Mahé, Louis; Roy, Marie-Françoise
1992-01-01
Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...
Bochnak, Jacek; Roy, Marie-Françoise
1998-01-01
This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.
Topology, ergodic theory, real algebraic geometry Rokhlin's memorial
Turaev, V
2001-01-01
This book is dedicated to the memory of the outstanding Russian mathematician, V. A. Rokhlin (1919-1984). It is a collection of research papers written by his former students and followers, who are now experts in their fields. The topics in this volume include topology (the Morse-Novikov theory, spin bordisms in dimension 6, and skein modules of links), real algebraic geometry (real algebraic curves, plane algebraic surfaces, algebraic links, and complex orientations), dynamics (ergodicity, amenability, and random bundle transformations), geometry of Riemannian manifolds, theory of Teichmüller
From combinatorial optimization to real algebraic geometry and back
Janez Povh
2014-12-01
Full Text Available In this paper, we explain the relations between combinatorial optimization and real algebraic geometry with a special focus to the quadratic assignment problem. We demonstrate how to write a quadratic optimization problem over discrete feasible set as a linear optimization problem over the cone of completely positive matrices. The latter formulation enables a hierarchy of approximations which rely on results from polynomial optimization, a sub-eld of real algebraic geometry.
Lefschetz, Solomon
2005-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
Real algebraic geometry for matrices over commutative rings
Cimpric, Jaka
2011-01-01
We define and study preorderings and orderings on rings of the form $M_n(R)$ where $R$ is a commutative unital ring. We extend the Artin-Lang theorem and Krivine-Stengle Stellens\\"atze (both abstract and geometric) from $R$ to $M_n(R)$. While the orderings of $M_n(R)$ are in one-to-one correspondence with the orderings of $R$, this is not true for preorderings. Therefore, our theory is not Morita equivalent to the classical real algebraic geometry.
Foundations of algebraic geometry
Weil, A
1946-01-01
This classic is one of the cornerstones of modern algebraic geometry. At the same time, it is entirely self-contained, assuming no knowledge whatsoever of algebraic geometry, and no knowledge of modern algebra beyond the simplest facts about abstract fields and their extensions, and the bare rudiments of the theory of ideals.
Algorithms in Algebraic Geometry
Dickenstein, Alicia; Sommese, Andrew J
2008-01-01
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its
Algebra-Geometry of Piecewise Algebraic Varieties
Chun Gang ZHU; Ren Hong WANG
2012-01-01
Algebraic variety is the most important subject in classical algebraic geometry.As the zero set of multivariate splines,the piecewise algebraic variety is a kind generalization of the classical algebraic variety.This paper studies the correspondence between spline ideals and piecewise algebraic varieties based on the knowledge of algebraic geometry and multivariate splines.
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
An analytical approach to bistable biological circuit discrimination using real algebraic geometry.
Siegal-Gaskins, Dan; Franco, Elisa; Zhou, Tiffany; Murray, Richard M
2015-07-06
Biomolecular circuits with two distinct and stable steady states have been identified as essential components in a wide range of biological networks, with a variety of mechanisms and topologies giving rise to their important bistable property. Understanding the differences between circuit implementations is an important question, particularly for the synthetic biologist faced with determining which bistable circuit design out of many is best for their specific application. In this work we explore the applicability of Sturm's theorem--a tool from nineteenth-century real algebraic geometry--to comparing 'functionally equivalent' bistable circuits without the need for numerical simulation. We first consider two genetic toggle variants and two different positive feedback circuits, and show how specific topological properties present in each type of circuit can serve to increase the size of the regions of parameter space in which they function as switches. We then demonstrate that a single competitive monomeric activator added to a purely monomeric (and otherwise monostable) mutual repressor circuit is sufficient for bistability. Finally, we compare our approach with the Routh-Hurwitz method and derive consistent, yet more powerful, parametric conditions. The predictive power and ease of use of Sturm's theorem demonstrated in this work suggest that algebraic geometric techniques may be underused in biomolecular circuit analysis.
Kollár, János
1997-01-01
This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.
Kendig, Keith
2015-01-01
Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th
Algebra, Arithmetic, and Geometry
Tschinkel, Yuri
2009-01-01
The two volumes of "Algebra, Arithmetic, and Geometry: In Honor of Y.I. Manin" are composed of invited expository articles and extensions detailing Manin's contributions to the subjects, and are in celebration of his 70th birthday. The well-respected and distinguished contributors include: Behrend, Berkovich, Bost, Bressler, Calaque, Carlson, Chambert-Loir, Colombo, Connes, Consani, Dabrowski, Deninger, Dolgachev, Donaldson, Ekedahl, Elsenhans, Enriques, Etingof, Fock, Friedlander, Geemen, Getzler, Goncharov, Harris, Iskovskikh, Jahnel, Kaledin, Kapranov, Katz, Kaufmann, Kollar, Kont
REAL PIECEWISE ALGEBRAIC VARIETY
Ren-hong Wang; Yi-sheng Lai
2003-01-01
We give definitions of real piecewise algebraic variety and its dimension. By using the techniques of real radical ideal, P-radical ideal, affine Hilbert polynomial, Bernstein-net form of polynomials on simplex, and decomposition of semi-algebraic set, etc., we deal with the dimension of the real piecewise algebraic variety and real Nullstellensatz in Cμ spline ring.
Linear algebra and projective geometry
Baer, Reinhold
2005-01-01
Geared toward upper-level undergraduates and graduate students, this text establishes that projective geometry and linear algebra are essentially identical. The supporting evidence consists of theorems offering an algebraic demonstration of certain geometric concepts. These focus on the representation of projective geometries by linear manifolds, of projectivities by semilinear transformations, of collineations by linear transformations, and of dualities by semilinear forms. These theorems lead to a reconstruction of the geometry that constituted the discussion's starting point, within algebra
Shafarevich, Igor Rostislavovich
1994-01-01
Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...
Müller, Stefan; Feliu, Elisenda; Regensburger, Georg
2016-01-01
We give necessary and sufficient conditions in terms of sign vectors for the injectivity of families of polynomials maps with arbitrary real exponents defined on the positive orthant. Our work relates and extends existing injectivity conditions expressed in terms of Jacobian matrices and determin...... and determinants. In the context of chemical reaction networks with power-law kinetics, our results can be used to preclude as well as to guarantee multiple positive steady states. In the context of real algebraic geometry, our results reveal the first ......We give necessary and sufficient conditions in terms of sign vectors for the injectivity of families of polynomials maps with arbitrary real exponents defined on the positive orthant. Our work relates and extends existing injectivity conditions expressed in terms of Jacobian matrices...
Algebra and geometry of Hamilton's quaternions
Krishnaswami, Govind S
2016-01-01
Inspired by the relation between the algebra of complex numbers and plane geometry, William Rowan Hamilton sought an algebra of triples for application to three dimensional geometry. Unable to multiply and divide triples, he invented a non-commutative division algebra of quadruples, in what he considered his most significant work, generalizing the real and complex number systems. We give a motivated introduction to quaternions and discuss how they are related to Pauli matrices, rotations in three dimensions, the three sphere, the group SU(2) and the celebrated Hopf fibrations.
Hopf algebras in noncommutative geometry
Varilly, J C
2001-01-01
We give an introductory survey to the use of Hopf algebras in several problems of noncommutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of noncommutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups.
Lectures on Algebraic Geometry I
Harder, Gunter
2012-01-01
This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern metho
Noncommutative algebra and geometry
De Concini, Corrado; Vavilov, Nikolai 0
2005-01-01
Finite Galois Stable Subgroups of Gln. Derived Categories for Nodal Rings and Projective Configurations. Crowns in Profinite Groups and Applications. The Galois Structure of Ambiguous Ideals in Cyclic Extensions of Degree 8. An Introduction to Noncommutative Deformations of Modules. Symmetric Functions, Noncommutative Symmetric Functions and Quasisymmetric Functions II. Quotient Grothendieck Representations. On the Strong Rigidity of Solvable Lie Algebras. The Role of Bergman in Invesigating Identities in Matrix Algebras with Symplectic Involution. The Triangular Structure of Ladder Functors.
Algebraic geometry and theta functions
Coble, Arthur B
1929-01-01
This book is the result of extending and deepening all questions from algebraic geometry that are connected to the central problem of this book: the determination of the tritangent planes of a space curve of order six and genus four, which the author treated in his Colloquium Lecture in 1928 at Amherst. The first two chapters recall fundamental ideas of algebraic geometry and theta functions in such fashion as will be most helpful in later applications. In order to clearly present the state of the central problem, the author first presents the better-known cases of genus two (Chapter III) and
An introduction to algebraic geometry and algebraic groups
Geck, Meinolf
2003-01-01
An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles.Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type.The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups
Linear algebra, geometry and transformation
Solomon, Bruce
2014-01-01
Vectors, Mappings and Linearity Numeric Vectors Functions Mappings and Transformations Linearity The Matrix of a Linear Transformation Solving Linear Systems The Linear SystemThe Augmented Matrix and RRE Form Homogeneous Systems in RRE Form Inhomogeneous Systems in RRE Form The Gauss-Jordan Algorithm Two Mapping Answers Linear Geometry Geometric Vectors Geometric/Numeric Duality Dot-Product Geometry Lines, Planes, and Hyperplanes System Geometry and Row/Column Duality The Algebra of Matrices Matrix Operations Special Matrices Matrix Inversion A Logical Digression The Logic of the Inversion Alg
Algebraic Geometry of Topological Spaces I
Cortiñas, Guillermo
2009-01-01
We use techniques from both real and complex algebraic geometry to study K-theoretic and related invariants of the algebra C(X) of continuous complex-valued functions on a compact Hausdorff topological space X. For example, we prove a parametrized version of a theorem of Joseph Gubeladze; we show that if M is a countable, abelian, cancellative, torsion-free, seminormal monoid, and X is contractible, then every finitely generated projective module over C(X)[M] is free. The particular case when M=N^n gives a parametrized version of the celebrated theorem proved independently by Daniel Quillen and Andrei Suslin that finitely generated projective modules over a polynomial ring over a field are free. The conjecture of Jonathan Rosenberg which predicts the homotopy invariance of the negative algebraic K-theory of C(X) follows from the particular case when M=Z^n. We also give algebraic conditions for a functor from commutative algebras to abelian groups to be homotopy invariant on C*-algebras, and for a homology the...
Foliation theory in algebraic geometry
McKernan, James; Pereira, Jorge
2016-01-01
Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013. Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...
Good Codes From Generalised Algebraic Geometry Codes
Jibril, Mubarak; Ahmed, Mohammed Zaki; Tjhai, Cen
2010-01-01
Algebraic geometry codes or Goppa codes are defined with places of degree one. In constructing generalised algebraic geometry codes places of higher degree are used. In this paper we present 41 new codes over GF(16) which improve on the best known codes of the same length and rate. The construction method uses places of small degree with a technique originally published over 10 years ago for the construction of generalised algebraic geometry codes.
Algebraic Geometry and Number Theory Summer School
Sarıoğlu, Celal; Soulé, Christophe; Zeytin, Ayberk
2017-01-01
This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.
Commutative algebra with a view toward algebraic geometry
Eisenbud, David
1995-01-01
Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...
Derived Algebraic Geometry II: Noncommutative Algebra
Lurie, Jacob
2007-01-01
In this paper, we present an infinity-categorical version of the theory of monoidal categories. We show that the infinity category of spectra admits an essentially unique monoidal structure (such that the tensor product preserves colimits in each variable), and thereby recover the classical smash-product operation on spectra. We develop a general theory of algebras in a monoidal infinity category, which we use to (re)prove some basic results in the theory of associative ring spectra. We also develop an infinity-categorical theory of monads, and prove a version of the Barr-Beck theorem.
Noncommutative geometry with graded differential Lie algebras
Wulkenhaar, Raimar
1997-06-01
Starting with a Hilbert space endowed with a representation of a unitary Lie algebra and an action of a generalized Dirac operator, we develop a mathematical concept towards gauge field theories. This concept shares common features with the Connes-Lott prescription of noncommutative geometry, differs from that, however, by the implementation of unitary Lie algebras instead of associative * -algebras. The general scheme is presented in detail and is applied to functions ⊗ matrices.
International conference on Algebraic and Complex Geometry
Kloosterman, Remke; Schütt, Matthias; Springer Proceedings in Mathematics & Statistics : Volume 71
2014-01-01
Several important aspects of moduli spaces and irreducible holomorphic symplectic manifolds were highlighted at the conference “Algebraic and Complex Geometry” held September 2012 in Hannover, Germany. These two subjects of recent ongoing progress belong to the most spectacular developments in Algebraic and Complex Geometry. Irreducible symplectic manifolds are of interest to algebraic and differential geometers alike, behaving similar to K3 surfaces and abelian varieties in certain ways, but being by far less well-understood. Moduli spaces, on the other hand, have been a rich source of open questions and discoveries for decades and still continue to be a hot topic in itself as well as with its interplay with neighbouring fields such as arithmetic geometry and string theory. Beyond the above focal topics this volume reflects the broad diversity of lectures at the conference and comprises 11 papers on current research from different areas of algebraic and complex geometry sorted in alphabetic order by the ...
Noncommutative Algebra and Noncommutative Geometry
2014-01-01
Divided into three parts, the first marks out enormous geometric issues with the notion of quasi-freenss of an algebra and seeks to replace this notion of formal smoothness with an approximation by means of a minimal unital commutative algebra's smoothness. The second part of this text is then, devoted to the approximating of properties of nc. schemes through the properties of two uniquely determined (classical) schemes estimating the nc. scheme in question in a maximal way from the inside an...
Noncommutative Differential Geometry of Generalized Weyl Algebras
Brzeziński, Tomasz
2016-06-01
Elements of noncommutative differential geometry of Z-graded generalized Weyl algebras A(p;q) over the ring of polynomials in two variables and their zero-degree subalgebras B(p;q), which themselves are generalized Weyl algebras over the ring of polynomials in one variable, are discussed. In particular, three classes of skew derivations of A(p;q) are constructed, and three-dimensional first-order differential calculi induced by these derivations are described. The associated integrals are computed and it is shown that the dimension of the integral space coincides with the order of the defining polynomial p(z). It is proven that the restriction of these first-order differential calculi to the calculi on B(p;q) is isomorphic to the direct sum of degree 2 and degree -2 components of A(p;q). A Dirac operator for B(p;q) is constructed from a (strong) connection with respect to this differential calculus on the (free) spinor bimodule defined as the direct sum of degree 1 and degree -1 components of A(p;q). The real structure of KO-dimension two for this Dirac operator is also described.
Weaving Geometry and Algebra Together
Cetner, Michelle
2015-01-01
When thinking about student reasoning and sense making, teachers must consider the nature of tasks given to students along with how to plan to use the tasks in the classroom. Students should be presented with tasks in a way that encourages them to draw connections between algebraic and geometric concepts. This article focuses on the idea that it…
Weaving Geometry and Algebra Together
Cetner, Michelle
2015-01-01
When thinking about student reasoning and sense making, teachers must consider the nature of tasks given to students along with how to plan to use the tasks in the classroom. Students should be presented with tasks in a way that encourages them to draw connections between algebraic and geometric concepts. This article focuses on the idea that it…
Methods of algebraic geometry in control theory
Falb, Peter
1999-01-01
"Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is qui...
Verburgt, Lukas M
2016-01-01
This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.
Connecting Functions in Geometry and Algebra
Steketee, Scott; Scher, Daniel
2016-01-01
One goal of a mathematics education is that students make significant connections among different branches of mathematics. Connections--such as those between arithmetic and algebra, between two-dimensional and three-dimensional geometry, between compass-and-straight-edge constructions and transformations, and between calculus and analytic…
Open problems in algebraic geometry
Edixhoven, S.J.; Moonen, B.J.J.; Oort, F.
2000-01-01
The open problems presented here were collected on the occasion of a workshop on Arithmetic Geometry at the University ofUtrecht, 26{30 June, 2000. This workshop was organized by the editors of the present article, and was made possible by support of: | NWO, the Netherlands Organization for
A Relationship between Geometry and Algebra
Bejarano, Jose Ricardo Arteaga
2011-01-01
The three key documents for study geometry are: 1) "The Elements" of Euclid, 2) the lecture by B. Riemann at G\\"ottingen in 1854 entitled "\\"Uber die Hypothesen welche der Geometrie zu Grunde liegen" (On the hypotheses which underlie geometry) and 3) the "Erlangen Program", a document written by F. Klein (1872) on his income as professor at the Faculty of Philosophy and the Senate of the Erlangen University. The latter document F. Klein introduces the concept of group as a tool to study geometry. The concept of a group of transformations of space was known at the time. The purpose of this informative paper is to show a relationship between geometry and algebra through an example, the projective plane. Erlangen program until today continues being a guideline of how to study geometry.
Algebraic Geometry over C-infinity rings
Joyce, Dominic
2010-01-01
If X is a smooth manifold then the R-algebra C^\\infty(X) of smooth functions c : X --> R is a "C-infinity ring". That is, for each smooth function f : R^n --> R there is an n-fold operation \\Phi_f : C^\\infty(X)^n --> C^\\infty(X) acting by \\Phi_f: (c_1,...,c_n) |--> f(c_1,...,c_n), and these operations \\Phi_f satisfy many natural identities. Thus, C^\\infty(X) actually has a far richer structure than the obvious R-algebra structure. We explain the foundations of a version of Algebraic Geometry in which rings or algebras are replaced by C-infinity rings. As schemes are the basic objects in Algebraic Geometry, the new basic objects are "C-infinity schemes", a category of geometric objects which generalize smooth manifolds, and whose morphisms generalize smooth maps. We also study quasicoherent and coherent sheaves on C-infinity schemes, and "C-infinity stacks", in particular Deligne-Mumford C-infinity stacks, a 2-category of geometric objects generalizing orbifolds. Many of these ideas are not new: C-infinity rin...
Computational algebraic geometry of epidemic models
Rodríguez Vega, Martín.
2014-06-01
Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.
Algebraic geometry informs perturbative quantum field theory
Broadhurst, David
2014-01-01
Single-scale Feynman diagrams yield integrals that are periods, namely projective integrals of rational functions of Schwinger parameters. Algebraic geometry may therefore inform us of the types of number to which these integrals evaluate. We give examples at 3, 4 and 6 loops of massive Feynman diagrams that evaluate to Dirichlet $L$-series of modular forms and examples at 6, 7 and 8 loops of counterterms that evaluate to multiple zeta values or polylogarithms of the sixth root of unity. At 8 loops and beyond, algebraic geometry informs us that polylogs are insufficient for the evaluation of terms in the beta-function of $\\phi^4$ theory. Here, modular forms appear as obstructions to polylogarithmic evaluation.
Scattering Amplitudes via Algebraic Geometry Methods
Søgaard, Mads
unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed...... in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of tree-level amplitudes. Several explicit examples are provided...
PREFACE: Algebra, Geometry, and Mathematical Physics 2010
Stolin, A.; Abramov, V.; Fuchs, J.; Paal, E.; Shestopalov, Y.; Silvestrov, S.
2012-02-01
This proceedings volume presents results obtained by the participants of the 6th Baltic-Nordic workshop 'Algebra, Geometry, and Mathematical Physics (AGMP-6)' held at the Sven Lovén Centre for Marine Sciences in Tjärnö, Sweden on October 25-30, 2010. The Baltic-Nordic Network AGMP 'Algebra, Geometry, and Mathematical Physics' http://www.agmp.eu was created in 2005 on the initiative of two Estonian universities and two Swedish universities: Tallinn University of Technology represented by Eugen Paal (coordinator of the network), Tartu University represented by Viktor Abramov, Lund University represented by Sergei Silvestrov, and Chalmers University of Technology and the University of Gothenburg represented by Alexander Stolin. The goal was to promote international and interdisciplinary cooperation between scientists and research groups in the countries of the Baltic-Nordic region in mathematics and mathematical physics, with special emphasis on the important role played by algebra and geometry in modern physics, engineering and technologies. The main activities of the AGMP network consist of a series of regular annual international workshops, conferences and research schools. The AGMP network also constitutes an important educational forum for scientific exchange and dissimilation of research results for PhD students and Postdocs. The network has expanded since its creation, and nowadays its activities extend beyond countries in the Baltic-Nordic region to universities in other European countries and participants from elsewhere in the world. As one of the important research-dissimilation outcomes of its activities, the network has a tradition of producing high-quality research proceedings volumes after network events, publishing them with various international publishers. The PDF also contains the following: List of AGMP workshops and other AGMP activities Main topics discussed at AGMP-6 Review of AGMP-6 proceedings Acknowledgments List of Conference Participants
Formalization and Implementation of Algebraic Methods in Geometry
Marić, Filip; Petrović, Danijela; Janičić, Predrag; 10.4204/EPTCS.79.4
2012-01-01
We describe our ongoing project of formalization of algebraic methods for geometry theorem proving (Wu's method and the Groebner bases method), their implementation and integration in educational tools. The project includes formal verification of the algebraic methods within Isabelle/HOL proof assistant and development of a new, open-source Java implementation of the algebraic methods. The project should fill-in some gaps still existing in this area (e.g., the lack of formal links between algebraic methods and synthetic geometry and the lack of self-contained implementations of algebraic methods suitable for integration with dynamic geometry tools) and should enable new applications of theorem proving in education.
CIME-CIRM course Rationality Problems in Algebraic Geometry
Pirola, Gian
2016-01-01
Providing an overview of the state of the art on rationality questions in algebraic geometry, this volume gives an update on the most recent developments. It offers a comprehensive introduction to this fascinating topic, and will certainly become an essential reference for anybody working in the field. Rationality problems are of fundamental importance both in algebra and algebraic geometry. Historically, rationality problems motivated significant developments in the theory of abelian integrals, Riemann surfaces and the Abel–Jacobi map, among other areas, and they have strong links with modern notions such as moduli spaces, Hodge theory, algebraic cycles and derived categories. This text is aimed at researchers and graduate students in algebraic geometry.
Noncommutative differential geometry, and the matrix representations of generalised algebras
Gratus, J.
1998-05-01
The underly ing algebra I or a noncummutative geometry is taken to be a matrix algebra, and the set of derivatives the ad joint of a subset of traceless matrices. This is sufficient to calculate the dual 1-forms, and show that the space of 1-firms is at free module over the algebra of matrices. The concept of a generalised algebra is delined and it is shown that this is required in order for the space of 2-forms to exist, The exterior derivative is generalised for higher-order forms and these are also shown to he free modules over the matrix algebra. Examples of mappings that preserve the differential Structure are peen, Also giken are four examples of matrix generalised algebras, and the corresponding noncommutntive geometries, including the cases where the generalised algebra corresponds to a representation of a Lie algebra or a q-deformed algebra.
Classical versus Computer Algebra Methods in Elementary Geometry
Pech, Pavel
2005-01-01
Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…
Scattering Amplitudes via Algebraic Geometry Methods
Søgaard, Mads; Damgaard, Poul Henrik
This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of ...
The Bell states in noncommutative algebraic geometry
Beil, Charlie
2014-10-01
We introduce new mathematical aspects of the Bell states using matrix factorizations, non-noetherian singularities, and noncommutative blowups. A matrix factorization of a polynomial p consists of two matrices ϕ1, ϕ2 such that ϕ1ϕ2 = ϕ2ϕ1 = p id. Using this notion, we show how the Bell states emerge from the separable product of two mixtures, by defining pure states over complex matrices rather than just the complex numbers. We then show in an idealized algebraic setting that pure states are supported on non-noetherian singularities. Moreover, we find that the collapse of a Bell state is intimately related to the representation theory of the noncommutative blowup along its singular support. This presents an exchange in geometry: the nonlocal commutative spacetime of the entangled state emerges from an underlying local noncommutative spacetime.
Construction and decoding of a class of algebraic geometry codes
Justesen, Jørn; Larsen, Knud J.; Jensen, Helge Elbrønd
1989-01-01
A class of codes derived from algebraic plane curves is constructed. The concepts and results from algebraic geometry that were used are explained in detail; no further knowledge of algebraic geometry is needed. Parameters, generator and parity-check matrices are given. The main result is a decod...... is a decoding algorithm which turns out to be a generalization of the Peterson algorithm for decoding BCH decoder codes......A class of codes derived from algebraic plane curves is constructed. The concepts and results from algebraic geometry that were used are explained in detail; no further knowledge of algebraic geometry is needed. Parameters, generator and parity-check matrices are given. The main result...
Computational commutative and non-commutative algebraic geometry
Cojocaru, S; Ufnarovski, V
2005-01-01
This publication gives a good insight in the interplay between commutative and non-commutative algebraic geometry. The theoretical and computational aspects are the central theme in this study. The topic is looked at from different perspectives in over 20 lecture reports. It emphasizes the current trends in commutative and non-commutative algebraic geometry and algebra. The contributors to this publication present the most recent and state-of-the-art progresses which reflect the topic discussed in this publication. Both researchers and graduate students will find this book a good source of information on commutative and non-commutative algebraic geometry.
From geometry to algebra: the Euclidean way with technology
Ferrarello, Daniela; Flavia Mammana, Maria; Pennisi, Mario
2016-05-01
In this paper, we present the results of an experimental classroom activity, history-based with a phylogenetic approach, to achieve algebra properties through geometry. In particular, we used Euclidean propositions, processed them by a dynamic geometry system and translate them into algebraic special products.
Multiplier ideal sheaves in complex and algebraic geometry
Yum-Tong; Siu
2005-01-01
The application of the method of multiplier ideal sheaves to effective problems in algebraic geometry is briefly discussed. Then its application to the deformational invariance of plurigenera for general compact algebraic manifolds is presented and discussed.Finally its application to the conjecture of the finite generation of the canonical ring is explored, and the use of complex algebraic geometry in complex Neumann estimates is discussed.
Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory
Landau, Olav Arnfinn
2011-01-01
This is a monograph about non-commutative algebraic geometry, and its application to physics. The main mathematical inputs are the non-commutative deformation theory, moduli theory of representations of associative algebras, a new non-commutative theory o
Geometry of Spin: Clifford Algebraic Approach
Rukhsan-Ul-Haq
2016-12-01
Spin is a fundamental degree of freedom of matter and radiation.In quantum theory, spin is represented by Pauli matrices.Then the various algebraic properties of Pauli matricesare studied as properties of matrix algebra. What has beenshown in this article is that Pauli matrices are a representationof Clifford algebra of spin and hence all the propertiesof Pauli matrices follow from the underlying algebra. Cliffordalgebraic approach provides a geometrical and henceintuitive way to understand quantum theory of spin, and isa natural formalism to study spin. Clifford algebraic formalismhas lot of applications in every field where spin plays animportant role.
Algebra and Geometry of Hamilton's Quaternions: 'Well, Papa, Can You Multiply Triplets?'
2016-06-01
Inspired by the relation between the algebra ofcomplex numbers and plane geometry, WilliamRowan Hamilton sought an algebra of triples forapplication to three-dimensional geometry. Unableto multiply and divide triples, he inventeda non-commutative division algebra of quadruples,in what he considered his most significantwork, generalizing the real and complex numbersystems. We give a motivated introduction toquaternions and discuss how they are related toPauli matrices, rotations in three dimensions, thethree sphere, the group SU(2) and the celebratedHopf fibrations.
Integrable systems in the realm of algebraic geometry
Vanhaecke, Pol
2001-01-01
This book treats the general theory of Poisson structures and integrable systems on affine varieties in a systematic way. Special attention is drawn to algebraic completely integrable systems. Several integrable systems are constructed and studied in detail and a few applications of integrable systems to algebraic geometry are worked out. In the second edition some of the concepts in Poisson geometry are clarified by introducting Poisson cohomology; the Mumford systems are constructed from the algebra of pseudo-differential operators, which clarifies their origin; a new explanation of the multi Hamiltonian structure of the Mumford systems is given by using the loop algebra of sl(2); and finally Goedesic flow on SO(4) is added to illustrate the linearizatin algorith and to give another application of integrable systems to algebraic geometry.
Formalization and Implementation of Algebraic Methods in Geometry
Filip Marić
2012-02-01
Full Text Available We describe our ongoing project of formalization of algebraic methods for geometry theorem proving (Wu's method and the Groebner bases method, their implementation and integration in educational tools. The project includes formal verification of the algebraic methods within Isabelle/HOL proof assistant and development of a new, open-source Java implementation of the algebraic methods. The project should fill-in some gaps still existing in this area (e.g., the lack of formal links between algebraic methods and synthetic geometry and the lack of self-contained implementations of algebraic methods suitable for integration with dynamic geometry tools and should enable new applications of theorem proving in education.
Using Geometry to teach and learn Linear Algebra
Gueudet, Ghislaine
2006-01-01
International audience; Linear algebra is a difficult topic for undergraduate students. In France, the focus of beginning linear algebra courses is the study of abstract vector spaces, with or without an inner product, rather than matrix operations as is common in many other countries. This paper presents a study of the possible uses of geometry and "geometrical intuition" in the teaching and learning of linear algebra. Fischbein's work on intuition in science and mathematics is used to analy...
Selected papers on number theory and algebraic geometry
Nomizu, Katsumi
1996-01-01
This book presents papers that originally appeared in the Japanese journal Sugaku from the Mathematical Society of Japan. The papers explore the relationship between number theory and algebraic geometry.
On the topology of real algebraic plane curves
Cheng, Jinsan; Lazard, Sylvain; Peñaranda, Luis
2010-01-01
We revisit the problem of computing the topology and geometry of a real algebraic plane curve. The topology is of prime interest but geometric information, such as the position of singular and critical points, is also relevant. A challenge is to compute efficiently this information for the given...... coordinate system even if the curve is not in generic position. Previous methods based on the cylindrical algebraic decomposition use sub-resultant sequences and computations with polynomials with algebraic coefficients. A novelty of our approach is to replace these tools by Gröbner basis computations...... and isolation with rational univariate representations. This has the advantage of avoiding computations with polynomials with algebraic coefficients, even in non-generic positions. Our algorithm isolates critical points in boxes and computes a decomposition of the plane by rectangular boxes. This decomposition...
Performance Analysis of a Decoding Algorithm for Algebraic Geometry Codes
Jensen, Helge Elbrønd; Nielsen, Rasmus Refslund; Høholdt, Tom
1998-01-01
We analyse the known decoding algorithms for algebraic geometry codes in the case where the number of errors is greater than or equal to [(dFR-1)/2]+1, where dFR is the Feng-Rao distance......We analyse the known decoding algorithms for algebraic geometry codes in the case where the number of errors is greater than or equal to [(dFR-1)/2]+1, where dFR is the Feng-Rao distance...
Recent results in the decoding of Algebraic geometry codes
Høholdt, Tom; Jensen, Helge Elbrønd; Nielsen, Rasmus Refslund
1998-01-01
We analyse the known decoding algorithms for algebraic geometry codes in the case where the number of errors is [(dFR-1)/2]+1, where dFR is the Feng-Rao distance......We analyse the known decoding algorithms for algebraic geometry codes in the case where the number of errors is [(dFR-1)/2]+1, where dFR is the Feng-Rao distance...
The geometry of supersymmetric coset models and superconformal algebras
Papadopoulos, G
1993-01-01
An on-shell formulation of (p,q), 2\\leq p \\leq 4, 0\\leq q\\leq 4, supersymmetric coset models with target space the group G and gauge group a subgroup H of G is given. It is shown that there is a correspondence between the number of supersymmetries of a coset model and the geometry of the coset space G/H. The algebras of currents of supersymmetric coset models are superconformal algebras. In particular, the algebras of currents of (2,2) and (4,0) supersymmetric coset models are related to the N=2 Kazama-Suzuki and N=4 Van Proeyen superconformal algebras correspondingly.
Probability on real Lie algebras
Franz, Uwe
2016-01-01
This monograph is a progressive introduction to non-commutativity in probability theory, summarizing and synthesizing recent results about classical and quantum stochastic processes on Lie algebras. In the early chapters, focus is placed on concrete examples of the links between algebraic relations and the moments of probability distributions. The subsequent chapters are more advanced and deal with Wigner densities for non-commutative couples of random variables, non-commutative stochastic processes with independent increments (quantum Lévy processes), and the quantum Malliavin calculus. This book will appeal to advanced undergraduate and graduate students interested in the relations between algebra, probability, and quantum theory. It also addresses a more advanced audience by covering other topics related to non-commutativity in stochastic calculus, Lévy processes, and the Malliavin calculus.
The geometry of A-graded algebras
Sturmfels, B
1994-01-01
We study algebras k[x_1,...,x_n]/I which admit a grading by a subsemigroup of N^d such that every graded component is a one-dimensional k-vector space. V.I.~Arnold and coworkers proved that for d = 1 and n <= 3 there are only finitely many isomorphism types of such A-graded algebras, and in these cases I is an initial ideal (in the sense of Groebner bases) of a toric ideal. In this paper it is shown that Arnold's finiteness theorem does not extend to n = 4. Geometric conditions are given for I to be an initial ideal of a toric ideal. The varieties defined by A-graded algebras are characterized in terms of polyhedral subdivisions, and the distinct A-graded algebras are parametrized by a certain binomial scheme.
Experimental and Theoretical Methods in Algebra, Geometry and Topology
Veys, Willem; Bridging Algebra, Geometry, and Topology
2014-01-01
Algebra, geometry and topology cover a variety of different, but intimately related research fields in modern mathematics. This book focuses on specific aspects of this interaction. The present volume contains refereed papers which were presented at the International Conference “Experimental and Theoretical Methods in Algebra, Geometry and Topology”, held in Eforie Nord (near Constanta), Romania, during 20-25 June 2013. The conference was devoted to the 60th anniversary of the distinguished Romanian mathematicians Alexandru Dimca and Ştefan Papadima. The selected papers consist of original research work and a survey paper. They are intended for a large audience, including researchers and graduate students interested in algebraic geometry, combinatorics, topology, hyperplane arrangements and commutative algebra. The papers are written by well-known experts from different fields of mathematics, affiliated to universities from all over the word, they cover a broad range of topics and explore the research f...
Multilinear Computing and Multilinear Algebraic Geometry
2016-08-10
algebra : linear systems, least squares, eigevalue problems, singular value problems, determinant evaluation, low-rank approximations, etc — problems...intractability to move beyond linear algebra , substantiating what the PI had proposed. High-resolution MRI with tensors: In another piece of work... applications . One reason is that we found out that many statistical estimation problems ( linear regression, errors-in-variables regression, principal components
Automorphisms of associative algebras and noncommutative geometry
Dimakis, A.; Müller-Hoissen, F.
2004-02-01
A class of differential calculi is explored which is determined by a set of automorphisms of the underlying associative algebra. Several examples are presented. In particular, differential calculi on the quantum plane, the h-deformed plane and the quantum group GLp,q(2) are recovered in this way. Geometric structures such as metrics and compatible linear connections are introduced.
Noncommutative spectral geometry, algebra doubling and the seeds of quantization
Sakellariadou, Mairi; Vitiello, Giuseppe
2011-01-01
A physical interpretation of the two-sheeted space, the most fundamental ingredient of noncommutative spectral geometry proposed by Connes as an approach to unification, is presented. It is shown that the doubling of the algebra is strictly related to dissipation. As a consequence, the doubling of the algebra is intimately related to the gauge structure of the theory. In a regime of completely deterministic dynamics, dissipation seems also to play a key role in the quantization of the theory, following 't Hooft's conjecture. It is thus argued that Connes' classical construction carries implicit in its feature of the doubling of the algebra the seeds of quantization.
Cox, David A; O'Shea, Donal
2015-01-01
This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry—the elimination theorem, the extension theorem, the closure theorem, and the Nullstellensatz—this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new chapter (ten), which presents some of the essentials of progress made over the last decades in computing Gröbner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D). The book may serve as a first or second course in undergraduate abstract algebra and, with some supplementation perhaps, for beginning graduate level courses in algebraic geom...
Geometry, algebra and applications from mechanics to cryptography
Encinas, Luis; Gadea, Pedro; María, Mª
2016-01-01
This volume collects contributions written by different experts in honor of Prof. Jaime Muñoz Masqué. It covers a wide variety of research topics, from differential geometry to algebra, but particularly focuses on the geometric formulation of variational calculus; geometric mechanics and field theories; symmetries and conservation laws of differential equations, and pseudo-Riemannian geometry of homogeneous spaces. It also discusses algebraic applications to cryptography and number theory. It offers state-of-the-art contributions in the context of current research trends. The final result is a challenging panoramic view of connecting problems that initially appear distant.
Eliashberg, Yakov; Maeda, Yoshiaki; Symplectic, Poisson, and Noncommutative geometry
2014-01-01
Symplectic geometry originated in physics, but it has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics. Noncommutative geometry has developed an alternative mathematical quantization scheme based on a geometric approach to operator algebras. Deformation quantization, a blend of symplectic methods and noncommutative geometry, approaches quantum mechanics from a more algebraic viewpoint, as it addresses quantization as a deformation of Poisson structures. This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute: Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology (honoring Alan Weinstein, one of the key figures in the field) and Symplectic Geometry, Noncommutative Geometry and Physics. The chapters include presentations of previously unpublished results and ...
Many rational points coding theory and algebraic geometry
Hurt, Norman E
2003-01-01
This monograph presents a comprehensive treatment of recent results on algebraic geometry as they apply to coding theory and cryptography, with the goal the study of algebraic curves and varieties with many rational points. They book surveys recent developments on abelian varieties, in particular the classification of abelian surfaces, hyperelliptic curves, modular towers, Kloosterman curves and codes, Shimura curves and modular jacobian surfaces. Applications of abelian varieties to cryptography are presented including a discussion of hyperelliptic curve cryptosystems. The inter-relationship of codes and curves is developed building on Goppa's results on algebraic-geometry cods. The volume provides a source book of examples with relationships to advanced topics regarding Sato-Tate conjectures, Eichler-Selberg trace formula, Katz-Sarnak conjectures and Hecke operators.
2008-01-01
Based on the distinction between the covariant and contravariant metric tensor components in the framework of the affine geometry approach and the s.c. "gravitational theories with covariant and contravariant connection and metrics", it is shown that a wide variety of third, fourth, fifth, seventh, tenth- degree algebraic equations exists in gravity theory. This is important in view of finding new solutions of the Einstein's equations, if they are treated as algebraic ones. Since the obtained...
Torsional Newton-Cartan geometry and the Schrodinger algebra
Bergshoeff, Eric A.; Hartong, Jelle; Rosseel, Jan
2015-01-01
We show that by gauging the Schrodinger algebra with critical exponent z and imposing suitable curvature constraints, that make diffeomorphisms equivalent to time and space translations, one obtains a geometric structure known as (twistless) torsional Newton-Cartan geometry (TTNC). This is a version
Enumerative geometry, tau-functions and Heisenberg-Virasoro algebra
Alexandrov, A
2014-01-01
In this paper we establish relations between three enumerative geometry tau-functions, namely the Kontsevich-Witten, Hurwitz and Hodge tau-functions. The relations allow us to describe the tau-functions in terms of matrix integrals, Virasoro constraints and Kac-Schwarz operators. All constructed operators belong to the algebra (or group) of symmetries of the KP hierarchy.
Algebraic grid generation for complex geometries
Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.
1991-01-01
An efficient computer program called GRID2D/3D has been developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2D and 3D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation. The distribution of grid points within the spatial domain is controlled by stretching functions and grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For 2D spatial domains the boundary curves are constructed by using either cubic or tension spline interpolation. For 3D spatial domains the boundary surfaces are constructed by using a new technique, developed in this study, referred to as 3D bidirectional Hermite interpolation.
Quantum potential physics, geometry and algebra
Licata, Ignazio
2014-01-01
Recently the interest in Bohm realist interpretation of quantum mechanics has grown. The important advantage of this approach lies in the possibility to introduce non-locality ab initio, and not as an “unexpected host”. In this book the authors give a detailed analysis of quantum potential, the non-locality term and its role in quantum cosmology and information. The different approaches to the quantum potential are analysed, starting from the original attempt to introduce a realism of particles trajectories (influenced by de Broglie’s pilot wave) to the recent dynamic interpretation provided by Goldstein, Durr, Tumulka and Zanghì, and the geometrodynamic picture, with suggestion about quantum gravity. Finally we focus on the algebraic reading of Hiley and Birkbeck school, that analyse the meaning of the non-local structure of the world, bringing important consequences for the space, time and information concepts.
Reverse engineering: algebraic boundary representations to constructive solid geometry.
Buchele, S. F.; Ellingson, W. A.
1997-12-17
Recent advances in reverse engineering have focused on recovering a boundary representation (b-rep) of an object, often for integration with rapid prototyping. This boundary representation may be a 3-D point cloud, a triangulation of points, or piecewise algebraic or parametric surfaces. This paper presents work in progress to develop an algorithm to extend the current state of the art in reverse engineering of mechanical parts. This algorithm will take algebraic surface representations as input and will produce a constructive solid geometry (CSG) description that uses solid primitives such as rectangular block, pyramid, sphere, cylinder, and cone. The proposed algorithm will automatically generate a CSG solid model of a part given its algebraic b-rep, thus allowing direct input into a CAD system and subsequent CSG model generation.
Noncommutative spectral geometry, algebra doubling, and the seeds of quantization
Sakellariadou, Mairi; Stabile, Antonio; Vitiello, Giuseppe
2011-08-01
A physical interpretation of the two-sheeted space, the most fundamental ingredient of noncommutative spectral geometry proposed by Connes as an approach to unification, is presented. It is shown that the doubling of the algebra is related to dissipation and to the gauge structure of the theory, the gauge field acting as a reservoir for the matter field. In a regime of completely deterministic dynamics, dissipation appears to play a key role in the quantization of the theory, according to the ’t Hooft’s conjecture. It is thus argued that the noncommutative spectral geometry classical construction carries the seeds of quantization, implicit in its feature of the doubling of the algebra.
Prime factorization using quantum annealing and computational algebraic geometry
Dridi, Raouf; Alghassi, Hedayat
2017-02-01
We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gröbner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gröbner bases can be used to reduce the degree of Hamiltonians.
Prime factorization using quantum annealing and computational algebraic geometry
Dridi, Raouf; Alghassi, Hedayat
2017-01-01
We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gröbner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gröbner bases can be used to reduce the degree of Hamiltonians. PMID:28220854
Integral points on algebraic varieties an introduction to diophantine geometry
Corvaja, Pietro
2016-01-01
This book is intended to be an introduction to Diophantine geometry. The central theme of the book is to investigate the distribution of integral points on algebraic varieties. This text rapidly introduces problems in Diophantine geometry, especially those involving integral points, assuming a geometrical perspective. It presents recent results not available in textbooks and also new viewpoints on classical material. In some instances, proofs have been replaced by a detailed analysis of particular cases, referring to the quoted papers for complete proofs. A central role is played by Siegel’s finiteness theorem for integral points on curves. The book ends with the analysis of integral points on surfaces.
Representation Theory of Quantized Enveloping Algebras with Interpolating Real Structure
Kenny De Commer
2013-12-01
Full Text Available Let g be a compact simple Lie algebra. We modify the quantized enveloping ∗-algebra associated to g by a real-valued character on the positive part of the root lattice. We study the ensuing Verma module theory, and the associated quotients of these modified quantized enveloping ∗-algebras. Restricting to the locally finite part by means of a natural adjoint action, we obtain in particular examples of quantum homogeneous spaces in the operator algebraic setting.
Clifford Algebras in Symplectic Geometry and Quantum Mechanics
Binz, Ernst; de Gosson, Maurice A.; Hiley, Basil J.
2011-01-01
The necessary appearance of Clifford algebras in the quantum description of fermions has prompted us to re-examine the fundamental role played by the quaternion Clifford algebra, C(0,2). This algebra is essentially the geometric algebra describing the rotational properties of space. Hidden within this algebra are symplectic structures with Heisenberg algebras at their core. This algebra also enables us to define a Poisson algebra of all homogeneous quadratic polynomials on a two-dimensional s...
The homogeneous geometries of real hyperbolic space
Castrillón López, Marco; Gadea, Pedro Martínez; Swann, Andrew Francis
We describe the holonomy algebras of all canonical connections of homogeneous structures on real hyperbolic spaces in all dimensions. The structural results obtained then lead to a determination of the types, in the sense of Tricerri and Vanhecke, of the corresponding homogeneous tensors. We use ...
Bicomplex holomorphic functions the algebra, geometry and analysis of bicomplex numbers
Luna-Elizarrarás, M Elena; Struppa, Daniele C; Vajiac, Adrian
2015-01-01
The purpose of this book is to develop the foundations of the theory of holomorphicity on the ring of bicomplex numbers. Accordingly, the main focus is on expressing the similarities with, and differences from, the classical theory of one complex variable. The result is an elementary yet comprehensive introduction to the algebra, geometry and analysis of bicomplex numbers. Around the middle of the nineteenth century, several mathematicians (the best known being Sir William Hamilton and Arthur Cayley) became interested in studying number systems that extended the field of complex numbers. Hamilton famously introduced the quaternions, a skew field in real-dimension four, while almost simultaneously James Cockle introduced a commutative four-dimensional real algebra, which was rediscovered in 1892 by Corrado Segre, who referred to his elements as bicomplex numbers. The advantages of commutativity were accompanied by the introduction of zero divisors, something that for a while dampened interest in this subject. ...
Clifford algebras geometric modelling and chain geometries with application in kinematics
Klawitter, Daniel
2015-01-01
After revising known representations of the group of Euclidean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this theory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework. Contents Models and representations of classical groups Clifford algebras, chain geometries over Clifford algebras Kinematic mappings for Pin and Spin groups Cayley-Klein geometries Target Groups Researchers and students in the field of mathematics, physics, and mechanical engineering About...
Chiral topological insulator on Nambu 3-algebraic geometry
Kazuki Hasebe
2014-09-01
Full Text Available Chiral topological insulator (AIII-class with Landau levels is constructed based on the Nambu 3-algebraic geometry. We clarify the geometric origin of the chiral symmetry of the AIII-class topological insulator in the context of non-commutative geometry of 4D quantum Hall effect. The many-body groundstate wavefunction is explicitly derived as a (l,l,l−1 Laughlin–Halperin type wavefunction with unique K-matrix structure. Fundamental excitation is identified with anyonic string-like object with fractional charge 1/(2(l−12+1. The Hall effect of the chiral topological insulators turns out be a color version of Hall effect, which exhibits a dual property of the Hall and spin-Hall effects.
Jupri, Al
2017-04-01
In this article we address how Realistic Mathematics Education (RME) principles, including the intertwinement and the reality principles, are used to analyze geometry tasks. To do so, we carried out three phases of a small-scale study. First we analyzed four geometry problems - considered as tasks inviting the use of problem solving and reasoning skills - theoretically in the light of the RME principles. Second, we tested two problems to 31 undergraduate students of mathematics education program and other two problems to 16 master students of primary mathematics education program. Finally, we analyzed student written work and compared these empirical to the theoretical results. We found that there are discrepancies between what we expected theoretically and what occurred empirically in terms of mathematization and of intertwinement of mathematical concepts from geometry to algebra and vice versa. We conclude that the RME principles provide a fruitful framework for analyzing geometry tasks that, for instance, are intended for assessing student problem solving and reasoning skills.
Gargiulo, Maria Vittoria; Vitiello, Giuseppe [I.N.F.N., Salerno (Italy); Universita di Salerno, Dipartimento di Fisica, Salerno (Italy); Sakellariadou, Mairi [King' s College London, University of London, Department of Physics, London (United Kingdom)
2014-01-15
We study the physical implications of the doubling of the algebra, an essential element in the construction of the noncommutative spectral geometry model, proposed by Connes and his collaborators as offering a geometric explanation for the standard model of the strong and electroweak interactions. Linking the algebra doubling to the deformed Hopf algebra, we build Bogoliubov transformations and show the emergence of neutrino mixing. (orig.)
无
2004-01-01
Through most of Greek history, mathematicians concentrated on geometry, although Euclid considered the theory of numbers. The Greek mathematician Diophantus (3rd century),however, presented problems that had to be solved by what we would today call algebra. His book is thus the first algebra text.
Doubling of the Algebra and Neutrino Mixing within Noncommutative Spectral Geometry
Gargiulo, Maria Vittoria; Vitiello, Giuseppe
2014-01-01
We study physical implications of the doubling of the algebra, an essential element in the construction of the noncommutative spectral geometry model, proposed by Connes and his collaborators as offering a geometric explanation for the standard model of strong and electroweak interactions. Linking the algebra doubling to the deformed Hopf algebra, we build Bogogliubov transformations and show the emergence of neutrino mixing.
Doubling of the algebra and neutrino mixing within noncommutative spectral geometry
Gargiulo, Maria Vittoria; Sakellariadou, Mairi; Vitiello, Giuseppe
2014-01-01
We study the physical implications of the doubling of the algebra, an essential element in the construction of the noncommutative spectral geometry model, proposed by Connes and his collaborators as offering a geometric explanation for the standard model of the strong and electroweak interactions. Linking the algebra doubling to the deformed Hopf algebra, we build Bogoliubov transformations and show the emergence of neutrino mixing.
Geometric algebra and information geometry for quantum computational software
Cafaro, Carlo
2017-03-01
The art of quantum algorithm design is highly nontrivial. Grover's search algorithm constitutes a masterpiece of quantum computational software. In this article, we use methods of geometric algebra (GA) and information geometry (IG) to enhance the algebraic efficiency and the geometrical significance of the digital and analog representations of Grover's algorithm, respectively. Specifically, GA is used to describe the Grover iterate and the discretized iterative procedure that exploits quantum interference to amplify the probability amplitude of the target-state before measuring the query register. The transition from digital to analog descriptions occurs via Stone's theorem which relates the (unitary) Grover iterate to a suitable (Hermitian) Hamiltonian that controls Schrodinger's quantum mechanical evolution of a quantum state towards the target state. Once the discrete-to-continuos transition is completed, IG is used to interpret Grover's iterative procedure as a geodesic path on the manifold of the parametric density operators of pure quantum states constructed from the continuous approximation of the parametric quantum output state in Grover's algorithm. Finally, we discuss the dissipationless nature of quantum computing, recover the quadratic speedup relation, and identify the superfluity of the Walsh-Hadamard operation from an IG perspective with emphasis on statistical mechanical considerations.
Tabak, John
2004-01-01
Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.
Noncommutative spectral geometry and the deformed Hopf algebra structure of quantum field theory
Sakellariadou, Mairi; Stabile, Antonio; Vitiello, Giuseppe
2013-06-01
We report the results obtained in the study of Alain Connes noncommutative spectral geometry construction focusing on its essential ingredient of the algebra doubling. We show that such a two-sheeted structure is related with the gauge structure of the theory, its dissipative character and carries in itself the seeds of quantization. From the algebraic point of view, the algebra doubling process has the same structure of the deformed Hops algebra structure which characterizes quantum field theory.
Noncommutative spectral geometry and the deformed Hopf algebra structure of quantum field theory
Sakellariadou, Mairi; Vitiello, Giuseppe
2013-01-01
We report the results obtained in the study of Alain Connes noncommutative spectral geometry construction focusing on its essential ingredient of the algebra doubling. We show that such a two-sheeted structure is related with the gauge structure of the theory, its dissipative character and carries in itself the seeds of quantization. From the algebraic point of view, the algebra doubling process has the same structure of the deformed Hops algebra structure which characterizes quantum field theory.
An evaluation on Real Semisimple Lie Algebras
无
2000-01-01
@@ The theory of Lie groups and Lie algebras stem from that of continuous groups founded by Sophus Lie at the end of 19th century. From the beginning, the theory of Lie groups and Lie algebras has displayed great value in both theoretical researches and applications.
Clifford Algebras in Symplectic Geometry and Quantum Mechanics
Binz, Ernst; Hiley, Basil J
2011-01-01
The necessary appearance of Clifford algebras in the quantum description of fermions has prompted us to re-examine the fundamental role played by the quaternion Clifford algebra, C(0,2). This algebra is essentially the geometric algebra describing the rotational properties of space. Hidden within this algebra are symplectic structures with Heisenberg algebras at their core. This algebra also enables us to define a Poisson algebra of all homogeneous quadratic polynomials on a two-dimensional sub-space, Fa of the Euclidean three-space. This enables us to construct a Poisson Clifford algebra, H(F), of a finite dimensional phase space which will carry the dynamics. The quantum dynamics appears as a realization of H(F) in terms of a Clifford algebra consisting of Hermitian operators.
3D Cadastral Data Model Based on Conformal Geometry Algebra
Ji-yi Zhang
2016-02-01
Full Text Available Three-dimensional (3D cadastral data models that are based on Euclidean geometry (EG are incapable of providing a unified representation of geometry and topological relations for 3D spatial units in a cadastral database. This lack of unification causes problems such as complex expression structure and inefficiency in the updating of 3D cadastral objects. The inability of current cadastral data models to express cadastral objects in a unified manner can be attributed to the different expressions of dimensional objects. Because the hierarchical Grassmann structure corresponds to the hierarchical structure of dimensions in conformal geometric algebra (CGA, geometric objects in different dimensions can be constructed by outer products in a unified expression form, which enables the direct extension of two-dimensional (2D spatial representations to 3D spatial representations. The multivector structure in CGA can be employed to organize and store different dimensional objects in a multidimensional and unified manner. With the advantages of CGA in multidimensional expressions, a new 3D cadastral data model that is based on CGA is proposed in this paper. The geometries and topological relations of 3D spatial units can be represented in a unified form within the multivector structure. Detailed methods for 3D cadastral data model design based on CGA and data organization in CGA are introduced. The new cadastral data model is tested and analyzed with experimental data. The results indicate that the geometry and topological relations of 3D cadastral objects can be represented in a multidimensional manner with an intuitive topological structure and a unified dimensional expression.
Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology
Manin, Yuri I.; Marcolli, Matilde
2014-07-01
We introduce some algebraic geometric models in cosmology related to the ''boundaries'' of space-time: Big Bang, Mixmaster Universe, Penrose's crossovers between aeons. We suggest to model the kinematics of Big Bang using the algebraic geometric (or analytic) blow up of a point x. This creates a boundary which consists of the projective space of tangent directions to x and possibly of the light cone of x. We argue that time on the boundary undergoes the Wick rotation and becomes purely imaginary. The Mixmaster (Bianchi IX) model of the early history of the universe is neatly explained in this picture by postulating that the reverse Wick rotation follows a hyperbolic geodesic connecting imaginary time axis to the real one. Penrose's idea to see the Big Bang as a sign of crossover from ''the end of previous aeon'' of the expanding and cooling Universe to the ''beginning of the next aeon'' is interpreted as an identification of a natural boundary of Minkowski space at infinity with the Big Bang boundary.
Lower bounds for the minimum distance of algebraic geometry codes
Beelen, Peter
, such as the Goppa bound, the Feng-Rao bound and the Kirfel-Pellikaan bound. I will finish my talk by giving several examples. Especially for two-point codes, the generalized order bound is fairly easy to compute. As an illustration, I will indicate how a lower bound can be obtained for the minimum distance of some......A one-point AG-code is an algebraic geometry code based on a divisor whose support consists of one point. Since the discovery of the Feng-Rao lower bound for the minimum distance, there has been a renewed interest in such codes. This lower bound is also called the order bound. An alternative...... description of these codes in terms of order domains has been found. In my talk I will indicate how one can use the ideas behind the order bound to obtain a lower bound for the minimum distance of any AG-code. After this I will compare this generalized order bound with other known lower bounds...
Integrand Reduction Reloaded: Algebraic Geometry and Finite Fields
Sameshima, Ray D.; Ferroglia, Andrea; Ossola, Giovanni
2017-01-01
The evaluation of scattering amplitudes in quantum field theory allows us to compare the phenomenological prediction of particle theory with the measurement at collider experiments. The study of scattering amplitudes, in terms of their symmetries and analytic properties, provides a theoretical framework to develop techniques and efficient algorithms for the evaluation of physical cross sections and differential distributions. Tree-level calculations have been known for a long time. Loop amplitudes, which are needed to reduce the theoretical uncertainty, are more challenging since they involve a large number of Feynman diagrams, expressed as integrals of rational functions. At one-loop, the problem has been solved thanks to the combined effect of integrand reduction, such as the OPP method, and unitarity. However, plenty of work is still needed at higher orders, starting with the two-loop case. Recently, integrand reduction has been revisited using algebraic geometry. In this presentation, we review the salient features of integrand reduction for dimensionally regulated Feynman integrals, and describe an interesting technique for their reduction based on multivariate polynomial division. We also show a novel approach to improve its efficiency by introducing finite fields. Supported in part by the National Science Foundation under Grant PHY-1417354.
Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza
2014-03-01
This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.
On Twisting Real Spectral Triples by Algebra Automorphisms
Landi, Giovanni; Martinetti, Pierre
2016-11-01
We systematically investigate ways to twist a real spectral triple via an algebra automorphism and in particular, we naturally define a twisted partner for any real graded spectral triple. Among other things, we investigate consequences of the twisting on the fluctuations of the metric and possible applications to the spectral approach to the Standard Model of particle physics.
Fixing Ganache: Another Real-Life Use for Algebra
Kalman, Adam M.
2011-01-01
This article presents a real-world application of proportional reasoning and equation solving. The author describes how students adjust ingredient amounts in a recipe for chocolate ganache. Using this real-world scenario provided students an opportunity to solve a difficult and nonstandard algebra problem, a lot of practice with fractions, a…
On Twisting Real Spectral Triples by Algebra Automorphisms
Landi, Giovanni; Martinetti, Pierre
2016-08-01
We systematically investigate ways to twist a real spectral triple via an algebra automorphism and in particular, we naturally define a twisted partner for any real graded spectral triple. Among other things, we investigate consequences of the twisting on the fluctuations of the metric and possible applications to the spectral approach to the Standard Model of particle physics.
Limit Algebras of Differential Forms in Non-Commutative Geometry
S J Bhatt; A Inoue
2008-08-01
Given a C∗-normed algebra A which is either a Banach ∗-algebra or a Frechet ∗-algebra, we study the algebras ∞A and A obtained by taking respectively the projective limit and the inductive limit of Banach ∗-algebras obtained by completing the universal graded differential algebra ∗A of abstract non-commutative differential forms over A. Various quantized integrals on ∞A induced by a K-cycle on A are considered. The GNS-representation of ∞A defined by a d-dimensional non-commutative volume integral on a d+-summable K-cycle on A is realized as the representation induced by the left action of A on ∗A. This supplements the representation A on the space of forms discussed by Connes (Ch. VI.1, Prop. 5, p. 550 of [C]).
An algebraic formulation of causality for noncommutative geometry
Franco, Nicolas; Eckstein, Michał
2013-07-01
We propose an algebraic formulation of the notion of causality for spectral triples corresponding to globally hyperbolic manifolds with a well-defined noncommutative generalization. The causality is given by a specific cone of Hermitian elements respecting an algebraic condition based on the Dirac operator and a fundamental symmetry. We prove that in the commutative case the usual notion of causality is recovered. We show that, when the dimension of the manifold is even, the result can be extended in order to have an algebraic constraint suitable for a Lorentzian distance formula.
Axion experiments to algebraic geometry: Testing quantum gravity via the Weak Gravity Conjecture
Heidenreich, Ben; Reece, Matthew; Rudelius, Tom
2016-06-01
Common features of known quantum gravity theories may hint at the general nature of quantum gravity. The absence of continuous global symmetries is one such feature. This inspired the Weak Gravity Conjecture, which bounds masses of charged particles. We propose the Lattice Weak Gravity Conjecture, which further requires the existence of an infinite tower of particles of all possible charges under both abelian and nonabelian gauge groups and directly implies a cutoff for quantum field theory. It holds in a wide variety of string theory examples and has testable consequences for the real world and for pure mathematics. We sketch some implications of these ideas for models of inflation, for the QCD axion (and LIGO), for conformal field theory, and for algebraic geometry.
Axion Experiments to Algebraic Geometry: Testing Quantum Gravity via the Weak Gravity Conjecture
Heidenreich, Ben; Rudelius, Tom
2016-01-01
Common features of known quantum gravity theories may hint at the general nature of quantum gravity. The absence of continuous global symmetries is one such feature. This inspired the Weak Gravity Conjecture, which bounds masses of charged particles. We propose the Lattice Weak Gravity Conjecture, which further requires the existence of an infinite tower of particles of all possible charges under both abelian and nonabelian gauge groups and directly implies a cutoff for quantum field theory. It holds in a wide variety of string theory examples and has testable consequences for the real world and for pure mathematics. We sketch some implications of these ideas for models of inflation, for the QCD axion (and LIGO), for conformal field theory, and for algebraic geometry.
Pure L-functions from algebraic geometry over finite fields
Wan, D
2000-01-01
This is an expository paper which gives a simple arithmetic introduction to the conjectures of Weil and Dwork concerning zeta functions of algebraic varieties over finite fields. A number of further open questions are raised.
From classical to modern algebraic geometry Corrado Segre's mastership and legacy
Conte, Alberto; Gatto, Letterio; Giacardi, Livia; Marchisio, Marina; Verra, Alessandro
2016-01-01
This book commemorates the 150th birthday of Corrado Segre, one of the founders of the Italian School of Algebraic Geometry and a crucial figure in the history of Algebraic Geometry. It is the outcome of a conference held in Turin, Italy. One of the book's most unique features is the inclusion of a previously unpublished manuscript by Corrado Segre, together with a scientific commentary. Representing a prelude to Segre's seminal 1894 contribution on the theory of algebraic curves, this manuscript and other important archival sources included in the essays shed new light on the eminent role he played at the international level. Including both survey articles and original research papers, the book is divided into three parts: section one focuses on the implications of Segre's work in a historic light, while section two presents new results in his field, namely Algebraic Geometry. The third part features Segre's unpublished notebook: Sulla Geometria Sugli Enti Algebrici Semplicemente Infiniti (1890-1891). This v...
Computer Algebra Systems and Theorems on Real Roots of Polynomials
Aidoo, Anthony Y.; Manthey, Joseph L.; Ward, Kim Y.
2010-01-01
A computer algebra system is used to derive a theorem on the existence of roots of a quadratic equation on any bounded real interval. This is extended to a cubic polynomial. We discuss how students could be led to derive and prove these theorems. (Contains 1 figure.)
On the noncommutative geometry of the endomorphism algebra of a vector bundle
Masson, Thierry
1999-09-01
In this paper we investigate some aspects of the noncummutative differential geometry based on derivations of the algebra of endomorphism of an oriented complex formation vector bundle. We relate it, in a natural way, to the geometry of the underlying principal bundle, we introduce on it a notion of metric and we study the cohomology of its complex of noncummutative differential forms.
The role of difficulty and gender in numbers, algebra, geometry and mathematics achievement
Rabab'h, Belal Sadiq Hamed; Veloo, Arsaythamby; Perumal, Selvan
2015-05-01
This study aims to identify the role of difficulty and gender in numbers, algebra, geometry and mathematics achievement among secondary schools students in Jordan. The respondent of the study were 337 students from eight public secondary school in Alkoura district by using stratified random sampling. The study comprised of 179 (53%) males and 158 (47%) females students. The mathematics test comprises of 30 items which has eight items for numbers, 14 items for algebra and eight items for geometry. Based on difficulties among male and female students, the findings showed that item 4 (fractions - 0.34) was most difficult for male students and item 6 (square roots - 0.39) for females in numbers. For the algebra, item 11 (inequality - 0.23) was most difficult for male students and item 6 (algebraic expressions - 0.35) for female students. In geometry, item 3 (reflection - 0.34) was most difficult for male students and item 8 (volume - 0.33) for female students. Based on gender differences, female students showed higher achievement in numbers and algebra compare to male students. On the other hand, there was no differences between male and female students achievement in geometry test. This study suggest that teachers need to give more attention on numbers and algebra when teaching mathematics.
A special irreducible matrix representation of the real Clifford algebra C(3,1)
Scharnhorst, K
1999-01-01
4x4 Dirac (gamma) matrices (irreducible matrix representations of the Clifford algebras C(3,1), C(1,3), C(4,0)) are an essential part of many calculations in quantum physics. Although the final physical results do not depend on any particular representation of the Dirac matrices (e.g. due to the invariance of traces of products of Dirac matrices), the appropriate choice of the representation used may facilitate the analysis. The present paper introduces a particularly symmetric real representation of 4x4 Dirac matrices (Majorana representation) which may prove useful in the future. The consideration is based on the role played by isoclinic 2-planes in the geometry of the real Clifford algebra C(3,0) which provide an invariant geometric frame for it.
Spectral properties of sums of Hermitian matrices and algebraic geometry
Chau Huu-Tai, P.; Van Isacker, P.
2016-04-01
It is shown that all the eigenvectors of a sum of Hermitian matrices belong to the same algebraic variety. A polynomial system characterizing this variety is given and a set of nonlinear equations is derived which allows the construction of the variety. Moreover, in some specific cases, explicit expressions for the eigenvectors and eigenvalues can be obtained. Explicit solutions of selected models are also derived.
Quaternions and Biquaternions: Algebra, Geometry and Physical Theories
Yefremov, A. P.
2005-01-01
The review of modern study of algebraic, geometric and differential properties of quaternionic (Q) numbers with their applications. Traditional and "tensor" formulation of Q-units with their possible representations are discussed and groups of Q-units transformations leaving Q-multiplication rule form-invariant are determined. A series of mathematical and physical applications is offered, among them use of Q-triads as a moveable frame, analysis of Q-spaces families, Q-formulation of Newtonian...
A study in derived algebraic geometry volume I : correspondences and duality
Gaitsgory, Dennis
2017-01-01
Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in various parts of mathematics, most prominently in representation theory. This volume develops the theory of ind-coherent sheaves in the context of derived algebraic geometry. Ind-coherent sheaves are a "renormalization" of quasi-coherent sheaves and provide a natural setting for Grothendieck-Serre duality as well as geometric incarnations of numerous categories of interest in representation theory. This volume consists of three parts and an appendix. The first part is a survey of homotopical algebra in the setting of \\infty-categories and the basics of derived algebraic geometry. The second part builds the theory of ind-coherent sheaves as a functor out of the category of correspondences and studies the relationship between ind-coherent and quasi-coherent sheaves. The third part sets up the general machinery of the \\mathrm{(}\\infty, 2\\mathrm{)}-category of correspondences needed for the sec...
Fast Erasure and Error decoding of Algebraic Geometry Codes up to the Feng-Rao Bound
Jensen, Helge Elbrønd; Sakata, S.; Leonard, D.
1996-01-01
This paper gives an errata(that is erasure-and error-) decoding algorithm of one-point algebraic geometry codes up to the Feng-Rao designed minimum distance using Sakata's multidimensional generalization of the Berlekamp-massey algorithm and the votin procedure of Feng and Rao.......This paper gives an errata(that is erasure-and error-) decoding algorithm of one-point algebraic geometry codes up to the Feng-Rao designed minimum distance using Sakata's multidimensional generalization of the Berlekamp-massey algorithm and the votin procedure of Feng and Rao....
a Perspective on the Magic Square and the "special Unitary" Realization of Real Simple Lie Algebras
Santander, Mariano
2013-07-01
This paper contains the last part of the minicourse "Spaces: A Perspective View" delivered at the IFWGP2012. The series of three lectures was intended to bring the listeners from the more naive and elementary idea of space as "our physical Space" (which after all was the dominant one up to the 1820s) through the generalization of the idea of space which took place in the last third of the 19th century. That was a consequence of first the discovery and acceptance of non-Euclidean geometry and second, of the views afforded by the works of Riemann and Klein and continued since then by many others, outstandingly Lie and Cartan. Here we deal with the part of the minicourse which centers on the classification questions associated to the simple real Lie groups. We review the original introduction of the Magic Square "á la Freudenthal", putting the emphasis in the role played in this construction by the four normed division algebras ℝ, ℂ, ℍ, 𝕆. We then explore the possibility of understanding some simple real Lie algebras as "special unitary" over some algebras 𝕂 or tensor products 𝕂1 ⊗ 𝕂2, and we argue that the proper setting for this construction is not to confine only to normed division algebras, but to allow the split versions ℂ‧, ℍ‧, 𝕆‧ of complex, quaternions and octonions as well. This way we get a "Grand Magic Square" and we fill in all details required to cover all real forms of simple real Lie algebras within this scheme. The paper ends with the complete lists of all realizations of simple real Lie algebras as "special unitary" (or only unitary when n = 2) over some tensor product of two *-algebras 𝕂1, 𝕂2, which in all cases are obtained from ℝ, ℂ, ℂ‧, ℍ, ℍ‧, 𝕆, 𝕆‧ as sets, endowing them with a *-conjugation which usually but not always is the natural complex, quaternionic or octonionic conjugation.
Noncommutative geometry in string and twisted Hopf algebra of diffeomorphism
Watamura, Satoshi
2011-09-01
We discuss the Hopf algebra structure in string theory and present the twist quantization as a unified formulation of the world sheet quantization of the string and the symmetry of the target spacetime. Applying it to the case with a nonzero B-field background, we explain a method to decompose the twist into two successive twists. There are two different possibilities of decomposition: The first is a natural decomposition from the viewpoint of the twist quantization, leading to a new type of twisted Poincaré symmetry. The second decomposition reveals the relation of our formulation to the twisted Poincaré symmetry on the Moyal type noncommutative space.
Some Researches on Real Piecewise Algebraic Curves%实分片代数曲线的某些研究
朱春钢; 王仁宏
2008-01-01
The piecewise algebraic curve,defined by a bivariate spline,is a generalization of the classical algebraic curve.In this palper,we present some researches on real piecewise algebraic curves using elementary algebra.A real piecewise algebraic curve is studied according to the fact that a real spline for the curve is indefinite,definite or semidefinite(nondefinite).Moreover,the isolated points of a real piecewise algebraic curve is also discussed.
Quantum error-correcting codes from algebraic geometry codes of Castle type
Munuera, Carlos; Tenório, Wanderson; Torres, Fernando
2016-10-01
We study algebraic geometry codes producing quantum error-correcting codes by the CSS construction. We pay particular attention to the family of Castle codes. We show that many of the examples known in the literature in fact belong to this family of codes. We systematize these constructions by showing the common theory that underlies all of them.
Arnold, Vladimir I; Khesin, Boris; Marsden, Jerrold E; Varchenko, AN; Vassiliev, Victor A; Viro, Oleg Yanovich; Zakalyukin, Vladimir
2013-01-01
Vladimir Arnold was one of the great mathematical scientists of our time. He is famous for both the breadth and the depth of his work. At the same time he is one of the most prolific and outstanding mathematical authors. This second volume of his ""Collected Works"" focuses on hydrodynamics, bifurcation theory, and algebraic geometry.
Performance analysis of a decoding algorithm for algebraic-geometry codes
Høholdt, Tom; Jensen, Helge Elbrønd; Nielsen, Rasmus Refslund
1999-01-01
The fast decoding algorithm for one point algebraic-geometry codes of Sakata, Elbrond Jensen, and Hoholdt corrects all error patterns of weight less than half the Feng-Rao minimum distance. In this correspondence we analyze the performance of the algorithm for heavier error patterns. It turns out...
Abstract algebra, projective geometry and time encoding of quantum information
Planat, M R P; Planat, Michel R. P.; Saniga, Metod
2005-01-01
Algebraic geometrical concepts are playing an increasing role in quantum applications such as coding, cryptography, tomography and computing. We point out here the prominent role played by Galois fields viewed as cyclotomic extensions of the integers modulo a prime characteristic $p$. They can be used to generate efficient cyclic encoding, for transmitting secrete quantum keys, for quantum state recovery and for error correction in quantum computing. Finite projective planes and their generalization are the geometric counterpart to cyclotomic concepts, their coordinatization involves Galois fields, and they have been used repetitively for enciphering and coding. Finally the characters over Galois fields are fundamental for generating complete sets of mutually unbiased bases, a generic concept of quantum information processing and quantum entanglement. Gauss sums over Galois fields ensure minimum uncertainty under such protocols. Some Galois rings which are cyclotomic extensions of the integers modulo 4 are al...
Projective BGG equations, algebraic sets, and compactifications of Einstein geometries
Cap, A; Hammerl, M
2010-01-01
For curved projective manifolds we introduce a notion of a normal tractor frame field, based around any point. This leads to canonical systems of (redundant) coordinates that generalise the usual homogeneous coordinates on projective space. These give preferred local maps to the model projective space that encode geometric contact with the model to a level that is optimal, in a suitable sense. In terms of the trivialisations arising from the special frames, normal solutions of classes of natural linear PDE (so-called first BGG equations) are shown to be necessarily polynomial in the generalised homogeneous coordinates; the polynomial system is the pull back of a polynomial system that solves the corresponding problem on the model. Thus questions concerning the zero locus of solutions, as well as related finer geometric and smooth data, are reduced to a study of the corresponding polynomial systems and algebraic sets. We show that a normal solution determines a canonical manifold stratification that reflects a...
Jeffrey L. BOERSEMA
2007-01-01
We prove analogs of the Kaplansky Density Theorem and the Kadison Transitivity Theorem for irreducible representations of a real C*-algebra on a real Hilbert space. Specifically, if a C*-algebra is acting irreducibly on a real Hilbert space, then the Hilbert space has either a real, complex, or quaternionic structure with respect to which the density and transitivity theorems hold.
Algebraic and computational aspects of real tensor ranks
Sakata, Toshio; Miyazaki, Mitsuhiro
2016-01-01
This book provides comprehensive summaries of theoretical (algebraic) and computational aspects of tensor ranks, maximal ranks, and typical ranks, over the real number field. Although tensor ranks have been often argued in the complex number field, it should be emphasized that this book treats real tensor ranks, which have direct applications in statistics. The book provides several interesting ideas, including determinant polynomials, determinantal ideals, absolutely nonsingular tensors, absolutely full column rank tensors, and their connection to bilinear maps and Hurwitz-Radon numbers. In addition to reviews of methods to determine real tensor ranks in details, global theories such as the Jacobian method are also reviewed in details. The book includes as well an accessible and comprehensive introduction of mathematical backgrounds, with basics of positive polynomials and calculations by using the Groebner basis. Furthermore, this book provides insights into numerical methods of finding tensor ranks through...
Model checking process algebra of communicating resources for real-time systems
Boudjadar, Jalil; Kim, Jin Hyun; Larsen, Kim Guldstrand
2014-01-01
This paper presents a new process algebra, called PACoR, for real-time systems which deals with resource- constrained timed behavior as an improved version of the ACSR algebra. We define PACoR as a Process Algebra of Communicating Resources which allows to explicitly express preemptiveness...
Model Checking Process Algebra of Communicating Resources for Real-time Systems
Boudjadar, Jalil; Kim, Jin Hyun; Larsen, Kim Guldstrand
2014-01-01
This paper presents a new process algebra, called PACOR, for real-time systems which deals with resource constrained timed behavior as an improved version of the ACSR algebra. We define PACOR as a Process Algebra of Communicating Resources which allows to express preemptiveness, urgent ness...
Some Remarks Concerning the Invariants of Rank One Solvable Real Lie Algebras
Rutwig Campoamor-Stursberg
2005-01-01
A corrected and completed list of six dimensional real Lie algebras with five dimensional nilradical is presented. Their invariants for the coadjoint representation are computed and some results on the invariants of solvable Lie algebras in arbitrary dimension whose nilradical has codimension one are also given. Specifically, it is shown that any rank one solvable Lie algebra of dimension n without invariants determines a family of (n +2k)-dimensional algebras with the same property.
Muntingh, Georg
2014-01-01
This book summarizes research carried out in workshops of the SAGA project, an Initial Training Network exploring the interplay of Shapes, Algebra, Geometry and Algorithms. Written by a combination of young and experienced researchers, the book introduces new ideas in an established context. Among the central topics are approximate and sparse implicitization and surface parametrization; algebraic tools for geometric computing; algebraic geometry for computer aided design applications and problems with industrial applications. Readers will encounter new methods for the (approximate) transition between the implicit and parametric representation; new algebraic tools for geometric computing; new applications of isogeometric analysis, and will gain insight into the emerging research field situated between algebraic geometry and computer aided geometric design.
Geometry of moduli stacks of (k , l) -stable vector bundles over algebraic curves
Mata-Gutiérrez, O.; Neumann, Frank
2017-01-01
We study the geometry of the moduli stack of vector bundles of fixed rank and degree over an algebraic curve by introducing a filtration made of open substacks build from (k , l) -stable vector bundles. The concept of (k , l) -stability was introduced by Narasimhan and Ramanan to study the geometry of the coarse moduli space of stable bundles. We will exhibit the stacky picture and analyse the geometric and cohomological properties of the moduli stacks of (k , l) -stable vector bundles. For particular pairs (k , l) of integers we also show that these moduli stacks admit coarse moduli spaces and we discuss their interplay.
Bizi, Nadir; Besnard, Fabien
2016-01-01
An analogy with real Clifford algebras on even-dimensional vector spaces suggests to assign a space dimension and a time dimension (modulo 8) to an algebra (represented over a complex Hilbert space) containing two self-adjoint involutions and an anti-unitary operator with specific commutation relations. It is shown that this assignment is compatible with the tensor product, in the sense that a tensor product of such algebras corresponds to the addition of the space and time dimensions. This could provide an interpretation of the presence of such algebras in PT-symmetric Hamiltonians or the description of topological matter. This construction is used to build the tensor product of Lorentzian (and more generally pseudo-Riemannian) spectral triples, defined over a Krein space. The application to the standard model of particles suggests the identity of the time and space dimensions of the total (manifold+finite algebra) spectral triple. It also suggests the emergence of the pseudo-orthogonal group SO(4,6) in a gr...
Real zeros of the zero-dimensional parametric piecewise algebraic variety
无
2009-01-01
The piecewise algebraic variety is the set of all common zeros of multivariate splines. We show that solving a parametric piecewise algebraic variety amounts to solve a finite number of parametric polynomial systems containing strict inequalities. With the regular decomposition of semi- algebraic systems and the partial cylindrical algebraic decomposition method, we give a method to compute the supremum of the number of torsion-free real zeros of a given zero-dimensional parametric piecewise algebraic variety, and to get distributions of the number of real zeros in every n-dimensional cell when the number reaches the supremum. This method also produces corresponding necessary and suffcient conditions for reaching the supremum and its distributions. We also present an algorithm to produce a necessary and suffcient condition for a given zero-dimensional parametric piecewise algebraic variety to have a given number of distinct torsion-free real zeros in every n-cell in the n-complex.
Guggenheimer, Heinrich W
1977-01-01
This is a text of local differential geometry considered as an application of advanced calculus and linear algebra. The discussion is designed for advanced undergraduate or beginning graduate study, and presumes of readers only a fair knowledge of matrix algebra and of advanced calculus of functions of several real variables. The author, who is a Professor of Mathematics at the Polytechnic Institute of New York, begins with a discussion of plane geometry and then treats the local theory of Lie groups and transformation groups, solid differential geometry, and Riemannian geometry, leading to a
Algebraic geometry tools for the study of entanglement: an application to spin squeezed states
Bernardi, Alessandra; Carusotto, Iacopo
2012-03-01
A short review of algebraic geometry tools for the decomposition of tensors and polynomials is given from the point of view of applications to quantum and atomic physics. Examples of application to assemblies of indistinguishable two-level bosonic atoms are discussed using modern formulations of the classical Sylvester algorithm for the decomposition of homogeneous polynomials in two variables. In particular, the symmetric rank and symmetric border rank of spin squeezed states are calculated as well as their Schrödinger-cat-like decomposition as the sum of macroscopically different coherent spin states; Fock states provide an example of states for which the symmetric rank and the symmetric border rank are different.
Non-Binary Polar Codes using Reed-Solomon Codes and Algebraic Geometry Codes
Mori, Ryuhei
2010-01-01
Polar codes, introduced by Arikan, achieve symmetric capacity of any discrete memoryless channels under low encoding and decoding complexity. Recently, non-binary polar codes have been investigated. In this paper, we calculate error probability of non-binary polar codes constructed on the basis of Reed-Solomon matrices by numerical simulations. It is confirmed that 4-ary polar codes have significantly better performance than binary polar codes on binary-input AWGN channel. We also discuss an interpretation of polar codes in terms of algebraic geometry codes, and further show that polar codes using Hermitian codes have asymptotically good performance.
An algebraic geometry approach to protein structure determination from NMR data.
Wang, Lincong; Mettu, Ramgopal R; Donald, Bruce Randall
2005-01-01
Our paper describes the first provably-efficient algorithm for determining protein structures de novo, solely from experimental data. We show how the global nature of a certain kind of NMR data provides quantifiable complexity-theoretic benefits, allowing us to classify our algorithm as running in polynomial time. While our algorithm uses NMR data as input, it is the first polynomial-time algorithm to compute high-resolution structures de novo using any experimentally-recorded data, from either NMR spectroscopy or X-Ray crystallography. Improved algorithms for protein structure determination are needed, because currently, the process is expensive and time-consuming. For example, an area of intense research in NMR methodology is automated assignment of nuclear Overhauser effect (NOE) restraints, in which structure determination sits in a tight inner-loop (cycle) of assignment/refinement. These algorithms are very time-consuming, and typically require a large cluster. Thus, algorithms for protein structure determination that are known to run in polynomial time and provide guarantees on solution accuracy are likely to have great impact in the long-term. Methods stemming from a technique called "distance geometry embedding" do come with provable guarantees, but the NP-hardness of these problem formulations implies that in the worst case these techniques cannot run in polynomial time. We are able to avoid the NP-hardness by (a) some mild assumptions about the protein being studied, (b) the use of residual dipolar couplings (RDCs) instead of a dense network of NOEs, and (c) novel algorithms and proofs that exploit the biophysical geometry of (a) and (b), drawing on a variety of computer science, computational geometry, and computational algebra techniques. In our algorithm, RDC data, which gives global restraints on the orientation of internuclear bond vectors, is used in conjunction with very sparse NOE data to obtain a polynomial-time algorithm for protein structure
Ezawa, Z. F.; Tsitsishvili, G.; Hasebe, K.
2003-03-01
Noncommutative geometry governs the physics of quantum Hall (QH) effects. We introduce the Weyl ordering of the second quantized density operator to explore the dynamics of electrons in the lowest Landau level. We analyze QH systems made of N-component electrons at the integer filling factor ν=k⩽N. The basic algebra is the SU(N)-extended W∞. A specific feature is that noncommutative geometry leads to a spontaneous development of SU(N) quantum coherence by generating the exchange Coulomb interaction. The effective Hamiltonian is the Grassmannian GN,k sigma model, and the dynamical field is the Grassmannian GN,k field, describing k(N-k) complex Goldstone modes and one kind of topological solitons (Grassmannian solitons).
A C*-algebra approach to noncommutative Lorentzian geometry of globally-hyperbolic spacetimes
Moretti, V
2003-01-01
The structure of globally hyperbolic spacetimes is investigated from the point of view of Connes' noncommutative geometry. No foliation of the spacetime by means of spacelike surfaces is employed, the complete Lorentzian geometry is considered. Connes' functional formula for the distance is generalized to the Lorentzian case using the d'Alembert operator and the causal functions of a globally hyperbolic spacetime (continuous functions which do not decrease along future-directed causal curves).The formula concerns the Lorentzian distance which determines the causal part of the Synge world function, satisfies an inverse triangular inequality and completely determines the topology, the differentiable structure, the metric tensor and the temporal orientation of a globally hyperbolic spacetime. Afterwards, using a C*-algebra approach, the spacetime causal structure and the Lorentzian distance are generalized into noncommutative structures. The generalized spacetime consists of a direct set of of Hilbert spaces and...
Algebraic structures, physics and geometry from a Unified Field Theoretical framework
Cirilo-Lombardo, Diego Julio
2014-01-01
Starting from a Unified Field Theory (UFT) proposed previously by the authors, the possible fermionic representations arising from the same spacetime are considered from the algebraic and geometrical viewpoint. We specifically demonstrate in this UFT general context that the underlying basis of the single geometrical structure P (G,M) (the principal fiber bundle over the real spacetime manifold M with structural group G) reflecting the symmetries of the different fields carry naturally a biquaternionic structure instead of a complex one. This fact allows us to analyze algebraically and to interpret physically in a straighforward way the Majorana and Dirac representations and the relation of such structures with the spacetime signature and non-hermitian (CP) dynamic operators. Also, from the underlying structure of the tangent space, the existence of hidden (super) symmetries and the possibility of supersymmetric extensions of these UFT models are given showing that Rothstein's theorem is incomplete for that d...
Classical Geometries in Modern Contexts Geometry of Real Inner Product Spaces Third Edition
Benz, Walter
2012-01-01
The focus of this book and its geometric notions is on real vector spaces X that are finite or infinite inner product spaces of arbitrary dimension greater than or equal to 2. It characterizes both euclidean and hyperbolic geometry with respect to natural properties of (general) translations and general distances of X. Also for these spaces X, it studies the sphere geometries of Mobius and Lie as well as geometries where Lorentz transformations play the key role. Proofs of newer theorems characterizing isometries and Lorentz transformations under mild hypotheses are included, such as for insta
Norén, Patrik
2013-01-01
Algebraic statistics brings together ideas from algebraic geometry, commutative algebra, and combinatorics to address problems in statistics and its applications. Computer algebra provides powerful tools for the study of algorithms and software. However, these tools are rarely prepared to address statistical challenges and therefore new algebraic results need often be developed. This way of interplay between algebra and statistics fertilizes both disciplines. Algebraic statistics is a relativ...
Algebraic Structures, Physics and Geometry from a Unified Field Theoretical Framework
Cirilo-Lombardo, Diego Julio
2015-10-01
Starting from a Unified Field Theory (UFT) proposed previously by the author, the possible fermionic representations arising from the same spacetime are considered from the algebraic and geometrical viewpoint. We specifically demonstrate in this UFT general context that the underlying basis of the single geometrical structure P( G, M) (the principal fiber bundle over the real spacetime manifold M with structural group G) reflecting the symmetries of the different fields carry naturally a biquaternionic structure instead of a complex one. This fact allows us to analyze algebraically and to interpret physically in a straighforward way the Majorana and Dirac representations and the relation of such structures with the spacetime signature and non-hermitian (CP) dynamic operators. Also, from the underlying structure of the tangent space, the existence of hidden (super) symmetries and the possibility of supersymmetric extensions of these UFT models are given showing that Rothstein's theorem is incomplete for that description. The importance of the Clifford algebras in the description of all symmetries, mainly the interaction of gravity with the other fields, is briefly discussed.
Filtrated K-theory for real rank zero C*-algebras
Arklint, Sara Esther; Restorff, Gunnar; Ruiz, Efren
2012-01-01
The smallest primitive ideal spaces for which there exist counterexamples to the classification of non-simple, purely infinite, nuclear, separable C*-algebras using filtrated K-theory, are four-point spaces. In this article, we therefore restrict to real rank zero C*-algebras with four......-point primitive ideal spaces. Up to homeomorphism, there are ten different connected T0-spaces with exactly four points. We show that filtrated K-theory classifies real rank zero, tight, stable, purely infinite, nuclear, separable C*-algebras that satisfy that all simple subquotients are in the bootstrap class...
Noncommutative geometry and Cayley-Smooth orders
Le Bruyn, Lieven
2007-01-01
Preface Introduction Noncommutative algebra Noncommutative geometryNoncommutative desingularizationsCayley-Hamilton Algebras Conjugacy classes of matrices Simultaneous conjugacy classesMatrix invariants and necklaces The trace algebraThe symmetric group Necklace relations Trace relations Cayley-Hamilton algebrasReconstructing Algebras Representation schemes Some algebraic geometry The Hilbert criterium Semisimple modules Some invariant theory Geometric reconstruction The Gerstenhaber-Hesselink theoremThe real moment mapÉtale Technology Étale topologyCentral simple algebrasSpectral sequencesTse
Using Dynamic Geometry and Computer Algebra Systems in Problem Based Courses for Future Engineers
Tomiczková, Svetlana; Lávicka, Miroslav
2015-01-01
It is a modern trend today when formulating the curriculum of a geometric course at the technical universities to start from a real-life problem originated in technical praxis and subsequently to define which geometric theories and which skills are necessary for its solving. Nowadays, interactive and dynamic geometry software plays a more and more…
Numerical algebraic geometry for model selection and its application to the life sciences.
Gross, Elizabeth; Davis, Brent; Ho, Kenneth L; Bates, Daniel J; Harrington, Heather A
2016-10-01
Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation and model selection. These are all optimization problems, well known to be challenging due to nonlinearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data are available. Here, we consider polynomial models (e.g. mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometrical structures relating models and data, and we demonstrate its utility on examples from cell signalling, synthetic biology and epidemiology.
Algebraic geometry methods associated to the one-dimensional Hubbard model
Martins, M.J., E-mail: martins@df.ufscar.br
2016-06-15
In this paper we study the covering vertex model of the one-dimensional Hubbard Hamiltonian constructed by Shastry in the realm of algebraic geometry. We show that the Lax operator sits in a genus one curve which is not isomorphic but only isogenous to the curve suitable for the AdS/CFT context. We provide an uniformization of the Lax operator in terms of ratios of theta functions allowing us to establish relativistic like properties such as crossing and unitarity. We show that the respective R-matrix weights lie on an Abelian surface being birational to the product of two elliptic curves with distinct J-invariants. One of the curves is isomorphic to that of the Lax operator but the other is solely fourfold isogenous. These results clarify the reason the R-matrix can not be written using only difference of spectral parameters of the Lax operator.
Numerical algebraic geometry for model selection and its application to the life sciences
Gross, Elizabeth
2016-10-12
Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation and model selection. These are all optimization problems, well known to be challenging due to nonlinearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data are available. Here, we consider polynomial models (e.g. mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometrical structures relating models and data, and we demonstrate its utility on examples from cell signalling, synthetic biology and epidemiology.
Boolean Algebra. Geometry Module for Use in a Mathematics Laboratory Setting.
Brotherton, Sheila; And Others
This module is recommended as an honors unit to follow a unit on logic. There are four basic parts: (1) What is a Boolean Algebra; (2) Using Boolean Algebra to Prove Theorems; (3) Using Boolean Algebra to Simplify Logical Statements; and (4) Circuit Problems with Logic and Boolean Algebra. Of these, sections 1, 2, and 3 are primarily written…
Flanders, Harley
1975-01-01
Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a
Geometry of the gauge algebra in noncommutative Yang-Mills theory
Lizzi, Fedele; Zampini, Alessandro; Szabo, Richard J.
2001-08-01
A detailed description of the infinite-dimensional Lie algebra of star-gauge transformations in non-commutative Yang-Mills theory is presented. Various descriptions of this algebra are given in terms of inner automorphisms of the underlying deformed algebra of functions on spacetime, of deformed symplectic diffeomorphisms, of the infinite unitary Lie algebra u(∞), and of the C*-algebra of compact operators on a quantum mechanical Hilbert space. The spacetime and string interpretations are also elucidated.
Geometry of the Gauge Algebra in Noncommutative Yang-Mills Theory
Lizzi, F; Zampini, A
2001-01-01
A detailed description of the infinite-dimensional Lie algebra of star-gauge transformations in noncommutative Yang-Mills theory is presented. Various descriptions of this algebra are given in terms of inner automorphisms of the underlying deformed algebra of functions on spacetime, of deformed symplectic diffeomorphisms, of the infinite unitary Lie algebra, and of the algebra of compact operators on a quantum mechanical Hilbert space. The spacetime and string interpretations are also elucidated.
Fast Erasure-and error decoding of algebraic geometry codes up to the Feng-Rao bound
Høholdt, Tom; Jensen, Helge Elbrønd; Sakata, Shojiro
1998-01-01
This correspondence gives an errata (that is erasure-and error-) decoding algorithm of one-point algebraic-geometry codes up to the Feng-Rao designed minimum distance using Sakata's multidimensional generalization of the Berlekamp-Massey algorithm and the voting procedure of Feng and Rao....
Interpolation on Real Algebraic Curves to Polynomial Data
Len Bos
2013-04-01
Full Text Available We discuss a polynomial interpolation problem where the data are of the form of a set of algebraic curves in R^2 on each of which is prescribed a polynomial. The object is then to construct a global bivariate polynomial that agrees with the given polynomials when restricted to the corresponding curves.
Invertibility-preserving maps of C∗-algebras with real rank zero
Istvan Kovacs
2005-01-01
Full Text Available In 1996, Harris and Kadison posed the following problem: show that a linear bijection between C∗-algebras that preserves the identity and the set of invertible elements is a Jordan isomorphism. In this paper, we show that if A and B are semisimple Banach algebras and Φ:A→B is a linear map onto B that preserves the spectrum of elements, then Φ is a Jordan isomorphism if either A or B is a C∗-algebra of real rank zero. We also generalize a theorem of Russo.
Computing the topology of an arrangement of implicitly defined real algebraic plane curves
Jorge CARAVANTES; Laureano GONZALEZ-VEGA
2008-01-01
We introduce a new algebraic approach dealing with the problem of computing the topology of an arrangement of a finite set of real algebraic plane curves presented implicitly. The main achievement of the presented method is a complete avoidance of irrational numbers that appear when using the sweeping method in the classical way for solving the problem at hand. Therefore,it is worth mentioning that the efficiency of the proposed method is only assured for low-degree curves.
Subgroups of ideal class groups of real quadratic algebraic function fields
WANG; Kunpeng(王鲲鹏); ZHANG; Xianke(张贤科)
2003-01-01
Necessary and sufficient condition on real quadratic algebraic function fields K is given for theirideal class groups H(K) to contain cyclic subgroups of order n. And eight series of such real quadratic functionfields K are obtained whose ideal class groups contain cyclic subgroups of order n. In particular, the ideal classnumbers of these function fields are divisible by n.
Big Bang, Blow Up, and Modular Curves: Algebraic Geometry in Cosmology
Manin, Yuri I
2014-01-01
We introduce some algebraic geometric models in cosmology related to the "boundaries" of space--time: Big Bang, Mixmaster Universe, Penrose's crossovers between aeons. We suggest to model the kinematics of Big Bang using the algebraic geometric (or analytic) blow up of a point $x$. This creates a boundary which consists of the projective space of tangent directions to $x$ and possibly of the light cone of $x$. We argue that time on the boundary undergoes the Wick rotation and becomes purely imaginary. The Mixmaster (Bianchi IX) model of the early history of the universe is neatly explained in this picture by postulating that the reverse Wick rotation follows a hyperbolic geodesic connecting imaginary time axis to the real one. Penrose's idea to see the Big Bang as a sign of crossover from "the end of previous aeon" of the expanding and cooling Universe to the "beginning of the next aeon" is interpreted as an identification of a natural boundary of Minkowski space at infinity with the Bing Bang boundary.
Shafarevich, I
1994-01-01
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.
Sepanski, Mark R
2010-01-01
Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems
WANG Renhong; ZHU Chungang
2004-01-01
The piecewise algebraic variety is a generalization of the classical algebraic variety. This paper discusses some properties of piecewise algebraic varieties and their coordinate rings based on the knowledge of algebraic geometry.
Pole-placement Predictive Functional Control for under-damped systems with real numbers algebra.
Zabet, K; Rossiter, J A; Haber, R; Abdullah, M
2017-08-31
This paper presents the new algorithm of PP-PFC (Pole-placement Predictive Functional Control) for stable, linear under-damped higher-order processes. It is shown that while conventional PFC aims to get first-order exponential behavior, this is not always straightforward with significant under-damped modes and hence a pole-placement PFC algorithm is proposed which can be tuned more precisely to achieve the desired dynamics, but exploits complex number algebra and linear combinations in order to deliver guarantees of stability and performance. Nevertheless, practical implementation is easier by avoiding complex number algebra and hence a modified formulation of the PP-PFC algorithm is also presented which utilises just real numbers while retaining the key attributes of simple algebra, coding and tuning. The potential advantages are demonstrated with numerical examples and real-time control of a laboratory plant. Copyright © 2017 ISA. All rights reserved.
Teaching of Real Numbers by Using the Archimedes-Cantor Approach and Computer Algebra Systems
Vorob'ev, Evgenii M.
2015-01-01
Computer technologies and especially computer algebra systems (CAS) allow students to overcome some of the difficulties they encounter in the study of real numbers. The teaching of calculus can be considerably more effective with the use of CAS provided the didactics of the discipline makes it possible to reveal the full computational potential of…
Topological properties of real algebraic varieties: du cote de chez Rokhlin
Degtyarev, A I [Bilkent University, Ankara (Turkey); Kharlamov, V M [Institut de Recherche Matematique Avanee, Universite Louis Pasteur et CNRS 7, rue Rene Descartes (France)
2000-08-31
The survey covers results in the topology of real algebraic varieties in the direction initiated in the early seventies by V.I. Arnol'd and V.A. Rokhlin. We make an attempt to systematize the principal achievements in the subject. After presenting general tools and results, we pay special attention to surfaces and curves on surfaces.
Abedi-Fardad, J., E-mail: j.abedifardad@bonabu.ac.ir [Department of Mathematics, Bonab University, Tabriz (Iran, Islamic Republic of); Rezaei-Aghdam, A., E-mail: rezaei-a@azaruniv.edu [Department of Physics, Azarbaijan Shahid Madani University, 53714-161 Tabriz (Iran, Islamic Republic of); Haghighatdoost, Gh., E-mail: gorbanali@azaruniv.edu [Department of Mathematics, Bonab University, Tabriz (Iran, Islamic Republic of); Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of)
2014-05-15
We construct integrable and superintegrable Hamiltonian systems using the realizations of four dimensional real Lie algebras as a symmetry of the system with the phase space R{sup 4} and R{sup 6}. Furthermore, we construct some integrable and superintegrable Hamiltonian systems for which the symmetry Lie group is also the phase space of the system.
Fermi-Bose duality of the Dirac equation and extended real Clifford-Dirac algebra
I.Yu. Krivsky
2010-01-01
Full Text Available We have proved on the basis of the symmetry analysis of the standard Dirac equation with nonzero mass that this equation may describe not only fermions of spin 1/2 but also bosons of spin 1. The new bosonic symmetries of the Dirac equation in both the Foldy-Wouthuysen and the Pauli-Dirac representations are found. Among these symmetries (together with the 32-dimensional pure matrix algebra of invariance the new, physically meaningful, spin 1 Poincare symmetry of equation under consideration is proved. In order to provide the corresponding proofs, a 64-dimensional extended real Clifford-Dirac algebra is put into consideration.
Classification of non-simple C*-algebras of real rank zero
Arklint, Sara Esther
isomorphisms on filtered K-theory to ideal related KK-equivalences to achieve the desired classification result. Results by R. Meyer and R. Nest, and by R. Bentmann and M. Köhler, describe for exactly which finite primitive ideal spaces this is possible for general C-algebras. The main question throughout...... the thesis is the following: is it possible to achieve the desired classification result for arbitrary finite primitive ideal spaces by restricting to C-algebras of real rank zero that possibly satisfy further restrictions on K-theory? The thesis consists of an account of the relevant theory and the relevant...
Bina, B; Bina, Behzad; Gunaydin, Murat
1997-01-01
We give a complete classification of the real forms of simple nonlinear superconformal algebras (SCA) and quasi-superconformal algebras (QSCA) and present a unified realization of these algebras with simple symmetry groups. This classification is achieved by establishing a correspondence between simple nonlinear QSCA's and SCA's and quaternionic and super-quaternionic symmetric spaces of simple Lie groups and Lie supergroups, respectively. The unified realization involves a dimension zero boson ( dilaton), dimension one symmetry currents and dimension 1/2 free bosons for QSCA'a and dimension 1/2 free fermions for SCA's. The dimension 1/2 free bosons and fermions are associated with the quaternionic and super-quaternionic symmetric spaces of corresponding Lie groups and Lie supergroups, respectively. We conclude with a discussion of possible applications of our results.
Real time process algebra with time-dependent conditions
Baeten, J.C.M.; Middelburg, C.A.
2000-01-01
We extend the main real time version of ACP presented in [6] with conditionals in which the condition depends on time. This extension facilitates flexible dependence of proccess behaviour on initialization time. We show that the conditions concerned generalize the conditions introduced earlier in a
Real time process algebra with time-dependent conditions
Baeten, J.C.M.; Middelburg, C.A.
2008-01-01
We extend the main real time version of ACP presented in [6] with conditionals in which the condition depends on time. This extension facilitates flexible dependence of proccess behaviour on initialization time. We show that the conditions concerned generalize the conditions introduced earlier in a
Real time process algebra with time-dependent conditions
Baeten, J.C.M.; Middelburg, C.A.
We extend the main real time version of ACP presented in [6] with conditionals in which the condition depends on time. This extension facilitates flexible dependence of proccess behaviour on initialization time. We show that the conditions concerned generalize the conditions introduced earlier
Biswas, Indranil; Morye, Archana; Parameswaran, A
2017-01-01
This volume is an outcome of the International conference held in Tata Institute of Fundamental Research and the University of Hyderabad. There are fifteen articles in this volume. The main purpose of the articles is to introduce recent and advanced techniques in the area of analytic and algebraic geometry. This volume attempts to give recent developments in the area to target mainly young researchers who are new to this area. Also, some research articles have been added to give examples of how to use these techniques to prove new results.
The Perlick system type I: From the algebra of symmetries to the geometry of the trajectories
Kuru, Ş.; Negro, J.; Ragnisco, O.
2017-10-01
In this paper, we investigate the main algebraic properties of the maximally superintegrable system known as "Perlick system type I". All possible values of the relevant parameters, K and β, are considered. In particular, depending on the sign of the parameter K entering in the metrics, the motion will take place on compact or non compact Riemannian manifolds. To perform our analysis we follow a classical variant of the so called factorization method. Accordingly, we derive the full set of constants of motion and construct their Poisson algebra. As it is expected for maximally superintegrable systems, the algebraic structure will actually shed light also on the geometric features of the trajectories, that will be depicted for different values of the initial data and of the parameters. Especially, the crucial role played by the rational parameter β will be seen "in action".
Finding all real roots of a polynomial by matrix algebra and the Adomian decomposition method
Hooman Fatoorehchi
2014-10-01
Full Text Available In this paper, we put forth a combined method for calculation of all real zeroes of a polynomial equation through the Adomian decomposition method equipped with a number of developed theorems from matrix algebra. These auxiliary theorems are associated with eigenvalues of matrices and enable convergence of the Adomian decomposition method toward different real roots of the target polynomial equation. To further improve the computational speed of our technique, a nonlinear convergence accelerator known as the Shanks transform has optionally been employed. For the sake of illustration, a number of numerical examples are given.
A Lie-Algebra model for a noncommutative space time geometry
Doerfel, B D
2002-01-01
We propose a Lie-algebra model for noncommutative coordinate and momentum space . Based on a rigid commutation relation for the commutators of space time operators the model is quite constrained if one tries to keep Lorentz invariance as much as possible. We discuss the question of invariants esp. the definition of a mass.
Distribution theory of algebraic numbers
Yang, Chung-Chun
2008-01-01
The book timely surveys new research results and related developments in Diophantine approximation, a division of number theory which deals with the approximation of real numbers by rational numbers. The book is appended with a list of challenging open problems and a comprehensive list of references. From the contents: Field extensions Algebraic numbers Algebraic geometry Height functions The abc-conjecture Roth''s theorem Subspace theorems Vojta''s conjectures L-functions.
Central simple Poisson algebras
SU Yucai; XU Xiaoping
2004-01-01
Poisson algebras are fundamental algebraic structures in physics and symplectic geometry. However, the structure theory of Poisson algebras has not been well developed. In this paper, we determine the structure of the central simple Poisson algebras related to locally finite derivations, over an algebraically closed field of characteristic zero.The Lie algebra structures of these Poisson algebras are in general not finitely-graded.
Algebraic partial Boolean algebras
Smith, Derek [Math Department, Lafayette College, Easton, PA 18042 (United States)
2003-04-04
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A{sub 5} sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E{sub 8}.
Guido, Daniele; Landi, Giovanni; Vassout, Stéphane
2016-07-01
This topical issue grew out of the International Conference "Noncommutative Geometry and Applications" held 16-21 June 2014 at Villa Mondragone, Frascati (Roma). The main purpose of the conference was to have a unified view of different incarnations of noncommutative geometry and its applications. The seven papers collected in the present topical issue represent a good sample of the topics covered at the workshop. The conference itself was one of the climaxes of the Franco-Italian project GREFI-GENCO, which was initiated in 2007 by CNRS and INDAM to promote and enhance collaboration and exchanges between French and Italian researchers in the area of noncommutative geometry.
Maximal Abelian subalgebras of pseudoeuclidean real Lie algebras and their application in physics
Thomova, Zora
1998-12-01
We construct the conjugacy classes of maximal abelian subalgebras (MASAs) of the real pseudoeuclidean Lie algebras e(p, q) under the conjugation by the corresponding pseudoeuclidean Lie groups E(p, q). The algebra e( p, q) is a semi-direct sum of the pseudoorthogonal algebra o(p, q) and the abelian ideal of translations T(p + q). We use this particular structure to construct first the splitting MASAs, which are themselves direct sums of subalgebras of o(p, q) and T(p + q). Splitting MASAs give rise to the nonsplitting MASAs of e(p, q). The results for q = 0, 1 and 2 are entirely explicit. MASAs of e(p, 0) and e( p, 1) are used to construct conformally nonequivalent coordinate systems in which the wave equation and Hamilton-Jacobi equations allow the separation of variables. As an application of subgroup classification we perform symmetry reduction for two nonlinear partial differential equations. The method of symmetry reduction is used to obtain analytical solutions of the Landau-Lifshitz and a nonlinear diffusion equations. The symmetry group is found for both equations and all two-dimensional subgroups are classified. These are used to reduce both equations to ordinary differential equations, which are solved in terms of elliptic functions.
Real Hamiltonian Forms of Affine Toda Models Related to Exceptional Lie Algebras
Vladimir S. Gerdjikov
2006-02-01
Full Text Available The construction of a family of real Hamiltonian forms (RHF for the special class of affine 1+1-dimensional Toda field theories (ATFT is reported. Thus the method, proposed in [1] for systems with finite number of degrees of freedom is generalized to infinite-dimensional Hamiltonian systems. The construction method is illustrated on the explicit nontrivial example of RHF of ATFT related to the exceptional algebras E_6 and E_7. The involutions of the local integrals of motion are proved by means of the classical R-matrix approach.
1998-01-01
This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.
Terzis, Petros A
2010-01-01
Lie group symmetry analysis for systems of coupled, nonlinear ordinary differential equations is performed in order to obtain the entire solution space to Einstein's field equations for vacuum Bianchi spacetime geometries. The symmetries used are the automorphisms of the Lie algebra of the corresponding three- dimensional isometry group acting on the hyper-surfaces of simultaneity for each Bianchi Type, as well as the scaling and the time reparametrization symmetry. The method is applied to Bianchi Types I; II; IV and V. The result is the acquisition, in each case, of the entire solution space of either Lorenzian of Euclidean signature. This includes all the known solutions for each Type and the general solution of Type IV (in terms of sixth Painlev\\'e transcendent PVI).
Impacts of real-time data collection on introductory algebra-based physics
Brewe, Eric; Pamela, Priscilla
2007-01-01
Including real-time data collection technology is a common practice to upgrade physics labs, and the assumption is such technology improves student learning, yet little has been done to demonstrate the effects of technology. Specific activities have been shown to be enhanced by technology, but the effects on the class as a whole has been left unexplored. This paper investigates the effects of technology on two algebra based introductory physics classes. In this paper, we use FCI, MPEX, surveys, and ethnographies to document the improvement in learning as real-time data collection technology is incorporated into a modeling physics class. The two classes examined differed only in the inclusion of technology. The results found were significant. Students in the class with high technology were found to have learned more than students in the class with no technology. This paper explores the gains in learning and relates them directly to the addition of technology.
de Gosson, Maurice A
2012-01-01
A positive definite symmetric matrix {\\sigma} qualifies as a quantum mechanical covariance matrix if and only if {\\sigma}+(1/2)i\\hbar{\\Omega}\\geq0 where {\\Omega} is the standard symplectic matrix. This well-known condition is a strong version of the uncertainty principle, which can be reinterpreted in terms of the topological notion of symplectic capacity, closely related to Gromov's non-squeezing theorem. We show that a recent refinement of the latter leads to a new class of geometric invariants. These are the volumes of the orthogonal projections of the covariance ellipsoid on symplectic subspaces of the phase space. We compare these geometric invariants to the algebraic "universal quantum invariants" of Dodonov and Serafini.
Ezawa, Z F; Hasebe, K
2003-01-01
Noncommutative geometry governs the physics of quantum Hall (QH) effects. We introduce the Weyl ordering of the second quantized density operator to explore the dynamics of electrons in the lowest Landau level. We analyze QH systems made of $N$-component electrons at the integer filling factor $\
Lloris Ruiz, Antonio; Parrilla Roure, Luis; García Ríos, Antonio
2014-01-01
This book presents a complete and accurate study of algebraic circuits, digital circuits whose performance can be associated with any algebraic structure. The authors distinguish between basic algebraic circuits, such as Linear Feedback Shift Registers (LFSRs) and cellular automata, and algebraic circuits, such as finite fields or Galois fields. The book includes a comprehensive review of representation systems, of arithmetic circuits implementing basic and more complex operations, and of the residue number systems (RNS). It presents a study of basic algebraic circuits such as LFSRs and cellular automata as well as a study of circuits related to Galois fields, including two real cryptographic applications of Galois fields.
Geometry of q-Hypergeometric Functions, Quantum Affine Algebras and Elliptic Quantum Groups
Tarasov, V; Tarasov, Vitaly; Varchenko, Alexander
1997-01-01
The trigonometric quantized Knizhnik-Zamolodchikov equation (qKZ equation) associated with the quantum group $U_q(sl_2)$ is a system of linear difference equations with values in a tensor product of $U_q(sl_2)$ Verma modules. We solve the equation in terms of multidimensional $q$-hypergeometric functions and define a natural isomorphism between the space of solutions and the tensor product of the corresponding evaluation Verma modules over the elliptic quantum group $E_{\\rho,\\gamma}(sl_2)$, where parameters $\\rho$ and $\\gamma$ are related to the parameter $q$ of the quantum group $U_q(sl_2)$ and the step $p$ of the qKZ equation via $p=e^{2\\pii\\rho}$ and $q=e^{-2\\pii\\gamma}$. We construct asymptotic solutions associated with suitable asymptotic zones and compute the transition functions between the asymptotic solutions in terms of the dynamical elliptic $R$-matrices. This description of the transition functions gives a connection between representation theories of the quantum loop algebra $U_q(\\widetilde{gl}_2...
Connecting Gr\\"obner Bases Programs with Coq to do Proofs in Algebra, Geometry and Arithmetics
Pottier, Loïc
2010-01-01
We describe how we connected three programs that compute Groebner bases to Coq, to do automated proofs on algebraic, geometrical and arithmetical expressions. The result is a set of Coq tactics and a certificate mechanism (downloadable at http://www-sop.inria.fr/marelle/Loic.Pottier/gb-keappa.tgz). The programs are: F4, GB \\, and gbcoq. F4 and GB are the fastest (up to our knowledge) available programs that compute Groebner bases. Gbcoq is slow in general but is proved to be correct (in Coq), and we adapted it to our specific problem to be efficient. The automated proofs concern equalities and non-equalities on polynomials with coefficients and indeterminates in R or Z, and are done by reducing to Groebner computation, via Hilbert's Nullstellensatz. We adapted also the results of Harrison, to allow to prove some theorems about modular arithmetics. The connection between Coq and the programs that compute Groebner bases is done using the "external" tactic of Coq that allows to call arbitrary programs accepting ...
Casimir Force on Real Materials - the Slab and Cavity Geometry
Ellingsen, S A; Brevik, Iver; Ellingsen, Simen A.
2006-01-01
We analyse the potential of the geometry of a slab in a planar cavity for the purpose of Casimir force experiments. The force and its dependence on temperature, material properties and finite slab thickness are investigated both analytically and numerically for slab and walls made of aluminium and teflon FEP respectively. We conclude that such a setup is ideal for measurements of the temperature dependence of the Casimir force. By numerical calculation it is shown that temperature effects are dramatically larger for dielectrics, suggesting that a dielectric such as teflon FEP whose properties vary little within a moderate temperature range, should be considered for experimental purposes. We finally discuss the subtle but fundamental matter of the various Green's two-point function approaches present in the literature and show how they are different formulations describing the same phenomenon.
The Geometry of Quantum Lens Spaces: Real Spectral Triples and Bundle Structure
Sitarz, Andrzej, E-mail: andrzej.sitarz@uj.edu.pl [Jagiellonian University, Institute of Physics (Poland); Venselaar, Jan Jitse, E-mail: jvensel1@gwdg.de [Georg-August Universität Göttingen, Mathematisches Institut (Germany)
2015-12-15
We study almost real spectral triples on quantum lens spaces, as orbit spaces of free actions of cyclic groups on the spectral geometry on the quantum group SU{sub q}(2). These spectral triples are given by weakening some of the conditions of a real spectral triple. We classify the irreducible almost real spectral triples on quantum lens spaces and we study unitary equivalences of such quantum lens spaces. Applying a useful characterization of principal U(1)-fibrations in noncommutative geometry, we show that all such quantum lens spaces are principal U(1)-fibrations over quantum teardrops.
The geometry of real reducible polarizations in quantum mechanics
Tejero Prieto, Carlos; Vitolo, Raffaele
2017-03-01
The formulation of geometric quantization contains several axioms and assumptions. We show that for real polarizations we can generalize the standard geometric quantization procedure by introducing an arbitrary connection on the polarization bundle. The existence of reducible quantum structures leads to considering the class of Liouville symplectic manifolds. Our main application of this modified geometric quantization scheme is to quantum mechanics on Riemannian manifolds. With this method we obtain an energy operator without the scalar curvature term that appears in the standard formulation, thus agreeing with the usual expression found in the physics literature.
Algebra, geometry, and physics in the 21st century Kontsevich festschrift
Katzarkov, Ludmil; Pantev, Tony; Soibelman, Yan; Tschinkel, Yuri
2017-01-01
This volume is a tribute to Maxim Kontsevich, one of the most original and influential mathematicians of our time. Maxim’s vision has inspired major developments in many areas of mathematics, ranging all the way from probability theory to motives over finite fields, and has brought forth a paradigm shift at the interface of modern geometry and mathematical physics. Many of his papers have opened completely new directions of research and led to the solutions of many classical problems. This book collects papers by leading experts currently engaged in research on topics close to Maxim’s heart. Contributors: S. Donaldson A. Goncharov D. Kaledin M. Kapranov A. Kapustin L. Katzarkov A. Noll P. Pandit S. Pimenov J. Ren P. Seidel C. Simpson Y. Soibelman R. Thorngren.
Miyanishi, Masayoshi
2000-01-01
Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...
Workshop on Commutative Algebra
Simis, Aron
1990-01-01
The central theme of this volume is commutative algebra, with emphasis on special graded algebras, which are increasingly of interest in problems of algebraic geometry, combinatorics and computer algebra. Most of the papers have partly survey character, but are research-oriented, aiming at classification and structural results.
Rafael Morales
2014-05-01
Full Text Available Time derivative estimation of signals plays a very important role in several fields, such as signal processing and control engineering, just to name a few of them. For that purpose, a non-asymptotic algebraic procedure for the approximate estimation of the system states is used in this work. The method is based on results from differential algebra and furnishes some general formulae for the time derivatives of a measurable signal in which two algebraic derivative estimators run simultaneously, but in an overlapping fashion. The algebraic derivative algorithm presented in this paper is computed online and in real-time, offering high robustness properties with regard to corrupting noises, versatility and ease of implementation. Besides, in this work, we introduce a novel architecture to accelerate this algebraic derivative estimator using reconfigurable logic. The core of the algorithm is implemented in an FPGA, improving the speed of the system and achieving real-time performance. Finally, this work proposes a low-cost platform for the integration of hardware in the loop in MATLAB.
Cătălin Ciupală
2005-02-01
In this paper we introduce non-commutative fields and forms on a new kind of non-commutative algebras: -algebras. We also define the Frölicher–Nijenhuis bracket in the non-commutative geometry on -algebras.
The Application And Research Of Algebra And Geometry%代数与几何结合的应用问题研究
马艳琴
2012-01-01
In many areas of modern engineering,the computer graphics display a strong power.Geometry processes problems by algebraic method and algebra visualization,the combination of algebraic and geometric methods in engineering and technology applications have been quite extensive and in-depth,these practical problems prompted us to algebra and geometry more closely together.Using matrix algebra methods and matlab software can not only use geometric intuition to make some Abstract algebra concepts and theories become more easy acceptable,but also deal with some more difficult geometric problem.%在现代工程技术的许多领域里,计算机图形显示了强大的威力.几何问题代数化处理,代数问题可视化处理,使得代数与几何的结合方法在工程技术中的应用相当地广泛和深入,这些实际问题也促使我们把代数与几何更加紧密地结合在一起.运用矩阵代数的方法和matlab软件不仅可以借助几何直观使一些抽象的代数概念和理论变得比较容易接受,而且也可借助它处理解析几何中一些原本比较困难的问题。
Real Operator Algebras on a Complex Hilbert Space%复Hilbert空间上的实算子代数
李炳仁
2009-01-01
We study real operator algebras on a complex Hilbert space H. From H, we can get a real Hilbert space H_r. Further, we have a complex Hilbert space H_(rc)= H_r+iH_r. Through this process, we prove the following. If A and M are uniformly closed and weakly closed real * operator algebras on H respectively, then their complex span A + iA and M + iM are (complex) C*-algebra and (complex) von Neumann algebra on H, respectively. Here, we don't need the condition: A∩iA = {0}, M∩iM = {0}. So our result is a generalization of Stormer's result.%本文研究在一个复Hilbert空间H上的实算子代数.从H可以得到一个实Hilbert空间Hr珥,进而又有一个复Hilbert空间H_(rc)=H_r+iH_r.通过这个过程,证明了如下结果.如果A,M分别是H上一致闭的,弱闭的实*算子代数,则它们的复扩张A+iA,M4-iM分别是日上的(复)C~*代数,(复)von Neumann代数.这里,不需要条件A∩iA={0},MniM={0}.因此,我们的结果是Stormer结果的推广.
Algebraic K-theory of generalized schemes
Anevski, Stella Victoria Desiree
Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry...
Algebraic K-theory of generalized schemes
Anevski, Stella Victoria Desiree
Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry...
Real Gromov-Witten Theory in All Genera and Real Enumerative Geometry: Computation
Georgieva, Penka
2015-01-01
The first part of this work constructs real positive-genus Gromov-Witten invariants of real-orientable symplectic manifolds of odd "complex" dimensions; the second part studies the orientations on the moduli spaces of real maps used in constructing these invariants. The present paper applies the results of the latter to obtain quantitative and qualitative conclusions about the invariants defined in the former. After describing large collections of real-orientable symplectic manifolds, we show that the real genus 1 Gromov-Witten invariants of sufficiently positive almost Kahler threefolds are signed counts of real genus 1 curves only and thus provide direct lower bounds for the counts of these curves in such targets. We specify real orientations on the real-orientable complete intersections in projective spaces; the real Gromov-Witten invariants they determine are in a sense canonically determined by the complete intersection itself, (at least) in most cases. We also obtain equivariant localization data that c...
Real tunneling geometries and the large-scale topology of the universe
Gibbons, G.W. (Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge (United Kingdom)); Hartle, J.B. (Department of Physics, University of California, Santa Barbara, CA (USA))
1990-10-15
If the topology and geometry of spacetime are quantum-mechanically variable, then the particular classical large-scale topology and geometry observed in our universe must be statistical predictions of its initial condition. This paper examines the predictions of the no boundary'' initial condition for the present large-scale topology and geometry. Finite-action real tunneling solutions of Einstein's equation are important for such predictions. These consist of compact Riemannian (Euclidean) geometries joined to a Lorentzian cosmological geometry across a spacelike surface of vanishing extrinsic curvature. The classification of such solutions is discussed and general constraints on their topology derived. For example, it is shown that, if the Euclidean Ricci tensor is positive, then a real tunneling solution can nucleate only a single connected Lorentzian spacetime (the unique conception theorem). Explicit examples of real tunneling solutions driven by a cosmological constant are exhibited and their implications for cosmic baldness described. It is argued that the most probable large-scale spacetime predicted by the real tunneling solutions of the no-boundary'' initial condition has the topology {bold R}{times}{ital S}{sup 3} with the de Sitter metric.
Linear algebra meets Lie algebra: the Kostant-Wallach theory
Shomron, Noam; Parlett, Beresford N.
2008-01-01
In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.
Linear algebra meets Lie algebra: the Kostant-Wallach theory
Shomron, Noam; Parlett, Beresford N.
2008-01-01
In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.
Relative Homological Algebra Volume 1
2011-01-01
This is the second revised edition of an introduction to contemporary relative homological algebra. It supplies important material essential to understand topics in algebra, algebraic geometry and algebraic topology. Each section comes with exercises providing practice problems for students as well as additional important results for specialists. The book is also suitable for an introductory course in commutative and ordinary homological algebra.
Application of a Real-Fluid Turbomachinery Analysis to Rocket Turbopump Geometries
Dorney, Daniel J.; Sondak, Douglas L.; Marcu, Bogdan
2005-01-01
A three-dimensional flow solver has been developed for turbomachinery components utilizing real fluid properties. The code is applicable to both incompressible and compressible flow fields. In this study, the code has been applied to the analysis of inducer and impeller geometries representative of those used in rocket engine applications. The predicted results show good agreement with the available experimental data.
McKeague, Charles P
1986-01-01
Elementary Algebra, Third Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first ponders on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the elimination method, solving linear systems by graphing, word problems, addition property of equality, solving linear equations, linear inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then takes a look at exponents and polynomials, factoring, and rational expressions. Topics include reducing ra
High-resolution, real-time simultaneous 3D surface geometry and temperature measurement.
An, Yatong; Zhang, Song
2016-06-27
This paper presents a method to simultaneously measure three-dimensional (3D) surface geometry and temperature in real time. Specifically, we developed 1) a holistic approach to calibrate both a structured light system and a thermal camera under exactly the same world coordinate system even though these two sensors do not share the same wavelength; and 2) a computational framework to determine the sub-pixel corresponding temperature for each 3D point as well as discard those occluded points. Since the thermal 2D imaging and 3D visible imaging systems do not share the same spectrum of light, they can perform sensing simultaneously in real time: we developed a hardware system that can achieve real-time 3D geometry and temperature measurement at 26 Hz with 768 × 960 points per frame.
Pedoe, Dan
1988-01-01
""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he
Dimitrov, Bogdan G
2009-01-01
On the base of the distinction between covariant and contravariant metric tensor components, a new (multivariable) cubic algebraic equation for reparametrization invariance of the gravitational Lagrangian has been derived and parametrized with complicated non - elliptic functions, depending on the (elliptic) Weierstrass function and its derivative. This is different from standard algebraic geometry, where only two-dimensional cubic equations are parametrized with elliptic functions and not multivariable ones. Physical applications of the approach have been considered in reference to theories with extra dimensions. The s.c. "length function" l(x) has been introduced and found as a solution of quasilinear differential equations in partial derivatives for two different cases of "compactification + rescaling" and "rescaling + compactification". New physically important relations (inequalities) between the parameters in the action are established, which cannot be derived in the case $l=1$ of the standard gravitati...
Properties of Quaternion Algebra over the Real Number Field and Zp
QIN Ying-bing
2010-01-01
The ring of quaternion over R, denoted by R[i,j,k], is a quaternion algebra. In this paper, the roots of quadratic equation with one variable in quaternion field are investigated and it is shown that it has infinitely many roots. Then the properties of quaternion algebra over Zp are discussed, and the order of its unit group is determined. Lastly, another ring isomorphism of M2(Zp) and the quaternion algebra over Zp when p satisfies some particular conditions are presented.
2007-01-01
The workshop continued a series of Oberwolfach meetings on algebraic groups, started in 1971 by Tonny Springer and Jacques Tits who both attended the present conference. This time, the organizers were Michel Brion, Jens Carsten Jantzen, and Raphaël Rouquier. During the last years, the subject...... of algebraic groups (in a broad sense) has seen important developments in several directions, also related to representation theory and algebraic geometry. The workshop aimed at presenting some of these developments in order to make them accessible to a "general audience" of algebraic group......-theorists, and to stimulate contacts between participants. Each of the first four days was dedicated to one area of research that has recently seen decisive progress: \\begin{itemize} \\item structure and classification of wonderful varieties, \\item finite reductive groups and character sheaves, \\item quantum cohomology...
Cecil, Thomas E
2015-01-01
This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area. Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hy...
Chisolm, Eric
2012-01-01
This is an introduction to geometric algebra, an alternative to traditional vector algebra that expands on it in two ways: 1. In addition to scalars and vectors, it defines new objects representing subspaces of any dimension. 2. It defines a product that's strongly motivated by geometry and can be taken between any two objects. For example, the product of two vectors taken in a certain way represents their common plane. This system was invented by William Clifford and is more commonly known as Clifford algebra. It's actually older than the vector algebra that we use today (due to Gibbs) and includes it as a subset. Over the years, various parts of Clifford algebra have been reinvented independently by many people who found they needed it, often not realizing that all those parts belonged in one system. This suggests that Clifford had the right idea, and that geometric algebra, not the reduced version we use today, deserves to be the standard "vector algebra." My goal in these notes is to describe geometric al...
Lectures on algebraic statistics
Drton, Mathias; Sullivant, Seth
2009-01-01
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
Kolman, Bernard
1985-01-01
College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c
McKeague, Charles P
1981-01-01
Elementary Algebra 2e, Second Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first tackles the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the substitution method, solving linear systems by graphing, solutions to linear equations in two variables, multiplication property of equality, word problems, addition property of equality, and subtraction, addition, multiplication, and division of real numbers. The manuscript then examines exponents and polynomials, factoring, and rational e
Samuel, Pierre
2008-01-01
Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal
$A\\mathcal{T}$-Algebras and Extensions of $AT$-Algebras
Hongliang Yao
2010-04-01
Lin and Su classified $A\\mathcal{T}$-algebras of real rank zero. This class includes all $A\\mathbb{T}$-algebras of real rank zero as well as many *-algebras which are not stably finite. An $A\\mathcal{T}$-algebra often becomes an extension of an $A\\mathbb{T}$-algebra by an -algebra. In this paper, we show that there is an essential extension of an $A\\mathbb{T}$-algebra by an -algebra which is not an $A\\mathcal{T}$-algebra. We describe a characterization of an extension of an $A\\mathbb{T}$-algebra by an -algebra if is an $A\\mathcal{T}$-algebra.
Geometric invariant theory over the real and complex numbers
Wallach, Nolan R
2017-01-01
Geometric Invariant Theory (GIT) is developed in this text within the context of algebraic geometry over the real and complex numbers. This sophisticated topic is elegantly presented with enough background theory included to make the text accessible to advanced graduate students in mathematics and physics with diverse backgrounds in algebraic and differential geometry. Throughout the book, examples are emphasized. Exercises add to the reader’s understanding of the material; most are enhanced with hints. The exposition is divided into two parts. The first part, ‘Background Theory’, is organized as a reference for the rest of the book. It contains two chapters developing material in complex and real algebraic geometry and algebraic groups that are difficult to find in the literature. Chapter 1 emphasizes the relationship between the Zariski topology and the canonical Hausdorff topology of an algebraic variety over the complex numbers. Chapter 2 develops the interaction between Lie groups and algebraic ...
Representations of fundamental groups of algebraic varieties
Zuo, Kang
1999-01-01
Using harmonic maps, non-linear PDE and techniques from algebraic geometry this book enables the reader to study the relation between fundamental groups and algebraic geometry invariants of algebraic varieties. The reader should have a basic knowledge of algebraic geometry and non-linear analysis. This book can form the basis for graduate level seminars in the area of topology of algebraic varieties. It also contains present new techniques for researchers working in this area.
On the effect of linear algebra implementations in real-time multibody system dynamics
González, Manuel; González, Francisco; Dopico, Daniel; Luaces, Alberto
2008-03-01
This paper compares the efficiency of multibody system (MBS) dynamic simulation codes that rely on different implementations of linear algebra operations. The dynamics of an N-loop four-bar mechanism has been solved with an index-3 augmented Lagrangian formulation combined with the trapezoidal rule as numerical integrator. Different implementations for this method, both dense and sparse, have been developed, using a number of linear algebra software libraries (including sparse linear equation solvers) and optimized sparse matrix computation strategies. Numerical experiments have been performed in order to measure their performance, as a function of problem size and matrix filling. Results show that optimal implementations can increase the simulation efficiency in a factor of 2 3, compared with our starting classical implementations, and in some topics they disagree with widespread beliefs in MBS dynamics. Finally, advices are provided to select the implementation which delivers the best performance for a certain MBS dynamic simulation.
Capturing geometry in real-time using a tracked Microsoft Kinect
Tenedorio, Daniel; Fecho, Marlena; Schwartzhaupt, Jorge; Pardridge, Robert; Lue, James; Schulze, Jürgen P.
2012-03-01
We investigate the suitability of the Microsoft Kinect device for capturing real-world objects and places. Our new geometry scanning system permits the user to obtain detailed triangle models of non-moving objects with a tracked Kinect. The system generates a texture map for the triangle mesh using video frames from the Kinect's color camera and displays a continually-updated preview of the textured model in real-time, allowing the user to re-scan the scene from any direction to fill holes or increase the texture resolution. We also present filtering methods to maintain a high-quality model of reasonable size by removing overlapping or low-precision range scans. Our approach works well in the presence of degenerate geometry or when closing loops about the scanned subject. We demonstrate the ability of our system to acquire 3D models at human scale with a prototype implementation in the StarCAVE, a virtual reality environment at the University of California, San Diego. We designed the capturing algorithm to support the scanning of large areas, provided that accurate tracking is available.
Chudecki, Adam
2016-01-01
4-dimensional spaces equipped with 2-dimensional (complex holomorphic or real smooth) completely integrable distributions are considered. The integral manifolds of such distributions are totally null and totally geodesics 2-dimensional surfaces which are called the null strings. Properties of congruences (foliations) of such 2-surfaces are studied. Relation between properties of congruences of null strings and Petrov-Penrose type of SD Weyl spinor and algebraic types of traceless Ricci tensor is analyzed.
A Novel Approach of High-dimensional Image Restoration Based on Geometry Algebra%基于几何代数的散焦模糊高维图像恢复
户利利
2012-01-01
The geometry algebra can compute and analyze the high-dimensional space geometry in an easy way. Taking advantage of this property, the paper denotes the color image as one point in the geometry space by using the geometry algebra. The image transform can be treated on the language of geometry algebra as action of some transform. The image transform can be treated as the movements of the point in the high-dimensional space from the view of geometry. Beginning with the original blurred image, two further blurred images are got, then the restoral image can be obtained through the regressive curve derived from the three points in the geometry space which are mapped from the images by making use of geometry algebra. Experiments are presented to prove the availability of this method.%几何代数易于对高维空间几何进行计算和分析,应用几何代数的这一特性,将彩色图像表示为高维几何空间中的点元素,利用几何代数描述图像的变换关系,将图像的散焦变换看作是高维空间中点元素的平移运动.通过分析模糊图像以及其衍生出的相关模糊图像对应在高维几何空间中点之间的分布关系的研究,计算出空间中复原图像的点分布位置.实验结果验证了该方法的有效性.
Tubular algebras and affine Kac-Moody algebras
2007-01-01
The purpose of this paper is to construct quotient algebras L(A)1C/I(A) of complex degenerate composition Lie algebras L(A)1C by some ideals, where L(A)1C is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)1C/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)1C generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)1C generated by simple A-modules.
Tubular algebras and affine Kac-Moody algebras
Zheng-xin CHEN; Ya-nan LIN
2007-01-01
The purpose of this paper is to construct quotient algebras L(A)C1/I(A) of complex degenerate composition Lie algebras L(A)C1 by some ideals, where L(A)C1 is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)C1/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)C1 generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)C1 generated by simple A-modules.
Algebraic and analytic Dirac induction for graded affine Hecke algebras
Ciubotaru, D.; Opdam, E.M.; Trapa, P.E.
2014-01-01
We define the algebraic Dirac induction map IndD for graded affine Hecke algebras. The map IndD is a Hecke algebra analog of the explicit realization of the Baum-Connes assembly map in the K-theory of the reduced C∗-algebra of a real reductive group using Dirac operators. The definition of IndD is
Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data
Minson, Sarah E.; Murray, Jessica R.; Langbein, John O.; Gomberg, Joan S.
2015-01-01
We present an inversion strategy capable of using real-time high-rate GPS data to simultaneously solve for a distributed slip model and fault geometry in real time as a rupture unfolds. We employ Bayesian inference to find the optimal fault geometry and the distribution of possible slip models for that geometry using a simple analytical solution. By adopting an analytical Bayesian approach, we can solve this complex inversion problem (including calculating the uncertainties on our results) in real time. Furthermore, since the joint inversion for distributed slip and fault geometry can be computed in real time, the time required to obtain a source model of the earthquake does not depend on the computational cost. Instead, the time required is controlled by the duration of the rupture and the time required for information to propagate from the source to the receivers. We apply our modeling approach, called Bayesian Evidence-based Fault Orientation and Real-time Earthquake Slip, to the 2011 Tohoku-oki earthquake, 2003 Tokachi-oki earthquake, and a simulated Hayward fault earthquake. In all three cases, the inversion recovers the magnitude, spatial distribution of slip, and fault geometry in real time. Since our inversion relies on static offsets estimated from real-time high-rate GPS data, we also present performance tests of various approaches to estimating quasi-static offsets in real time. We find that the raw high-rate time series are the best data to use for determining the moment magnitude of the event, but slightly smoothing the raw time series helps stabilize the inversion for fault geometry.
Equivariant Semi-topological Invariants, Atiyah's KR-theory, and Real Algebraic Cycles
Heller, Jeremiah
2010-01-01
We establish an Atiyah-Hirzebruch type spectral sequence relating real morphic cohomology and real semi-topological K-theory and prove it to be compatible with the Atiyah-Hirzebruch spectral sequence relating Bredon cohomology and Atiyah's KR-theory constructed by Dugger. An equivariant and a real version of Suslin's conjecture on morphic cohomology are formulated, proved to come from the complex version of Suslin conjecture and verified for certain real varieties. In conjunction with the spectral sequences constructed here this allows the computation of the real semi-topological K-theory of some real varieties. As another application of this spectral sequence we give an alternate proof of the Lichtenbaum-Quillen conjecture over $\\R$, extending an earlier proof of Karoubi and Weibel.
Classifying Two-dimensional Hyporeductive Triple Algebras
Issa, A Nourou
2010-01-01
Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.
A concrete approach to abstract algebra from the integers to the insolvability of the quintic
Bergen, Jeffrey
2010-01-01
A Concrete Approach to Abstract Algebra begins with a concrete and thorough examination of familiar objects like integers, rational numbers, real numbers, complex numbers, complex conjugation and polynomials, in this unique approach, the author builds upon these familar objects and then uses them to introduce and motivate advanced concepts in algebra in a manner that is easier to understand for most students. The text will be of particular interest to teachers and future teachers as it links abstract algebra to many topics wich arise in courses in algebra, geometry, trigonometry, preca
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Petoukhov, Sergey V
2008-01-01
Algebraic properties of the genetic code are analyzed. The investigations of the genetic code on the basis of matrix approaches ("matrix genetics") are described. The degeneracy of the vertebrate mitochondria genetic code is reflected in the black-and-white mosaic of the (8*8)-matrix of 64 triplets, 20 amino acids and stop-signals. This mosaic genetic matrix is connected with the matrix form of presentation of the special 8-dimensional Yin-Yang-algebra and of its particular 4-dimensional case. The special algorithm, which is based on features of genetic molecules, exists to transform the mosaic genomatrix into the matrices of these algebras. Two new numeric systems are defined by these 8-dimensional and 4-dimensional algebras: genetic Yin-Yang-octaves and genetic tetrions. Their comparison with quaternions by Hamilton is presented. Elements of new "genovector calculation" and ideas of "genetic mechanics" are discussed. These algebras are considered as models of the genetic code and as its possible pre-code ba...
Perturbation semigroup of matrix algebras
Neumann, N.; Suijlekom, W.D. van
2016-01-01
In this article we analyze the structure of the semigroup of inner perturbations in noncommutative geometry. This perturbation semigroup is associated to a unital associative *-algebra and extends the group of unitary elements of this *-algebra. We compute the perturbation semigroup for all matrix algebras.
On dibaric and evolution algebras
Ladra, M; Rozikov, U A
2011-01-01
We find conditions on ideals of an algebra under which the algebra is dibaric. Dibaric algebras have not non-zero homomorphisms to the set of the real numbers. We introduce a concept of bq-homomorphism (which is given by two linear maps $f, g$ of the algebra to the set of the real numbers) and show that an algebra is dibaric if and only if it admits a non-zero bq-homomorphism. Using the pair $(f,g)$ we define conservative algebras and establish criteria for a dibaric algebra to be conservative. Moreover, the notions of a Bernstein algebra and an algebra induced by a linear operator are introduced and relations between these algebras are studied. For dibaric algebras we describe a dibaric algebra homomorphism and study their properties by bq-homomorphisms of the dibaric algebras. We apply the results to the (dibaric) evolution algebra of a bisexual population. For this dibaric algebra we describe all possible bq-homomorphisms and find conditions under which the algebra of a bisexual population is induced by a ...
2014-01-01
Time derivative estimation of signals plays a very important role in several fields, such as signal processing and control engineering, just to name a few of them. For that purpose, a non-asymptotic algebraic procedure for the approximate estimation of the system states is used in this work. The method is based on results from differential algebra and furnishes some general formulae for the time derivatives of a measurable signal in which two algebraic derivative estimators run simultaneously...
具有优良渐近参数的代数几何码%ALGEBRAIC GEOMETRY CODES WITH GOOD ASYMPTOTIC PARAMETERS
胡万宝
2007-01-01
In this paper,we discuss a class of algebraic geometry codes (A-G codes) with good asymptotic parameters.Based on some analyses on a relation amony divisor class number, number of rational divisors of high degrees,and parameters of A-G codes,we obtain an asymptotic bound of a class, which is better than both the Gilbert-Varshamov and the Xing bounds.Our result shows that these two bounds can be improved significantly around the two points where they intersect.%本文讨论了一类具有好的渐近参数的代数几何码.通过对除子类数、高次有理除子数以及代数几何码的参数分析,得到一类码其渐近界优于Gilbert-Varshamov界和Xing界.在这两个界的交点处,渐近界有所改进.
Categorical Algebra and its Applications
1988-01-01
Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.
The fundamental group of an algebraic curve
Jong, Johan de; Oort, F.
2001-01-01
Seminar on Algebraic Geometry, MIT 2002 In this seminar we study geometric properties of algebraic curves, or of Riemann surfaces. with the help of an algebraic object attached: the fundamental group, either the algebraic fundamental group, as introduced by Grothendieck, or the topological fundamen
Hecke algebras with unequal parameters
Lusztig, G
2003-01-01
Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...
Left Artinian Algebraic Algebras
S. Akbari; M. Arian-Nejad
2001-01-01
Let R be a left artinian central F-algebra, T(R) = J(R) + [R, R],and U(R) the group of units of R. As one of our results, we show that, if R is algebraic and char F = 0, then the number of simple components of -R = R/J(R)is greater than or equal to dimF R/T(R). We show that, when char F = 0 or F is uncountable, R is algebraic over F if and only if [R, R] is algebraic over F. As another approach, we prove that R is algebraic over F if and only if the derived subgroup of U(R) is algebraic over F. Also, we present an elementary proof for a special case of an old question due to Jacobson.
Cylindric-like algebras and algebraic logic
Ferenczi, Miklós; Németi, István
2013-01-01
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.
Euclidean distance geometry an introduction
Liberti, Leo
2017-01-01
This textbook, the first of its kind, presents the fundamentals of distance geometry: theory, useful methodologies for obtaining solutions, and real world applications. Concise proofs are given and step-by-step algorithms for solving fundamental problems efficiently and precisely are presented in Mathematica®, enabling the reader to experiment with concepts and methods as they are introduced. Descriptive graphics, examples, and problems, accompany the real gems of the text, namely the applications in visualization of graphs, localization of sensor networks, protein conformation from distance data, clock synchronization protocols, robotics, and control of unmanned underwater vehicles, to name several. Aimed at intermediate undergraduates, beginning graduate students, researchers, and practitioners, the reader with a basic knowledge of linear algebra will gain an understanding of the basic theories of distance geometry and why they work in real life.
Numerical and Experimental Studies of Particle Settling in Real Fracture Geometries
Roy, Pratanu; Du Frane, Wyatt L.; Kanarska, Yuliya; Walsh, Stuart D. C.
2016-11-01
Proppant is a vital component of hydraulic stimulation operations, improving conductivity by maintaining fracture aperture. While correct placement is a necessary part of ensuring that proppant performs efficiently, the transport behavior of proppant in natural rock fractures is poorly understood. In particular, as companies pursue new propping strategies involving new types of proppant, more accurate models of proppant behavior are needed to help guide their deployment. A major difficulty with simulating reservoir-scale proppant behavior is that continuum models traditionally used to represent large-scale slurry behavior loose applicability in fracture geometries. Particle transport models are often based on representative volumes that are at the same scale or larger than fractures found in hydraulic fracturing operations, making them inappropriate for modeling these types of flows. In the absence of a first-principles approach, empirical closure relations are needed. However, even such empirical closure relationships are difficult to derive without an accurate understanding of proppant behavior on the particle level. Thus, there is a need for experiments and simulations capable of probing phenomena at the sub-fracture scale. In this paper, we present results from experimental and numerical studies investigating proppant behavior at the sub-fracture level, in particular, the role of particle dispersion during proppant settling. In the experimental study, three-dimensional printing techniques are used to accurately reproduce the topology of a fractured Marcellus shale sample inside a particle-flow cell. By recreating the surface in clear plastic resin, proppant movement within the fracture can be tracked directly in real time without the need for X-ray imaging. Particle tracking is further enhanced through the use of mixtures of transparent and opaque proppant analogues. The accompanying numerical studies employ a high-fidelity three-dimensional particle-flow model
Discrimination in a General Algebraic Setting
Benjamin Fine
2015-01-01
Full Text Available Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras.
Discrimination in a General Algebraic Setting.
Fine, Benjamin; Gaglione, Anthony; Lipschutz, Seymour; Spellman, Dennis
2015-01-01
Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras.
Discrimination in a General Algebraic Setting
Fine, Benjamin; Gaglione, Anthony; Lipschutz, Seymour; Spellman, Dennis
2015-01-01
Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras. PMID:26171421
Enumerative Algebraic Geometry of Conics
2008-10-01
y = 0 into xy = 1, we get no solutions at all! However, the line and hyper- bola approach each other as x → ∞. We would like to consider these to be... bola , as illustrated in Figure 12. Figure 12. Left: Holding y constant gives cross sections of the surface x2 y = y2 + z2 that deform to a double line
Significant advancement in algebraic geometry
无
2008-01-01
@@ Supported by a grant for Distinguished Young Scholars of the National Natural Science Foundation of China,Prof.SUN Xiaotao with the CAS Academy of Mathematics and Systems Science has recently achieved a research breakthrough in revealing the deep relationship between stability of vector bundles and Frobenius morphism.It is considered as significant work with important theoretical value.
Complex geometry and real geometry
YU; Yanlin; ZHU; Lin; FENG; Xiuhong
2005-01-01
There is a well-known way to generalize the Riemann-Roch operator for Kahler manifold to that for Hermitian manifold. In this paper we show a slightly different way to get a generalized Riemann-Roch operator, which is just the Dirac operator. The difference between the two operators is that the latter one enables the so-called Pythagoras equalities.
Beginning algebra a textworkbook
McKeague, Charles P
1985-01-01
Beginning Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in algebra. The publication first elaborates on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on solving linear systems by graphing, elimination method, graphing ordered pairs and straight lines, linear and compound inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then examines exponents and polynomials, factoring, and rational expressions. Topics include multiplication and division
Intermediate algebra a textworkbook
McKeague, Charles P
1985-01-01
Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex
Affine and Projective Geometry
Bennett, M K
1995-01-01
An important new perspective on AFFINE AND PROJECTIVE GEOMETRY. This innovative book treats math majors and math education students to a fresh look at affine and projective geometry from algebraic, synthetic, and lattice theoretic points of view. Affine and Projective Geometry comes complete with ninety illustrations, and numerous examples and exercises, covering material for two semesters of upper-level undergraduate mathematics. The first part of the book deals with the correlation between synthetic geometry and linear algebra. In the second part, geometry is used to introduce lattice theory
Olsson, Martin
2016-01-01
This book is an introduction to the theory of algebraic spaces and stacks intended for graduate students and researchers familiar with algebraic geometry at the level of a first-year graduate course. The first several chapters are devoted to background material including chapters on Grothendieck topologies, descent, and fibered categories. Following this, the theory of algebraic spaces and stacks is developed. The last three chapters discuss more advanced topics including the Keel-Mori theorem on the existence of coarse moduli spaces, gerbes and Brauer groups, and various moduli stacks of curv
CIME school “Fully Nonlinear PDEs in Real and Complex Geometry and Optics”
Capogna, Luca; Gutiérrez, Cristian E; Montanari, Annamaria
2014-01-01
The purpose of this CIME summer school was to present current areas of research arising both in the theoretical and applied setting that involve fully nonlinear partial different equations. The equations presented in the school stem from the fields of Conformal Mapping Theory, Differential Geometry, Optics, and Geometric Theory of Several Complex Variables. The school consisted of four courses: Extremal problems for quasiconformal mappings in space by Luca Capogna, Fully nonlinear equations in geometry by Pengfei Guan, Monge-Ampere type equations and geometric optics by Cristian E. Gutiérrez, and On the Levi Monge Ampere equation by Annamaria Montanari.
Levin, A. M.; Olshanetsky, M. A.; Zotov, A. V.
2016-08-01
We construct twisted Calogero-Moser systems with spins as Hitchin systems derived from the Higgs bundles over elliptic curves, where the transition operators are defined by arbitrary finite-order automorphisms of the underlying Lie algebras. We thus obtain a spin generalization of the twisted D'Hoker-Phong and Bordner-Corrigan-Sasaki-Takasaki systems. In addition, we construct the corresponding twisted classical dynamical r-matrices and the Knizhnik-Zamolodchikov-Bernard equations related to the automorphisms of Lie algebras.
Beilinson, Alexander
2004-01-01
Chiral algebras form the primary algebraic structure of modern conformal field theory. Each chiral algebra lives on an algebraic curve, and in the special case where this curve is the affine line, chiral algebras invariant under translations are the same as well-known and widely used vertex algebras. The exposition of this book covers the following topics: the "classical" counterpart of the theory, which is an algebraic theory of non-linear differential equations and their symmetries; the local aspects of the theory of chiral algebras, including the study of some basic examples, such as the ch
Utilizing 3D building and 3D cadastre geometries for better valuation of existing real estate
Isikdag, U.; Horhammer, M.; Zlatanova, S.; Kathmann, R.; Van Oosterom, P.J.M.
2015-01-01
Valuation of the properties is known as real estate appraisal, property valuation or land valuation and is a process which focuses on determining the value of a building or a land lot. The valuation of each real estate is required prior to any transaction as every property is unique in terms of shap
Fenz, Wolfgang; Dirnberger, Johannes
2015-03-01
Providing suitable training for aspiring neurosurgeons is becoming more and more problematic. The increasing popularity of the endovascular treatment of intracranial aneurysms leads to a lack of simple surgical situations for clipping operations, leaving mainly the complex cases, which present even experienced surgeons with a challenge. To alleviate this situation, we have developed a training simulator with haptic interaction allowing trainees to practice virtual clipping surgeries on real patient-specific vessel geometries. By using specialized finite element (FEM) algorithms (fast finite element method, matrix condensation) combined with GPU acceleration, we can achieve the necessary frame rate for smooth real-time interaction with the detailed models needed for a realistic simulation of the vessel wall deformation caused by the clamping with surgical clips. Vessel wall geometries for typical training scenarios were obtained from 3D-reconstructed medical image data, while for the instruments (clipping forceps, various types of clips, suction tubes) we use models provided by manufacturer Aesculap AG. Collisions between vessel and instruments have to be continuously detected and transformed into corresponding boundary conditions and feedback forces, calculated using a contact plane method. After a training, the achieved result can be assessed based on various criteria, including a simulation of the residual blood flow into the aneurysm. Rigid models of the surgical access and surrounding brain tissue, plus coupling a real forceps to the haptic input device further increase the realism of the simulation.
Linear connections on matrix geometries
Madore, J; Mourad, J; Madore, John; Masson, Thierry; Mourad, Jihad
1994-01-01
A general definition of a linear connection in noncommutative geometry has been recently proposed. Two examples are given of linear connections in noncommutative geometries which are based on matrix algebras. They both possess a unique metric connection.
Grätzer, George
1979-01-01
Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...
Relationships between "Higher Algebra" and "Analytic Geometry" by Some Examples%例谈《高等代数》与《解析几何》的关联
宋元凤; 李武明
2012-01-01
This paper elaborates the relationships between "higher algebra" and "analytic geometry" by the follow ing four aspects: determinant and vector, system of linear equations and plane, matrix and curve of second order, matrix and quadric surface.%文中从行列式与向量关系、线性方程组与面面关系、矩阵与二次曲线关系、矩阵与二次曲面关系四个方面对《高等代数》与《解析几何》相通性进行了阐述．
Mac-Thiong Jean-Marc
2009-02-01
Full Text Available Abstract Background The correction of trunk deformity is crucial in scoliosis surgery, especially for the patient's self-image. However, direct visualization of external scoliotic trunk deformity during surgical correction is difficult due to the covering draping sheets. Methods An optoelectronic camera system with 10 passive markers is used to track the trunk geometry of 5 scoliotic patients during corrective surgery. The position of 10 anatomical landmarks and 5 trunk indices computed from the position of the passive markers are compared during and after instrumentation of the spine. Results Internal validation of the accuracy of tracking was evaluated at 0.41 +/- 0.05 mm RMS. Intra operative tracking during surgical maneuvers shows improvement of the shoulder balance during and after correction of the spine. Improvement of the overall patient balance is observed. At last, a minor increase of the spinal length can be noticed. Conclusion Tracking of the external geometry of the trunk during surgical correction is useful to monitor changes occurring under the sterile draping sheets. Moreover, this technique can used be used to reach the optimal configuration on the operating frame before proceeding to surgery. The current tracking technique was able to detect significant changes in trunk geometry caused by posterior instrumentation of the spine despite significant correction of the spinal curvature. It could therefore become relevant for computer-assisted guidance of surgical maneuvers when performing posterior instrumentation of the scoliotic spine, provide important insights during positioning of patients.
Abstract algebra structure and application
Finston, David R
2014-01-01
This text seeks to generate interest in abstract algebra by introducing each new structure and topic via a real-world application. The down-to-earth presentation is accessible to a readership with no prior knowledge of abstract algebra. Students are led to algebraic concepts and questions in a natural way through their everyday experiences. Applications include: Identification numbers and modular arithmetic (linear) error-correcting codes, including cyclic codes ruler and compass constructions cryptography symmetry of patterns in the real plane Abstract Algebra: Structure and Application is suitable as a text for a first course on abstract algebra whose main purpose is to generate interest in the subject, or as a supplementary text for more advanced courses. The material paves the way to subsequent courses that further develop the theory of abstract algebra and will appeal to students of mathematics, mathematics education, computer science, and engineering interested in applications of algebraic concepts.
Spaces of orderings and abstract real spectra
Marshall, Murray A
1996-01-01
This book is of interest to students as well as experts in the area of real algebraic geometry, quadratic forms, orderings, valuations, lattice ordered groups and rings, and in model theory. The original motivation comes from orderings on fields and commutative rings. This is explained as is the important application to minimal generation of semi-algebraic sets. Many results in the new theory of abstract real spectra (also called spaces of signs) appear here for the first time. The reader needs elementary knowledge of commutative rings, ordered fields and real closed fields and valuations.
Robinson, Gilbert de B
2011-01-01
This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom
Simple compactifications and polar decomposition of homogeneous real spherical spaces
Knop, Friedrich; Krötz, Bernhard; Sayag, Eitan
2015-01-01
Let Z be an algebraic homogeneous space Z = G/H attached to real reductive Lie group G. We assume that Z is real spherical, i.e., minimal parabolic subgroups have open orbits on Z. For such spaces, we investigate their large scale geometry and provide a polar decomposition. This is obtained from...
Integral geometry and representation theory
Gel'fand, I M; Vilenkin, N Ya
1966-01-01
Generalized Functions, Volume 5: Integral Geometry and Representation Theory is devoted to the theory of representations, focusing on the group of two-dimensional complex matrices of determinant one.This book emphasizes that the theory of representations is a good example of the use of algebraic and geometric methods in functional analysis, in which transformations are performed not on the points of a space, but on the functions defined on it. The topics discussed include Radon transform on a real affine space, integral transforms in the complex domain, and representations of the group of comp
UCSMP Algebra. What Works Clearinghouse Intervention Report
What Works Clearinghouse, 2007
2007-01-01
"University of Chicago School Mathematics Project (UCSMP) Algebra," designed to increase students' skills in algebra, is appropriate for students in grades 7-10, depending on the students' incoming knowledge. This one-year course highlights applications, uses statistics and geometry to develop the algebra of linear equations and inequalities, and…
Clifford Algebras and Their Decomposition into Conjugate Fermionic Heisenberg Algebras
Catto, Sultan; Gürcan, Yasemin; Khalfan, Amish; Kurt, Levent; Kato La, V.
2016-10-01
We discuss a construction scheme for Clifford numbers of arbitrary dimension. The scheme is based upon performing direct products of the Pauli spin and identity matrices. Conjugate fermionic algebras can then be formed by considering linear combinations of the Clifford numbers and the Hermitian conjugates of such combinations. Fermionic algebras are important in investigating systems that follow Fermi-Dirac statistics. We will further comment on the applications of Clifford algebras to Fueter analyticity, twistors, color algebras, M-theory and Leech lattice as well as unification of ancient and modern geometries through them.
A zero-dimensional approach to compute real radicals
Silke J. Spang
2008-04-01
Full Text Available The notion of real radicals is a fundamental tool in Real Algebraic Geometry. It takes the role of the radical ideal in Complex Algebraic Geometry. In this article I shall describe the zero-dimensional approach and efficiency improvement I have found during the work on my diploma thesis at the University of Kaiserslautern (cf. [6]. The main focus of this article is on maximal ideals and the properties they have to fulfil to be real. New theorems and properties about maximal ideals are introduced which yield an heuristic prepare_max which splits the maximal ideals into three classes, namely real, not real and the class where we can't be sure whether they are real or not. For the latter we have to apply a coordinate change into general position until we are sure about realness. Finally this constructs a randomized algorithm for real radicals. The underlying theorems and algorithms are described in detail.
Abhyankar, Shreeram Shankar
1964-01-01
This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from
Sinan AYDIN
2009-04-01
Full Text Available Linear algebra is a basic course followed in mathematics, science, and engineering university departments.Generally, this course is taken in either the first or second year but there have been difficulties in teachingand learning. This type of active algebra has resulted in an increase in research by mathematics educationresearchers. But there is insufficient information on this subject in Turkish and therefore it has not beengiven any educational status. This paper aims to give a general overview of this subject in teaching andlearning. These education studies can be considered quadruple: a the history of linear algebra, b formalismobstacles of linear algebra and cognitive flexibility to improve teaching and learning, c the relation betweenlinear algebra and geometry, d using technology in the teaching and learning linear algebra.Mathematicseducation researchers cannot provide an absolute solution to overcome the teaching and learning difficultiesof linear algebra. Epistemological analyses and experimental teaching have shown the learning difficulties.Given these results, further advice and assistance can be offered locally.
Introduction to algebraic independence theory
Philippon, Patrice
2001-01-01
In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e^(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject.
Pavelle, Richard; And Others
1981-01-01
Describes the nature and use of computer algebra and its applications to various physical sciences. Includes diagrams illustrating, among others, a computer algebra system and flow chart of operation of the Euclidean algorithm. (SK)
Warner, Seth
1990-01-01
Standard text provides an exceptionally comprehensive treatment of every aspect of modern algebra. Explores algebraic structures, rings and fields, vector spaces, polynomials, linear operators, much more. Over 1,300 exercises. 1965 edition.
Goodstein, R L
2007-01-01
This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.
2013-01-01
The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology.
Introduction to tropical geometry
Maclagan, Diane
2015-01-01
Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of t...
Algebraic curves and cryptography
Murty, V Kumar
2010-01-01
It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on
Representation Theory of Algebraic Groups and Quantum Groups
Gyoja, A; Shinoda, K-I; Shoji, T; Tanisaki, Toshiyuki
2010-01-01
Invited articles by top notch expertsFocus is on topics in representation theory of algebraic groups and quantum groupsOf interest to graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics
The Algebra of Complex Numbers.
LePage, Wilbur R.
This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…
Adaptive Algebraic Multigrid Methods
Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J
2004-04-09
Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.
Blyth, T S
2002-01-01
Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...
Bloch, Spencer J
2000-01-01
This book is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more). In the 20 years since, the importance of Bloch's lectures has not diminished. A lucky group of people working in the above areas had the good fortune to possess a copy of old typewritten notes of these lectures. Now everyone can have their own copy of this classic work.
Algebraic curves and one-dimensional fields
Bogomolov, Fedor
2002-01-01
Algebraic curves have many special properties that make their study particularly rewarding. As a result, curves provide a natural introduction to algebraic geometry. In this book, the authors also bring out aspects of curves that are unique to them and emphasize connections with algebra. This text covers the essential topics in the geometry of algebraic curves, such as line and vector bundles, the Riemann-Roch Theorem, divisors, coherent sheaves, and zeroth and first cohomology groups. The authors make a point of using concrete examples and explicit methods to ensure that the style is clear an
Uniform Algebras Over Complete Valued Fields
Mason, Jonathan W
2012-01-01
UNIFORM algebras have been extensively investigated because of their importance in the theory of uniform approximation and as examples of complex Banach algebras. An interesting question is whether analogous algebras exist when a complete valued field other than the complex numbers is used as the underlying field of the algebra. In the Archimedean setting, this generalisation is given by the theory of real function algebras introduced by S. H. Kulkarni and B. V. Limaye in the 1980s. This thesis establishes a broader theory accommodating any complete valued field as the underlying field by involving Galois automorphisms and using non-Archimedean analysis. The approach taken keeps close to the original definitions from the Archimedean setting. Basic function algebras are defined and generalise real function algebras to all complete valued fields. Several examples are provided. Each basic function algebra is shown to have a lattice of basic extensions related to the field structure. In the non-Archimedean settin...
Issa, A Nourou
2010-01-01
Non-Hom-associative algebras and Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra is a Hom-Akivis algebra. It is shown that non-Hom-associative algebras can be obtained from nonassociative algebras by twisting along algebra automorphisms while Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms.
Odesskii, A V [L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Moscow (Russian Federation)
2002-12-31
This survey is devoted to associative Z{sub {>=}}{sub 0}-graded algebras presented by n generators and n(n-1)/2 quadratic relations and satisfying the so-called Poincare-Birkhoff-Witt condition (PBW-algebras). Examples are considered of such algebras, depending on two continuous parameters (namely, on an elliptic curve and a point on it), that are flat deformations of the polynomial ring in n variables. Diverse properties of these algebras are described, together with their relations to integrable systems, deformation quantization, moduli spaces, and other directions of modern investigations.
Head First Algebra A Learner's Guide to Algebra I
Pilone, Tracey
2008-01-01
Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i
Algebra success in 20 minutes a day
LearningExpress, LLC
2014-01-01
Stripped of unnecessary math jargon but bursting with algebra essentials, this handy guide covers vital algebra skills that apply to real-world scenarios. Whether you're new to algebra or just looking for a refresher, Algebra Success in 20 Minutes a Day offers a lesson plan that provides quick and thorough instruction in practical, critical skills. All lessons can be completed in just 20 minutes a day, for a manageable and non-intimidating learning experience.
王元金; 陈萍清
2001-01-01
This artice is discussed the significan ce of combinin g higher algebra and analytic geometry as one course and its merit.And it is to give some advice and suggestion on the basic teaching requirements of higher alg ebra and analytic geometry towards 21 century.By teaching and studying the cours e,it may be organic related the two subjects.It is necessary that we remind the reciprocal utilization of the two subjects,reform the pattern of traditional tea ching,reinforce the teaching of the basic conceptions and basic theories,reinfor ce the training of the logical reasonig,stimulate the students' thirst for knowl edge,cultivate their habits of research.It make them learn to grasp the method o f higher algebra and analytic geometry to analyze the problem,solve the problem and establish the new ideas gradually.%论述了把高等代数与解析几 何合并成一门课的意义及其内在的合理性．对这两门课面向21世纪教学的基本要求提出一些 看法和建议：通过本课程教学，要把二者有机地揉合在一起．注意两门知识的交互应用，改 革传统的教学模式，加强基本概念、基本理论的教学，加强逻辑推理方面的训练，激发学生 的求知欲，培养他们的探索精神，逐步学会运用几何与代数相结合的方法分析问题，解决问 题，在潜移默化中树立和锻炼创新意识．
Homology theory on algebraic varieties
Wallace, Andrew H
1958-01-01
Homology Theory on Algebraic Varieties, Volume 6 deals with the principles of homology theory in algebraic geometry and includes the main theorems first formulated by Lefschetz, one of which is interpreted in terms of relative homology and another concerns the Poincaré formula. The actual details of the proofs of these theorems are introduced by geometrical descriptions, sometimes aided with diagrams. This book is comprised of eight chapters and begins with a discussion on linear sections of an algebraic variety, with emphasis on the fibring of a variety defined over the complex numbers. The n
Coxeter groups and Hopf algebras
Aguiar, Marcelo
2011-01-01
An important idea in the work of G.-C. Rota is that certain combinatorial objects give rise to Hopf algebras that reflect the manner in which these objects compose and decompose. Recent work has seen the emergence of several interesting Hopf algebras of this kind, which connect diverse subjects such as combinatorics, algebra, geometry, and theoretical physics. This monograph presents a novel geometric approach using Coxeter complexes and the projection maps of Tits for constructing and studying many of these objects as well as new ones. The first three chapters introduce the necessary backgrou
Introduction to applied algebraic systems
Reilly, Norman R
2009-01-01
This upper-level undergraduate textbook provides a modern view of algebra with an eye to new applications that have arisen in recent years. A rigorous introduction to basic number theory, rings, fields, polynomial theory, groups, algebraic geometry and elliptic curves prepares students for exploring their practical applications related to storing, securing, retrieving and communicating information in the electronic world. It will serve as a textbook for an undergraduate course in algebra with a strong emphasis on applications. The book offers a brief introduction to elementary number theory as
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...
Cavanagh, Sean
2009-01-01
As educators and policymakers search for ways to prepare students for the rigors of algebra, teachers in the Helena, Montana, school system are starting early by attempting to nurture students' algebraic-reasoning ability, as well as their basic number skills, in early elementary school, rather than waiting until middle or early high school.…
Cavanagh, Sean
2009-01-01
As educators and policymakers search for ways to prepare students for the rigors of algebra, teachers in the Helena, Montana, school system are starting early by attempting to nurture students' algebraic-reasoning ability, as well as their basic number skills, in early elementary school, rather than waiting until middle or early high school.…
Answers to selected problems in multivariable calculus with linear algebra and series
Trench, William F
1972-01-01
Answers to Selected Problems in Multivariable Calculus with Linear Algebra and Series contains the answers to selected problems in linear algebra, the calculus of several variables, and series. Topics covered range from vectors and vector spaces to linear matrices and analytic geometry, as well as differential calculus of real-valued functions. Theorems and definitions are included, most of which are followed by worked-out illustrative examples.The problems and corresponding solutions deal with linear equations and matrices, including determinants; vector spaces and linear transformations; eig
An introduction to differential geometry
Willmore, T J
2012-01-01
This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.
Reed, Nat
2011-01-01
For grades 6-8, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets
Division algebras and supersymmetry
Baez, John C
2009-01-01
Supersymmetry is deeply related to division algebras. Nonabelian Yang--Mills fields minimally coupled to massless spinors are supersymmetric if and only if the dimension of spacetime is 3, 4, 6 or 10. The same is true for the Green--Schwarz superstring. In both cases, supersymmetry relies on the vanishing of a certain trilinear expression involving a spinor field. The reason for this, in turn, is the existence of normed division algebras in dimensions 1, 2, 4 and 8: the real numbers, complex numbers, quaternions and octonions. Here we provide a self-contained account of how this works.
Reed, Nat
2011-01-01
For grades 3-5, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets
Algebra II textbook for students of mathematics
Gorodentsev, Alexey L
2017-01-01
This book is the second volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.
Algebra I textbook for students of mathematics
Gorodentsev, Alexey L
2016-01-01
This book is the first volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.
Higher geometry an introduction to advanced methods in analytic geometry
Woods, Frederick S
2005-01-01
For students of mathematics with a sound background in analytic geometry and some knowledge of determinants, this volume has long been among the best available expositions of advanced work on projective and algebraic geometry. Developed from Professor Woods' lectures at the Massachusetts Institute of Technology, it bridges the gap between intermediate studies in the field and highly specialized works.With exceptional thoroughness, it presents the most important general concepts and methods of advanced algebraic geometry (as distinguished from differential geometry). It offers a thorough study
Kaluza-Klein Aspects of Noncommutative Geometry
Madore, J
2015-01-01
Using some elementary methods from noncommutative geometry a structure is given to a point of space-time which is different from and simpler than that which would come from extra dimensions. The structure is described by a supplementary factor in the algebra which in noncommutative geometry replaces the algebra of functions. Using different examples of algebras it is shown that the extra structure can be used to describe spin or isospin.
An Algebraic Approach to the Scattering Equations
Huang, Rijun; Feng, Bo; He, Yang-Hui
2015-01-01
We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.
Garrett, Paul B
2007-01-01
Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal
Fontana, Marco; Olberding, Bruce; Swanson, Irena
2011-01-01
Commutative algebra is a rapidly growing subject that is developing in many different directions. This volume presents several of the most recent results from various areas related to both Noetherian and non-Noetherian commutative algebra. This volume contains a collection of invited survey articles by some of the leading experts in the field. The authors of these chapters have been carefully selected for their important contributions to an area of commutative-algebraic research. Some topics presented in the volume include: generalizations of cyclic modules, zero divisor graphs, class semigrou
Introduction to modern algebra and matrix theory
Schreier, O; David, Martin
2011-01-01
This unique text provides students with a basic course in both calculus and analytic geometry. It promotes an intuitive approach to calculus and emphasizes algebraic concepts. Minimal prerequisites. Numerous exercises. 1951 edition.
Pottmann, Helmut
2014-11-26
Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.
姜月萍
2014-01-01
本文针对线性代数与解析几何课程教学的现状，以及Matlab软件的特性，分析了利用Matlab软件进行教学改革的必要性。为激发学生的学习兴趣，提高学生的学习积极性，培养学生的知识应用能力，提出了教学方法改革、教学内容改革和训练方式改革三方面的教改措施。%According to the status of the curriculum of linear algebra and analytic geometry, and the characteristic of Matlab software, this paper analyzes the necessity of reform in education with Matlab software. To stimulate students' interest in learning, improve students' learning initiative, train students' application ability, three areas of education reform measures are proposed: the reform of teaching methods, the reform of teaching contents and the reform of training methods.
Atiyah, Michael; Dijkgraaf, Robbert; Hitchin, Nigel
2010-01-01
We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology. PMID:20123740
Towards relativistic quantum geometry
Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-12-17
We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.
Wares, Arsalan; Elstak, Iwan
2017-01-01
The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…
Wares, Arsalan; Elstak, Iwan
2017-01-01
The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…
Geometry from Information Geometry
Caticha, Ariel
2015-01-01
We use the method of maximum entropy to model physical space as a curved statistical manifold. It is then natural to use information geometry to explain the geometry of space. We find that the resultant information metric does not describe the full geometry of space but only its conformal geometry -- the geometry up to local changes of scale. Remarkably, this is precisely what is needed to model "physical" space in general relativity.
Computer algebra in spacetime embedding
Roque, Waldir L
2014-01-01
In this paper we describe an algorithm to determine the vectors normal to a space-time V4 embedded in a pseudo-Euclidean manifold M4+n. An application of this algorithm is given considering the Schwarzchild space-time geometry embedded in a 6 dimensional pseudo-Euclidean manifold, using the algebraic computing system REDUCE.
Algebraic aspects of gauge theories
Zharinov, V. V.
2014-08-01
Gauge theories are primary tools in modern elementary particle physics. The generally recognized mathematical foundations of these theories are in differential geometry, namely, in the theory of connections in a principal fiber bundle. We propose another approach to the mathematical description of gauge theories based on a combination of algebraic and geometric methods.
Affine transformation crossed product like algebras and noncommutative surfaces
Arnlind, Joakim
2009-01-01
Several classes of *-algebras associated to the action of an affine transformation are considered, and an investigation of the interplay between the different classes of algebras is initiated. Connections are established that relate representations of *-algebras, geometry of algebraic surfaces, dynamics of affine transformations, graphs and algebras coming from a quantization procedure of Poisson structures. In particular, algebras related to surfaces being inverse images of fourth order polynomials (in R^3) are studied in detail, and a close link between representation theory and geometric properties is established for compact as well as non-compact surfaces.
Nther-type theorem of piecewise algebraic curves on quasi-cross-cut partition
无
2009-01-01
Nther’s theorem of algebraic curves plays an important role in classical algebraic geometry. As the zero set of a bivariate spline, the piecewise algebraic curve is a generalization of the classical algebraic curve. Nther-type theorem of piecewise algebraic curves is very important to construct the Lagrange interpolation sets for bivariate spline spaces. In this paper, using the characteristics of quasi-cross-cut partition, properties of bivariate splines and results in algebraic geometry, the Nther-type theorem of piecewise algebraic curves on the quasi-cross-cut is presented.
N(o)ther-type theorem of piecewise algebraic curves on quasi-cross-cut partition
ZHU ChunGang; WANG RenHong
2009-01-01
Nother's theorem of algebraic curves plays an important role in classical algebraic geome-try. As the zero set of a bivariate spline, the piecewise algebraic curve is a generalization of the classical algebraic curve. Nother-type theorem of piecewise algebraic curves is very important to construct the Lagrange interpolation sets for bivariate spline spaces. In this paper, using the characteristics of quasi-cross-cut partition, properties of bivariate splines and results in algebraic geometry, the Nother-type theorem of piecewise algebraic curves on the quasi-cross-cut is presented.
Tits Satake projections of homogeneous special geometries
Fré, Pietro; Gargiulo, Floriana; Rosseel, Jan; Rulik, Ksenya; Trigiante, Mario; Van Proeyen, Antoine
2007-01-01
We organize the homogeneous special geometries, describing as well the couplings of D = 6, 5, 4 and 3 supergravities with eight supercharges, in a small number of universality classes. This relates manifolds on which similar types of dynamical solutions can exist. The mathematical ingredient is the Tits Satake projection of real simple Lie algebras, which we extend to all solvable Lie algebras occurring in these homogeneous special geometries. Apart from some exotic cases all the other, 'very special', homogeneous manifolds can be grouped into seven universality classes. The organization of these classes, which capture the essential features of their basic dynamics, commutes with the r- and c-map. Different members are distinguished by different choices of the paint group, a notion discovered in the context of cosmic billiard dynamics of non-maximally supersymmetric supergravities. We comment on the usefulness of this organization in universality class both in relation with cosmic billiard dynamics and with configurations of branes and orbifolds defining special geometry backgrounds.
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.
Aiken, Brenda L.
The Commonwealth of Virginia requires high school students to receive a passing grade in core courses and a passing score on End-of-Course Standards of Learning (EOC SOL) tests to receive verified credits that lead to a Virginia high school diploma. These tests are believed to accurately reflect what students should know and be able to do in order to experience success in their endeavors beyond high school. For some students remediation is required to experience success on EOC SOL tests. This study sought to determine the effect of a County's public high school summer remediation program on student gains on EOC SOL tests in Algebra I, Biology, Chemistry, Geometry, and World History and Geography II. Specifically, the purpose of the study sought to determine the following: (a) If significant gains were made by students who attended the summer remediation program; (b) If significant gains were made by students who did not attend the summer remediation program; (c) If there were differences in gain scores of students who attended and those who did not attend the summer remediation program; and (d) If there were differences in gain scores among students who attended the summer remediation program related to school site, gender, ethnicity, learning ability group, socioeconomic status, and level of English proficiency. The results of the study indicate that students who attended and those who did not attend the summer remediation program made significant gains. However, the gains for students who attended the summer remediation program were significantly greater than the gains made by students who did not attend. The study also found that there were no significant differences in gain scores among students who attended the summer remediation program related to gender, ethnicity, learning ability group, socioeconomic status, and level of English proficiency. There were significant differences in Algebra I gain scores related to school site. Recommendations for
Quanta of Geometry: Noncommutative Aspects
Chamseddine, Ali H.; Connes, Alain; Mukhanov, Viatcheslav
2015-03-01
In the construction of spectral manifolds in noncommutative geometry, a higher degree Heisenberg commutation relation involving the Dirac operator and the Feynman slash of real scalar fields naturally appears and implies, by equality with the index formula, the quantization of the volume. We first show that this condition implies that the manifold decomposes into disconnected spheres, which will represent quanta of geometry. We then refine the condition by involving the real structure and two types of geometric quanta, and show that connected spin manifolds with large quantized volume are then obtained as solutions. The two algebras M2(H ) and M4(C ) are obtained, which are the exact constituents of the standard model. Using the two maps from M4 to S4 the four-manifold is built out of a very large number of the two kinds of spheres of Planckian volume. We give several physical applications of this scheme such as quantization of the cosmological constant, mimetic dark matter, and area quantization of black holes.
Marchuk, Nikolay
2011-01-01
Exterior algebras and differential forms are widely used in many fields of modern mathematics and theoretical physics. In this paper we define a notion of $N$-metric exterior algebra, which depends on $N$ matrices of structure constants. The usual exterior algebra (Grassmann algebra) can be considered as 0-metric exterior algebra. Clifford algebra can be considered as 1-metric exterior algebra. $N$-metric exterior algebras for $N\\geq2$ can be considered as generalizations of the Grassmann alg...
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
G.C. Rao
2012-11-01
Full Text Available A C- algebra is the algebraic form of the 3-valued conditional logic, which was introduced by F. Guzman and C. C. Squier in 1990. In this paper, some equivalent conditions for a C- algebra to become a boolean algebra in terms of congruences are given. It is proved that the set of all central elements B(A is isomorphic to the Boolean algebra of all C-algebras Sa, where a B(A. It is also proved that B(A is isomorphic to the Boolean algebra of all C-algebras Aa, where a B(A.
Computational synthetic geometry
Bokowski, Jürgen
1989-01-01
Computational synthetic geometry deals with methods for realizing abstract geometric objects in concrete vector spaces. This research monograph considers a large class of problems from convexity and discrete geometry including constructing convex polytopes from simplicial complexes, vector geometries from incidence structures and hyperplane arrangements from oriented matroids. It turns out that algorithms for these constructions exist if and only if arbitrary polynomial equations are decidable with respect to the underlying field. Besides such complexity theorems a variety of symbolic algorithms are discussed, and the methods are applied to obtain new mathematical results on convex polytopes, projective configurations and the combinatorics of Grassmann varieties. Finally algebraic varieties characterizing matroids and oriented matroids are introduced providing a new basis for applying computer algebra methods in this field. The necessary background knowledge is reviewed briefly. The text is accessible to stud...
Zheng, Fangyang
2002-01-01
The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...
An introduction to Clifford algebras and spinors
Vaz, Jayme
2016-01-01
This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians. Among the existing approaches to Clifford algebras and spinors this book is unique in that it provides a didactical presentation of the topic and i...
Actions and invariants of algebraic groups
Ferrer Santos, Walter
2005-01-01
Actions and Invariants of Algebraic Groups presents a self-contained introduction to geometric invariant theory that links the basic theory of affine algebraic groups to Mumford''s more sophisticated theory. The authors systematically exploit the viewpoint of Hopf algebra theory and the theory of comodules to simplify and compactify many of the relevant formulas and proofs.The first two chapters introduce the subject and review the prerequisites in commutative algebra, algebraic geometry, and the theory of semisimple Lie algebras over fields of characteristic zero. The authors'' early presentation of the concepts of actions and quotients helps to clarify the subsequent material, particularly in the study of homogeneous spaces. This study includes a detailed treatment of the quasi-affine and affine cases and the corresponding concepts of observable and exact subgroups.Among the many other topics discussed are Hilbert''s 14th problem, complete with examples and counterexamples, and Mumford''s results on quotien...
Basic algebraic topology and its applications
Adhikari, Mahima Ranjan
2016-01-01
This book provides an accessible introduction to algebraic topology, a ﬁeld at the intersection of topology, geometry and algebra, together with its applications. Moreover, it covers several related topics that are in fact important in the overall scheme of algebraic topology. Comprising eighteen chapters and two appendices, the book integrates various concepts of algebraic topology, supported by examples, exercises, applications and historical notes. Primarily intended as a textbook, the book oﬀers a valuable resource for undergraduate, postgraduate and advanced mathematics students alike. Focusing more on the geometric than on algebraic aspects of the subject, as well as its natural development, the book conveys the basic language of modern algebraic topology by exploring homotopy, homology and cohomology theories, and examines a variety of spaces: spheres, projective spaces, classical groups and their quotient spaces, function spaces, polyhedra, topological groups, Lie groups and cell complexes, etc. T...
The isomorphism problem for some universal operator algebras
Davidson, Kenneth R; Shalit, Orr Moshe
2010-01-01
This paper addresses the isomorphism problem for the universal operator algebras generated by a row contraction subject to homogeneous polynomial relations. We find that two such algebras are isometrically isomorphic if and only if the defining polynomial relations are the same up to a unitary change of variables, and that this happens if and only if the associated subproduct systems are isomorphic. The proof makes use of the complex analytic structure of the character space, together with some recent results on subproduct systems. Restricting attention to commutative operator algebras defined by radical relations yields strong resemblances with classical algebraic geometry. These commutative operator algebras turn out to be algebras of analytic functions on algebraic varieties. We prove a projective Nullstellensatz connecting closed ideals and their zero sets. Under some technical assumptions, we find that two such algebras are isomorphic as algebras if and only if they are similar, and we obtain a clear geo...
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Jacobson, Nathan
1979-01-01
Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its
Jacobson, Nathan
2009-01-01
A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L
Allenby, Reg
1995-01-01
As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.Solutions to the exercises are available onlin
Oliver, Bob; Pawałowski, Krzystof
1991-01-01
As part of the scientific activity in connection with the 70th birthday of the Adam Mickiewicz University in Poznan, an international conference on algebraic topology was held. In the resulting proceedings volume, the emphasis is on substantial survey papers, some presented at the conference, some written subsequently.
Tomás L Gómez
2001-02-01
This is an expository article on the theory of algebraic stacks. After introducing the general theory, we concentrate in the example of the moduli stack of vector bundles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory.
Homology theory on algebraic varieties
Wallace, Andrew H
2014-01-01
Concise and authoritative, this monograph is geared toward advanced undergraduate and graduate students. The main theorems whose proofs are given here were first formulated by Lefschetz and have since turned out to be of fundamental importance in the topological aspects of algebraic geometry. The proofs are fairly elaborate and involve a considerable amount of detail; therefore, some appear in separate chapters that include geometrical descriptions and diagrams.The treatment begins with a brief introduction and considerations of linear sections of an algebraic variety as well as singular and h
Chifu E. N.
2009-07-01
Full Text Available Here, we present a profound and complete analytical solution to Einstein's gravitational field equations exterior to astrophysically real or hypothetical time varying distributions of mass or pressure within regions of spherical geometry. The single arbitrary function $f$ in our proposed exterior metric tensor and constructed field equations makes our method unique, mathematically less combersome and astrophysically satisfactory. The obtained solution of Einstein's gravitational field equations tends out to be a generalization of Newton's gravitational scalar potential exterior to the spherical mass or pressure distribution under consideration.
Martínez-Guerra, Rafael; Gómez-Cortés, Gian Carlo
2015-01-01
This book provides a general overview of several concepts of synchronization and brings together related approaches to secure communication in chaotic systems. This is achieved using a combination of analytic, algebraic, geometrical and asymptotical methods to tackle the dynamical feedback stabilization problem. In particular, differential-geometric and algebraic differential concepts reveal important structural properties of chaotic systems and serve as guide for the construction of design procedures for a wide variety of chaotic systems. The basic differential algebraic and geometric concepts are presented in the first few chapters in a novel way as design tools, together with selected experimental studies demonstrating their importance. The subsequent chapters treat recent applications. Written for graduate students in applied physical sciences, systems engineers, and applied mathematicians interested in synchronization of chaotic systems and in secure communications, this self-contained text requires only...
Artin, E
2011-01-01
This classic text, written by one of the foremost mathematicians of the 20th century, is now available in a low-priced paperback edition. Exposition is centered on the foundations of affine geometry, the geometry of quadratic forms, and the structure of the general linear group. Context is broadened by the inclusion of projective and symplectic geometry and the structure of symplectic and orthogonal groups.
Open string theory and planar algebras
Ceyhan, Ö.; Marcolli, M.
2010-01-01
In this paper, we show that abstract planar algebras are algebras over the topological operad of moduli spaces of stable maps with Lagrangian boundary conditions, which in the case of the projective line are described in terms of real rational functions. These moduli spaces appear naturally in the
Stable Recursive Subhomogeneous Algebras
Liang, Hutian
2011-01-01
In this paper, we introduce stable recursive subhomogeneous algebras (SRSHAs), which is analogous to recursive subhomogeneous algebras (RSHAs) introduced by N. C. Phillips in the studies of free minimal integer actions on compact metric spaces. The difference between the stable version and the none stable version is that the irreducible representations of SRSHAs are infinite dimensional, but the irreducible representations of the RSHAs are finite dimensional. While RSHAs play an important role in the study of free minimal integer actions on compact metric spaces, SRSHAs play an analogous role in the study of free minimal actions by the group of the real numbers on compact metric spaces. In this paper, we show that simple inductive limits of SRSHAs with no dimension growth in which the connecting maps are injective and non-vanishing have topological stable rank one.
Geometric and algebraic properties of minimal bases of singular systems
Karcanias, Nicos
2013-11-01
For a general singular system ? with an associated pencil T(S), a complete classification of the right polynomial vector pairs ?, connected with the ? rational vector space, is given according to the proper-nonproper property, characterising the relationship of the degrees of those two vectors. An integral part of the classification of right pairs is the development of the notions of canonical and normal minimal bases for ? and ? rational vector spaces, where R(s) is the state restriction pencil of ?. It is shown that the notions of canonical and normal minimal bases are equivalent; the first notion characterises the pure algebraic aspect of the classification, whereas the second is intimately connected to the real geometry properties and the underlying generation mechanism of the proper and nonproper state vectors ?. The results describe the algebraic and geometric dimensions of the invariant partitioning of the set of reachability indices of singular systems. The classification of all proper and nonproper polynomial vectors ? induces a corresponding classification for the reachability spaces to proper-nonproper and results related to the possible dimensions feedback-spectra assignment properties of them are also given. The classification of minimal bases introduces new feedback invariants for singular systems, based on the real geometry of polynomial minimal bases, and provides an extension of the standard theory for proper systems (Warren, M.E., & Eckenberg, A.E. (1975).
Bernardini, A.E., E-mail: alexeb@ufscar.br; Bertolami, O., E-mail: orfeu.bertolami@fc.up.pt
2013-10-07
An equivalence between Born–Infeld and effective real scalar field theories for brane structures is built in some specific warped space–time scenarios. Once the equations of motion for tachyon fields related to the Born–Infeld action are written as first-order equations, a simple analytical connection with a particular class of real scalar field superpotentials can be found. This equivalence leads to the conclusion that, for a certain class of superpotentials, both systems can support identical thick brane solutions as well as brane structures described through localized energy densities, T{sub 00}(y), in the 5th dimension, y. Our results indicate that thick brane solutions realized by the Born–Infeld cosmology can be connected to real scalar field brane scenarios which can be used to effectively map the tachyon condensation mechanism.
Multilinear Computing and Multilinear Algebraic Geometry
2016-08-10
landmark paper titled “Most tensor problems are NP-hard” (see [14] in Section 3) in the Journal of the ACM , the premier journal in Computer Science...Multi-Valued Data, Springer-Verlag, Berlin Heidel- berg, 2014. [14] C. J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard,” J. ACM , 60 (2013...Data, Springer-Verlag, Berlin Heidelberg, 2014. C.J. Hillar and L.-H. Lim, "Most tensor problems are NP-hard," Journal of the ACM , 60 (2013), no. 6, Art
Scattering Amplitudes via Algebraic Geometry Methods
Søgaard, Mads
This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without...... Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized...
Reflective modular forms in algebraic geometry
Gritsenko, Valery
2010-01-01
We prove that the existence of a strongly reflective modular form of a large weight implies that the Kodaira dimension of the corresponding modular variety is negative or, in some special case, it is equal to zero. Using the Jacobi lifting we construct three towers of strongly reflective modular forms with the simplest possible divisor. In particular we obtain a Jacobi lifting construction of the Borcherds-Enriques modular form Phi_4 and Jacobi liftings of automorphic discriminants of the K\\"ahler moduli of Del Pezzo surfaces constructed recently by Yoshikawa. We obtain also three modular varieties of dimension 4, 6 and 7 of Kodaira dimension 0.
Equivalency of two-dimensional algebras
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica
2011-07-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
Function theory for a beltrami algebra
B. A. Case
1985-01-01
Full Text Available Complex functions are investigated which are solutions of an elliptic system of partial differential equations associated with a real parameter function. The functions f associated with a particualr parameter function g on a domain D form a Beltrami algebra denoted by the pair (D,g and a function theory is developed in this algebra. A strong conformality property holds for all functions in a (D,g algebra. For g≡|z|=r the algebra (D,r is that of the analytic functions.
Herranz, Francisco J.
1999-01-01
By starting from the non-standard quantum deformation of the sl(2,R) algebra, a new quantum deformation for the real Lie algebra so(2,2) is constructed by imposing the former to be a Hopf subalgebra of the latter. The quantum so(2,2) algebra so obtained is realized as a quantum conformal algebra of the (1+1) Minkowskian spacetime. This Hopf algebra is shown to be the symmetry algebra of a time discretization of the (1+1) wave equation and its contraction gives rise to a new $(2+1)$ quantum Po...
Dynamical systems of algebraic origin
Schmidt, Klaus
1995-01-01
Although much of classical ergodic theory is concerned with single transformations and one-parameter flows, the subject inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multidimensional symmetry groups. However, the wealth of concrete and natural examples which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. The purpose of this book is to help remedy this scarcity of explicit examples by introducing a class of continuous Zd-actions diverse enough to exhibit many of the new phenomena encountered in the transition from Z to Zd, but which nevertheless lends itself to systematic study: the Zd-actions by automorphisms of compact, abelian groups. One aspect of these actions, not surprising in itself but quite striking in its extent and depth nonetheless, is the connection with commutative algebra and arithmetical algebraic geometry. The algebraic framework resulting...
Iachello, F
1995-01-01
1. The Wave Mechanics of Diatomic Molecules. 2. Summary of Elements of Algebraic Theory. 3. Mechanics of Molecules. 4. Three-Body Algebraic Theory. 5. Four-Body Algebraic Theory. 6. Classical Limit and Coordinate Representation. 8. Prologue to the Future. Appendices. Properties of Lie Algebras; Coupling of Algebras; Hamiltonian Parameters
Nonmonotonic logics and algebras
CHAKRABORTY Mihir Kr; GHOSH Sujata
2008-01-01
Several nonmonotonie logic systems together with their algebraic semantics are discussed. NM-algebra is defined.An elegant construction of an NM-algebra starting from a Boolean algebra is described which gives rise to a few interesting algebraic issues.
Seminar on K-Theory, Arithmetic and Geometry
1987-01-01
This volume of research papers is an outgrowth of the Manin Seminar at Moscow University, devoted to K-theory, homological algebra and algebraic geometry. The main topics discussed include additive K-theory, cyclic cohomology, mixed Hodge structures, theory of Virasoro and Neveu-Schwarz algebras.
MSc Thesis: Presentation of Certain New Trends in Noncommutative Geometry
Buachalla, Réamonn Ó
2011-01-01
MSc thesis of the author offering an introduction to the operator algebraic approach to noncommutative geometry, with a treatment of some more advanced elements such as the noncommutative geometry of quantum groups, fuzzy physics, and compact quantum metric spaces.
Factorization algebras in quantum field theory
Costello, Kevin
2017-01-01
Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.
Inequalities, Assessment and Computer Algebra
Sangwin, Christopher J.
2015-01-01
The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in…
Inequalities, Assessment and Computer Algebra
Sangwin, Christopher J.
2015-01-01
The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary…
Corrochano, Eduardo Bayro
2010-01-01
This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int
Elementary differential geometry
Pressley, Andrew
2001-01-01
Curves and surfaces are objects that everyone can see, and many of the questions that can be asked about them are natural and easily understood Differential geometry is concerned with the precise mathematical formulation of some of these questions, and with trying to answer them using calculus techniques It is a subject that contains some of the most beautiful and profound results in mathematics yet many of these are accessible to higher-level undergraduates Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces while keeping the prerequisites to an absolute minimum Nothing more than first courses in linear algebra and multivariate calculus are required, and the most direct and straightforward approach is used at all times Numerous diagrams illustrate both the ideas in the text and the examples of curves and surfaces discussed there The book will provide an invaluable resource to all those taking a first course in differential geometry, for their lecture...
Solvable quadratic Lie algebras
ZHU; Linsheng
2006-01-01
A Lie algebra endowed with a nondegenerate, symmetric, invariant bilinear form is called a quadratic Lie algebra. In this paper, the author investigates the structure of solvable quadratic Lie algebras, in particular, the solvable quadratic Lie algebras whose Cartan subalgebras consist of semi-simple elements, the author presents a procedure to construct a class of quadratic Lie algebras from the point of view of cohomology and shows that all solvable quadratic Lie algebras can be obtained in this way.
DÍaz, R.; Rivas, M.
2010-01-01
In order to study Boolean algebras in the category of vector spaces we introduce a prop whose algebras in set are Boolean algebras. A probabilistic logical interpretation for linear Boolean algebras is provided. An advantage of defining Boolean algebras in the linear category is that we are able to study its symmetric powers. We give explicit formulae for products in symmetric and cyclic Boolean algebras of various dimensions and formulate symmetric forms of the inclusion-exclusion principle.
Plane geometry and convexity of polynomial stability regions
Henrion, Didier
2008-01-01
The set of controllers stabilizing a linear system is generally non-convex in the parameter space. In the case of two-parameter controller design (e.g. PI control or static output feedback with one input and two outputs), we observe however that quite often for benchmark problem instances, the set of stabilizing controllers seems to be convex. In this note we use elementary techniques from real algebraic geometry (resultants and Bezoutian matrices) to explain this phenomenon. As a byproduct, we derive a convex linear matrix inequality (LMI) formulation of two-parameter fixed-order controller design problem, when possible.
Bliss, Gilbert Ames
1933-01-01
This book, immediately striking for its conciseness, is one of the most remarkable works ever produced on the subject of algebraic functions and their integrals. The distinguishing feature of the book is its third chapter, on rational functions, which gives an extremely brief and clear account of the theory of divisors.... A very readable account is given of the topology of Riemann surfaces and of the general properties of abelian integrals. Abel's theorem is presented, with some simple applications. The inversion problem is studied for the cases of genus zero and genus unity. The chapter on t
A potentially pure test of cosmic geometry: galaxy clusters and the real space Alcock-Paczynski test
Kim, Y R; Kim, Young-Rae; Croft, Rupert
2006-01-01
We investigate the possibility of probing dark energy by measuring the isotropy of the galaxy cluster autocorrelation function (an Alcock-Paczynski test). The correlation function is distorted in redshift space because of the cluster peculiar velocities, but if these are known and can be subtracted, the correlation function measurement becomes in principle a pure test of cosmic geometry. Galaxy cluster peculiar velocities can be measured using the kinetic Sunyaev Zel'dovich (kSZ) effect. Upcoming CMB surveys, e.g., ACT, SPT, Planck, are expected to do this with varying levels of accuracy, dependent on systematic errors due to cluster temperature measurements, radio point sources, and the primary CMB anisotropy. We use the Hubble volume N-body simulation and the hydrodynamic simulation results of Nagai et. al (2003) to simulate various kSZ surveys. We find by model fitting that a measurement of the correlation function distortion can be used to recover the cosmological parameters that have been used to generat...
无
2007-01-01
It is a small step toward the Koszul-type algebras. The piecewise-Koszul algebras are,in general, a new class of quadratic algebras but not the classical Koszul ones, simultaneously they agree with both the classical Koszul and higher Koszul algebras in special cases. We give a criteria theorem for a graded algebra A to be piecewise-Koszul in terms of its Yoneda-Ext algebra E(A), and show an A∞-structure on E(A). Relations between Koszul algebras and piecewise-Koszul algebras are discussed. In particular, our results are related to the third question of Green-Marcos.
AT代数的拟对角扩张%Quasidiagonal Extension of AT-algebras
王春鹏; 刘欣
2005-01-01
Let A and B be C*-algebras. An extension of B by A is a short exact sequenceO→ A, E→ B→ O. (*)Suppose that A is an AT-algebra with real rank zero and B is any AT-algebra. We prove that E is an AT-algebra if and only if the extension (*) is quasidiagonal.
Begle, Edward G.
This study investigated the relationship between algebraic understanding of teachers and student achievement in algebra in one academic year. Pretests to measure teachers' understanding of modern algebra and the algebra of the real number system, student pretests to enable consideration of individual differences, and posttests to measure student…
The Xs and Whys of Algebra: Key Ideas and Common Misconceptions
Collins, Anne; Dacey, Linda
2011-01-01
In many ways, algebra can be as challenging for teachers as it is for students. With so much emphasis placed on procedural knowledge and the manipulations of variables and symbols, it can be easy to lose sight of the key ideas that underlie algebraic thinking and the relevance algebra has to the real world. In the The Xs and Whys of Algebra: Key…
Christian Herrmann
2013-09-01
Full Text Available Nondeterministic polynomial-time Blum-Shub-Smale Machines over the reals give rise to a discrete complexity class between NP and PSPACE. Several problems, mostly from real algebraic geometry / polynomial systems, have been shown complete (under many-one reduction by polynomial-time Turing machines for this class. We exhibit a new one based on questions about expressions built from cross products only.
Yoneda algebras of almost Koszul algebras
Zheng Lijing
2015-11-01
Let be an algebraically closed field, a finite dimensional connected (, )-Koszul self-injective algebra with , ≥ 2. In this paper, we prove that the Yoneda algebra of is isomorphic to a twisted polynomial algebra $A^!$ [ ; ] in one indeterminate of degree +1 in which $A^!$ is the quadratic dual of , is an automorphism of $A^!$, and = () for each $t \\in A^!$. As a corollary, we recover Theorem 5.3 of [2].
Meyer, Walter J
2006-01-01
Meyer''s Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry''s usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers.* Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns- Physics- Robotics- Computer vision- Computer graphics- Stability of architectural structures- Molecular biology- Medicine- Pattern recognition* Historical notes included in many chapters...
Stoker, J J
2011-01-01
This classic work is now available in an unabridged paperback edition. Stoker makes this fertile branch of mathematics accessible to the nonspecialist by the use of three different notations: vector algebra and calculus, tensor calculus, and the notation devised by Cartan, which employs invariant differential forms as elements in an algebra due to Grassman, combined with an operation called exterior differentiation. Assumed are a passing acquaintance with linear algebra and the basic elements of analysis.
Marchuk, Nikolay
2011-01-01
Exterior algebras and differential forms are widely used in many fields of modern mathematics and theoretical physics. In this paper we define a notion of $N$-metric exterior algebra, which depends on $N$ matrices of structure constants. The usual exterior algebra (Grassmann algebra) can be considered as 0-metric exterior algebra. Clifford algebra can be considered as 1-metric exterior algebra. $N$-metric exterior algebras for $N\\geq2$ can be considered as generalizations of the Grassmann algebra and Clifford algebra. Specialists consider models of gravity that based on a mathematical formalism with two metric tensors. We hope that the considered in this paper 2-metric exterior algebra can be useful for development of this model in gravitation theory. Especially in description of fermions in presence of a gravity field.
Rigidification of algebras over essentially algebraic theories
Rosicky, J
2012-01-01
Badzioch and Bergner proved a rigidification theorem saying that each homotopy simplicial algebra is weakly equivalent to a simplicial algebra. The question is whether this result can be extended from algebraic theories to finite limit theories and from simplicial sets to more general monoidal model categories. We will present some answers to this question.
WEAKLY ALGEBRAIC REFLEXIVITY AND STRONGLY ALGEBRAIC REFLEXIVITY
TaoChangli; LuShijie; ChenPeixin
2002-01-01
Algebraic reflexivity introduced by Hadwin is related to linear interpolation. In this paper, the concepts of weakly algebraic reflexivity and strongly algebraic reflexivity which are also related to linear interpolation are introduced. Some properties of them are obtained and some relations between them revealed.
Abelian Yang-Mills Theory on Real Tori and Theta Divisors of Klein Surfaces
Okonek, Christian; Teleman, Andrei
2013-11-01
The purpose of this paper is to compute determinant index bundles of certain families of Real Dirac type operators on Klein surfaces as elements in the corresponding Grothendieck group of Real line bundles in the sense of Atiyah. On a Klein surface these determinant index bundles have a natural holomorphic description as theta line bundles. In particular we compute the first Stiefel-Whitney classes of the corresponding fixed point bundles on the real part of the Picard torus. The computation of these classes is important, because they control to a large extent the orientability of certain moduli spaces in Real gauge theory and Real algebraic geometry.
Supersymmetrization schemes of D=4 Maxwell algebra
Kamimura, Kiyoshi, E-mail: kamimura@ph.sci.toho-u.ac.jp [Department of Physics, Toho University, Funabashi 274-8510 (Japan); Lukierski, Jerzy [Institute of Theoretical Physics, Wroclaw University, pl. Maxa Borna 9, 50-204 Wroclaw (Poland)
2012-01-20
The Maxwell algebra, an enlargement of Poincare algebra by Abelian tensorial generators, can be obtained in arbitrary dimension D by the suitable contraction of O(D-1,1) Circled-Plus O(D-1,2) (Lorentz algebra Circled-Plus AdS algebra). We recall that in D=4 the Lorentz algebra O(3,1) is described by the realification Sp{sub R}(2|C) of complex algebra Sp(2|C) Asymptotically-Equal-To Sl(2|C) and O(3,2) Asymptotically-Equal-To Sp(4). We study various D=4N-extended Maxwell superalgebras obtained by the contractions of real superalgebras OSp{sub R}(2N-k;2|C) Circled-Plus OSp(k;4) (k=0,1,2, Horizontal-Ellipsis ,2N); (extended Lorentz superalgebra Circled-Plus extended AdS superalgebra). If N=1 (k=0,1,2) one arrives at three different versions of simple Maxwell superalgebra. For any fixed N we get 2N different superextensions of Maxwell algebra with n-extended Poincare superalgebras (1 Less-Than-Or-Slanted-Equal-To n Less-Than-Or-Slanted-Equal-To N) and the internal symmetry sectors obtained by suitable contractions of the real algebra O{sub R}(2N-k|C) Circled-Plus O(k). Finally the comments on possible applications of Maxwell superalgebras are presented.
Riemannian manifolds as Lie-Rinehart algebras
Pessers, Victor; van der Veken, Joeri
2016-07-01
In this paper, we show how Lie-Rinehart algebras can be applied to unify and generalize the elementary theory of Riemannian geometry. We will first review some necessary theory on a.o. modules, bilinear forms and derivations. We will then translate some classical theory on Riemannian geometry to the setting of Rinehart spaces, a special kind of Lie-Rinehart algebras. Some generalized versions of classical results will be obtained, such as the existence of a unique Levi-Civita connection, inducing a Levi-Civita connection on a submanifold, and the construction of spaces with constant sectional curvature.
Invariance of Conjunctions of Polynomial Equalities for Algebraic Differential Equations
2014-07-01
non- linear hybrid systems by linear algebraic methods. In Radhia Cousot and Matthieu Martel, editors, SAS, volume 6337 of LNCS, pages 373–389. Springer...Tarski. A decision method for elementary algebra and geometry. Bulletin of the American Mathematical Society, 59, 1951. [36] Wolfgang Walter. Ordinary...Invariance of Conjunctions of Polynomial Equalities for Algebraic Differential Equations Khalil Ghorbal1 Andrew Sogokon2 André Platzer1 July 2014
Spectral Metric Spaces on Extensions of C*-Algebras
Hawkins, Andrew; Zacharias, Joachim
2017-03-01
We construct spectral triples on C*-algebraic extensions of unital C*-algebras by stable ideals satisfying a certain Toeplitz type property using given spectral triples on the quotient and ideal. Our construction behaves well with respect to summability and produces new spectral quantum metric spaces out of given ones. Using our construction we find new spectral triples on the quantum 2- and 3-spheres giving a new perspective on these algebras in noncommutative geometry.
Colimits, Stanley-Reisner algebras, and loop spaces
Panov, Taras; RAY, NIGEL; Vogt, Rainer
2002-01-01
We study diagrams associated with a finite simplicial complex K, in various algebraic and topological categories. We relate their colimits to familiar structures in algebra, combinatorics, geometry and topology. These include: right-angled Artin and Coxeter groups (and their complex analogues, which we call circulation groups); Stanley-Reisner algebras and coalgebras; Davis and Januszkiewicz's spaces DJ(K) associated with toric manifolds and their generalisations; and coordinate subspace arra...
The Yoneda algebra of a K_2 algebra need not be another K_2 algebra
Cassidy, T.; Phan, Van C.; Shelton, B.
2008-01-01
The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.
The Yoneda algebra of a K_2 algebra need not be another K_2 algebra
Cassidy, T; Phan, Van C.; Shelton, B.
2008-01-01
The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.
Algebraic cobordism theory attached to algebraic equivalence
Krishna, Amalendu
2012-01-01
After the algebraic cobordism theory of Levine-Morel, we develop a theory of algebraic cobordism modulo algebraic equivalence. We prove that this theory can reproduce Chow groups modulo algebraic equivalence and the zero-th semi-topological K-groups. We also show that with finite coefficients, this theory agrees with the algebraic cobordism theory. We compute our cobordism theory for some low dimensional or special types of varieties. The results on infinite generation of some Griffiths groups by Clemens and on smash-nilpotence by Voevodsky and Voisin are also lifted and reinterpreted in terms of this cobordism theory.
McKain, Danielle R.
2012-01-01
The term real world is often used in mathematics education, yet the definition of real-world problems and how to incorporate them in the classroom remains ambiguous. One way real-world connections can be made is through guest speakers. Guest speakers can offer different perspectives and share knowledge about various subject areas, yet the impact…
Probabilistic Concurrent Kleene Algebra
Annabelle McIver
2013-06-01
Full Text Available We provide an extension of concurrent Kleene algebras to account for probabilistic properties. The algebra yields a unified framework containing nondeterminism, concurrency and probability and is sound with respect to the set of probabilistic automata modulo probabilistic simulation. We use the resulting algebra to generalise the algebraic formulation of a variant of Jones' rely/guarantee calculus.
Hartshorne, Robin
2000-01-01
In recent years, I have been teaching a junior-senior-level course on the classi cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa rately. The remainder of the book is an exploration of questions that arise natu rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And ...
Linear algebra a first course with applications to differential equations
Apostol, Tom M
2014-01-01
Developed from the author's successful two-volume Calculus text this book presents Linear Algebra without emphasis on abstraction or formalization. To accommodate a variety of backgrounds, the text begins with a review of prerequisites divided into precalculus and calculus prerequisites. It continues to cover vector algebra, analytic geometry, linear spaces, determinants, linear differential equations and more.
Introduction to relation algebras relation algebras
Givant, Steven
2017-01-01
The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...
The algebraic numbers definable in various exponential fields
Kirby, Jonathan; Onshuus, Alf
2011-01-01
We prove the following theorems: Theorem 1: For any E-field with cyclic kernel, in particular $\\mathbb C$ or the Zilber fields, all real abelian algebraic numbers are pointwise definable. Theorem 2: For the Zilber fields, the only pointwise definable algebraic numbers are the real abelian numbers.
Classification of a Class of Integral Table Algebras
A. Rahnamai Barghi
2001-01-01
The classification of homogeneous integral table algebras of degree λ＞ 2 with a standard real faithful basis element of width 2 has been done. In this paper, we classify integral table algebras with a standard real faithful table basis element of width 2 in which the basis elements are of degree 1 or λ, where λ＞2.
Generalized Quantum Current Algebras
ZHAO Liu
2001-01-01
Two general families of new quantum-deformed current algebras are proposed and identified both as infinite Hopf family of algebras, a structure which enables one to define "tensor products" of these algebras. The standard quantum affine algebras turn out to be a very special case of the two algebra families, in which case the infinite Hopf family structure degenerates into a standard Hopf algebra. The relationship between the two algebraic families as well as thefr various special examples are discussed, and the free boson representation is also considered.
El-Chaar, Caroline
2012-01-01
In this thesis, four realizations of the Onsager algebra are explored. We begin with its original definition as introduced by Lars Onsager. We then examine how the Onsager algebra can be presented as a Lie algebra with two generators and two relations. The third realization of the Onsager algebra consists of viewing it as an equivariant map algebra which then gives us the tools to classify its closed ideals. Finally, we examine the Onsager algebra as a subalgebra of the tetrahedron algebra. Using this fourth realization, we explicitly describe all its ideals.
Coppens, Marc
2011-01-01
We consider coverings of real algebraic curves to real rational algebraic curves. We show the existence of such coverings having prescribed topological degree on the real locus. From those existence results we prove some results on Brill-Noether Theory for pencils on real curves. For coverings having topological degree 0 we introduce the covering number k and we prove the existence of coverings of degree 4 with prescribed covering number.
Perturbations of planar algebras
Das, Paramita; Gupta, Ved Prakash
2010-01-01
We introduce the concept of {\\em weight} of a planar algebra $P$ and construct a new planar algebra referred as the {\\em perturbation of $P$} by the weight. We establish a one-to-one correspondence between pivotal structures on 2-categories and perturbations of planar algebras by weights. To each bifinite bimodule over $II_1$-factors, we associate a {\\em bimodule planar algebra} bimodule corresponds naturally with sphericality of the bimodule planar algebra. As a consequence of this, we reproduce an extension of Jones' theorem (of associating 'subfactor planar algebras' to extremal subfactors). Conversely, given a bimodule planar algebra, we construct a bifinite bimodule whose associated bimodule planar algebra is the one which we start with using perturbations and Jones-Walker-Shlyakhtenko-Kodiyalam-Sunder method of reconstructing an extremal subfactor from a subfactor planar algebra. We show that the perturbation class of a bimodule planar algebra contains a unique spherical unimodular bimodule planar algeb...
Byrd, M.
1997-10-01
The group SU(3) is parameterized in terms of generalized {open_quotes}Euler angles{close_quotes}. The differential operators of SU(3) corresponding to the Lie Algebra elements are obtained, the invariant forms are found, the group invariant volume element is found, and some relevant comments about the geometry of the group manifold are made.
Yangians and transvector algebras
Molev, A. I.
1998-01-01
Olshanski's centralizer construction provides a realization of the Yangian for the Lie algebra gl(n) as a subalgebra in the projective limit of a chain of centralizers in the universal enveloping algebras. We give a modified version of this construction based on a quantum analog of Sylvester's theorem. We then use it to get an algebra homomorphism from the Yangian to the transvector algebra associated with the general linear Lie algebras. The results are applied to identify the elementary rep...
Quantum cluster algebras and quantum nilpotent algebras
Goodearl, Kenneth R.; Yakimov, Milen T.
2014-01-01
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197
Jang, Min-Kyoung; Kim, Yun-Jeong; Kim, Dae-Hee; Kang, Duk-Hyun; Song, Jae-Kwan
2010-01-01
Background and Objectives Right ventricle (RV) remodeling can determine tricuspid valve (TV) geometry and the severity of functional tricuspid regurgitation (TR). Subjects and Methods In 53 patients with various degrees of functional TR and in sinus rhythm, RV and TV geometries were analyzed using real-time 3-dimensional echocardiography, including tenting angles of 3 leaflets, septal-lateral and antero-posterior tricuspid annulus diameters and inlet RV dimensions, mid-RV septal-lateral dimension, and the distance between annulus and apex. A mid-systole frame when the TV tenting is smallest was selected for the analysis. RV end-diastolic and end-systolic volumes were measured. The severity of functional TR was determined by distal jet area. Results TR distal jet area was mainly determined by septal-lateral annulus diameter (p<0.001) RV inlet dimension (p=0.015), RV end-systolic volume (p=0.010), septal (p=0.019), and anterior leaflet tenting angles (p=0.045) by multiple stepwise linear regression analysis. Leaflet tenting angles were mainly determined by septal-lateral RV inlet dimension. Septal-lateral annulus diameter was determined by septal-lateral RV inlet dimension (p<0.001) and mid RV dimension (p=0.033), whereas antero-posterior annulus diameter was determined by antero-posterior RV inlet dimension (p<0.001). Conclusion Functional TR severity is determined by septal-lateral annulus and RV dilation, and tenting of septal and anterior leaflets. TV leaflet tenting is mainly determined by septal-lateral RV inlet dilation, and tricuspid annulus dilation is closely linked with inlet RV dilation. PMID:20967146
Jia-feng; Lü
2007-01-01
[1]Priddy S.Koszul resolutions.Trans Amer Math Soc,152:39-60 (1970)[2]Beilinson A,Ginszburg V,Soergel W.Koszul duality patterns in representation theory.J Amer Math Soc,9:473-525 (1996)[3]Aquino R M,Green E L.On modules with linear presentations over Koszul algebras.Comm Algebra,33:19-36 (2005)[4]Green E L,Martinez-Villa R.Koszul and Yoneda algebras.Representation theory of algebras (Cocoyoc,1994).In:CMS Conference Proceedings,Vol 18.Providence,RI:American Mathematical Society,1996,247-297[5]Berger R.Koszulity for nonquadratic algebras.J Algebra,239:705-734 (2001)[6]Green E L,Marcos E N,Martinez-Villa R,et al.D-Koszul algebras.J Pure Appl Algebra,193:141-162(2004)[7]He J W,Lu D M.Higher Koszul Algebras and A-infinity Algebras.J Algebra,293:335-362 (2005)[8]Green E L,Marcos E N.δ-Koszul algebras.Comm Algebra,33(6):1753-1764 (2005)[9]Keller B.Introduction to A-infinity algebras and modules.Homology Homotopy Appl,3:1-35 (2001)[10]Green E L,Martinez-Villa R,Reiten I,et al.On modules with linear presentations.J Algebra,205(2):578-604 (1998)[11]Keller B.A-infinity algebras in representation theory.Contribution to the Proceedings of ICRA Ⅸ.Beijing:Peking University Press,2000[12]Lu D M,Palmieri J H,Wu Q S,et al.A∞-algebras for ring theorists.Algebra Colloq,11:91-128 (2004)[13]Weibel C A.An Introduction to homological algebra.Cambridge Studies in Avanced Mathematics,Vol 38.Cambridge:Cambridge University Press,1995
Noncommutative physics on Lie algebras, Z_2^n lattices and Clifford algebras
Majid, S
2004-01-01
We survey noncommutative spacetimes with coordinates being enveloping algebras of Lie algebras. We also explain how to do differential geometry on noncommutative spaces that are obtained from commutative ones via a Moyal-product type cocycle twist, such as the noncommutative torus, $\\theta$-spaces and Clifford algebras. The latter are noncommutative deformations of the finite lattice $(Z_2)^n$ and we compute their noncommutative de Rham cohomology and moduli of solutions of Maxwell's equations. We exactly quantize noncommutative U(1)-Yang-Mills theory on $Z_2\\times Z_2$ in a path integral approach.
Higher algebraic K-theory an overview
Lluis-Puebla, Emilio; Gillet, Henri; Soulé, Christophe; Snaith, Victor
1992-01-01
This book is a general introduction to Higher Algebraic K-groups of rings and algebraic varieties, which were first defined by Quillen at the beginning of the 70's. These K-groups happen to be useful in many different fields, including topology, algebraic geometry, algebra and number theory. The goal of this volume is to provide graduate students, teachers and researchers with basic definitions, concepts and results, and to give a sampling of current directions of research. Written by five specialists of different parts of the subject, each set of lectures reflects the particular perspective ofits author. As such, this volume can serve as a primer (if not as a technical basic textbook) for mathematicians from many different fields of interest.
An introduction to incidence geometry
De Bruyn, Bart
2016-01-01
This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end...
Goldmann, H
1990-01-01
The first part of this monograph is an elementary introduction to the theory of Fréchet algebras. Important examples of Fréchet algebras, which are among those considered, are the algebra of all holomorphic functions on a (hemicompact) reduced complex space, and the algebra of all continuous functions on a suitable topological space.The problem of finding analytic structure in the spectrum of a Fréchet algebra is the subject of the second part of the book. In particular, the author pays attention to function algebraic characterizations of certain Stein algebras (= algebras of holomorphic functions on Stein spaces) within the class of Fréchet algebras.
Mathematics in the Real World.
Borenstein, Matt
1997-01-01
The abstract nature of algebra causes difficulties for many students. Describes "Real-World Data," an algebra course designed for students with low grades in algebra and provides multidisciplinary experiments (linear functions and variations; quadratic, square-root, and inverse relations; and exponential and periodic variation)…
Numerical linear algebra with applications using Matlab
Ford, William
2014-01-01
Designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, Numerical Linear Algebra with Applications contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. It provides necessary mathematical background information for
Algebra de clifford del espacio tiempo
Spinel G., Ma. Carolina
2012-01-01
En un artículo previo, presentamos la estructura y relaciones básicas del algebra de Clifford Gn generada por el producto geométrico de los vectores de un espacio vectorial Vn sobre el cuerpo de los reales en la versión moderna de Hestenes. Este artículo se dedica a los aspectos fundamentales algebra de Clifford del espacio-tiempo plano (A.E.T.) muestra algunos hechos interesantes relacionados con teoría de Dirac, que ponen de manifiesto la importancia sencillez de la aplicación de algebras d...
C*-algebras and operator theory
Murphy, Gerald J
1990-01-01
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
Algebraic polynomials and moments of stochastic integrals
Langovoy, Mikhail A
2011-01-01
We propose an algebraic method for proving estimates on moments of stochastic integrals. The method uses qualitative properties of roots of algebraic polynomials from certain general classes. As an application, we give a new proof of a variation of the Burkholder-Davis-Gundy inequality for the case of stochastic integrals with respect to real locally square integrable martingales. Further possible applications and extensions of the method are outlined.
Deformed Virasoro Algebras from Elliptic Quantum Algebras
Avan, J.; Frappat, L.; Ragoucy, E.
2017-09-01
We revisit the construction of deformed Virasoro algebras from elliptic quantum algebras of vertex type, generalizing the bilinear trace procedure proposed in the 1990s. It allows us to make contact with the vertex operator techniques that were introduced separately at the same period. As a by-product, the method pinpoints two critical values of the central charge for which the center of the algebra is extended, as well as (in the gl(2) case) a Liouville formula.
Walsh, Edward T
2014-01-01
This introductory text is designed to help undergraduate students develop a solid foundation in geometry. Early chapters progress slowly, cultivating the necessary understanding and self-confidence for the more rapid development that follows. The extensive treatment can be easily adapted to accommodate shorter courses. Starting with the language of mathematics as expressed in the algebra of logic and sets, the text covers geometric sets of points, separation and angles, triangles, parallel lines, similarity, polygons and area, circles, space geometry, and coordinate geometry. Each chapter incl
Adler, Irving
1967-01-01
This richly detailed overview surveys the development and evolution of geometrical ideas and concepts from ancient times to the present. In addition to the relationship between physical and mathematical spaces, it examines the interactions of geometry, algebra, and calculus. The text proves many significant theorems and employs several important techniques. Chapters on non- Euclidean geometry and projective geometry form brief, self-contained treatments.More than 100 exercises with answers and 200 diagrams illuminate the text. Teachers, students (particularly those majoring in mathematics educa
Quantum Mechanics in the Geometry of Space-Time Elementary Theory
Boudet, Roger
2011-01-01
This book continues the fundamental work of Arnold Sommerfeld and David Hestenes formulating theoretical physics in terms of Minkowski space-time geometry. We see how the standard matrix version of the Dirac equation can be reformulated in terms of a real space-time algebra, thus revealing a geometric meaning for the “number i” in quantum mechanics. Next, it is examined in some detail how electroweak theory can be integrated into the Dirac theory and this way interpreted in terms of space-time geometry. Finally, some implications for quantum electrodynamics are considered.The presentation of real quantum electromagnetism is expressed in an addendum. The book covers both the use of the complex and the real languages and allows the reader acquainted with the first language to make a step by step translation to the second one.
PENG Jia-yin
2011-01-01
The notions of norm and distance in BCI-algebras are introduced,and some basic properties in normed BCI-algebras are given.It is obtained that the isomorphic(homomorphic)image and inverse image of a normed BCI-algebra are still normed BCI-algebras.The relations of normaled properties between BCI-algebra and Cartesian product of BCIalgebras are investigated.The limit notion of sequence of points in normed BCI-algebras is introduced,and its related properties are investigated.
Clifford Algebra with Mathematica
Aragon-Camarasa, G; Aragon, J L; Rodriguez-Andrade, M A
2008-01-01
The Clifford algebra of a n-dimensional Euclidean vector space provides a general language comprising vectors, complex numbers, quaternions, Grassman algebra, Pauli and Dirac matrices. In this work, a package for Clifford algebra calculations for the computer algebra program Mathematica is introduced through a presentation of the main ideas of Clifford algebras and illustrative examples. This package can be a useful computational tool since allows the manipulation of all these mathematical objects. It also includes the possibility of visualize elements of a Clifford algebra in the 3-dimensional space.
Boicescu, V; Georgescu, G; Rudeanu, S
1991-01-01
The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.
Abian, Alexander
1973-01-01
Linear Associative Algebras focuses on finite dimensional linear associative algebras and the Wedderburn structure theorems.The publication first elaborates on semigroups and groups, rings and fields, direct sum and tensor product of rings, and polynomial and matrix rings. The text then ponders on vector spaces, including finite dimensional vector spaces and matrix representation of vectors. The book takes a look at linear associative algebras, as well as the idempotent and nilpotent elements of an algebra, ideals of an algebra, total matrix algebras and the canonical forms of matrices, matrix
Vaninsky, Alexander
2011-01-01
This article introduces a trigonometric field (TF) that extends the field of real numbers by adding two new elements: sin and cos--satisfying an axiom sin[superscript 2] + cos[superscript 2] = 1. It is shown that by assigning meaningful names to particular elements of the field, all known trigonometric identities may be introduced and proved. Two…
Cellularity of diagram algebras as twisted semigroup algebras
Wilcox, Stewart
2010-01-01
The Temperley-Lieb and Brauer algebras and their cyclotomic analogues, as well as the partition algebra, are all examples of twisted semigroup algebras. We prove a general theorem about the cellularity of twisted semigroup algebras of regular semigroups. This theorem, which generalises a recent result of East about semigroup algebras of inverse semigroups, allows us to easily reproduce the cellularity of these algebras.
Hom-alternative algebras and Hom-Jordan algebras
Makhlouf, Abdenacer
2009-01-01
The purpose of this paper is to introduce Hom-alternative algebras and Hom-Jordan algebras. We discuss some of their properties and provide construction procedures using ordinary alternative algebras or Jordan algebras. Also, we show that a polarization of Hom-associative algebra leads to Hom-Jordan algebra.
Bainbridge, Matthew; Möller, Martin
of the field F satisfying a strong geometry of numbers type restriction. We apply this computation to give evidence for the conjecture that there are only finitely many algebraically primitive Teichmueller curves in M_3. In particular, we prove that there are only finitely many algebraically primitive......In the moduli space M_g of genus g Riemann surfaces, consider the locus RM_O of Riemann surfaces whose Jacobians have real multiplication by the order O in a totally real number field F of degree g. If g = 2 or 3, we compute the closure of RM_O in the Deligne-Mumford compactification of M...... Teichmueller curves generated by a one-form having two zeros of order 3 and 1. We also present the results of a computer search for algebraically primitive Teichmueller curves generated by a one-form having a single zero....
Exceptional geometry and Borcherds superalgebras
Palmkvist, Jakob
2015-01-01
We study generalized diffeomorphisms in exceptional geometry with U-duality group E_{n(n)} from an algebraic point of view. By extending the Lie algebra e_n to an infinite-dimensional Borcherds superalgebra, involving also the extension to e_{n+1}, the generalized Lie derivatives can be expressed in a simple way, and the expressions take the same form for any n less than 8. The closure of the transformations then follows from the Jacobi identity and the grading of e_{n+1} with respect to e_n.
Division Algebras and Quantum Theory
Baez, John C
2011-01-01
Quantum theory may be formulated using Hilbert spaces over any of the three associative normed division algebras: the real numbers, the complex numbers and the quaternions. Indeed, these three choices appear naturally in a number of axiomatic approaches. However, there are internal problems with real or quaternionic quantum theory. Here we argue that these problems can be resolved if we treat real, complex and quaternionic quantum theory as part of a unified structure. Dyson called this structure the "three-fold way". It is perhaps easiest to see it in the study of irreducible unitary representations of groups on complex Hilbert spaces. These representations come in three kinds: those that are not isomorphic to their own dual (the truly "complex" representations), those that are self-dual thanks to a symmetric bilinear pairing (which are "real", in that they are the complexifications of representations on real Hilbert spaces), and those that are self-dual thanks to an antisymmetric bilinear pairing (which are...
Cellular resolutions of noncommutative toric algebras from superpotentials
Craw, Alastair
2010-01-01
This paper constructs cellular resolutions for classes of noncommutative algebras, analogous to those introduced by Bayer-Sturmfels~\\cite{BayerSturmfels} in the commutative case. To achieve this we generalise the dimer model construction of noncommutative crepant resolutions of toric algebras in dimension three by associating a superpotential and a notion of consistency to toric algebras of arbitrary dimension. For consistent algebras $A$, the coherent component of the fine moduli space of $A$-modules is constructed explicitly by GIT and provides a partial resolution of $\\Spec Z(A)$. For abelian skew group algebras and algebraically consistent dimer model algebras, we introduce a cell complex $\\Delta$ in a real torus whose cells describe uniformly all maps in the minimal projective bimodule resolution of $A$. We illustrate the general construction of $\\Delta$ for an example in dimension four arising from a tilting bundle on a smooth toric Fano threefold to highlight the importance of the incidence function on...
Asveld, P.R.J.
1976-01-01
Operaties op formele talen geven aanleiding tot bijbehorende operatoren op families talen. Bepaalde onderwerpen uit de algebra (universele algebra, tralies, partieel geordende monoiden) kunnen behulpzaam zijn in de studie van verzamelingen van dergelijke operatoren.
A vector space approach to geometry
Hausner, Melvin
2010-01-01
The effects of geometry and linear algebra on each other receive close attention in this examination of geometry's correlation with other branches of math and science. In-depth discussions include a review of systematic geometric motivations in vector space theory and matrix theory; the use of the center of mass in geometry, with an introduction to barycentric coordinates; axiomatic development of determinants in a chapter dealing with area and volume; and a careful consideration of the particle problem. 1965 edition.
Lie Algebra of Noncommutative Inhomogeneous Hopf Algebra
Lagraa, M
1997-01-01
We construct the vector space dual to the space of right-invariant differential forms construct from a first order differential calculus on inhomogeneous quantum group. We show that this vector space is equipped with a structure of a Hopf algebra which closes on a noncommutative Lie algebra satisfying a Jacobi identity.
Categories and Commutative Algebra
Salmon, P
2011-01-01
L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.
Algebraic statistics computational commutative algebra in statistics
Pistone, Giovanni; Wynn, Henry P
2000-01-01
Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model.As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science.
Connecting Arithmetic to Algebra
Darley, Joy W.; Leapard, Barbara B.
2010-01-01
Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…
Arithmetic: Prerequisite to Algebra?
Rotman, Jack W.
Drawing from research and observations at Lansing Community College (Michigan) (LCC), this paper argues that typical arithmetic courses do little to prepare students to master algebra, and proposes an alternative set of arithmetic skills as actual prerequisites to algebra. The first section offers a description of the algebra sequence at LCC,…
Bergstra, J.A.; Fokkink, W.J.; Middelburg, C.A.
2008-01-01
Timed frames are introduced as objects that can form a basis of a model theory for discrete time process algebra. An algebraic setting for timed frames is proposed and results concerning its connection with discrete time process algebra are given. The presented theory of timed frames captures the ba
Deficiently Extremal Gorenstein Algebras
Pavinder Singh
2011-08-01
The aim of this article is to study the homological properties of deficiently extremal Gorenstein algebras. We prove that if / is an odd deficiently extremal Gorenstein algebra with pure minimal free resolution, then the codimension of / must be odd. As an application, the structure of pure minimal free resolution of a nearly extremal Gorenstein algebra is obtained.
Equivariant Algebraic Cobordism
Heller, Jeremiah
2010-01-01
We define equivariant algebraic cobordism for a connected linear algebraic group $G$ over a field of characteristic zero. The construction is based on Totaro's idea of using algebraic approximations for $BG$. We establish the analogous of the properties of an oriented cohomology theory, prove some of the expected properties from an equivariant theory, and make a few computations.
Bases of Schur algebras associated to cellularly stratified diagram algebras
Bowman, C
2011-01-01
We examine homomorphisms between induced modules for a certain class of cellularly stratified diagram algebras, including the BMW algebra, Temperley-Lieb algebra, Brauer algebra, and (quantum) walled Brauer algebra. We define the `permutation' modules for these algebras, these are one-sided ideals which allow us to study the diagrammatic Schur algebras of Hartmann, Henke, Koenig and Paget. We construct bases of these Schur algebras in terms of modified tableaux. On the way we prove that the (quantum) walled Brauer algebra and the Temperley-Lieb algebra are both cellularly stratified and therefore have well-defined Specht filtrations.
Index Theorems on Torsional Geometries
Kimura, Tetsuji
2007-01-01
We study various topological invariants on a differential geometry in the presence of a totally anti-symmetric torsion H under the closed condition dH=0. By using the identification between the Clifford algebra on a geometry and the canonical quantization condition of fermion in the quantum mechanics, we construct the N=1 quantum mechanical sigma model in the Hamiltonian formalism and extend this model to N=2 system, equipped with the totally anti-symmetric tensor associated with the torsion on the target space geometry. Next we construct transition elements in the Lagrangian path integral formalism and apply them to the analyses of the Witten indices in supersymmetric systems. We improve the formulation of the Dirac index on the torsional geometry which has already been studied. We also formulate the Euler characteristic and the Hirzebruch signature on the torsional geometry.
Boadas Elvira, Juan
2002-01-01
Aquest text aborda els temes fonamentals de l'Àlgebra Lineal que formen part dels continguts de primer curs de les carreres d'Enginyeria i Ciències: aplicacions lineals, matrius, determinants, diagonalització, producte escalar, formes bilineals i formes quadràtiques reals. Per a la comprensió d'aquests continguts cal conèixer els conceptes fonamentals de l'Àlgebra que podeu trobar, per exemple, en el llibre "Fonaments i estructures d'àlgebra lineal" d'Edicions UPC. Els temes estan desenvolupa...
Exceptional quantum geometry and particle physics
Dubois-Violette, Michel
2016-11-01
Based on an interpretation of the quark-lepton symmetry in terms of the unimodularity of the color group SU (3) and on the existence of 3 generations, we develop an argumentation suggesting that the "finite quantum space" corresponding to the exceptional real Jordan algebra of dimension 27 (the Euclidean Albert algebra) is relevant for the description of internal spaces in the theory of particles. In particular, the triality which corresponds to the 3 off-diagonal octonionic elements of the exceptional algebra is associated to the 3 generations of the Standard Model while the representation of the octonions as a complex 4-dimensional space C ⊕C3 is associated to the quark-lepton symmetry (one complex for the lepton and 3 for the corresponding quark). More generally it is suggested that the replacement of the algebra of real functions on spacetime by the algebra of functions on spacetime with values in a finite-dimensional Euclidean Jordan algebra which plays the role of "the algebra of real functions" on the corresponding almost classical quantum spacetime is relevant in particle physics. This leads us to study the theory of Jordan modules and to develop the differential calculus over Jordan algebras (i.e. to introduce the appropriate notion of differential forms). We formulate the corresponding definition of connections on Jordan modules.
Exceptional quantum geometry and particle physics
Michel Dubois-Violette
2016-11-01
Full Text Available Based on an interpretation of the quark–lepton symmetry in terms of the unimodularity of the color group SU(3 and on the existence of 3 generations, we develop an argumentation suggesting that the “finite quantum space” corresponding to the exceptional real Jordan algebra of dimension 27 (the Euclidean Albert algebra is relevant for the description of internal spaces in the theory of particles. In particular, the triality which corresponds to the 3 off-diagonal octonionic elements of the exceptional algebra is associated to the 3 generations of the Standard Model while the representation of the octonions as a complex 4-dimensional space C⊕C3 is associated to the quark–lepton symmetry (one complex for the lepton and 3 for the corresponding quark. More generally it is suggested that the replacement of the algebra of real functions on spacetime by the algebra of functions on spacetime with values in a finite-dimensional Euclidean Jordan algebra which plays the role of “the algebra of real functions” on the corresponding almost classical quantum spacetime is relevant in particle physics. This leads us to study the theory of Jordan modules and to develop the differential calculus over Jordan algebras (i.e. to introduce the appropriate notion of differential forms. We formulate the corresponding definition of connections on Jordan modules.
Ma, Y; Lacroix, F; Lavallee, M [CHUQ Hotel-Dieu De Quebec, Quebec, QC (Canada); Beaulieu, L [CHUQ Hotel-Dieu De Quebec, Quebec, QC (Canada); Centre Hospitalier University de Quebec, Quebec, QC (Canada)
2014-06-15
Purpose: To evaluate the commercially released Collapsed Cone convolution-based(CCC) dose calculation module of the Elekta OncentraBrachy(OcB) treatment planning system(TPS). Methods: An allwater phantom was used to perform TG43 benchmarks with single source and seventeen sources, separately. Furthermore, four real-patient heterogeneous geometries (chestwall, lung, breast and prostate) were used. They were selected based on their clinical representativity of a class of clinical anatomies that pose clear challenges. The plans were used as is(no modification). For each case, TG43 and CCC calculations were performed in the OcB TPS, with TG186-recommended materials properly assigned to ROIs. For comparison, Monte Carlo simulation was run for each case with the same material scheme and grid mesh as TPS calculations. Both modes of CCC (standard and high quality) were tested. Results: For the benchmark case, the CCC dose, when divided by that of TG43, yields hot-n-cold spots in a radial pattern. The pattern of the high mode is denser than that of the standard mode and is representative of angular dicretization. The total deviation ((hot-cold)/TG43) is 18% for standard mode and 11% for high mode. Seventeen dwell positions help to reduce “ray-effect”, with the total deviation to 6% (standard) and 5% (high), respectively. For the four patient cases, CCC produces, as expected, more realistic dose distributions than TG43. A close agreement was observed between CCC and MC for all isodose lines, from 20% and up; the 10% isodose line of CCC appears shifted compared to that of MC. The DVH plots show dose deviations of CCC from MC in small volume, high dose regions (>100% isodose). For patient cases, the difference between standard and high modes is almost undiscernable. Conclusion: OncentraBrachy CCC algorithm marks a significant dosimetry improvement relative to TG43 in real-patient cases. Further researches are recommended regarding the clinical implications of the above
Multivariate calculus and geometry
Dineen, Seán
2014-01-01
Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students.
Sati, Hisham
2015-01-01
We uncover higher algebraic structures on Noether currents and BPS charges. It is known that equivalence classes of conserved currents form a Lie algebra. We show that at least for target space symmetries of higher parameterized WZW-type sigma-models this naturally lifts to a Lie (p+1)-algebra structure on the Noether currents themselves. Applied to the Green-Schwarz-type action functionals for super p-brane sigma-models this yields super Lie (p+1)-algebra refinements of the traditional BPS brane charge extensions of supersymmetry algebras. We discuss this in the generality of higher differential geometry, where it applies also to branes with (higher) gauge fields on their worldvolume. Applied to the M5-brane sigma-model we recover and properly globalize the M-theory super Lie algebra extension of 11-dimensional superisometries by 2-brane and 5-brane charges. Passing beyond the infinitesimal Lie theory we find cohomological corrections to these charges in higher analogy to the familiar corrections for D-brane...
Unifying Ancient and Modern Geometries Through Octonions
Catto, Sultan; Gürcan, Yasemin; Khalfan, Amish; Kurt, Levent
2016-01-01
We show the first unified description of some of the oldest known geometries such as the Pappus’ theorem with more modern ones like Desargues' theorem, Monge's theorem and Ceva's theorem, through octonions, the highest normed division algebra in eight dimensions. We also show important applications in hadronic physics, giving a full description of the algebra of color applicable to quark physics, and comment on further applications.
The Geometry of Noncommutative Space-Time
Mendes, R. Vilela
2016-10-01
Stabilization, by deformation, of the Poincaré-Heisenberg algebra requires both the introduction of a fundamental lentgh and the noncommutativity of translations which is associated to the gravitational field. The noncommutative geometry structure that follows from the deformed algebra is studied both for the non-commutative tangent space and the full space with gravity. The contact points of this approach with the work of David Finkelstein are emphasized.
Computer algebra and operators
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
Antonio J Calderón Martín; Manuel Forero Piulestán; José M Sánchez Delgado
2012-05-01
We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form $M=\\mathcal{U}+\\sum_jI_j$ with $\\mathcal{U}$ a subspace of the abelian Malcev subalgebra and any $I_j$ a well described ideal of satisfying $[I_j, I_k]=0$ if ≠ . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of a semisimple split Lie algebra and a direct sum of simple non-Lie Malcev algebras.
Joël Merker
2001-01-01
Full Text Available Recent advances in CR (Cauchy-Riemann geometry have raised interesting fine questions about the regularity of CR mappings between real analytic hypersurfaces. In analogy with the known optimal results about the algebraicity of holomorphic mappings between real algebraic sets, some statements about the optimal regularity of formal CR mappings between real analytic CR manifolds can be naturally conjectured. Concentrating on the hypersurface case, we show in this paper that a formal invertible CR mapping between two minimal holomorphically nondegenerate real analytic hypersurfaces in ℂn is convergent. The necessity of holomorphic nondegeneracy was known previously. Our technique is an adaptation of the inductional study of the jets of formal CR maps which was discovered by Baouendi-Ebenfelt-Rothschild. However, as the manifolds we consider are far from being finitely nondegenerate, we must consider some new conjugate reflection identities which appear to be crucial in the proof. The higher codimensional case will be studied in a forthcoming paper.
Weak Lie symmetry and extended Lie algebra
Goenner, Hubert [Institute for Theoretical Physics, Friedrich-Hund-Platz 1, University of Goettingen, D-37077 Gottingen (Germany)
2013-04-15
The concept of weak Lie motion (weak Lie symmetry) is introduced. Applications given exhibit a reduction of the usual symmetry, e.g., in the case of the rotation group. In this context, a particular generalization of Lie algebras is found ('extended Lie algebras') which turns out to be an involutive distribution or a simple example for a tangent Lie algebroid. Riemannian and Lorentz metrics can be introduced on such an algebroid through an extended Cartan-Killing form. Transformation groups from non-relativistic mechanics and quantum mechanics lead to such tangent Lie algebroids and to Lorentz geometries constructed on them (1-dimensional gravitational fields).
SLAPP: A systolic linear algebra parallel processor
Drake, B.L.; Luk, F.T.; Speiser, J.M.; Symanski, J.J. (Naval Ocean Systems Center and Cornell Univ.)
1987-07-01
Systolic array computer architectures provide a means for fast computation of the linear algebra algorithms that form the building blocks of many signal-processing algorithms, facilitating their real-time computation. For applications to signal processing, the systolic array operates on matrices, an inherently parallel view of the data, using numerical linear algebra algorithms that have been suitably parallelized to efficiently utilize the available hardware. This article describes work currently underway at the Naval Ocean Systems Center, San Diego, California, to build a two-dimensional systolic array, SLAPP, demonstrating efficient and modular parallelization of key matric computations for real-time signal- and image-processing problems.
Numerical linear algebra theory and applications
Beilina, Larisa; Karchevskii, Mikhail
2017-01-01
This book combines a solid theoretical background in linear algebra with practical algorithms for numerical solution of linear algebra problems. Developed from a number of courses taught repeatedly by the authors, the material covers topics like matrix algebra, theory for linear systems of equations, spectral theory, vector and matrix norms combined with main direct and iterative numerical methods, least squares problems, and eigen problems. Numerical algorithms illustrated by computer programs written in MATLAB® are also provided as supplementary material on SpringerLink to give the reader a better understanding of professional numerical software for the solution of real-life problems. Perfect for a one- or two-semester course on numerical linear algebra, matrix computation, and large sparse matrices, this text will interest students at the advanced undergraduate or graduate level.
van den Broek, P.M.
1984-01-01
The aim of this paper is to give a detailed exposition of the relation between the geometry of twistor space and the geometry of Minkowski space. The paper has a didactical purpose; no use has been made of differential geometry and cohomology.
The Boolean algebra and central Galois algebras
George Szeto
2001-01-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb for all x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.
From groups to geometry and back
Climenhaga, Vaughn
2017-01-01
Groups arise naturally as symmetries of geometric objects, and so groups can be used to understand geometry and topology. Conversely, one can study abstract groups by using geometric techniques and ultimately by treating groups themselves as geometric objects. This book explores these connections between group theory and geometry, introducing some of the main ideas of transformation groups, algebraic topology, and geometric group theory. The first half of the book introduces basic notions of group theory and studies symmetry groups in various geometries, including Euclidean, projective, and hyperbolic. The classification of Euclidean isometries leads to results on regular polyhedra and polytopes; the study of symmetry groups using matrices leads to Lie groups and Lie algebras. The second half of the book explores ideas from algebraic topology and geometric group theory. The fundamental group appears as yet another group associated to a geometric object and turns out to be a symmetry group using covering space...
The Euclidean distance degree of an algebraic variety
J. Draisma (Jan); Horobeţ, E. (Emil); Ottaviani, G. (Giorgio); B. Sturmfels; R.R. Thomas (Rekha)
2016-01-01
textabstractThe nearest point map of a real algebraic variety with respect to Euclidean distance is an algebraic function. For instance, for varieties of low-rank matrices, the Eckart–Young Theorem states that this map is given by the singular value decomposition. This article develops a theory of
On Derivations Of Genetic Algebras
Mukhamedov, Farrukh; Qaralleh, Izzat
2014-11-01
A genetic algebra is a (possibly non-associative) algebra used to model inheritance in genetics. In application of genetics this algebra often has a basis corresponding to genetically different gametes, and the structure constant of the algebra encode the probabilities of producing offspring of various types. In this paper, we find the connection between the genetic algebras and evolution algebras. Moreover, we prove the existence of nontrivial derivations of genetic algebras in dimension two.
Vedas and the Development of Arithmetic and Algebra
Gurudeo A. Tularam
2010-01-01
Full Text Available Problem statement: Algebra developed in three stages: rhetorical or prose algebra, syncopated or abbreviated algebra and symbolic algebra-known as school algebra. School algebra developed rather early in India and the literature now suggests that the first civilization to develop symbolic algebra was the Vedic Indians. Approach: Philosophical ideas of the time influenced the development of the decimal system and arithmetic and that in turn led to algebra. Indeed, symbolic algebraic ideas are deep rooted in Vedic philosophy. The Vedic arithmetic and mathematics were of a high level at an early period and the Hindus used algebraic ideas to generate formulas simplifying calculations. Results: In the main, they developed formulas to understand the physical world satisfying the needs of religion (apara and para vidya. While geometrical focus, logic and proof type are features of Greek mathematics, boldness of conception, abstraction, symbolism are essentially in Indian mathematics. From such a history study, a number of implications can be drawn regarding the learning of algebra. Real life, imaginative and creative problems that encourage risk should be the focus in student learning; allowing students freely move between numbers, magnitudes and symbols rather than taking separate static or unchanging view. A move from concrete to pictorial to symbolic modes was present in ancient learning. Real life practical needs motivated the progress to symbolic algebra. The use of rich context based problems that stimulate and motivate students to raise levels higher to transfer knowledge should be the focus of learning. Conclusion/Recommendations: The progress from arithmetic to algebra in India was achieved through different modes of learning, risk taking, problem solving and higher order thinking all in line with current emphasis in mathematics education but at rather early stage in human history.
The Hall Algebra of Cyclic Serial Algebra
郭晋云
1994-01-01
In this paper, orders <1 and <2 on ((Z)+)nm are introduced and also regarded as orders on the isomorphism classes of finite modules of finite .cyclic algebra R with n simple modules and all the indecomposable projective modules have length m through a one-to-one correspondence between ((Z)+)nm and the isomorphism classes of finite R modules. Using this we prove that the Hall algebra of a cyclic serial algebra is identified with its Loewy subalgebra, and its rational extension has a basis of BPW type, and is a (((Z)+)nm, <2) filtered ring with the associated graded ring as an iterated skew polynomial ring. These results are also generalized to the Hall algebra of a tube over a finite field.
Algebra Survival Guide A Conversational Handbook for the Thoroughly Befuddled
Rappaport, Josh
2011-01-01
If you think algebra has to be boring, confusing and unrelated to anything in the real world, think again! Written in a humorous, conversational style, this book gently nudges students toward success in pre-algebra and Algebra I. With its engaging question/answer format and helpful practice problems, glossary and index, it is ideal for homeschoolers, tutors and students striving for classroom excellence. It features funky icons and lively cartoons by award-winning Santa Fe artist Sally BlakemoreThe Algebra Survival Guide is the winner of a Paretns' Choice award, and it meets the Standards 2000
Evolution algebras and their applications
Tian, Jianjun Paul
2008-01-01
Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.
Algebraic classification of Robinson-Trautman spacetimes
Podolsky, Jiri
2016-01-01
We consider a general class of four-dimensional geometries admitting a null vector field that has no twist and no shear but has an arbitrary expansion. We explicitly present the Petrov classification of such Robinson-Trautman (and Kundt) gravitational fields, based on the algebraic properties of the Weyl tensor. In particular, we determine all algebraically special subcases when the optically privileged null vector field is a multiple principal null direction (PND), as well as all the cases when it remains a single PND. No field equations are a priori applied, so that our classification scheme can be used in any metric theory of gravity in four dimensions. In the classic Einstein theory this reproduces previous results for vacuum spacetimes, possibly with a cosmological constant, pure radiation and electromagnetic field, but can be applied to an arbitrary matter content. As non-trivial explicit examples we investigate specific algebraic properties of the Robinson-Trautman spacetimes with a free scalar field, ...
Algebraic theory of locally nilpotent derivations
Freudenburg, Gene
2017-01-01
This book explores the theory and application of locally nilpotent derivations, a subject motivated by questions in affine algebraic geometry and having fundamental connections to areas such as commutative algebra, representation theory, Lie algebras and differential equations. The author provides a unified treatment of the subject, beginning with 16 First Principles on which the theory is based. These are used to establish classical results, such as Rentschler's Theorem for the plane and the Cancellation Theorem for Curves. More recent results, such as Makar-Limanov's theorem for locally nilpotent derivations of polynomial rings, are also discussed. Topics of special interest include progress in classifying additive actions on three-dimensional affine space, finiteness questions (Hilbert's 14th Problem), algorithms, the Makar-Limanov invariant, and connections to the Cancellation Problem and the Embedding Problem. A lot of new material is included in this expanded second edition, such as canonical factoriza...
Finite-dimensional (*)-serial algebras
无
2010-01-01
Let A be a finite-dimensional associative algebra with identity over a field k. In this paper we introduce the concept of (*)-serial algebras which is a generalization of serial algebras. We investigate the properties of (*)-serial algebras, and we obtain suficient and necessary conditions for an associative algebra to be (*)-serial.
On the Toroidal Leibniz Algebras
Dong LIU; Lei LIN
2008-01-01
Toroidal Leibniz algebras are the universal central extensions of the iterated loop algebras gOC[t±11 ,...,t±v1] in the category of Leibniz algebras. In this paper, some properties and representations of toroidal Leibniz algebras are studied. Some general theories of central extensions of Leibniz algebras are also obtained.
R. A. Borzooei
2006-01-01
Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Borzooei, R. A.; Dudek, W. A.; Koohestani, N.
2006-01-01
We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Iachello, Francesco
2015-01-01
This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...
Developable algebraic surfaces
CHEN Dongren; WANG Guojin
2004-01-01
An algebraic surface can be defined by an implicit polynomial equation F(x,y,z)=0. In this paper, general characterizations of developable algebraic surfaces of arbitrary degree are presented. Using the shift operators of the subscripts of Bézier ordinates, the uniform apparent discriminants of developable algebraic surfaces to their Bézier ordinates are given directly. To degree 2 algebraic surfaces, which are widely used in computer aided geometric design and graphics, all possible developable surface types are obtained. For more conveniently applying algebraic surfaces of high degree to computer aided geometric design, the notion of ε-quasi-developable surfaces is introduced, and an example of using a quasi-developable algebraic surface of degree 3 to interpolate three curves of degree 2 is given.
Monotone complete C*-algebras and generic dynamics
Saitô, Kazuyuki
2015-01-01
This monograph is about monotone complete C*-algebras, their properties and the new classification theory. A self-contained introduction to generic dynamics is also included because of its important connections to these algebras. Our knowledge and understanding of monotone complete C*-algebras has been transformed in recent years. This is a very exciting stage in their development, with much discovered but with many mysteries to unravel. This book is intended to encourage graduate students and working mathematicians to attack some of these difficult questions. Each bounded, upward directed net of real numbers has a limit. Monotone complete algebras of operators have a similar property. In particular, every von Neumann algebra is monotone complete but the converse is false. Written by major contributors to this field, Monotone Complete C*-algebras and Generic Dynamics takes readers from the basics to recent advances. The prerequisites are a grounding in functional analysis, some point set topology and an eleme...
Noncommutative spectral geometry, dissipation and the origin of quantization
Sakellariadou, Mairi; Vitiello, Giuseppe
2012-01-01
We present a physical interpretation of the doubling of the algebra, which is the basic ingredient of the noncommutative spectral geometry, developed by Connes and collaborators as an approach to unification. We discuss its connection to dissipation and to the gauge structure of the theory. We then argue, following 't Hooft's conjecture, that noncommutative spectral geometry classical construction carries implicit in its feature of the doubling of the algebra the seeds of quantization.
Algebra Automorphisms of Quantized Enveloping Algebras Uq(■)
查建国
1994-01-01
The algebra automorphisms of the quantized enveloping algebra Uq(g) are discussed, where q is generic. To some extent, all quantum deformations of automorphisms of the simple Lie algebra g have been determined.
Cayley-Dickson and Clifford Algebras as Twisted Group Algebras
Bales, John W
2011-01-01
The effect of some properties of twisted groups on the associated algebras, particularly Cayley-Dickson and Clifford algebras. It is conjectured that the Hilbert space of square-summable sequences is a Cayley-Dickson algebra.
Essential linear algebra with applications a problem-solving approach
Andreescu, Titu
2014-01-01
This textbook provides a rigorous introduction to linear algebra in addition to material suitable for a more advanced course while emphasizing the subject’s interactions with other topics in mathematics such as calculus and geometry. A problem-based approach is used to develop the theoretical foundations of vector spaces, linear equations, matrix algebra, eigenvectors, and orthogonality. Key features include: • a thorough presentation of the main results in linear algebra along with numerous examples to illustrate the theory; • over 500 problems (half with complete solutions) carefully selected for their elegance and theoretical significance; • an interleaved discussion of geometry and linear algebra, giving readers a solid understanding of both topics and the relationship between them. Numerous exercises and well-chosen examples make this text suitable for advanced courses at the junior or senior levels. It can also serve as a source of supplementary problems for a sophomore-level course. ...
Operadic quantization as a tool for discrete geometry
Paal, E.; Virkepu, J.
2014-09-01
The operadic Lax representations of the harmonic oscillator are used to construct the quantum counterparts of 3d real Lie algebras in the Bianchi classification. The Jacobi operators of these quantum algebras are studied. It is shown how the energy conservation is related to the Jacobi identity and how the quantization leads to an anomaly - the quantum violation of the Jacobi relations. By using the nonvanishing quantum Jacobi operators, the derivative quantum algebra for a triple of 3d real Lie algebras is defined. It is proposed that the derivative algebra is the 3d real Heisenberg algebra. From this it follows that in this model only the discrete values of the spatial coordinates are physically allowed.
Symmetric Extended Ockham Algebras
T.S. Blyth; Jie Fang
2003-01-01
The variety eO of extended Ockham algebras consists of those algealgebra with an additional endomorphism k such that the unary operations f and k commute. Here, we consider the cO-algebras which have a property of symmetry. We show that there are thirty two non-isomorphic subdirectly irreducible symmetric extended MS-algebras and give a complete description of them.2000 Mathematics Subject Classification: 06D15, 06D30
Krichever, Igor M.; Sheinman, Oleg K.
2007-01-01
In this paper we develop a general concept of Lax operators on algebraic curves introduced in [1]. We observe that the space of Lax operators is closed with respect to their usual multiplication as matrix-valued functions. We construct the orthogonal and symplectic analogs of Lax operators, prove that they constitute almost graded Lie algebras and construct local central extensions of those Lie algebras.
Prediction of Algebraic Instabilities
Zaretzky, Paula; King, Kristina; Hill, Nicole; Keithley, Kimberlee; Barlow, Nathaniel; Weinstein, Steven; Cromer, Michael
2016-11-01
A widely unexplored type of hydrodynamic instability is examined - large-time algebraic growth. Such growth occurs on the threshold of (exponentially) neutral stability. A new methodology is provided for predicting the algebraic growth rate of an initial disturbance, when applied to the governing differential equation (or dispersion relation) describing wave propagation in dispersive media. Several types of algebraic instabilities are explored in the context of both linear and nonlinear waves.
Albert, A A
1939-01-01
The first three chapters of this work contain an exposition of the Wedderburn structure theorems. Chapter IV contains the theory of the commutator subalgebra of a simple subalgebra of a normal simple algebra, the study of automorphisms of a simple algebra, splitting fields, and the index reduction factor theory. The fifth chapter contains the foundation of the theory of crossed products and of their special case, cyclic algebras. The theory of exponents is derived there as well as the consequent factorization of normal division algebras into direct factors of prime-power degree. Chapter VI con
Kurosh, A G; Stark, M; Ulam, S
1965-01-01
Lectures in General Algebra is a translation from the Russian and is based on lectures on specialized courses in general algebra at Moscow University. The book starts with the basics of algebra. The text briefly describes the theory of sets, binary relations, equivalence relations, partial ordering, minimum condition, and theorems equivalent to the axiom of choice. The text gives the definition of binary algebraic operation and the concepts of groups, groupoids, and semigroups. The book examines the parallelism between the theory of groups and the theory of rings; such examinations show the