binding TD-DFT(B)

    Science.gov (United States)

    Humeniuk, Alexander; Mitrić, Roland

    2017-12-01

    A software package, called DFTBaby, is published, which provides the electronic structure needed for running non-adiabatic molecular dynamics simulations at the level of tight-binding DFT. A long-range correction is incorporated to avoid spurious charge transfer states. Excited state energies, their analytic gradients and scalar non-adiabatic couplings are computed using tight-binding TD-DFT. These quantities are fed into a molecular dynamics code, which integrates Newton's equations of motion for the nuclei together with the electronic Schrödinger equation. Non-adiabatic effects are included by surface hopping. As an example, the program is applied to the optimization of excited states and non-adiabatic dynamics of polyfluorene. The python and Fortran source code is available at http://www.dftbaby.chemie.uni-wuerzburg.de.

  5. Speech coding

    Energy Technology Data Exchange (ETDEWEB)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the

  6. Optimal codes as Tanner codes with cyclic component codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Pinero, Fernando; Zeng, Peng

    2014-01-01

    In this article we study a class of graph codes with cyclic code component codes as affine variety codes. Within this class of Tanner codes we find some optimal binary codes. We use a particular subgraph of the point-line incidence plane of A(2,q) as the Tanner graph, and we are able to describe ...

  7. DFT and TD-DFT computation of charge transfer complex between o-phenylenediamine and 3,5-dinitrosalicylic acid

    International Nuclear Information System (INIS)

    Afroz, Ziya; Zulkarnain,; Ahmad, Afaq; Alam, Mohammad Jane; Faizan, Mohd; Ahmad, Shabbir

    2016-01-01

    DFT and TD-DFT studies of o-phenylenediamine (PDA), 3,5-dinitrosalicylic acid (DNSA) and their charge transfer complex have been carried out at B3LYP/6-311G(d,p) level of theory. Molecular geometry and various other molecular properties like natural atomic charges, ionization potential, electron affinity, band gap, natural bond orbital (NBO) and frontier molecular analysis have been presented at same level of theory. Frontier molecular orbital and natural bond orbital analysis show the charge delocalization from PDA to DNSA.

  8. Aztheca Code

    International Nuclear Information System (INIS)

    Quezada G, S.; Espinosa P, G.; Centeno P, J.; Sanchez M, H.

    2017-09-01

    This paper presents the Aztheca code, which is formed by the mathematical models of neutron kinetics, power generation, heat transfer, core thermo-hydraulics, recirculation systems, dynamic pressure and level models and control system. The Aztheca code is validated with plant data, as well as with predictions from the manufacturer when the reactor operates in a stationary state. On the other hand, to demonstrate that the model is applicable during a transient, an event occurred in a nuclear power plant with a BWR reactor is selected. The plant data are compared with the results obtained with RELAP-5 and the Aztheca model. The results show that both RELAP-5 and the Aztheca code have the ability to adequately predict the behavior of the reactor. (Author)

  9. Vocable Code

    DEFF Research Database (Denmark)

    Soon, Winnie; Cox, Geoff

    2018-01-01

    a computational and poetic composition for two screens: on one of these, texts and voices are repeated and disrupted by mathematical chaos, together exploring the performativity of code and language; on the other, is a mix of a computer programming syntax and human language. In this sense queer code can...... be understood as both an object and subject of study that intervenes in the world’s ‘becoming' and how material bodies are produced via human and nonhuman practices. Through mixing the natural and computer language, this article presents a script in six parts from a performative lecture for two persons...

  10. NSURE code

    International Nuclear Information System (INIS)

    Rattan, D.S.

    1993-11-01

    NSURE stands for Near-Surface Repository code. NSURE is a performance assessment code. developed for the safety assessment of near-surface disposal facilities for low-level radioactive waste (LLRW). Part one of this report documents the NSURE model, governing equations and formulation of the mathematical models, and their implementation under the SYVAC3 executive. The NSURE model simulates the release of nuclides from an engineered vault, their subsequent transport via the groundwater and surface water pathways tot he biosphere, and predicts the resulting dose rate to a critical individual. Part two of this report consists of a User's manual, describing simulation procedures, input data preparation, output and example test cases

  11. DFT study of Al doped armchair SWCNTs

    Energy Technology Data Exchange (ETDEWEB)

    Dhiman, Shobhna, E-mail: s-dhiman@hotmail.com [Department of Applied Science, PEC, University of Technology, Chandigarh -160012 (India); Rani, Anita [Guru Nanak College for Girls, Sri Muktsar Sahib, Punjab-152026 (India); Kumar, Ranjan; Dharamvir, Keya [Department of Physics, Panjab University, Chandigarh-160014 (India)

    2016-05-23

    Electronic properties of endohedrally doped armchair single-walled carbon nanotubes (SWCNTs) with a chain of six Al atoms have been studied using ab-initio density functional theory. We investigate the binding energy/atom, ionization potential, electron Affinity and Homo-Lumo gap of doped armchair SWNTs from (4,4) to (6,6) with two ends open. BE/dopant atom and ionization potential is maximum for (6, 6) doped armchair carbon nanotube; suggest that it is more stable than (4, 4) and (5, 5) doped tubes. HOMO - LUMO gap of Al doped arm chair carbon nanotubes decreases linearly with the increase in diameter of the tube. This shows that confinement induce a strong effect on electronic properties of doped tubes. These combined systems can be used for future nano electronics. The ab–initio calculations were performed with SIESTA code using generalized gradient approximation (GGA).

  12. DFT reactivity indices in confined many-electron atoms + ∫

    Indian Academy of Sciences (India)

    Unknown

    Functional Theory (DFT) based global descriptors of chemical reactivity for atoms .... interesting due to its utility as a model in the wide variety of applications ... hydrogen atom at Rc = 2⋅0 au is expected to correspond to the energy value of ...

  13. CHANNEL ESTIMATION FOR ZT DFT-s-OFDM

    DEFF Research Database (Denmark)

    2018-01-01

    A signal modulated according to zero-tail discrete Fourier transform spread orthogonal frequency division multiplexing (ZT DFT-s-OFDM) is received over a channel. The signal is down-sampled into a first sequence comprising N samples, N corresponding to the number of used subcarriers. The first Nh...

  14. The Aster code; Code Aster

    Energy Technology Data Exchange (ETDEWEB)

    Delbecq, J.M

    1999-07-01

    The Aster code is a 2D or 3D finite-element calculation code for structures developed by the R and D direction of Electricite de France (EdF). This dossier presents a complete overview of the characteristics and uses of the Aster code: introduction of version 4; the context of Aster (organisation of the code development, versions, systems and interfaces, development tools, quality assurance, independent validation); static mechanics (linear thermo-elasticity, Euler buckling, cables, Zarka-Casier method); non-linear mechanics (materials behaviour, big deformations, specific loads, unloading and loss of load proportionality indicators, global algorithm, contact and friction); rupture mechanics (G energy restitution level, restitution level in thermo-elasto-plasticity, 3D local energy restitution level, KI and KII stress intensity factors, calculation of limit loads for structures), specific treatments (fatigue, rupture, wear, error estimation); meshes and models (mesh generation, modeling, loads and boundary conditions, links between different modeling processes, resolution of linear systems, display of results etc..); vibration mechanics (modal and harmonic analysis, dynamics with shocks, direct transient dynamics, seismic analysis and aleatory dynamics, non-linear dynamics, dynamical sub-structuring); fluid-structure interactions (internal acoustics, mass, rigidity and damping); linear and non-linear thermal analysis; steels and metal industry (structure transformations); coupled problems (internal chaining, internal thermo-hydro-mechanical coupling, chaining with other codes); products and services. (J.S.)

  15. Coding Class

    DEFF Research Database (Denmark)

    Ejsing-Duun, Stine; Hansbøl, Mikala

    Denne rapport rummer evaluering og dokumentation af Coding Class projektet1. Coding Class projektet blev igangsat i skoleåret 2016/2017 af IT-Branchen i samarbejde med en række medlemsvirksomheder, Københavns kommune, Vejle Kommune, Styrelsen for IT- og Læring (STIL) og den frivillige forening...... Coding Pirates2. Rapporten er forfattet af Docent i digitale læringsressourcer og forskningskoordinator for forsknings- og udviklingsmiljøet Digitalisering i Skolen (DiS), Mikala Hansbøl, fra Institut for Skole og Læring ved Professionshøjskolen Metropol; og Lektor i læringsteknologi, interaktionsdesign......, design tænkning og design-pædagogik, Stine Ejsing-Duun fra Forskningslab: It og Læringsdesign (ILD-LAB) ved Institut for kommunikation og psykologi, Aalborg Universitet i København. Vi har fulgt og gennemført evaluering og dokumentation af Coding Class projektet i perioden november 2016 til maj 2017...

  16. Uplink Coding

    Science.gov (United States)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the objectives, meeting goals and overall NASA goals for the NASA Data Standards Working Group. The presentation includes information on the technical progress surrounding the objective, short LDPC codes, and the general results on the Pu-Pw tradeoff.

  17. ANIMAL code

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1979-01-01

    This report describes ANIMAL, a two-dimensional Eulerian magnetohydrodynamic computer code. ANIMAL's physical model also appears. Formulated are temporal and spatial finite-difference equations in a manner that facilitates implementation of the algorithm. Outlined are the functions of the algorithm's FORTRAN subroutines and variables

  18. Network Coding

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Network Coding. K V Rashmi Nihar B Shah P Vijay Kumar. General Article Volume 15 Issue 7 July 2010 pp 604-621. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/015/07/0604-0621 ...

  19. MCNP code

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1984-01-01

    The MCNP code is the major Monte Carlo coupled neutron-photon transport research tool at the Los Alamos National Laboratory, and it represents the most extensive Monte Carlo development program in the United States which is available in the public domain. The present code is the direct descendent of the original Monte Carlo work of Fermi, von Neumaum, and Ulam at Los Alamos in the 1940s. Development has continued uninterrupted since that time, and the current version of MCNP (or its predecessors) has always included state-of-the-art methods in the Monte Carlo simulation of radiation transport, basic cross section data, geometry capability, variance reduction, and estimation procedures. The authors of the present code have oriented its development toward general user application. The documentation, though extensive, is presented in a clear and simple manner with many examples, illustrations, and sample problems. In addition to providing the desired results, the output listings give a a wealth of detailed information (some optional) concerning each state of the calculation. The code system is continually updated to take advantage of advances in computer hardware and software, including interactive modes of operation, diagnostic interrupts and restarts, and a variety of graphical and video aids

  20. Expander Codes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 1. Expander Codes - The Sipser–Spielman Construction. Priti Shankar. General Article Volume 10 ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science Bangalore 560 012, India.

  1. Panda code

    International Nuclear Information System (INIS)

    Altomare, S.; Minton, G.

    1975-02-01

    PANDA is a new two-group one-dimensional (slab/cylinder) neutron diffusion code designed to replace and extend the FAB series. PANDA allows for the nonlinear effects of xenon, enthalpy and Doppler. Fuel depletion is allowed. PANDA has a completely general search facility which will seek criticality, maximize reactivity, or minimize peaking. Any single parameter may be varied in a search. PANDA is written in FORTRAN IV, and as such is nearly machine independent. However, PANDA has been written with the present limitations of the Westinghouse CDC-6600 system in mind. Most computation loops are very short, and the code is less than half the useful 6600 memory size so that two jobs can reside in the core at once. (auth)

  2. CANAL code

    International Nuclear Information System (INIS)

    Gara, P.; Martin, E.

    1983-01-01

    The CANAL code presented here optimizes a realistic iron free extraction channel which has to provide a given transversal magnetic field law in the median plane: the current bars may be curved, have finite lengths and cooling ducts and move in a restricted transversal area; terminal connectors may be added, images of the bars in pole pieces may be included. A special option optimizes a real set of circular coils [fr

  3. DFT Study of dimers of dimethyl sulfoxide in gas phase

    Directory of Open Access Journals (Sweden)

    Reza Fazaeli

    2014-10-01

    Full Text Available Density functional (DFT calculations at M05-2x/aug-cc-pVDZ level were used to analyze the interactions between dimethyl sulfoxide (DMSO dimers. The structures obtained have been ana-lyzed with the Atoms in Molecules (AIMs and Natural Bond Orbital (NBO methodologies. Four minima were located on the potential energy surface of the dimers. Three types of interac-tions are observed, CH•••O, CH•••S hydrogen bonds and orthogonal interaction between the lone pair of the oxygen with the electron-deficient region of the sulfur atom. Stabilization energies of dimers including BSSE and ZPE are in the range 27–40 kJmol-1. The most stable conformers of dimers at DFT level is cyclic structure with antiparallel orientation of S=O groups pairing with three C–H∙∙∙O and a S∙∙∙O interactions.

  4. Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Webster, R., E-mail: ross.webster07@imperial.ac.uk; Harrison, N. M. [Thomas Young Centre, Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Bernasconi, L. [Rutherford Appleton Laboratory, STFC, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

    2015-06-07

    We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features of the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green’s function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional c{sub HF} and show that there exists one value of c{sub HF} (∼0.32) that reproduces at least semi-quantitatively the optical gap of this material.

  5. From concatenated codes to graph codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Høholdt, Tom

    2004-01-01

    We consider codes based on simple bipartite expander graphs. These codes may be seen as the first step leading from product type concatenated codes to more complex graph codes. We emphasize constructions of specific codes of realistic lengths, and study the details of decoding by message passing...

  6. DFT-Assisted Polymorph Identification from Lattice Raman Fingerprinting.

    Science.gov (United States)

    Bedoya-Martínez, Natalia; Schrode, Benedikt; Jones, Andrew O F; Salzillo, Tommaso; Ruzié, Christian; Demitri, Nicola; Geerts, Yves H; Venuti, Elisabetta; Della Valle, Raffaele Guido; Zojer, Egbert; Resel, Roland

    2017-08-03

    A combined experimental and theoretical approach, consisting of lattice phonon Raman spectroscopy and density functional theory (DFT) calculations, is proposed as a tool for lattice dynamics characterization and polymorph phase identification. To illustrate the reliability of the method, the lattice phonon Raman spectra of two polymorphs of the molecule 2,7-dioctyloxy[1]benzothieno[3,2-b]benzothiophene are investigated. We show that DFT calculations of the lattice vibrations based on the known crystal structures, including many-body dispersion van der Waals (MBD-vdW) corrections, predict experimental data within an accuracy of ≪5 cm -1 (≪0.6 meV). Due to the high accuracy of the simulations, they can be used to unambiguously identify different polymorphs and to characterize the nature of the lattice vibrations and their relationship to the structural properties. More generally, this work implies that DFT-MBD-vdW is a promising method to describe also other physical properties that depend on lattice dynamics like charge transport.

  7. DFT Study of Optical Properties of Pt-based Complexes

    Science.gov (United States)

    Oprea, Corneliu I.; Dumbravǎ, Anca; Moscalu, Florin; Nicolaides, Atnanassios; Gîrţu, Mihai A.

    2010-01-01

    We report Density Functional Theory (DFT) calculations providing the geometrical and electronic structures, as well as the vibrational and optical properties of the homologous series of Pt-pyramidalized olefin complexes (CH2)n-(C8H10)Pt(PH3)2, where n = 0, 1, and 2, in their neutral and oxidized states. All complexes were geometry optimized for the singlet ground state in vacuum using DFT methods with B3LYP exchange-correlation functional and the Effective Core Potential LANL2DZ basis set, within the frame of Gaussian03 quantum chemistry package. We find the coordination geometry of Pt to be distorted square planar, with dihedral angles ranging from 0°, for n = 0 and 1, which have C2V symmetry to 3.4°, for n = 2 with C2 symmetry. The Mulliken charge analysis allows a discussion of the oxidation state of the Pt ion. Electronic transitions were calculated at the same level of theory by means of Time Dependant-DFT. For n = 2 the electronic absorption bands are located in the UV region of the spectrum, the transitions being assigned to metal to ligand charge transfers. The relevance of these Pt-based compounds as possible pigments for dye-sensitized solar cells is discussed.

  8. Charge transfer complex between 2,3-diaminopyridine with chloranilic acid. Synthesis, characterization and DFT, TD-DFT computational studies

    Science.gov (United States)

    Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.

    2018-05-01

    New charge transfer complex (CTC) between the electron donor 2,3-diaminopyridine (DAP) with the electron acceptor chloranilic (CLA) acid has been synthesized and characterized experimentally and theoretically using a variety of physicochemical techniques. The experimental work included the use of elemental analysis, UV-vis, IR and 1H NMR studies to characterize the complex. Electronic spectra have been carried out in different hydrogen bonded solvents, methanol (MeOH), acetonitrile (AN) and 1:1 mixture from AN-MeOH. The molecular composition of the complex was identified to be 1:1 from Jobs and molar ratio methods. The stability constant was determined using minimum-maximum absorbances method where it recorded high values confirming the high stability of the formed complex. The solid complex was prepared and characterized by elemental analysis that confirmed its formation in 1:1 stoichiometric ratio. Both IR and NMR studies asserted the existence of proton and charge transfers in the formed complex. For supporting the experimental results, DFT computations were carried out using B3LYP/6-31G(d,p) method to compute the optimized structures of the reactants and complex, their geometrical parameters, reactivity parameters, molecular electrostatic potential map and frontier molecular orbitals. The analysis of DFT results strongly confirmed the high stability of the formed complex based on existing charge transfer beside proton transfer hydrogen bonding concordant with experimental results. The origin of electronic spectra was analyzed using TD-DFT method where the observed λmax are strongly consisted with the computed ones. TD-DFT showed the contributed states for various electronic transitions.

  9. DFT and TD-DFT calculations of metallotetraphenylporphyrin and metallotetraphenylporphyrin fullerene complexes as potential dye sensitizers for solar cells

    Science.gov (United States)

    El Mahdy, A. M.; Halim, Shimaa Abdel; Taha, H. O.

    2018-05-01

    Density functional theory (DFT) and time-dependent DFT calculations have been employed to model metallotetraphenylporphyrin dyes and metallotetraphenylporphyrin -fullerene complexes in order to investigate the geometries, electronic structures, the density of states, non-linear optical properties (NLO), IR-vis spectra, molecular electrostatic potential contours, and electrophilicity. To calculate the excited states of the tetraphenyl porphyrin analogs, time-dependent density functional theory (TD-DFT) are used. Their UV-vis spectra were also obtained and a comparison with available experimental and theoretical results is included. The results reveal that the metal and the tertiary butyl groups of the dyes are electron donors, and the tetraphenylporphyrin rings are electron acceptors. The HOMOs of the dyes fall within the (TiO2)60 and Ti38O76 band gaps and support the issue of typical interfacial electron transfer reaction. The resulting potential drop of Mn-TPP-C60 increased by ca. 3.50% under the effect of the tertiary butyl groups. The increase in the potential drop indicates that the tertiary butyl complexes could be a better choice for the strong operation of the molecular rectifiers. The introduction of metal atom and tertiary butyl groups to the tetraphenyl porphyrin moiety leads to a stronger response to the external electric field and induces higher photo-to-current conversion efficiency. This also shifts the absorption in the dyes and makes them potential candidates for harvesting light in the entire visible and near IR region for photovoltaic applications.

  10. Electronic structure of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} by DFT and QMC

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, Aliakbar; Janowitz, Christoph; Manzke, Recardo [Institute of Physics, Humboldt University of Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Haghighi Mood, Kaveh [Dept. of Physics, Science and Research Branch (IAU), Tehran (Iran, Islamic Republic of)

    2012-07-01

    The electronic structure of high-T{sub c} cuprates superconductors (HTCS) is among the most interesting issues of condensed matter physics since their discovery by Bednorz and Mueller. It has been proven that the antiferromagnetic ground state of the parent compound of the HTCS is not accessible by using local density approximation (LDA) and generalized gradient approximation (GGA) as exchange-correlation energy functionals within density functional theory (DFT). Therefore, we calculated the electronic structure of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} by adding the Hubbard parameter to DFT(GGA+U) and quantum Monte Carlo (QMC) methods. The calculations have been performed by Wien2k and Casino codes for GGA+U and QMC, respectively.

  11. Elements of a pragmatic approach for dealing with bias and uncertainty in experiments through predictions : experiment design and data conditioning; %22real space%22 model validation and conditioning; hierarchical modeling and extrapolative prediction.

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Vicente Jose

    2011-11-01

    This report explores some important considerations in devising a practical and consistent framework and methodology for utilizing experiments and experimental data to support modeling and prediction. A pragmatic and versatile 'Real Space' approach is outlined for confronting experimental and modeling bias and uncertainty to mitigate risk in modeling and prediction. The elements of experiment design and data analysis, data conditioning, model conditioning, model validation, hierarchical modeling, and extrapolative prediction under uncertainty are examined. An appreciation can be gained for the constraints and difficulties at play in devising a viable end-to-end methodology. Rationale is given for the various choices underlying the Real Space end-to-end approach. The approach adopts and refines some elements and constructs from the literature and adds pivotal new elements and constructs. Crucially, the approach reflects a pragmatism and versatility derived from working many industrial-scale problems involving complex physics and constitutive models, steady-state and time-varying nonlinear behavior and boundary conditions, and various types of uncertainty in experiments and models. The framework benefits from a broad exposure to integrated experimental and modeling activities in the areas of heat transfer, solid and structural mechanics, irradiated electronics, and combustion in fluids and solids.

  12. DFT calculations on electronic properties of ZnO thin films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Cordeiro, J.M.; Reynoso, V.C.; Azevedo, D.H.M. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil)

    2016-07-01

    Full text: Introduction - Thin films of Zinc oxide (ZnO) has a wide range of technological applications, as transparent conducting electrodes in solar cells, flat panel displays, and sensors, for example. More recently applications in optoelectronics, like light emitter diodes and laser diodes, due to its large band gap, are been explored. Studies of ZnO thin films are important for these applications. Methodology - In this study thin films of ZnO have been deposited by spray pyrolysis on glass substrate. The films were characterized by XRD and UV-VIS techniques and the electronic properties as a function of the film thickness have been investigated by DFT calculations with B3LYP hybrid potential implemented in the CRYSTAL09 code. Results - The diffractograms obtained for the ZnO thin films as a function of the thickness are shown. The films exhibit a hexagonal wurtzite structure with preferred c-axis orientation in (002) direction of ZnO crystal. A quantum mechanical approach based on the periodic Density Functional Theory (DFT), with B3LYP hybrid potential was used to investigate the electronic structure of the films as a function of the thickness. The CRYSTAL09 code has been used for the calculations on the wurtzite hexagonal structure of ZnO - spatial group P63mc. For optimizing the geometry of the pure ZnO crystal, the experimental lattice parameters were got as follows: a= 0.325 nm, b= 0.325 nm, c= 0.5207 nm with c/a= 1.602. Considering to the calculations of the band structure, it is suggested that the semiconducting properties of ZnO arises from the overlapping of the 4s orbital of the conducting band of Zn and the 2p orbital of the top of valence band of O. Conclusions - The structure of ZnO thin film deposited on glass substrate present preferential orientation in (002) direction. Variation in the optical properties as a function of the film thickness was observed. The band gap energy was determined from optical analysis to be ∼ 3.27 eV. The refractive

  13. Automatic coding method of the ACR Code

    International Nuclear Information System (INIS)

    Park, Kwi Ae; Ihm, Jong Sool; Ahn, Woo Hyun; Baik, Seung Kook; Choi, Han Yong; Kim, Bong Gi

    1993-01-01

    The authors developed a computer program for automatic coding of ACR(American College of Radiology) code. The automatic coding of the ACR code is essential for computerization of the data in the department of radiology. This program was written in foxbase language and has been used for automatic coding of diagnosis in the Department of Radiology, Wallace Memorial Baptist since May 1992. The ACR dictionary files consisted of 11 files, one for the organ code and the others for the pathology code. The organ code was obtained by typing organ name or code number itself among the upper and lower level codes of the selected one that were simultaneous displayed on the screen. According to the first number of the selected organ code, the corresponding pathology code file was chosen automatically. By the similar fashion of organ code selection, the proper pathologic dode was obtained. An example of obtained ACR code is '131.3661'. This procedure was reproducible regardless of the number of fields of data. Because this program was written in 'User's Defined Function' from, decoding of the stored ACR code was achieved by this same program and incorporation of this program into program in to another data processing was possible. This program had merits of simple operation, accurate and detail coding, and easy adjustment for another program. Therefore, this program can be used for automation of routine work in the department of radiology

  14. Error-correction coding

    Science.gov (United States)

    Hinds, Erold W. (Principal Investigator)

    1996-01-01

    This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.

  15. Analyzing the errors of DFT approximations for compressed water systems

    International Nuclear Information System (INIS)

    Alfè, D.; Bartók, A. P.; Csányi, G.; Gillan, M. J.

    2014-01-01

    We report an extensive study of the errors of density functional theory (DFT) approximations for compressed water systems. The approximations studied are based on the widely used PBE and BLYP exchange-correlation functionals, and we characterize their errors before and after correction for 1- and 2-body errors, the corrections being performed using the methods of Gaussian approximation potentials. The errors of the uncorrected and corrected approximations are investigated for two related types of water system: first, the compressed liquid at temperature 420 K and density 1.245 g/cm 3 where the experimental pressure is 15 kilobars; second, thermal samples of compressed water clusters from the trimer to the 27-mer. For the liquid, we report four first-principles molecular dynamics simulations, two generated with the uncorrected PBE and BLYP approximations and a further two with their 1- and 2-body corrected counterparts. The errors of the simulations are characterized by comparing with experimental data for the pressure, with neutron-diffraction data for the three radial distribution functions, and with quantum Monte Carlo (QMC) benchmarks for the energies of sets of configurations of the liquid in periodic boundary conditions. The DFT errors of the configuration samples of compressed water clusters are computed using QMC benchmarks. We find that the 2-body and beyond-2-body errors in the liquid are closely related to similar errors exhibited by the clusters. For both the liquid and the clusters, beyond-2-body errors of DFT make a substantial contribution to the overall errors, so that correction for 1- and 2-body errors does not suffice to give a satisfactory description. For BLYP, a recent representation of 3-body energies due to Medders, Babin, and Paesani [J. Chem. Theory Comput. 9, 1103 (2013)] gives a reasonably good way of correcting for beyond-2-body errors, after which the remaining errors are typically 0.5 mE h ≃ 15 meV/monomer for the liquid and the

  16. Dynamic Shannon Coding

    OpenAIRE

    Gagie, Travis

    2005-01-01

    We present a new algorithm for dynamic prefix-free coding, based on Shannon coding. We give a simple analysis and prove a better upper bound on the length of the encoding produced than the corresponding bound for dynamic Huffman coding. We show how our algorithm can be modified for efficient length-restricted coding, alphabetic coding and coding with unequal letter costs.

  17. Fundamentals of convolutional coding

    CERN Document Server

    Johannesson, Rolf

    2015-01-01

    Fundamentals of Convolutional Coding, Second Edition, regarded as a bible of convolutional coding brings you a clear and comprehensive discussion of the basic principles of this field * Two new chapters on low-density parity-check (LDPC) convolutional codes and iterative coding * Viterbi, BCJR, BEAST, list, and sequential decoding of convolutional codes * Distance properties of convolutional codes * Includes a downloadable solutions manual

  18. Codes Over Hyperfields

    Directory of Open Access Journals (Sweden)

    Atamewoue Surdive

    2017-12-01

    Full Text Available In this paper, we define linear codes and cyclic codes over a finite Krasner hyperfield and we characterize these codes by their generator matrices and parity check matrices. We also demonstrate that codes over finite Krasner hyperfields are more interesting for code theory than codes over classical finite fields.

  19. Reaction pathways of the dissociation of methylal: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H -M; Beaud, P; Gerber, T; Mischler, B; Radi, P P; Tzannis, A -P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Schemata for modelling combustion processes do not yet include reaction rates for oxygenated fuels like methylal (DMM) which is considered as an additive or replacement for diesel due to its low sooting propensity. Density functional theory (DFT) studies of the possible reaction pathways for different dissociation steps of methylal are presented. Cleavage of a hydrogen bond to the methoxy group or the central carbon atom were simulated at the BLYP/6-311++G{sup **} level of theory. The results are compared to the experiment when dissociating and/or ionising DMM with femtosecond pulses. (author) 1 fig., 1 tab., 1 ref.

  20. Digital circuit testing a guide to DFT and other techniques

    CERN Document Server

    Wong, Francis C

    1991-01-01

    Recent technological advances have created a testing crisis in the electronics industry--smaller, more highly integrated electronic circuits and new packaging techniques make it increasingly difficult to physically access test nodes. New testing methods are needed for the next generation of electronic equipment and a great deal of emphasis is being placed on the development of these methods. Some of the techniques now becoming popular include design for testability (DFT), built-in self-test (BIST), and automatic test vector generation (ATVG). This book will provide a practical introduction to

  1. Synthesis and DFT calculations of some 2-aminothiazoles

    Science.gov (United States)

    Rezania, Jafar; Behzadi, Hadi; Shockravi, Abbas; Ehsani, Morteza; Akbarzadeh, Elahe

    2018-04-01

    A series of 2-aminothiazole derivatives have been synthesized by the reaction of acetyl compounds with thiourea and iodine as catalyst under solvent-free condition, a green chemistry method. The quantum chemical calculations at the DFT/B3LYP level of theory in gas phase were carried out for starting acetyl derivatives. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and related reactivity descriptor of acetyl derivatives, as well as, enthalpy of reactions are calculated in order to investigate the reaction properties of acetyl compounds and yields of the reactions. The calculated reactivity descriptors are well correlated to activity of different acetyl derivatives.

  2. Trans-dinitroglycoluril isomers-A DFT treatment

    Directory of Open Access Journals (Sweden)

    Lemi Türker

    2017-02-01

    Full Text Available Isomers of trans-1,4-Dinitroglycoluril (trans-DINGU and their 1,3-tautomers are considered within the constraints of B3LYP/6-31++G (d,p and B3LYP/CC-PVTZ levels of DFT calculations. Additionally, the interactions of these isomers and proton in vacuum are investigated. The data have revealed that two of the three isomers undergo CH bond cleavage as the result of interaction with proton in vacuum. The total energies, some structural properties, the calculated IR and UV spectra are discussed.

  3. Error compensation of IQ modulator using two-dimensional DFT

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Takashi, E-mail: ohshima@spring8.or.jp [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Maesaka, Hirokazu [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Matsubara, Shinichi [Japan Synchrotron Radiation Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Otake, Yuji [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2016-06-01

    It is important to precisely set and keep the phase and amplitude of an rf signal in the accelerating cavity of modern accelerators, such as an X-ray Free Electron Laser (XFEL) linac. In these accelerators an acceleration rf signal is generated or detected by an In-phase and Quadrature (IQ) modulator, or a demodulator. If there are any deviations of the phase and the amplitude from the ideal values, crosstalk between the phase and the amplitude of the output signal of the IQ modulator or the demodulator arises. This causes instability of the feedback controls that simultaneously stabilize both the rf phase and the amplitude. To compensate for such deviations, we developed a novel compensation method using a two-dimensional Discrete Fourier Transform (DFT). Because the observed deviations of the phase and amplitude of an IQ modulator involve sinusoidal and polynomial behaviors on the phase angle and the amplitude of the rf vector, respectively, the DFT calculation with these basis functions makes a good approximation with a small number of compensation coefficients. Also, we can suppress high-frequency noise components arising when we measure the deviation data. These characteristics have advantages compared to a Look Up Table (LUT) compensation method. The LUT method usually demands many compensation elements, such as about 300, that are not easy to treat. We applied the DFT compensation method to the output rf signal of a C-band IQ modulator at SACLA, which is an XFEL facility in Japan. The amplitude deviation of the IQ modulator after the DFT compensation was reduced from 15.0% at the peak to less than 0.2% at the peak for an amplitude control range of from 0.1 V to 0.9 V (1.0 V full scale) and for a phase control range from 0 degree to 360 degrees. The number of compensation coefficients is 60, which is smaller than that of the LUT method, and is easy to treat and maintain.

  4. Synthesis, Characterisation and DFT Calculations of Azo-Imine Dyes

    Directory of Open Access Journals (Sweden)

    Sevil Özkınalı

    2017-11-01

    Full Text Available In this study, azo dyes containing an imine group were synthesised by coupling p-hydroxybenzylidene aniline with the diazonium salts of p-toluidine, 4-aminophenol, aniline, p-chloroaniline, p-fluoroaniline, and p-nitroaniline. The compounds were characterised by melting point, elemental, UV-Vis and IR analyses as well as 1H-NMR and 13C-NMR spectroscopies. Moreover, the experimental data were supplemented with density functional theory (DFT calculations. The experimental data on FT-IR and UV–Vis spectra of the compounds were compared with theoretical results. The DFT calculations were performed to obtain the ground state geometries of the compounds using the B3LYP hybrid functional level with 6-311++g(2d,2p basis set. Frontier molecular orbital energies, band gap energies and some chemical reactivity parameters, such as chemical hardness and electronegativity, were calculated and compared with experimental values. A significant correlation was observed between the dipole moment and polarities of the solvents and the absorption wavelength of the compounds.

  5. DFT-based offset-QAM OFDM for optical communications.

    Science.gov (United States)

    Zhao, Jian

    2014-01-13

    We experimentally demonstrate and numerically investigate a discrete-Fourier-transform (DFT) based offset quadrature-amplitude-modulation (offset-QAM) orthogonal frequency division multiplexing (OFDM) system. We investigate the scheme using a set of square-root-raised-cosine functions and a set of super-Gaussian functions as signal spectra. It is shown that offset-QAM OFDM exhibits negligible penalty for all investigated spectra, in contrast to rectangular-function based Nyquist FDM (N-FDM) and sinc-function based conventional OFDM (C-OFDM). The required guard interval (GI) length for dispersion compensation in offset-QAM OFDM is analyzed and shown to scale with twice the subcarrier spacing rather than the full OFDM bandwidth. Experimental results show that 38-Gb/s offset-16QAM OFDM supports 600-km fiber transmission with negligible penalty in the absence of GI while a GI length of eight is required in C-OFDM. Further numerical simulations show that by avoiding the GI, 112-Gb/s polarization multiplexed offset-4QAM OFDM can achieve 23% increase in net data rate over C-OFDM under the same transmission reach. We also discuss the design of the pulse-shaping filter in the DFT-based implementation and show that when compared to N-FDM, the required memory length of the filter for pulse shaping can be reduced from 60 to 2 in offset-QAM OFDM regardless of the fiber length.

  6. Reactive sites influence in PMMA oligomers reactivity: a DFT study

    Science.gov (United States)

    Paz, C. V.; Vásquez, S. R.; Flores, N.; García, L.; Rico, J. L.

    2018-01-01

    In this work, we present a theoretical study of methyl methacrylate (MMA) living anionic polymerization. The study was addressed to understanding two important experimental observations made for Michael Szwarc in 1956. The unexpected effect of reactive sites concentration in the propagation rate, and the self-killer behavior of MMA (deactivating of living anionic polymerization). The theoretical calculations were performed by density functional theory (DFT) to obtain the frontier molecular orbitals values. These values were used to calculate and analyze the chemical interaction descriptors in DFT-Koopmans’ theorem. As a result, it was observed that the longest chain-length species (related with low concentration of reactive sites) exhibit the highest reactivity (behavior associated with the increase of the propagation rate). The improvement in this reactivity was attributed to the crosslinking produced in the polymethyl methacrylate chains. Meanwhile, the self-killer behavior was associated with the intermolecular forces present in the reactive sites. This behavior was associated to an obstruction in solvation, since the active sites remained active through all propagation species. The theoretical results were in good agreement with the Szwarc experiments.

  7. Vector Network Coding Algorithms

    OpenAIRE

    Ebrahimi, Javad; Fragouli, Christina

    2010-01-01

    We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L x L coding matrices that play a similar role as coding c in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector coding, our algori...

  8. Homological stabilizer codes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Jonas T., E-mail: jonastyleranderson@gmail.com

    2013-03-15

    In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.

  9. Spectroscopic and DFT studies of calix[4]arene: time-dependent DFT calculations for elucidating the variation in the excitation energies with geometry

    Energy Technology Data Exchange (ETDEWEB)

    Boo, Bong Hyun; Kwak, Hae Ran; Hong, Seung Ki [Chungnam National University, Daejeon (Korea, Republic of); Park, Chan Jo [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); No, Kwang Hyun [Sookmyung Womens University, Seoul (Korea, Republic of)

    2010-08-15

    We have searched low-lying conformers of calix[4]arene and found one global minimum having a cone shape, together with three conformers such as partial cone-shape conformers. We then elucidated the thermodynamics for the conformational changes by performing density-functional theory (DFT) calculations. The time-dependent DFT calculation enabled us to assign the absorption spectrum and to reveal a variation of the excitation energies with geometry.

  10. Proton affinities of anionic bases: Trends across the periodic table, structural effects, and DFT validation

    NARCIS (Netherlands)

    Swart, M.; Bickelhaupt, F.M.

    2006-01-01

    We have carried out an extensive exploration of the gas-phase basicity of archetypal anionic bases across the periodic system using the generalized gradient approximation of density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. First, we validate DFT as a reliable tool for computing proton

  11. Diagnostic Coding for Epilepsy.

    Science.gov (United States)

    Williams, Korwyn; Nuwer, Marc R; Buchhalter, Jeffrey R

    2016-02-01

    Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.

  12. Coding of Neuroinfectious Diseases.

    Science.gov (United States)

    Barkley, Gregory L

    2015-12-01

    Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.

  13. Coherent optical DFT-spread OFDM transmission using orthogonal band multiplexing.

    Science.gov (United States)

    Yang, Qi; He, Zhixue; Yang, Zhu; Yu, Shaohua; Yi, Xingwen; Shieh, William

    2012-01-30

    Coherent optical OFDM (CO-OFDM) combined with orthogonal band multiplexing provides a scalable and flexible solution for achieving ultra high-speed rate. Among many CO-OFDM implementations, digital Fourier transform spread (DFT-S) CO-OFDM is proposed to mitigate fiber nonlinearity in long-haul transmission. In this paper, we first illustrate the principle of DFT-S OFDM. We then experimentally evaluate the performance of coherent optical DFT-S OFDM in a band-multiplexed transmission system. Compared with conventional clipping methods, DFT-S OFDM can reduce the OFDM peak-to-average power ratio (PAPR) value without suffering from the interference of the neighboring bands. With the benefit of much reduced PAPR, we successfully demonstrate 1.45 Tb/s DFT-S OFDM over 480 km SSMF transmission.

  14. Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine

    Science.gov (United States)

    Srivastava, Santosh K.; Singh, Vipin B.

    2013-11-01

    Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.

  15. Electrocatalytic aerobic epoxidation of alkenes: Experimental and DFT investigation

    International Nuclear Information System (INIS)

    Magdesieva, Tatiana V.; Borisova, Nataliya E.; Dolganov, Alexander V.; Ustynyuk, Yuri A.

    2012-01-01

    A new method for electrocatalytic aerobic epoxidation of alkenes catalyzed by binuclear Cu(II) complexes with azomethine ligands based on 2,6-diformyl-4-tert-butylphenol is described. In acetonitrile–water (5%), at the potential of Cu II /Cu I redox couple (–0.8 V vs. Ag/AgCl/KCl) at room temperature the epoxide is obtained in an average yield of around 50%. Contrary to the majority of known epoxidations, no strong oxidants are involved and no free hydrogen peroxide is formed in the reaction, thus making it ecologically friendly. The DFT quantum-chemical modeling of the reaction mechanism revealed that a copper hydroperoxo-complex rather than hydrogen peroxide or a copper oxo-complex oxidizes alkene. The process is very selective since neither products of hydroxylation of benzene ring in styrene nor of allylic oxidation of cyclohexene were detected.

  16. Unbiased structural search of small copper clusters within DFT

    International Nuclear Information System (INIS)

    Cogollo-Olivo, Beatriz H.; Seriani, Nicola; Montoya, Javier A.

    2015-01-01

    Highlights: • We have been able to identify novel metastable structures for small Cu clusters. • We have shown that a linear structure reported for Cu_3 is actually a local maximum. • Some of the structures reported in literature are actually unstable within DFT. • Some of the isomer structures found shows the limits of educated guesses. - Abstract: The atomic structure of small Cu clusters with 3–6 atoms has been investigated by density functional theory and random search algorithm. New metastable structures have been found that lie merely tens of meV/atom above the corresponding ground state, and could therefore be present at thermodynamic equilibrium at room temperature or slightly above. Moreover, we show that the previously proposed linear configuration for Cu_3 is in fact a local maximum of the energy. Finally, we argue that the random search algorithm also provides qualitative information about the attraction basin of each structure in the energy landscape.

  17. Doped phosphorene for hydrogen capture: A DFT study

    Science.gov (United States)

    Zhang, Hong-ping; Hu, Wei; Du, Aijun; Lu, Xiong; Zhang, Ya-ping; Zhou, Jian; Lin, Xiaoyan; Tang, Youhong

    2018-03-01

    Hydrogen capture and storage is the core of hydrogen energy application. With its high specific surface area, direct bandgap, and variety of potential applications, phosphorene has attracted much research interest. In this study, density functional theory (DFT) is utilized to study the interactions between doped phosphorenes and hydrogen molecules. The effects of different dopants and metallic or nonmetallic atoms on phosphorene/hydrogen interactions is systematically studied by adsorption energy, electron density difference, partial density of states analysis, and Hirshfeld population. Our results indicate that the metallic dopants Pt, Co, and Ni can help to improve the hydrogen capture ability of phosphorene, whereas the nonmetallic dopants have no effect on it. Among the various metallic dopants, Pt performs very differently, such that it can help to dissociate H2 on phosphorene. Specified doped phosphorene could be a promising candidate for hydrogen storage, with behaviors superior to those of intrinsic graphene sheet.

  18. Charge transfer properties of pentacene adsorbed on silver: DFT study

    Energy Technology Data Exchange (ETDEWEB)

    N, Rekha T.; Rajkumar, Beulah J. M., E-mail: beulah-rajkumar@yahoo.co.in [PG & Research Department of Physics, Lady Doak College, Madurai 625002 (India)

    2015-06-24

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.

  19. Vector Network Coding

    OpenAIRE

    Ebrahimi, Javad; Fragouli, Christina

    2010-01-01

    We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L X L coding matrices that play a similar role as coding coefficients in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector co...

  20. Entropy Coding in HEVC

    OpenAIRE

    Sze, Vivienne; Marpe, Detlev

    2014-01-01

    Context-Based Adaptive Binary Arithmetic Coding (CABAC) is a method of entropy coding first introduced in H.264/AVC and now used in the latest High Efficiency Video Coding (HEVC) standard. While it provides high coding efficiency, the data dependencies in H.264/AVC CABAC make it challenging to parallelize and thus limit its throughput. Accordingly, during the standardization of entropy coding for HEVC, both aspects of coding efficiency and throughput were considered. This chapter describes th...

  1. Generalized concatenated quantum codes

    International Nuclear Information System (INIS)

    Grassl, Markus; Shor, Peter; Smith, Graeme; Smolin, John; Zeng Bei

    2009-01-01

    We discuss the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using this method, we construct families of single-error-correcting nonadditive quantum codes, in both binary and nonbinary cases, which not only outperform any stabilizer codes for finite block length but also asymptotically meet the quantum Hamming bound for large block length.

  2. Rateless feedback codes

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Koike-Akino, Toshiaki; Orlik, Philip

    2012-01-01

    This paper proposes a concept called rateless feedback coding. We redesign the existing LT and Raptor codes, by introducing new degree distributions for the case when a few feedback opportunities are available. We show that incorporating feedback to LT codes can significantly decrease both...... the coding overhead and the encoding/decoding complexity. Moreover, we show that, at the price of a slight increase in the coding overhead, linear complexity is achieved with Raptor feedback coding....

  3. 3D-FT MRI of the facial nerve

    International Nuclear Information System (INIS)

    Girard, N.; Raybaud, C.; Poncet, M.

    1994-01-01

    Contrast-enhanced 3D-FT MRI of the intrapetrous facial nerve was obtained in 38 patients with facial nerve disease, using a 1.0 T magnet and fast gradient-echo acquisition sequences. Contiguous millimetric sections were obtained, which could be reformatted in any desired plane. Acutely ill patients, were examined within the first 2 months, included: 24 with Bell's palsy and 6 with other acute disorders (Herpes zoster, trauma, neuroma, meningeal metastasis, middle ear granuloma). Six patients investigated more than a year after the onset of symptoms included 3 with congenital cholesteatoma, 2 with neuromas and one with a chronic Bell's palsy. The lesion was found incidentally in two cases (a suspected neurofibroma and a presumed drop metastasis from an astrocytoma). Patients with tumours had nodular, focally-enhancing lesions, except for the leptomeningeal metastasis in which the enhancement was linear. Linear, diffuse contrast enhancement of the facial nerve was found in trauma, and in the patient with a middle ear granuloma. Of the 24 patients with an acute Bell's palsy 15 exhibited linear contrast enhancement of the facial nerve. Three of these were lost to follow-up, but correlation of clinical outcome and contrast enhancement showed that only 4 of the 11 patients who made a complete recovery and all 10 patients with incomplete recovery demonstrated enhancement. Possible explanations for these findings are suggested by pathological data from the literature. 3D-FT imaging of the facial nerve thus yields direct information about the of the nerve condition and defines the morphological abnormalities. It can also demonstrate contrast enhancement which seems to have some prognostic value in acute idiopathic Bell's palsy. (orig.)

  4. 3D-FT MRI of the facial nerve

    Energy Technology Data Exchange (ETDEWEB)

    Girard, N. (Neuroradiology, Hopital Nord, 13 Marseille (France)); Raybaud, C. (Neuroradiology, Hopital Nord, 13 Marseille (France)); Poncet, M. (Neuroradiology, Hopital Nord, 13 Marseille (France))

    1994-08-01

    Contrast-enhanced 3D-FT MRI of the intrapetrous facial nerve was obtained in 38 patients with facial nerve disease, using a 1.0 T magnet and fast gradient-echo acquisition sequences. Contiguous millimetric sections were obtained, which could be reformatted in any desired plane. Acutely ill patients, were examined within the first 2 months, included: 24 with Bell's palsy and 6 with other acute disorders (Herpes zoster, trauma, neuroma, meningeal metastasis, middle ear granuloma). Six patients investigated more than a year after the onset of symptoms included 3 with congenital cholesteatoma, 2 with neuromas and one with a chronic Bell's palsy. The lesion was found incidentally in two cases (a suspected neurofibroma and a presumed drop metastasis from an astrocytoma). Patients with tumours had nodular, focally-enhancing lesions, except for the leptomeningeal metastasis in which the enhancement was linear. Linear, diffuse contrast enhancement of the facial nerve was found in trauma, and in the patient with a middle ear granuloma. Of the 24 patients with an acute Bell's palsy 15 exhibited linear contrast enhancement of the facial nerve. Three of these were lost to follow-up, but correlation of clinical outcome and contrast enhancement showed that only 4 of the 11 patients who made a complete recovery and all 10 patients with incomplete recovery demonstrated enhancement. Possible explanations for these findings are suggested by pathological data from the literature. 3D-FT imaging of the facial nerve thus yields direct information about the of the nerve condition and defines the morphological abnormalities. It can also demonstrate contrast enhancement which seems to have some prognostic value in acute idiopathic Bell's palsy. (orig.)

  5. Advanced video coding systems

    CERN Document Server

    Gao, Wen

    2015-01-01

    This comprehensive and accessible text/reference presents an overview of the state of the art in video coding technology. Specifically, the book introduces the tools of the AVS2 standard, describing how AVS2 can help to achieve a significant improvement in coding efficiency for future video networks and applications by incorporating smarter coding tools such as scene video coding. Topics and features: introduces the basic concepts in video coding, and presents a short history of video coding technology and standards; reviews the coding framework, main coding tools, and syntax structure of AV

  6. Coding for dummies

    CERN Document Server

    Abraham, Nikhil

    2015-01-01

    Hands-on exercises help you learn to code like a pro No coding experience is required for Coding For Dummies,your one-stop guide to building a foundation of knowledge inwriting computer code for web, application, and softwaredevelopment. It doesn't matter if you've dabbled in coding or neverwritten a line of code, this book guides you through the basics.Using foundational web development languages like HTML, CSS, andJavaScript, it explains in plain English how coding works and whyit's needed. Online exercises developed by Codecademy, a leading online codetraining site, help hone coding skill

  7. Structure-activity relations of 2-(methylthio)benzimidazole by FTIR, FT-Raman, NMR, DFT and conceptual DFT methods.

    Science.gov (United States)

    Arjunan, V; Raj, Arushma; Ravindran, P; Mohan, S

    2014-01-24

    The vibrational fundamental modes of 2-(methylthio)benzimidazole (2MTBI) have been analysed by combining FTIR, FT-Raman and quantum chemical calculations. The structural parameters of the compound are determined from the optimised geometry by B3LYP with 6-31G(∗∗), 6-311++G(∗∗) and cc-pVTZ basis sets and giving energies, harmonic vibrational frequencies, depolarisation ratios, IR intensities and Raman activities. (1)H and (13)C NMR spectra have been analysed and (1)H and (13)C nuclear magnetic resonance chemical shifts are calculated using the gauge independent atomic orbital (GIAO) method. The structure-activity relationship of the compound is also investigated by conceptual DFT methods. The chemical reactivity and site selectivity of the molecule has been determined with the help of global and local reactivity descriptors. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Benchmarking DFT and TD-DFT Functionals for the Ground and Excited States of Hydrogen-Rich Peptide Radicals.

    Science.gov (United States)

    Riffet, Vanessa; Jacquemin, Denis; Cauët, Emilie; Frison, Gilles

    2014-08-12

    We assess the pros and cons of a large panel of DFT exchange-correlation functionals for the prediction of the electronic structure of hydrogen-rich peptide radicals formed after electron attachment on a protonated peptide. Indeed, despite its importance in the understanding of the chemical changes associated with the reduction step, the question of the attachment site of an electron and, more generally, of the reduced species formed in the gas phase through electron-induced dissociation (ExD) processes in mass spectrometry is still a matter of debate. For hydrogen-rich peptide radicals in which several positive groups and low-lying π* orbitals can capture the incoming electron in ExD, inclusion of full Hartree-Fock exchange at long-range interelectronic distance is a prerequisite for an accurate description of the electronic states, thereby excluding several popular exchange-correlation functionals, e.g., B3LYP, M06-2X, or CAM-B3LYP. However, we show that this condition is not sufficient by comparing the results obtained with asymptotically correct range-separated hybrids (M11, LC-BLYP, LC-BPW91, ωB97, ωB97X, and ωB97X-D) and with reference CASSCF-MRCI and EOM-CCSD calculations. The attenuation parameter ω significantly tunes the spin density distribution and the excited states vertical energies. The investigated model structures, ranging from methylammonium to hexapeptide, allow us to obtain a description of the nature and energy of the electronic states, depending on (i) the presence of hydrogen bond(s) around the cationic site(s), (ii) the presence of π* molecular orbitals (MOs), and (iii) the selected DFT approach. It turns out that, in the present framework, LC-BLYP and ωB97 yields the most accurate results.

  9. Discussion on LDPC Codes and Uplink Coding

    Science.gov (United States)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.

  10. RMG An Open Source Electronic Structure Code for Multi-Petaflops Calculations

    Science.gov (United States)

    Briggs, Emil; Lu, Wenchang; Hodak, Miroslav; Bernholc, Jerzy

    RMG (Real-space Multigrid) is an open source, density functional theory code for quantum simulations of materials. It solves the Kohn-Sham equations on real-space grids, which allows for natural parallelization via domain decomposition. Either subspace or Davidson diagonalization, coupled with multigrid methods, are used to accelerate convergence. RMG is a cross platform open source package which has been used in the study of a wide range of systems, including semiconductors, biomolecules, and nanoscale electronic devices. It can optionally use GPU accelerators to improve performance on systems where they are available. The recently released versions (>2.0) support multiple GPU's per compute node, have improved performance and scalability, enhanced accuracy and support for additional hardware platforms. New versions of the code are regularly released at http://www.rmgdft.org. The releases include binaries for Linux, Windows and MacIntosh systems, automated builds for clusters using cmake, as well as versions adapted to the major supercomputing installations and platforms. Several recent, large-scale applications of RMG will be discussed.

  11. Locally orderless registration code

    DEFF Research Database (Denmark)

    2012-01-01

    This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows.......This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows....

  12. Decoding Codes on Graphs

    Indian Academy of Sciences (India)

    Shannon limit of the channel. Among the earliest discovered codes that approach the. Shannon limit were the low density parity check (LDPC) codes. The term low density arises from the property of the parity check matrix defining the code. We will now define this matrix and the role that it plays in decoding. 2. Linear Codes.

  13. Manually operated coded switch

    International Nuclear Information System (INIS)

    Barnette, J.H.

    1978-01-01

    The disclosure related to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made

  14. Coding in Muscle Disease.

    Science.gov (United States)

    Jones, Lyell K; Ney, John P

    2016-12-01

    Accurate coding is critically important for clinical practice and research. Ongoing changes to diagnostic and billing codes require the clinician to stay abreast of coding updates. Payment for health care services, data sets for health services research, and reporting for medical quality improvement all require accurate administrative coding. This article provides an overview of administrative coding for patients with muscle disease and includes a case-based review of diagnostic and Evaluation and Management (E/M) coding principles in patients with myopathy. Procedural coding for electrodiagnostic studies and neuromuscular ultrasound is also reviewed.

  15. QR Codes 101

    Science.gov (United States)

    Crompton, Helen; LaFrance, Jason; van 't Hooft, Mark

    2012-01-01

    A QR (quick-response) code is a two-dimensional scannable code, similar in function to a traditional bar code that one might find on a product at the supermarket. The main difference between the two is that, while a traditional bar code can hold a maximum of only 20 digits, a QR code can hold up to 7,089 characters, so it can contain much more…

  16. Study of transmission function and electronic transport in one dimensional silver nanowire: Ab-initio method using density functional theory (DFT)

    Science.gov (United States)

    Thakur, Anil; Kashyap, Rajinder

    2018-05-01

    Single nanowire electrode devices have their application in variety of fields which vary from information technology to solar energy. Silver nanowires, made in an aqueous chemical reduction process, can be reacted with gold salt to create bimetallic nanowires. Silver nanowire can be used as electrodes in batteries and have many other applications. In this paper we investigated structural and electronic transport properties of Ag nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Ag nanowire have been studied theoretically. First of all an optimized geometry for Ag nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations respectively. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Bulk properties of Ag are in agreement with experimental values which make the study of electronic and transport properties in silver nanowires interesting because they are promising materials as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Ag nano wire reveals that silver nanowire can be used as an electrode device.

  17. DFT studies of hydrocarbon combustion on metal surfaces.

    Science.gov (United States)

    Arya, Mina; Mirzaei, Ali Akbar; Davarpanah, Abdol Mahmood; Barakati, Seyed Masoud; Atashi, Hossein; Mohsenzadeh, Abas; Bolton, Kim

    2018-02-02

    Catalytic combustion of hydrocarbons is an important technology to produce energy. Compared to conventional flame combustion, the catalyst enables this process to operate at lower temperatures; hence, reducing the energy required for efficient combustion. The reaction and activation energies of direct combustion of hydrocarbons (CH → C + H) on a series of metal surfaces were investigated using density functional theory (DFT). The data obtained for the Ag, Au, Al, Cu, Rh, Pt, and Pd surfaces were used to investigate the validity of the Brønsted-Evans-Polanyi (BEP) and transition state scaling (TSS) relations for this reaction on these surfaces. These relations were found to be valid (R 2  = 0.94 for the BEP correlation and R 2  = 1.0 for the TSS correlation) and were therefore used to estimate the energetics of the combustion reaction on Ni, Co, and Fe surfaces. It was found that the estimated transition state and activation energies (E TS  = -69.70 eV and E a  = 1.20 eV for Ni, E TS  = -87.93 eV and E a  = 1.08 eV for Co and E TS  = -92.45 eV and E a  = 0.83 eV for Fe) are in agreement with those obtained by DFT calculations (E TS  = -69.98 eV and E a  = 1.23 eV for Ni, E TS  = -87.88 eV and E a  = 1.08 eV for Co and E TS  = -92.57 eV and E a  = 0.79 eV for Fe). Therefore, these relations can be used to predict energetics of this reaction on these surfaces without doing the time consuming transition state calculations. Also, the calculations show that the activation barrier for CH dissociation decreases in the order Ag ˃ Au ˃ Al ˃ Cu ˃ Pt ˃ Pd ˃ Ni > Co > Rh > Fe.

  18. An EQT-based cDFT approach for a confined Lennard-Jones fluid mixture

    Energy Technology Data Exchange (ETDEWEB)

    Motevaselian, M. H.; Mashayak, S. Y.; Aluru, N. R., E-mail: aluru@illinois.edu [Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-09-28

    Empirical potential-based quasi-continuum theory (EQT) provides a route to incorporate atomistic detail into continuum framework such as the Nernst-Planck equation. EQT can also be used to construct a grand potential functional for classical density functional theory (cDFT). The combination of EQT and cDFT provides a simple and fast approach to predict the inhomogeneous density, potential profiles, and thermodynamic properties of confined fluids. We extend the EQT-cDFT approach to confined fluid mixtures and demonstrate it by simulating a mixture of methane and hydrogen inside slit-like channels of graphene. We show that the EQT-cDFT predictions for the structure of the confined fluid mixture compare well with the molecular dynamics simulation results. In addition, our results show that graphene slit nanopores exhibit a selective adsorption of methane over hydrogen.

  19. All-optical generation of DFT-S-OFDM superchannels using periodic sinc pulses.

    Science.gov (United States)

    Lowery, Arthur James; Zhu, Chen; Viterbo, Emanuele; Corcoran, Bill

    2014-11-03

    Discrete-Fourier-transform spread (DFT-S) optical Orthogonal Frequency Division Multiplexed (OFDM) signals offer improved nonlinearity performance in long haul optical communications systems, and can be used to form superchannels. In this paper we propose how DFT-S-OFDM superchannels can be generated and demultiplexed using all-optical techniques, and demonstrate the feasibility using numerical simulations. We also discuss how each wavelength channel is similar to recently proposed Orthogonally Time-Division Multiplexed (OrthTDM) systems using periodic-sinc pulses from, for example, a Nyquist laser. The key difference between OrthTDM and DFT-S-OFDM is the synchronization of the symbol boundaries of every modulation tributary; because of this we show that OrthTDM cannot be formed into superchannels that can be demultiplexed without penalties, but DFT-S-OFDM can be.

  20. Methyl Iodide Oxidative Addition to Rhodium(I) Complexes: a DFT ...

    African Journals Online (AJOL)

    NJD

    to the understanding of the role of the steric and electronic prop- erties of the different .... The pure Density Functional Theory (DFT) calculations were carried out using .... Since quantum computational methods are applied for the first time to ...

  1. Electronic and Optical Properties of CuO Based on DFT+U and GW Approximation

    International Nuclear Information System (INIS)

    Ahmad, F; Agusta, M K; Dipojono, H K

    2016-01-01

    We report ab initio calculations of electronic structure and optical properties of monoclinic CuO based on DFT+U and GW approximation. CuO is an antiferromagnetic material with strong electron correlations. Our calculation shows that DFT+U and GW approximation sufficiently reliable to investigate the material properties of CuO. The calculated band gap of DFT+U for reasonable value of U slightly underestimates. The use of GW approximation requires adjustment of U value to get realistic result. Hybridization Cu 3dxz, 3dyz with O 2p plays an important role in the formation of band gap. The calculated optical properties based on DFT+U and GW corrections by solving Bethe-Salpeter are in good agreement with the calculated electronic properties and the experimental result. (paper)

  2. Structure prediction of nanoclusters; a direct or a pre-screened search on the DFT energy landscape?

    Science.gov (United States)

    Farrow, M R; Chow, Y; Woodley, S M

    2014-10-21

    The atomic structure of inorganic nanoclusters obtained via a search for low lying minima on energy landscapes, or hypersurfaces, is reported for inorganic binary compounds: zinc oxide (ZnO)n, magnesium oxide (MgO)n, cadmium selenide (CdSe)n, and potassium fluoride (KF)n, where n = 1-12 formula units. The computational cost of each search is dominated by the effort to evaluate each sample point on the energy landscape and the number of required sample points. The effect of changing the balance between these two factors on the success of the search is investigated. The choice of sample points will also affect the number of required data points and therefore the efficiency of the search. Monte Carlo based global optimisation routines (evolutionary and stochastic quenching algorithms) within a new software package, viz. Knowledge Led Master Code (KLMC), are employed to search both directly and after pre-screening on the DFT energy landscape. Pre-screening includes structural relaxation to minimise a cheaper energy function - based on interatomic potentials - and is found to improve significantly the search efficiency, and typically reduces the number of DFT calculations required to locate the local minima by more than an order of magnitude. Although the choice of functional form is important, the approach is robust to small changes to the interatomic potential parameters. The computational cost of initial DFT calculations of each structure is reduced by employing Gaussian smearing to the electronic energy levels. Larger (KF)n nanoclusters are predicted to form cuboid cuts from the rock-salt phase, but also share many structural motifs with (MgO)n for smaller clusters. The transition from 2D rings to 3D (bubble, or fullerene-like) structures occur at a larger cluster size for (ZnO)n and (CdSe)n. Differences between the HOMO and LUMO energies, for all the compounds apart from KF, are in the visible region of the optical spectrum (2-3 eV); KF lies deep in the UV region

  3. Codes and curves

    CERN Document Server

    Walker, Judy L

    2000-01-01

    When information is transmitted, errors are likely to occur. Coding theory examines efficient ways of packaging data so that these errors can be detected, or even corrected. The traditional tools of coding theory have come from combinatorics and group theory. Lately, however, coding theorists have added techniques from algebraic geometry to their toolboxes. In particular, by re-interpreting the Reed-Solomon codes, one can see how to define new codes based on divisors on algebraic curves. For instance, using modular curves over finite fields, Tsfasman, Vladut, and Zink showed that one can define a sequence of codes with asymptotically better parameters than any previously known codes. This monograph is based on a series of lectures the author gave as part of the IAS/PCMI program on arithmetic algebraic geometry. Here, the reader is introduced to the exciting field of algebraic geometric coding theory. Presenting the material in the same conversational tone of the lectures, the author covers linear codes, inclu...

  4. Palladium(0) alkyne complexes as active species: A DFT-investigation

    DEFF Research Database (Denmark)

    Ahlquist, Mårten Sten Gösta; Fabrizi, Giancarlo; Cacchi, Sandro

    2005-01-01

    Alkynes have been found to be excellent ligands for Pd(0); the stability of a range of alkyne-Pd(0) complexes, and their reactivity in oxidative addition, have been investigated by DFT methods.......Alkynes have been found to be excellent ligands for Pd(0); the stability of a range of alkyne-Pd(0) complexes, and their reactivity in oxidative addition, have been investigated by DFT methods....

  5. Application of DFT Filter Banks and Cosine Modulated Filter Banks in Filtering

    Science.gov (United States)

    Lin, Yuan-Pei; Vaidyanathan, P. P.

    1994-01-01

    None given. This is a proposal for a paper to be presented at APCCAS '94 in Taipei, Taiwan. (From outline): This work is organized as follows: Sec. II is devoted to the construction of the new 2m channel under-decimated DFT filter bank. Implementation and complexity of this DFT filter bank are discussed therein. IN a similar manner, the new 2m channel cosine modulated filter bank is discussed in Sec. III. Design examples are given in Sec. IV.

  6. DFT Perspective on the Thermochemistry of Carbon Nitride Synthesis

    KAUST Repository

    Melissen, Sigismund T. A. G.

    2016-10-11

    Graphitic (g)-CxNyHz has become a popular family of photoharvesters in photocatalytic water splitting cells, as well as other applications in chemistry. In this Article, different g-CxNyHz structures were studied thermochemically using DFT. Following a benchmark study with different families of functionals, the B3LYP functional was shown to accurately capture the thermochemistry of carbon nitride synthesis. A triple-ζ polarized basis set, in combination with Civalleri’s modification to Grimme’s D2 formalism (with s6 = 0.5) for dispersion interactions, yielded accurate geometries. Grimme’s D3 formalism with Becke–Johnson damping was used to refine the energetic description of dispersion interactions. The stepwise cycloaddition of cyanamide to form melamine was shown to be exergonic, whereas the stepwise deamination of melamine to form g-C3N4 was shown to be endergonic. Of those structures respecting the [C6N9H3]n chemical formula, the structure commonly known as “melon” was found to be most stable, whereas the sp3-hybridized [C6N9H3]n elucidated by Horvath-Bordon et al. was found to be the least stable. Fully polymerized triazine-based g-C3N4 appeared slightly more stable than heptazine-based g-C3N4.

  7. DFT Studies on Interaction between Lanthanum and Hydroxyamide

    Science.gov (United States)

    Pati, Anindita; Kundu, T. K.; Pal, Snehanshu

    2018-03-01

    Extraction and separation of individual rare earth elements has been a challenge as they are chemically very similar. Solvent extraction is the most suitable way for extraction of rare earth elements. Acidic, basic, neutral, chelating are the major classes of extractants for solvent extraction of rare earth elements. The coordination complex of chelating extractants is very selective with positively charged metal ion. Hence they are widely used. Hydroxyamide is capable of forming chelates with metal cations. In this present study interactions of hydroxyamide ligand with lanthanum have been investigated using density functional theory (DFT). Two different functional such as raB97XD and B3LYP are applied along with 6-31+G(d,p) basis set for carbon, nitrogen, hydrogen and SDD basis set for lanthanum. Stability of formed complexes has been evaluated based on calculated interaction energies and solvation energies. Frontier orbital (highest occupied molecular orbital or HOMO and lowest unoccupied molecular orbital or LUMO) energies of the molecule have also been calculated. Electronegativity, chemical hardness, chemical softness and chemical potential are also determined for these complexes to get an idea about the reactivity. From the partial charge distribution it is seen that oxygen atoms in hydroxyamide have higher negative charge. The double bonded oxygen atom present in the hydroxyamide structure has higher electron density and so it forms bond with lanthanum but the singly bonded oxygen atom in the hydroxyamide structure is weaker donor atom and so it is less available for interaction with lanthanum.

  8. Calculation on uranium carbon oxygen system molecular structure by DFT

    International Nuclear Information System (INIS)

    Zhang Guangfeng; Wang Xiaolin; Zou Lexi; Sun Ying; Xue Weidong; Zhu Zhenghe; Wang Hongyan

    2001-01-01

    The authors study on the possible molecular structures U-C-O, U-O-C, C-U-O (angular structure C a nd linear structure C ∞υ ) of carbon monoxide interacting on uranium metal surface by Density functional theory (DFT). The uranium atom is used RECP (Relativistic Effective Core Potential) and contracted valence basis sets (6s5p2d4f)/[3s3p2d2f], and for carbon and oxygen atoms all are 6-311G basis sets. The author presents the results of energy optimum which shows that triple and quintuple state are more stable. The authors get the electronic state, geometry structure, energy, harmonic frequency, mechanical property, etc. of these twelve triple and quintuple state relative stable structures. The normal vibrational analytical figure of angular structure (C s ) and linear structure (C ∞υ ) is given at the same time. It is indicated that angular structure has lower energy than linear structure, moreover the angular structure of U-C-O( 3 A ) has the lowest energy. The bond strength between uranium atom and carbon monoxide is weak and between uranium atom and oxygen atom is slightly stronger than between uranium atom and carbon atom which the authors can know by superposition population and bond energy analysis among atoms

  9. DFT Perspective on the Thermochemistry of Carbon Nitride Synthesis

    KAUST Repository

    Melissen, Sigismund T. A. G.; Steinmann, Stephan N.; Le Bahers, Tangui; Sautet, Philippe

    2016-01-01

    Graphitic (g)-CxNyHz has become a popular family of photoharvesters in photocatalytic water splitting cells, as well as other applications in chemistry. In this Article, different g-CxNyHz structures were studied thermochemically using DFT. Following a benchmark study with different families of functionals, the B3LYP functional was shown to accurately capture the thermochemistry of carbon nitride synthesis. A triple-ζ polarized basis set, in combination with Civalleri’s modification to Grimme’s D2 formalism (with s6 = 0.5) for dispersion interactions, yielded accurate geometries. Grimme’s D3 formalism with Becke–Johnson damping was used to refine the energetic description of dispersion interactions. The stepwise cycloaddition of cyanamide to form melamine was shown to be exergonic, whereas the stepwise deamination of melamine to form g-C3N4 was shown to be endergonic. Of those structures respecting the [C6N9H3]n chemical formula, the structure commonly known as “melon” was found to be most stable, whereas the sp3-hybridized [C6N9H3]n elucidated by Horvath-Bordon et al. was found to be the least stable. Fully polymerized triazine-based g-C3N4 appeared slightly more stable than heptazine-based g-C3N4.

  10. 3-Iodobenzaldehyde: XRD, FT-IR, Raman and DFT studies.

    Science.gov (United States)

    Kumar, Chandraju Sadolalu Chidan; Parlak, Cemal; Tursun, Mahir; Fun, Hoong-Kun; Rhyman, Lydia; Ramasami, Ponnadurai; Alswaidan, Ibrahim A; Keşan, Gürkan; Chandraju, Siddegowda; Quah, Ching Kheng

    2015-06-15

    The structure of 3-iodobenzaldehyde (3IB) was characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of 3IB were examined using density functional theory (DFT) method, with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set for all atoms except for iodine. The LANL2DZ effective core basis set was used for iodine. Potential energy distribution (PED) analysis of normal modes was performed to identify characteristic frequencies. 3IB crystallizes in monoclinic space group P21/c with the O-trans form. There is a good agreement between the theoretically predicted structural parameters, and vibrational frequencies and those obtained experimentally. In order to understand halogen effect, 3-halogenobenzaldehyde [XC6H4CHO; X=F, Cl and Br] was also studied theoretically. The free energy difference between the isomers is small but the rotational barrier is about 8kcal/mol. An atypical behavior of fluorine affecting conformational preference is observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. DFT application for chlorin derivatives photosensitizer drugs modeling

    Science.gov (United States)

    Machado, Neila; Carvalho, B. G.; Téllez Soto, C. A.; Martin, A. A.; Favero, P. P.

    2018-04-01

    Photodynamic therapy is an alternative form of cancer treatment that meets the desire for a less aggressive approach to the body. It is based on the interaction between a photosensitizer, activating light, and molecular oxygen. This interaction results in a cascade of reactions that leads to localized cell death. Many studies have been conducted to discover an ideal photosensitizer, which aggregates all the desirable characteristics of a potent cell killer and generates minimal side effects. Using Density Functional Theory (DFT) implemented in the program Vienna Ab-initio Simulation Package, new chlorin derivatives with different functional groups were simulated to evaluate the different absorption wavelengths to permit resonant absorption with the incident laser. Gaussian 09 program was used to determine vibrational wave numbers and Natural Bond Orbitals. The chosen drug with the best characteristics for the photosensitizer was a modified model of the original chlorin, which was called as Thiol chlorin. According to our calculations it is stable and is 19.6% more efficient at optical absorption in 708 nm in comparison to the conventional chlorin e6. Vibrational modes, optical and electronic properties were predicted. In conclusion, this study is an attempt to improve the development of new photosensitizer drugs through computational methods that save time and contribute to decrease the numbers of animals for model application.

  12. Unbiased structural search of small copper clusters within DFT

    Energy Technology Data Exchange (ETDEWEB)

    Cogollo-Olivo, Beatriz H., E-mail: bcogolloo@unicartagena.edu.co [Maestría en Ciencias Físicas, Universidad de Cartagena, 130001 Cartagena de Indias, Bolívar (Colombia); Seriani, Nicola, E-mail: nseriani@ictp.it [Condensed Matter and Statistical Physics Section, The Abdus Salam ICTP, Strada Costiera 11, 34151 Trieste (Italy); Montoya, Javier A., E-mail: jmontoyam@unicartagena.edu.co [Instituto de Matemáticas Aplicadas, Universidad de Cartagena, 130001 Cartagena de Indias, Bolívar (Colombia); Associates Program, The Abdus Salam ICTP, Strada Costiera 11, 34151 Trieste (Italy)

    2015-11-05

    Highlights: • We have been able to identify novel metastable structures for small Cu clusters. • We have shown that a linear structure reported for Cu{sub 3} is actually a local maximum. • Some of the structures reported in literature are actually unstable within DFT. • Some of the isomer structures found shows the limits of educated guesses. - Abstract: The atomic structure of small Cu clusters with 3–6 atoms has been investigated by density functional theory and random search algorithm. New metastable structures have been found that lie merely tens of meV/atom above the corresponding ground state, and could therefore be present at thermodynamic equilibrium at room temperature or slightly above. Moreover, we show that the previously proposed linear configuration for Cu{sub 3} is in fact a local maximum of the energy. Finally, we argue that the random search algorithm also provides qualitative information about the attraction basin of each structure in the energy landscape.

  13. Proton transfers in the Strecker reaction revealed by DFT calculations

    Directory of Open Access Journals (Sweden)

    Shinichi Yamabe

    2014-08-01

    Full Text Available The Strecker reaction of acetaldehyde, NH3, and HCN to afford alanine was studied by DFT calculations for the first time, which involves two reaction stages. In the first reaction stage, the aminonitrile was formed. The rate-determining step is the deprotonation of the NH3+ group in MeCH(OH-NH3+ to form 1-aminoethanol, which occurs with an activation energy barrier (ΔE≠ of 9.6 kcal/mol. The stereochemistry (R or S of the aminonitrile product is determined at the NH3 addition step to the carbonyl carbon of the aldehyde. While the addition of CN− to the carbon atom of the protonated imine 7 appears to scramble the stereochemistry, the water cluster above the imine plane reinforces the CN− to attack the imine group below the plane. The enforcement hinders the scrambling. In the second stage, the aminonitrile transforms to alanine, where an amide Me-CH(NH2-C(=O-NH2 is the key intermediate. The rate-determining step is the hydrolysis of the cyano group of N(amino-protonated aminonitrile which occurs with an ΔE≠ value of 34.7 kcal/mol. In the Strecker reaction, the proton transfer along the hydrogen bonds plays a crucial role.

  14. Low-lying excited states by constrained DFT

    Science.gov (United States)

    Ramos, Pablo; Pavanello, Michele

    2018-04-01

    Exploiting the machinery of Constrained Density Functional Theory (CDFT), we propose a variational method for calculating low-lying excited states of molecular systems. We dub this method eXcited CDFT (XCDFT). Excited states are obtained by self-consistently constraining a user-defined population of electrons, Nc, in the virtual space of a reference set of occupied orbitals. By imposing this population to be Nc = 1.0, we computed the first excited state of 15 molecules from a test set. Our results show that XCDFT achieves an accuracy in the predicted excitation energy only slightly worse than linear-response time-dependent DFT (TDDFT), but without incurring into problems of variational collapse typical of the more commonly adopted ΔSCF method. In addition, we selected a few challenging processes to test the limits of applicability of XCDFT. We find that in contrast to TDDFT, XCDFT is capable of reproducing energy surfaces featuring conical intersections (azobenzene and H3) with correct topology and correct overall energetics also away from the intersection. Venturing to condensed-phase systems, XCDFT reproduces the TDDFT solvatochromic shift of benzaldehyde when it is embedded by a cluster of water molecules. Thus, we find XCDFT to be a competitive method among single-reference methods for computations of excited states in terms of time to solution, rate of convergence, and accuracy of the result.

  15. Benchmarking the DFT+U method for thermochemical calculations of uranium molecular compounds and solids.

    Science.gov (United States)

    Beridze, George; Kowalski, Piotr M

    2014-12-18

    Ability to perform a feasible and reliable computation of thermochemical properties of chemically complex actinide-bearing materials would be of great importance for nuclear engineering. Unfortunately, density functional theory (DFT), which on many instances is the only affordable ab initio method, often fails for actinides. Among various shortcomings, it leads to the wrong estimate of enthalpies of reactions between actinide-bearing compounds, putting the applicability of the DFT approach to the modeling of thermochemical properties of actinide-bearing materials into question. Here we test the performance of DFT+U method--a computationally affordable extension of DFT that explicitly accounts for the correlations between f-electrons - for prediction of the thermochemical properties of simple uranium-bearing molecular compounds and solids. We demonstrate that the DFT+U approach significantly improves the description of reaction enthalpies for the uranium-bearing gas-phase molecular compounds and solids and the deviations from the experimental values are comparable to those obtained with much more computationally demanding methods. Good results are obtained with the Hubbard U parameter values derived using the linear response method of Cococcioni and de Gironcoli. We found that the value of Coulomb on-site repulsion, represented by the Hubbard U parameter, strongly depends on the oxidation state of uranium atom. Last, but not least, we demonstrate that the thermochemistry data can be successfully used to estimate the value of the Hubbard U parameter needed for DFT+U calculations.

  16. The materiality of Code

    DEFF Research Database (Denmark)

    Soon, Winnie

    2014-01-01

    This essay studies the source code of an artwork from a software studies perspective. By examining code that come close to the approach of critical code studies (Marino, 2006), I trace the network artwork, Pupufu (Lin, 2009) to understand various real-time approaches to social media platforms (MSN......, Twitter and Facebook). The focus is not to investigate the functionalities and efficiencies of the code, but to study and interpret the program level of code in order to trace the use of various technological methods such as third-party libraries and platforms’ interfaces. These are important...... to understand the socio-technical side of a changing network environment. Through the study of code, including but not limited to source code, technical specifications and other materials in relation to the artwork production, I would like to explore the materiality of code that goes beyond technical...

  17. Coding for optical channels

    CERN Document Server

    Djordjevic, Ivan; Vasic, Bane

    2010-01-01

    This unique book provides a coherent and comprehensive introduction to the fundamentals of optical communications, signal processing and coding for optical channels. It is the first to integrate the fundamentals of coding theory and optical communication.

  18. SEVERO code - user's manual

    International Nuclear Information System (INIS)

    Sacramento, A.M. do.

    1989-01-01

    This user's manual contains all the necessary information concerning the use of SEVERO code. This computer code is related to the statistics of extremes = extreme winds, extreme precipitation and flooding hazard risk analysis. (A.C.A.S.)

  19. Synthesizing Certified Code

    OpenAIRE

    Whalen, Michael; Schumann, Johann; Fischer, Bernd

    2002-01-01

    Code certification is a lightweight approach for formally demonstrating software quality. Its basic idea is to require code producers to provide formal proofs that their code satisfies certain quality properties. These proofs serve as certificates that can be checked independently. Since code certification uses the same underlying technology as program verification, it requires detailed annotations (e.g., loop invariants) to make the proofs possible. However, manually adding annotations to th...

  20. FERRET data analysis code

    International Nuclear Information System (INIS)

    Schmittroth, F.

    1979-09-01

    A documentation of the FERRET data analysis code is given. The code provides a way to combine related measurements and calculations in a consistent evaluation. Basically a very general least-squares code, it is oriented towards problems frequently encountered in nuclear data and reactor physics. A strong emphasis is on the proper treatment of uncertainties and correlations and in providing quantitative uncertainty estimates. Documentation includes a review of the method, structure of the code, input formats, and examples

  1. Stylize Aesthetic QR Code

    OpenAIRE

    Xu, Mingliang; Su, Hao; Li, Yafei; Li, Xi; Liao, Jing; Niu, Jianwei; Lv, Pei; Zhou, Bing

    2018-01-01

    With the continued proliferation of smart mobile devices, Quick Response (QR) code has become one of the most-used types of two-dimensional code in the world. Aiming at beautifying the appearance of QR codes, existing works have developed a series of techniques to make the QR code more visual-pleasant. However, these works still leave much to be desired, such as visual diversity, aesthetic quality, flexibility, universal property, and robustness. To address these issues, in this paper, we pro...

  2. Enhancing QR Code Security

    OpenAIRE

    Zhang, Linfan; Zheng, Shuang

    2015-01-01

    Quick Response code opens possibility to convey data in a unique way yet insufficient prevention and protection might lead into QR code being exploited on behalf of attackers. This thesis starts by presenting a general introduction of background and stating two problems regarding QR code security, which followed by a comprehensive research on both QR code itself and related issues. From the research a solution taking advantages of cloud and cryptography together with an implementation come af...

  3. Opening up codings?

    DEFF Research Database (Denmark)

    Steensig, Jakob; Heinemann, Trine

    2015-01-01

    doing formal coding and when doing more “traditional” conversation analysis research based on collections. We are more wary, however, of the implication that coding-based research is the end result of a process that starts with qualitative investigations and ends with categories that can be coded...

  4. Gauge color codes

    DEFF Research Database (Denmark)

    Bombin Palomo, Hector

    2015-01-01

    Color codes are topological stabilizer codes with unusual transversality properties. Here I show that their group of transversal gates is optimal and only depends on the spatial dimension, not the local geometry. I also introduce a generalized, subsystem version of color codes. In 3D they allow...

  5. Refactoring test code

    NARCIS (Netherlands)

    A. van Deursen (Arie); L.M.F. Moonen (Leon); A. van den Bergh; G. Kok

    2001-01-01

    textabstractTwo key aspects of extreme programming (XP) are unit testing and merciless refactoring. Given the fact that the ideal test code / production code ratio approaches 1:1, it is not surprising that unit tests are being refactored. We found that refactoring test code is different from

  6. Benchmark CCSD(T) and DFT study of binding energies in Be7 - 12: in search of reliable DFT functional for beryllium clusters

    Science.gov (United States)

    Labanc, Daniel; Šulka, Martin; Pitoňák, Michal; Černušák, Ivan; Urban, Miroslav; Neogrády, Pavel

    2018-05-01

    We present a computational study of the stability of small homonuclear beryllium clusters Be7 - 12 in singlet electronic states. Our predictions are based on highly correlated CCSD(T) coupled cluster calculations. Basis set convergence towards the complete basis set limit as well as the role of the 1s core electron correlation are carefully examined. Our CCSD(T) data for binding energies of Be7 - 12 clusters serve as a benchmark for performance assessment of several density functional theory (DFT) methods frequently used in beryllium cluster chemistry. We observe that, from Be10 clusters on, the deviation from CCSD(T) benchmarks is stable with respect to size, and fluctuating within 0.02 eV error bar for most examined functionals. This opens up the possibility of scaling the DFT binding energies for large Be clusters using CCSD(T) benchmark values for smaller clusters. We also tried to find analogies between the performance of DFT functionals for Be clusters and for the valence-isoelectronic Mg clusters investigated recently in Truhlar's group. We conclude that it is difficult to find DFT functionals that perform reasonably well for both beryllium and magnesium clusters. Out of 12 functionals examined, only the M06-2X functional gives reasonably accurate and balanced binding energies for both Be and Mg clusters.

  7. Software Certification - Coding, Code, and Coders

    Science.gov (United States)

    Havelund, Klaus; Holzmann, Gerard J.

    2011-01-01

    We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.

  8. IR and NMR spectroscopic correlation of enterobactin by DFT

    Science.gov (United States)

    Moreno, M.; Zacarias, A.; Porzel, A.; Velasquez, L.; Gonzalez, G.; Alegría-Arcos, M.; Gonzalez-Nilo, F.; Gross, E. K. U.

    2018-06-01

    Emerging and re-emerging epidemic diseases pose an ongoing threat to global health. Currently, Enterobactin and Enterobactin derivatives have gained interest, owing to their potential application in the pharmaceutical field. As it is known [J. Am. Chem. Soc (1979) 101, 20, 6097-6104], Enterobactin (H6EB) is an efficient iron carrier synthesized and secreted by many microbial species. In order to facilitate the elucidation of enterobactin and its analogues, here we propose the creation of a H6EB standard set using Density Functional Theory Infrared (IR) and NMR spectra. We used two exchange-correlation (xc) functionals (PBE including long-range corrections sbnd LC-PBEsbnd and mPW1), 2 basis sets (QZVP and 6-31G(d)) and 2 grids (fine and ultrafine) for most of the H6EB structures dependent of dihedral angles. The results show a significant difference between the Osbnd H and Nsbnd H bands, while the Cdbnd O amide and Osbnd (Cdbnd O)sbnd IR bands are often found on top of each other. The NMR DFT calculations show a strong dependence on the xc functional, basis set, and grid used for the H6EB structure. Calculated 1H and 13C NMR spectra enable the effect of the solvent to be understood in the context of the experimental measurements. The good agreement between the experimental and the calculated spectra using LC-PBE/QZVP and ultrafine grid suggest the possibility of the systems reported here to be considered as a standard set. The dependence of electrostatic potential and frontier orbitals with the catecholamide dihedral angles of H6EB is described. The matrix-assisted laser desorption/ionization time of the flight mass spectrometry (MALDI-TOF MS) of H6EB is also reported of manner to enrich the knowledge about its reactivity.

  9. The network code

    International Nuclear Information System (INIS)

    1997-01-01

    The Network Code defines the rights and responsibilities of all users of the natural gas transportation system in the liberalised gas industry in the United Kingdom. This report describes the operation of the Code, what it means, how it works and its implications for the various participants in the industry. The topics covered are: development of the competitive gas market in the UK; key points in the Code; gas transportation charging; impact of the Code on producers upstream; impact on shippers; gas storage; supply point administration; impact of the Code on end users; the future. (20 tables; 33 figures) (UK)

  10. Coding for Electronic Mail

    Science.gov (United States)

    Rice, R. F.; Lee, J. J.

    1986-01-01

    Scheme for coding facsimile messages promises to reduce data transmission requirements to one-tenth current level. Coding scheme paves way for true electronic mail in which handwritten, typed, or printed messages or diagrams sent virtually instantaneously - between buildings or between continents. Scheme, called Universal System for Efficient Electronic Mail (USEEM), uses unsupervised character recognition and adaptive noiseless coding of text. Image quality of resulting delivered messages improved over messages transmitted by conventional coding. Coding scheme compatible with direct-entry electronic mail as well as facsimile reproduction. Text transmitted in this scheme automatically translated to word-processor form.

  11. NAGRADATA. Code key. Geology

    International Nuclear Information System (INIS)

    Mueller, W.H.; Schneider, B.; Staeuble, J.

    1984-01-01

    This reference manual provides users of the NAGRADATA system with comprehensive keys to the coding/decoding of geological and technical information to be stored in or retreaved from the databank. Emphasis has been placed on input data coding. When data is retreaved the translation into plain language of stored coded information is done automatically by computer. Three keys each, list the complete set of currently defined codes for the NAGRADATA system, namely codes with appropriate definitions, arranged: 1. according to subject matter (thematically) 2. the codes listed alphabetically and 3. the definitions listed alphabetically. Additional explanation is provided for the proper application of the codes and the logic behind the creation of new codes to be used within the NAGRADATA system. NAGRADATA makes use of codes instead of plain language for data storage; this offers the following advantages: speed of data processing, mainly data retrieval, economies of storage memory requirements, the standardisation of terminology. The nature of this thesaurian type 'key to codes' makes it impossible to either establish a final form or to cover the entire spectrum of requirements. Therefore, this first issue of codes to NAGRADATA must be considered to represent the current state of progress of a living system and future editions will be issued in a loose leave ringbook system which can be updated by an organised (updating) service. (author)

  12. XSOR codes users manual

    International Nuclear Information System (INIS)

    Jow, Hong-Nian; Murfin, W.B.; Johnson, J.D.

    1993-11-01

    This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ''XSOR''. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms

  13. Chemical Reactivity and Spectroscopy Explored From QM/MM Molecular Dynamics Simulations Using the LIO Code

    Directory of Open Access Journals (Sweden)

    Juan P. Marcolongo

    2018-03-01

    Full Text Available In this work we present the current advances in the development and the applications of LIO, a lab-made code designed for density functional theory calculations in graphical processing units (GPU, that can be coupled with different classical molecular dynamics engines. This code has been thoroughly optimized to perform efficient molecular dynamics simulations at the QM/MM DFT level, allowing for an exhaustive sampling of the configurational space. Selected examples are presented for the description of chemical reactivity in terms of free energy profiles, and also for the computation of optical properties, such as vibrational and electronic spectra in solvent and protein environments.

  14. Chemical reactivity and spectroscopy explored from QM/MM molecular dynamics simulations using the LIO code

    Science.gov (United States)

    Marcolongo, Juan P.; Zeida, Ari; Semelak, Jonathan A.; Foglia, Nicolás O.; Morzan, Uriel N.; Estrin, Dario A.; González Lebrero, Mariano C.; Scherlis, Damián A.

    2018-03-01

    In this work we present the current advances in the development and the applications of LIO, a lab-made code designed for density functional theory calculations in graphical processing units (GPU), that can be coupled with different classical molecular dynamics engines. This code has been thoroughly optimized to perform efficient molecular dynamics simulations at the QM/MM DFT level, allowing for an exhaustive sampling of the configurational space. Selected examples are presented for the description of chemical reactivity in terms of free energy profiles, and also for the computation of optical properties, such as vibrational and electronic spectra in solvent and protein environments.

  15. Reactor lattice codes

    International Nuclear Information System (INIS)

    Kulikowska, T.

    1999-01-01

    The present lecture has a main goal to show how the transport lattice calculations are realised in a standard computer code. This is illustrated on the example of the WIMSD code, belonging to the most popular tools for reactor calculations. Most of the approaches discussed here can be easily modified to any other lattice code. The description of the code assumes the basic knowledge of reactor lattice, on the level given in the lecture on 'Reactor lattice transport calculations'. For more advanced explanation of the WIMSD code the reader is directed to the detailed descriptions of the code cited in References. The discussion of the methods and models included in the code is followed by the generally used homogenisation procedure and several numerical examples of discrepancies in calculated multiplication factors based on different sources of library data. (author)

  16. DLLExternalCode

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-14

    DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read from files created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.

  17. Communication: Recovering the flat-plane condition in electronic structure theory at semi-local DFT cost

    Science.gov (United States)

    Bajaj, Akash; Janet, Jon Paul; Kulik, Heather J.

    2017-11-01

    The flat-plane condition is the union of two exact constraints in electronic structure theory: (i) energetic piecewise linearity with fractional electron removal or addition and (ii) invariant energetics with change in electron spin in a half filled orbital. Semi-local density functional theory (DFT) fails to recover the flat plane, exhibiting convex fractional charge errors (FCE) and concave fractional spin errors (FSE) that are related to delocalization and static correlation errors. We previously showed that DFT+U eliminates FCE but now demonstrate that, like other widely employed corrections (i.e., Hartree-Fock exchange), it worsens FSE. To find an alternative strategy, we examine the shape of semi-local DFT deviations from the exact flat plane and we find this shape to be remarkably consistent across ions and molecules. We introduce the judiciously modified DFT (jmDFT) approach, wherein corrections are constructed from few-parameter, low-order functional forms that fit the shape of semi-local DFT errors. We select one such physically intuitive form and incorporate it self-consistently to correct semi-local DFT. We demonstrate on model systems that jmDFT represents the first easy-to-implement, no-overhead approach to recovering the flat plane from semi-local DFT.

  18. Toric Varieties and Codes, Error-correcting Codes, Quantum Codes, Secret Sharing and Decoding

    DEFF Research Database (Denmark)

    Hansen, Johan Peder

    We present toric varieties and associated toric codes and their decoding. Toric codes are applied to construct Linear Secret Sharing Schemes (LSSS) with strong multiplication by the Massey construction. Asymmetric Quantum Codes are obtained from toric codes by the A.R. Calderbank P.W. Shor and A.......M. Steane construction of stabilizer codes (CSS) from linear codes containing their dual codes....

  19. Water at silica/liquid water interfaces investigated by DFT-MD simulations

    Science.gov (United States)

    Gaigeot, Marie-Pierre

    This talk is dedicated to probing the microscopic structural organization of water at silica/liquid water interfaces including electrolytes by first principles DFT-based molecular dynamics simulations (DFT-MD). We will present our very recent DFT-MD simulations of electrolytic (KCl, NaCl, NaI) silica/liquid water interfaces in order to unravel the intertwined structural properties of water and electrolytes at the crystalline quartz/liquid water and amorphous silica/liquid water interfaces. DFT-MD simulations provide direct knowledge of the structural organization of water and the H-Bond network formed between the water molecules within the different water layers above the silica surface. One can furthermore extract vibrational signatures of the water molecules within the interfacial layers from the DFT-MD simulations, especially non-linear SFG (Sum Frequency generation) signatures that are active at solid/liquid interfaces. The strength of the simulated spectra is that a detailed analysis of the signatures in terms of the water/water H-Bond networks formed within the interfacial water layers and in terms of the water/silica or water/electrolytes H-Bond networks can be given. Comparisons of SFG spectra between quartz/water/electrolytes and amorphous silica/water/electrolytes interfaces allow us to definitely conclude on how the structural arrangements of liquid water at these electrolytic interfaces modulate the final spectroscopic signatures. Invited speaker.

  20. Parallel Implementation of Gamma-Point Pseudopotential Plane-Wave DFT with Exact Exchange

    International Nuclear Information System (INIS)

    Bylaska, Eric J.; Tsemekhman, Kiril L.; Baden, Scott B.; Weare, John H.; Jonsson, Hannes

    2011-01-01

    One of the more persistent failures of conventional density functional theory (DFT) methods has been their failure to yield localized charge states such as polarons, excitons and solitons in solid-state and extended systems. It has been suggested that conventional DFT functionals, which are not self-interaction free, tend to favor delocalized electronic states since self-interaction creates a Coulomb barrier to charge localization. Pragmatic approaches in which the exchange correlation functionals are augmented with small amount of exact exchange (hybrid-DFT, e.g. B3LYP and PBE0) have shown promise in localizing charge states and predicting accurate band gaps and reaction barriers. We have developed a parallel algorithm for implementing exact exchange into pseudopotential plane-wave density functional theory and we have implemented it in the NWChem program package. The technique developed can readily be employed in plane-wave DFT programs. Furthermore, atomic forces and stresses are straightforward to implement, making it applicable to both confined and extended systems, as well as to Car-Parrinello ab initio molecular dynamic simulations. This method has been applied to several systems for which conventional DFT methods do not work well, including calculations for band gaps in oxides and the electronic structure of a charge trapped state in the Fe(II) containing mica, annite.

  1. An Optimal Linear Coding for Index Coding Problem

    OpenAIRE

    Pezeshkpour, Pouya

    2015-01-01

    An optimal linear coding solution for index coding problem is established. Instead of network coding approach by focus on graph theoric and algebraic methods a linear coding program for solving both unicast and groupcast index coding problem is presented. The coding is proved to be the optimal solution from the linear perspective and can be easily utilize for any number of messages. The importance of this work is lying mostly on the usage of the presented coding in the groupcast index coding ...

  2. The Aesthetics of Coding

    DEFF Research Database (Denmark)

    Andersen, Christian Ulrik

    2007-01-01

    Computer art is often associated with computer-generated expressions (digitally manipulated audio/images in music, video, stage design, media facades, etc.). In recent computer art, however, the code-text itself – not the generated output – has become the artwork (Perl Poetry, ASCII Art, obfuscated...... code, etc.). The presentation relates this artistic fascination of code to a media critique expressed by Florian Cramer, claiming that the graphical interface represents a media separation (of text/code and image) causing alienation to the computer’s materiality. Cramer is thus the voice of a new ‘code...... avant-garde’. In line with Cramer, the artists Alex McLean and Adrian Ward (aka Slub) declare: “art-oriented programming needs to acknowledge the conditions of its own making – its poesis.” By analysing the Live Coding performances of Slub (where they program computer music live), the presentation...

  3. Majorana fermion codes

    International Nuclear Information System (INIS)

    Bravyi, Sergey; Terhal, Barbara M; Leemhuis, Bernhard

    2010-01-01

    We initiate the study of Majorana fermion codes (MFCs). These codes can be viewed as extensions of Kitaev's one-dimensional (1D) model of unpaired Majorana fermions in quantum wires to higher spatial dimensions and interacting fermions. The purpose of MFCs is to protect quantum information against low-weight fermionic errors, that is, operators acting on sufficiently small subsets of fermionic modes. We examine to what extent MFCs can surpass qubit stabilizer codes in terms of their stability properties. A general construction of 2D MFCs is proposed that combines topological protection based on a macroscopic code distance with protection based on fermionic parity conservation. Finally, we use MFCs to show how to transform any qubit stabilizer code to a weakly self-dual CSS code.

  4. Theory of epigenetic coding.

    Science.gov (United States)

    Elder, D

    1984-06-07

    The logic of genetic control of development may be based on a binary epigenetic code. This paper revises the author's previous scheme dealing with the numerology of annelid metamerism in these terms. Certain features of the code had been deduced to be combinatorial, others not. This paradoxical contrast is resolved here by the interpretation that these features relate to different operations of the code; the combinatiorial to coding identity of units, the non-combinatorial to coding production of units. Consideration of a second paradox in the theory of epigenetic coding leads to a new solution which further provides a basis for epimorphic regeneration, and may in particular throw light on the "regeneration-duplication" phenomenon. A possible test of the model is also put forward.

  5. DISP1 code

    International Nuclear Information System (INIS)

    Vokac, P.

    1999-12-01

    DISP1 code is a simple tool for assessment of the dispersion of the fission product cloud escaping from a nuclear power plant after an accident. The code makes it possible to tentatively check the feasibility of calculations by more complex PSA3 codes and/or codes for real-time dispersion calculations. The number of input parameters is reasonably low and the user interface is simple enough to allow a rapid processing of sensitivity analyses. All input data entered through the user interface are stored in the text format. Implementation of dispersion model corrections taken from the ARCON96 code enables the DISP1 code to be employed for assessment of the radiation hazard within the NPP area, in the control room for instance. (P.A.)

  6. Phonological coding during reading.

    Science.gov (United States)

    Leinenger, Mallorie

    2014-11-01

    The exact role that phonological coding (the recoding of written, orthographic information into a sound based code) plays during silent reading has been extensively studied for more than a century. Despite the large body of research surrounding the topic, varying theories as to the time course and function of this recoding still exist. The present review synthesizes this body of research, addressing the topics of time course and function in tandem. The varying theories surrounding the function of phonological coding (e.g., that phonological codes aid lexical access, that phonological codes aid comprehension and bolster short-term memory, or that phonological codes are largely epiphenomenal in skilled readers) are first outlined, and the time courses that each maps onto (e.g., that phonological codes come online early [prelexical] or that phonological codes come online late [postlexical]) are discussed. Next the research relevant to each of these proposed functions is reviewed, discussing the varying methodologies that have been used to investigate phonological coding (e.g., response time methods, reading while eye-tracking or recording EEG and MEG, concurrent articulation) and highlighting the advantages and limitations of each with respect to the study of phonological coding. In response to the view that phonological coding is largely epiphenomenal in skilled readers, research on the use of phonological codes in prelingually, profoundly deaf readers is reviewed. Finally, implications for current models of word identification (activation-verification model, Van Orden, 1987; dual-route model, e.g., M. Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; parallel distributed processing model, Seidenberg & McClelland, 1989) are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  7. The aeroelastic code FLEXLAST

    Energy Technology Data Exchange (ETDEWEB)

    Visser, B. [Stork Product Eng., Amsterdam (Netherlands)

    1996-09-01

    To support the discussion on aeroelastic codes, a description of the code FLEXLAST was given and experiences within benchmarks and measurement programmes were summarized. The code FLEXLAST has been developed since 1982 at Stork Product Engineering (SPE). Since 1992 FLEXLAST has been used by Dutch industries for wind turbine and rotor design. Based on the comparison with measurements, it can be concluded that the main shortcomings of wind turbine modelling lie in the field of aerodynamics, wind field and wake modelling. (au)

  8. MORSE Monte Carlo code

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1984-01-01

    The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described

  9. QR codes for dummies

    CERN Document Server

    Waters, Joe

    2012-01-01

    Find out how to effectively create, use, and track QR codes QR (Quick Response) codes are popping up everywhere, and businesses are reaping the rewards. Get in on the action with the no-nonsense advice in this streamlined, portable guide. You'll find out how to get started, plan your strategy, and actually create the codes. Then you'll learn to link codes to mobile-friendly content, track your results, and develop ways to give your customers value that will keep them coming back. It's all presented in the straightforward style you've come to know and love, with a dash of humor thrown

  10. Tokamak Systems Code

    International Nuclear Information System (INIS)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged

  11. Real-Space Bonding Indicator Analysis of the Donor-Acceptor Complexes X3BNY3, X3AlNY3, X3BPY3, and X3AlPY3 (X, Y = H, Me, Cl).

    Science.gov (United States)

    Mebs, Stefan; Beckmann, Jens

    2017-10-12

    Calculations of real-space bonding indicators (RSBI) derived from Atoms-In-Molecules (AIM), Electron Localizability Indicator (ELI-D), Non-Covalent Interactions index (NCI), and Density Overlap Regions Indicator (DORI) toolkits for a set of 36 donor-acceptor complexes X 3 BNY 3 (1, 1a-1h), X 3 AlNY 3 (2, 2a-2h), X 3 BPY 3 (3, 3a-3h), and X 3 AlPY 3 (4, 4a-4h) reveal that the donor-acceptor bonds comprise covalent and ionic interactions in varying extents (X = Y = H for 1-4; X = H, Y = Me for 1a-4a; X = H, Y = Cl for 1b-4b; X = Me, Y = H for 1c-4c; X, Y = Me for 1d-4d; X = Me, Y = Cl for 1e-4e; X = Cl, Y = H for 1f-4f; X = Cl, Y = Me for 1g-4g; X, Y = Cl for 1h-4h). The phosphinoboranes X 3 BPY 3 (3, 3a-3h) in general and Cl 3 BPMe 3 (3f) in particular show the largest covalent contributions and the least ionic contributions. The aminoalanes X 3 AlNY 3 (2, 2a-2h) in general and Me 3 AlNCl 3 (2e) in particular show the least covalent contributions and the largest ionic contributions. The aminoboranes X 3 BNY 3 (1, 1a-1h) and the phosphinoalanes X 3 AlPY 3 (4, 4a-4h) are midway between phosphinoboranes and aminoalanes. The degree of covalency and ionicity correlates with the electronegativity difference BP (ΔEN = 0.15) < AlP (ΔEN = 0.58) < BN (ΔEN = 1.00) < AlN (ΔEN = 1.43) and a previously published energy decomposition analysis (EDA). To illustrate the importance of both contributions in Lewis formula representations, two resonance formulas should be given for all compounds, namely, the canonical form with formal charges denoting covalency and the arrow notation pointing from the donor to the acceptor atom to emphasis ionicity. If the Lewis formula mainly serves to show the atomic connectivity, the most significant should be shown. Thus, it is legitimate to present aminoalanes using arrows; however, for phosphinoboranes the canonical form with formal charges is more appropriate.

  12. DFT based spatial multiplexing and maximum ratio transmission for mm-wawe large MIMO

    DEFF Research Database (Denmark)

    Phan-Huy, D.-T.; Tölli, A.; Rajatheva, N.

    2014-01-01

    -SM-MRT). When the DFT-SM scheme alone is used, the data streams are either mapped onto different angles of departures in the case of aligned linear arrays, or mapped onto different orbital angular momentums in the case of aligned circular arrays. Maximum ratio transmission pre-equalizes the channel......By using large point-to-point multiple input multiple output (MIMO), spatial multiplexing of a large number of data streams in wireless communications using millimeter-waves (mm-waves) can be achieved. However, according to the antenna spacing and transmitter-receiver distance, the MIMO channel...... is likely to be ill-conditioned. In such conditions, highly complex schemes such as the singular value decomposition (SVD) are necessary. In this paper, we propose a new low complexity system called discrete Fourier transform based spatial multiplexing (DFT-SM) with maximum ratio transmission (DFT...

  13. Experimental demonstration of improved fiber nonlinearity tolerance for unique-word DFT-spread OFDM systems.

    Science.gov (United States)

    Chen, Xi; Li, An; Gao, Guanjun; Shieh, William

    2011-12-19

    In this paper we experimentally demonstrate transmission performance of optical DFT-spread OFDM systems in comparison with conventional OFDM systems. A 440.8-Gb/s superchannel consisting of 8 x 55.1-Gb/s densely-spaced DFT-S OFDM signal is successfully received after 1120-km transmission with a spectral efficiency of 3.5 b/s/Hz. It is shown that DFT-S OFDM can achieve an improvement of 1 dB in Q factor and 1 dB in launch power over conventional OFDM. Additionally, unique word aided phase estimation algorithm is proposed and demonstrated enabling extremely long OFDM symbol transmission.

  14. Optical Gaps in Pristine and Heavily Doped Silicon Nanocrystals: DFT versus Quantum Monte Carlo Benchmarks.

    Science.gov (United States)

    Derian, R; Tokár, K; Somogyi, B; Gali, Á; Štich, I

    2017-12-12

    We present a time-dependent density functional theory (TDDFT) study of the optical gaps of light-emitting nanomaterials, namely, pristine and heavily B- and P-codoped silicon crystalline nanoparticles. Twenty DFT exchange-correlation functionals sampled from the best currently available inventory such as hybrids and range-separated hybrids are benchmarked against ultra-accurate quantum Monte Carlo results on small model Si nanocrystals. Overall, the range-separated hybrids are found to perform best. The quality of the DFT gaps is correlated with the deviation from Koopmans' theorem as a possible quality guide. In addition to providing a generic test of the ability of TDDFT to describe optical properties of silicon crystalline nanoparticles, the results also open up a route to benchmark-quality DFT studies of nanoparticle sizes approaching those studied experimentally.

  15. Efficient Coding of Information: Huffman Coding -RE ...

    Indian Academy of Sciences (India)

    to a stream of equally-likely symbols so as to recover the original stream in the event of errors. The for- ... The source-coding problem is one of finding a mapping from U to a ... probability that the random variable X takes the value x written as ...

  16. NR-code: Nonlinear reconstruction code

    Science.gov (United States)

    Yu, Yu; Pen, Ue-Li; Zhu, Hong-Ming

    2018-04-01

    NR-code applies nonlinear reconstruction to the dark matter density field in redshift space and solves for the nonlinear mapping from the initial Lagrangian positions to the final redshift space positions; this reverses the large-scale bulk flows and improves the precision measurement of the baryon acoustic oscillations (BAO) scale.

  17. Comparison of discrete Fourier transform (DFT) and principal component analysis/DFT as forecasting tools for absorbance time series received by UV-visible probes installed in urban sewer systems.

    Science.gov (United States)

    Plazas-Nossa, Leonardo; Torres, Andrés

    2014-01-01

    The objective of this work is to introduce a forecasting method for UV-Vis spectrometry time series that combines principal component analysis (PCA) and discrete Fourier transform (DFT), and to compare the results obtained with those obtained by using DFT. Three time series for three different study sites were used: (i) Salitre wastewater treatment plant (WWTP) in Bogotá; (ii) Gibraltar pumping station in Bogotá; and (iii) San Fernando WWTP in Itagüí (in the south part of Medellín). Each of these time series had an equal number of samples (1051). In general terms, the results obtained are hardly generalizable, as they seem to be highly dependent on specific water system dynamics; however, some trends can be outlined: (i) for UV range, DFT and PCA/DFT forecasting accuracy were almost the same; (ii) for visible range, the PCA/DFT forecasting procedure proposed gives systematically lower forecasting errors and variability than those obtained with the DFT procedure; and (iii) for short forecasting times the PCA/DFT procedure proposed is more suitable than the DFT procedure, according to processing times obtained.

  18. A rational synthesis of a novel imidazo[4,5-f][1,10]phenanthroline templated Schiff base: Characterization, photoluminescence and DFT/TD-DFT study

    Directory of Open Access Journals (Sweden)

    S. Karslıoğlu

    2017-07-01

    Full Text Available A new imidazo[4,5-f][1,10]phenanthroline (imp derivative imidazo-N5,N6-bis((4-(1H-imidazo[4,5-f][1,10]phenanthroline-2-ylphenylmethylene-1,10-phenanthroline-5,6-diamine (impap was synthesized in five steps starting from bare phenanthroline (phen precursors. The novel compound was fully characterized by 1H-NMR, IR, elemental analysis and electrospray ionization mass spectroscopy (ESI-MS techniques. Solid state emission spectrum of impap showed two distinct strong emission maxima with large Stokes shifts. The ground state gas phase geometry of impap was predicted by DFT calculations. Excited state properties of the molecule were examined through TD-DFT calculations conducted at the optimized geometry. Responsible transitions for the strong fluorescence of impap were assigned to single component charge transfer transitions with large oscillator strengths based on the ground state calculated molecular orbital contributions.

  19. Molecular structure and spectroscopic properties of 4-nitrocatechol at different pH: UV-visible, Raman, DFT and TD-DFT calculations

    International Nuclear Information System (INIS)

    Cornard, Jean-Paul; Rasmiwetti; Merlin, Jean-Claude

    2005-01-01

    We investigated theoretically, by density functional theoretical calculations and by vibrational and electronic spectroscopies, the structure and the molecular spectroscopic properties of the 4-nitrocatechol molecule with varying pH. The lower energy stable structures of the neutral, monoanion and dianion forms were compared, and influence of water solvation was examined. The Raman and UV-visible spectra of 4-nitrocatechol and of its singly deprotonated form were recorded by varying the pH from 2 to 9. A calculation of the vibrational frequencies has allowed a complete assignment of the Raman spectra of the two forms of 4-nitrocatechol, and has permitted to investigate the evolution of vibrational normal modes upon deprotonation. Based on the molecular orbital analysis and the time dependent DFT (TD-DFT) calculations, we discussed the electronic structure and the assignment of the absorption bands in the electronic spectra of 4-nitrocatechol and mono-deprotonated 4-nitrocatechol

  20. Activation mechanism of ammonium ions on sulfidation of malachite (-201) surface by DFT study

    Science.gov (United States)

    Wu, Dandan; Mao, Yingbo; Deng, Jiushuai; Wen, Shuming

    2017-07-01

    The activation mechanism of ammonium ions on the sulfidation of malachite (-201) was determined by density functional theory (DFT) calculations. Results of DFT calculations indicated that interlayer sulfidation occurs during the sulfidation process of malachite (-201). The absorption of both the ammonium ion and sulfide ion on the malachite (-201) surface is stronger than that of sulfur ion. After sulfidation was activated with ammonium ion, the Cu 3d orbital peak is closer to the Fermi level and characterized by a stronger peak value. Therefore, the addition of ammonium ions activated the sulfidation of malachite (-201), thereby improving the flotation performance.

  1. Chemical Information revealed by Mössbauer spectroscopy and DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Satoru, E-mail: snaka@hiroshima-u.ac.jp [Hiroshima University, Natural Science Center for Basic Research and Development (Japan)

    2017-11-15

    Mixed-valence state of binuclear metallocene derivatives and spin-crossover (SCO) phenomena of the assembled Fe(II) complexes have been studied by using Mössbauer spectroscopy. The understanding of the results obtained by Mössbauer spectra is well supported by means of X-ray structural analysis and density functional theory (DFT) calculation. Benchmark study of relativisitic DFT calculation by using Mössbauer isomer shifts of Eu, Np complexes reveals the validity of the calculation. Such study sheds light on the bonding character of 4f and 5f electron. These results are reviewed.

  2. Techniques for Computing the DFT Using the Residue Fermat Number Systems and VLSI

    Science.gov (United States)

    Truong, T. K.; Chang, J. J.; Hsu, I. S.; Pei, D. Y.; Reed, I. S.

    1985-01-01

    The integer complex multiplier and adder over the direct sum of two copies of a finite field is specialized to the direct sum of the rings of integers modulo Fermat numbers. Such multiplications and additions can be used in the implementation of a discrete Fourier transform (DFT) of a sequence of complex numbers. The advantage of the present approach is that the number of multiplications needed for the DFT can be reduced substantially over the previous approach. The architectural designs using this approach are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.

  3. Investigation of the interaction of carbon dioxide fluid with internal and external single-wall carbon nanotubes by DFT

    Directory of Open Access Journals (Sweden)

    M. Oftadeh

    2011-07-01

    Full Text Available The effective parameters of (5, 0 and (5, 5 single-wall carbon nanotubes during the interaction with carbon dioxide as sensors are determined. The interaction of carbon dioxide  molecules with internal and external walls of the nanotubes is studied using Gaussian 03 coding by density functional theory (DFT at the B3LYP/6-311G level of theory. CO2 rotation around tube axles vertically and parallel to the internal and external walls has been investigated. The carbon dioxide molecule is predicted to bind only weakly to nanotubes, and the tube-molecule interactions can be identified as physisorption. CO2 adsorption is stronger on external wallsthan on internal walls, and adsorption on the external wall of (5, 0 is stronger than on the external wall of (5, 5; the adsorption energies are exothermic and equal to -0.8884 and -0.0528 kcal/mol, respectively. The rotation energy barrier for (5, 5 is lower than that for (5, 0 in all rotations, therefore in these interactions (5, 5 is more active. The energy gap significantly changes in the presence of  carbon  dioxide molecules on the inside surface of (5, 0 and the electric conductivity is affected, but no remarkable change is observed in the electronic structure of (5, 5.

  4. Synthesizing Certified Code

    Science.gov (United States)

    Whalen, Michael; Schumann, Johann; Fischer, Bernd

    2002-01-01

    Code certification is a lightweight approach to demonstrate software quality on a formal level. Its basic idea is to require producers to provide formal proofs that their code satisfies certain quality properties. These proofs serve as certificates which can be checked independently. Since code certification uses the same underlying technology as program verification, it also requires many detailed annotations (e.g., loop invariants) to make the proofs possible. However, manually adding theses annotations to the code is time-consuming and error-prone. We address this problem by combining code certification with automatic program synthesis. We propose an approach to generate simultaneously, from a high-level specification, code and all annotations required to certify generated code. Here, we describe a certification extension of AUTOBAYES, a synthesis tool which automatically generates complex data analysis programs from compact specifications. AUTOBAYES contains sufficient high-level domain knowledge to generate detailed annotations. This allows us to use a general-purpose verification condition generator to produce a set of proof obligations in first-order logic. The obligations are then discharged using the automated theorem E-SETHEO. We demonstrate our approach by certifying operator safety for a generated iterative data classification program without manual annotation of the code.

  5. Code of Ethics

    Science.gov (United States)

    Division for Early Childhood, Council for Exceptional Children, 2009

    2009-01-01

    The Code of Ethics of the Division for Early Childhood (DEC) of the Council for Exceptional Children is a public statement of principles and practice guidelines supported by the mission of DEC. The foundation of this Code is based on sound ethical reasoning related to professional practice with young children with disabilities and their families…

  6. Interleaved Product LDPC Codes

    OpenAIRE

    Baldi, Marco; Cancellieri, Giovanni; Chiaraluce, Franco

    2011-01-01

    Product LDPC codes take advantage of LDPC decoding algorithms and the high minimum distance of product codes. We propose to add suitable interleavers to improve the waterfall performance of LDPC decoding. Interleaving also reduces the number of low weight codewords, that gives a further advantage in the error floor region.

  7. Insurance billing and coding.

    Science.gov (United States)

    Napier, Rebecca H; Bruelheide, Lori S; Demann, Eric T K; Haug, Richard H

    2008-07-01

    The purpose of this article is to highlight the importance of understanding various numeric and alpha-numeric codes for accurately billing dental and medically related services to private pay or third-party insurance carriers. In the United States, common dental terminology (CDT) codes are most commonly used by dentists to submit claims, whereas current procedural terminology (CPT) and International Classification of Diseases, Ninth Revision, Clinical Modification (ICD.9.CM) codes are more commonly used by physicians to bill for their services. The CPT and ICD.9.CM coding systems complement each other in that CPT codes provide the procedure and service information and ICD.9.CM codes provide the reason or rationale for a particular procedure or service. These codes are more commonly used for "medical necessity" determinations, and general dentists and specialists who routinely perform care, including trauma-related care, biopsies, and dental treatment as a result of or in anticipation of a cancer-related treatment, are likely to use these codes. Claim submissions for care provided can be completed electronically or by means of paper forms.

  8. Error Correcting Codes

    Indian Academy of Sciences (India)

    Science and Automation at ... the Reed-Solomon code contained 223 bytes of data, (a byte ... then you have a data storage system with error correction, that ..... practical codes, storing such a table is infeasible, as it is generally too large.

  9. Scrum Code Camps

    DEFF Research Database (Denmark)

    Pries-Heje, Lene; Pries-Heje, Jan; Dalgaard, Bente

    2013-01-01

    is required. In this paper we present the design of such a new approach, the Scrum Code Camp, which can be used to assess agile team capability in a transparent and consistent way. A design science research approach is used to analyze properties of two instances of the Scrum Code Camp where seven agile teams...

  10. RFQ simulation code

    International Nuclear Information System (INIS)

    Lysenko, W.P.

    1984-04-01

    We have developed the RFQLIB simulation system to provide a means to systematically generate the new versions of radio-frequency quadrupole (RFQ) linac simulation codes that are required by the constantly changing needs of a research environment. This integrated system simplifies keeping track of the various versions of the simulation code and makes it practical to maintain complete and up-to-date documentation. In this scheme, there is a certain standard version of the simulation code that forms a library upon which new versions are built. To generate a new version of the simulation code, the routines to be modified or added are appended to a standard command file, which contains the commands to compile the new routines and link them to the routines in the library. The library itself is rarely changed. Whenever the library is modified, however, this modification is seen by all versions of the simulation code, which actually exist as different versions of the command file. All code is written according to the rules of structured programming. Modularity is enforced by not using COMMON statements, simplifying the relation of the data flow to a hierarchy diagram. Simulation results are similar to those of the PARMTEQ code, as expected, because of the similar physical model. Different capabilities, such as those for generating beams matched in detail to the structure, are available in the new code for help in testing new ideas in designing RFQ linacs

  11. Error Correcting Codes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. Error Correcting Codes - Reed Solomon Codes. Priti Shankar. Series Article Volume 2 Issue 3 March ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  12. 78 FR 18321 - International Code Council: The Update Process for the International Codes and Standards

    Science.gov (United States)

    2013-03-26

    ... Energy Conservation Code. International Existing Building Code. International Fire Code. International... Code. International Property Maintenance Code. International Residential Code. International Swimming Pool and Spa Code International Wildland-Urban Interface Code. International Zoning Code. ICC Standards...

  13. An analytical study of the improved nonlinear tolerance of DFT-spread OFDM and its unitary-spread OFDM generalization.

    Science.gov (United States)

    Shulkind, Gal; Nazarathy, Moshe

    2012-11-05

    DFT-spread (DFT-S) coherent optical OFDM was numerically and experimentally shown to provide improved nonlinear tolerance over an optically amplified dispersion uncompensated fiber link, relative to both conventional coherent OFDM and single-carrier transmission. Here we provide an analytic model rigorously accounting for this numerical result and precisely predicting the optimal bandwidth per DFT-S sub-band (or equivalently the optimal number of sub-bands per optical channel) required in order to maximize the link non-linear tolerance (NLT). The NLT advantage of DFT-S OFDM is traced to the particular statistical dependency introduced among the OFDM sub-carriers by means of the DFT spreading operation. We further extend DFT-S to a unitary-spread generalized modulation format which includes as special cases the DFT-S scheme as well as a new format which we refer to as wavelet-spread (WAV-S) OFDM, replacing the spreading DFTs by Hadamard matrices which have elements +/-1 hence are multiplier-free. The extra complexity incurred in the spreading operation is almost negligible, however the performance improvement with WAV-S relative to plain OFDM is more modest than that achieved by DFT-S, which remains the preferred format for nonlinear tolerance improvement, outperforming both plain OFDM and single-carrier schemes.

  14. Proton affinities of maingroup-element hydrides and noble gases: trends across the periodic table, structural effects, and DFT validation

    NARCIS (Netherlands)

    Swart, M.; Rosler, E.; Bickelhaupt, F.M.

    2006-01-01

    We have carried out an extensive exploration of the gas-phase basicity of archetypal neutral bases across the periodic system using the generalized gradient approximation (GGA) of the density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. First, we validate DFT as a reliable tool for computing

  15. Explosive and pollutant TNP detection by structurally flexible SOFs: DFT-D3, TD-DFT study and in vitro recognition

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pritam [Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Burdwan, Durgapur 713209, West Bengal (India); Chemistry Department, Jadavpur University, Kolkata 32, West Bengal (India); Roy, Partha [Chemistry Department, Jadavpur University, Kolkata 32, West Bengal (India); Ghosh, Ananta [Chemistry Department, Burdwan Raj College, The University of Burdwan, West Bengal (India); Jana, Saibal [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); Murmu, Naresh Chandra [Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Burdwan, Durgapur 713209, West Bengal (India); Mukhopadhyay, Subhra Kanti [Department of Microbiology, The University of Burdwan, Burdwan 713104 (India); Banerjee, Priyabrata, E-mail: pr_banerjee@cmeri.res.in [Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Burdwan, Durgapur 713209, West Bengal (India); Academy of Scientific and Innovative Research at CSIR-Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur 713209, West Bengal (India)

    2017-05-15

    Explosive and Pollutant Nitro Aromatics (epNACs) like 2,4,6-trinitrophenol (TNP) has been detected from various surface water specimens by luminescent Schiff base Organic Frameworks (SOFs) by fluorometric method. Fluorescence intensity of the receptor SOFs have been quenched in presence of TNP due to RET and ICT, which has been confirmed through solid and solution level spectroscopic studies like FT-IR, {sup 1}H-NMR, fluorescence titration. Modern DFT (DFT-D3) calculations of the possible host guest conformers have been performed for exploration of plausible route of interaction between receptor and epNACs. The outcome of theoretical calculations is in line with experimental findings where TNP and receptor conformation mimic parallel displaced type π- π interaction. TD-DFT has been executed with both receptor and receptor ···TNP adduct, the fluorescence quenching is in line with experimental outcome. Limit of TNP detection has been found as low as 5 μM with 2.97×10{sup 4} M{sup -1} as binding constant. In real time stepping, TNP as mutagenic agent for aquatic life has been detected inside prokaryotic cells like candidia albicans in ppm level.

  16. Validation of thermalhydraulic codes

    International Nuclear Information System (INIS)

    Wilkie, D.

    1992-01-01

    Thermalhydraulic codes require to be validated against experimental data collected over a wide range of situations if they are to be relied upon. A good example is provided by the nuclear industry where codes are used for safety studies and for determining operating conditions. Errors in the codes could lead to financial penalties, to the incorrect estimation of the consequences of accidents and even to the accidents themselves. Comparison between prediction and experiment is often described qualitatively or in approximate terms, e.g. ''agreement is within 10%''. A quantitative method is preferable, especially when several competing codes are available. The codes can then be ranked in order of merit. Such a method is described. (Author)

  17. Fracture flow code

    International Nuclear Information System (INIS)

    Dershowitz, W; Herbert, A.; Long, J.

    1989-03-01

    The hydrology of the SCV site will be modelled utilizing discrete fracture flow models. These models are complex, and can not be fully cerified by comparison to analytical solutions. The best approach for verification of these codes is therefore cross-verification between different codes. This is complicated by the variation in assumptions and solution techniques utilized in different codes. Cross-verification procedures are defined which allow comparison of the codes developed by Harwell Laboratory, Lawrence Berkeley Laboratory, and Golder Associates Inc. Six cross-verification datasets are defined for deterministic and stochastic verification of geometric and flow features of the codes. Additional datasets for verification of transport features will be documented in a future report. (13 figs., 7 tabs., 10 refs.) (authors)

  18. Huffman coding in advanced audio coding standard

    Science.gov (United States)

    Brzuchalski, Grzegorz

    2012-05-01

    This article presents several hardware architectures of Advanced Audio Coding (AAC) Huffman noiseless encoder, its optimisations and working implementation. Much attention has been paid to optimise the demand of hardware resources especially memory size. The aim of design was to get as short binary stream as possible in this standard. The Huffman encoder with whole audio-video system has been implemented in FPGA devices.

  19. Report number codes

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.N. (ed.)

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  20. Report number codes

    International Nuclear Information System (INIS)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name

  1. Cryptography cracking codes

    CERN Document Server

    2014-01-01

    While cracking a code might seem like something few of us would encounter in our daily lives, it is actually far more prevalent than we may realize. Anyone who has had personal information taken because of a hacked email account can understand the need for cryptography and the importance of encryption-essentially the need to code information to keep it safe. This detailed volume examines the logic and science behind various ciphers, their real world uses, how codes can be broken, and the use of technology in this oft-overlooked field.

  2. Coded Splitting Tree Protocols

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar

    2013-01-01

    This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...

  3. Transport theory and codes

    International Nuclear Information System (INIS)

    Clancy, B.E.

    1986-01-01

    This chapter begins with a neutron transport equation which includes the one dimensional plane geometry problems, the one dimensional spherical geometry problems, and numerical solutions. The section on the ANISN code and its look-alikes covers problems which can be solved; eigenvalue problems; outer iteration loop; inner iteration loop; and finite difference solution procedures. The input and output data for ANISN is also discussed. Two dimensional problems such as the DOT code are given. Finally, an overview of the Monte-Carlo methods and codes are elaborated on

  4. Gravity inversion code

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1979-01-01

    The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables

  5. Structural characterization of Am(III) formate complexes. Combining EXAFS spectroscopy with DFT and thermodynamical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Rossberg, Andre [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures; Froehlich, D.R. [Heidelberg Univ. (Germany). Physikalisch-Chemisches Inst.

    2017-06-01

    We used iterative transformation factor analysis (ITFA) in order to isolate the EXAFS spectral contributions of the complexing ligand from a Am(III)/formate pH-series. Thermodynamic calculations were used as constraint for ITFA and for density functional theory (DFT) calculations to identify the coordination mode within the formed complexes.

  6. The Influence of Square Planar Platinum Complexes on DNA Bases Pairing. An ab initio DFT Study

    Czech Academy of Sciences Publication Activity Database

    Burda, J. V.; Šponer, Jiří; Leszczynski, J.

    2001-01-01

    Roč. 3, č. 19 (2001), s. 4404-4411 ISSN 1463-9076 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : DNA base pairing * platinated base pairs * ab initio DFT study Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.787, year: 2001

  7. Stepwise or concerted? DFT study on the mechanism of ionic Diels-Alder reaction of chromanes

    Directory of Open Access Journals (Sweden)

    Haghdadi Mina

    2016-01-01

    Full Text Available The stepwise and concerted Ionic Diels-Alder reaction between phenyl (pyridin-2-ylmethylene oxonium and styrene derivatives are explored using theoretical method. The results support using computational method via persistent intermediates. The DFT method was essential to reproduce a reasonable potential energy surface for these challenging systems.

  8. DFT study of zigzag (n, 0) single-walled carbon nanotubes: C-13 NMR chemical shifts

    Czech Academy of Sciences Publication Activity Database

    Kupka, T.; Stachów, M.; Stobinski, L.; Kaminský, Jakub

    2016-01-01

    Roč. 67, Jun (2016), s. 14-19 ISSN 1093-3263 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : zigzag SWCNT * cyclacenes * theoretical modeling * DFT * NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.754, year: 2016

  9. Quantum-mechanical DFT calculation supported Raman spectroscopic study of some amino acids in bovine insulin.

    Science.gov (United States)

    Tah, Bidisha; Pal, Prabir; Roy, Sourav; Dutta, Debodyuti; Mishra, Sabyashachi; Ghosh, Manash; Talapatra, G B

    2014-08-14

    In this article Quantum mechanical (QM) calculations by Density Functional Theory (DFT) have been performed of all amino acids present in bovine insulin. Simulated Raman spectra of those amino acids are compared with their experimental spectra and the major bands are assigned. The results are in good agreement with experiment. We have also verified the DFT results with Quantum mechanical molecular mechanics (QM/MM) results for some amino acids. QM/MM results are very similar with the DFT results. Although the theoretical calculation of individual amino acids are feasible, but the calculated Raman spectrum of whole protein molecule is difficult or even quite impossible task, since it relies on lengthy and costly quantum-chemical computation. However, we have tried to simulate the Raman spectrum of whole protein by adding the proportionate contribution of the Raman spectra of each amino acid present in this protein. In DFT calculations, only the contributions of disulphide bonds between cysteines are included but the contribution of the peptide and hydrogen bonds have not been considered. We have recorded the Raman spectra of bovine insulin using micro-Raman set up. The experimental spectrum is found to be very similar with the resultant simulated Raman spectrum with some exceptions. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Structures of cefradine dihydrate and cefaclor dihydrate from DFT-D calculations

    DEFF Research Database (Denmark)

    van de Streek, Jacco; Rantanen, Jukka; Bond, Andrew D

    2013-01-01

    in the zwitterionic form in the two dihydrate structures. A potential ambiguity concerning the orientation of the cyclohexadienyl ring in cefradine dihydrate is also clarified, and on the basis of the calculated energies it is shown that disorder should not be expected at room temperature. The DFT-D methods can...

  11. Vibrational absorption spectra, DFT and SCC-DFTB conformational study and analysis of [Leu]enkephalin

    DEFF Research Database (Denmark)

    Abdali, Salim; Niehaus, T.A.; Jalkanen, Karl J.

    2003-01-01

    . Ab initio (DFT at the B3LYP/6-31G* level of theory) and semi-empirical (SCC-DFTB) with and without dispersion correction were applied to simulate the VA spectra of [Leu] enkephalin. In these calculations structures taken from X-ray measurements for different conformers of the molecule were used...

  12. Ab Initio and DFT Potential Energy Surfaces for Cyanuric Chloride Reactions

    National Research Council Canada - National Science Library

    Pai, Sharmila

    1998-01-01

    ... on the potential energy surface were calculated using the 6-31G and 6-311 +Gbasis sets. DFT(B3LYP) geometry optimizations and zero-point corrections for critical points on the potential energy surface were calculated with the 6-31G, 6-311...

  13. Exploring Systematic Discrepancies in DFT Calculations of Chlorine Nuclear Quadrupole Couplings

    Czech Academy of Sciences Publication Activity Database

    Socha, Ondřej; Hodgkinson, P.; Widdifield, C. M.; Yates, J. R.; Dračínský, Martin

    2017-01-01

    Roč. 121, č. 21 (2017), s. 4103-4113 ISSN 1089-5639 R&D Projects: GA ČR GA15-11223S Institutional support: RVO:61388963 Keywords : NMR spectroscopy * DFT calculations * quadrupolar coupling Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.847, year: 2016

  14. DFT study of the mechanism and stereoselectivity of the 1,3-dipolar ...

    Indian Academy of Sciences (India)

    and methyl acrylate) using DFT method. An ana- lysis of ..... field (SCRF)30,46 model based on the polarizable con- tinuum model (PCM) of Tomasi's group47 have been applied. ... stereoselectivity relative to the gas-phase since the trends of ...

  15. Structural changes in the water tetramer. A combined Monte Carlo and DFT study

    Czech Academy of Sciences Publication Activity Database

    Vítek, A.; Kalus, R.; Paidarová, Ivana

    2010-01-01

    Roč. 12, č. 41 (2010), s. 13657-13666 ISSN 1463-9076 R&D Projects: GA AV ČR IAA401870702 Institutional research plan: CEZ:AV0Z40400503 Keywords : Monte Carlo Study * DFT study * water tetramer Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.454, year: 2010

  16. RHF and DFT study of the optimized molecular structure and atomic ...

    African Journals Online (AJOL)

    Restricted HartreeFock (RHF) and Density Functional Theory (DFT) studies were carried out on the organic semi conductor material Pentacene. 6-31G and 6-31G* basis sets were used to optimize the molecule and compute the charge distribution at both levels of theory. The results show that the Carbon-Hydrogen bonds in ...

  17. Experimental and DFT study of thiol-stabilized Pt/CNTs catalysts.

    Science.gov (United States)

    Li, L; Chen, S G; Wei, Z D; Qi, X Q; Xia, M R; Wang, Y Q

    2012-12-28

    Using a combination of experiments and density functional theory (DFT) calculations, we explored the mechanisms of the stabilization effect of the thiolized (-SH) group on the Pt/SH-CNTs catalyst. Pt particles supported on the hydroxyl functionalized CNTs (Pt/OH-CNTs) are synthesized as a baseline for comparison. Experimentally, the platinum on OH-CNTs has a stronger tendency for aggregation than that on SH-CNTs. The differences in the oxidation resistance, migration activation energy, and corrosion resistance between the Pt/SH-CNTs and Pt/OH-CNTs are calculated using DFT. The DFT calculations indicate that the -SH group enhances the oxidation resistance of the Pt cluster and CNTs and restricts Pt migration on the CNTs. DFT calculations also suggest that the enhanced stability of Pt/SH-CNTs originates from the increased interaction between Pt and SH-CNTs and the depressed d-band center of the Pt NPs. Thus, the functional groups on the CNTs used for stabilization of supported Pt NPs should provide a deposit and anchor site for Pt NPs and maintain the perfect structure of CNTs rather than destroying it.

  18. Pyrone-based Cu(II) complexes, their characterization, DFT based ...

    Indian Academy of Sciences (India)

    ... of P. G. Studies and. Research in Chemistry and Pharmacy, R. D. University, Jabalpur 482 001, India ... fascination.2,3 Such type of metal complexes are quite interesting due to .... in the ground state were optimized by the DFT method using B3LYP ..... Vogel A I 1996 In A Text Book of Qualitative Inorganic. Analysis (7th ...

  19. Implementation of Constrained DFT for Computing Charge Transfer Rates within the Projector Augmented Wave Method

    DEFF Research Database (Denmark)

    Melander, Marko; Jónsson, Elvar Örn; Mortensen, Jens Jørgen

    2016-01-01

    molecules to periodic systems in one-, two-, or three-dimensions. As such, this implementation is relevant for a wide variety of applications. We also present how to extract the electronic coupling element and reorganization energy from the resulting diabatic cDFT-PAW wave functions for the parametrization...

  20. Synthesis, X-ray crystallography, and DFT calculations of a novel phosphoramide

    Czech Academy of Sciences Publication Activity Database

    Shariatinia, Z.; Dušek, Michal; Eigner, Václav

    2014-01-01

    Roč. 640, č. 14 (2014), 2945-2955 ISSN 0044-2313 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : phosphoramide * x-ray structure * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.160, year: 2014

  1. Synthesis, spectroscopy, X-ray crystallography, and DFT computations of nanosized phosphazenes

    Czech Academy of Sciences Publication Activity Database

    Shariatinia, Z.; Moghadam, E.J.; Maghsoudi, N.; Mousavi, H.S.M.; Dušek, Michal; Eigner, Václav

    2015-01-01

    Roč. 641, č. 5 (2015), s. 967-978 ISSN 0044-2313 Grant - others:AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : phosphazene * ultrasonic * nanoparticle * x-ray crystallography * DFT calculation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.261, year: 2015

  2. Study of uncertainties of height measurements of monoatomic steps on Si 5 × 5 using DFT

    Czech Academy of Sciences Publication Activity Database

    Campbell, A.C.; Jelínek, Pavel; Klapetek, P.

    2017-01-01

    Roč. 28, č. 3 (2017), 1-6, č. článku 034005. ISSN 0957-0233 Institutional support: RVO:68378271 Keywords : DFT * AFM Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.585, year: 2016

  3. A DFT study on benzene adsorption over tungsten sulfides: surface model and adsorption geometries

    NARCIS (Netherlands)

    Koide, R.; Hensen, E.J.M.; Paul, J.F.; Cristol, S.; Payen, E.; Nakamura, H.; Santen, van R.A.

    2007-01-01

    Benzene adsorption on a WS2(100) surface was studied by ab initio periodic DFT computations. Benzene adsorption is facile on the bridge site of the bare W edge via ¿2 or ¿3 coordination. Taking into account the stable configuration at the W edge under typical hydrotreating reaction conditions (623

  4. DFT calculations on N2O decomposition by binuclear Fe complexes in Fe/ZSM-5

    NARCIS (Netherlands)

    Yakovlev, A.L.; Zhidomirov, G.M.; Santen, van R.A.

    2001-01-01

    N2O decomposition catalyzed by oxidized Fe clusters localized in the micropores of Fe/ZSM-5 has been studied using the DFT approach and a binuclear cluster model of the active site. Three different reaction routes were found, depending on temperature and water pressure. The results show that below

  5. Complexation of the lithium cation with beauvericin: experimental and DFT study

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Toman, Petr; Vaňura, P.

    2012-01-01

    Roč. 1024, 26 September (2012), s. 142-145 ISSN 0022-2860 R&D Projects: GA ČR(CZ) GAP205/10/2280 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : extraction * DFT * complexation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.404, year: 2012

  6. Complexation of the cesium cation with lithium ionophore VIII: extraction and DFT study

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Novák, Vít; Vaňura, P.; Bouř, Petr

    2013-01-01

    Roč. 298, č. 3 (2013), s. 2065-2068 ISSN 0236-5731 Institutional support: RVO:61388963 Keywords : cesium cation * lithium ionophore VIII * complexation * extraction and stability constants * water-nitrobenzene system * DFT calculations * structures Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 1.415, year: 2013

  7. Fulcrum Network Codes

    DEFF Research Database (Denmark)

    2015-01-01

    Fulcrum network codes, which are a network coding framework, achieve three objectives: (i) to reduce the overhead per coded packet to almost 1 bit per source packet; (ii) to operate the network using only low field size operations at intermediate nodes, dramatically reducing complexity...... in the network; and (iii) to deliver an end-to-end performance that is close to that of a high field size network coding system for high-end receivers while simultaneously catering to low-end ones that can only decode in a lower field size. Sources may encode using a high field size expansion to increase...... the number of dimensions seen by the network using a linear mapping. Receivers can tradeoff computational effort with network delay, decoding in the high field size, the low field size, or a combination thereof....

  8. Supervised Convolutional Sparse Coding

    KAUST Repository

    Affara, Lama Ahmed; Ghanem, Bernard; Wonka, Peter

    2018-01-01

    coding, which aims at learning discriminative dictionaries instead of purely reconstructive ones. We incorporate a supervised regularization term into the traditional unsupervised CSC objective to encourage the final dictionary elements

  9. SASSYS LMFBR systems code

    International Nuclear Information System (INIS)

    Dunn, F.E.; Prohammer, F.G.; Weber, D.P.

    1983-01-01

    The SASSYS LMFBR systems analysis code is being developed mainly to analyze the behavior of the shut-down heat-removal system and the consequences of failures in the system, although it is also capable of analyzing a wide range of transients, from mild operational transients through more severe transients leading to sodium boiling in the core and possible melting of clad and fuel. The code includes a detailed SAS4A multi-channel core treatment plus a general thermal-hydraulic treatment of the primary and intermediate heat-transport loops and the steam generators. The code can handle any LMFBR design, loop or pool, with an arbitrary arrangement of components. The code is fast running: usually faster than real time

  10. OCA Code Enforcement

    Data.gov (United States)

    Montgomery County of Maryland — The Office of the County Attorney (OCA) processes Code Violation Citations issued by County agencies. The citations can be viewed by issued department, issued date...

  11. The fast code

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, L.N.; Wilson, R.E. [Oregon State Univ., Dept. of Mechanical Engineering, Corvallis, OR (United States)

    1996-09-01

    The FAST Code which is capable of determining structural loads on a flexible, teetering, horizontal axis wind turbine is described and comparisons of calculated loads with test data are given at two wind speeds for the ESI-80. The FAST Code models a two-bladed HAWT with degrees of freedom for blade bending, teeter, drive train flexibility, yaw, and windwise and crosswind tower motion. The code allows blade dimensions, stiffnesses, and weights to differ and models tower shadow, wind shear, and turbulence. Additionally, dynamic stall is included as are delta-3 and an underslung rotor. Load comparisons are made with ESI-80 test data in the form of power spectral density, rainflow counting, occurrence histograms, and azimuth averaged bin plots. It is concluded that agreement between the FAST Code and test results is good. (au)

  12. Code Disentanglement: Initial Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wohlbier, John Greaton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelley, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rockefeller, Gabriel M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Calef, Matthew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-27

    The first step to making more ambitious changes in the EAP code base is to disentangle the code into a set of independent, levelized packages. We define a package as a collection of code, most often across a set of files, that provides a defined set of functionality; a package a) can be built and tested as an entity and b) fits within an overall levelization design. Each package contributes one or more libraries, or an application that uses the other libraries. A package set is levelized if the relationships between packages form a directed, acyclic graph and each package uses only packages at lower levels of the diagram (in Fortran this relationship is often describable by the use relationship between modules). Independent packages permit independent- and therefore parallel|development. The packages form separable units for the purposes of development and testing. This is a proven path for enabling finer-grained changes to a complex code.

  13. Induction technology optimization code

    International Nuclear Information System (INIS)

    Caporaso, G.J.; Brooks, A.L.; Kirbie, H.C.

    1992-01-01

    A code has been developed to evaluate relative costs of induction accelerator driver systems for relativistic klystrons. The code incorporates beam generation, transport and pulsed power system constraints to provide an integrated design tool. The code generates an injector/accelerator combination which satisfies the top level requirements and all system constraints once a small number of design choices have been specified (rise time of the injector voltage and aspect ratio of the ferrite induction cores, for example). The code calculates dimensions of accelerator mechanical assemblies and values of all electrical components. Cost factors for machined parts, raw materials and components are applied to yield a total system cost. These costs are then plotted as a function of the two design choices to enable selection of an optimum design based on various criteria. (Author) 11 refs., 3 figs

  14. VT ZIP Code Areas

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) A ZIP Code Tabulation Area (ZCTA) is a statistical geographic entity that approximates the delivery area for a U.S. Postal Service five-digit...

  15. Bandwidth efficient coding

    CERN Document Server

    Anderson, John B

    2017-01-01

    Bandwidth Efficient Coding addresses the major challenge in communication engineering today: how to communicate more bits of information in the same radio spectrum. Energy and bandwidth are needed to transmit bits, and bandwidth affects capacity the most. Methods have been developed that are ten times as energy efficient at a given bandwidth consumption as simple methods. These employ signals with very complex patterns and are called "coding" solutions. The book begins with classical theory before introducing new techniques that combine older methods of error correction coding and radio transmission in order to create narrowband methods that are as efficient in both spectrum and energy as nature allows. Other topics covered include modulation techniques such as CPM, coded QAM and pulse design.

  16. Reactor lattice codes

    International Nuclear Information System (INIS)

    Kulikowska, T.

    2001-01-01

    The description of reactor lattice codes is carried out on the example of the WIMSD-5B code. The WIMS code in its various version is the most recognised lattice code. It is used in all parts of the world for calculations of research and power reactors. The version WIMSD-5B is distributed free of charge by NEA Data Bank. The description of its main features given in the present lecture follows the aspects defined previously for lattice calculations in the lecture on Reactor Lattice Transport Calculations. The spatial models are described, and the approach to the energy treatment is given. Finally the specific algorithm applied in fuel depletion calculations is outlined. (author)

  17. A comparison of different discrimination parameters for the DFT-based PSD method in fast scintillators

    International Nuclear Information System (INIS)

    Liu, G.; Yang, J.; Luo, X.L.; Lin, C.B.; Peng, J.X.; Yang, Y.

    2013-01-01

    Although the discrete Fourier transform (DFT) based pulse shape discrimination (PSD) method, realized by transforming the digitized scintillation pulses into frequency coefficients by using DFT, has been proven to effectively discriminate neutrons and γ rays, its discrimination performance depends strongly on the selection of the discrimination parameter obtained by the combination of these frequency coefficients. In order to thoroughly understand and apply the DFT-based PSD in organic scintillation detectors, a comparison of three different discrimination parameters, i.e. the amplitude of zero-frequency component, the amplitude difference between the amplitude of zero-frequency component and the amplitude of base-frequency component, and the ratio of the amplitude of base-frequency component to the amplitude of zero-frequency component, is described in this paper. An experimental setup consisting of an Americium–Beryllium (Am–Be) source, a BC501A liquid scintillator detector, and a 5Gsample/s 8-bit oscilloscope was built to assess the performance of the DFT-based PSD with each of these discrimination parameters in terms of the figure-of-merit (based on the separation of the event distributions). The third technique, which uses the ratio of the amplitude of base-frequency component to the amplitude of zero-frequency component as the discrimination parameter, is observed to provide the best discrimination performance in this research. - Highlights: • The spectrum difference between neutron pulse and γ-ray pulse was investigated. • The DFT-based PSD with different parameter definitions was assessed. • The way of using the ratio of magnitude spectrum provides the best performance. • The performance differences were explained from noise suppression features

  18. Critical Care Coding for Neurologists.

    Science.gov (United States)

    Nuwer, Marc R; Vespa, Paul M

    2015-10-01

    Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.

  19. Lattice Index Coding

    OpenAIRE

    Natarajan, Lakshmi; Hong, Yi; Viterbo, Emanuele

    2014-01-01

    The index coding problem involves a sender with K messages to be transmitted across a broadcast channel, and a set of receivers each of which demands a subset of the K messages while having prior knowledge of a different subset as side information. We consider the specific case of noisy index coding where the broadcast channel is Gaussian and every receiver demands all the messages from the source. Instances of this communication problem arise in wireless relay networks, sensor networks, and ...

  20. Towards advanced code simulators

    International Nuclear Information System (INIS)

    Scriven, A.H.

    1990-01-01

    The Central Electricity Generating Board (CEGB) uses advanced thermohydraulic codes extensively to support PWR safety analyses. A system has been developed to allow fully interactive execution of any code with graphical simulation of the operator desk and mimic display. The system operates in a virtual machine environment, with the thermohydraulic code executing in one virtual machine, communicating via interrupts with any number of other virtual machines each running other programs and graphics drivers. The driver code itself does not have to be modified from its normal batch form. Shortly following the release of RELAP5 MOD1 in IBM compatible form in 1983, this code was used as the driver for this system. When RELAP5 MOD2 became available, it was adopted with no changes needed in the basic system. Overall the system has been used for some 5 years for the analysis of LOBI tests, full scale plant studies and for simple what-if studies. For gaining rapid understanding of system dependencies it has proved invaluable. The graphical mimic system, being independent of the driver code, has also been used with other codes to study core rewetting, to replay results obtained from batch jobs on a CRAY2 computer system and to display suitably processed experimental results from the LOBI facility to aid interpretation. For the above work real-time execution was not necessary. Current work now centers on implementing the RELAP 5 code on a true parallel architecture machine. Marconi Simulation have been contracted to investigate the feasibility of using upwards of 100 processors, each capable of a peak of 30 MIPS to run a highly detailed RELAP5 model in real time, complete with specially written 3D core neutronics and balance of plant models. This paper describes the experience of using RELAP5 as an analyzer/simulator, and outlines the proposed methods and problems associated with parallel execution of RELAP5

  1. Cracking the Gender Codes

    DEFF Research Database (Denmark)

    Rennison, Betina Wolfgang

    2016-01-01

    extensive work to raise the proportion of women. This has helped slightly, but women remain underrepresented at the corporate top. Why is this so? What can be done to solve it? This article presents five different types of answers relating to five discursive codes: nature, talent, business, exclusion...... in leadership management, we must become more aware and take advantage of this complexity. We must crack the codes in order to crack the curve....

  2. PEAR code review

    International Nuclear Information System (INIS)

    De Wit, R.; Jamieson, T.; Lord, M.; Lafortune, J.F.

    1997-07-01

    As a necessary component in the continuous improvement and refinement of methodologies employed in the nuclear industry, regulatory agencies need to periodically evaluate these processes to improve confidence in results and ensure appropriate levels of safety are being achieved. The independent and objective review of industry-standard computer codes forms an essential part of this program. To this end, this work undertakes an in-depth review of the computer code PEAR (Public Exposures from Accidental Releases), developed by Atomic Energy of Canada Limited (AECL) to assess accidental releases from CANDU reactors. PEAR is based largely on the models contained in the Canadian Standards Association (CSA) N288.2-M91. This report presents the results of a detailed technical review of the PEAR code to identify any variations from the CSA standard and other supporting documentation, verify the source code, assess the quality of numerical models and results, and identify general strengths and weaknesses of the code. The version of the code employed in this review is the one which AECL intends to use for CANDU 9 safety analyses. (author)

  3. KENO-V code

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1984-01-01

    The KENO-V code is the current release of the Oak Ridge multigroup Monte Carlo criticality code development. The original KENO, with 16 group Hansen-Roach cross sections and P 1 scattering, was one ot the first multigroup Monte Carlo codes and it and its successors have always been a much-used research tool for criticality studies. KENO-V is able to accept large neutron cross section libraries (a 218 group set is distributed with the code) and has a general P/sub N/ scattering capability. A supergroup feature allows execution of large problems on small computers, but at the expense of increased calculation time and system input/output operations. This supergroup feature is activated automatically by the code in a manner which utilizes as much computer memory as is available. The primary purpose of KENO-V is to calculate the system k/sub eff/, from small bare critical assemblies to large reflected arrays of differing fissile and moderator elements. In this respect KENO-V neither has nor requires the many options and sophisticated biasing techniques of general Monte Carlo codes

  4. Code, standard and specifications

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    Radiography also same as the other technique, it need standard. This standard was used widely and method of used it also regular. With that, radiography testing only practical based on regulations as mentioned and documented. These regulation or guideline documented in code, standard and specifications. In Malaysia, level one and basic radiographer can do radiography work based on instruction give by level two or three radiographer. This instruction was produced based on guideline that mention in document. Level two must follow the specifications mentioned in standard when write the instruction. From this scenario, it makes clearly that this radiography work is a type of work that everything must follow the rule. For the code, the radiography follow the code of American Society for Mechanical Engineer (ASME) and the only code that have in Malaysia for this time is rule that published by Atomic Energy Licensing Board (AELB) known as Practical code for radiation Protection in Industrial radiography. With the existence of this code, all the radiography must follow the rule or standard regulated automatically.

  5. Fast Coding Unit Encoding Mechanism for Low Complexity Video Coding

    OpenAIRE

    Gao, Yuan; Liu, Pengyu; Wu, Yueying; Jia, Kebin; Gao, Guandong

    2016-01-01

    In high efficiency video coding (HEVC), coding tree contributes to excellent compression performance. However, coding tree brings extremely high computational complexity. Innovative works for improving coding tree to further reduce encoding time are stated in this paper. A novel low complexity coding tree mechanism is proposed for HEVC fast coding unit (CU) encoding. Firstly, this paper makes an in-depth study of the relationship among CU distribution, quantization parameter (QP) and content ...

  6. SPECTRAL AMPLITUDE CODING OCDMA SYSTEMS USING ENHANCED DOUBLE WEIGHT CODE

    Directory of Open Access Journals (Sweden)

    F.N. HASOON

    2006-12-01

    Full Text Available A new code structure for spectral amplitude coding optical code division multiple access systems based on double weight (DW code families is proposed. The DW has a fixed weight of two. Enhanced double-weight (EDW code is another variation of a DW code family that can has a variable weight greater than one. The EDW code possesses ideal cross-correlation properties and exists for every natural number n. A much better performance can be provided by using the EDW code compared to the existing code such as Hadamard and Modified Frequency-Hopping (MFH codes. It has been observed that theoretical analysis and simulation for EDW is much better performance compared to Hadamard and Modified Frequency-Hopping (MFH codes.

  7. Nuclear code abstracts (1975 edition)

    International Nuclear Information System (INIS)

    Akanuma, Makoto; Hirakawa, Takashi

    1976-02-01

    Nuclear Code Abstracts is compiled in the Nuclear Code Committee to exchange information of the nuclear code developments among members of the committee. Enlarging the collection, the present one includes nuclear code abstracts obtained in 1975 through liaison officers of the organizations in Japan participating in the Nuclear Energy Agency's Computer Program Library at Ispra, Italy. The classification of nuclear codes and the format of code abstracts are the same as those in the library. (auth.)

  8. Some new ternary linear codes

    Directory of Open Access Journals (Sweden)

    Rumen Daskalov

    2017-07-01

    Full Text Available Let an $[n,k,d]_q$ code be a linear code of length $n$, dimension $k$ and minimum Hamming distance $d$ over $GF(q$. One of the most important problems in coding theory is to construct codes with optimal minimum distances. In this paper 22 new ternary linear codes are presented. Two of them are optimal. All new codes improve the respective lower bounds in [11].

  9. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies

    Directory of Open Access Journals (Sweden)

    Reda M. El-Shishtawy

    2016-04-01

    Full Text Available The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1–SQD4 were investigated using density functional theory (DFT and time-dependent (TD-DFT density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0, and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (−4.26 eV of the conduction band of TiO2 nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO2 in dye-sensitized solar cells (DSSCs. Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices.

  10. Substituted group and side chain effects for the porphyrin and zinc(II)–porphyrin derivatives: A DFT and TD-DFT study

    International Nuclear Information System (INIS)

    Tai, Chin-Kuen; Chuang, Wen-Hua; Wang, Bo-Cheng

    2013-01-01

    The DFT/B3LYP/LANL2DZ and TD-DFT calculations have been performed to generate the optimized structures, electronic and photo-physical properties for the porphyrin and zinc(II)–porphyrin (metalloporphyrin) derivatives. The substituted group and side chain effects for these derivatives are discussed in this study. According to the calculation results, the side chain moiety extends the π-delocalization length from the porphyrin core to the side chain moiety. The substituted group with a stronger electron-donating ability increases the energy level of highest occupied molecular orbital (E HOMO ). The side chain moiety with a lower resonance energy decreases E HOMO , the energy level of the lowest unoccupied molecular orbital (E LUMO ), and the energy gap (E g ) between HOMO and LUMO in the porphyrin and zinc(II)–porphyrin derivatives. The natural bonding orbital (NBO) analysis determines the possible electron transfer mechanism from the electron-donating to -withdrawing groups (the side chain moiety) in these porphyrin derivatives. The projected density of state (PDOS) analysis shows that the electron-donating group affects the electron density distribution in both HOMO and LUMO, and the side chain moiety influence the electron density distribution in LUMO. The calculated photo-physical properties (absorption wavelengths and the related oscillator strength, f) in dichloromethane environment for porphyrin and zinc(II)–porphyrin derivatives have been simulated by using the TD-DFT method within the Polarizable Continuum Model (PCM). The present of both of the substituted group and the side chain moiety in these derivatives results in a red shift and broadening of the range of the absorption peaks of the Q/Soret band as compared to porphin. -- Highlights: • Side chain moiety extends the π-delocalization for the porphyrins. • Substituted group increases the energy of highest occupied molecular orbital. • Side chain moiety influences the Q/Soret band of

  11. ACE - Manufacturer Identification Code (MID)

    Data.gov (United States)

    Department of Homeland Security — The ACE Manufacturer Identification Code (MID) application is used to track and control identifications codes for manufacturers. A manufacturer is identified on an...

  12. Algebraic and stochastic coding theory

    CERN Document Server

    Kythe, Dave K

    2012-01-01

    Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.

  13. Optical coding theory with Prime

    CERN Document Server

    Kwong, Wing C

    2013-01-01

    Although several books cover the coding theory of wireless communications and the hardware technologies and coding techniques of optical CDMA, no book has been specifically dedicated to optical coding theory-until now. Written by renowned authorities in the field, Optical Coding Theory with Prime gathers together in one volume the fundamentals and developments of optical coding theory, with a focus on families of prime codes, supplemented with several families of non-prime codes. The book also explores potential applications to coding-based optical systems and networks. Learn How to Construct

  14. Plato: A localised orbital based density functional theory code

    Science.gov (United States)

    Kenny, S. D.; Horsfield, A. P.

    2009-12-01

    The Plato package allows both orthogonal and non-orthogonal tight-binding as well as density functional theory (DFT) calculations to be performed within a single framework. The package also provides extensive tools for analysing the results of simulations as well as a number of tools for creating input files. The code is based upon the ideas first discussed in Sankey and Niklewski (1989) [1] with extensions to allow high-quality DFT calculations to be performed. DFT calculations can utilise either the local density approximation or the generalised gradient approximation. Basis sets from minimal basis through to ones containing multiple radial functions per angular momenta and polarisation functions can be used. Illustrations of how the package has been employed are given along with instructions for its utilisation. Program summaryProgram title: Plato Catalogue identifier: AEFC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 219 974 No. of bytes in distributed program, including test data, etc.: 1 821 493 Distribution format: tar.gz Programming language: C/MPI and PERL Computer: Apple Macintosh, PC, Unix machines Operating system: Unix, Linux and Mac OS X Has the code been vectorised or parallelised?: Yes, up to 256 processors tested RAM: Up to 2 Gbytes per processor Classification: 7.3 External routines: LAPACK, BLAS and optionally ScaLAPACK, BLACS, PBLAS, FFTW Nature of problem: Density functional theory study of electronic structure and total energies of molecules, crystals and surfaces. Solution method: Localised orbital based density functional theory. Restrictions: Tight-binding and density functional theory only, no exact exchange. Unusual features: Both atom centred and uniform meshes available

  15. The Aster code

    International Nuclear Information System (INIS)

    Delbecq, J.M.

    1999-01-01

    The Aster code is a 2D or 3D finite-element calculation code for structures developed by the R and D direction of Electricite de France (EdF). This dossier presents a complete overview of the characteristics and uses of the Aster code: introduction of version 4; the context of Aster (organisation of the code development, versions, systems and interfaces, development tools, quality assurance, independent validation); static mechanics (linear thermo-elasticity, Euler buckling, cables, Zarka-Casier method); non-linear mechanics (materials behaviour, big deformations, specific loads, unloading and loss of load proportionality indicators, global algorithm, contact and friction); rupture mechanics (G energy restitution level, restitution level in thermo-elasto-plasticity, 3D local energy restitution level, KI and KII stress intensity factors, calculation of limit loads for structures), specific treatments (fatigue, rupture, wear, error estimation); meshes and models (mesh generation, modeling, loads and boundary conditions, links between different modeling processes, resolution of linear systems, display of results etc..); vibration mechanics (modal and harmonic analysis, dynamics with shocks, direct transient dynamics, seismic analysis and aleatory dynamics, non-linear dynamics, dynamical sub-structuring); fluid-structure interactions (internal acoustics, mass, rigidity and damping); linear and non-linear thermal analysis; steels and metal industry (structure transformations); coupled problems (internal chaining, internal thermo-hydro-mechanical coupling, chaining with other codes); products and services. (J.S.)

  16. Adaptive distributed source coding.

    Science.gov (United States)

    Varodayan, David; Lin, Yao-Chung; Girod, Bernd

    2012-05-01

    We consider distributed source coding in the presence of hidden variables that parameterize the statistical dependence among sources. We derive the Slepian-Wolf bound and devise coding algorithms for a block-candidate model of this problem. The encoder sends, in addition to syndrome bits, a portion of the source to the decoder uncoded as doping bits. The decoder uses the sum-product algorithm to simultaneously recover the source symbols and the hidden statistical dependence variables. We also develop novel techniques based on density evolution (DE) to analyze the coding algorithms. We experimentally confirm that our DE analysis closely approximates practical performance. This result allows us to efficiently optimize parameters of the algorithms. In particular, we show that the system performs close to the Slepian-Wolf bound when an appropriate doping rate is selected. We then apply our coding and analysis techniques to a reduced-reference video quality monitoring system and show a bit rate saving of about 75% compared with fixed-length coding.

  17. Speech coding code- excited linear prediction

    CERN Document Server

    Bäckström, Tom

    2017-01-01

    This book provides scientific understanding of the most central techniques used in speech coding both for advanced students as well as professionals with a background in speech audio and or digital signal processing. It provides a clear connection between the whys hows and whats thus enabling a clear view of the necessity purpose and solutions provided by various tools as well as their strengths and weaknesses in each respect Equivalently this book sheds light on the following perspectives for each technology presented Objective What do we want to achieve and especially why is this goal important Resource Information What information is available and how can it be useful and Resource Platform What kind of platforms are we working with and what are their capabilities restrictions This includes computational memory and acoustic properties and the transmission capacity of devices used. The book goes on to address Solutions Which solutions have been proposed and how can they be used to reach the stated goals and ...

  18. Spatially coded backscatter radiography

    International Nuclear Information System (INIS)

    Thangavelu, S.; Hussein, E.M.A.

    2007-01-01

    Conventional radiography requires access to two opposite sides of an object, which makes it unsuitable for the inspection of extended and/or thick structures (airframes, bridges, floors etc.). Backscatter imaging can overcome this problem, but the indications obtained are difficult to interpret. This paper applies the coded aperture technique to gamma-ray backscatter-radiography in order to enhance the detectability of flaws. This spatial coding method involves the positioning of a mask with closed and open holes to selectively permit or block the passage of radiation. The obtained coded-aperture indications are then mathematically decoded to detect the presence of anomalies. Indications obtained from Monte Carlo calculations were utilized in this work to simulate radiation scattering measurements. These simulated measurements were used to investigate the applicability of this technique to the detection of flaws by backscatter radiography

  19. Aztheca Code; Codigo Aztheca

    Energy Technology Data Exchange (ETDEWEB)

    Quezada G, S.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Centeno P, J.; Sanchez M, H., E-mail: sequga@gmail.com [UNAM, Facultad de Ingenieria, Ciudad Universitaria, Circuito Exterior s/n, 04510 Ciudad de Mexico (Mexico)

    2017-09-15

    This paper presents the Aztheca code, which is formed by the mathematical models of neutron kinetics, power generation, heat transfer, core thermo-hydraulics, recirculation systems, dynamic pressure and level models and control system. The Aztheca code is validated with plant data, as well as with predictions from the manufacturer when the reactor operates in a stationary state. On the other hand, to demonstrate that the model is applicable during a transient, an event occurred in a nuclear power plant with a BWR reactor is selected. The plant data are compared with the results obtained with RELAP-5 and the Aztheca model. The results show that both RELAP-5 and the Aztheca code have the ability to adequately predict the behavior of the reactor. (Author)

  20. The Coding Question.

    Science.gov (United States)

    Gallistel, C R

    2017-07-01

    Recent electrophysiological results imply that the duration of the stimulus onset asynchrony in eyeblink conditioning is encoded by a mechanism intrinsic to the cerebellar Purkinje cell. This raises the general question - how is quantitative information (durations, distances, rates, probabilities, amounts, etc.) transmitted by spike trains and encoded into engrams? The usual assumption is that information is transmitted by firing rates. However, rate codes are energetically inefficient and computationally awkward. A combinatorial code is more plausible. If the engram consists of altered synaptic conductances (the usual assumption), then we must ask how numbers may be written to synapses. It is much easier to formulate a coding hypothesis if the engram is realized by a cell-intrinsic molecular mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Revised SRAC code system

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro; Ishiguro, Yukio; Kaneko, Kunio; Ido, Masaru.

    1986-09-01

    Since the publication of JAERI-1285 in 1983 for the preliminary version of the SRAC code system, a number of additions and modifications to the functions have been made to establish an overall neutronics code system. Major points are (1) addition of JENDL-2 version of data library, (2) a direct treatment of doubly heterogeneous effect on resonance absorption, (3) a generalized Dancoff factor, (4) a cell calculation based on the fixed boundary source problem, (5) the corresponding edit required for experimental analysis and reactor design, (6) a perturbation theory calculation for reactivity change, (7) an auxiliary code for core burnup and fuel management, etc. This report is a revision of the users manual which consists of the general description, input data requirements and their explanation, detailed information on usage, mathematics, contents of libraries and sample I/O. (author)

  2. Code query by example

    Science.gov (United States)

    Vaucouleur, Sebastien

    2011-02-01

    We introduce code query by example for customisation of evolvable software products in general and of enterprise resource planning systems (ERPs) in particular. The concept is based on an initial empirical study on practices around ERP systems. We motivate our design choices based on those empirical results, and we show how the proposed solution helps with respect to the infamous upgrade problem: the conflict between the need for customisation and the need for upgrade of ERP systems. We further show how code query by example can be used as a form of lightweight static analysis, to detect automatically potential defects in large software products. Code query by example as a form of lightweight static analysis is particularly interesting in the context of ERP systems: it is often the case that programmers working in this field are not computer science specialists but more of domain experts. Hence, they require a simple language to express custom rules.

  3. The correspondence between projective codes and 2-weight codes

    NARCIS (Netherlands)

    Brouwer, A.E.; Eupen, van M.J.M.; Tilborg, van H.C.A.; Willems, F.M.J.

    1994-01-01

    The hyperplanes intersecting a 2-weight code in the same number of points obviously form the point set of a projective code. On the other hand, if we have a projective code C, then we can make a 2-weight code by taking the multiset of points E PC with multiplicity "Y(w), where W is the weight of

  4. Visualizing code and coverage changes for code review

    NARCIS (Netherlands)

    Oosterwaal, Sebastiaan; van Deursen, A.; De Souza Coelho, R.; Sawant, A.A.; Bacchelli, A.

    2016-01-01

    One of the tasks of reviewers is to verify that code modifications are well tested. However, current tools offer little support in understanding precisely how changes to the code relate to changes to the tests. In particular, it is hard to see whether (modified) test code covers the changed code.

  5. Turbo-Gallager Codes: The Emergence of an Intelligent Coding ...

    African Journals Online (AJOL)

    Today, both turbo codes and low-density parity-check codes are largely superior to other code families and are being used in an increasing number of modern communication systems including 3G standards, satellite and deep space communications. However, the two codes have certain distinctive characteristics that ...

  6. Golay sequences coded coherent optical OFDM for long-haul transmission

    Science.gov (United States)

    Qin, Cui; Ma, Xiangrong; Hua, Tao; Zhao, Jing; Yu, Huilong; Zhang, Jian

    2017-09-01

    We propose to use binary Golay sequences in coherent optical orthogonal frequency division multiplexing (CO-OFDM) to improve the long-haul transmission performance. The Golay sequences are generated by binary Reed-Muller codes, which have low peak-to-average power ratio and certain error correction capability. A low-complexity decoding algorithm for the Golay sequences is then proposed to recover the signal. Under same spectral efficiency, the QPSK modulated OFDM with binary Golay sequences coding with and without discrete Fourier transform (DFT) spreading (DFTS-QPSK-GOFDM and QPSK-GOFDM) are compared with the normal BPSK modulated OFDM with and without DFT spreading (DFTS-BPSK-OFDM and BPSK-OFDM) after long-haul transmission. At a 7% forward error correction code threshold (Q2 factor of 8.5 dB), it is shown that DFTS-QPSK-GOFDM outperforms DFTS-BPSK-OFDM by extending the transmission distance by 29% and 18%, in non-dispersion managed and dispersion managed links, respectively.

  7. Code of Medical Ethics

    Directory of Open Access Journals (Sweden)

    . SZD-SZZ

    2017-03-01

    Full Text Available Te Code was approved on December 12, 1992, at the 3rd regular meeting of the General Assembly of the Medical Chamber of Slovenia and revised on April 24, 1997, at the 27th regular meeting of the General Assembly of the Medical Chamber of Slovenia. The Code was updated and harmonized with the Medical Association of Slovenia and approved on October 6, 2016, at the regular meeting of the General Assembly of the Medical Chamber of Slovenia.

  8. Supervised Convolutional Sparse Coding

    KAUST Repository

    Affara, Lama Ahmed

    2018-04-08

    Convolutional Sparse Coding (CSC) is a well-established image representation model especially suited for image restoration tasks. In this work, we extend the applicability of this model by proposing a supervised approach to convolutional sparse coding, which aims at learning discriminative dictionaries instead of purely reconstructive ones. We incorporate a supervised regularization term into the traditional unsupervised CSC objective to encourage the final dictionary elements to be discriminative. Experimental results show that using supervised convolutional learning results in two key advantages. First, we learn more semantically relevant filters in the dictionary and second, we achieve improved image reconstruction on unseen data.

  9. CONCEPT computer code

    International Nuclear Information System (INIS)

    Delene, J.

    1984-01-01

    CONCEPT is a computer code that will provide conceptual capital investment cost estimates for nuclear and coal-fired power plants. The code can develop an estimate for construction at any point in time. Any unit size within the range of about 400 to 1300 MW electric may be selected. Any of 23 reference site locations across the United States and Canada may be selected. PWR, BWR, and coal-fired plants burning high-sulfur and low-sulfur coal can be estimated. Multiple-unit plants can be estimated. Costs due to escalation/inflation and interest during construction are calculated

  10. Principles of speech coding

    CERN Document Server

    Ogunfunmi, Tokunbo

    2010-01-01

    It is becoming increasingly apparent that all forms of communication-including voice-will be transmitted through packet-switched networks based on the Internet Protocol (IP). Therefore, the design of modern devices that rely on speech interfaces, such as cell phones and PDAs, requires a complete and up-to-date understanding of the basics of speech coding. Outlines key signal processing algorithms used to mitigate impairments to speech quality in VoIP networksOffering a detailed yet easily accessible introduction to the field, Principles of Speech Coding provides an in-depth examination of the

  11. Evaluation Codes from an Affine Veriety Code Perspective

    DEFF Research Database (Denmark)

    Geil, Hans Olav

    2008-01-01

    Evaluation codes (also called order domain codes) are traditionally introduced as generalized one-point geometric Goppa codes. In the present paper we will give a new point of view on evaluation codes by introducing them instead as particular nice examples of affine variety codes. Our study...... includes a reformulation of the usual methods to estimate the minimum distances of evaluation codes into the setting of affine variety codes. Finally we describe the connection to the theory of one-pointgeometric Goppa codes. Contents 4.1 Introduction...... . . . . . . . . . . . . . . . . . . . . . . . 171 4.9 Codes form order domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 4.10 One-point geometric Goppa codes . . . . . . . . . . . . . . . . . . . . . . . . 176 4.11 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 References...

  12. Charge Transfer Enhancement in the D-π-A Type Porphyrin Dyes: A Density Functional Theory (DFT and Time-Dependent Density Functional Theory (TD-DFT Study

    Directory of Open Access Journals (Sweden)

    Guo-Jun Kang

    2016-11-01

    Full Text Available The electronic geometries and optical properties of two D-π-A type zinc porphyrin dyes (NCH3-YD2 and TPhe-YD were systematically investigated by density functional theory (DFT and time-dependent density functional theory (TD-DFT to reveal the origin of significantly altered charge transfer enhancement by changing the electron donor of the famous porphyrin-based sensitizer YD2-o-C8. The molecular geometries and photophysical properties of dyes before and after binding to the TiO2 cluster were fully investigated. From the analyses of natural bond orbital (NBO, extended charge decomposition analysis (ECDA, and electron density variations (Δρ between the excited state and ground state, it was found that the introduction of N(CH32 and 1,1,2-triphenylethene groups enhanced the intramolecular charge-transfer (ICT character compared to YD2-o-C8. The absorption wavelength and transition possess character were significantly influenced by N(CH32 and 1,1,2-triphenylethene groups. NCH3-YD2 with N(CH32 groups in the donor part is an effective way to improve the interactions between the dyes and TiO2 surface, light having efficiency (LHE, and free energy change (ΔGinject, which is expected to be an efficient dye for use in dye-sensitized solar cells (DSSCs.

  13. Spectro-electrochemical and DFT study of tenoxicam metabolites formed by electrochemical oxidation

    International Nuclear Information System (INIS)

    Ramírez-Silva, M.T.; Guzmán-Hernández, D.S.; Galano, A.; Rojas-Hernández, A.; Corona-Avendaño, S.; Romero-Romo, M.; Palomar-Pardavé, M.

    2013-01-01

    Highlights: • Tenoxicam deprotonation and electrochemical oxidation were studied. • Both spectro-electrochemical and theoretical DFT studies were considered. • It was found that the ampholitic species of tenoxicam is a zwitterion. • Electrochemical oxidation of tenoxicam yields two non-electroactive products. • The nature of these fragments was further confirmed by a chromatography study. -- Abstract: From experimental (spectro-electrochemical) and theoretical (DFT) studies, the mechanisms of tenoxicam deprotonation and electrochemical oxidation were assessed. From these studies, new insights on the nature of the ampholitic species involved during tenoxicam's deprotonation in aqueous solution are presented; see scheme A. Moreover, it is shown that, after the analysis of two different reaction schemes that involve up to 10 different molecules and 12 reaction paths, the electrochemical oxidation of tenoxicam, yields two non-electroactive products that are predominately formed by its fragmentation, after the loss of two electrons. The nature of these fragments was further confirmed by a chromatography study

  14. The power of joint application of LEED and DFT in quantitative surface structure determination

    International Nuclear Information System (INIS)

    Heinz, K; Hammer, L; Mueller, S

    2008-01-01

    It is demonstrated for several cases that the joint application of low-energy electron diffraction (LEED) and structural calculations using density functional theory (DFT) can retrieve the correct surface structure even though single application of both methods fails. On the experimental side (LEED) the failure can be due to the simultaneous presence of weak and very strong scatterers or to an insufficient data base leaving different structures with the same quality of fit between experimental data and calculated model intensities. On the theory side (DFT) it can be difficult to predict the coverage of an adsorbate or two different structures may own almost the same total energy, but only one of the structures is assumed in experiment due to formation kinetics. It is demonstrated how in the different cases the joint application of both methods-which yield about the same structural precision-offers a way out of the dilemma

  15. Ethylene dissociation on flat and stepped Ni(111): A combined STM and DFT study

    DEFF Research Database (Denmark)

    Vang, R.T.; Honkala, Johanna Karoliina; Dahl, S.

    2006-01-01

    The dissociative adsorption of ethylene (C(2)H(4)) on Ni(111) was studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The STM studies reveal that ethylene decomposes exclusively at the step edges at room temperature. However, the step edge sites...... are poisoned by the reaction products and thus only a small brim of decomposed ethylene is formed. At 500 K decomposition on the (111) facets leads to a continuous growth of carbidic islands, which nucleate along the step edges. DFT calculations were performed for several intermediate steps...... in the decomposition of ethylene on both Ni(111) and the stepped Ni(211) surface. In general the Ni(211) surface is found to have a higher reactivity than the Ni(111) surface. Furthermore, the calculations show that the influence of step edge atoms is very different for the different reaction pathways. In particular...

  16. DFT Study On Effects of CO2 Contamination in Non-Aqueous Li-Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; Mýrdal, Jón Steinar Garðarsson; Vegge, Tejs

    2013-01-01

    Density Functional Theory (DFT) studies on the effects of carbon dioxide (CO2) contamination at the cathode of rechargeable non-aqueous Li-O2 batteries, where the insulating material Lithium peroxide (Li2O2) is the main discharge product. The Li2O2 growth mechanism and overpotentials are investig...... and result in an increased battery capacity. However, CO2 contamination on the Li2O2 surface confirms an asymmetric increase in the overpotentials; particularly the charging overvoltage exhibits sustantial increase, which would reduce the efficiency of the Li-air battery.......Density Functional Theory (DFT) studies on the effects of carbon dioxide (CO2) contamination at the cathode of rechargeable non-aqueous Li-O2 batteries, where the insulating material Lithium peroxide (Li2O2) is the main discharge product. The Li2O2 growth mechanism and overpotentials...

  17. GW quasiparticle bandgaps of anatase TiO2 starting from DFT + U.

    Science.gov (United States)

    Patrick, Christopher E; Giustino, Feliciano

    2012-05-23

    We investigate the quasiparticle band structure of anatase TiO(2), a wide gap semiconductor widely employed in photovoltaics and photocatalysis. We obtain GW quasiparticle energies starting from density-functional theory (DFT) calculations including Hubbard U corrections. Using a simple iterative procedure we determine the value of the Hubbard parameter yielding a vanishing quasiparticle correction to the fundamental bandgap of anatase TiO(2). The bandgap (3.3 eV) calculated using this optimal Hubbard parameter is smaller than the value obtained by applying many-body perturbation theory to standard DFT eigenstates and eigenvalues (3.7 eV). We extend our analysis to the rutile polymorph of TiO(2) and reach similar conclusions. Our work highlights the role of the starting non-interacting Hamiltonian in the calculation of GW quasiparticle energies in TiO(2) and suggests an optimal Hubbard parameter for future calculations.

  18. Diffusion of anthracene derivatives on Cu(111) studied by STM and DFT

    Science.gov (United States)

    Wyrick, Jonathan; Bartels, Ludwig; Einstein, Theodore

    2014-03-01

    Substituted anthracenes have drawn attention due to their ability to diffuse uniaxially on a Cu(111) surface. We compare anthracene to three of its derivatives whose 9,10 hydrogens are replaced by elements of the chalcogen group that act as linkers binding the molecules to a Cu(111) substrate. DFT calculations shed light on STM imaging and diffusion studies on the three substituted species. We present an analysis of the DFT results in which energetic contributions to the diffusion barriers are partitioned among the Kohn-Sham orbitals, allowing us to make assignments as to how each orbital affects diffusion for each species and draw comparisons between them. Present address: Center for Nanoscale Science and Technology, NIST, Gaithersburg, MD.

  19. DFT study of the structures and energetics of 98-atom AuPd clusters.

    Science.gov (United States)

    Bruma, Alina; Ismail, Ramli; Paz-Borbón, L Oliver; Arslan, Haydar; Barcaro, Giovanni; Fortunelli, Alessandro; Li, Z Y; Johnston, Roy L

    2013-01-21

    The energetics, structures and segregation of 98-atom AuPd nanoclusters are investigated using a genetic algorithm global optimization technique with the Gupta empirical potential (comparing three different potential parameterisations) followed by local minimizations using Density Functional Theory (DFT) calculations. A shell optimization program algorithm is employed in order to study the energetics of the highly symmetric Leary Tetrahedron (LT) structure and optimization of the chemical ordering of a number of structural motifs is carried out using the Basin Hopping Monte Carlo approach. Although one of the empirical potentials is found to favour the LT structure, it is shown that Marks Decahedral and mixed FCC-HCP motifs are lowest in energy at the DFT level.

  20. Simplified DFT methods for consistent structures and energies of large systems

    Science.gov (United States)

    Caldeweyher, Eike; Gerit Brandenburg, Jan

    2018-05-01

    Kohn–Sham density functional theory (DFT) is routinely used for the fast electronic structure computation of large systems and will most likely continue to be the method of choice for the generation of reliable geometries in the foreseeable future. Here, we present a hierarchy of simplified DFT methods designed for consistent structures and non-covalent interactions of large systems with particular focus on molecular crystals. The covered methods are a minimal basis set Hartree–Fock (HF-3c), a small basis set screened exchange hybrid functional (HSE-3c), and a generalized gradient approximated functional evaluated in a medium-sized basis set (B97-3c), all augmented with semi-classical correction potentials. We give an overview on the methods design, a comprehensive evaluation on established benchmark sets for geometries and lattice energies of molecular crystals, and highlight some realistic applications on large organic crystals with several hundreds of atoms in the primitive unit cell.

  1. Benchmarking Hydrogen and Carbon NMR Chemical Shifts at HF, DFT, and MP2 Levels.

    Science.gov (United States)

    Flaig, Denis; Maurer, Marina; Hanni, Matti; Braunger, Katharina; Kick, Leonhard; Thubauville, Matthias; Ochsenfeld, Christian

    2014-02-11

    An extensive study of error distributions for calculating hydrogen and carbon NMR chemical shifts at Hartree-Fock (HF), density functional theory (DFT), and Møller-Plesset second-order perturbation theory (MP2) levels is presented. Our investigation employs accurate CCSD(T)/cc-pVQZ calculations for providing reference data for 48 hydrogen and 40 carbon nuclei within an extended set of chemical compounds covering a broad range of the NMR scale with high relevance to chemical applications, especially in organic chemistry. Besides the approximations of HF, a variety of DFT functionals, and conventional MP2, we also present results with respect to a spin component-scaled MP2 (GIAO-SCS-MP2) approach. For each method, the accuracy is analyzed in detail for various basis sets, allowing identification of efficient combinations of method and basis set approximations.

  2. Demostration of 520 Gb/s/λ pre-equalized DFT-spread PDM-16QAM-OFDM signal transmission.

    Science.gov (United States)

    Li, Fan; Yu, Jianjun; Cao, Zizheng; Chen, Ming; Zhang, Junwen; Li, Xinying

    2016-02-08

    In this paper, we successfully transmit 8 × 520 Gb/s pre-equalized DFT-spread PDM-16QAM orthogonal frequency-division multiplexing (OFDM) signal over 840 km SMF with BER under 2.4 × 10(-2). We discuss how to obtain accurate tranceivers' response during pre-equalization for DFT-spread OFDM with coherent detection and we find conventional OFDM symbols training sequences (TSs) outperform DFT-spread OFDM symbols TSs in obtaining channel response for pre-equalization and equalization. Additionally, the optimal IFFT/FFT size is explored for the pre-equalized DFT-spread PDM-16QAM-OFDM transmission systems. It is the first time to realize 400 Gb/s/λ net rate OFDM signal transmission.

  3. Mechanism and Regioselectivity of Rh(III)-Catalyzed Intermolecular Annulation of Aryl-Substituted Diazenecarboxylates and Alkenes: DFT Insights

    KAUST Repository

    Ajitha, Manjaly John; Huang, Kuo-Wei

    2016-01-01

    is identified as the initial C-H activation, consistent with the previous kinetic studies. Notably, DFT studies offered important insights on the ability of the substrate (diazene carboxylate) to promote the switchable coordination site selectivity during

  4. NMR, MP2 and DFT Study of Thiophenoxyketenimines (o-ThioSchiff bases)

    DEFF Research Database (Denmark)

    Saeed, Bahjat Ali; Elias, Rita Sabah; Kamounah, Fadhil S.

    2018-01-01

    Five new thiophenoxyketinimines have been synthesized. 1 H and 13 C NMR spectra as well as deuterium isotope effects on 13 C chemical shifts are determined, and spectra are assigned. DFT and MP2 calculations of both structures, chemical shifts, and isotope effects on chemical shifts are done...... that calculations at the MP2 level are best to obtain correct "C═S" chemical shifts....

  5. Spirocyclic character of ixazomib citrate revealed by comprehensive XRD, NMR and DFT study

    Czech Academy of Sciences Publication Activity Database

    Skořepová, E.; Čerňa, I.; Vlasáková, R.; Zvoníček, V.; Tkadlecová, M.; Dušek, Michal

    2017-01-01

    Roč. 1148, Nov (2017), s. 22-27 ISSN 0022-2860 R&D Projects: GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : ixazomib citrate * molecular structure * stereoisomers * crystal structure * NMR * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.753, year: 2016

  6. Chlorophenols Sorption on Multi-Walled Carbon Nanotubes: DFT Modeling and Structure-Property Relationship Analysis

    OpenAIRE

    Watkins, Marquita; Sizochenko, Natalia; Moore, Quentarius; Golebiowski, Marek; Leszczynska, Danuta; Leszczynski, Jerzy

    2017-01-01

    Presence of chlorophenols in drinking water could be hazardous to human health. Optimization and computational modeling of experimental conditions of adsorption lead to understanding the mechanisms of this process and to creating the efficient experimental equipment. In the current study, we investigated multi-walled carbon nanotubes by means of density functional theory (DFT) approach. This is applied to study selected types of interactions between six solvents, five types of nanotubes, and ...

  7. Combining DFT, Cluster Expansions, and KMC to Model Point Defects in Alloys

    Science.gov (United States)

    Modine, N. A.; Wright, A. F.; Lee, S. R.; Foiles, S. M.; Battaile, C. C.; Thomas, J. C.; van der Ven, A.

    In an alloy, defect energies are sensitive to the occupations of nearby atomic sites, which leads to a distribution of defect properties. When radiation-induced defects diffuse from their initially non-equilibrium locations, this distribution becomes time-dependent. The defects can become trapped in energetically favorable regions of the alloy leading to a diffusion rate that slows dramatically with time. Density Functional Theory (DFT) allows the accurate determination of ground state and transition state energies for a defect in a particular alloy environment but requires thousands of processing hours for each such calculation. Kinetic Monte-Carlo (KMC) can be used to model defect diffusion and the changing distribution of defect properties but requires energy evaluations for millions of local environments. We have used the Cluster Expansion (CE) formalism to ``glue'' together these seemingly incompatible methods. The occupation of each alloy site is represented by an Ising-like variable, and products of these variables are used to expand quantities of interest. Once a CE is fit to a training set of DFT energies, it allows very rapid evaluation of the energy for an arbitrary configuration, while maintaining the accuracy of the underlying DFT calculations. These energy evaluations are then used to drive our KMC simulations. We will demonstrate the application of our DFT/MC/KMC approach to model thermal and carrier-induced diffusion of intrinsic point defects in III-V alloys. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE.

  8. Thermodynamic study of complexation of thorium with pyridine monocarboxylates by calorimetry and DFT calculations

    International Nuclear Information System (INIS)

    Rama Mohana Rao, D.; Rawat, Neetika; Sawant, R.M.; Tomar, B.S.; Manna, D.; Ghanty, T.K.

    2013-01-01

    Stability constants of Th(IV) complexes with pyridine mono-carboxylates, namely, picolinate, nicotinate and isonicotinate have been determined following potentiometric titration of the metal ion and ligand mixtures with NaOH solution of known concentration. These data were used during the analysis of the calorimetric titration data to obtain the enthalpy of complexation reactions. The experimental data have been compared with that obtained from the DFT based theoretical calculations. (author)

  9. Accurate structures and energetics of neutral-framework zeotypes from dispersion-corrected DFT calculations

    Science.gov (United States)

    Fischer, Michael; Angel, Ross J.

    2017-05-01

    Density-functional theory (DFT) calculations incorporating a pairwise dispersion correction were employed to optimize the structures of various neutral-framework compounds with zeolite topologies. The calculations used the PBE functional for solids (PBEsol) in combination with two different dispersion correction schemes, the D2 correction devised by Grimme and the TS correction of Tkatchenko and Scheffler. In the first part of the study, a benchmarking of the DFT-optimized structures against experimental crystal structure data was carried out, considering a total of 14 structures (8 all-silica zeolites, 4 aluminophosphate zeotypes, and 2 dense phases). Both PBEsol-D2 and PBEsol-TS showed an excellent performance, improving significantly over the best-performing approach identified in a previous study (PBE-TS). The temperature dependence of lattice parameters and bond lengths was assessed for those zeotypes where the available experimental data permitted such an analysis. In most instances, the agreement between DFT and experiment improved when the experimental data were corrected for the effects of thermal motion and when low-temperature structure data rather than room-temperature structure data were used as a reference. In the second part, a benchmarking against experimental enthalpies of transition (with respect to α-quartz) was carried out for 16 all-silica zeolites. Excellent agreement was obtained with the PBEsol-D2 functional, with the overall error being in the same range as the experimental uncertainty. Altogether, PBEsol-D2 can be recommended as a computationally efficient DFT approach that simultaneously delivers accurate structures and energetics of neutral-framework zeotypes.

  10. Dual Coding in Children.

    Science.gov (United States)

    Burton, John K.; Wildman, Terry M.

    The purpose of this study was to test the applicability of the dual coding hypothesis to children's recall performance. The hypothesis predicts that visual interference will have a small effect on the recall of visually presented words or pictures, but that acoustic interference will cause a decline in recall of visually presented words and…

  11. Physical layer network coding

    DEFF Research Database (Denmark)

    Fukui, Hironori; Popovski, Petar; Yomo, Hiroyuki

    2014-01-01

    Physical layer network coding (PLNC) has been proposed to improve throughput of the two-way relay channel, where two nodes communicate with each other, being assisted by a relay node. Most of the works related to PLNC are focused on a simple three-node model and they do not take into account...

  12. Radioactive action code

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    A new coding system, 'Hazrad', for buildings and transportation containers for alerting emergency services personnel to the presence of radioactive materials has been developed in the United Kingdom. The hazards of materials in the buildings or transport container, together with the recommended emergency action, are represented by a number of codes which are marked on the building or container and interpreted from a chart carried as a pocket-size guide. Buildings would be marked with the familiar yellow 'radioactive' trefoil, the written information 'Radioactive materials' and a list of isotopes. Under this the 'Hazrad' code would be written - three symbols to denote the relative radioactive risk (low, medium or high), the biological risk (also low, medium or high) and the third showing the type of radiation emitted, alpha, beta or gamma. The response cards indicate appropriate measures to take, eg for a high biological risk, Bio3, the wearing of a gas-tight protection suit is advised. The code and its uses are explained. (U.K.)

  13. Building Codes and Regulations.

    Science.gov (United States)

    Fisher, John L.

    The hazard of fire is of great concern to libraries due to combustible books and new plastics used in construction and interiors. Building codes and standards can offer architects and planners guidelines to follow but these standards should be closely monitored, updated, and researched for fire prevention. (DS)

  14. Physics of codes

    International Nuclear Information System (INIS)

    Cooper, R.K.; Jones, M.E.

    1989-01-01

    The title given this paper is a bit presumptuous, since one can hardly expect to cover the physics incorporated into all the codes already written and currently being written. The authors focus on those codes which have been found to be particularly useful in the analysis and design of linacs. At that the authors will be a bit parochial and discuss primarily those codes used for the design of radio-frequency (rf) linacs, although the discussions of TRANSPORT and MARYLIE have little to do with the time structures of the beams being analyzed. The plan of this paper is first to describe rather simply the concepts of emittance and brightness, then to describe rather briefly each of the codes TRANSPORT, PARMTEQ, TBCI, MARYLIE, and ISIS, indicating what physics is and is not included in each of them. It is expected that the vast majority of what is covered will apply equally well to protons and electrons (and other particles). This material is intended to be tutorial in nature and can in no way be expected to be exhaustive. 31 references, 4 figures

  15. Reliability and code level

    NARCIS (Netherlands)

    Kasperski, M.; Geurts, C.P.W.

    2005-01-01

    The paper describes the work of the IAWE Working Group WBG - Reliability and Code Level, one of the International Codification Working Groups set up at ICWE10 in Copenhagen. The following topics are covered: sources of uncertainties in the design wind load, appropriate design target values for the

  16. Ready, steady… Code!

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    This summer, CERN took part in the Google Summer of Code programme for the third year in succession. Open to students from all over the world, this programme leads to very successful collaborations for open source software projects.   Image: GSoC 2013. Google Summer of Code (GSoC) is a global programme that offers student developers grants to write code for open-source software projects. Since its creation in 2005, the programme has brought together some 6,000 students from over 100 countries worldwide. The students selected by Google are paired with a mentor from one of the participating projects, which can be led by institutes, organisations, companies, etc. This year, CERN PH Department’s SFT (Software Development for Experiments) Group took part in the GSoC programme for the third time, submitting 15 open-source projects. “Once published on the Google Summer for Code website (in April), the projects are open to applications,” says Jakob Blomer, one of the o...

  17. CERN Code of Conduct

    CERN Document Server

    Department, HR

    2010-01-01

    The Code is intended as a guide in helping us, as CERN contributors, to understand how to conduct ourselves, treat others and expect to be treated. It is based around the five core values of the Organization. We should all become familiar with it and try to incorporate it into our daily life at CERN.

  18. Nuclear safety code study

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.H.; Ford, D.; Le, H.; Park, S.; Cooke, K.L.; Bleakney, T.; Spanier, J.; Wilburn, N.P.; O' Reilly, B.; Carmichael, B.

    1981-01-01

    The objective is to analyze an overpower accident in an LMFBR. A simplified model of the primary coolant loop was developed in order to understand the instabilities encountered with the MELT III and SAS codes. The computer programs were translated for switching to the IBM 4331. Numerical methods were investigated for solving the neutron kinetics equations; the Adams and Gear methods were compared. (DLC)

  19. Revised C++ coding conventions

    CERN Document Server

    Callot, O

    2001-01-01

    This document replaces the note LHCb 98-049 by Pavel Binko. After a few years of practice, some simplification and clarification of the rules was needed. As many more people have now some experience in writing C++ code, their opinion was also taken into account to get a commonly agreed set of conventions

  20. Corporate governance through codes

    NARCIS (Netherlands)

    Haxhi, I.; Aguilera, R.V.; Vodosek, M.; den Hartog, D.; McNett, J.M.

    2014-01-01

    The UK's 1992 Cadbury Report defines corporate governance (CG) as the system by which businesses are directed and controlled. CG codes are a set of best practices designed to address deficiencies in the formal contracts and institutions by suggesting prescriptions on the preferred role and

  1. Error Correcting Codes -34 ...

    Indian Academy of Sciences (India)

    information and coding theory. A large scale relay computer had failed to deliver the expected results due to a hardware fault. Hamming, one of the active proponents of computer usage, was determined to find an efficient means by which computers could detect and correct their own faults. A mathematician by train-.

  2. Broadcast Coded Slotted ALOHA

    DEFF Research Database (Denmark)

    Ivanov, Mikhail; Brännström, Frederik; Graell i Amat, Alexandre

    2016-01-01

    We propose an uncoordinated medium access control (MAC) protocol, called all-to-all broadcast coded slotted ALOHA (B-CSA) for reliable all-to-all broadcast with strict latency constraints. In B-CSA, each user acts as both transmitter and receiver in a half-duplex mode. The half-duplex mode gives ...

  3. Software Defined Coded Networking

    DEFF Research Database (Denmark)

    Di Paola, Carla; Roetter, Daniel Enrique Lucani; Palazzo, Sergio

    2017-01-01

    the quality of each link and even across neighbouring links and using simulations to show that an additional reduction of packet transmission in the order of 40% is possible. Second, to advocate for the use of network coding (NC) jointly with software defined networking (SDN) providing an implementation...

  4. New code of conduct

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    During his talk to the staff at the beginning of the year, the Director-General mentioned that a new code of conduct was being drawn up. What exactly is it and what is its purpose? Anne-Sylvie Catherin, Head of the Human Resources (HR) Department, talked to us about the whys and wherefores of the project.   Drawing by Georges Boixader from the cartoon strip “The World of Particles” by Brian Southworth. A code of conduct is a general framework laying down the behaviour expected of all members of an organisation's personnel. “CERN is one of the very few international organisations that don’t yet have one", explains Anne-Sylvie Catherin. “We have been thinking about introducing a code of conduct for a long time but lacked the necessary resources until now”. The call for a code of conduct has come from different sources within the Laboratory. “The Equal Opportunities Advisory Panel (read also the "Equal opportuni...

  5. (Almost) practical tree codes

    KAUST Repository

    Khina, Anatoly

    2016-08-15

    We consider the problem of stabilizing an unstable plant driven by bounded noise over a digital noisy communication link, a scenario at the heart of networked control. To stabilize such a plant, one needs real-time encoding and decoding with an error probability profile that decays exponentially with the decoding delay. The works of Schulman and Sahai over the past two decades have developed the notions of tree codes and anytime capacity, and provided the theoretical framework for studying such problems. Nonetheless, there has been little practical progress in this area due to the absence of explicit constructions of tree codes with efficient encoding and decoding algorithms. Recently, linear time-invariant tree codes were proposed to achieve the desired result under maximum-likelihood decoding. In this work, we take one more step towards practicality, by showing that these codes can be efficiently decoded using sequential decoding algorithms, up to some loss in performance (and with some practical complexity caveats). We supplement our theoretical results with numerical simulations that demonstrate the effectiveness of the decoder in a control system setting.

  6. Decoding Codes on Graphs

    Indian Academy of Sciences (India)

    having a probability Pi of being equal to a 1. Let us assume ... equal to a 0/1 has no bearing on the probability of the. It is often ... bits (call this set S) whose individual bits add up to zero ... In the context of binary error-correct~ng codes, specifi-.

  7. The Redox Code.

    Science.gov (United States)

    Jones, Dean P; Sies, Helmut

    2015-09-20

    The redox code is a set of principles that defines the positioning of the nicotinamide adenine dinucleotide (NAD, NADP) and thiol/disulfide and other redox systems as well as the thiol redox proteome in space and time in biological systems. The code is richly elaborated in an oxygen-dependent life, where activation/deactivation cycles involving O₂ and H₂O₂ contribute to spatiotemporal organization for differentiation, development, and adaptation to the environment. Disruption of this organizational structure during oxidative stress represents a fundamental mechanism in system failure and disease. Methodology in assessing components of the redox code under physiological conditions has progressed, permitting insight into spatiotemporal organization and allowing for identification of redox partners in redox proteomics and redox metabolomics. Complexity of redox networks and redox regulation is being revealed step by step, yet much still needs to be learned. Detailed knowledge of the molecular patterns generated from the principles of the redox code under defined physiological or pathological conditions in cells and organs will contribute to understanding the redox component in health and disease. Ultimately, there will be a scientific basis to a modern redox medicine.

  8. Ferromagnetism and half metallicity induced by oxygen vacancies in the double perovskite BaSrNiWO{sub 6}: DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Aharbil, Y. [Laboratoire de Chimie Physique des Matériaux LCPM, Faculté des Sciences Ben M' Sik, Casablanca (Morocco); Labrim, H. [Unité Science de la Matière/DERS/Centre National de l’Energie, des Sciences et des Techniques Nucléaires (CNESTEN), Rabat (Morocco); Benmokhtar, S.; Haddouch, M. Ait [Laboratoire de Chimie Physique des Matériaux LCPM, Faculté des Sciences Ben M' Sik, Casablanca (Morocco); Bahmad, L., E-mail: bahmad@fsr.ac.ma [Mohammed V University in Rabat, Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E. URAC-12, B.P. 1014, Rabat (Morocco); Belhaj, A. [LIRST, Département de Physique, Faculté Poly-disciplinaire, Université Sultan Moulay Slimane, Béni Mellal (Morocco); Ez-Zahraouy, H.; Benyoussef, A. [Mohammed V University in Rabat, Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E. URAC-12, B.P. 1014, Rabat (Morocco)

    2016-11-01

    Using the spin polarized density functional theory (DFT) and exploring the Plane-Wave Self-Consistent Field (PWscf) code implemented in Quantum-ESPRESSO package, we investigate the effect of the Oxygen vacancies (V{sub O}) and the Oxygen interstitial (O{sub i}) on the double perovskite BaSrNiWO{sub 6}. This deals with the magnetic ordering and the electronic structure in such a pure sample exhibiting the insulating anti-ferromagnetic (AFM) state. This study shows that the presence of oxygen deficient defects converts the insulating to half metal with ferromagnetic or anti-ferromagnetic states. The magnetic ordering in BaSrNiWO{sub 6−δ} depends on the position of the Oxygen vacancy in the unit cell. However, it has been shown that the Oxygen interstitial preserves the anti-ferromagnetic propriety. We have computed the formation energies of different positions of the Oxygen vacancy (V{sub O}) and the Oxygen interstitial (O{sub i}) in the BaSrNiWO{sub 6} compound. We showed that the formation of V{sub O} is easier and vice versa for the O{sub i} formation. The obtained results reveal(V{sub O}) and the Oxygen interstitial (O{sub i}) that the anti-ferromagnetic can be converted to ferromagnetic in the double perovskite BaSrNiWO{sub 6} induced by Oxygen vacancies V{sub O}. - Highlights: • We have studied the ferromagnetism and Half Metallicity in Double Perovskite BaSrNiWO{sub 6}. • We have applied the Ab-inito calculations using the DFT approach. • We showed the effects induced by Oxygen Vacancies and Oxygen interstitial. • We found that the magnetic ordering in BaSrNiWO{sub 6−δ} depends on the position of the Oxygen vacancy in the unit cell.

  9. Z₂-double cyclic codes

    OpenAIRE

    Borges, J.

    2014-01-01

    A binary linear code C is a Z2-double cyclic code if the set of coordinates can be partitioned into two subsets such that any cyclic shift of the coordinates of both subsets leaves invariant the code. These codes can be identified as submodules of the Z2[x]-module Z2[x]/(x^r − 1) × Z2[x]/(x^s − 1). We determine the structure of Z2-double cyclic codes giving the generator polynomials of these codes. The related polynomial representation of Z2-double cyclic codes and its duals, and the relation...

  10. Coding for urologic office procedures.

    Science.gov (United States)

    Dowling, Robert A; Painter, Mark

    2013-11-01

    This article summarizes current best practices for documenting, coding, and billing common office-based urologic procedures. Topics covered include general principles, basic and advanced urologic coding, creation of medical records that support compliant coding practices, bundled codes and unbundling, global periods, modifiers for procedure codes, when to bill for evaluation and management services during the same visit, coding for supplies, and laboratory and radiology procedures pertinent to urology practice. Detailed information is included for the most common urology office procedures, and suggested resources and references are provided. This information is of value to physicians, office managers, and their coding staff. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Effective one-body potential of DFT plus correlated kinetic energy density for two-electron spherical model atoms

    International Nuclear Information System (INIS)

    March, N.H.; Ludena, Eduardo V.

    2004-01-01

    For three model problems concerning two-electron spin-compensated ground states with spherical density, the third-order linear homogeneous differential equation constructed for the determination of ρ(r) is used here in conjunction with the von Weizsacker functional to characterize the one-body potential of density functional theory (DFT). Correlated von Weizsacker-type terms are compared to the exact DFT functional

  12. Electromechanical and Chemical Sensing at the Nanoscale: DFT and Transport Modeling

    Science.gov (United States)

    Maiti, Amitesh

    Of the many nanoelectronic applications proposed for near to medium-term commercial deployment, sensors based on carbon nanotubes (CNT) and metal-oxide nanowires are receiving significant attention from researchers. Such devices typically operate on the basis of the changes of electrical response characteristics of the active component (CNT or nanowire) when subjected to an externally applied mechanical stress or the adsorption of a chemical or bio-molecule. Practical development of such technologies can greatly benefit from quantum chemical modeling based on density functional theory (DFT), and from electronic transport modeling based on non-equilibrium Green's function (NEGF). DFT can compute useful quantities like possible bond-rearrangements, binding energy, charge transfer, and changes to the electronic structure, while NEGF can predict changes in electronic transport behavior and contact resistance. Effects of surrounding medium and intrinsic structural defects can also be taken into account. In this work we review some recent DFT and transport investigations on (1) CNT-based nano-electromechanical sensors (NEMS) and (2) gas-sensing properties of CNTs and metal-oxide nanowires. We also briefly discuss our current understanding of CNT-metal contacts which, depending upon the metal, the deposition technique, and the masking method can have a significant effect on device performance.

  13. Probing the molecular and electronic structure of the lichen metabolite usnic acid: A DFT study

    International Nuclear Information System (INIS)

    Galasso, V.

    2010-01-01

    Graphical abstract: DFT calculations of structural preferences, acidic properties, carbonyl vibrations, 13 C NMR chemical shifts, and absorption spectrum account for the unique structural backbone, chemical behaviour, and spectroscopic properties of usnic acid, the cortical pigment and potent reactive of lichens. - Abstract: The molecular structure of usnic acid was investigated by the density functional theory (DFT). Two keto-enol tautomers are nearly isoenergetic and more stable than other tautomers. Noteworthy is the energy difference among the three intramolecular O-H...O hydrogen bonds. The DFT/PCM calculated dissociation constants account for the acidic sequence of the three OH-groups. The electronic structure was also studied by calculating IR/Raman, NMR, and absorption features. A reliable assignment of the 'fingerprint' carbonyl stretching modes was supported by calculations on related molecules. The calculated NMR chemical shifts fit expectation in terms of a fast interconversion between the two most preferred tautomers. A variety of π → π* and n → π* excitations, localized on a single ring or involving a charge-transfer between the two lateral rings of the molecule, gives rise to the broad UV-absorption bands. This property accounts for the efficient protection against damaging solar radiation provided by usnic acid for lichens.

  14. OH-initiated transformation and hydrolysis of aspirin in AOPs system: DFT and experimental studies.

    Science.gov (United States)

    He, Lin; Sun, Xiaomin; Zhu, Fanping; Ren, Shaojie; Wang, Shuguang

    2017-08-15

    Advanced oxidation processes (AOPs) are widely used in wastewater treatment of pharmaceutical and personal care products (PPCPs). In this work, the OH-initiated transformation as well as the hydrolysis of a typical PPCPs, aspirin, was investigated using density functional theory (DFT) calculations and laboratory experiments. For DFT calculations, the frontier electron densities and bond dissociation energies were analyzed. Profiles of the potential energy surface were constructed, and all the possible pathways were discussed. Additionally, rate constants for each pathway were calculated with transition state theory (TST) method. UV/H 2 O 2 experiments of aspirin were performed and degradation intermediates were identified by UPLC-MS-MS analysis. Different findings from previous experimental works were reported that the H-abstraction pathways at methyl position were dominated and OH-addition pathways on benzene ring were also favored. Meantime, hydroxyl ASA was confirmed as the main stable intermediate. Moreover, it was the first time to use DFT method to investigate the hydrolysis mechanisms of organic ester compound. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Probing the molecular and electronic structure of the lichen metabolite usnic acid: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Galasso, V., E-mail: galasso@univ.trieste.it [Dipartimento di Scienze Chimiche, Universita di Trieste, I-34127 Trieste (Italy)

    2010-08-23

    Graphical abstract: DFT calculations of structural preferences, acidic properties, carbonyl vibrations, {sup 13}C NMR chemical shifts, and absorption spectrum account for the unique structural backbone, chemical behaviour, and spectroscopic properties of usnic acid, the cortical pigment and potent reactive of lichens. - Abstract: The molecular structure of usnic acid was investigated by the density functional theory (DFT). Two keto-enol tautomers are nearly isoenergetic and more stable than other tautomers. Noteworthy is the energy difference among the three intramolecular O-H...O hydrogen bonds. The DFT/PCM calculated dissociation constants account for the acidic sequence of the three OH-groups. The electronic structure was also studied by calculating IR/Raman, NMR, and absorption features. A reliable assignment of the 'fingerprint' carbonyl stretching modes was supported by calculations on related molecules. The calculated NMR chemical shifts fit expectation in terms of a fast interconversion between the two most preferred tautomers. A variety of {pi} {yields} {pi}* and n {yields} {pi}* excitations, localized on a single ring or involving a charge-transfer between the two lateral rings of the molecule, gives rise to the broad UV-absorption bands. This property accounts for the efficient protection against damaging solar radiation provided by usnic acid for lichens.

  16. A computational DFT study of structural transitions in textured solid-fluid interfaces

    Science.gov (United States)

    Yatsyshin, Petr; Parry, Andrew O.; Kalliadasis, Serafim

    2015-11-01

    Fluids adsorbed at walls, in capillary pores and slits, and in more exotic, sculpted geometries such as grooves and wedges can exhibit many new phase transitions, including wetting, pre-wetting, capillary-condensation and filling, compared to their bulk counterparts. As well as being of fundamental interest to the modern statistical mechanical theory of inhomogeneous fluids, these are also relevant to nanofluidics, chemical- and bioengineering. In this talk we will show using a microscopic Density Functional Theory (DFT) for fluids how novel, continuous, interfacial transitions associated with the first-order prewetting line, can occur on steps, in grooves and in wedges, that are sensitive to both the range of the intermolecular forces and interfacial fluctuation effects. These transitions compete with wetting, filling and condensation producing very rich phase diagrams even for relatively simple geometries. We will also discuss practical aspects of DFT calculations, and demonstrate how this statistical-mechanical framework is capable of yielding complex fluid structure, interfacial tensions, and regions of thermodynamic stability of various fluid configurations. As a side note, this demonstrates that DFT is an excellent tool for the investigations of complex multiphase systems. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031.

  17. Water dissociation and CO oxidation over Au/anatase catalyst. A DFT-D2 study

    Science.gov (United States)

    Saqlain, Muhammad Adnan; Hussain, Akhtar; Siddiq, Muhammad; Leitão, Alexandre A.

    2018-03-01

    With the help of DFT-D2 methodology, we have investigated the adsorption of water on clean anatase(001) and Au/anatase(001). In the former case, adsorption energies of H2O differ to small extent computed employing GGA = PW91 and DFT-D2 methods. While the GGA = PW91 predicts that water would desorb close to 650 K on the TiO2 surface, the DFT-D2 predicts that desorption is most likely to occur above 700 K. A comparison of water adsorption on TiO2 and Au/TiO2 surfaces shows that the TiO2 prefers dimer adsorption whereas the Au/TiO2 prefers monomer adsorption. We found that the diffusion of surface hydroxyls on to the Au cluster from the Au/TiO2 periphery is unlikely and it seems that the CO oxidation would occur at the Au/TiO2 boundary. The results show that water dissociation and CO oxidation steps occur easily on Au/TiO2 indicating that this could be good alternative catalyst for water gas shift reaction industry.

  18. A DFT-D study of structural and energetic properties of TiO2 modifications

    International Nuclear Information System (INIS)

    Moellmann, Jonas; Ehrlich, Stephan; Tonner, Ralf; Grimme, Stefan

    2012-01-01

    The structures and relative energies of the three naturally occurring modifications of titanium dioxide (rutile, brookite and anatase) were investigated. For an accurate description, atom-pairwise dispersion-corrected density functional theory (DFT-D) was applied. The DFT-D3 scheme was extended non-empirically to improve the description of Ti atoms in bulk systems. New dispersion coefficients were derived from TDDFT calculations for electrostatically embedded TiO 2 clusters. The dispersion coefficient C 6 TiTi is reduced by a factor of 18 compared to the free atom. The three TiO 2 modifications were optimized in periodic plane-wave calculations with dispersion-corrected GGA (PBE, revPBE) and hybrid density functionals (PBE0, revPBE0). The calculated lattice parameters are in good agreement with experimental data, in particular the dispersion-corrected PBE0 and revPBE0 hybrid functionals. Although the observed relative stabilities could not be reproduced in all cases, dispersion corrections improve the results. For an accurate description of bulk metal oxides, London dispersion is a prominent force that should not be neglected when energies and structures are computed with DFT. Additionally, the influence of dispersion interactions on the relaxation of the TiO 2 (110) surface is investigated.

  19. Spectroscopic and DFT Study of RhIII Chloro Complex Transformation in Alkaline Solutions.

    Science.gov (United States)

    Vasilchenko, Danila B; Berdyugin, Semen N; Korenev, Sergey V; O'Kennedy, Sean; Gerber, Wilhelmus J

    2017-09-05

    The hydrolysis of [RhCl 6 ] 3- in NaOH-water solutions was studied by spectrophotometric methods. The reaction proceeds via successive substitution of chloride with hydroxide to quantitatively form [Rh(OH) 6 ] 3- . Ligand substitution kinetics was studied in an aqueous 0.434-1.085 M NaOH matrix in the temperature range 5.5-15.3 °C. Transformation of [RhCl 6 ] 3- into [RhCl 5 (OH)] 3- was found to be the rate-determining step with activation parameters of ΔH † = 105 ± 4 kJ mol -1 and ΔS † = 59 ± 10 J K -1 mol -1 . The coordinated hydroxo ligand(s) induces rapid ligand substitution to form [Rh(OH) 6 ] 3- . By simulating ligand substitution as a dissociative mechanism, using density functional theory (DFT), we can now explain the relatively fast and slow kinetics of chloride substitution in basic and acidic matrices, respectively. Moreover, the DFT calculated activation energies corroborated experimental data that the kinetic stereochemical sequence of [RhCl 6 ] 3- hydrolysis in an acidic solution proceeds as [RhCl 6 ] 3- → [RhCl 5 (H 2 O)] 2- → cis-[RhCl 4 (H 2 O) 2 ] - . However, DFT calculations predict in a basic solution the trans route of substitution [RhCl 6 ] 3- → [RhCl 5 (OH)] 3- → trans-[RhCl 4 (OH) 2 ] 3- is kinetically favored.

  20. The Dirac equation in electronic structure calculations: Accurate evaluation of DFT predictions for actinides

    International Nuclear Information System (INIS)

    Wills, John M.; Mattsson, Ann E.

    2012-01-01

    Brooks, Johansson, and Skriver, using the LMTO-ASA method and considerable insight, were able to explain many of the ground state properties of the actinides. In the many years since this work was done, electronic structure calculations of increasing sophistication have been applied to actinide elements and compounds, attempting to quantify the applicability of DFT to actinides and actinide compounds and to try to incorporate other methodologies (i.e. DMFT) into DFT calculations. Through these calculations, the limits of both available density functionals and ad hoc methodologies are starting to become clear. However, it has also become clear that approximations used to incorporate relativity are not adequate to provide rigorous tests of the underlying equations of DFT, not to mention ad hoc additions. In this talk, we describe the result of full-potential LMTO calculations for the elemental actinides, comparing results obtained with a full Dirac basis with those obtained from scalar-relativistic bases, with and without variational spin-orbit. This comparison shows that the scalar relativistic treatment of actinides does not have sufficient accuracy to provide a rigorous test of theory and that variational spin-orbit introduces uncontrolled errors in the results of electronic structure calculations on actinide elements.

  1. Tetramer model of leukoemeraldine-emeraldine electrochemistry in the presence of trihalogenoacetic acids. DFT approach.

    Science.gov (United States)

    Barbosa, Nuno Almeida; Grzeszczuk, Maria; Wieczorek, Robert

    2015-01-15

    First results of the application of the DFT computational approach to the reversible electrochemistry of polyaniline are presented. A tetrameric chain was used as the simplest model of the polyaniline polymer species. The system under theoretical investigation involved six tetramer species, two electrons, and two protons, taking part in 14 elementary reactions. Moreover, the tetramer species were interacting with two trihalogenoacetic acid molecules. Trifluoroacetic, trichloroacetic, and tribromoacetic acids were found to impact the redox transformation of polyaniline as shown by cyclic voltammetry. The theoretical approach was considered as a powerful tool for investigating the main factors of importance for the experimental behavior. The DFT method provided molecular structures, interaction energies, and equilibrium energies of all of the tetramer-acid complexes. Differences between the energies of the isolated tetramer species and their complexes with acids are discussed in terms of the elementary reactions, that is, ionization potentials and electron affinities, equilibrium constants, electrode potentials, and reorganization energies. The DFT results indicate a high impact of the acid on the reorganization energy of a particular elementary electron-transfer reaction. The ECEC oxidation path was predicted by the calculations. The model of the reacting system must be extended to octamer species and/or dimeric oligomer species to better approximate the real polymer situation.

  2. Essential idempotents and simplex codes

    Directory of Open Access Journals (Sweden)

    Gladys Chalom

    2017-01-01

    Full Text Available We define essential idempotents in group algebras and use them to prove that every mininmal abelian non-cyclic code is a repetition code. Also we use them to prove that every minimal abelian code is equivalent to a minimal cyclic code of the same length. Finally, we show that a binary cyclic code is simplex if and only if is of length of the form $n=2^k-1$ and is generated by an essential idempotent.

  3. Rate-adaptive BCH codes for distributed source coding

    DEFF Research Database (Denmark)

    Salmistraro, Matteo; Larsen, Knud J.; Forchhammer, Søren

    2013-01-01

    This paper considers Bose-Chaudhuri-Hocquenghem (BCH) codes for distributed source coding. A feedback channel is employed to adapt the rate of the code during the decoding process. The focus is on codes with short block lengths for independently coding a binary source X and decoding it given its...... strategies for improving the reliability of the decoded result are analyzed, and methods for estimating the performance are proposed. In the analysis, noiseless feedback and noiseless communication are assumed. Simulation results show that rate-adaptive BCH codes achieve better performance than low...... correlated side information Y. The proposed codes have been analyzed in a high-correlation scenario, where the marginal probability of each symbol, Xi in X, given Y is highly skewed (unbalanced). Rate-adaptive BCH codes are presented and applied to distributed source coding. Adaptive and fixed checking...

  4. Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error.

    Science.gov (United States)

    Faber, Felix A; Hutchison, Luke; Huang, Bing; Gilmer, Justin; Schoenholz, Samuel S; Dahl, George E; Vinyals, Oriol; Kearnes, Steven; Riley, Patrick F; von Lilienfeld, O Anatole

    2017-11-14

    We investigate the impact of choosing regressors and molecular representations for the construction of fast machine learning (ML) models of 13 electronic ground-state properties of organic molecules. The performance of each regressor/representation/property combination is assessed using learning curves which report out-of-sample errors as a function of training set size with up to ∼118k distinct molecules. Molecular structures and properties at the hybrid density functional theory (DFT) level of theory come from the QM9 database [ Ramakrishnan et al. Sci. Data 2014 , 1 , 140022 ] and include enthalpies and free energies of atomization, HOMO/LUMO energies and gap, dipole moment, polarizability, zero point vibrational energy, heat capacity, and the highest fundamental vibrational frequency. Various molecular representations have been studied (Coulomb matrix, bag of bonds, BAML and ECFP4, molecular graphs (MG)), as well as newly developed distribution based variants including histograms of distances (HD), angles (HDA/MARAD), and dihedrals (HDAD). Regressors include linear models (Bayesian ridge regression (BR) and linear regression with elastic net regularization (EN)), random forest (RF), kernel ridge regression (KRR), and two types of neural networks, graph convolutions (GC) and gated graph networks (GG). Out-of sample errors are strongly dependent on the choice of representation and regressor and molecular property. Electronic properties are typically best accounted for by MG and GC, while energetic properties are better described by HDAD and KRR. The specific combinations with the lowest out-of-sample errors in the ∼118k training set size limit are (free) energies and enthalpies of atomization (HDAD/KRR), HOMO/LUMO eigenvalue and gap (MG/GC), dipole moment (MG/GC), static polarizability (MG/GG), zero point vibrational energy (HDAD/KRR), heat capacity at room temperature (HDAD/KRR), and highest fundamental vibrational frequency (BAML/RF). We present numerical

  5. Entanglement-assisted quantum MDS codes constructed from negacyclic codes

    Science.gov (United States)

    Chen, Jianzhang; Huang, Yuanyuan; Feng, Chunhui; Chen, Riqing

    2017-12-01

    Recently, entanglement-assisted quantum codes have been constructed from cyclic codes by some scholars. However, how to determine the number of shared pairs required to construct entanglement-assisted quantum codes is not an easy work. In this paper, we propose a decomposition of the defining set of negacyclic codes. Based on this method, four families of entanglement-assisted quantum codes constructed in this paper satisfy the entanglement-assisted quantum Singleton bound, where the minimum distance satisfies q+1 ≤ d≤ n+2/2. Furthermore, we construct two families of entanglement-assisted quantum codes with maximal entanglement.

  6. Efficient convolutional sparse coding

    Science.gov (United States)

    Wohlberg, Brendt

    2017-06-20

    Computationally efficient algorithms may be applied for fast dictionary learning solving the convolutional sparse coding problem in the Fourier domain. More specifically, efficient convolutional sparse coding may be derived within an alternating direction method of multipliers (ADMM) framework that utilizes fast Fourier transforms (FFT) to solve the main linear system in the frequency domain. Such algorithms may enable a significant reduction in computational cost over conventional approaches by implementing a linear solver for the most critical and computationally expensive component of the conventional iterative algorithm. The theoretical computational cost of the algorithm may be reduced from O(M.sup.3N) to O(MN log N), where N is the dimensionality of the data and M is the number of elements in the dictionary. This significant improvement in efficiency may greatly increase the range of problems that can practically be addressed via convolutional sparse representations.

  7. Coded Network Function Virtualization

    DEFF Research Database (Denmark)

    Al-Shuwaili, A.; Simone, O.; Kliewer, J.

    2016-01-01

    Network function virtualization (NFV) prescribes the instantiation of network functions on general-purpose network devices, such as servers and switches. While yielding a more flexible and cost-effective network architecture, NFV is potentially limited by the fact that commercial off......-the-shelf hardware is less reliable than the dedicated network elements used in conventional cellular deployments. The typical solution for this problem is to duplicate network functions across geographically distributed hardware in order to ensure diversity. In contrast, this letter proposes to leverage channel...... coding in order to enhance the robustness on NFV to hardware failure. The proposed approach targets the network function of uplink channel decoding, and builds on the algebraic structure of the encoded data frames in order to perform in-network coding on the signals to be processed at different servers...

  8. The NIMROD Code

    Science.gov (United States)

    Schnack, D. D.; Glasser, A. H.

    1996-11-01

    NIMROD is a new code system that is being developed for the analysis of modern fusion experiments. It is being designed from the beginning to make the maximum use of massively parallel computer architectures and computer graphics. The NIMROD physics kernel solves the three-dimensional, time-dependent two-fluid equations with neo-classical effects in toroidal geometry of arbitrary poloidal cross section. The NIMROD system also includes a pre-processor, a grid generator, and a post processor. User interaction with NIMROD is facilitated by a modern graphical user interface (GUI). The NIMROD project is using Quality Function Deployment (QFD) team management techniques to minimize re-engineering and reduce code development time. This paper gives an overview of the NIMROD project. Operation of the GUI is demonstrated, and the first results from the physics kernel are given.

  9. Computer code FIT

    International Nuclear Information System (INIS)

    Rohmann, D.; Koehler, T.

    1987-02-01

    This is a description of the computer code FIT, written in FORTRAN-77 for a PDP 11/34. FIT is an interactive program to decude position, width and intensity of lines of X-ray spectra (max. length of 4K channels). The lines (max. 30 lines per fit) may have Gauss- or Voigt-profile, as well as exponential tails. Spectrum and fit can be displayed on a Tektronix terminal. (orig.) [de

  10. Discrete Sparse Coding.

    Science.gov (United States)

    Exarchakis, Georgios; Lücke, Jörg

    2017-11-01

    Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.

  11. Code of Practice

    International Nuclear Information System (INIS)

    Doyle, Colin; Hone, Christopher; Nowlan, N.V.

    1984-05-01

    This Code of Practice introduces accepted safety procedures associated with the use of alpha, beta, gamma and X-radiation in secondary schools (pupils aged 12 to 18) in Ireland, and summarises good practice and procedures as they apply to radiation protection. Typical dose rates at various distances from sealed sources are quoted, and simplified equations are used to demonstrate dose and shielding calculations. The regulatory aspects of radiation protection are outlined, and references to statutory documents are given

  12. Tokamak simulation code manual

    International Nuclear Information System (INIS)

    Chung, Moon Kyoo; Oh, Byung Hoon; Hong, Bong Keun; Lee, Kwang Won

    1995-01-01

    The method to use TSC (Tokamak Simulation Code) developed by Princeton plasma physics laboratory is illustrated. In KT-2 tokamak, time dependent simulation of axisymmetric toroidal plasma and vertical stability have to be taken into account in design phase using TSC. In this report physical modelling of TSC are described and examples of application in JAERI and SERI are illustrated, which will be useful when TSC is installed KAERI computer system. (Author) 15 refs., 6 figs., 3 tabs

  13. Status of MARS Code

    Energy Technology Data Exchange (ETDEWEB)

    N.V. Mokhov

    2003-04-09

    Status and recent developments of the MARS 14 Monte Carlo code system for simulation of hadronic and electromagnetic cascades in shielding, accelerator and detector components in the energy range from a fraction of an electronvolt up to 100 TeV are described. these include physics models both in strong and electromagnetic interaction sectors, variance reduction techniques, residual dose, geometry, tracking, histograming. MAD-MARS Beam Line Build and Graphical-User Interface.

  14. Codes of Good Governance

    DEFF Research Database (Denmark)

    Beck Jørgensen, Torben; Sørensen, Ditte-Lene

    2013-01-01

    Good governance is a broad concept used by many international organizations to spell out how states or countries should be governed. Definitions vary, but there is a clear core of common public values, such as transparency, accountability, effectiveness, and the rule of law. It is quite likely......, transparency, neutrality, impartiality, effectiveness, accountability, and legality. The normative context of public administration, as expressed in codes, seems to ignore the New Public Management and Reinventing Government reform movements....

  15. Orthopedics coding and funding.

    Science.gov (United States)

    Baron, S; Duclos, C; Thoreux, P

    2014-02-01

    The French tarification à l'activité (T2A) prospective payment system is a financial system in which a health-care institution's resources are based on performed activity. Activity is described via the PMSI medical information system (programme de médicalisation du système d'information). The PMSI classifies hospital cases by clinical and economic categories known as diagnosis-related groups (DRG), each with an associated price tag. Coding a hospital case involves giving as realistic a description as possible so as to categorize it in the right DRG and thus ensure appropriate payment. For this, it is essential to understand what determines the pricing of inpatient stay: namely, the code for the surgical procedure, the patient's principal diagnosis (reason for admission), codes for comorbidities (everything that adds to management burden), and the management of the length of inpatient stay. The PMSI is used to analyze the institution's activity and dynamism: change on previous year, relation to target, and comparison with competing institutions based on indicators such as the mean length of stay performance indicator (MLS PI). The T2A system improves overall care efficiency. Quality of care, however, is not presently taken account of in the payment made to the institution, as there are no indicators for this; work needs to be done on this topic. Copyright © 2014. Published by Elsevier Masson SAS.

  16. Code Modernization of VPIC

    Science.gov (United States)

    Bird, Robert; Nystrom, David; Albright, Brian

    2017-10-01

    The ability of scientific simulations to effectively deliver performant computation is increasingly being challenged by successive generations of high-performance computing architectures. Code development to support efficient computation on these modern architectures is both expensive, and highly complex; if it is approached without due care, it may also not be directly transferable between subsequent hardware generations. Previous works have discussed techniques to support the process of adapting a legacy code for modern hardware generations, but despite the breakthroughs in the areas of mini-app development, portable-performance, and cache oblivious algorithms the problem still remains largely unsolved. In this work we demonstrate how a focus on platform agnostic modern code-development can be applied to Particle-in-Cell (PIC) simulations to facilitate effective scientific delivery. This work builds directly on our previous work optimizing VPIC, in which we replaced intrinsic based vectorisation with compile generated auto-vectorization to improve the performance and portability of VPIC. In this work we present the use of a specialized SIMD queue for processing some particle operations, and also preview a GPU capable OpenMP variant of VPIC. Finally we include a lessons learnt. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory under contract DE-AC52-06NA25396 and supported by the LANL LDRD program.

  17. MELCOR computer code manuals

    Energy Technology Data Exchange (ETDEWEB)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

  18. MELCOR computer code manuals

    International Nuclear Information System (INIS)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L.; Hodge, S.A.; Hyman, C.R.; Sanders, R.L.

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR's phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package

  19. Quality Improvement of MARS Code and Establishment of Code Coupling

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Jeong, Jae Jun; Kim, Kyung Doo

    2010-04-01

    The improvement of MARS code quality and coupling with regulatory auditing code have been accomplished for the establishment of self-reliable technology based regulatory auditing system. The unified auditing system code was realized also by implementing the CANDU specific models and correlations. As a part of the quality assurance activities, the various QA reports were published through the code assessments. The code manuals were updated and published a new manual which describe the new models and correlations. The code coupling methods were verified though the exercise of plant application. The education-training seminar and technology transfer were performed for the code users. The developed MARS-KS is utilized as reliable auditing tool for the resolving the safety issue and other regulatory calculations. The code can be utilized as a base technology for GEN IV reactor applications

  20. Design of convolutional tornado code

    Science.gov (United States)

    Zhou, Hui; Yang, Yao; Gao, Hongmin; Tan, Lu

    2017-09-01

    As a linear block code, the traditional tornado (tTN) code is inefficient in burst-erasure environment and its multi-level structure may lead to high encoding/decoding complexity. This paper presents a convolutional tornado (cTN) code which is able to improve the burst-erasure protection capability by applying the convolution property to the tTN code, and reduce computational complexity by abrogating the multi-level structure. The simulation results show that cTN code can provide a better packet loss protection performance with lower computation complexity than tTN code.

  1. Random linear codes in steganography

    Directory of Open Access Journals (Sweden)

    Kamil Kaczyński

    2016-12-01

    Full Text Available Syndrome coding using linear codes is a technique that allows improvement in the steganographic algorithms parameters. The use of random linear codes gives a great flexibility in choosing the parameters of the linear code. In parallel, it offers easy generation of parity check matrix. In this paper, the modification of LSB algorithm is presented. A random linear code [8, 2] was used as a base for algorithm modification. The implementation of the proposed algorithm, along with practical evaluation of algorithms’ parameters based on the test images was made.[b]Keywords:[/b] steganography, random linear codes, RLC, LSB

  2. Containment Code Validation Matrix

    International Nuclear Information System (INIS)

    Chin, Yu-Shan; Mathew, P.M.; Glowa, Glenn; Dickson, Ray; Liang, Zhe; Leitch, Brian; Barber, Duncan; Vasic, Aleks; Bentaib, Ahmed; Journeau, Christophe; Malet, Jeanne; Studer, Etienne; Meynet, Nicolas; Piluso, Pascal; Gelain, Thomas; Michielsen, Nathalie; Peillon, Samuel; Porcheron, Emmanuel; Albiol, Thierry; Clement, Bernard; Sonnenkalb, Martin; Klein-Hessling, Walter; Arndt, Siegfried; Weber, Gunter; Yanez, Jorge; Kotchourko, Alexei; Kuznetsov, Mike; Sangiorgi, Marco; Fontanet, Joan; Herranz, Luis; Garcia De La Rua, Carmen; Santiago, Aleza Enciso; Andreani, Michele; Paladino, Domenico; Dreier, Joerg; Lee, Richard; Amri, Abdallah

    2014-01-01

    The Committee on the Safety of Nuclear Installations (CSNI) formed the CCVM (Containment Code Validation Matrix) task group in 2002. The objective of this group was to define a basic set of available experiments for code validation, covering the range of containment (ex-vessel) phenomena expected in the course of light and heavy water reactor design basis accidents and beyond design basis accidents/severe accidents. It was to consider phenomena relevant to pressurised heavy water reactor (PHWR), pressurised water reactor (PWR) and boiling water reactor (BWR) designs of Western origin as well as of Eastern European VVER types. This work would complement the two existing CSNI validation matrices for thermal hydraulic code validation (NEA/CSNI/R(1993)14) and In-vessel core degradation (NEA/CSNI/R(2001)21). The report initially provides a brief overview of the main features of a PWR, BWR, CANDU and VVER reactors. It also provides an overview of the ex-vessel corium retention (core catcher). It then provides a general overview of the accident progression for light water and heavy water reactors. The main focus is to capture most of the phenomena and safety systems employed in these reactor types and to highlight the differences. This CCVM contains a description of 127 phenomena, broken down into 6 categories: - Containment Thermal-hydraulics Phenomena; - Hydrogen Behaviour (Combustion, Mitigation and Generation) Phenomena; - Aerosol and Fission Product Behaviour Phenomena; - Iodine Chemistry Phenomena; - Core Melt Distribution and Behaviour in Containment Phenomena; - Systems Phenomena. A synopsis is provided for each phenomenon, including a description, references for further information, significance for DBA and SA/BDBA and a list of experiments that may be used for code validation. The report identified 213 experiments, broken down into the same six categories (as done for the phenomena). An experiment synopsis is provided for each test. Along with a test description

  3. Decoding of concatenated codes with interleaved outer codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Høholdt, Tom; Thommesen, Christian

    2004-01-01

    Recently Bleichenbacher et al. proposed a decoding algorithm for interleaved (N, K) Reed-Solomon codes, which allows close to N-K errors to be corrected in many cases. We discuss the application of this decoding algorithm to concatenated codes.......Recently Bleichenbacher et al. proposed a decoding algorithm for interleaved (N, K) Reed-Solomon codes, which allows close to N-K errors to be corrected in many cases. We discuss the application of this decoding algorithm to concatenated codes....

  4. TASS code topical report. V.1 TASS code technical manual

    International Nuclear Information System (INIS)

    Sim, Suk K.; Chang, W. P.; Kim, K. D.; Kim, H. C.; Yoon, H. Y.

    1997-02-01

    TASS 1.0 code has been developed at KAERI for the initial and reload non-LOCA safety analysis for the operating PWRs as well as the PWRs under construction in Korea. TASS code will replace various vendor's non-LOCA safety analysis codes currently used for the Westinghouse and ABB-CE type PWRs in Korea. This can be achieved through TASS code input modifications specific to each reactor type. The TASS code can be run interactively through the keyboard operation. A simimodular configuration used in developing the TASS code enables the user easily implement new models. TASS code has been programmed using FORTRAN77 which makes it easy to install and port for different computer environments. The TASS code can be utilized for the steady state simulation as well as the non-LOCA transient simulations such as power excursions, reactor coolant pump trips, load rejections, loss of feedwater, steam line breaks, steam generator tube ruptures, rod withdrawal and drop, and anticipated transients without scram (ATWS). The malfunctions of the control systems, components, operator actions and the transients caused by the malfunctions can be easily simulated using the TASS code. This technical report describes the TASS 1.0 code models including reactor thermal hydraulic, reactor core and control models. This TASS code models including reactor thermal hydraulic, reactor core and control models. This TASS code technical manual has been prepared as a part of the TASS code manual which includes TASS code user's manual and TASS code validation report, and will be submitted to the regulatory body as a TASS code topical report for a licensing non-LOCA safety analysis for the Westinghouse and ABB-CE type PWRs operating and under construction in Korea. (author). 42 refs., 29 tabs., 32 figs

  5. Construction of new quantum MDS codes derived from constacyclic codes

    Science.gov (United States)

    Taneja, Divya; Gupta, Manish; Narula, Rajesh; Bhullar, Jaskaran

    Obtaining quantum maximum distance separable (MDS) codes from dual containing classical constacyclic codes using Hermitian construction have paved a path to undertake the challenges related to such constructions. Using the same technique, some new parameters of quantum MDS codes have been constructed here. One set of parameters obtained in this paper has achieved much larger distance than work done earlier. The remaining constructed parameters of quantum MDS codes have large minimum distance and were not explored yet.

  6. Combinatorial neural codes from a mathematical coding theory perspective.

    Science.gov (United States)

    Curto, Carina; Itskov, Vladimir; Morrison, Katherine; Roth, Zachary; Walker, Judy L

    2013-07-01

    Shannon's seminal 1948 work gave rise to two distinct areas of research: information theory and mathematical coding theory. While information theory has had a strong influence on theoretical neuroscience, ideas from mathematical coding theory have received considerably less attention. Here we take a new look at combinatorial neural codes from a mathematical coding theory perspective, examining the error correction capabilities of familiar receptive field codes (RF codes). We find, perhaps surprisingly, that the high levels of redundancy present in these codes do not support accurate error correction, although the error-correcting performance of receptive field codes catches up to that of random comparison codes when a small tolerance to error is introduced. However, receptive field codes are good at reflecting distances between represented stimuli, while the random comparison codes are not. We suggest that a compromise in error-correcting capability may be a necessary price to pay for a neural code whose structure serves not only error correction, but must also reflect relationships between stimuli.

  7. Convolutional coding techniques for data protection

    Science.gov (United States)

    Massey, J. L.

    1975-01-01

    Results of research on the use of convolutional codes in data communications are presented. Convolutional coding fundamentals are discussed along with modulation and coding interaction. Concatenated coding systems and data compression with convolutional codes are described.

  8. Symmetry properties of the electron density and following from it limits on the KS-DFT applications

    Science.gov (United States)

    Kaplan, Ilya G.

    2018-03-01

    At present, the Density Functional Theory (DFT) approach elaborated by Kohn with co-authors more than 50 years ago became the most widely used method for study molecules and solids. Using modern computation facilities, it can be applied to systems with million atoms. In the atmosphere of such great popularity, it is particularly important to know the limits of the applicability of DFT methods. In this report, I will discuss two cases when the conventional DFT approaches, using only electron density ρ and its gradients, cannot be applied (I will not consider the Ψ-versions of DFT). The first case is quite evident. In the degenerated states, the electron density may not be defined, since electronic and nuclear motions cannot be separated, the vibronic interaction mixed them. The second case is related to the spin of the state. As it was rigorously proved by group theoretical methods at the theorem level, the electron density does not depend on the total spin S of the arbitrary N-electron state. It means that the Kohn-Sham equations have the same form for states with different S. The critical survey of elaborated DFT procedures, taking into account spin, shows that they modified only exchange functionals, the correlation functionals do not correspond to the spin of the state. The point is that the conception of spin cannot be defined in the framework of the electron density formalism, which corresponds to the one-particle reduced density matrix. This is the main reason of the problems arising in the study by DFT of magnetic properties of the transition metals. The possible way of resolving these problems can be found in the two-particle reduced density matrix formulation of DFT.

  9. High Energy Transport Code HETC

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1985-09-01

    The physics contained in the High Energy Transport Code (HETC), in particular the collision models, are discussed. An application using HETC as part of the CALOR code system is also given. 19 refs., 5 figs., 3 tabs

  10. Code stroke in Asturias.

    Science.gov (United States)

    Benavente, L; Villanueva, M J; Vega, P; Casado, I; Vidal, J A; Castaño, B; Amorín, M; de la Vega, V; Santos, H; Trigo, A; Gómez, M B; Larrosa, D; Temprano, T; González, M; Murias, E; Calleja, S

    2016-04-01

    Intravenous thrombolysis with alteplase is an effective treatment for ischaemic stroke when applied during the first 4.5 hours, but less than 15% of patients have access to this technique. Mechanical thrombectomy is more frequently able to recanalise proximal occlusions in large vessels, but the infrastructure it requires makes it even less available. We describe the implementation of code stroke in Asturias, as well as the process of adapting various existing resources for urgent stroke care in the region. By considering these resources, and the demographic and geographic circumstances of our region, we examine ways of reorganising the code stroke protocol that would optimise treatment times and provide the most appropriate treatment for each patient. We distributed the 8 health districts in Asturias so as to permit referral of candidates for reperfusion therapies to either of the 2 hospitals with 24-hour stroke units and on-call neurologists and providing IV fibrinolysis. Hospitals were assigned according to proximity and stroke severity; the most severe cases were immediately referred to the hospital with on-call interventional neurology care. Patient triage was provided by pre-hospital emergency services according to the NIHSS score. Modifications to code stroke in Asturias have allowed us to apply reperfusion therapies with good results, while emphasising equitable care and managing the severity-time ratio to offer the best and safest treatment for each patient as soon as possible. Copyright © 2015 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  11. Decoding Xing-Ling codes

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Refslund

    2002-01-01

    This paper describes an efficient decoding method for a recent construction of good linear codes as well as an extension to the construction. Furthermore, asymptotic properties and list decoding of the codes are discussed.......This paper describes an efficient decoding method for a recent construction of good linear codes as well as an extension to the construction. Furthermore, asymptotic properties and list decoding of the codes are discussed....

  12. WWER reactor physics code applications

    International Nuclear Information System (INIS)

    Gado, J.; Kereszturi, A.; Gacs, A.; Telbisz, M.

    1994-01-01

    The coupled steady-state reactor physics and thermohydraulic code system KARATE has been developed and applied for WWER-1000 and WWER-440 operational calculations. The 3 D coupled kinetic code KIKO3D has been developed and validated for WWER-440 accident analysis applications. The coupled kinetic code SMARTA developed by VTT Helsinki has been applied for WWER-440 accident analysis. The paper gives a summary of the experience in code development and application. (authors). 10 refs., 2 tabs., 5 figs

  13. The path of code linting

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Join the path of code linting and discover how it can help you reach higher levels of programming enlightenment. Today we will cover how to embrace code linters to offload cognitive strain on preserving style standards in your code base as well as avoiding error-prone constructs. Additionally, I will show you the journey ahead for integrating several code linters in the programming tools your already use with very little effort.

  14. The CORSYS neutronics code system

    International Nuclear Information System (INIS)

    Caner, M.; Krumbein, A.D.; Saphier, D.; Shapira, M.

    1994-01-01

    The purpose of this work is to assemble a code package for LWR core physics including coupled neutronics, burnup and thermal hydraulics. The CORSYS system is built around the cell code WIMS (for group microscopic cross section calculations) and 3-dimension diffusion code CITATION (for burnup and fuel management). We are implementing such a system on an IBM RS-6000 workstation. The code was rested with a simplified model of the Zion Unit 2 PWR. (authors). 6 refs., 8 figs., 1 tabs

  15. Bar codes for nuclear safeguards

    International Nuclear Information System (INIS)

    Keswani, A.N.; Bieber, A.M. Jr.

    1983-01-01

    Bar codes similar to those used in supermarkets can be used to reduce the effort and cost of collecting nuclear materials accountability data. A wide range of equipment is now commercially available for printing and reading bar-coded information. Several examples of each of the major types of commercially available equipment are given, and considerations are discussed both for planning systems using bar codes and for choosing suitable bar code equipment

  16. Bar codes for nuclear safeguards

    International Nuclear Information System (INIS)

    Keswani, A.N.; Bieber, A.M.

    1983-01-01

    Bar codes similar to those used in supermarkets can be used to reduce the effort and cost of collecting nuclear materials accountability data. A wide range of equipment is now commercially available for printing and reading bar-coded information. Several examples of each of the major types of commercially-available equipment are given, and considerations are discussed both for planning systems using bar codes and for choosing suitable bar code equipment

  17. Quick response codes in Orthodontics

    Directory of Open Access Journals (Sweden)

    Moidin Shakil

    2015-01-01

    Full Text Available Quick response (QR code codes are two-dimensional barcodes, which encodes for a large amount of information. QR codes in Orthodontics are an innovative approach in which patient details, radiographic interpretation, and treatment plan can be encoded. Implementing QR code in Orthodontics will save time, reduces paperwork, and minimizes manual efforts in storage and retrieval of patient information during subsequent stages of treatment.

  18. Multiple LDPC decoding for distributed source coding and video coding

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Luong, Huynh Van; Huang, Xin

    2011-01-01

    Distributed source coding (DSC) is a coding paradigm for systems which fully or partly exploit the source statistics at the decoder to reduce the computational burden at the encoder. Distributed video coding (DVC) is one example. This paper considers the use of Low Density Parity Check Accumulate...... (LDPCA) codes in a DSC scheme with feed-back. To improve the LDPC coding performance in the context of DSC and DVC, while retaining short encoder blocks, this paper proposes multiple parallel LDPC decoding. The proposed scheme passes soft information between decoders to enhance performance. Experimental...

  19. Cinder begin creative coding

    CERN Document Server

    Rijnieks, Krisjanis

    2013-01-01

    Presented in an easy to follow, tutorial-style format, this book will lead you step-by-step through the multi-faceted uses of Cinder.""Cinder: Begin Creative Coding"" is for people who already have experience in programming. It can serve as a transition from a previous background in Processing, Java in general, JavaScript, openFrameworks, C++ in general or ActionScript to the framework covered in this book, namely Cinder. If you like quick and easy to follow tutorials that will let yousee progress in less than an hour - this book is for you. If you are searching for a book that will explain al

  20. UNSPEC: revisited (semaphore code)

    International Nuclear Information System (INIS)

    Neifert, R.D.

    1981-01-01

    The UNSPEC code is used to solve the problem of unfolding an observed x-ray spectrum given the response matrix of the measuring system and the measured signal values. UNSPEC uses an iterative technique to solve the unfold problem. Due to experimental errors in the measured signal values and/or computer round-off errors, discontinuities and oscillatory behavior may occur in the iterated spectrum. These can be suppressed by smoothing the results after each iteration. Input/output options and control cards are explained; sample input and output are provided

  1. The FLIC conversion codes

    International Nuclear Information System (INIS)

    Basher, J.C.

    1965-05-01

    This report describes the FORTRAN programmes, FLIC 1 and FLIC 2. These programmes convert programmes coded in one dialect of FORTRAN to another dialect of the same language. FLIC 1 is a general pattern recognition and replacement programme whereas FLIC 2 contains extensions directed towards the conversion of FORTRAN II and S2 programmes to EGTRAN 1 - the dialect now in use on the Winfrith KDF9. FII or S2 statements are replaced where possible by their E1 equivalents; other statements which may need changing are flagged. (author)

  2. SPRAY code user's report

    International Nuclear Information System (INIS)

    Shire, P.R.

    1977-03-01

    The SPRAY computer code has been developed to model the effects of postulated sodium spray release from LMFBR piping within containment chambers. The calculation method utilizes gas convection, heat transfer and droplet combustion theory to calculate the pressure and temperature effects within the enclosure. The applicable range is 0-21 mol percent oxygen and .02-.30 inch droplets with or without humidity. Droplet motion and large sodium surface area combine to produce rapid heat release and pressure rise within the enclosed volume

  3. The FLIC conversion codes

    Energy Technology Data Exchange (ETDEWEB)

    Basher, J C [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1965-05-15

    This report describes the FORTRAN programmes, FLIC 1 and FLIC 2. These programmes convert programmes coded in one dialect of FORTRAN to another dialect of the same language. FLIC 1 is a general pattern recognition and replacement programme whereas FLIC 2 contains extensions directed towards the conversion of FORTRAN II and S2 programmes to EGTRAN 1 - the dialect now in use on the Winfrith KDF9. FII or S2 statements are replaced where possible by their E1 equivalents; other statements which may need changing are flagged. (author)

  4. Code Generation with Templates

    CERN Document Server

    Arnoldus, Jeroen; Serebrenik, A

    2012-01-01

    Templates are used to generate all kinds of text, including computer code. The last decade, the use of templates gained a lot of popularity due to the increase of dynamic web applications. Templates are a tool for programmers, and implementations of template engines are most times based on practical experience rather than based on a theoretical background. This book reveals the mathematical background of templates and shows interesting findings for improving the practical use of templates. First, a framework to determine the necessary computational power for the template metalanguage is presen

  5. Order functions and evaluation codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Pellikaan, Ruud; van Lint, Jack

    1997-01-01

    Based on the notion of an order function we construct and determine the parameters of a class of error-correcting evaluation codes. This class includes the one-point algebraic geometry codes as wella s the generalized Reed-Muller codes and the parameters are detremined without using the heavy...... machinery of algebraic geometry....

  6. Direct-semidirect (DSD) codes

    International Nuclear Information System (INIS)

    Cvelbar, F.

    1999-01-01

    Recent codes for direct-semidirect (DSD) model calculations in the form of answers to a detailed questionnaire are reviewed. These codes include those embodying the classical DSD approach covering only the transitions to the bound states (RAF, HIKARI, and those of the Bologna group), as well as the code CUPIDO++ that also treats transitions to unbound states. (author)

  7. Dual Coding, Reasoning and Fallacies.

    Science.gov (United States)

    Hample, Dale

    1982-01-01

    Develops the theory that a fallacy is not a comparison of a rhetorical text to a set of definitions but a comparison of one person's cognition with another's. Reviews Paivio's dual coding theory, relates nonverbal coding to reasoning processes, and generates a limited fallacy theory based on dual coding theory. (PD)

  8. Strongly-MDS convolutional codes

    NARCIS (Netherlands)

    Gluesing-Luerssen, H; Rosenthal, J; Smarandache, R

    Maximum-distance separable (MDS) convolutional codes have the property that their free distance is maximal among all codes of the same rate and the same degree. In this paper, a class of MDS convolutional codes is introduced whose column distances reach the generalized Singleton bound at the

  9. Lattice polytopes in coding theory

    Directory of Open Access Journals (Sweden)

    Ivan Soprunov

    2015-05-01

    Full Text Available In this paper we discuss combinatorial questions about lattice polytopes motivated by recent results on minimum distance estimation for toric codes. We also include a new inductive bound for the minimum distance of generalized toric codes. As an application, we give new formulas for the minimum distance of generalized toric codes for special lattice point configurations.

  10. Computer codes for safety analysis

    International Nuclear Information System (INIS)

    Holland, D.F.

    1986-11-01

    Computer codes for fusion safety analysis have been under development in the United States for about a decade. This paper will discuss five codes that are currently under development by the Fusion Safety Program. The purpose and capability of each code will be presented, a sample given, followed by a discussion of the present status and future development plans

  11. Geochemical computer codes. A review

    International Nuclear Information System (INIS)

    Andersson, K.

    1987-01-01

    In this report a review of available codes is performed and some code intercomparisons are also discussed. The number of codes treating natural waters (groundwater, lake water, sea water) is large. Most geochemical computer codes treat equilibrium conditions, although some codes with kinetic capability are available. A geochemical equilibrium model consists of a computer code, solving a set of equations by some numerical method and a data base, consisting of thermodynamic data required for the calculations. There are some codes which treat coupled geochemical and transport modeling. Some of these codes solve the equilibrium and transport equations simultaneously while other solve the equations separately from each other. The coupled codes require a large computer capacity and have thus as yet limited use. Three code intercomparisons have been found in literature. It may be concluded that there are many codes available for geochemical calculations but most of them require a user that us quite familiar with the code. The user also has to know the geochemical system in order to judge the reliability of the results. A high quality data base is necessary to obtain a reliable result. The best results may be expected for the major species of natural waters. For more complicated problems, including trace elements, precipitation/dissolution, adsorption, etc., the results seem to be less reliable. (With 44 refs.) (author)

  12. Separate Turbo Code and Single Turbo Code Adaptive OFDM Transmissions

    Directory of Open Access Journals (Sweden)

    Lei Ye

    2009-01-01

    Full Text Available This paper discusses the application of adaptive modulation and adaptive rate turbo coding to orthogonal frequency-division multiplexing (OFDM, to increase throughput on the time and frequency selective channel. The adaptive turbo code scheme is based on a subband adaptive method, and compares two adaptive systems: a conventional approach where a separate turbo code is used for each subband, and a single turbo code adaptive system which uses a single turbo code over all subbands. Five modulation schemes (BPSK, QPSK, 8AMPM, 16QAM, and 64QAM are employed and turbo code rates considered are 1/2 and 1/3. The performances of both systems with high (10−2 and low (10−4 BER targets are compared. Simulation results for throughput and BER show that the single turbo code adaptive system provides a significant improvement.

  13. New quantum codes constructed from quaternary BCH codes

    Science.gov (United States)

    Xu, Gen; Li, Ruihu; Guo, Luobin; Ma, Yuena

    2016-10-01

    In this paper, we firstly study construction of new quantum error-correcting codes (QECCs) from three classes of quaternary imprimitive BCH codes. As a result, the improved maximal designed distance of these narrow-sense imprimitive Hermitian dual-containing quaternary BCH codes are determined to be much larger than the result given according to Aly et al. (IEEE Trans Inf Theory 53:1183-1188, 2007) for each different code length. Thus, families of new QECCs are newly obtained, and the constructed QECCs have larger distance than those in the previous literature. Secondly, we apply a combinatorial construction to the imprimitive BCH codes with their corresponding primitive counterpart and construct many new linear quantum codes with good parameters, some of which have parameters exceeding the finite Gilbert-Varshamov bound for linear quantum codes.

  14. Quantum Codes From Cyclic Codes Over The Ring R 2

    International Nuclear Information System (INIS)

    Altinel, Alev; Güzeltepe, Murat

    2016-01-01

    Let R 2 denotes the ring F 2 + μF 2 + υ 2 + μυ F 2 + wF 2 + μwF 2 + υwF 2 + μυwF 2 . In this study, we construct quantum codes from cyclic codes over the ring R 2 , for arbitrary length n, with the restrictions μ 2 = 0, υ 2 = 0, w 2 = 0, μυ = υμ, μw = wμ, υw = wυ and μ (υw) = (μυ) w. Also, we give a necessary and sufficient condition for cyclic codes over R 2 that contains its dual. As a final point, we obtain the parameters of quantum error-correcting codes from cyclic codes over R 2 and we give an example of quantum error-correcting codes form cyclic codes over R 2 . (paper)

  15. Separate Turbo Code and Single Turbo Code Adaptive OFDM Transmissions

    Directory of Open Access Journals (Sweden)

    Burr Alister

    2009-01-01

    Full Text Available Abstract This paper discusses the application of adaptive modulation and adaptive rate turbo coding to orthogonal frequency-division multiplexing (OFDM, to increase throughput on the time and frequency selective channel. The adaptive turbo code scheme is based on a subband adaptive method, and compares two adaptive systems: a conventional approach where a separate turbo code is used for each subband, and a single turbo code adaptive system which uses a single turbo code over all subbands. Five modulation schemes (BPSK, QPSK, 8AMPM, 16QAM, and 64QAM are employed and turbo code rates considered are and . The performances of both systems with high ( and low ( BER targets are compared. Simulation results for throughput and BER show that the single turbo code adaptive system provides a significant improvement.

  16. Converter of a continuous code into the Grey code

    International Nuclear Information System (INIS)

    Gonchar, A.I.; TrUbnikov, V.R.

    1979-01-01

    Described is a converter of a continuous code into the Grey code used in a 12-charged precision amplitude-to-digital converter to decrease the digital component of spectrometer differential nonlinearity to +0.7% in the 98% range of the measured band. To construct the converter of a continuous code corresponding to the input signal amplitude into the Grey code used is the regularity in recycling of units and zeroes in each discharge of the Grey code in the case of a continuous change of the number of pulses of a continuous code. The converter is constructed on the elements of 155 series, the frequency of continuous code pulse passing at the converter input is 25 MHz

  17. Synthesis, structural, DFT studies, docking and antibacterial activity of a xanthene based hydrazone ligand

    Science.gov (United States)

    Naseem, Saira; Khalid, Muhammad; Tahir, Muhammad Nawaz; Halim, Mohammad A.; Braga, Ataualpa A. C.; Naseer, Muhammad Moazzam; Shafiq, Zahid

    2017-09-01

    Herein, we present the synthesis of novel xanthene-based hydrazone (1). The chemical structure of 1 was resolved using spectroscopic techniques such as NMR, FT-IR, UV-VIS and X-ray crystallographic approaches. X-ray diffraction analysis shows that the compound (1) crystallizes in triclinic crystal lattice with the Pbar1 space group and diffused to form multi-layered structure due to non-covalent interactions such as intramolecular hydrogen bonding (H.B). In addition to experimental investigation, density functional theory (DFT) calculation with M06-2X/6-31G(d,p) and B3LYP/6-31G(d,p) level of theories was performed on compound (1) to obtain optimized geometry, spectroscopic and electronic properties. DFT optimized geometry shows good agreement with the experimental XRD structure. The hyper conjugative interactions and hydrogen bonding network are responsible for the stability of compound (1) as revealed by natural bond orbital (NBO) calculation. Moreover, hydrogen bonding network in the dimer is confirmed by FT-IR and thermodynamic studies showing excellent agreement with XRD and NBO findings. TD-DFT/UV-VIS analysis provides insight that maximum excitation is found in 1 which shows good agreement with experimental UV-VIS result. The global reactivity parameters are calculated using the energies of frontier molecular orbitals also disclosed that the compound is more stable might be due to hydrogen bonding network. Experimental and molecular docking studies indicated that this compound has anti-bacterial and anti-diabetic properties. The binding affinity of this compound against the multidrug efflux pump subunit AcrB OS=Escherichia coli (strain K12) and Human Pancreatic Alpha-Amylase is -9.2 and -10.00 kcal/mol which are higher than the control drugs. Pi-Pi, Pi-anaion, amide-pi and pi-alkyl bonds play key role in drug-protein complexes.

  18. STUDI KOMPUTASI BERBASIS DFT TERHADAP FENOMENA QUANTUM TUNNELING DALAM ISOMERISASI METILHIDROKSIKARBENA

    Directory of Open Access Journals (Sweden)

    Jumaidil Awal

    2016-01-01

    Full Text Available Density functional theory-based methods have been applied to predict the most possible one among the isomerizations of methylhydroxycarbene considering the probability of hydrogen tunneling occurrence. B3LYP/6-31+G(d,p and M08-SO/6-31+G(d,p methods were applied in all computations using GAMESS-US software. There were three steps of computation in this research. First, electronic structure computations of both equilibrium and transition compounds involved in all isomerization alternatives in order to obtain the optimum structures of the compounds. Second, vibrational computations of optimum transition structures to ensure that each of the respective structures is well on its potential energy surface. Third, tunneling analysis accomplished by intrinsic reaction coordinate (IRC computatuins for all isomerization alternatives followed by tunneling probabilitycalculation using the Wentzel-Kramers-Brillouin (WKB formula for methylhydroxycarbene isomerizations. The result of this research showed that the DFT methods successfully produced the optimum structure of each compound. Both DFT methods also successfully mapped all the intrinsic reaction coordinates. B3LYP/6-31+G(d,p method gave tunneling probabilities of 3.55 x 10-19 for the isomerization into acetaldehyde and 3.30 x 10-20 for that into vinyl alcohol. While M08-SO/6-31+G(d,p method gave tunneling probabilities of 2.38 x 10-23 for the isomerization into acetaldehyde and 4.79 x 10-23 for that into vinyl alcohol. Keywords: DFT, methylhydroxycarbene, hydrogen tunneling, isomerization

  19. Computing sextic centrifugal distortion constants by DFT: A benchmark analysis on halogenated compounds

    Science.gov (United States)

    Pietropolli Charmet, Andrea; Stoppa, Paolo; Tasinato, Nicola; Giorgianni, Santi

    2017-05-01

    This work presents a benchmark study on the calculation of the sextic centrifugal distortion constants employing cubic force fields computed by means of density functional theory (DFT). For a set of semi-rigid halogenated organic compounds several functionals (B2PLYP, B3LYP, B3PW91, M06, M06-2X, O3LYP, X3LYP, ωB97XD, CAM-B3LYP, LC-ωPBE, PBE0, B97-1 and B97-D) were used for computing the sextic centrifugal distortion constants. The effects related to the size of basis sets and the performances of hybrid approaches, where the harmonic data obtained at higher level of electronic correlation are coupled with cubic force constants yielded by DFT functionals, are presented and discussed. The predicted values were compared to both the available data published in the literature and those obtained by calculations carried out at increasing level of electronic correlation: Hartree-Fock Self Consistent Field (HF-SCF), second order Møller-Plesset perturbation theory (MP2), and coupled-cluster single and double (CCSD) level of theory. Different hybrid approaches, having the cubic force field computed at DFT level of theory coupled to harmonic data computed at increasing level of electronic correlation (up to CCSD level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T)) were considered. The obtained results demonstrate that they can represent reliable and computationally affordable methods to predict sextic centrifugal terms with an accuracy almost comparable to that yielded by the more expensive anharmonic force fields fully computed at MP2 and CCSD levels of theory. In view of their reduced computational cost, these hybrid approaches pave the route to the study of more complex systems.

  20. TD-DFT Insight into Photodissociation of Co-C Bond in Coenzyme B12

    Directory of Open Access Journals (Sweden)

    Pawel Michal Kozlowski

    2014-02-01

    Full Text Available Coenzyme B12 (AdoCbl is one of the most biologically active forms of vitamin B12, and continues to be a topic of active research interest. The mechanism of Co-C bond cleavage in AdoCbl, and the corresponding enzymatic reactions are however, not well understood at the molecular level. In this work, time-dependent density functional theory (TD-DFT has been applied to investigate the photodissociation of coenzyme B12. To reduce computational cost, while retaining the major spectroscopic features of AdoCbl, a truncated model based on ribosylcobalamin (RibCbl was used to simulate Co-C photodissociation. Equilibrium geometries of RibCbl were obtained by optimization at the DFT/BP86/TZVP level of theory, and low-lying excited states were calculated by TD-DFT using the same functional and basis set. The calculated singlet states, and absorption spectra were simulated in both the gas phase, and water, using the polarizable continuum model (PCM. Both spectra were in reasonable agreement with experimental data, and potential energy curves based on vertical excitations were plotted to explore the nature of Co-C bond dissociation. It was found that a repulsive 3(σCo-C → σ*Co-C triplet state became dissociative at large Co-C bond distance, similar to a previous observation for methylcobalamin (MeCbl. Furthermore, potential energy surfaces (PESs obtained as a function of both Co-CRib and Co-NIm distances, identify the S1 state as a key intermediate generated during photoexcitation of RibCbl, attributed to a mixture of a MLCT (metal-to-ligand charge transfer and a σ bonding-ligand charge transfer (SBLCT states.

  1. Adsorption of alanine with heteroatom substituted fullerene for solar cell application: A DFT study.

    Science.gov (United States)

    Dheivamalar, S; Sugi, L; Ravichandran, K; Sriram, S

    2018-05-14

    C 20 is the most important fullerene cage and alanine is the simplest representation of a backbone unit of the protein. The absorption feasibility of alanine molecule in the Si-doped C 20 and B-doped C 20 fullerenes has been studied based on calculated electronic properties of fullerenes using density functional theory (DFT). In this work, we explore the ability of Si-doped C 20 , B-doped C 20 fullerene to interact with alanine at the DFT-B3LYP/6-31G, RHF level of theory. We find that noticeable structural change takes place in C 20 when one of its carbon is substituted with Si or B. The molecular geometry, electronic properties and vibrational analysis have also been performed on the title compounds. The NMR study reveals the aromaticity of the pure and doped fullerene compounds. Stability of the doped fullerene - alanine compound arises from hyper conjugative interactions. It leads to one of the major property of bioactivity, charge transfer and delocalization of charge and this properties has been analyzed using Natural Bond Orbital (NBO) analysis. The energy gap of the doped fullerene reveals that there is a decrease in the size of energy gap significantly, making them more reactive as compared to C 20 fullerene. Theoretical studies of the electronic spectra by using time - dependent density functional theory (TD-DFT) method were helpful to interpret the observed electronic transition state. We aim to optimize the performance of the solar cells by altering the frontier orbital energy gaps. Considering all studied properties, it may be inferred that the applicability of C 20 fullerene as the non-linear optical (NLO) material and its NLO property would increase on doping fullerene with Si and B atom. Specifically C 19 Si would be better among them. Copyright © 2018. Published by Elsevier B.V.

  2. Anatase-rutile phase transformation of titanium dioxide bulk material: a DFT + U approach

    International Nuclear Information System (INIS)

    Vu, Nam H; Le, Hieu V; Cao, Thi M; Pham, Viet V; Le, Hung M; Nguyen-Manh, Duc

    2012-01-01

    The anatase-rutile phase transformation of TiO 2 bulk material is investigated using a density functional theory (DFT) approach in this study. According to the calculations employing the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional with the Vanderbilt ultrasoft pseudopotential, it is suggested that the anatase phase is more energetically stable than rutile, which is in variance with the experimental observations. Consequently, the DFT + U method is employed in order to predict the correct structural stability in titania from electronic-structure-based total energy calculations. The Hubbard U term is determined by examining the band structure of rutile with various values of U from 3 to 10 eV. At U = 5 eV, a theoretical bandgap for rutile is obtained as 3.12 eV, which is in very good agreement with the reported experimental bandgap. Hence, we choose the DFT + U method (with U = 5 eV) to investigate the transformation pathway using the newly-developed solid-state nudged elastic band (ss-NEB) method, and consequently obtain an intermediate transition structure that is 9.794 eV per four-TiO 2 above the anatase phase. When the Ti-O bonds in the transition state are examined using charge density analysis, seven Ti-O bonds (out of 24 bonds in the anatase unit cell) are broken, and this result is in excellent agreement with a previous experimental study (Penn and Banfield 1999 Am. Miner. 84 871-6).

  3. Supervised Transfer Sparse Coding

    KAUST Repository

    Al-Shedivat, Maruan

    2014-07-27

    A combination of the sparse coding and transfer learn- ing techniques was shown to be accurate and robust in classification tasks where training and testing objects have a shared feature space but are sampled from differ- ent underlying distributions, i.e., belong to different do- mains. The key assumption in such case is that in spite of the domain disparity, samples from different domains share some common hidden factors. Previous methods often assumed that all the objects in the target domain are unlabeled, and thus the training set solely comprised objects from the source domain. However, in real world applications, the target domain often has some labeled objects, or one can always manually label a small num- ber of them. In this paper, we explore such possibil- ity and show how a small number of labeled data in the target domain can significantly leverage classifica- tion accuracy of the state-of-the-art transfer sparse cod- ing methods. We further propose a unified framework named supervised transfer sparse coding (STSC) which simultaneously optimizes sparse representation, domain transfer and classification. Experimental results on three applications demonstrate that a little manual labeling and then learning the model in a supervised fashion can significantly improve classification accuracy.

  4. Internal dynamics in helical molecules studied by X-ray diffraction, NMR spectroscopy and DFT calculations

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Storch, Jan; Církva, Vladimír; Císařová, I.; Sýkora, Jan

    2017-01-01

    Roč. 19, č. 4 (2017), s. 2900-2907 ISSN 1463-9076 R&D Projects: GA ČR GA15-11223S; GA ČR GA15-12719S Institutional support: RVO:61388963 ; RVO:67985858 Keywords : helicene * NMR spectroscopy * DFT calculations Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry; Physical chemistry (UCHP-M) Impact factor: 4.123, year: 2016 http://pubs.rsc.org/en/content/articlehtml/2013/cp/c6cp07552e

  5. DFT/B3LYP study of tocopherols and chromans antioxidant action energetics

    International Nuclear Information System (INIS)

    Klein, Erik; Lukes, Vladimir; Ilcin, Michal

    2007-01-01

    Gas-phase reaction enthalpies related to the individual steps of three phenolic antioxidants action mechanisms - hydrogen atom transfer (HAT), single-electron transfer-proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET) for four tocopherols and seven chromans - were calculated using DFT/B3LYP method. For α-tocopherol, one of the chromans and phenol, reaction enthalpies in water were computed. In comparison to gas phase, water causes severe changes in the energetics of studied compounds antioxidant action. From the thermodynamic point of view, entering SPLET mechanism represents the most probable process in water

  6. DFT/B3LYP study of tocopherols and chromans antioxidant action energetics

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Erik [Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinskeho 9, SK-812 37 Bratislava (Slovakia)], E-mail: erik.klein@stuba.sk; Lukes, Vladimir; Ilcin, Michal [Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinskeho 9, SK-812 37 Bratislava (Slovakia)

    2007-07-09

    Gas-phase reaction enthalpies related to the individual steps of three phenolic antioxidants action mechanisms - hydrogen atom transfer (HAT), single-electron transfer-proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET) for four tocopherols and seven chromans - were calculated using DFT/B3LYP method. For {alpha}-tocopherol, one of the chromans and phenol, reaction enthalpies in water were computed. In comparison to gas phase, water causes severe changes in the energetics of studied compounds antioxidant action. From the thermodynamic point of view, entering SPLET mechanism represents the most probable process in water.

  7. Tuning of nanodiamond particles’ optical properties by structural defects and surface modifications: DFT modelling

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, Irena; Kovalenko, Alexander; Fendrych, František; Petráková, Vladimíra; Záliš, Stanislav; Nesladek, M.

    2011-01-01

    Roč. 21, č. 45 (2011), s. 18248-18255 ISSN 0959-9428 R&D Projects: GA ČR(CZ) GAP304/10/1951; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40400503 Keywords : nanodiamond * luminiscence * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.968, year: 2011 http://pubs.rsc.org/en/content/articlelanding/2011/JM/C1JM13525B

  8. Estudio DFT de agregados moleculares en aerosoles y nubes estratosféricas polares

    OpenAIRE

    Verdes Gago, María de los Ángeles

    2015-01-01

    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química Física Aplicada. Fecha de lectura: 19-12-2015 El interés por profundizar en mecanismos de nucleación de los agregados y de las nubes estratosféricas polares, responsables de la destrucción del ozono estratosférico, ha sido la motivación para realizar los cálculos de agregados mediante la teoría del funcional de la densidad (DFT) en esta tesis, para obtener estructuras optimizada...

  9. Self-Aggregation in Pyrrole:  Matrix Isolation, Solid State Infrared Spectroscopy, and DFT Study

    OpenAIRE

    Gómez-Zavaglia, Andrea; Fausto, Rui

    2004-01-01

    Pyrrole (C4H5N) was embedded in low-temperature solid inert matrixes (argon, xenon; T = 9 K) and both the monomer and low-order aggregates characterized by FTIR spectroscopy. The spectroscopic studies were complemented by extensive theoretical [DFT(B3LYP)/6-311++G(d,p)] structural and vibrational studies carried out for the monomer and their self-aggregates (up to four units). The calculated spectrum for monomeric pyrrole fits well those obtained immediately after deposition (at 9 K) of dilut...

  10. A Reinvestigation of the Ionic Liquid Diisopropylethylammonium Formate by NMR and DFT Methods

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Lund, Torben; Krake, Jacob

    2016-01-01

    The complex between diisopropylethylamine (DIPEA) and formic acid has been reinvestigated. Mixing the compounds in the ratio 1:1 leads to a phase separation in which the upper phase is DIPEA, the lower phase is the “ionic liquid” named DIPEF. A combined NMR and DFT study shows that the lower phase...... that presented elsewhere. However, the present picture should be considered using acids and bases with a pKa difference less than 8. The formic acid content in the DIPEF ionic liquid causes desorption of the dye-sensitized solar cell (DSC) dye N719 from the photo anode and DIPEF is therefore not a suitable...

  11. Cis/trans Coordination in olefin metathesis by static and molecular dynamic DFT calculations

    KAUST Repository

    Poater, Albert

    2014-05-25

    In regard to [(N-heterocyclic carbene)Ru]-based catalysts, it is still a matter of debate if the substrate binding is preferentially cis or trans to the N-heterocyclic carbene ligand. By means of static and molecular dynamic DFT calculations, a simple olefin, like ethylene, is shown to be prone to the trans binding. Bearing in mind the higher reactivity of trans isomers in olefin metathesis, this insight helps to construct small alkene substrates with increased reactivity. © 2014 Springer Science+Business Media New York.

  12. Determination of structural and spectroscopic parameters of 4-hydroxyantipyrine, using DFT method

    International Nuclear Information System (INIS)

    Catikkas, B.; Aktan, E.

    2010-01-01

    In this study, structural and vibrational parameters were calculated. First of all, conformational analysis of 4-hydroxyantipyrine was carried out in gas phase. Then, the geometric parameters (bond length, bond angle and tortion angle) of the most stable conformer were calculated and the Infrared and Raman frequencies of fundamental modes were determined. Calculations were made by using DFT B3LYP/6-311+G(d,p) method implemented the Gaussian 03 program. Afterwards, vibrational assignments of the title molecule were calculated by using Scaled Quantum Mechanical (SQM) analysis. In conclusion, calculated values were compared with corresponding experimental results.

  13. DFT molecular modeling and NMR conformational analysis of a new longipinenetriolone diester

    Science.gov (United States)

    Cerda-García-Rojas, Carlos M.; Guerra-Ramírez, Diana; Román-Marín, Luisa U.; Hernández-Hernández, Juan D.; Joseph-Nathan, Pedro

    2006-05-01

    The structure and conformational behavior of the new natural compound (4 R,5 S,7 S,8 R,9 S,10 R,11 R)-longipin-2-en-7,8,9-triol-1-one 7-angelate-9-isovalerate (1) isolated from Stevia eupatoria, were studied by molecular modeling and NMR spectroscopy. A Monte Carlo search followed by DFT calculations at the B3LYP/6-31G* level provided the theoretical conformations of the sesquiterpene framework, which were in full agreement with results derived from the 1H- 1H coupling constant analysis.

  14. Cis/trans Coordination in olefin metathesis by static and molecular dynamic DFT calculations

    KAUST Repository

    Poater, Albert; Correa, Andrea; Pump, Eva; Cavallo, Luigi

    2014-01-01

    In regard to [(N-heterocyclic carbene)Ru]-based catalysts, it is still a matter of debate if the substrate binding is preferentially cis or trans to the N-heterocyclic carbene ligand. By means of static and molecular dynamic DFT calculations, a simple olefin, like ethylene, is shown to be prone to the trans binding. Bearing in mind the higher reactivity of trans isomers in olefin metathesis, this insight helps to construct small alkene substrates with increased reactivity. © 2014 Springer Science+Business Media New York.

  15. A facile approach towards synthesis, characterization, single crystal structure, and DFT study of 5-bromosalicylalcohol

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Rupali, E-mail: rastogirupali@ymail.com [ITM University, Department of Chemistry (India); Tarannum, Nazia [Ch. Charan Singh University, Department of Chemistry (India); Butcher, R. J. [Howard University, Chemistry Department (United States)

    2016-03-15

    5-Bromosalicylalcohol was prepared by the interaction of NaBH{sub 4} and 5-bromosalicylaldehyde. The use of sodium borohydride makes the reaction easy, facile, economic and does not require any toxic catalyst. The compound is characterized by FTIR, {sup 1}H NMR, {sup 13}C NMR, TEM and ESI-mass spectra. Crystal structure is determined by single crystal X-ray analysis. Quantum mechanical calculations of geometries, energies and thermodynamic parameters are carried out using density functional theory (DFT/B3LYP) method with 6-311G(d,p) basis set. The optimized geometrical parameters obtained by B3LYP method show good agreement with experimental data.

  16. Study of a Conformational Equilibrium of Lisinopril by HPLC, NMR, and DFT

    Directory of Open Access Journals (Sweden)

    Sondes Bouabdallah

    2014-01-01

    Full Text Available The isomerization of lisinopril has been investigated using chromatographic, NMR spectroscopic, and theoretical calculations. The NMR data, particularly the NOEDIFF experiments, show that the major species that was eluted first is the trans form. The proportion was 77% and 23% for the trans and cis, respectively. The thermodynamic parameters (ΔH, ΔS, and ΔG were determined by varying the temperature in the NMR experiments. The interpretations of the experimental data were further supported by DFT/B3LYP calculations.

  17. (E-2-Acetyl-4-[(3-methylphenyldiazenyl]phenol: an X-ray and DFT study

    Directory of Open Access Journals (Sweden)

    Orhan Büyükgüngör

    2010-03-01

    Full Text Available The title compound, C15H14N2O2, an azo dye, displays a trans configuration with respect to the N=N bridge. The dihedral angle between the aromatic rings is 0.18 (14°. There is a strong intramolecular O—H...O hydrogen bond. Geometrical parameters, determined using X-ray diffraction techniques, are compared with those calculated by density functional theory (DFT, using hybrid exchange–correlation functional, B3LYP and semi-empirical (PM3 methods.

  18. Vibrational analysis and thermodynamic properties of C120 nanotorus: a DFT study

    International Nuclear Information System (INIS)

    López-Chávez, Ernesto; Cruz-Torres, Armando; Landa Castillo-Alvarado, Fray de; Ortíz-López, Jaime; Peña-Castañeda, Yésica A.; Martínez-Magadán, José Manuel

    2011-01-01

    Density functional theory (DFT) computational methods are applied to a C 120 carbon nanotorus studied as an isolated molecular species, using the functional GGA PW91. This toroidal form of carbon contains five fold, six fold, and sevenfold rings. The calculated cohesive energy of the nanotorus, indicates that the ground state of this structure is energetically more stable than that of fullerene C 60 . Geometry and stability, Raman and IR vibrational analysis and thermodynamic properties have been reported and compared to the values obtained by other authors.

  19. DFT, Its Impact on Condensed Matter and on ``Materials-Genome'' Research

    Science.gov (United States)

    Scheffler, Matthias

    About 40 years ago, two seminal works demonstrated the power of density-functional theory (DFT) for real materials. These studies by Moruzzi, Janak, and Williams on metals and Yin and Cohen on semiconductors visualized the spatial distribution of electrons, predicted the equation of state of solids, crystal stability, pressure-induced phase transitions, and more. They also stressed the importance of identifying trends by looking at many systems (e.g. the whole transition-metal series). Since then, the field has seen numerous applications of DFT to solids, liquids, defects, surfaces, and interfaces providing important descriptions and explanations as well as predictions of experimentally not yet identified systems. - ∖ ∖ About 10 years ago, G. Ceder and his group [Ref. 3 and references therein] started with high-throughput screening calculations in the spirit of what in 2011 became the ``Materials Genome Initiative''. The idea of high-throughput screening is old (a key example is the ammonia catalyst found by A. Mittasch at BASF more than 100 years ago), but it is now increasingly becoming clear that big data of materials does not only provide direct information but that the data is structured. This enables interpolation, (modest) extrapolation, and new routes towards understanding [Ref. 5 and references therein]. - ∖ ∖ The amount of data created by ``computational materials science'' is significant. For instance, the NoMaD Repository (which includes also data from other repositories, e.g. AFLOWLIB and OQMD) now holds more than 18 million total-energy calculations. In fact, the amount of data of computational materials science is steadily increasing, and about hundred million CPU core hours are nowadays used every day, worldwide, for DFT calculations for materials. - ∖ ∖ The talk will summarize this enormous impact of DFT on materials science, and it will address the next steps, e.g. the issue how to exploit big data of materials for doing forefront

  20. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods.

    Science.gov (United States)

    Liu, Yuan; Zhao, Jijun; Li, Fengyu; Chen, Zhongfang

    2013-01-15

    Accurate description of hydrogen-bonding energies between water molecules and van der Waals interactions between guest molecules and host water cages is crucial for study of methane hydrates (MHs). Using high-level ab initio MP2 and CCSD(T) results as the reference, we carefully assessed the performance of a variety of exchange-correlation functionals and various basis sets in describing the noncovalent interactions in MH. The functionals under investigation include the conventional GGA, meta-GGA, and hybrid functionals (PBE, PW91, TPSS, TPSSh, B3LYP, and X3LYP), long-range corrected functionals (ωB97X, ωB97, LC-ωPBE, CAM-B3LYP, and LC-TPSS), the newly developed Minnesota class functionals (M06-L, M06-HF, M06, and M06-2X), and the dispersion-corrected density functional theory (DFT) (DFT-D) methods (B97-D, ωB97X-D, PBE-TS, PBE-Grimme, and PW91-OBS). We found that the conventional functionals are not suitable for MH, notably, the widely used B3LYP functional even predicts repulsive interaction between CH(4) and (H(2)O)(6) cluster. M06-2X is the best among the M06-Class functionals. The ωB97X-D outperforms the other DFT-D methods and is recommended for accurate first-principles calculations of MH. B97-D is also acceptable as a compromise of computational cost and precision. Considering both accuracy and efficiency, B97-D, ωB97X-D, and M06-2X functional with 6-311++G(2d,2p) basis set without basis set superposition error (BSSE) correction are recommended. Though a fairly large basis set (e.g., aug-cc-pVTZ) and BSSE correction are necessary for a reliable MP2 calculation, DFT methods are less sensitive to the basis set and BSSE correction if the basis set is sufficient (e.g., 6-311++G(2d,2p)). These assessments provide useful guidance for choosing appropriate methodology of first-principles simulation of MH and related systems. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.