WorldWideScience

Sample records for readiness ground motion

  1. Empirical ground motion prediction

    Directory of Open Access Journals (Sweden)

    R. J. Archuleta

    1994-06-01

    Full Text Available New methods of site-specific ground motion prediction in the time and frequency domains are presented. A large earthquake is simulated as a composite (linear combination of observed small earthquakes (subevents assuming Aki-Brune functional models of the source time functions (spectra. Source models incorporate basic scaling relations between source and spectral parameters. Ground motion predictions are consistent with the entire observed seismic spectrum from the lowest to the highest frequencies. These methods are designed to use all the available empirical Green’s functions (or any subset of observations at a site. Thus a prediction is not biased by a single record, and different possible source-receiver paths are taken into account. Directivity is accounted for by adjusting the apparent source duration at each site. Our time-series prediction algorithm is based on determination of a non-uniform distribution of rupture times of subevents. By introducing a specific rupture velocity we avoid the major problem of deficiency of predictions around the main event's corner frequency. A novel notion of partial coherence allows us to sum subevents' amplitude spectra directly without using any information on their rupture times and phase histories. Predictions by this spectral method are not Jependent on details of rupture nucleation and propagation, location of asperities and other predominantly phase-affecting factors, responsible for uncertainties in time-domain simulations.

  2. Earthquake ground motion: Chapter 3

    Science.gov (United States)

    Luco, Nicolas; Kircher, Charles A.; Crouse, C. B.; Charney, Finley; Haselton, Curt B.; Baker, Jack W.; Zimmerman, Reid; Hooper, John D.; McVitty, William; Taylor, Andy

    2016-01-01

    Most of the effort in seismic design of buildings and other structures is focused on structural design. This chapter addresses another key aspect of the design process—characterization of earthquake ground motion into parameters for use in design. Section 3.1 describes the basis of the earthquake ground motion maps in the Provisions and in ASCE 7 (the Standard). Section 3.2 has examples for the determination of ground motion parameters and spectra for use in design. Section 3.3 describes site-specific ground motion requirements and provides example site-specific design and MCER response spectra and example values of site-specific ground motion parameters. Section 3.4 discusses and provides an example for the selection and scaling of ground motion records for use in various types of response history analysis permitted in the Standard.

  3. Broadband Synthetic Ground Motion Records

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The dataset contains broadband synthetic ground motion records for three events: 1) 1994 M6.7 Northridge, CA, 2) 1989 M7.0 Loma Prieta, CA, and 3) 1999 M7.5 Izmit,...

  4. Identification of resonant earthquake ground motion

    Indian Academy of Sciences (India)

    Resonant ground motion has been observed in earthquake records measured at several parts of the world. This class of ground motion is characterized by its energy being contained in a narrow frequency band. This paper develops measures to quantify the frequency content of the ground motion using the entropy ...

  5. Ground Motion Models for Future Linear Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Seryi, Andrei

    2000-06-28

    Optimization of the parameters of a future linear collider requires comprehensive models of ground motion. Both general models of ground motion and specific models of the particular site and local conditions are essential. Existing models are not completely adequate, either because they are too general, or because they omit important peculiarities of ground motion. The model considered in this paper is based on recent ground motion measurements performed at SLAC and at other accelerator laboratories, as well as on historical data. The issues to be studied for the models to become more predictive are also discussed.

  6. Preliminary results of ground-motion characteristics

    Directory of Open Access Journals (Sweden)

    Francesca Bozzoni

    2012-10-01

    Full Text Available The preliminary results are presented herein for the engineering applications of the characteristics of the ground motion induced by the May 20, 2012, Emilia earthquake. Shake maps are computed to provide estimates of the spatial distribution of the induced ground motion. The signals recorded at the Mirandola (MRN station, the closest to the epicenter, have been processed to obtain acceleration, velocity and displacement response spectra. Ground-motion parameters from the MRN recordings are compared with the corresponding estimates from recent ground-motion prediction equations, and with the spectra prescribed by the current Italian Building Code for different return periods. The records from the MRN station are used to plot the particle orbit (hodogram described by the waveform. The availability of results from geotechnical field tests that were performed at a few sites in the Municipality of Mirandola prior to this earthquake of May 2012 has allowed preliminary assessment of the ground response. The amplification effects at Mirandola are estimated using fully stochastic site-response analyses. The seismic input comprises seven actual records that are compatible with the Italian code-based spectrum that refers to a 475-year return period. The computed acceleration response spectrum and the associated dispersion are compared to the spectra calculated from the recordings of the MRN station. Good agreement is obtained for periods up to 1 s, especially for the peak ground acceleration. For the other periods, the spectral acceleration of the MRN recordings exceeds that of the computed spectra.

  7. Ground-motion prediction from tremor

    Science.gov (United States)

    Baltay, Annemarie S.; Beroza, Gregory C.

    2013-01-01

    The widespread occurrence of tremor, coupled with its frequency content and location, provides an exceptional opportunity to test and improve strong ground-motion attenuation relations for subduction zones. We characterize the amplitude of thousands of individual 5 min tremor events in Cascadia during three episodic tremor and slip events to constrain the distance decay of peak ground acceleration (PGA) and peak ground velocity (PGV). We determine the anelastic attenuation parameter for ground-motion prediction equations (GMPEs) to a distance of 150 km, which is sufficient to place important constraints on ground-motion decay. Tremor PGA and PGV show a distance decay that is similar to subduction-zone-specific GMPEs developed from both data and simulations; however, the massive amount of data present in the tremor observations should allow us to refine distance-amplitude attenuation relationships for use in hazard maps, and to search for regional variations and intrasubduction zone differences in ground-motion attenuation.

  8. Orientation-independent measures of ground motion

    Science.gov (United States)

    Boore, D.M.; Watson-Lamprey, Jennie; Abrahamson, N.A.

    2006-01-01

    The geometric mean of the response spectra for two orthogonal horizontal components of motion, commonly used as the response variable in predictions of strong ground motion, depends on the orientation of the sensors as installed in the field. This means that the measure of ground-motion intensity could differ for the same actual ground motion. This dependence on sensor orientation is most pronounced for strongly correlated motion (the extreme example being linearly polarized motion), such as often occurs at periods of 1 sec or longer. We propose two new measures of the geometric mean, GMRotDpp, and GMRotIpp, that are independent of the sensor orientations. Both are based on a set of geometric means computed from the as-recorded orthogonal horizontal motions rotated through all possible non-redundant rotation angles. GMRotDpp is determined as the ppth percentile of the set of geometric means for a given oscillator period. For example, GMRotDOO, GMRotD50, and GMRotD100 correspond to the minimum, median, and maximum values, respectively. The rotations that lead to GMRotDpp depend on period, whereas a single-period-independent rotation is used for GMRotIpp, the angle being chosen to minimize the spread of the rotation-dependent geometric mean (normalized by GMRotDpp) over the usable range of oscillator periods. GMRotI50 is the ground-motion intensity measure being used in the development of new ground-motion prediction equations by the Pacific Earthquake Engineering Center Next Generation Attenuation project. Comparisons with as-recorded geometric means for a large dataset show that the new measures are systematically larger than the geometric-mean response spectra using the as-recorded values of ground acceleration, but only by a small amount (less than 3%). The theoretical advantage of the new measures is that they remove sensor orientation as a contributor to aleatory uncertainty. Whether the reduction is of practical significance awaits detailed studies of large

  9. Strong ground motion prediction using virtual earthquakes.

    Science.gov (United States)

    Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C

    2014-01-24

    Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion.

  10. Ground motion: An introduction for accelerator builders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.E.

    1992-02-01

    In this seminar we will review some of the characteristics of the major classes of ground motion in order to determine whether their effects must be considered or place fundamental limits on the sitting and/or design of modern storage rings and linear colliders. The classes discussed range in frequency content from tidal deformation and tectonic motions through earthquakes and microseisms. Countermeasures currently available are briefly discussed.

  11. Identification of resonant earthquake ground motion

    Indian Academy of Sciences (India)

    Rom pave the way for better ... identified critical ground motion for nonlinear structures using inelastic time-history analysis. The effect of energy .... of earthquake records for time-history analysis of structures (Moustafa et al 2010). To gain more ...

  12. The NTS Ground Motion Data Base

    Energy Technology Data Exchange (ETDEWEB)

    App, F.N.

    1994-04-01

    The NTS (Nevada Test Site) Ground Motion Data Base is composed of strong motion data recorded during the normal execution of the US underground test program. It contains surface, subsurface, and structure motion data as digitized waveforms. Currently the data base contains information from 148 underground explosions This represents about 4200 measurements and nearly 12,000 individual digitized waveforms. Most of the data was acquired by Los Alamos National Laboratory (LANL) in connection with LANL sponsored underground tests. Some was acquired by Los Alamos on tests conducted by the Defense Nuclear Agency (DNA) and Lawrence Livermore National Laboratory (LLNL), and there are some measurements which were acquired by the other test sponsors on their events and provided to us for inclusion in this data base. Included in the data set is the Los Alamos motion data from the Non-Proliferation Experiment (NPE).

  13. Trampoline effect in extreme ground motion.

    Science.gov (United States)

    Aoi, Shin; Kunugi, Takashi; Fujiwara, Hiroyuki

    2008-10-31

    In earthquake hazard assessment studies, the focus is usually on horizontal ground motion. However, records from the 14 June 2008 Iwate-Miyagi earthquake in Japan, a crustal event with a moment magnitude of 6.9, revealed an unprecedented vertical surface acceleration of nearly four times gravity, more than twice its horizontal counterpart. The vertical acceleration was distinctly asymmetric; the waveform envelope was about 1.6 times as large in the upward direction as in the downward direction, which is not explained by existing models of the soil response. We present a simple model of a mass bouncing on a trampoline to account for this asymmetry and the large vertical amplitude. The finding of a hitherto-unknown mode of strong ground motion may prompt major progress in near-source shaking assessments.

  14. Ground Motion and Air Overpressure Study

    Directory of Open Access Journals (Sweden)

    Michael K. Sharp

    1998-01-01

    Full Text Available A seismic attenuation and air overpressure study was conducted to determine the attenuation of explosion induced ground motions and air overpressures as a function of distance from shallow subsurface detonated charges, and to derive parameters to predict blast effects at distances beyond the ordinance disposal facility boundary. A total of 210 explosive shots were monitored producing 2048 time histories of ground motions recorded in the vertical, radial, and transverse directions, in addition to recording air overpressures. The data were analyzed for peak particle velocities and peak air overpressures, then plotted versus scaled range. A best fit line was determined for the data to give average, 95% non-exceedance, and upper bound predictive equations which can be used in the disposal operations to avoid damage to adjacent structures.

  15. Compression of ground-motion data

    Energy Technology Data Exchange (ETDEWEB)

    Long, J.W.

    1981-04-01

    Ground motion data has been recorded for many years at Nevada Test Site and is now stored on thousands of digital tapes. The recording format is very inefficient in terms of space on tape. This report outlines a method to compress the data onto a few hundred tapes while maintaining the accuracy of the recording and allowing restoration of any file to the original format for future use. For future digitizing a more efficient format is described and suggested.

  16. Earthquake Hazards Program: Risk-Targeted Ground Motion Calculator

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tool is used to calculate risk-targeted ground motion values from probabilistic seismic hazard curves in accordance with the site-specific ground motion...

  17. Regional differences in subduction ground motions

    CERN Document Server

    Beauval, Céline; Abrahamson, N; Theodulidis, N; Delavaud, E; Rodriguez, L; Scherbaum, F; Haendel, A

    2012-01-01

    A few ground-motion prediction models have been published in the last years, for predicting ground motions produced by interface and intraslab earthquakes. When one must carry out a probabilistic seismic hazard analysis in a region including a subduction zone, GMPEs must be selected to feed a logic tree. In the present study, the aim is to identify which models provide the best fit to the dataset M6+, global or local models. The subduction regions considered are Japan, Taiwan, Central and South America, and Greece. Most of the data comes from the database built to develop the new BCHydro subduction global GMPE (Abrahamson et al., submitted). We show that this model is among best-fitting models in all cases, followed closely by Zhao et al. (2006), whereas the local Lin and Lee (2008) is well predicting the data in Taiwan and also in Greece. The Scherbaum et al. (2009) LLH method prove to be efficient in providing one number quantifying the overall fit, but additional analysis on the between-event and within-ev...

  18. Extreme ground motions and Yucca Mountain

    Science.gov (United States)

    Hanks, Thomas C.; Abrahamson, Norman A.; Baker, Jack W.; Boore, David M.; Board, Mark; Brune, James N.; Cornell, C. Allin; Whitney, John W.

    2013-01-01

    Yucca Mountain is the designated site of the underground repository for the United States' high-level radioactive waste (HLW), consisting of commercial and military spent nuclear fuel, HLW derived from reprocessing of uranium and plutonium, surplus plutonium, and other nuclear-weapons materials. Yucca Mountain straddles the western boundary of the Nevada Test Site, where the United States has tested nuclear devices since the 1950s, and is situated in an arid, remote, and thinly populated region of Nevada, ~100 miles northwest of Las Vegas. Yucca Mountain was originally considered as a potential underground repository of HLW because of its thick units of unsaturated rocks, with the repository horizon being not only ~300 m above the water table but also ~300 m below the Yucca Mountain crest. The fundamental rationale for a geologic (underground) repository for HLW is to securely isolate these materials from the environment and its inhabitants to the greatest extent possible and for very long periods of time. Given the present climate conditions and what is known about the current hydrologic system and conditions around and in the mountain itself, one would anticipate that the rates of infiltration, corrosion, and transport would be very low—except for the possibility that repository integrity might be compromised by low-probability disruptive events, which include earthquakes, strong ground motion, and (or) a repository-piercing volcanic intrusion/eruption. Extreme ground motions (ExGM), as we use the phrase in this report, refer to the extremely large amplitudes of earthquake ground motion that arise at extremely low probabilities of exceedance (hazard). They first came to our attention when the 1998 probabilistic seismic hazard analysis for Yucca Mountain was extended to a hazard level of 10-8/yr (a 10-4/yr probability for a 104-year repository “lifetime”). The primary purpose of this report is to summarize the principal results of the ExGM research program

  19. Ground Motions Due to Earthquakes on Creeping Faults

    Science.gov (United States)

    Harris, R.; Abrahamson, N. A.

    2014-12-01

    We investigate the peak ground motions from the largest well-recorded earthquakes on creeping strike-slip faults in active-tectonic continental regions. Our goal is to evaluate if the strong ground motions from earthquakes on creeping faults are smaller than the strong ground motions from earthquakes on locked faults. Smaller ground motions might be expected from earthquakes on creeping faults if the fault sections that strongly radiate energy are surrounded by patches of fault that predominantly absorb energy. For our study we used the ground motion data available in the PEER NGA-West2 database, and the ground motion prediction equations that were developed from the PEER NGA-West2 dataset. We analyzed data for the eleven largest well-recorded creeping-fault earthquakes, that ranged in magnitude from M5.0-6.5. Our findings are that these earthquakes produced peak ground motions that are statistically indistinguishable from the peak ground motions produced by similar-magnitude earthquakes on locked faults. These findings may be implemented in earthquake hazard estimates for moderate-size earthquakes in creeping-fault regions. Further investigation is necessary to determine if this result will also apply to larger earthquakes on creeping faults. Please also see: Harris, R.A., and N.A. Abrahamson (2014), Strong ground motions generated by earthquakes on creeping faults, Geophysical Research Letters, vol. 41, doi:10.1002/2014GL060228.

  20. Ground motion studies in a backfilled stope at West Driefontein

    CSIR Research Space (South Africa)

    Goldbach, OD

    1991-10-01

    Full Text Available according to peak ground velocity, spectral peaks and vibration times. The results from this study, together with the results from previous work on ground motion analyses in backfilled and conventionally filled stopes, show how backfill can reduce...

  1. Seismic ground motion variations resulting from site conditions

    Directory of Open Access Journals (Sweden)

    N. Silacheva

    2014-05-01

    Full Text Available Amplification of seismic ground motions in the territory of Almaty city is evaluated by using different methods. The pattern and probable causes of ground motion variations in different engineering-geological conditions are characterized. An expeditious application of these techniques within a complex methodical approach for Almaty city microzonation is considered.

  2. Description of ground motion data processing codes: Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, M.L.

    1988-02-01

    Data processing codes developed to process ground motion at the Nevada Test Site for the Weapons Test Seismic Investigations Project are used today as part of the program to process ground motion records for the Nevada Nuclear Waste Storage Investigations Project. The work contained in this report documents and lists codes and verifies the ``PSRV`` code. 39 figs.

  3. Ground motion observations of the 2014 South Napa earthquake

    Science.gov (United States)

    Baltay, Annemarie S.; Boatwright, John

    2015-01-01

    Ground motions of the South Napa earthquake (24 August 2014; M 6.0) were recorded at 19 stations within 20 km and 292 stations within 100 km of the rupture surface trace, generating peak ground motions in excess of 50%g and 50  cm/s in and near Napa Valley. This large dataset allows us to compare the ground motion from the earthquake to existing ground‐motion prediction equations (GMPEs) in considerable detail.

  4. An Improved Approach for Nonstationary Strong Ground Motion Simulation

    Science.gov (United States)

    Li, Yanan; Wang, Guoxin

    2016-05-01

    A new stochastic ground motion model for generating a suite of ground motion time history with both temporal and frequency nonstationarities for specified earthquake and site characteristics is proposed based on the wavelet method. This new model is defined in terms of 6 key parameters that characterize the duration, evolving intensity, predominant frequency, bandwidth and frequency variation of the ground acceleration process. All parameters, except for peak ground acceleration (PGA), are identified manually from a database of 2444 recorded horizontal accelerations. The two-stage regression analysis method is used to investigate the inter- and intra-event residuals. For any given earthquake and site characteristics in terms of the fault mechanism, moment magnitude, Joyner and Boore distance and site shear-wave velocity, sets of the model parameters are generated and used, in turn, by the stochastic model to generate strong ground motion accelerograms, which can capture and properly embody the primary features of real strong ground motions, including the duration, evolving intensity, spectral content, frequency variation and peak values. In addition, it is shown that the characteristics of the simulated and observed response spectra are similar, and the amplitude of the simulated response spectra are in line with the predicted values from the published seismic ground motion prediction equations (SGMPE) after a systematic comparison. The proposed method can be used to estimate the strong ground motions as inputs for structural seismic dynamic analysis in engineering practice in conjunction with or instead of recorded ground motions.

  5. Evaluation of Nevada Test Site Ground Motion and Rock Property Data to Bound Ground Motions at the Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L J; Foxall, W; Rambo, J; Wagoner, J L

    2005-02-14

    Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintain such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.

  6. Evaluation of Nevada Test Site Ground Motion and Rock Property Data to Bound Ground Motions at the Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L H; Foxall, W; Rambo, J; Wagoner, J L

    2005-03-09

    Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintain such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.

  7. Measurement of ground motion in various sites

    Energy Technology Data Exchange (ETDEWEB)

    Bialowons, W.; Amirikas, R.; Bertolini, A.; Kruecker, D.

    2007-04-15

    Ground vibrations may affect low emittance beam transport in linear colliders, Free Electron Lasers (FEL) and synchrotron radiation facilities. This paper is an overview of a study program to measure ground vibrations in various sites which can be used for site characterization in relation to accelerator design. Commercial broadband seismometers have been used to measure ground vibrations and the resultant database is available to the scientific community. The methodology employed is to use the same equipment and data analysis tools for ease of comparison. This database of ground vibrations taken in 19 sites around the world is first of its kind. (orig.)

  8. Engineering uses of physics-based ground motion simulations

    Science.gov (United States)

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  9. Seismic Ground Motion Hazards with 2 Percent Probability

    Data.gov (United States)

    Department of Homeland Security — This map layer shows seismic hazard in the United States. The data represent a model showing the probability that ground motion will reach a certain level. This map...

  10. Seismic Ground Motion Hazards with 10 Percent Probability

    Data.gov (United States)

    Department of Homeland Security — This map layer shows seismic hazard in the United States. The data represent a model showing the probability that ground motion will reach a certain level. This map...

  11. Ground Motion in Central Mexico: A Comprehensive Analysis

    Science.gov (United States)

    Ramirez-Guzman, L.; Juarez, A.; Rábade, S.; Aguirre, J.; Bielak, J.

    2015-12-01

    This study presents a detailed analysis of the ground motion in Central Mexico based on numerical simulations, as well as broadband and strong ground motion records. We describe and evaluate a velocity model for Central Mexico derived from noise and regional earthquake cross-correlations, which is used throughout this research to estimate the ground motion in the region. The 3D crustal model includes a geotechnical structure of the Valley of Mexico (VM), subduction zone geometry, and 3D velocity distributions. The latter are based on more than 200 low magnitude (Mw earthquakes and two years of noise recordings. We emphasize the analysis on the ground motion in the Valley of Mexico originating from intra-slab deep events and temblors located along the Pacific coast. Also, we quantify the effects Trans-Mexican Volcanic Belt (TMVB) and the low-velocity deposits on the ground motion. The 3D octree-based finite element wave propagation computations, valid up to 1 Hz, reveal that the inclusion of a basin with a structure as complex as the Valley of Mexico dramatically enhances the regional effects induced by the TMVB. Moreover, the basin not only produces ground motion amplification and anomalous duration, but it also favors the energy focusing into zones of Mexico City where structures typically undergo high levels of damage.

  12. Ground motion improvements in SPEAR3

    Energy Technology Data Exchange (ETDEWEB)

    Safranek, James A.; Yan, Yiton T.; Dell’Orco, Domenico; Gassner, Georg; Sunilkumar, Nikita

    2016-09-01

    SPEAR3 is a third-generation synchrotron light source storage ring, about 234 meters in circumference. To meet the beam stability requirement, our goal is to ultimately achieve an orbit variation (relative to the photon beam lines) of less than 10% of the beam size, which is about 1 micron in the vertical plane. Hydrostatic leveling system (HLS) measurements show that the height of the SPEAR3 tunnel floor can vary by tens of microns daily without thermal insulation improvements. We present an analysis of the HLS data that shows that adding thermal insulation to the concrete walls of the storage ring tunnel dramatically decreased diurnal tunnel floor motion.

  13. Strong ground motion from the michoacan, Mexico, earthquake.

    Science.gov (United States)

    Anderson, J G; Bodin, P; Brune, J N; Prince, J; Singh, S K; Quaas, R; Onate, M

    1986-09-05

    The network of strong motion accelerographs in Mexico includes instruments that were installed, under an international cooperative research program, in sites selected for the high potenial of a large earthquake. The 19 September 1985 earthquake (magnitude 8.1) occurred in a seismic gap where an earthquake was expected. As a result, there is an excellent descripton of the ground motions that caused the disaster.

  14. Ground motion modeling of Hayward fault scenario earthquakes II:Simulation of long-period and broadband ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B T; Graves, R W; Rodgers, A; Brocher, T M; Simpson, R W; Dreger, D; Petersson, N A; Larsen, S C; Ma, S; Jachens, R C

    2009-11-04

    We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.

  15. Modal-pushover-based ground-motion scaling procedure

    Science.gov (United States)

    Kalkan, Erol; Chopra, Anil K.

    2011-01-01

    Earthquake engineering is increasingly using nonlinear response history analysis (RHA) to demonstrate the performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. This paper presents a modal-pushover-based scaling (MPS) procedure to scale ground motions for use in a nonlinear RHA of buildings. In the MPS method, the ground motions are scaled to match to a specified tolerance, a target value of the inelastic deformation of the first-mode inelastic single-degree-of-freedom (SDF) system whose properties are determined by the first-mode pushover analysis. Appropriate for first-mode dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-mode SDF systems in selecting a subset of the scaled ground motions. Based on results presented for three actual buildings-4, 6, and 13-story-the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.

  16. Subterranean ground motion studies for the Einstein Telescope

    NARCIS (Netherlands)

    Beker, M.G.; van den Brand, J.F.J.; Rabeling, D.S.

    2015-01-01

    Seismic motion limits the low-frequency sensitivity of ground-based gravitational wave detectors. A conceptual design study into the feasibility of a future-generation gravitational wave observatory, coined the Einstein Telescope, has been completed. As part of this design phase, we performed a

  17. Analysis of strong ground motions to evaluate regional attenuation relationships

    Directory of Open Access Journals (Sweden)

    V. Montaldo

    2002-06-01

    Full Text Available Italian attenuation relationships at regional scale have been refined using a data set of 322 horizontal components of strong ground motions recorded mainly during the 1997-1998 Umbria-Marche, Central Italy, earthquake sequence. The data set includes records generated by events with local magnitude (M L ranging between 4.5 and 5.9, recorded at rock or soil sites and epicentral distance smaller than 100 km. Through a multiple step regression analysis, we calculated empirical equations for the peak ground acceleration and velocity, the Arias Intensity and for the horizontal components of the 5% damped velocity pseudo response spectra, corresponding to 14 frequencies ranging from 0.25 to 25 Hz. We compared our results with well known predictive equations, widely used on the national territory for Probabilistic Seismic Hazard Analysis. The results obtained in this study show smaller values for all the analyzed ground motion indicators compared to other predictive equations.

  18. Analysis of ground-motion simulation big data

    Science.gov (United States)

    Maeda, T.; Fujiwara, H.

    2016-12-01

    We developed a parallel distributed processing system which applies a big data analysis to the large-scale ground motion simulation data. The system uses ground-motion index values and earthquake scenario parameters as input. We used peak ground velocity value and velocity response spectra as the ground-motion index. The ground-motion index values are calculated from our simulation data. We used simulated long-period ground motion waveforms at about 80,000 meshes calculated by a three dimensional finite difference method based on 369 earthquake scenarios of a great earthquake in the Nankai Trough. These scenarios were constructed by considering the uncertainty of source model parameters such as source area, rupture starting point, asperity location, rupture velocity, fmax and slip function. We used these parameters as the earthquake scenario parameter. The system firstly carries out the clustering of the earthquake scenario in each mesh by the k-means method. The number of clusters is determined in advance using a hierarchical clustering by the Ward's method. The scenario clustering results are converted to the 1-D feature vector. The dimension of the feature vector is the number of scenario combination. If two scenarios belong to the same cluster the component of the feature vector is 1, and otherwise the component is 0. The feature vector shows a `response' of mesh to the assumed earthquake scenario group. Next, the system performs the clustering of the mesh by k-means method using the feature vector of each mesh previously obtained. Here the number of clusters is arbitrarily given. The clustering of scenarios and meshes are performed by parallel distributed processing with Hadoop and Spark, respectively. In this study, we divided the meshes into 20 clusters. The meshes in each cluster are geometrically concentrated. Thus this system can extract regions, in which the meshes have similar `response', as clusters. For each cluster, it is possible to determine

  19. Vertical ground motion from tide gauges and satellite altimetry

    Science.gov (United States)

    Ostanciaux, Emilie; Husson, Laurent; Pedoja, Kevin

    2010-05-01

    Studying the evolution of Earth's shape which deforms in response to external processes such as erosion or sediment load and internal processes governed by mantle convection helps to better understand the Earth's internal dynamics. To do this one needs to study changes in relative and absolute sea level. Indeed, sea level is the intersection between the geoid and the solid Earth that are simultaneously deforming. Thus, sea level variations mirror the evolution of the Earth's shape. Tide gauges record apparent sea level since the XIXth century for oldest stations, relative to a terrestrial reference. They are attached to the coasts so part of the signal is due to vertical ground motion. Conversely, satellite altimetry only measures true sea level change, starting with TOPEX/POSEIDON since 1992. Subtraction of tide gauges measurements to those of satellites give an estimate of the magnitude of current vertical ground motion. Here we review the variety in methods of calculation and data selection. While some authors choose to use only data that corresponds to the recording period of TOPEX/POSEIDON (1992 to 2000) and work with the sea level height like Cazenave et al. (1999) and Nerem & Mitchum (2002), others like Kuo et al. (2008) and Bouin & Wöppelmann (2010) take into take advantage of the long record of tide gauges which provide estimates of apparent sea level change more accurately than those based on shorter timescales. All previous studies perform a drastic site selection for their quality. Because individual tide gauge records are nevertheless highly variable, we instead prefer the brute force approach to go towards a statistical evaluation of global ground motion and therefore consider all stations. We subsequently extract general trends by region, which indicate that vertical movements are not satisfactorily explained by estimates of glacio-hydro-isostatic readjustment (model ICE_5G, Peltier, 2004). Comparisons with previous methods and other records such as

  20. Evaluation of Ground-Motion Modeling Techniques for Use in Global ShakeMap - A Critique of Instrumental Ground-Motion Prediction Equations, Peak Ground Motion to Macroseismic Intensity Conversions, and Macroseismic Intensity Predictions in Different Tectonic Settings

    Science.gov (United States)

    Allen, Trevor I.; Wald, David J.

    2009-01-01

    Regional differences in ground-motion attenuation have long been thought to add uncertainty in the prediction of ground motion. However, a growing body of evidence suggests that regional differences in ground-motion attenuation may not be as significant as previously thought and that the key differences between regions may be a consequence of limitations in ground-motion datasets over incomplete magnitude and distance ranges. Undoubtedly, regional differences in attenuation can exist owing to differences in crustal structure and tectonic setting, and these can contribute to differences in ground-motion attenuation at larger source-receiver distances. Herein, we examine the use of a variety of techniques for the prediction of several ground-motion metrics (peak ground acceleration and velocity, response spectral ordinates, and macroseismic intensity) and compare them against a global dataset of instrumental ground-motion recordings and intensity assignments. The primary goal of this study is to determine whether existing ground-motion prediction techniques are applicable for use in the U.S. Geological Survey's Global ShakeMap and Prompt Assessment of Global Earthquakes for Response (PAGER). We seek the most appropriate ground-motion predictive technique, or techniques, for each of the tectonic regimes considered: shallow active crust, subduction zone, and stable continental region.

  1. Statistical study of ground motion amplification in the Mississippi embayment

    Science.gov (United States)

    Malekmohammadi, Mojtaba

    Three important topics have been studied in this dissertation. First, the effects of deep soil deposits of the Mississippi embayment in ground motion amplification have been studied. Using the results of one-dimensional analyses, a parametric model is developed for the region to estimate the ground motion amplification. The averaged shear-wave velocity in the upper 30 meter, Vs30, ranging from 220 to 800 m/s and deposit thickness varying from 70 to 750m, are considered in the estimation of the ground motion amplification with respect to a generic bedrock profile of the Mississippi embayment. Results indicate that site factors suggested by seismic codes cannot capture the site properties of the Mississippi embayment and are not appropriate for the region. In the second part, a new step-by-step method is developed to select a set of ground motions which takes into account a site-specific Probabilistic Seismic Hazard Analysis (PSHA) and the associated uncertainties through the defined logic tree. In the proposed method, after capturing the variability of the Uniform Hazard Response Spectrum (UHRS), I used a Monte Carlo procedure to produce a set of response spectra that has mean equals to the target and variability close to the variability of the target at all the spectral periods. Each member of the generated set is called individual target response spectra, and ground motions from the database of real data and also synthetic ground motions are selected based on their similarity with the individual target response spectra. The method's procedure is defined through studying a sample site in North of the Mississippi embayment. In the last part of the study I developed a model for the ratio of Vertical to Horizontal component of earthquakes (V/H ratio) for the Mississippi embayment. This model can be used in developing the site-specific vertical design spectrum for the region by scaling the horizontal design spectrum resulting from a PSHA. The input parameters of the

  2. Tectonic stability and expected ground motion at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-10-02

    A workshop was convened on August 7-8, 1984 at the direction of DOE to discuss effects of natural and artificial earthquakes and associated ground motion as related to siting of a high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. A panel of experts in seismology and tectonics was assembled to review available data and analyses and to assess conflicting opinions on geological and seismologic data. The objective of the meeting was to advise the Nevada Nuclear Waste Storage Investigations (NNWSI) Project about how to present a technically balanced and scientifically credible evaluation of Yucca Mountain for the NNWSI Project EA. The group considered two central issues: the magnitude of ground motion at Yucca Mountain due to the largest expected earthquake, and the overall tectonic stability of the site given the current geologic and seismologic data base. 44 refs.

  3. Directivity in NGA earthquake ground motions: Analysis using isochrone theory

    Science.gov (United States)

    Spudich, P.; Chiou, B.S.J.

    2008-01-01

    We present correction factors that may be applied to the ground motion prediction relations of Abrahamson and Silva, Boore and Atkinson, Campbell and Bozorgnia, and Chiou and Youngs (all in this volume) to model the azimuthally varying distribution of the GMRotI50 component of ground motion (commonly called 'directivity') around earthquakes. Our correction factors may be used for planar or nonplanar faults having any dip or slip rake (faulting mechanism). Our correction factors predict directivity-induced variations of spectral acceleration that are roughly half of the strike-slip variations predicted by Somerville et al. (1997), and use of our factors reduces record-to-record sigma by about 2-20% at 5 sec or greater period. ?? 2008, Earthquake Engineering Research Institute.

  4. Overview of Ground-Motion Issues for Cascadia Megathrust Events: Simulation of Ground-Motions and Earthquake Site Response

    Directory of Open Access Journals (Sweden)

    Hadi Ghofrani

    2017-09-01

    Full Text Available Ground motions for earthquakes of M7.5 to 9.0 on the Cascadia subduction interface are simulated based on a stochastic finite-fault model and used to estimate average response spectra for reference firm soil conditions. The simulations are first validated by modeling the wealth of ground-motion data from the 2011 M9.0 Tohoku earthquake of Japan. Adjustments to the calibrated model are then made to consider average source, attenuation and site parameters for the Cascadia region. This includes an evaluation of the likely variability in stress drop for large interface earthquakes and an assessment of regional attenuation and site effects. We perform best-estimate simulations for a preferred set of input parameters. Typical results suggest mean values of 5%-damped pseudoacceleration in the range from about 100 to 200 cm/s2, at frequencies from 1 to 4 Hz, for firm-ground conditions in Vancouver. Uncertainty in most-likely value of the parameter representing stress drop causes variability in simulated response spectra of about ±50%. Uncertainties in the attenuation model produce even larger variability in response spectral amplitudes—a factor of about two at a closest distance to the rupture plane (Rcd of 100 km, becoming even larger at greater distances. It is thus important to establish the regional attenuation model for ground-motion simulations and to bound the source properties controlling radiation of ground motion. We calculate theoretical one-dimensional spectral amplification estimates for four selected Fraser River Delta sites to show how the presence of softer sediments in the region may alter the predicted ground motions. The amplification functions are largely consistent with observed spectral amplification at Fraser River delta sites, suggesting amplification by factors of 2.5–5 at the peak frequency of the site; we note that deep sites in the delta have a low peak frequency, ∼0.3 Hz. This work will aid in seismic hazard

  5. Detect ground motion effects on the trajectory at ATF2

    CERN Document Server

    Rénier, Yves; Garcia, Rogelio

    2011-01-01

    The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the Beam Delivery System (BDS) of the next linear colliders (ILC and CLIC) as well as to define and to test the tunning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. The magnet displacements induced by ground motion are large enough for CLIC to perturb the beam stability above requirements. It is planned to measure the displacement of the magnets and implement a feed-forward correcting the effects on the beam trajectory with correctors (dipoles). This article studies the possibility to detect ground motion effects on the beam trajectory at ATF2. Characteristics of the ground motion at ATF2 are presented, the effects of the magnet displacements on the beam trajectory are simulated and an algorithm predicting the induced trajectory fluctuations is evaluated. After the estimated...

  6. Guidelines for ground motion definition for the eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-06-01

    Guidelines for the determination of earthquake ground motion definition for the eastern United States are established here. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large- to great-sized earthquakes (M/sub s/ > 7.5) have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes has been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data have been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data, a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the safe shutdown earthquake (SSE). A new procedure for establishing the operating basis earthquake (OBE) is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., figs., tabs.

  7. A database of instrumentally recorded ground motion intensity measurements from induced earthquakes in Oklahoma and Kansas

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The database contains uniformly processed ground motion intensity measurements (peak horizontal ground motions and 5-percent-damped pseudospectral accelerations for...

  8. New Ground Motion Prediction Models for Caucasus Region

    Science.gov (United States)

    Jorjiashvili, N.

    2012-12-01

    The Caucasus is a region of numerous natural hazards and ensuing disasters. Analysis of the losses due to past disasters indicates the those most catastrophic in the region have historically been due to strong earthquakes. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration because this parameter gives useful information for Seismic Hazard Assessment. Because of this, many peak ground acceleration attenuation relations have been developed by different authors. Besides, a few attenuation relations were developed for Caucasus region: Ambraseys et al. (1996,2005) which were based on entire European region and they were not focused locally on Caucasus Region; Smit et.al. (2000) that was based on a small amount of acceleration data that really is not enough. Since 2003 construction of Georgian Digital Seismic Network has started with the help of number of International organizations, Projects and Private companies. The works conducted involved scientific as well as organizational activities: Resolving technical problems concerning communication and data transmission. Thus, today we have a possibility to get real time data and make scientific research based on digital seismic data. Generally, ground motion and damage are influenced by the magnitude of the earthquake, the distance from the seismic source to site, the local ground conditions and the characteristics of buildings. Estimation of expected ground motion is a fundamental earthquake hazard assessment. This is the reason why this topic is emphasized in this study. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models are obtained by classical, statistical way, regression analysis. Also site ground conditions are considered because the same earthquake recorded at the same distance may cause different damage

  9. Ground motion modeling of the 1906 San Francisco earthquake II: Ground motion estimates for the 1906 earthquake and scenario events

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B; Brocher, T; Dreger, D; Frankel, A; Graves, R; Harmsen, S; Hartzell, S; Larsen, S; McCandless, K; Nilsson, S; Petersson, N A; Rodgers, A; Sjogreen, B; Tkalcic, H; Zoback, M L

    2007-02-09

    We estimate the ground motions produced by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  10. Broadband Ground Motion Simulations for the Puente Hills Fault System

    Science.gov (United States)

    Graves, R. W.

    2005-12-01

    Recent geologic studies have identified the seismic potential of the Puente Hills fault system. This system is comprised of multiple blind thrust segments, a portion of which ruptured in the Mw 5.9 Whittier-Narrows earthquake. Rupture of the entire system could generate a Mw 7.2 (or larger) earthquake. To assess the potential hazard posed by the fault system, we have simulated the response for several earthquake scenarios. These simulations are unprecedented in scope and scale. Broadband (0-10 Hz) ground motions are computed at 66,000 sites, covering most of the LA metropolitan region. Low frequency (f 1 Hz) motions are calculated using a stochastic approach. We consider scenarios ranging from Mw 6.7 to Mw 7.2, including both high and low stress drop events. Finite-fault rupture models for these scenarios are generated following a wavenumber filtering technique (K-2 model) that has been calibrated against recent earthquakes. In all scenarios, strong rupture directivity channels large amplitude pulses of motion directly into the Los Angeles basin, which then propagate southward as basin surface waves. Typically, the waveforms near downtown Los Angeles are dominated by a strong, concentrated pulse of motion. At Long Beach (across the LA basin from the rupture) the waveforms are dominated by late arriving longer period surface waves. The great density of sites used in the calculation allows the construction of detailed maps of various ground motion parameters (PGA, PGV, SA), as well as full animations of the propagating broadband wave field. Additionally, the broadband time histories are available for use in non-linear response analyses of built structures.

  11. Seismic design technology for breeder reactor structures. Volume 1. Special topics in earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, D.P.

    1983-04-01

    This report is divided into twelve chapters: seismic hazard analysis procedures, statistical and probabilistic considerations, vertical ground motion characteristics, vertical ground response spectrum shapes, effects of inclined rock strata on site response, correlation of ground response spectra with intensity, intensity attenuation relationships, peak ground acceleration in the very mean field, statistical analysis of response spectral amplitudes, contributions of body and surface waves, evaluation of ground motion characteristics, and design earthquake motions. (DLC)

  12. Strong Ground Motion Database System for the Mexican Seismic Network

    Science.gov (United States)

    Perez-Yanez, C.; Ramirez-Guzman, L.; Ruiz, A. L.; Delgado, R.; Macías, M. A.; Sandoval, H.; Alcántara, L.; Quiroz, A.

    2014-12-01

    A web-based system for strong Mexican ground motion records dissemination and archival is presented. More than 50 years of continuous strong ground motion instrumentation and monitoring in Mexico have provided a fundamental resource -several thousands of accelerograms- for better understanding earthquakes and their effects in the region. Lead by the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM), the engineering strong ground motion monitoring program at IE relies on a continuously growing network, that at present includes more than 100 free-field stations and provides coverage to the seismic zones in the country. Among the stations, approximately 25% send the observed acceleration to a processing center in Mexico City in real-time, and the rest require manual access, remote or in situ, for later processing and cataloguing. As part of a collaboration agreement between UNAM and the National Center for Disaster Prevention, regarding the construction and operation of a unified seismic network, a web system was developed to allow access to UNAM's engineering strong motion archive and host data from other institutions. The system allows data searches under a relational database schema, following a general structure relying on four databases containing the: 1) free-field stations, 2) epicentral location associated with the strong motion records available, 3) strong motion catalogue, and 4) acceleration files -the core of the system. In order to locate and easily access one or several records of the data bank, the web system presents a variety of parameters that can be involved in a query (seismic event, region boundary, station name or ID, radial distance to source or peak acceleration). This homogeneous platform has been designed to facilitate dissemination and processing of the information worldwide. Each file, in a standard format, contains information regarding the recording instrument, the station, the corresponding earthquake

  13. SM-ROM-GL (Strong Motion Romania Ground Level Database

    Directory of Open Access Journals (Sweden)

    Ioan Sorin BORCIA

    2015-07-01

    Full Text Available The SM-ROM-GL database includes data obtained by the processing of records performed at ground level by the Romanian seismic networks, namely INCERC, NIEP, NCSRR and ISPH-GEOTEC, during recent seismic events with moment magnitude Mw ≥ 5 and epicenters located in Romania. All the available seismic records were re-processed using the same basic software and the same procedures and options (filtering and baseline correction, in order to obtain a consistent dataset. The database stores computed parameters of seismic motions, i.e. peak values: PGA, PGV, PGD, effective peak values: EPA, EPV, EPD, control periods, spectral values of absolute acceleration, relative velocity and relative displacement, as well as of instrumental intensity (as defined bz Sandi and Borcia in 2011. The fields in the database include: coding of seismic events, stations and records, a number of associated fields (seismic event source parameters, geographical coordinates of seismic stations, links to the corresponding ground motion records, charts of the response spectra of absolute acceleration, relative velocity, relative displacement and instrumental intensity, as well as some other representative parameters of seismic motions. The conception of the SM-ROM-GL database allows for an easy maintenance; such that elementary knowledge of Microsoft Access 2000 is sufficient for its operation.

  14. Ground Motion Prediction Model Using Artificial Neural Network

    Science.gov (United States)

    Dhanya, J.; Raghukanth, S. T. G.

    2017-12-01

    This article focuses on developing a ground motion prediction equation based on artificial neural network (ANN) technique for shallow crustal earthquakes. A hybrid technique combining genetic algorithm and Levenberg-Marquardt technique is used for training the model. The present model is developed to predict peak ground velocity, and 5% damped spectral acceleration. The input parameters for the prediction are moment magnitude (M w), closest distance to rupture plane (R rup), shear wave velocity in the region (V s30) and focal mechanism (F). A total of 13,552 ground motion records from 288 earthquakes provided by the updated NGA-West2 database released by Pacific Engineering Research Center are utilized to develop the model. The ANN architecture considered for the model consists of 192 unknowns including weights and biases of all the interconnected nodes. The performance of the model is observed to be within the prescribed error limits. In addition, the results from the study are found to be comparable with the existing relations in the global database. The developed model is further demonstrated by estimating site-specific response spectra for Shimla city located in Himalayan region.

  15. Dynamic Time Warping Distance Method for Similarity Test of Multipoint Ground Motion Field

    Directory of Open Access Journals (Sweden)

    Yingmin Li

    2010-01-01

    Full Text Available The reasonability of artificial multi-point ground motions and the identification of abnormal records in seismic array observations, are two important issues in application and analysis of multi-point ground motion fields. Based on the dynamic time warping (DTW distance method, this paper discusses the application of similarity measurement in the similarity analysis of simulated multi-point ground motions and the actual seismic array records. Analysis results show that the DTW distance method not only can quantitatively reflect the similarity of simulated ground motion field, but also offers advantages in clustering analysis and singularity recognition of actual multi-point ground motion field.

  16. Attenuation of ground-motion spectral amplitudes in southeastern Australia

    Science.gov (United States)

    Allen, T.I.; Cummins, P.R.; Dhu, T.; Schneider, J.F.

    2007-01-01

    A dataset comprising some 1200 weak- and strong-motion records from 84 earthquakes is compiled to develop a regional ground-motion model for southeastern Australia (SEA). Events were recorded from 1993 to 2004 and range in size from moment magnitude 2.0 ??? M ??? 4.7. The decay of vertical-component Fourier spectral amplitudes is modeled by trilinear geometrical spreading. The decay of low-frequency spectral amplitudes can be approximated by the coefficient of R-1.3 (where R is hypocentral distance) within 90 km of the seismic source. From approximately 90 to 160 km, we observe a transition zone in which the seismic coda are affected by postcritical reflections from midcrustal and Moho discontinuities. In this hypocentral distance range, geometrical spreading is approximately R+0.1. Beyond 160 km, low-frequency seismic energy attenuates rapidly with source-receiver distance, having a geometrical spreading coefficient of R-1.6. The associated regional seismic-quality factor can be expressed by the polynomial: log Q(f) = 3.66 - 1.44 log f + 0.768 (log f)2 + 0.058 (log f)3 for frequencies 0.78 ??? f ??? 19.9 Hz. Fourier spectral amplitudes, corrected for geometrical spreading and anelastic attenuation, are regressed with M to obtain quadratic source scaling coefficients. Modeled vertical-component displacement spectra fit the observed data well. Amplitude residuals are, on average, relatively small and do not vary with hypocentral distance. Predicted source spectra (i.e., at R = 1 km) are consistent with eastern North American (ENA) Models at low frequencies (f less than approximately 2 Hz) indicating that moment magnitudes calculated for SEA earthquakes are consistent with moment magnitude scales used in ENA over the observed magnitude range. The models presented represent the first spectral ground-motion prediction equations develooed for the southeastern Australian region. This work provides a useful framework for the development of regional ground-motion relations

  17. Earthquake Strong Ground Motion Scenario at the 2008 Olympic Games Sites, Beijing, China

    Science.gov (United States)

    Liu, L.; Rohrbach, E. A.; Chen, Q.; Chen, Y.

    2006-12-01

    Historic earthquake record indicates mediate to strong earthquakes have been frequently hit greater Beijing metropolitan area where is going to host the 2008 summer Olympic Games. For the readiness preparation of emergency response to the earthquake shaking for a mega event in a mega city like Beijing in summer 2008, this paper tries to construct the strong ground motion scenario at a number of gymnasium sites for the 2008 Olympic Games. During the last 500 years (the Ming and Qing Dynasties) in which the historic earthquake record are thorough and complete, there are at least 12 earthquake events with the maximum intensity of VI or greater occurred within 100 km radius centered at the Tiananmen Square, the center of Beijing City. Numerical simulation of the seismic wave propagation and surface strong ground motion is carried out by the pseudospectral time domain methods with viscoelastic material properties. To improve the modeling efficiency and accuracy, a multi-scale approach is adapted: the seismic wave propagation originated from an earthquake rupture source is first simulated by a model with larger physical domain with coarser grids. Then the wavefield at a given plane is taken as the source input for the small-scale, fine grid model for the strong ground motion study at the sites. The earthquake source rupture scenario is based on two particular historic earthquake events: One is the Great 1679 Sanhe-Pinggu Earthquake (M~8, Maximum Intensity XI at the epicenter and Intensity VIII in city center)) whose epicenter is about 60 km ENE of the city center. The other one is the 1730 Haidian Earthquake (M~6, Maximum Intensity IX at the epicenter and Intensity VIII in city center) with the epicentral distance less than 20 km away from the city center in the NW Haidian District. The exist of the thick Tertiary-Quaternary sediments (maximum thickness ~ 2 km) in Beijing area plays a critical role on estimating the surface ground motion at the Olympic Games sites, which

  18. Detection of Ground Motion effects on the beam trajectory at ATF2

    CERN Document Server

    Renier, Y; Tomas, R; Schulte, D

    2012-01-01

    The ATF2 experiment is currently demonstrating the feasibility of the beam delivery system for the future linear collider. The orbit feedback is very critical to obtain the nanometer vertical beam size at the interaction point and in the case of CLIC, ground motion effects on the beam must be corrected. In this respect, as a proof of principle of a ground motion feed forward, the ground motion effects on the beam trajectory are extracted from the beam position monitor readings.

  19. Ground motions at the outermost limits of seismically triggered landslides

    Science.gov (United States)

    Jibson, Randall W.; Harp, Edwin L.

    2016-01-01

    Over the last few decades, we and our colleagues have conducted field investigations in which we mapped the outermost limits of triggered landslides in four earthquakes: 1987 Whittier Narrows, California (M 5.9), 1987 Superstition Hills, California (M 6.5), 1994 Northridge, California (M 6.7), and 2011 Mineral, Virginia (M 5.8). In an additional two earthquakes, 1976 Guatemala (M 7.5) and 1983 Coalinga, California (M 6.5), we determined limits using high‐resolution aerial‐photographic interpretation in conjunction with more limited ground investigation. Limits in these earthquakes were defined by the locations of the very smallest failures (landslide limits with peak ground accelerations (PGAs) from ShakeMap models of each earthquake. For the four earthquakes studied by field investigation, the minimum PGA values associated with farthest landslide limits ranged from 0.02g to 0.08g. The range for the two earthquakes investigated using aerial‐photographic interpretations was 0.05–0.11g. Although PGA values at landslide limits depend on several factors, including material strength, topographic amplification, and hydrologic conditions, these values provide an empirically useful lower limiting range of PGA needed to trigger the smallest failures on very susceptible slopes. In a well‐recorded earthquake, this PGA range can be used to identify an outer boundary within which we might expect to find landsliding; in earthquakes that are not well recorded, mapping the outermost landslide limits provides a useful clue about ground‐motion levels at the mapped limits.

  20. Engineering characterization of ground motion. Task I. Effects of characteristics of free-field motion on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R.P.; Short, S.A.; Merz, K.L.; Tokarz, F.J.; Idriss, I.M.; Power, M.S.; Sadigh, K.

    1984-05-01

    This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage.

  1. A method to extract successive velocity pulses governing structural response from long-period ground motion

    Science.gov (United States)

    Liu, Shuoyu; Li, Yingmin; Wang, Guojue

    2017-11-01

    A series of relatively long-period velocity pulses appearing in the later part of ground motion, which is the characterization of far-source long-period ground motions in basin ("long-period ground motion" for short), is mainly influenced by focal mechanism, basin effect, and dispersion. It was supposed that the successive low-frequency velocity pulses in long-period ground motion caused the resonance of long-period structures in basin, which are of special concern to designers of super high-rise buildings. The authors proposed a wavelet-based successive frequency-dependent pulse extraction (WSFPE) method to identify and extract these pulses with dominant period of interest from long-period ground motions. The pulses extracted by using two frequently used methods (zero-crossing analysis, empirical mode decomposition) were compared to the pulses extracted by using WSFPE. The results demonstrate that the WSFPE provides higher resolution in time-frequency domain than the other two methods do. The velocity pulses extracted by using WSFPE are responsible for the resonance and maximum response of structure subjected to long-period ground motions. WSFPE can be used to make a better understanding of long-period ground motions and to promote the formation of long-period ground motion model which will help the seismic design of long-period structures built in sedimentary basin.

  2. Hazard-consistent ground motions generated with a stochastic fault-rupture model

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Akemi, E-mail: nishida.akemi@jaea.go.jp [Center for Computational Science and e-Systems, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871 (Japan); Igarashi, Sayaka, E-mail: igrsyk00@pub.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Sakamoto, Shigehiro, E-mail: shigehiro.sakamoto@sakura.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Uchiyama, Yasuo, E-mail: yasuo.uchiyama@sakura.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Yamamoto, Yu, E-mail: ymmyu-00@pub.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Muramatsu, Ken, E-mail: kmuramat@tcu.ac.jp [Department of Nuclear Safety Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557 (Japan); Takada, Tsuyoshi, E-mail: takada@load.arch.t.u-tokyo.ac.jp [Department of Architecture, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-12-15

    Conventional seismic probabilistic risk assessments (PRAs) of nuclear power plants consist of probabilistic seismic hazard and fragility curves. Even when earthquake ground-motion time histories are required, they are generated to fit specified response spectra, such as uniform hazard spectra at a specified exceedance probability. These ground motions, however, are not directly linked with seismic-source characteristics. In this context, the authors propose a method based on Monte Carlo simulations to generate a set of input ground-motion time histories to develop an advanced PRA scheme that can explain exceedance probability and the sequence of safety-functional loss in a nuclear power plant. These generated ground motions are consistent with seismic hazard at a reference site, and their seismic-source characteristics can be identified in detail. Ground-motion generation is conducted for a reference site, Oarai in Japan, the location of a hypothetical nuclear power plant. A total of 200 ground motions are generated, ranging from 700 to 1100 cm/s{sup 2} peak acceleration, which corresponds to a 10{sup −4} to 10{sup −5} annual exceedance frequency. In the ground-motion generation, seismic sources are selected according to their hazard contribution at the site, and Monte Carlo simulations with stochastic parameters for the seismic-source characteristics are then conducted until ground motions with the target peak acceleration are obtained. These ground motions are selected so that they are consistent with the hazard. Approximately 110,000 simulations were required to generate 200 ground motions with these peak accelerations. Deviations of peak ground motion acceleration generated for 1000–1100 cm/s{sup 2} range from 1.5 to 3.0, where the deviation is evaluated with peak ground motion accelerations generated from the same seismic source. Deviations of 1.0 to 3.0 for stress drops, one of the stochastic parameters of seismic-source characteristics, are required to

  3. State of the Art in Input Ground Motions for Seismic Fragility and Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Choi, In Kil; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of a Seismic Probabilistic Safety Analysis (SPSA) is to determine the probability distribution of core damage due to the potential effects of earthquakes. The SPSA is performed based on four steps, a seismic hazard analysis, a component fragility evaluation, a plant system and accident sequence analysis, and a consequence analysis. There are very different spectrum shapes in every ground motions. The structural response and the seismic load applied to equipment are greatly influenced by a spectral shape of the input ground motion. Therefore the input ground motion need to be determined under the same assumption in risk calculation. Several technic for the determination of input ground motions has developed and reviewed in this study. In this research, the methodologies of the determination of input ground motion for the seismic risk assessment are reviewed and discussed. It has developed to reduce the uncertainty in fragility curves and to remove the conservatism in risk values.

  4. The 2011 Mineral, VA M5.8 Earthquake Ground Motions and Stress Drop: An Important Contribution to the NGA East Ground Motion Database

    Science.gov (United States)

    Cramer, C. H.; Kutliroff, J.; Dangkua, D.

    2011-12-01

    The M5.8 Mineral, Virginia earthquake of August 23, 2011 is the largest instrumentally recorded earthquake in eastern North America since the 1988 M5.9 Saguenay, Canada earthquake. Historically, a similar magnitude earthquake occurred on May 31, 1897 at 18:58 UCT in western Virginia west of Roanoke. Paleoseismic evidence for larger magnitude earthquakes has also been found in the central Virginia region. The Next Generation Attenuation (NGA) East project to develop new ground motion prediction equations for stable continental regions (SCRs), including eastern North America (ENA), is ongoing at the Pacific Earthquake Engineering Research Center funded by the U.S. Nuclear Regulatory Commission, the U.S. Geological Survey, the Electric Power Research Institute, and the U.S. Department of Energy. The available recordings from the M5.8 Virginia are being added to the NGA East ground motion database. Close in (less than 100 km) strong motion recordings are particularly interesting for both ground motion and stress drop estimates as most close-in broadband seismometers clipped on the mainshock. A preliminary estimate for earthquake corner frequency for the M5.8 Virginia earthquake of ~0.7 Hz has been obtained from a strong motion record 57 km from the mainshock epicenter. For a M5.8 earthquake this suggests a Brune stress drop of ~300 bars for the Virginia event. Very preliminary comparisons using accelerometer data suggest the ground motions from the M5.8 Virginia earthquake agree well with current ENA ground motion prediction equations (GMPEs) at short periods (PGA, 0.2 s) and are below the GMPEs at longer periods (1.0 s), which is the same relationship seen from other recent M5 ENA earthquakes. We will present observed versus GMPE ground motion comparisons for all the ground motion observations and stress drop estimates from strong motion recordings at distances less than 100 km. A review of the completed NGA East ENA ground motion database will also be provided.

  5. Within-Event and Between-Events Ground Motion Variability from Earthquake Rupture Scenarios

    Science.gov (United States)

    Crempien, Jorge G. F.; Archuleta, Ralph J.

    2017-09-01

    Measurement of ground motion variability is essential to estimate seismic hazard. Over-estimation of variability can lead to extremely high annual hazard estimates of ground motion exceedance. We explore different parameters that affect the variability of ground motion such as the spatial correlations of kinematic rupture parameters on a finite fault and the corner frequency of the moment-rate spectra. To quantify the variability of ground motion, we simulate kinematic rupture scenarios on several vertical strike-slip faults and compute ground motion using the representation theorem. In particular, for the entire suite of rupture scenarios, we quantify the within-event and the between-events ground motion variability of peak ground acceleration (PGA) and response spectra at several periods, at 40 stations—all approximately at an equal distance of 20 and 50 km from the fault. Both within-event and between-events ground motion variability increase when the slip correlation length on the fault increases. The probability density functions of ground motion tend to truncate at a finite value when the correlation length of slip decreases on the fault, therefore, we do not observe any long-tail distribution of peak ground acceleration when performing several rupture simulations for small correlation lengths. Finally, for a correlation length of 6 km, the within-event and between-events PGA log-normal standard deviations are 0.58 and 0.19, respectively, values slightly smaller than those reported by Boore et al. (Earthq Spectra, 30(3):1057-1085, 2014). The between-events standard deviation is consistently smaller than the within-event for all correlations lengths, a feature that agrees with recent ground motion prediction equations.

  6. Seismic Safety Program: Ground motion and structural response

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    In 1964, John A. Blume & Associates Research Division (Blume) began a broad-range structural response program to assist the Nevada Operations Office of the US Atomic Energy Commission (AEC) in ensuring the continued safe conduct of underground nuclear detonation testing at the Nevada Test Site (NTS) and elsewhere. Blume`s long experience in earthquake engineering provided a general basis for the program, but much more specialized knowledge was required for the AEC`s purposes. Over the next 24 years Blume conducted a major research program to provide essential understanding of the detailed nature of the response of structures to dynamic loads such as those imposed by seismic wave propagation. The program`s results have been embodied in a prediction technology which has served to provide reliable advanced knowledge of the probable effects of seismic ground motion on all kinds of structures, for use in earthquake engineering and in building codes as well as for the continuing needs of the US Department of Energy`s Nevada Operations Office (DOE/NV). This report is primarily an accounting of the Blume work, beginning with the setting in 1964 and the perception of the program needs as envisioned by Dr. John A. Blume. Subsequent chapters describe the structural response program in detail and the structural prediction procedures which resulted; the intensive data acquisition program which, as is discussed at some length, relied heavily on the contributions of other consultant-contractors in the DOE/NV Seismic Safety Support Program; laboratory and field studies to provide data on building elements and structures subjected to dynamic loads from sources ranging from testing machines to earthquakes; structural response activities undertaken for testing at the NTS and for off-NTS underground nuclear detonations; and concluding with an account of corollary studies including effects of natural forces and of related studies on building response.

  7. Hybrid Broadband Ground-Motion Simulation Using Scenario Earthquakes for the Istanbul Area

    KAUST Repository

    Reshi, Owais A.

    2016-04-13

    Seismic design, analysis and retrofitting of structures demand an intensive assessment of potential ground motions in seismically active regions. Peak ground motions and frequency content of seismic excitations effectively influence the behavior of structures. In regions of sparse ground motion records, ground-motion simulations provide the synthetic seismic records, which not only provide insight into the mechanisms of earthquakes but also help in improving some aspects of earthquake engineering. Broadband ground-motion simulation methods typically utilize physics-based modeling of source and path effects at low frequencies coupled with high frequency semi-stochastic methods. I apply the hybrid simulation method by Mai et al. (2010) to model several scenario earthquakes in the Marmara Sea, an area of high seismic hazard. Simulated ground motions were generated at 75 stations using systematically calibrated model parameters. The region-specific source, path and site model parameters were calibrated by simulating a w4.1 Marmara Sea earthquake that occurred on November 16, 2015 on the fault segment in the vicinity of Istanbul. The calibrated parameters were then used to simulate the scenario earthquakes with magnitudes w6.0, w6.25, w6.5 and w6.75 over the Marmara Sea fault. Effects of fault geometry, hypocenter location, slip distribution and rupture propagation were thoroughly studied to understand variability in ground motions. A rigorous analysis of waveforms reveal that these parameters are critical for determining the behavior of ground motions especially in the near-field. Comparison of simulated ground motion intensities with ground-motion prediction quations indicates the need of development of the region-specific ground-motion prediction equation for Istanbul area. Peak ground motion maps are presented to illustrate the shaking in the Istanbul area due to the scenario earthquakes. The southern part of Istanbul including Princes Islands show high amplitudes

  8. What do data used to develop ground-motion prediction equations tell us about motions near faults?

    Science.gov (United States)

    Boore, David M.

    2014-01-01

    A large database of ground motions from shallow earthquakes occurring in active tectonic regions around the world, recently developed in the Pacific Earthquake Engineering Center’s NGA-West2 project, has been used to investigate what such a database can say about the properties and processes of crustal fault zones. There are a relatively small number of near-rupture records, implying that few recordings in the database are within crustal fault zones, but the records that do exist emphasize the complexity of ground-motion amplitudes and polarization close to individual faults. On average over the whole data set, however, the scaling of ground motions with magnitude at a fixed distance, and the distance dependence of the ground motions, seem to be largely consistent with simple seismological models of source scaling, path propagation effects, and local site amplification. The data show that ground motions close to large faults, as measured by elastic response spectra, tend to saturate and become essentially constant for short periods. This saturation seems to be primarily a geometrical effect, due to the increasing size of the rupture surface with magnitude, and not due to a breakdown in self similarity.

  9. Effect of Ground Motion Directionality on Fragility Characteristics of a Highway Bridge

    Directory of Open Access Journals (Sweden)

    Swagata Banerjee Basu

    2011-01-01

    Full Text Available It is difficult to incorporate multidimensional effect of the ground motion in the design and response analysis of structures. The motion trajectory in the corresponding multi-dimensional space results in time variant principal axes of the motion and defies any meaningful definition of directionality of the motion. However, it is desirable to consider the directionality of the ground motion in assessing the seismic damageability of bridges which are one of the most vulnerable components of highway transportation systems. This paper presents a practice-oriented procedure in which the structure can be designed to ensure the safety under single or a pair of independent orthogonal ground motions traveling horizontally with an arbitrary direction to structural axis. This procedure uses nonlinear time history analysis and accounts for the effect of directionality in the form of fragility curves. The word directionality used here is different from “directivity” used in seismology to mean a specific characteristic of seismic fault movement.

  10. Model and parametric uncertainty in source-based kinematic models of earthquake ground motion

    Science.gov (United States)

    Hartzell, Stephen; Frankel, Arthur; Liu, Pengcheng; Zeng, Yuehua; Rahman, Shariftur

    2011-01-01

    Four independent ground-motion simulation codes are used to model the strong ground motion for three earthquakes: 1994 Mw 6.7 Northridge, 1989 Mw 6.9 Loma Prieta, and 1999 Mw 7.5 Izmit. These 12 sets of synthetics are used to make estimates of the variability in ground-motion predictions. In addition, ground-motion predictions over a grid of sites are used to estimate parametric uncertainty for changes in rupture velocity. We find that the combined model uncertainty and random variability of the simulations is in the same range as the variability of regional empirical ground-motion data sets. The majority of the standard deviations lie between 0.5 and 0.7 natural-log units for response spectra and 0.5 and 0.8 for Fourier spectra. The estimate of model epistemic uncertainty, based on the different model predictions, lies between 0.2 and 0.4, which is about one-half of the estimates for the standard deviation of the combined model uncertainty and random variability. Parametric uncertainty, based on variation of just the average rupture velocity, is shown to be consistent in amplitude with previous estimates, showing percentage changes in ground motion from 50% to 300% when rupture velocity changes from 2.5 to 2.9 km/s. In addition, there is some evidence that mean biases can be reduced by averaging ground-motion estimates from different methods.

  11. Representation of bidirectional ground motions for design spectra in building codes

    Science.gov (United States)

    Stewart, Jonathan P.; Abrahamson, Norman A.; Atkinson, Gail M.; Beker, Jack W.; Boore, David M.; Bozorgnia, Yousef; Campbell, Kenneth W.; Comartin, Craig D.; Idriss, I.M.; Lew, Marshall; Mehrain, Michael; Moehle, Jack P.; Naeim, Farzad; Sabol, Thomas A.

    2011-01-01

    The 2009 NEHRP Provisions modified the definition of horizontal ground motion from the geometric mean of spectral accelerations for two components to the peak response of a single lumped mass oscillator regardless of direction. These maximum-direction (MD) ground motions operate under the assumption that the dynamic properties of the structure (e.g., stiffness, strength) are identical in all directions. This assumption may be true for some in-plan symmetric structures, however, the response of most structures is dominated by modes of vibration along specific axes (e.g., longitudinal and transverse axes in a building), and often the dynamic properties (especially stiffness) along those axes are distinct. In order to achieve structural designs consistent with the collapse risk level given in the NEHRP documents, we argue that design spectra should be compatible with expected levels of ground motion along those principal response axes. The use of MD ground motions effectively assumes that the azimuth of maximum ground motion coincides with the directions of principal structural response. Because this is unlikely, design ground motions have lower probability of occurrence than intended, with significant societal costs. We recommend adjustments to make design ground motions compatible with target risk levels.

  12. Racialized Readiness for College and Career: Toward an Equity-Grounded Social Science of Intervention Programming

    Science.gov (United States)

    Castro, Erin L.

    2013-01-01

    Social science methodologies of intervention programming for college and career readiness, particularly in regard to evaluation, must be situated within a larger context of racialized readiness for college and career. The policy context for this argument is a state-level evaluation of college and career readiness legislation in Illinois using…

  13. The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation

    Science.gov (United States)

    Silva, F.; Goulet, C. A.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.

    2016-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100 Hz) ground motions for earthquakes at regional scales. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The BBP scientific software modules implement kinematic rupture generation, low- and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, several ground motion intensity measure calculations, and various ground motion goodness-of-fit tools. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground-motion seismograms, using multiple alternative ground motion simulation methods, and software utilities to generate tables, plots, and maps. The BBP has been developed over the last five years in a collaborative project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The SCEC BBP software released in 2016 can be compiled and run on recent Linux and Mac OS X systems with GNU compilers. It includes five simulation methods, seven simulation regions covering California, Japan, and Eastern North America, and the ability to compare simulation results against empirical ground motion models (aka GMPEs). The latest version includes updated ground motion simulation methods, a suite of new validation metrics and a simplified command line user interface.

  14. Structural Calculations of Drip Shield Exposed to Vibratory Ground Motion

    Energy Technology Data Exchange (ETDEWEB)

    S. Mastilovic

    2003-06-16

    The objective of this calculation is twofold. First, to determine whether or not separation of interlocking drip shield (DS) segments occurs during vibratory ground motion. Second, if DS separation does not occur, to estimate the area of the DS for which the residual 1st principal stress exceeds a certain limit. (The area of DS plate-1 and DS plate-2 [see Attachment I] where the residual 1st principal stress exceeds a certain limit will be, for brevity, referred to as ''the damaged area'' throughout this document; also, DS plate-1 and DS plate-2 will be referred to, for brevity, as ''DS plates'' henceforth.) The stress limit used throughout this document is defined as 50 percent of yield strength of the DS plate material, Titanium Grade 7 (Ti-7) (SB-265 R52400), at temperature of 150 C. A set of 15 calculations is performed at two different annual frequencies of occurrence (annual exceedance frequency): 10{sup -6} per year (1/yr) and 10{sup -7} 1/yr . (Note: Due to computational problems only five realizations at 10{sup -7} 1/yr are presented in this document.) Additionally, one calculation is performed at the annual frequency of occurrence of 5 {center_dot} 10{sup -4} 1/yr. The scope of this document is limited to reporting whether or not the DS separation occurs. If the DS separation does not occur the scope is limited to reporting the calculation results in terms of the damaged area. All these results are evaluated for the DS plates. This calculation is intended for use in support of the Total System Performance Assessment-License Application seismicity modeling. This calculation is associated with the DS design and was performed by the Waste Package Design group. AP-3.12Q, ''Design Calculations and Analyses'' (Ref. 1) is used to perform the calculation and develop the document. The DS is classified as Quality Level 1 (Ref. 5, p. 7). Therefore, this calculation is subject to the Quality Assurance

  15. Validation of strong-motion stochastic model using observed ground motion records in north-east India

    Directory of Open Access Journals (Sweden)

    Dipok K. Bora

    2016-03-01

    Full Text Available We focused on validation of applicability of semi-empirical technique (spectral models and stochastic simulation for the estimation of ground-motion characteristics in the northeastern region (NER of India. In the present study, it is assumed that the point source approximation in far field is valid. The one-dimensional stochastic point source seismological model of Boore (1983 (Boore, DM. 1983. Stochastic simulation of high frequency ground motions based on seismological models of the radiated spectra. Bulletin of Seismological Society of America, 73, 1865–1894. is used for modelling the acceleration time histories. Total ground-motion records of 30 earthquakes of magnitudes lying between MW 4.2 and 6.2 in NER India from March 2008 to April 2013 are used for this study. We considered peak ground acceleration (PGA and pseudospectral acceleration (response spectrum amplitudes with 5% damping ratio at three fundamental natural periods, namely: 0.3, 1.0, and 3.0 s. The spectral models, which work well for PGA, overestimate the pseudospectral acceleration. It seems that there is a strong influence of local site amplification and crustal attenuation (kappa, which control spectral amplitudes at different frequencies. The results would allow analysing regional peculiarities of ground-motion excitation and propagation and updating seismic hazard assessment, both the probabilistic and deterministic approaches.

  16. Characteristics of ground motion at permafrost sites along the Qinghai-Tibet railway

    Science.gov (United States)

    Wang, L.; Wu, Z.; Sun, Jielun; Liu, Xiuying; Wang, Z.

    2009-01-01

    Based on 14 typical drilling holes distributed in the permafrost areas along the Qinghai-Tibet railway, the distribution of wave velocities of soils in the permafrost regions were determined. Using results of dynamic triaxial tests, the results of dynamic triaxiality test and time histories of ground motion acceleration in this area, characteristics of ground motion response were analyzed for these permafrost sites for time histories of ground accelerations with three exceedance probabilities (63%, 10% and 2%). The influence of ground temperature on the seismic displacement, velocity, acceleration and response spectrum on the surface of permafrost were also studied. ?? 2008 Elsevier Ltd. All rights reserved.

  17. Closed-form critical earthquake response of elastic-plastic structures on compliant ground under near-fault ground motions

    Directory of Open Access Journals (Sweden)

    Kotaro eKojima

    2016-01-01

    Full Text Available The double impulse is introduced as a substitute of the fling-step near-fault ground motion. A closed-form solution of the elastic-plastic response of a structure on compliant (flexible ground by the ‘critical double impulse’ is derived for the first time based on the solution for the corresponding structure with fixed base. As in the case of fixed-base model, only the free-vibration appears under such double impulse and the energy approach plays an important role in the derivation of the closed-form solution of a complicated elastic-plastic response on compliant ground. It is remarkable that no iteration is needed in the derivation of the critical elastic-plastic response. It is shown via the closed-form expression that, in the case of a smaller input level of double impulse to the structural strength, as the ground stiffness becomes larger, the maximum plastic deformation becomes larger. On the other hand, in the case of a larger input level of double impulse to the structural strength, as the ground stiffness becomes smaller, the maximum plastic deformation becomes larger. The criticality and validity of the proposed theory are investigated through the comparison with the response analysis to the corresponding one-cycle sinusoidal input as a representative of the fling-step near-fault ground motion. The applicability of the proposed theory to actual recorded pulse-type ground motions is also discussed.

  18. Development of guidelines for incorporation of vertical ground motion effects in seismic design of highway bridges.

    Science.gov (United States)

    2008-05-01

    This study was undertaken with the objective of assessing the current provisions in SDC-2006 for incorporating : vertical effects of ground motions in seismic evaluation and design of ordinary highway bridges. A : comprehensive series of simulations ...

  19. Research on Ground Motion Metal Target Based on Rocket Projectile by Using Millimeter Wave Radiometer Technology

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang

    2014-06-01

    Full Text Available How to detect the ground motion metal target effectively is an important guarantee for precision strike in the process of Rocket Projectile flight. Accordingly and in view of the millimeter- wave radiation characteristic of the ground motion metal target, a mathematical model was established based on Rocket Projectile about millimeter-wave detection to the ground motion metal target. Through changing various parameters in the process of Rocket Projectile flight, the detection model was studied by simulation. The parameters variation and effective range of millimeter wave radiometer were obtained in the process of rotation and horizontal flight. So a certain theoretical basis was formed for the precision strike to the ground motion metal target.

  20. Rotational Response of Toe-Restrained Retaining Walls to Earthquake Ground Motions

    National Research Council Canada - National Science Library

    Ebeling, Robert M; White, Barry C

    2006-01-01

    This research report describes the engineering formulation and corresponding software developed for the rotational response of rock-founded, toe-restrained Corps retaining walls to earthquake ground motions...

  1. Refinements to the Graves and Pitarka (2010) Broadband Ground-Motion Simulation Method

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R.; Pitarka, A.

    2014-12-17

    This brief article describes refinements to the Graves and Pitarka (2010) broadband ground-motion simulation methodology (GP2010 hereafter) that have been implemented in version 14.3 of the Southern California Earthquake Center (SCEC) Broadband Platform (BBP).

  2. Site-specific seismic ground motion analyses for transportation infrastructure in the New Madrid seismic zone.

    Science.gov (United States)

    2012-11-01

    Generic, code-based design procedures cannot account for the anticipated short-period attenuation and long-period amplification of earthquake ground motions in the deep, soft sediments of the Mississippi Embayment within the New Madrid Seismic Zone (...

  3. Near-Fault Strong Ground Motions during the 2016 Kumamoto, Japan, Earthquake

    Science.gov (United States)

    Iwata, T.; Asano, K.

    2016-12-01

    The 2016 Kumamoto mainshock (Mw7.0) produced a surface ruptured fault of about 20km long with maximum 2m offset, and identified as a surface ruptured event. Two strong motion records were observed near the surface ruptured fault at Mashiki town hall and Nishihara village hall. We investigated characteristics of those strong ground motions. As the acceleration records consisted of the baseline errors caused by nonzero initial acceleration and tilting of the accelerograph, we carefully removed the baseline errors (c.f. Chiu, 2001, Boore and Bommer, 2005) so as to obtain velocity and displacements. The observed permanent displacements were about 1.2m in horizontal direction and about 0.7m sinking in vertical direction at Mashiki town hall, and about 1.7m and 1.8m, respectively, at Nishihara village hall. Those permanent displacements almost coincide to results by GNSS and InSAR analysis (e.g., GSI, 2016). It takes about only 3 s to reach the permanent displacement. Somerville (2003) pointed out that ground motions from earthquakes producing large surface ruptures appeared to have systematically weaker ground motions than ground motions from earthquakes whose rupture were confined to the subsurface using the Ground Motion Prediction Equation (GMPE) for response spectra (Abrahamson and Silva, 1997). We calculated the response spectra of those records, compared them to the GMPE with the same manner and found two records were systematically larger than the expected from the GMPE in the period range of 0.3 s to 5 s. We need to re-consider the working hypothesis that the near-fault ground motions are weaker and to separate the near-fault and site effects on ground motions. Strong motions in the longer period range would be mainly caused by the near-fault (near-field term) effect.We used the acceleration data of the Kumamoto seismic intensity information network, provided by JMA.

  4. A flatfile of ground motion intensity measurements from induced earthquakes in Oklahoma and Kansas

    Science.gov (United States)

    Rennolet, Steven B.; Moschetti, Morgan P.; Thompson, Eric M.; Yeck, William

    2018-01-01

    We have produced a uniformly processed database of orientation-independent (RotD50, RotD100) ground motion intensity measurements containing peak horizontal ground motions (accelerations and velocities) and 5-percent-damped pseudospectral accelerations (0.1–10 s) from more than 3,800 M ≥ 3 earthquakes in Oklahoma and Kansas that occurred between January 2009 and December 2016. Ground motion time series were collected from regional, national, and temporary seismic arrays out to 500 km. We relocated the majority of the earthquake hypocenters using a multiple-event relocation algorithm to produce a set of near-uniformly processed hypocentral locations. Ground motion processing followed standard methods, with the primary objective of reducing the effects of noise on the measurements. Regional wave-propagation features and the high seismicity rate required careful selection of signal windows to ensure that we captured the entire ground motion record and that contaminating signals from extraneous earthquakes did not contribute to the database. Processing was carried out with an automated scheme and resulted in a database comprising more than 174,000 records (https://dx.doi.org/10.5066/F73B5X8N). We anticipate that these results will be useful for improved understanding of earthquake ground motions and for seismic hazard applications.

  5. Influence of spatial variations in ground motion on earthquake response of arch dams

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, A. [California Univ., Berkeley, CA (United States). Dept. of Civil and Environmental Engineering; Wang, J. [Tsinghua Univ., Beijing (China). Dept. of Hydraulic Engineering

    2010-07-01

    Ground motion recorded at arch dams demonstrate spatial variation or non-uniformity along the dam-foundation interface. Records obtained at two dams demonstrated this phenomena, notably the Pacoima Dam located in California during the magnitude 4.3 earthquake on January 13, 2001, and the magnitude 6.9 Northridge earthquake on January 17, 1994; and the Mauvoisin Dam located in Switzerland during the magnitude 4.6 Valpelline earthquake on March 31, 1996. These spatial variations in ground motion are hardly ever considered in earthquake analysis of arch dams. When they are included, dam-water-interaction is generally oversimplified. This paper discussed the use of the linear analysis procedure, which includes dam-water-foundation rock interaction effects and recognizes the semi-unbounded extent of the rock and impounded water domains in examining the response of the two arch dams to spatially-varying ground motions recorded during earthquakes. Specifically, the paper discussed the Mauvoisin Dam and earthquake records; system and excitation; influence of spatial variations in ground motion; Pacoima Dam and earthquake records; and influence of spatial variations in excitation. It was concluded that spatial variations in ground motion, typically ignored in dam engineering practice, can have profound influence on the earthquake-induced stresses in the dam. This influence depends on the degree to which ground motion varies spatially along the dam-rock interface. 11 refs., 9 figs.

  6. Stochastic modeling for starting-time of phase evolution of random seismic ground motions

    Directory of Open Access Journals (Sweden)

    Yongbo Peng

    2014-01-01

    Full Text Available In response to the challenge inherent in classical high-dimensional models of random ground motions, a family of simulation methods for non-stationary seismic ground motions was developed previously through employing a wave-group propagation formulation with phase spectrum model built up on the frequency components' starting-time of phase evolution. The present paper aims at extending the formulation to the simulation of non-stationary random seismic ground motions. The ground motion records associated with N—S component of Northridge Earthquake at the type-II site are investigated. The frequency components' starting-time of phase evolution of is identified from the ground motion records, and is proved to admit the Gamma distribution through data fitting. Numerical results indicate that the simulated random ground motion features zero-mean, non-stationary, and non-Gaussian behaviors, and the phase spectrum model with only a few starting-times of phase evolution could come up with a sound contribution to the simulation.

  7. SCEC VShaker Project: Visualization of Steel Building Response To Ground Motion Time Histories

    Science.gov (United States)

    Maechling, P. J.; Kumar, S.; Krishnan, S.; Cui, Y.; Olsen, K. B.; Chourasia, A.; Ely, G. P.; Jordan, T. H.

    2010-12-01

    SCEC researchers perform earthquake wave propagation simulations that produce ground motion time-histories. These synthetic seismograms can be used to model building response to strong ground motions. On the SCEC VShaker Project, we have developed new tools for combining simulation-based synthetic seismograms with engineering-based building models by developing a set of software tools that: (a) provides formatted ground motion time-history input to Frame3D software, and (b) processes and visualizes Frame3D structural analysis output from Virtual Shaker in two steps. VShaker software provides an interface between SCEC ground motion seismograms and Caltech's Virtual Shaker in order to visualize building response to SCEC ground motion simulations. VShaker uses the FRAME3D capabilities of Virtual Shaker to perform three-dimensional nonlinear analysis of steel buildings subject to ground acceleration records. VShaker combines Frame3D structural model and response data with ground motion synthetics to build three-dimensional geometric representations of the structure at specified time intervals. These geometric representations are output as Wavefront OBJ files and as animations of structural motion. We are using our VShaker tools to evaluate the response of two types of steel buildings with fundamental periods of 0.63 and 4.54 seconds subjected to acceleration records from the SCEC M8 Simulation. These buildings are being simulated at eight locations spread out across Southern California based on location from a previous study by Krishnan et al. VShaker has the potential to produce animations of structural motion after a significant earthquake to aid in the identification of damage to structural elements. It can also be used to effectively visualize performance of proposed building models to scenario earthquakes. Perspective view of a water tower model using colors to indicate peak displacement of structure elements.

  8. A synthetic GMPE based on deterministic simulated ground motion data obtained from dynamic rupture models

    Science.gov (United States)

    Dalguer, L. A.; Baumann, C.; Cauzzi, C.

    2013-12-01

    Empirical ground motion prediction in the very near-field and for large magnitudes is often based on extrapolation of ground motion prediction equations (GMPEs) outside the range where they are well constrained by recorded data. With empirical GMPEs it is also difficult to capture source-dominated ground motion patterns, such as the effects of velocity pulses induced by subshear and supershear rupture directivity, buried and surface-rupturing, hanging-wall and foot-wall, weak shallow layers, complex geometry faults and stress drop. A way to cope at least in part with these shortcomings is to augment the calibration datasets with synthetic ground motions. To this aim, physics-based dynamic rupture models - where the physical bases involved in the fault rupture are explicitly considered - appear to be a suitable approach to produce synthetic ground motions. In this contribution, we first perform an assessment of a database of synthetic ground motions generated by a suite of dynamic rupture simulations to verify compatibility of the peak ground amplitudes with current GMPEs. The synthetic data-set is composed by 360 earthquake scenarios with moment magnitudes in the range of 5.5-7, for three mechanisms of faulting (reverse, normal and strike-slip) and for both buried faults and surface rupturing faults. Second, we parameterise the synthetic dataset through a GMPE. For this purpose, we identify the basic functional forms by analyzing the variation of the synthetic peak ground motions and spectral ordinates as a function of different explanatory variables related to the earthquake source characteristics, in order to account for some of the source effects listed above. We argue that this study provides basic guidelines for the developments of future GMPEs including data from physics-based numerical simulations.

  9. Broad-band near-field ground motion simulations in 3-dimensional scattering media

    KAUST Repository

    Imperatori, W.

    2012-12-06

    The heterogeneous nature of Earth\\'s crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broad-band ground-motion calculations, either considering scattering as a semi-stochastic or purely stochastic process. In this study, we simulate broad-band (0–10 Hz) ground motions with a 3-D finite-difference wave propagation solver using several 3-D media characterized by von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wavefield at short and intermediate distances from the source in terms of ground motion parameters. We also examine scattering phenomena, related to the loss of radiation pattern and the directivity breakdown. We first simulate broad-band ground motions for a point-source characterized by a classic ω2 spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both subshear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for peak ground velocity (PGV) calculations. At the same time, we find a gradual loss of the source signature in the 2–5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggests that von Karman correlation functions with correlation length between several hundred metres and few kilometres, Hurst exponent around 0.3 and standard deviation in the 5–10 per cent

  10. Effects of Ground Motion Input on the Derived Fragility Functions: Case study of 2010 Haiti Earthquake

    Science.gov (United States)

    Hancilar, Ufuk; Harmandar, Ebru; Çakti, Eser

    2014-05-01

    Empirical fragility functions are derived by statistical processing of the data on: i) Damaged and undamaged buildings, and ii) Ground motion intensity values at the buildings' locations. This study investigates effects of different ground motion inputs on the derived fragility functions. The previously constructed fragility curves (Hancilar et al. 2013), which rely on specific shaking intensity maps published by the USGS after the 2010 Haiti Earthquake, are compared with the fragility functions computed in the present study. Building data come from field surveys of 6,347 buildings that are grouped with respect to structural material type and number of stories. For damage assessment, the European Macroseismic Scale (EMS-98) damage grades are adopted. The simplest way to account for the variability in ground motion input could have been achieved by employing different ground motion prediction equations (GMPEs) and their standard variations. However, in this work, we prefer to rely on stochastically simulated ground motions of the Haiti earthquake. We employ five different source models available in the literature and calculate the resulting strong ground motion in time domain. In our simulations we also consider the local site effects by published studies on NEHRP site classes and micro-zoning maps of the city of Port-au-Prince. We estimate the regional distributions from the waveforms simulated at the same coordinates that we have damage information from. The estimated spatial distributions of peak ground accelerations and velocities, PGA and PGV respectively, are then used as input to fragility computations. The results show that changing the ground motion input causes significant variability in the resulting fragility functions.

  11. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modelling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial valley earthquake in California (USA). The results of the study indicate that while all three approaches can succesfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  12. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    1997-01-01

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modeling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial Valley earthquake in California (U .S .A.). The results of the study indicate that while all three approaches can successfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  13. Variability in wood-frame building damage using broad-band synthetic ground motions: a comparative numerical study with recorded motions

    Science.gov (United States)

    Pei, Shiling; van de Lindt, John W.; Hartzell, Stephen; Luco, Nicolas

    2014-01-01

    Earthquake damage to light-frame wood buildings is a major concern for North America because of the volume of this construction type. In order to estimate wood building damage using synthetic ground motions, we need to verify the ability of synthetically generated ground motions to simulate realistic damage for this structure type. Through a calibrated damage potential indicator, four different synthetic ground motion models are compared with the historically recorded ground motions at corresponding sites. We conclude that damage for sites farther from the fault (>20 km) is under-predicted on average and damage at closer sites is sometimes over-predicted.

  14. Grounding Bottom Damage and Ship Motion over a Rock

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Wierzbicki, Tomasz

    1996-01-01

    A model for prediction of damage to tankers during grounding is presented. The model takes into account the coupling between the external ship dynamics and the local damage process of the hull girder. The model for the local damage is based on a least upper bound solution with kinematic compatibi......A model for prediction of damage to tankers during grounding is presented. The model takes into account the coupling between the external ship dynamics and the local damage process of the hull girder. The model for the local damage is based on a least upper bound solution with kinematic...... was validated by small scale tests and a large scale test. Application of the theory is illustrated by a study of the grounding damage of a single hull VLCC....

  15. The effect of the earth's rotation on ground water motion.

    Science.gov (United States)

    Loáiciga, Hugo A

    2007-01-01

    The average pore velocity of ground water according to Darcy's law is a function of the fluid pressure gradient and the gravitational force (per unit volume of ground water) and of aquifer properties. There is also an acceleration exerted on ground water that arises from the Earth's rotation. The magnitude and direction of this rotation-induced force are determined in exact mathematical form in this article. It is calculated that the gravitational force is at least 300 times larger than the largest rotation-induced force anywhere on Earth, the latter force being maximal along the equator and approximately equal to 34 N/m(3) there. This compares with a gravitational force of approximately 10(4) N/m(3).

  16. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-18

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.

  17. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-18

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz.

  18. Multi-component ground motion response spectra for coupled horizontal, vertical, angular accelerations, and tilt

    Science.gov (United States)

    Kalkan, E.; Graizer, V.

    2007-01-01

    Rotational and vertical components of ground motion are almost always ignored in design or in the assessment of structures despite the fact that vertical motion can be twice as much as the horizontal motion and may exceed 2g level, and rotational excitation may reach few degrees in the proximity of fault rupture. Coupling of different components of ground excitation may significantly amplify the seismic demand by introducing additional lateral forces and enhanced P-?? effects. In this paper, a governing equation of motion is postulated to compute the response of a SDOF oscillator under a multi-component excitation. The expanded equation includes secondary P-?? components associated with the combined impacts of tilt and vertical excitations in addition to the inertial forcing terms due to the angular and translational accelerations. The elastic and inelastic spectral ordinates traditionally generated considering the uniaxial input motion are compared at the end with the multi-component response spectra of coupled horizontal, vertical and tilting motions. The proposed multi-component response spectrum reflects kinematic characteristics of the ground motion that are not identifiable by the conventional spectrum itself, at least for the near-fault region where high intensity vertical shaking and rotational excitation are likely to occur.

  19. How "Good" are Real-Time Ground Motion Predictions from EEW Systems?

    Science.gov (United States)

    Meier, M. A.

    2016-12-01

    Can EEW systems trigger damage mitigation actions with high costs of false alerts? The answer to this question depends on how accurately and how timely EEW systems can predict ground motions in real-time. We simulate a number of different point-source EEW methods in a pseudo-real time environment; we use a large composite seismic waveform data set ( 250 earthquakes with 5<=M<7.9, 8500 three component records) and evaluate systematically how accurate ground motion predictions are, and how that accuracy changes with warning times at individual target sites. We suggest a series of measures that objectively quantify an algorithms' ability to accurately and timely predict ensuing ground motion

  20. Response analysis of curved bridge with unseating failure control system under near-fault ground motions

    Science.gov (United States)

    Zuo, Ye; Sun, Guangjun; Li, Hongjing

    2018-01-01

    Under the action of near-fault ground motions, curved bridges are prone to pounding, local damage of bridge components and even unseating. A multi-scale fine finite element model of a typical three-span curved bridge is established by considering the elastic-plastic behavior of piers and pounding effect of adjacent girders. The nonlinear time-history method is used to study the seismic response of the curved bridge equipped with unseating failure control system under the action of near-fault ground motion. An in-depth analysis is carried to evaluate the control effect of the proposed unseating failure control system. The research results indicate that under the near-fault ground motion, the seismic response of the curved bridge is strong. The unseating failure control system perform effectively to reduce the pounding force of the adjacent girders and the probability of deck unseating.

  1. Source Rupture Process and Near-Fault Ground Motions of the 2016 Kumamoto Earthquake Sequence Estimated from Strong Motion Data

    Science.gov (United States)

    Asano, K.; Iwata, T.

    2016-12-01

    The 2016 Kumamoto earthquake sequence started with an MJMA 6.5 foreshock on April 14, 2016 occurring along the northern part of the Hinagu fault, central Kyushu, Japan, and the MJMA 7.3 mainshock occurred just 28 h after the foreshock. Both events brought severe ground motions to the near-source region. We analyzed the kinematic source rupture processes of the foreshock and mainshock by the multiple time window linear waveform inversion using strong motion data (e.g., Hartzell and Heaton, 1983). The foreshock (Mw 6.1) was characterized by right-lateral strike-slip occurring on a nearly vertical fault plane along the northern part of the Hinagu fault, and it had two large-slip areas: one near the hypocenter and another at a shallow depth. These two large-slip areas mainly contribute ground motions in the near-source area. For the analysis of the mainshock, we assumed a fault geometry changing strike and dip angles along the Hinagu and Futagawa faults in accordance with the surface ruptures mapped by emergency field surveys (Kumahara et al., 2016). We assigned point sources densely with an interval of 0.2 km on the assumed fault planes in order to reproduce appropriately near-fault ground motions, and estimated spatiotemporal slip history, which was discretized with an interval of 1.8 km on the fault planes. The estimated source model reveals that the rupture of the mainshock started at a northwest-dipping fault plane along the Hinagu fault, which is close to the vertical fault plane of the foreshock, and almost continuously propagated across the junction of the Hinagu and Futagawa faults. Then the rupture propagated northeastward along the Futagawa fault, and stopped to rupture in the western part of the Aso caldera. The significant slip with 3-5 m were observed on the Futagawa fault, and shallowest part has slip ranging from 1 to 2 m. We also tried to reproduce ground motions observed at some near-fault strong motion stations, which recorded significant coseismic

  2. Hazard assessment of long-period ground motions for the Nankai Trough earthquakes

    Science.gov (United States)

    Maeda, T.; Morikawa, N.; Aoi, S.; Fujiwara, H.

    2013-12-01

    We evaluate a seismic hazard for long-period ground motions associated with the Nankai Trough earthquakes (M8~9) in southwest Japan. Large interplate earthquakes occurring around the Nankai Trough have caused serious damages due to strong ground motions and tsunami; most recent events were in 1944 and 1946. Such large interplate earthquake potentially causes damages to high-rise and large-scale structures due to long-period ground motions (e.g., 1985 Michoacan earthquake in Mexico, 2003 Tokachi-oki earthquake in Japan). The long-period ground motions are amplified particularly on basins. Because major cities along the Nankai Trough have developed on alluvial plains, it is therefore important to evaluate long-period ground motions as well as strong motions and tsunami for the anticipated Nankai Trough earthquakes. The long-period ground motions are evaluated by the finite difference method (FDM) using 'characterized source models' and the 3-D underground structure model. The 'characterized source model' refers to a source model including the source parameters necessary for reproducing the strong ground motions. The parameters are determined based on a 'recipe' for predicting strong ground motion (Earthquake Research Committee (ERC), 2009). We construct various source models (~100 scenarios) giving the various case of source parameters such as source region, asperity configuration, and hypocenter location. Each source region is determined by 'the long-term evaluation of earthquakes in the Nankai Trough' published by ERC. The asperity configuration and hypocenter location control the rupture directivity effects. These parameters are important because our preliminary simulations are strongly affected by the rupture directivity. We apply the system called GMS (Ground Motion Simulator) for simulating the seismic wave propagation based on 3-D FDM scheme using discontinuous grids (Aoi and Fujiwara, 1999) to our study. The grid spacing for the shallow region is 200 m and

  3. Evaluating Late Pleistocene and Holocene Rupture, Seismic Hazards and Ground Motion in the Lake Tahoe Basin

    Science.gov (United States)

    Schmauder, Gretchen Cathleen

    Chapter two in this study is a reevaluation of active faulting across the Tahoe basin a combination of airborne LiDAR (Light Detection and Ranging) imagery, high-resolution seismic CHIRP profiles, multibeam bathymetric mapping, and field mapping. The combined lateral and vertical resolution has allowed a straight forward identification of the landward extension of fault scarps associated with the three major active fault zones in the Tahoe basin: the West Tahoe-Dollar Point fault, Stateline-North Tahoe fault, and Incline Village fault. Chapter 3 in this study evaluates seismic hazard within the basin as a result of earthquake rupture on the faults identified in the first part of this study. The Ground motions modeled using Nevada ShakeZoning, a physics-based method incorporating geotechnical information and basin shape determined from geophysical methods, peak ground velocity (PGV) maps considerably different (and more accurate) than those obtained from ShakeMap, a standard USGS tool for ground motion estimation. Although ShakeMap over-predicts ground shaking outside the Lake Tahoe basin, it substantially under-predicts ground motions within the basin. eWave propagation models indicate strong, sustained shaking in the basin, threatening several communities. Annual rates of exceedance maps show the higher rates of exceedance of key ground-motion levels strongly correlate with the basin shape. The purpose of this study is to provide both better ground motion estimates and more useful shaking maps to local communities. Chapter 4 begins the validation process of the models developed as part of Chapter 3 to events recorded at Nevada Seismological Laboratory seismic stations.

  4. Shear Wave Generation and Modeling Ground Motion From a Source Physics Experiment (SPE) Underground Explosion

    Science.gov (United States)

    Pitarka, Arben; Mellors, Robert; Rodgers, Arthur; Vorobiev, Oleg; Ezzedine, Souheil; Matzel, Eric; Ford, Sean; Walter, Bill; Antoun, Tarabay; Wagoner, Jeffery; Pasyanos, Mike; Petersson, Anders; Sjogreen, Bjorn

    2014-05-01

    We investigate the excitation and propagation of far-field (epicentral distance larger than 20 m) seismic waves by analyzing and modeling ground motion from an underground chemical explosion recorded during the Source Physics Experiment (SPE), Nevada. The far-field recorded ground motion is characterized by complex features, such as large azimuthal variations in P- and S-wave amplitudes, as well as substantial energy on the tangential component of motion. Shear wave energy is also observed on the tangential component of the near-field motion (epicentral distance smaller than 20 m) suggesting that shear waves were generated at or very near the source. These features become more pronounced as the waves propagate away from the source. We address the shear wave generation during the explosion by modeling ground motion waveforms recorded in the frequency range 0.01-20 Hz, at distances of up to 1 km. We used a physics based approach that combines hydrodynamic modeling of the source with anelastic modeling of wave propagation in order to separate the contributions from the source and near-source wave scattering on shear motion generation. We found that wave propagation scattering caused by the near-source geological environment, including surface topography, contributes to enhancement of shear waves generated from the explosion source. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-06NA25946/ NST11-NCNS-TM-EXP-PD15.

  5. Computing spatial correlation of ground motion intensities for ShakeMap

    Science.gov (United States)

    Verros, Sarah; Wald, David J.; Worden, Charles; Hearne, Mike; Ganesh, Mahadevan

    2017-01-01

    Modeling the spatial correlation of ground motion residuals, caused by coherent contributions from source, path, and site, can provide valuable loss and hazard information, as well as a more realistic depiction of ground motion intensities. The U.S. Geological Survey (USGS) software package, ShakeMap, utilizes a deterministic empirical approach to estimate median ground shaking in conjunction with observed seismic data. ShakeMap-based shaking estimates are used in concert with loss estimation algorithms to estimate fatalities and economic losses after significant seismic events around the globe. Incorporating the spatial correlation of ground motion residuals has been shown to improve seismic loss estimates. In particular, Park, Bazzuro, and Baker (Applications of Statistics and Probability in Civil Engineering, 2007) investigated computing spatially correlated random fields of residuals. However, for large scale ShakeMap grids, computational requirements of the method are prohibitive. In this work, a memory efficient algorithm is developed to compute the random fields and implemented using the ShakeMap framework. This new, iterative parallel algorithm is based on decay properties of an associated ground motion correlation function and is shown to significantly reduce computational requirements associated with adding spatial variability to the ShakeMap g

  6. Postures and Motions Library Development for Verification of Ground Crew Human Systems Integration Requirements

    Science.gov (United States)

    Jackson, Mariea Dunn; Dischinger, Charles; Stambolian, Damon; Henderson, Gena

    2012-01-01

    Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a Primitive motion capture library. The Library will be used by the human factors engineering in the future to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the Primitive models are being developed for the library the project has selected several current human factors issues to be addressed for the SLS and Orion launch systems. This paper explains how the Motion Capture of unique ground systems activities are being used to verify the human factors analysis requirements for ground system used to process the STS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.

  7. Postures and Motions Library Development for Verification of Ground Crew Human Factors Requirements

    Science.gov (United States)

    Stambolian, Damon; Henderson, Gena; Jackson, Mariea Dunn; Dischinger, Charles

    2013-01-01

    Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a primitive motion capture library. The library will be used by human factors engineering analysts to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the primitive models are being developed for the library, the project has selected several current human factors issues to be addressed for the Space Launch System (SLS) and Orion launch systems. This paper explains how the motion capture of unique ground systems activities is being used to verify the human factors engineering requirements for ground systems used to process the SLS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.

  8. Estimation of Seismic Loss for a Portfolio of Buildings under Bidirectional Horizontal Ground Motions due to a Scenario Cascadia Event

    Directory of Open Access Journals (Sweden)

    Taojun Liu

    2017-10-01

    Full Text Available Earthquake ground motions induced by a scenario event are spatially (partially correlated and (partially coherent. Simulated ground motion records can be used to carry out nonlinear inelastic time history analysis for a portfolio of buildings to estimate the seismic loss, which is advantageous as there is no need to develop and apply empirical ground motion prediction equations and the ductility demand rules, or to search the scenario-compatible recorded records at selected sites that may not exist. Further, if the structures being considered are sensitive to the orientation of the excitation, multiple-component ground motion records are needed. For the simulation of such ground motion records, previous studies have shown that correlation and coherency between any pair of ground motion components need to be incorporated. In this study, the seismic loss of a portfolio of hypothetical buildings in downtown Vancouver under bidirectional horizontal ground motions due to a scenario Cascadia event is estimated by using simulated bidirectional ground motion records that include realistic correlation and coherency characteristics. The hysteretic behaviors of the buildings are described by bidirectional Bouc–Wen model. The results show that the use of unidirectional ground motions and single-degree-of-freedom system structural model may underestimate the aggregated seismic loss.

  9. Estimation of seismic ground motions using deterministic approach for major cities of Gujarat

    Directory of Open Access Journals (Sweden)

    J. Shukla

    2012-06-01

    Full Text Available A deterministic seismic hazard analysis has been carried out for various sites of the major cities (Ahmedabad, Surat, Bhuj, Jamnagar and Junagadh of the Gujarat region in India to compute the seismic hazard exceeding a certain level in terms of peak ground acceleration (PGA and to estimate maximum possible PGA at each site at bed rock level. The seismic sources in Gujarat are very uncertain and recurrence intervals of regional large earthquakes are not well defined. Because the instrumental records of India specifically in the Gujarat region are far from being satisfactory for modeling the seismic hazard using the probabilistic approach, an attempt has been made in this study to accomplish it through the deterministic approach. In this regard, all small and large faults of the Gujarat region were evaluated to obtain major fault systems. The empirical relations suggested by earlier researchers for the estimation of maximum magnitude of earthquake motion with various properties of faults like length, surface area, slip rate, etc. have been applied to those faults to obtain the maximum earthquake magnitude. For the analysis, seven different ground motion attenuation relations (GMARs of strong ground motion have been utilized to calculate the maximum horizontal ground accelerations for each major city of Gujarat. Epistemic uncertainties in the hazard computations are accounted for within a logic-tree framework by considering the controlling parameters like b-value, maximum magnitude and ground motion attenuation relations (GMARs. The corresponding deterministic spectra have been prepared for each major city for the 50th and 84th percentiles of ground motion occurrence. These deterministic spectra are further compared with the specified spectra of Indian design code IS:1893-Part I (2002 to validate them for further practical use. Close examination of the developed spectra reveals that the expected ground motion values become high for the

  10. Estimation of seismic ground motions using deterministic approach for major cities of Gujarat

    Science.gov (United States)

    Shukla, J.; Choudhury, D.

    2012-06-01

    A deterministic seismic hazard analysis has been carried out for various sites of the major cities (Ahmedabad, Surat, Bhuj, Jamnagar and Junagadh) of the Gujarat region in India to compute the seismic hazard exceeding a certain level in terms of peak ground acceleration (PGA) and to estimate maximum possible PGA at each site at bed rock level. The seismic sources in Gujarat are very uncertain and recurrence intervals of regional large earthquakes are not well defined. Because the instrumental records of India specifically in the Gujarat region are far from being satisfactory for modeling the seismic hazard using the probabilistic approach, an attempt has been made in this study to accomplish it through the deterministic approach. In this regard, all small and large faults of the Gujarat region were evaluated to obtain major fault systems. The empirical relations suggested by earlier researchers for the estimation of maximum magnitude of earthquake motion with various properties of faults like length, surface area, slip rate, etc. have been applied to those faults to obtain the maximum earthquake magnitude. For the analysis, seven different ground motion attenuation relations (GMARs) of strong ground motion have been utilized to calculate the maximum horizontal ground accelerations for each major city of Gujarat. Epistemic uncertainties in the hazard computations are accounted for within a logic-tree framework by considering the controlling parameters like b-value, maximum magnitude and ground motion attenuation relations (GMARs). The corresponding deterministic spectra have been prepared for each major city for the 50th and 84th percentiles of ground motion occurrence. These deterministic spectra are further compared with the specified spectra of Indian design code IS:1893-Part I (2002) to validate them for further practical use. Close examination of the developed spectra reveals that the expected ground motion values become high for the Kachchh region i.e. Bhuj

  11. Robotic surgery is ready for prime time in India: Against the motion

    Directory of Open Access Journals (Sweden)

    Tehemton E Udwadia

    2015-01-01

    Full Text Available The use of Robotic Surgery as a purported adjunct and aid to Minimal Access Surgery (MAS is growing in several areas. The acknowledged advantages as also the obvious and hidden disadvantages of Robotic Surgery are highlighted. Survey of literature shows that while Robotic Surgery is "feasible" and the results are "comparable" there is no convincing evidence that it is any better than MAS or even open surgery in most areas. To move "Robotic Surgery is ready for prime time in India" with no less than two dozen robots, many sub-optimally utilized for a population of 1.2 billion seems untenable.

  12. Stochastic ground-motion simulations for the 2016 Kumamoto, Japan, earthquake

    Science.gov (United States)

    Zhang, Long; Chen, Guangqi; Wu, Yanqiang; Jiang, Han

    2016-11-01

    On April 15, 2016, Kumamoto, Japan, was struck by a large earthquake sequence, leading to severe casualty and building damage. The stochastic finite-fault method based on a dynamic corner frequency has been applied to perform ground-motion simulations for the 2016 Kumamoto earthquake. There are 53 high-quality KiK-net stations available in the Kyushu region, and we employed records from all stations to determine region-specific source, path and site parameters. The calculated S-wave attenuation for the Kyushu region beneath the volcanic and non-volcanic areas can be expressed in the form of Q s = (85.5 ± 1.5) f 0.68±0.01 and Q s = (120 ± 5) f 0.64±0.05, respectively. The effects of lateral S-wave velocity and attenuation heterogeneities on the ground-motion simulations were investigated. Site amplifications were estimated using the corrected cross-spectral ratios technique. Zero-distance kappa filter was obtained to be the value of 0.0514 ± 0.0055 s, using the spectral decay method. The stress drop of the mainshock based on the USGS slip model was estimated optimally to have a value of 64 bars. Our finite-fault model with optimized parameters was validated through the good agreement of observations and simulations at all stations. The attenuation characteristics of the simulated peak ground accelerations were also successfully captured by the ground-motion prediction equations. Finally, the ground motions at two destructively damaged regions, Kumamoto Castle and Minami Aso village, were simulated. We conclude that the stochastic finite-fault method with well-determined parameters can reproduce the ground-motion characteristics of the 2016 Kumamoto earthquake in both the time and frequency domains. This work is necessary for seismic hazard assessment and mitigation.[Figure not available: see fulltext.

  13. Upper and lower bounds of ground-motion variabilities: implication for source properties

    Science.gov (United States)

    Cotton, Fabrice; Reddy-Kotha, Sreeram; Bora, Sanjay; Bindi, Dino

    2017-04-01

    One of the key challenges of seismology is to be able to analyse the physical factors that control earthquakes and ground-motion variabilities. Such analysis is particularly important to calibrate physics-based simulations and seismic hazard estimations at high frequencies. Within the framework of the development of ground-motion prediction equation (GMPE) developments, ground-motions residuals (differences between recorded ground motions and the values predicted by a GMPE) are computed. The exponential growth of seismological near-source records and modern GMPE analysis technics allow to partition these residuals into between- and a within-event components. In particular, the between-event term quantifies all those repeatable source effects (e.g. related to stress-drop or kappa-source variability) which have not been accounted by the magnitude-dependent term of the model. In this presentation, we first discuss the between-event variabilities computed both in the Fourier and Response Spectra domains, using recent high-quality global accelerometric datasets (e.g. NGA-west2, Resorce, Kiknet). These analysis lead to the assessment of upper bounds for the ground-motion variability. Then, we compare these upper bounds with lower bounds estimated by analysing seismic sequences which occurred on specific fault systems (e.g., located in Central Italy or in Japan). We show that the lower bounds of between-event variabilities are surprisingly large which indicates a large variability of earthquake dynamic properties even within the same fault system. Finally, these upper and lower bounds of ground-shaking variability are discussed in term of variability of earthquake physical properties (e.g., stress-drop and kappa_source).

  14. Stability of equilibrium in upright stance and voluntary motion control in athletes-shooters in the process of ready position and target shooting

    OpenAIRE

    A.A. Pryimakov; E. Eider; E.V. Omelchuk

    2015-01-01

    Purpose: consists in studying the relationships between the system of equilibrium regulation in upright stance and voluntary motion control in athletes-shooters during ready position and target shooting. Material: 19 highly skilled athletes specialized in pistol shooting were studied. Physiological and biomechanical characteristics of posture and voluntary motions were assessed by methods of stabilography, electromyography and tremorometry; besides, accuracy of target shooting was registered....

  15. Raman cooling imaging: Detecting single atoms near their ground state of motion

    OpenAIRE

    Lester, Brian J.; Kaufman, Adam M.; Regal, Cindy A.

    2014-01-01

    We demonstrate imaging of neutral atoms via the light scattered during continuous Raman sideband cooling. We detect single atoms trapped in optical tweezers while maintaining a significant motional ground-state fraction. The techniques presented provide a framework for single-atom resolved imaging of a broad class of atomic species.

  16. Validation of Broadband Ground Motion Simulations for Japanese Crustal Earthquakes by the Recipe

    Science.gov (United States)

    Iwaki, A.; Maeda, T.; Morikawa, N.; Miyake, H.; Fujiwara, H.

    2015-12-01

    The Headquarters for Earthquake Research Promotion (HERP) of Japan has organized the broadband ground motion simulation method into a standard procedure called the "recipe" (HERP, 2009). In the recipe, the source rupture is represented by the characterized source model (Irikura and Miyake, 2011). The broadband ground motion time histories are computed by a hybrid approach: the 3-D finite-difference method (Aoi et al. 2004) and the stochastic Green's function method (Dan and Sato, 1998; Dan et al. 2000) for the long- (> 1 s) and short-period (sites are well reproduced by the simulations. Then we evaluate 5% damped pseudo acceleration spectra (PSA) in the framework of the SCEC Broadband Platform (BBP) validation (Dreger et al. 2015). The validation results are generally acceptable in the period range 0.1 - 10 s, whereas those in the shortest period range (0.01-0.1 s) are less satisfactory. We also evaluate the simulations with the 1-D velocity structure models used in the SCEC BBP validation exercise. Although the goodness-of-fit parameters for PSA do not significantly differ from those for the 3-D velocity structure model, noticeable differences in velocity waveforms are observed. Our results suggest the importance of 1) well-constrained 3-D velocity structure model for broadband ground motion simulations and 2) evaluation of time series of ground motion as well as response spectra.

  17. Seismic Response of Power Transmission Tower-Line System Subjected to Spatially Varying Ground Motions

    Directory of Open Access Journals (Sweden)

    Li Tian

    2010-01-01

    Full Text Available The behavior of power transmission tower-line system subjected to spatially varying base excitations is studied in this paper. The transmission towers are modeled by beam elements while the transmission lines are modeled by cable elements that account for the nonlinear geometry of the cables. The real multistation data from SMART-1 are used to analyze the system response subjected to spatially varying ground motions. The seismic input waves for vertical and horizontal ground motions are also generated based on the Code for Design of Seismic of Electrical Installations. Both the incoherency of seismic waves and wave travel effects are accounted for. The nonlinear time history analytical method is used in the analysis. The effects of boundary conditions, ground motion spatial variations, the incident angle of the seismic wave, coherency loss, and wave travel on the system are investigated. The results show that the uniform ground motion at all supports of system does not provide the most critical case for the response calculations.

  18. Simulation of Near-Fault High-Frequency Ground Motions from the Representation Theorem

    Science.gov (United States)

    Beresnev, Igor A.

    2017-11-01

    "What is the maximum possible ground motion near an earthquake fault?" is an outstanding question of practical significance in earthquake seismology. In establishing a possible theoretical cap on extreme ground motions, the representation integral of elasticity, providing an exact, within limits of applicability, solution for fault radiation at any frequency, is an under-utilized tool. The application of a numerical procedure leading to synthetic ground displacement, velocity, and acceleration time histories to modeling of the record at the Lucerne Valley hard-rock station, uniquely located at 1.1 km from the rupture of the M w 7.2 Landers, California event, using a seismologically constrained temporal form of slip on the fault, reveals that the shape of the displacement waveform can be modeled closely, given the simplicity of the theoretical model. High precision in the double integration, as well as carefully designed smoothing and filtering, are necessary to suppress the numerical noise in the high-frequency (velocity and acceleration) synthetic motions. The precision of the integration of at least eight decimal digits ensures the numerical error in the displacement waveforms generally much lower than 0.005% and reduces the error in the peak velocities and accelerations to the levels acceptable to make the representation theorem a reliable tool in the practical evaluation of the magnitude of maximum possible ground motions in a wide-frequency range of engineering interest.

  19. A novel approach for classification of earthquake ground-motion records

    Science.gov (United States)

    Yaghmaei-Sabegh, Saman

    2017-07-01

    This paper presents a new clustering procedure based on K-means and self-organizing map (SOM) network algorithms for classification of earthquake ground-motion records. Six scalar indicators are used in data analysis for describing the frequency content features of earthquake ground motions, named as the average spectral period ( T avg ), the mean period ( T m ), the smoothed spectral predominant period ( T 0), the characteristic period ( T 4.3), the predominant period based on velocity spectrum ( T gSv ), and the shape factor (Ω). Different clustering validity indexes were applied to determine the best estimates of the number of clusters on real and synthetic data. Results showed the high performance of proposed procedure to reveal salient features of complex seismic data. The comparison between the results of clustering analyses recommend the smoothed spectral predominant period as an effective indicator to describe ground-motion classes. The results also showed that K-means algorithm has better performance than SOM algorithm in identification and classification procedure of ground-motion records.

  20. 2.5 D Simulation of basin-edge effects on the ground motion ...

    Indian Academy of Sciences (India)

    Abstract. The effects of basin-edge and soil velocity on the ground motion characteristics have been simulated using 2.5D modeling. One of the most significant advantages of the 2.5D simulation is that 3D radiation pattern can be generated in a 2D numerical grid using double-couple shear dislocation source. Further, 2.5D ...

  1. Conditional spectrum computation incorporating multiple causal earthquakes and ground-motion prediction models

    Science.gov (United States)

    Lin, Ting; Harmsen, Stephen C.; Baker, Jack W.; Luco, Nicolas

    2013-01-01

    The conditional spectrum (CS) is a target spectrum (with conditional mean and conditional standard deviation) that links seismic hazard information with ground-motion selection for nonlinear dynamic analysis. Probabilistic seismic hazard analysis (PSHA) estimates the ground-motion hazard by incorporating the aleatory uncertainties in all earthquake scenarios and resulting ground motions, as well as the epistemic uncertainties in ground-motion prediction models (GMPMs) and seismic source models. Typical CS calculations to date are produced for a single earthquake scenario using a single GMPM, but more precise use requires consideration of at least multiple causal earthquakes and multiple GMPMs that are often considered in a PSHA computation. This paper presents the mathematics underlying these more precise CS calculations. Despite requiring more effort to compute than approximate calculations using a single causal earthquake and GMPM, the proposed approach produces an exact output that has a theoretical basis. To demonstrate the results of this approach and compare the exact and approximate calculations, several example calculations are performed for real sites in the western United States. The results also provide some insights regarding the circumstances under which approximate results are likely to closely match more exact results. To facilitate these more precise calculations for real applications, the exact CS calculations can now be performed for real sites in the United States using new deaggregation features in the U.S. Geological Survey hazard mapping tools. Details regarding this implementation are discussed in this paper.

  2. Investigation of topographical effects on rupture dynamics and resultant ground motions

    Science.gov (United States)

    Huang, Hanqing; Zhang, Zhenguo; Chen, Xiaofei

    2018-01-01

    In this work, we investigate the effect of irregular topography on the dynamic rupture and resultant ground motions using the curved grid finite-difference method. The research is based on spontaneous dynamic rupture on vertical strike-slip faults by varying the shapes and relative locations of irregular topography to the critical supershear transition distance. The results show that seismic energy of a supershear earthquake can be transmitted farther with large amplitudes. However, its ground motion near the fault is weaker than that caused by a subshear (namely the sub-Rayleigh) rupture. Whether the irregular topography exhibits stronger ground motion overall depends on the irregular topography's ability to prevent the subshear-to-supershear transition. Finally, we also discuss the effects of the strength parameter S and a larger size of the irregular topography on the resultant ground motion. The modellings of San Andreas Fault with real and inverted topographical surfaces show the implications of the topographical effects from the real earthquake.

  3. Interaction between stope support and ground motion in the hangingwall and footwall Project.

    CSIR Research Space (South Africa)

    Cichowicz, A

    2002-07-01

    Full Text Available and limitations were verified by detailed testing with the strong ground motion data. The support response may be simulated using SDOF model when PGA is in the range 18 - 100 m/s2 ; for this data model shows that the maximal value of the stiffness is 120,000 k...

  4. Assessment of potential strong ground motions in the city of Rome

    Directory of Open Access Journals (Sweden)

    L. Malagnini

    1994-06-01

    Full Text Available A methodology is used which combines stochastic generation of random series with a finite-difference technique to estimate the expected horizontal ground motion for the city of Rome as induced by a large earthquake in the Central Apennines. In this approach, source properties and long-path propagation are modelled through observed spectra of ground motion in the region, while the effects of the near-surface geology in the city are simulated by means of a finite-difference technique applied to 2-D models including elastic and anelastic properties of geologic materials and topographic variations. The parameters commonly used for earthquake engineering purposes are estimated from the simulated time histories of horizontal ground motion. We focus our attention on peak ground acceleration and velocity, and on the integral of the squared acceleration and velocity (that are proportional to the Arias intensity and seismic energy flux, respectively. Response spectra are analyzed as well. Parameter variations along 2-D profiles visualize the effects of the small-scale geological heterogeneities and topography irregularities on ground motion in the case of a strong earthquake. Interestingly, the largest amplification of peak ground acceleration and Arias intensity does not necessarily occur at the same sites where peak ground velocity and flux of seismic energy reach their highest values, depending on the frequency band of amplification. A magnitude 7 earthquake at a distance of 100 km results in peak ground accelerations ranging from 30 to 70 gals while peak ground velocities are estimated to vary from 5 to 7 cm/s; moreover, simulated time histories of horizontal ground motion yield amplitudes of 5% damped pseudovelocity response spectra as large as 15-20 cm/s for frequencies from 1to 3 Hz. In this frequency band, the mean value is 7 cm/s for firm sites and ranges from 10 to 13 cm/s for soil sites. All these results are in good agreement with predictions

  5. Uncertainty of earthquake losses due to model uncertainty of input ground motions in the Los Angeles area

    Science.gov (United States)

    Cao, T.; Petersen, M.D.

    2006-01-01

    In a recent study we used the Monte Carlo simulation method to evaluate the ground-motion uncertainty of the 2002 update of the California probabilistic seismic hazard model. The resulting ground-motion distribution is used in this article to evaluate the contribution of the hazard model to the uncertainty in earthquake loss ratio, the ratio of the expected loss to the total value of a structure. We use the Hazards U.S. (HAZUS) methodology for loss estimation because it is a widely used and publicly available risk model and intended for regional studies by public agencies and for use by governmental decision makers. We found that the loss ratio uncertainty depends not only on the ground-motion uncertainty but also on the mean ground-motion level. The ground-motion uncertainty, as measured by the coefficient of variation (COV), is amplified when converting to the loss ratio uncertainty because loss increases concavely with ground motion. By comparing the ground-motion uncertainty with the corresponding loss ratio uncertainty for the structural damage of light wood-frame buildings in Los Angeles area, we show that the COV of loss ratio is almost twice the COV of ground motion with a return period of 475 years around the San Andreas fault and other major faults in the area. The loss ratio for the 2475-year ground-motion maps is about a factor of three higher than for the 475-year maps. However, the uncertainties in ground motion and loss ratio for the longer return periods are lower than for the shorter return periods because the uncertainty parameters in the hazard logic tree are independent of the return period, but the mean ground motion increases with return period.

  6. New Ground motions relations for Portugal Mainland using a stochastic finite fault modeling

    Science.gov (United States)

    Carvalho, Alexandra; Campos Costa, Alfredo

    2010-05-01

    In Portugal, being located at a moderate/low seismicity intraplate area, insufficient accelerograms have been recorded to satisfactory undertake any regional empirical study. Portugal has experienced several large earthquakes in the past, before the instrumental time so there are no strong ground motion data recorded by instruments. As prediction cannot be based on empirical analyses, well-founded physical models must be used as the basis for the predictions of strong motion in Portugal. These models should provide the means to make extrapolations to the range of magnitudes and distances of interest, and over the entire frequency range of engineering interest, with confidence. The development of stochastic based ground motion synthesis associated to a seismological finite-fault modeling is a worldwide approach that can be used for representation of future large magnitude earthquakes occurring in Portugal, allowing the reproducing of specific source effects like directivity and asperities distribution, and path and crustal effects. This modeling technique is now being used to develop regional ground motions prediction equations in many regions of the world (eg. Atkinson & Boore, 2006; Motazedian & Atkinson, 2005; Sihua & Lung, 2004). The model parameters calibration has been obtained with a dataset that includes horizontal components of ground acceleration records (at rock sites) obtained by the Portuguese digital accelerometer network. With regional parameters established, the calibrated model was used to create a data-base with a magnitudes and distance range of interest, allowing then to derive ground motions predictions equations for Portugal. This work presents the first spectral ground motions prediction equations for Portugal mainland. Equations are presented for the two different tectonic environments that describe seismic input in Portugal (intraplate and interplate environment), using either the closest distance to the fault or the hypocentral distance

  7. A Terminal Guidance Law Based on Motion Camouflage Strategy of Air-to-Ground Missiles

    Directory of Open Access Journals (Sweden)

    Chang-sheng Gao

    2016-01-01

    Full Text Available A guidance law for attacking ground target based on motion camouflage strategy is proposed in this paper. According to the relative position between missile and target, the dual second-order dynamics model is derived. The missile guidance condition is given by analyzing the characteristic of motion camouflage strategy. Then, the terminal guidance law is derived by using the relative motion of missile and target and the guidance condition. In the process of derivation, the three-dimensional guidance law could be designed in a two-dimensional plane and the difficulty of guidance law design is reduced. A two-dimensional guidance law for three-dimensional space is derived by bringing the estimation for target maneuver. Finally, simulation for the proposed guidance law is taken and compared with pure proportional navigation. The simulation results demonstrate that the proposed guidance law can be applied to air-to-ground missiles.

  8. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar

    2013-12-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  9. The Engineering Strong Ground Motion Network of the National Autonomous University of Mexico

    Science.gov (United States)

    Velasco Miranda, J. M.; Ramirez-Guzman, L.; Aguilar Calderon, L. A.; Almora Mata, D.; Ayala Hernandez, M.; Castro Parra, G.; Molina Avila, I.; Mora, A.; Torres Noguez, M.; Vazquez Larquet, R.

    2014-12-01

    The coverage, design, operation and monitoring capabilities of the strong ground motion program at the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM) is presented. Started in 1952, the seismic instrumentation intended initially to bolster earthquake engineering projects in Mexico City has evolved into the largest strong ground motion monitoring system in the region. Today, it provides information not only to engineering projects, but also to the near real-time risk mitigation systems of the country, and enhances the general understanding of the effects and causes of earthquakes in Mexico. The IE network includes more than 100 free-field stations and several buildings, covering the largest urban centers and zones of significant seismicity in Central Mexico. Of those stations, approximately one-fourth send the observed acceleration to a processing center in Mexico City continuously, and the rest require either periodic visits for the manual recovery of the data or remote interrogation, for later processing and cataloging. In this research, we document the procedures and telecommunications systems used systematically to recover information. Additionally, we analyze the spatial distribution of the free-field accelerographs, the quality of the instrumentation, and the recorded ground motions. The evaluation criteria are based on the: 1) uncertainty in the generation of ground motion parameter maps due to the spatial distribution of the stations, 2) potential of the array to provide localization and magnitude estimates for earthquakes with magnitudes greater than Mw 5, and 3) adequacy of the network for the development of Ground Motion Prediction Equations due to intra-plate and intra-slab earthquakes. We conclude that the monitoring system requires a new redistribution, additional stations, and a substantial improvement in the instrumentation and telecommunications. Finally, we present an integral plan to improve the current network

  10. Wave induced coastal cliff top ground motions and infragravity wave dissipation under high energy wave conditions.

    Science.gov (United States)

    Earlie, C. S.; le Dantec, N.; Young, A.

    2016-12-01

    Coastal cliff erosion is a widespread problem that threatens property and infrastructure globally. The prediction of this risk calls for robust understanding of the processes and mechanisms involved in causing coastal cliff failure. Over the last decade, a number of geomorphological studies have highlighted the importance of the relationship between the offshore wave climate and cliff-toe water levels, and the resultant coastal response in terms of cliff-top ground motion and erosion. Field-based studies of instantaneous cliff response to direct wave impact have shown that wave-induced loading of the foreshore leads to cliff-top ground motions that may have the potential to weaken the integrity of the rocks and prepare them for failure. In order to understand wave-cliff interaction and how beach morphodynamics influences cliff-top ground motion and cliff erosion, two field experiments were carried out simultaneously at two locations in Northern Brittany (France). This three-month long winter field campaign (Jan-Mar 2016) included, for the first time, a comparison of cliff-top ground motion and cliff erosion at sites fronted by different beach morphologies (reflective/dissipative), along with monitoring of hydrodynamic forcing and beach topography. The magnitude of cliff-top displacements at both sites were dependent on tidal stage and free water surface elevation at the cliff toe, with the greatest contributions of cliff-top ground motions found at infragravity frequencies (0.05-0.005 Hz). Vertical displacements at infragravity and incident sea-swell (0.1-0.5 Hz) frequencies were greater at the dissipative site, apart from during spring high tide and energetic wave conditions, where displacements were two times that at the reflective site. Combining these wave-cliff interaction data with beach morphology and nearshore bathymetry will be key to understanding the spatial variability in cliff erosion under a variety of environmental settings and forcing conditions.

  11. Earthquake ground-motion in presence of source and medium heterogeneities

    KAUST Repository

    Vyas, Jagdish Chandra

    2017-01-01

    This dissertation work investigates the effects of earthquake rupture complexity and heterogeneities in Earth structure on near-field ground-motions. More specifically, we address two key issues in seismology: (1) near-field ground-shaking variability as function of distance and azimuth for unilateral directive ruptures, and (2) impact of rupture complexity and seismic scattering on Mach wave coherence associated with supershear rupture propagation. We examine earthquake ground-motion variability associated with unilateral ruptures based on ground-motion simulations of the MW 7.3 1992 Landers earthquake, eight simplified source models, and a MW 7.8 rupture simulation (ShakeOut) for the San Andreas fault. Our numerical modeling reveals that the ground-shaking variability in near-fault distances (< 20 km) is larger than that given by empirical ground motion prediction equations. In addition, the variability decreases with increasing distance from the source, exhibiting a power-law decay. The high near-field variability can be explained by strong directivity effects whose influence weaken as we move away from the fault. At the same time, the slope of the power-law decay is found to be dominantly controlled by slip heterogeneity. Furthermore, the ground-shaking variability is high in the rupture propagation direction whereas low in the directions perpendicular to it. However, the variability expressed as a function of azimuth is not only sensitive to slip heterogeneity, but also to rupture velocity. To study Mach wave coherence for supershear ruptures, we consider heterogeneities in rupture parameters (variations in slip, rise time and rupture speed) and 3D scattering media having small-scale random heterogeneities. The Mach wave coherence is reduced at near-fault distances (< 10 km) by the source heterogeneities. At the larger distances from the source, medium scattering plays the dominant role in reducing the Mach wave coherence. Combined effect of the source and

  12. Generation of a mixture model ground-motion prediction equation for Northern Chile

    Science.gov (United States)

    Haendel, A.; Kuehn, N. M.; Scherbaum, F.

    2012-12-01

    In probabilistic seismic hazard analysis (PSHA) empirically derived ground motion prediction equations (GMPEs) are usually applied to estimate the ground motion at a site of interest as a function of source, path and site related predictor variables. Because GMPEs are derived from limited datasets they are not expected to give entirely accurate estimates or to reflect the whole range of possible future ground motion, thus giving rise to epistemic uncertainty in the hazard estimates. This is especially true for regions without an indigenous GMPE where foreign models have to be applied. The choice of appropriate GMPEs can then dominate the overall uncertainty in hazard assessments. In order to quantify this uncertainty, the set of ground motion models used in a modern PSHA has to capture (in SSHAC language) the center, body, and range of the possible ground motion at the site of interest. This was traditionally done within a logic tree framework in which existing (or only slightly modified) GMPEs occupy the branches of the tree and the branch weights describe the degree-of-belief of the analyst in their applicability. This approach invites the problem to combine GMPEs of very different quality and hence to potentially overestimate epistemic uncertainty. Some recent hazard analysis have therefore resorted to using a small number of high quality GMPEs as backbone models from which the full distribution of GMPEs for the logic tree (to capture the full range of possible ground motion uncertainty) where subsequently generated by scaling (in a general sense). In the present study, a new approach is proposed to determine an optimized backbone model as weighted components of a mixture model. In doing so, each GMPE is assumed to reflect the generation mechanism (e. g. in terms of stress drop, propagation properties, etc.) for at least a fraction of possible ground motions in the area of interest. The combination of different models into a mixture model (which is learned from

  13. Ground Motion Simulations for Bursa Region (Turkey) Using Input Parameters derived from the Regional Seismic Network

    Science.gov (United States)

    Unal, B.; Askan, A.

    2014-12-01

    Earthquakes are among the most destructive natural disasters in Turkey and it is important to assess seismicity in different regions with the use of seismic networks. Bursa is located in Marmara Region, Northwestern Turkey and to the south of the very active North Anatolian Fault Zone. With around three million inhabitants and key industrial facilities of the country, Bursa is the fourth largest city in Turkey. Since most of the focus is on North Anatolian Fault zone, despite its significant seismicity, Bursa area has not been investigated extensively until recently. For reliable seismic hazard estimations and seismic design of structures, assessment of potential ground motions in this region is essential using both recorded and simulated data. In this study, we employ stochastic finite-fault simulation with dynamic corner frequency approach to model previous events as well to assess potential earthquakes in Bursa. To ensure simulations with reliable synthetic ground motion outputs, the input parameters must be carefully derived from regional data. In this study, using strong motion data collected at 33 stations in the region, site-specific parameters such as near-surface high frequency attenuation parameter and amplifications are obtained. Similarly, source and path parameters are adopted from previous studies that as well employ regional data. Initially, major previous events in the region are verified by comparing the records with the corresponding synthetics. Then simulations of scenario events in the region are performed. We present the results in terms of spatial distribution of peak ground motion parameters and time histories at selected locations.

  14. Explaining extreme ground motion in Osaka basin during the 2011 Tohoku earthquake

    Science.gov (United States)

    Tsai, Victor C.; Bowden, Daniel C.; Kanamori, Hiroo

    2017-07-01

    Despite being 770 km away from the epicenter, observed ground motions due to the Tohoku earthquake in the Osaka Basin were unexpectedly large, with an amplification of more than a factor of 20 compared to immediately outside the basin, and including 2.7 m peak-to-peak roof displacements at one high-rise building. The local ground motions exceeded expectations based on standard computations of site response by a factor of 3, predicted frequencies of peak acceleration were off by at least 50%, and such discrepancies have not yet been explained quantitatively. Here we show that utilizing semianalytic theory for surface-wave amplification, we are able to accurately predict both the amplitudes and frequencies of large ground amplification in the Osaka Basin using only knowledge of the local one-dimensional structure. Comparison between this simple prediction and observed amplification was not expected to be so favorable and suggests that simple one-dimensional surface-wave site amplification factors can be useful in the absence of full three-dimensional wave propagation simulations. Such surface-wave amplification factors can be included in addition to the standard measures of site-specific site amplification and should help explain strong ground motion variability in future large earthquakes that shake Osaka Basin and elsewhere in the world.

  15. A Refined Vs30 Map for Taiwan Based on Ground Motion Attenuation Relationships

    Directory of Open Access Journals (Sweden)

    Kun-Sung Liu and Yi-Ben Tsai

    2015-01-01

    Full Text Available Seismic hazard evaluations require an estimate of the expected ground motion at the site of interest usually by using attenuation relationships. The mean shear-wave velocity over the top 30 m (Vs30 is incorporated in the ground motion attenuation relationships in this study. By comparing the standard deviations of the residuals between the observed and predicted values before and after incorporating the site effect term Vs30, the reduction in standard deviation for the peak ground velocity (PGV is significantly reduced by about 11%. Clearly, the refined attenuation relationships will be more useful for engineering purposes. Analyzing the site effect term using the amplification factor (relative to a site with Vs30 = 760 m s-1, has revealed that the Changhua Plain, Chianan Plain, Pingtung Valley, Ilan Plain, and Taipei Basin have high values, implying large ground motion amplification. Following a disastrous earthquake, quick assessment and timely peak ground acceleration (PGA and PGV map reporting will be critical for effective emergency response operations. After an earthquake we can combine the simple attenuation relationships, as determined from Model 1, to provide near real-time estimation and reporting of the PGA and PGV values for the Taiwan area. We can also use the relations between the intra-event site residual and the Vs30 to estimate the Vs30 for stations that have recorded strong motions, but do not yet have Vs30 information. Our approach including sites with estimated Vs30 has resulted in a refined Vs30 contour map that can be used for more realistic seismic hazard assessment for Taiwan. This approach is especially applicable to the foothill and mountain areas.

  16. Update of the Graizer-Kalkan ground-motion prediction equations for shallow crustal continental earthquakes

    Science.gov (United States)

    Graizer, Vladimir; Kalkan, Erol

    2015-01-01

    A ground-motion prediction equation (GMPE) for computing medians and standard deviations of peak ground acceleration and 5-percent damped pseudo spectral acceleration response ordinates of maximum horizontal component of randomly oriented ground motions was developed by Graizer and Kalkan (2007, 2009) to be used for seismic hazard analyses and engineering applications. This GMPE was derived from the greatly expanded Next Generation of Attenuation (NGA)-West1 database. In this study, Graizer and Kalkan’s GMPE is revised to include (1) an anelastic attenuation term as a function of quality factor (Q0) in order to capture regional differences in large-distance attenuation and (2) a new frequency-dependent sedimentary-basin scaling term as a function of depth to the 1.5-km/s shear-wave velocity isosurface to improve ground-motion predictions for sites on deep sedimentary basins. The new model (GK15), developed to be simple, is applicable to the western United States and other regions with shallow continental crust in active tectonic environments and may be used for earthquakes with moment magnitudes 5.0–8.0, distances 0–250 km, average shear-wave velocities 200–1,300 m/s, and spectral periods 0.01–5 s. Directivity effects are not explicitly modeled but are included through the variability of the data. Our aleatory variability model captures inter-event variability, which decreases with magnitude and increases with distance. The mixed-effects residuals analysis shows that the GK15 reveals no trend with respect to the independent parameters. The GK15 is a significant improvement over Graizer and Kalkan (2007, 2009), and provides a demonstrable, reliable description of ground-motion amplitudes recorded from shallow crustal earthquakes in active tectonic regions over a wide range of magnitudes, distances, and site conditions.

  17. Energy-Based Response of Simple Structural Systems by using Simulated Ground Motions

    Science.gov (United States)

    karimzadeh Naghshineh, S.; Erberik, M. A.; Askan, A.

    2016-12-01

    For the last two decades, there has been a growing and remarkable attention on the energy-based design and assessment approaches for structural systems. These approaches have also been implemented to some of the national seismic design codes as alternative methods in addition to the traditional force-based design methodology. The underlying research has been often carried out by using actual ground motion records taken from many different earthquakes all over the world. However, such an attempt impairs the validity of the obtained results since it is generally not possible to construct a homogeneous ground motion record database with well-distributed source and ground motion parameters. In this study, in order to overcome the aforementioned disadvantage, a large set of simulated ground motion records are used in a parametric study to examine the influence of different intensity measures on the energy-based response of simple structural systems, i.e. single-degree-of-freedom (SDOF) systems. The simulated records are obtained using the stochastic finite-fault methodology that is efficient in simulating the frequencies of engineering interest. A set of ground motions is formed from simulation of potential events with a certain moment magnitude range, source-to-site distances and soil conditions. The simulations are performed on active faults around Erzincan city center located on the Eastern sections of North Anatolian Fault zone in Turkey. In the parametric study, time history analyses on SDOF systems are conducted with simulated records to obtain the response statistics. The output parameters are input energy, hysteretic energy and damping energy. The results show that the energy is a relatively stable parameter when compared to other response parameters, i.e. force and displacement. According to the energy balance equation, after estimating the input energy imparted to a structural system, the rest is to find ways to dissipate this energy through damping and

  18. Implementation of the Next Generation Attenuation (NGA) ground-motion prediction equations in Fortran and R

    Science.gov (United States)

    Kaklamanos, James; Boore, David M.; Thompson, Eric M.; Campbell, Kenneth W.

    2010-01-01

    This report presents two methods for implementing the earthquake ground-motion prediction equations released in 2008 as part of the Next Generation Attenuation of Ground Motions (NGA-West, or NGA) project coordinated by the Pacific Earthquake Engineering Research Center (PEER). These models were developed for predicting ground-motion parameters for shallow crustal earthquakes in active tectonic regions (such as California). Of the five ground-motion prediction equations (GMPEs) developed during the NGA project, four models are implemented: the GMPEs of Abrahamson and Silva (2008), Boore and Atkinson (2008), Campbell and Bozorgnia (2008), and Chiou and Youngs (2008a); these models are abbreviated as AS08, BA08, CB08, and CY08, respectively. Since site response is widely recognized as an important influence of ground motions, engineering applications typically require that such effects be modeled. The model of Idriss (2008) is not implemented in our programs because it does not explicitly include site response, whereas the other four models include site response and use the same variable to describe the site condition (VS30). We do not intend to discourage the use of the Idriss (2008) model, but we have chosen to implement the other four NGA models in our programs for those users who require ground-motion estimates for various site conditions. We have implemented the NGA models by using two separate programming languages: Fortran and R (R Development Core Team, 2010). Fortran, a compiled programming language, has been used in the scientific community for decades. R is an object-oriented language and environment for statistical computing that is gaining popularity in the statistical and scientific community. Derived from the S language and environment developed at Bell Laboratories, R is an open-source language that is freely available at http://www.r-project.org/ (last accessed 11 January 2011). In R, the functions for computing the NGA equations can be loaded as an

  19. Chapter A. The Loma Prieta, California, Earthquake of October 17, 1989 - Strong Ground Motion

    Science.gov (United States)

    Borcherdt, Roger D.

    1994-01-01

    Strong ground motion generated by the Loma Prieta, Calif., earthquake (MS~7.1) of October 17, 1989, resulted in at least 63 deaths, more than 3,757 injuries, and damage estimated to exceed $5.9 billion. Strong ground motion severely damaged critical lifelines (freeway overpasses, bridges, and pipelines), caused severe damage to poorly constructed buildings, and induced a significant number of ground failures associated with liquefaction and landsliding. It also caused a significant proportion of the damage and loss of life at distances as far as 100 km from the epicenter. Consequently, understanding the characteristics of the strong ground motion associated with the earthquake is fundamental to understanding the earthquake's devastating impact on society. The papers assembled in this chapter address this problem. Damage to vulnerable structures from the earthquake varied substantially with the distance from the causative fault and the type of underlying geologic deposits. Most of the damage and loss of life occurred in areas underlain by 'soft soil'. Quantifying these effects is important for understanding the tragic concentrations of damage in such areas as Santa Cruz and the Marina and Embarcadero Districts of San Francisco, and the failures of the San Francisco-Oakland Bay Bridge and the Interstate Highway 880 overpass. Most importantly, understanding these effects is a necessary prerequisite for improving mitigation measures for larger earthquakes likely to occur much closer to densely urbanized areas in the San Francisco Bay region. The earthquake generated an especially important data set for understanding variations in the severity of strong ground motion. Instrumental strong-motion recordings were obtained at 131 sites located from about 6 to 175 km from the rupture zone. This set of recordings, the largest yet collected for an event of this size, was obtained from sites on various geologic deposits, including a unique set on 'soft soil' deposits

  20. REDUCTION OF GROUND MOTION INTENSITY CAUSED BY BLASTING ON STONE QUARRIES"HERCEGOVAC" AND "MAX-STOJA"

    Directory of Open Access Journals (Sweden)

    Marin Petrov

    1993-12-01

    Full Text Available Ground motion intensity caused by deep-hole blasting on the stone quarries »Hercegovac« and »Max-Stoja« was determined by measuring of ground vibrations magnitudes and by interpretation of measuring results under world damage criteria for structures. Reduction of ground motion intensity was realized on the basis of calculation of permissible charge quantity per ignition level (the paper is published in Croatian.

  1. Ground ice and hydrothermal ground motions on aufeis plots of river valleys

    Directory of Open Access Journals (Sweden)

    V. R. Alekseev

    2015-01-01

    Full Text Available Localized groundwater outflow and layered freezing of them in forms of large ice clusters on the surface creates specific conditions for energy and mass exchange in the «atmosphere–soil–lithosphere» system. In winter, the soil temperature profile is essentially deformed due to heat emission by the aufeis layer of water at its freezing that forms a specific thermocline layer. Deformation of the temperature profile, gradually decreasing, moves down the cross-section and disappearing at the interface between frozen and thawed rocks. Magnitude and number of the temperature deviations from a «normal» state depends on the heat storage of the aufeis-forming waters and on the number of outflows at a given point. The thermocline formation changes conditions of freezing for underlying ground layers together with mechanism of ice saturation of them, and that results in formation of two-layer ice-ground complexes (IGC which differ drastically from cryogenic features in adjacent parts of the valley. Analysis of genetic characteristics and relation of components of the surface and subsurface layers allowed identification of seven types of the aufeis IGC: massive-segregation, cement-basal, layered-segregation, basal-segregation, vacuum-filtration, pressureinjection, and fissure-vein. Yearly formation and destruction of aufeises and subsurface ices is accompanied by a sequence of particularly hazardous geodynamical phenomena, among which the most important are winter flooding of territories, layered freezing of water, ground heaving, thermokarst, and thermoerosion. Combination of these processes may cause a rapid (often unexpected reconfiguration of channels of both surface and subsurface runoff, abrupt uplifts and subsidences of the surface, and decompaction and «shaking-up» of seasonally thawing and seasonally freezing rocks, which may create exceptionally unfavorable conditions for construction and operation of engineering structures. Aufeis plots

  2. Simulation of spatially varying ground motions including incoherence, wave‐passage and differential site‐response effects

    DEFF Research Database (Denmark)

    Konakli, Katerina; Der Kiureghian, Armen

    2012-01-01

    A method is presented for simulating arrays of spatially varying ground motions, incorporating the effects of incoherence, wave passage, and differential site response. Non‐stationarity is accounted for by considering the motions as consisting of stationary segments. Two approaches are developed....... In the first, simulated motions are consistent with the power spectral densities of a segmented recorded motion and are characterized by uniform variability at all locations. Uniform variability in the array of ground motions is essential when synthetic motions are used for statistical analysis of the response...... of multiply‐supported structures. In the second approach, simulated motions are conditioned on the segmented record itself and exhibit increasing variance with distance from the site of the observation. For both approaches, example simulated motions are presented for an existing bridge model employing two...

  3. Systematic comparisons between PRISM version 1.0.0, BAP, and CSMIP ground-motion processing

    Science.gov (United States)

    Kalkan, Erol; Stephens, Christopher

    2017-02-23

    A series of benchmark tests was run by comparing results of the Processing and Review Interface for Strong Motion data (PRISM) software version 1.0.0 to Basic Strong-Motion Accelerogram Processing Software (BAP; Converse and Brady, 1992), and to California Strong Motion Instrumentation Program (CSMIP) processing (Shakal and others, 2003, 2004). These tests were performed by using the MatLAB implementation of PRISM, which is equivalent to its public release version in Java language. Systematic comparisons were made in time and frequency domains of records processed in PRISM and BAP, and in CSMIP, by using a set of representative input motions with varying resolutions, frequency content, and amplitudes. Although the details of strong-motion records vary among the processing procedures, there are only minor differences among the waveforms for each component and within the frequency passband common to these procedures. A comprehensive statistical evaluation considering more than 1,800 ground-motion components demonstrates that differences in peak amplitudes of acceleration, velocity, and displacement time series obtained from PRISM and CSMIP processing are equal to or less than 4 percent for 99 percent of the data, and equal to or less than 2 percent for 96 percent of the data. Other statistical measures, including the Euclidian distance (L2 norm) and the windowed root mean square level of processed time series, also indicate that both processing schemes produce statistically similar products.

  4. Mitigation of ground motion effects via feedback systems in the Compact Linear Collider

    CERN Document Server

    Pfingstner, Jürgen; Schmickler, Hermann; Schulte, Daniel

    The Compact Linear Collider (CLIC) is a future multi-TeV electron positron collider, which is currently being designed at CERN. To achieve its ambitious goals, CLIC has to produce particle beams of the highest quality, which makes the accelerator very sensitive to ground motion. Four mitigation methods have been foreseen by the CLIC design group to cope with the feasibility issue of ground motion. This thesis is concerned with the design of one of these mitigation methods, named linac feedback (L-FB), but also with the simultaneous simulation and validation of all mitigation methods. Additionally, a technique to improve the quality of the indispensable system knowledge has been developed. The L-FB suppresses beam oscillations along the accelerator. Its design is based on the decoupling of the overall accelerator system into independent channels. For each channel an individual compensator is found with the help of a semi- automatic control synthesis procedure. This technique allows the designer to incorporate ...

  5. Seismic hazard analysis. Volume 5. Review panel, Ground Motion Panel, and feedback results

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D. L.

    1981-08-01

    The Site Specific Spectra Project (SSSP) was a multi-year study funded by the US Nuclear Regulatory Commission to provide estimates of the seismic hazards at a number of nuclear power plant sites in the Eastern US. A key element of our approach was the Peer Review Panel, which we formed in order to ensure that our use of expert opinion was reasonable. We discuss the Peer Review Panel results and provide the complete text of each member's report. In order to improve the ground motion model, an Eastern US Ground Motion Model Panel was formed. In Section 4 we tabulate the responses from the panel members to our feedback questionnaire and discuss the implications of changes introduced by them. We conclude that the net difference in seismic hazard values from those presented in Volume 4 is small and does not warrant a reanalysis. 22 figs.

  6. Hysteresis and Soil Site Dependent Input and Hysteretic Energy Spectra for Far-Source Ground Motions

    Directory of Open Access Journals (Sweden)

    Mebrahtom Gebrekirstos Mezgebo

    2016-01-01

    Full Text Available Earthquake input energy spectra for four soil site classes, four hysteresis models, and five ductility levels are developed for far-source ground motion effect. These energy spectra are normalized by a quantity called velocity index (VI. The use of VI allows for the creation of dimensionless spectra and results in smaller coefficients of variation. Hysteretic energy spectra are then developed to address the demand aspect of an energy-based seismic design of structures with 5% critical damping and ductility that ranges from 2 to 5. The proposed input and hysteretic energy spectra are then compared with response spectra generated using nonlinear time history analyses of real ground motions and are found to produce reasonably good results over a relatively large period range.

  7. Robotic surgery is ready for prime time in India: For the motion.

    Science.gov (United States)

    Desai, Mahesh; Chabra, Jaspreet; Ganpule, Arvind P

    2015-01-01

    Robotic surgery with its bundled advantages is still in its burgeoning phase, the best of which is yet to come. The unrivalled suturing ease and motion scaling features, transforming into greater precision, has led to its widespread application in different surgical ramifications. These, coupled with the aforementioned advantages, has led to an increasing number of procedures being performed and that too with improved patient outcomes. It seems that the progressing India is readily accepting this robotic surgical innovation, the use of which is on a continuous rise, with the number of robotic platforms coming up in increasing numbers in many tertiary care Indian centres and a corresponding increase in demand of the same by the patients as well; thereby aptly fulfilling the economics of 'demand and supply'.

  8. Robotic surgery is ready for prime time in India: For the motion

    Directory of Open Access Journals (Sweden)

    Mahesh Desai

    2015-01-01

    Full Text Available Robotic surgery with its bundled advantages is still in its burgeoning phase, the best of which is yet to come. The unrivalled suturing ease and motion scaling features, transforming into greater precision, has led to its widespread application in different surgical ramifications. These, coupled with the aforementioned advantages, has led to an increasing number of procedures being performed and that too with improved patient outcomes. It seems that the progressing India is readily accepting this robotic surgical innovation, the use of which is on a continuous rise, with the number of robotic platforms coming up in increasing numbers in many tertiary care Indian centres and a corresponding increase in demand of the same by the patients as well; thereby aptly fulfilling the economics of ′demand and supply′.

  9. A Little Knowledge of Ground Motion: Explaining 3-D Physics-Based Modeling to Engineers

    Science.gov (United States)

    Porter, K.

    2014-12-01

    Users of earthquake planning scenarios require the ground-motion map to be credible enough to justify costly planning efforts, but not all ground-motion maps are right for all uses. There are two common ways to create a map of ground motion for a hypothetical earthquake. One approach is to map the median shaking estimated by empirical attenuation relationships. The other uses 3-D physics-based modeling, in which one analyzes a mathematical model of the earth's crust near the fault rupture and calculates the generation and propagation of seismic waves from source to ground surface by first principles. The two approaches produce different-looking maps. The more-familiar median maps smooth out variability and correlation. Using them in a planning scenario can lead to a systematic underestimation of damage and loss, and could leave a community underprepared for realistic shaking. The 3-D maps show variability, including some very high values that can disconcert non-scientists. So when the USGS Science Application for Risk Reduction's (SAFRR) Haywired scenario project selected 3-D maps, it was necessary to explain to scenario users—especially engineers who often use median maps—the differences, advantages, and disadvantages of the two approaches. We used authority, empirical evidence, and theory to support our choice. We prefaced our explanation with SAFRR's policy of using the best available earth science, and cited the credentials of the maps' developers and the reputation of the journal in which they published the maps. We cited recorded examples from past earthquakes of extreme ground motions that are like those in the scenario map. We explained the maps on theoretical grounds as well, explaining well established causes of variability: directivity, basin effects, and source parameters. The largest mapped motions relate to potentially unfamiliar extreme-value theory, so we used analogies to human longevity and the average age of the oldest person in samples of

  10. Estimation of regression laws for ground motion parameters using as case of study the Amatrice earthquake

    Science.gov (United States)

    Tiberi, Lara; Costa, Giovanni

    2017-04-01

    The possibility to directly associate the damages to the ground motion parameters is always a great challenge, in particular for civil protections. Indeed a ground motion parameter, estimated in near real time that can express the damages occurred after an earthquake, is fundamental to arrange the first assistance after an event. The aim of this work is to contribute to the estimation of the ground motion parameter that better describes the observed intensity, immediately after an event. This can be done calculating for each ground motion parameter estimated in a near real time mode a regression law which correlates the above-mentioned parameter to the observed macro-seismic intensity. This estimation is done collecting high quality accelerometric data in near field, filtering them at different frequency steps. The regression laws are calculated using two different techniques: the non linear least-squares (NLLS) Marquardt-Levenberg algorithm and the orthogonal distance methodology (ODR). The limits of the first methodology are the needed of initial values for the parameters a and b (set 1.0 in this study), and the constraint that the independent variable must be known with greater accuracy than the dependent variable. While the second algorithm is based on the estimation of the errors perpendicular to the line, rather than just vertically. The vertical errors are just the errors in the 'y' direction, so only for the dependent variable whereas the perpendicular errors take into account errors for both the variables, the dependent and the independent. This makes possible also to directly invert the relation, so the a and b values can be used also to express the gmps as function of I. For each law the standard deviation and R2 value are estimated in order to test the quality and the reliability of the found relation. The Amatrice earthquake of 24th August of 2016 is used as case of study to test the goodness of the calculated regression laws.

  11. A COMPUTER-BASED ENVIRONMENT FOR PROCESSING AND SELECTION OF SEISMIC GROUND MOTION RECORDS: OPENSIGNAL

    Directory of Open Access Journals (Sweden)

    Gian Paolo eCimellaro

    2015-09-01

    Full Text Available A new computer-based platform has been proposed whose novelty consists in modeling the local site effects of the ground motion propagation using a hybrid approach based on an equivalent linear model. The soil behavior is modeled assuming that both the shear modulus and the damping ratio vary with the shear strain amplitude. So the hysteretic behavior of the soil is described using the shear modulus degradation and damping ratio curves. In addition, another originality of the proposed system architecture consists in the evaluation of the Conditional Mean Spectrum (CMS on the entire Italian territory automatically, knowing the geographical coordinates. The computer-based platform based on signal processing has been developed using a modular programming approach, to enable the selection and the processing of earthquake ground motion records. The proposed computer-based platform combines in unified environment different features such as: (i selection of ground motion records using both spectral and waveform matching, (ii signal processing, (iii response spectra analysis, (iv soil response analysis etc. The computer-based platform OPENSIGNAL is freely available for the general public at http://areeweb.polito.it/ricerca/ICRED/Software/OpenSignal.php.

  12. Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions

    Science.gov (United States)

    Luco, N.; Cornell, C.A.

    2007-01-01

    Introduced in this paper are several alternative ground-motion intensity measures (IMs) that are intended for use in assessing the seismic performance of a structure at a site susceptible to near-source and/or ordinary ground motions. A comparison of such IMs is facilitated by defining the "efficiency" and "sufficiency" of an IM, both of which are criteria necessary for ensuring the accuracy of the structural performance assessment. The efficiency and sufficiency of each alternative IM, which are quantified via (i) nonlinear dynamic analyses of the structure under a suite of earthquake records and (ii) linear regression analysis, are demonstrated for the drift response of three different moderate- to long-period buildings subjected to suites of ordinary and of near-source earthquake records. One of the alternative IMs in particular is found to be relatively efficient and sufficient for the range of buildings considered and for both the near-source and ordinary ground motions. ?? 2007, Earthquake Engineering Research Institute.

  13. Decoupling the structure from the ground motion during earthquakes by employing friction pendulums

    Science.gov (United States)

    Gillich, G. R.; Iancu, V.; Gillich, N.; Korka, Z. I.; Chioncel, C. P.; Hatiegan, C.

    2018-01-01

    Avoiding dynamic loads on structures during earthquakes is an actual issue since seismic actions can harm or destroy the built environment. Several attempts to prevent this are possible, the essence being to decouple the structure from the ground motion during earthquakes and preventing in this way large deflections and high accelerations. A common approach is the use of friction pendulums, with cylindrical or spherical surfaces but not limited to that, inserted between the ground and the structure, respectively between the pillar and the superstructure. This type of bearings permits small pendulum motion and in this way, earthquake-induced displacements that occur in the bearings are not integrally transmitted to the structure. The consequence is that the structure is subject to greatly reduced lateral loads and shaking movements. In the experiments, conducted to prove the efficiency of the friction pendulums, we made use of an own designed and manufactured shaking table. Two types of sliding surfaces are analyzed, one polynomial of second order (i.e. circular) and one of a superior order. For both pendulum types, analytical models were developed. The results have shown that the structure is really decoupled from the ground motion and has a similar behaviour as that described by the analytic model.

  14. Seismic hazard analysis of Tianjin area based on strong ground motion prediction

    Science.gov (United States)

    Zhao, Boming

    2010-08-01

    Taking Tianjin as an example, this paper proposed a methodology and process for evaluating near-fault strong ground motions from future earthquakes to mitigate earthquake damage for the metropolitan area and important engineering structures. The result of strong ground motion was predicted for Tianjin main faults by the hybrid method which mainly consists of 3D finite difference method and stochastic Green’s function. Simulation is performed for 3D structures of Tianjin region and characterized asperity models. The characterized asperity model describing source heterogeneity is introduced following the fault information from the project of Tianjin Active Faults and Seismic Hazard Assessment. We simulated the worst case that two earthquakes separately occur. The results indicate that the fault position, rupture process and the sedimentary deposits of the basin significantly affect amplification of the simulated ground motion. Our results also demonstrate the possibility of practical simulating wave propagation including basin induced surface waves in broad frequency-band, for seismic hazard analysis near the fault from future earthquakes in urbanized areas.

  15. Ground motion simulations for seismic stations in southern and eastern Romania and seismic hazard assessment

    Science.gov (United States)

    Pavel, Florin; Vacareanu, Radu

    2017-09-01

    This research focuses on the evaluation of soil conditions for seismic stations in southern and eastern Romania, their influence on stochastic finite-fault simulations, and the impact of using them on the seismic hazard assessment. First, the horizontal-to-vertical spectral ratios (HVSR) are evaluated using ground motions recorded in 32 seismic stations during small magnitude ( M W ≤ 6.0) Vrancea seismic events. Most of the seismic stations situated in the southern part of Romania exhibit multiple HVSR peaks over a broad period range. However, only the seismic stations in the eastern-most part of Romania have clear short-period predominant periods. Subsequently, stochastic finite-fault simulations are performed in order to evaluate the influence of the soil conditions on the ground motion amplitudes. The analyses show that the earthquake magnitude has a larger influence on the computed ground motion amplitudes for the short- and medium-period range, while the longer-period spectral ordinates tend to be influenced more by the soil conditions. Next, the impact of the previously evaluated soil conditions on the seismic hazard results for Romania is also investigated. The results reveal a significant impact of the soil conditions on the seismic hazard levels, especially for the sites characterized by long-period amplifications (sites situated mostly in southern Romania), and a less significant influence in the case of sites which have clear short predominant periods.

  16. Ground Motion Prediction of Subduction Earthquakes using the Onshore-Offshore Ambient Seismic Field

    Science.gov (United States)

    Viens, L.; Miyake, H.; Koketsu, K.

    2014-12-01

    Seismic waves produced by earthquakes already caused plenty of damages all around the world and are still a real threat to human beings. To reduce seismic risk associated with future earthquakes, accurate ground motion predictions are required, especially for cities located atop sedimentary basins that can trap and amplify these seismic waves. We focus this study on long-period ground motions produced by subduction earthquakes in Japan which have the potential to damage large-scale structures, such as high-rise buildings, bridges, and oil storage tanks. We extracted the impulse response functions from the ambient seismic field recorded by two stations using one as a virtual source, without any preprocessing. This method allows to recover the reliable phases and relative, rather than absolute, amplitudes. To retrieve corresponding Green's functions, the impulse response amplitudes need to be calibrated using observational records of an earthquake which happened close to the virtual source. We show that Green's functions can be extracted between offshore submarine cable-based sea-bottom seismographic observation systems deployed by JMA located atop subduction zones and on-land NIED/Hi-net stations. In contrast with physics-based simulations, this approach has the great advantage to predict ground motions of moderate earthquakes (Mw ~5) at long-periods in highly populated sedimentary basin without the need of any external information about the velocity structure.

  17. Ground motion simulations in Marmara (Turkey) region from 3D finite difference method

    Science.gov (United States)

    Aochi, Hideo; Ulrich, Thomas; Douglas, John

    2016-04-01

    In the framework of the European project MARSite (2012-2016), one of the main contributions from our research team was to provide ground-motion simulations for the Marmara region from various earthquake source scenarios. We adopted a 3D finite difference code, taking into account the 3D structure around the Sea of Marmara (including the bathymetry) and the sea layer. We simulated two moderate earthquakes (about Mw4.5) and found that the 3D structure improves significantly the waveforms compared to the 1D layer model. Simulations were carried out for different earthquakes (moderate point sources and large finite sources) in order to provide shake maps (Aochi and Ulrich, BSSA, 2015), to study the variability of ground-motion parameters (Douglas & Aochi, BSSA, 2016) as well as to provide synthetic seismograms for the blind inversion tests (Diao et al., GJI, 2016). The results are also planned to be integrated in broadband ground-motion simulations, tsunamis generation and simulations of triggered landslides (in progress by different partners). The simulations are freely shared among the partners via the internet and the visualization of the results is diffused on the project's homepage. All these simulations should be seen as a reference for this region, as they are based on the latest knowledge that obtained during the MARSite project, although their refinement and validation of the model parameters and the simulations are a continuing research task relying on continuing observations. The numerical code used, the models and the simulations are available on demand.

  18. Rupture dynamics and ground motions from earthquakes in 2-D heterogeneous media

    KAUST Repository

    Bydlon, Samuel A.

    2015-03-21

    ©2015. American Geophysical Union. All Rights Reserved. We perform 2-D simulations of earthquakes on rough faults in media with random heterogeneities (with von Karman distribution) to study the effects of geometric and material heterogeneity on the rupture process and resulting high-frequency ground motions in the near-fault region (out to ∼20km). Variations in slip and rupture velocity can arise from material heterogeneity alone but are dominantly controlled by fault roughness. Scattering effects become appreciable beyond ∼3km from the fault. Near-fault scattering extends the duration of incoherent, high-frequency ground motions and, at least in our 2-D simulations, elevates root-mean-square accelerations (i.e., Arias intensity) with negligible reduction in peak velocities. We also demonstrate that near-fault scattering typically occurs in the power law tail of the power spectral density function, quantified by the Hurst exponent and another parameter combining standard deviation and correlation length. Key Points Fault roughness, not material heterogeneity, dominates rupture process Introduce parameter that can be used to quantify near-fault scattering Scattering affects the duration and amplitude of high-frequency ground motions

  19. On the generation of tangential ground motion by underground explosions in jointed rocks

    Science.gov (United States)

    Vorobiev, Oleg; Ezzedine, Souheil; Antoun, Tarabay; Glenn, Lewis

    2015-03-01

    This paper describes computational studies of tangential ground motions generated by spherical explosions in a heavily jointed granite formation. Various factors affecting the shear wave generation are considered, including joint spacing, orientation and frictional properties. Simulations are performed both in 2-D for a single joint set to elucidate the basic response mechanisms, and in 3-D for multiple joint sets to realistically represent in situ conditions in a realistic geological setting. The joints are modelled explicitly using both contact elements and weakness planes in the material. Simulations are performed both deterministically and stochastically to quantify the effects of geological uncertainties on near field ground motions. The mechanical properties of the rock and the joints as well as the joint spacing and orientation are taken from experimental test data and geophysical logs corresponding to the Climax Stock granitic outcrop, which is the geological setting of the source physics experiment (SPE). Agreement between simulation results and near field wave motion data from SPE enables newfound understanding of the origin and extent of non-spherical motions associated with underground explosions in fractured geological media.

  20. Long Duration of Ground Motion in the Paradigmatic Valley of Mexico

    Science.gov (United States)

    Cruz-Atienza, V. M.; Tago, J.; Sanabria-Gómez, J. D.; Chaljub, E.; Etienne, V.; Virieux, J.; Quintanar, L.

    2016-12-01

    Built-up on top of ancient lake deposits, Mexico City experiences some of the largest seismic site effects worldwide. Besides the extreme amplification of seismic waves, duration of intense ground motion from large subduction earthquakes exceeds three minutes in the lake-bed zone of the basin, where hundreds of buildings collapsed or were seriously damaged during the magnitude 8.0 Michoacán earthquake in 1985. Different mechanisms contribute to the long lasting motions, such as the regional dispersion and multiple-scattering of the incoming wavefield from the coast, more than 300 km away the city. By means of high performance computational modeling we show that, despite the highly dissipative basin deposits, seismic energy can propagate long distances in the deep structure of the valley, promoting also a large elongation of motion. Our simulations reveal that the seismic response of the basin is dominated by surface-waves overtones, and that this mechanism increases the duration of ground motion by more than 170% and 290% of the incoming wavefield duration at 0.5 and 0.3 Hz, respectively, which are two frequencies with the largest observed amplification. This conclusion contradicts what has been previously stated from observational and modeling investigations, where the basin itself has been discarded as a preponderant factor promoting long and devastating shaking in Mexico City.

  1. Long Duration of Ground Motion in the Paradigmatic Valley of Mexico

    Science.gov (United States)

    Cruz-Atienza, V. M.; Tago, J.; Sanabria-Gómez, J. D.; Chaljub, E.; Etienne, V.; Virieux, J.; Quintanar, L.

    2016-01-01

    Built-up on top of ancient lake deposits, Mexico City experiences some of the largest seismic site effects worldwide. Besides the extreme amplification of seismic waves, duration of intense ground motion from large subduction earthquakes exceeds three minutes in the lake-bed zone of the basin, where hundreds of buildings collapsed or were seriously damaged during the magnitude 8.0 Michoacán earthquake in 1985. Different mechanisms contribute to the long lasting motions, such as the regional dispersion and multiple-scattering of the incoming wavefield from the coast, more than 300 km away the city. By means of high performance computational modeling we show that, despite the highly dissipative basin deposits, seismic energy can propagate long distances in the deep structure of the valley, promoting also a large elongation of motion. Our simulations reveal that the seismic response of the basin is dominated by surface-waves overtones, and that this mechanism increases the duration of ground motion by more than 170% and 290% of the incoming wavefield duration at 0.5 and 0.3 Hz, respectively, which are two frequencies with the largest observed amplification. This conclusion contradicts what has been previously stated from observational and modeling investigations, where the basin itself has been discarded as a preponderant factor promoting long and devastating shaking in Mexico City. PMID:27934934

  2. WHITTIER NARROWS, CALIFORNIA EARTHQUAKE OF OCTOBER 1, 1987-PRELIMINARY ASSESSMENT OF STRONG GROUND MOTION RECORDS.

    Science.gov (United States)

    Brady, A.G.; Etheredge, E.C.; Porcella, R.L.

    1988-01-01

    More than 250 strong-motion accelerograph stations were triggered by the Whittier Narrows, California earthquake of 1 October 1987. Considering the number of multichannel structural stations in the area of strong shaking, this set of records is one of the more significant in history. Three networks, operated by the U. S. Geological Survey, the California Division of Mines and Geology, and the University of Southern California produced the majority of the records. The excellent performance of the instruments in these and the smaller arrays is attributable to the quality of the maintenance programs. Readiness for a magnitude 8 event is directly related to these maintenance programs. Prior to computer analysis of the analog film records, a number of important structural resonant modes can be identified, and frequencies and simple mode shapes have been scaled.

  3. Ground motion modelling in the Gujarat region of Western India using empirical Green's function approach

    Science.gov (United States)

    Choudhury, Pallabee; Chopra, Sumer; Roy, Ketan Singha; Sharma, Jyoti

    2016-04-01

    In this study, ground motions are estimated for scenario earthquakes of Mw 6.0, 6.5 and 7.0 at 17 sites in Gujarat region using Empirical Green's function technique. The Dholavira earthquake of June 19, 2012 (Mw 5.1) which occurred in the Kachchh region of Gujarat is considered as an element earthquake. We estimated the focal mechanism and source parameters of the element earthquake using standard methodologies. The moment tensor inversion technique is used to determine the fault plane solution (strike = 8°, dip = 51°, and rake = - 7°). The seismic moment and the stress drop are 5.6 × 1016 Nm and 120 bars respectively. The validity of the approach was tested for a smaller earthquake. A few possible directivity scenarios were also tested to find out the effect of directivity on the level of ground motions. Our study reveals that source complexities and site effects play a very important role in deciding the level of ground motions at a site which are difficult to model by GMPEs. Our results shed new light on the expected accelerations in the region and suggest that the Kachchh region can expect maximum acceleration of around 500 cm/s2 at few sites near source and around 200 cm/s2 at most of the sites located within 50 km from the epicentre for a Mw 7.0 earthquake. The estimated ground accelerations can be used by the administrators and planners for providing a guiding framework to undertake mitigation investments and activities in the region.

  4. Stability of equilibrium in upright stance and voluntary motion control in athletes-shooters in the process of ready position and target shooting

    Directory of Open Access Journals (Sweden)

    A.A. Pryimakov

    2015-02-01

    Full Text Available Purpose: consists in studying the relationships between the system of equilibrium regulation in upright stance and voluntary motion control in athletes-shooters during ready position and target shooting. Material: 19 highly skilled athletes specialized in pistol shooting were studied. Physiological and biomechanical characteristics of posture and voluntary motions were assessed by methods of stabilography, electromyography and tremorometry; besides, accuracy of target shooting was registered. Results: high degree of shooting accuracy dependence on posture somatic parameters has been revealed, of which the greatest impact upon the result is exerted by low-frequency vibrations of the body general centre of mass, subjected to voluntary control. Prognostic models of shooting accuracy dependence upon the character of posture regulation during ready position and the shot have been developed. Conclusions: obtained results reveal the mechanisms of functioning and interacting of two systems of management - posture and voluntary motion. Elaborated regression models permit to model and predict posture stability and shooting accuracy during ready position and the shot.

  5. Strong ground motion in the Taipei basin from the 1999 Chi-Chi, Taiwan, earthquake

    Science.gov (United States)

    Fletcher, Joe B.; Wen, K.-L.

    2005-01-01

    The Taipei basin, located in northwest Taiwan about 160 km from the epicenter of the Chi-Chi earthquake, is a shallow, triangular-shaped basin filled with low-velocity fluvial deposits. There is a strong velocity contrast across the basement interface of about 600 m/sec at a depth of about 600-700 m in the deeper section of the basin, suggesting that ground motion should be amplified at sites in the basin. In this article, the ground-motion recordings are analyzed to determine the effect of the basin both in terms of amplifications expected from a 1D model of the sediments in the basin and in terms of the 3D structure of the basin. Residuals determined for peak acceleration from attenuation curves are more positive (amplified) in the basin (average of 5.3 cm/ sec2 compared to - 24.2 cm/sec2 for those stations outside the basin and between 75 and 110 km from the surface projection of the faulted area, a 40% increase in peak ground acceleration). Residuals for peak velocity are also significantly more positive at stations in the basin (31.8 cm/sec compared to 20.0 cm/sec out). The correlation of peak motion with depth to basement, while minor in peak acceleration, is stronger in the peak velocities. Record sections of ground motion from stations in and around the Taipei basin show that the largest long-period arrival, which is coherent across the region, is strongest on the vertical component and has a period of about 10-12 sec. This phase appears to be a Rayleigh wave, probably associated with rupture at the north end of the Chelungpu fault. Records of strong motion from stations in and near the basin have an additional, higher frequency signal: nearest the deepest point in the basin, the signal is characterized by frequencies of about 0.3 - 0.4 Hz. These frequencies are close to simple predictions using horizontal layers and the velocity structure of the basin. Polarizations of the S wave are mostly coherent across the array, although there are significant

  6. Investigation of the frequency content of ground motions recorded during strong Vrancea earthquakes, based on deterministic and stochastic indices

    CERN Document Server

    Craifaleanu, Iolanda-Gabriela

    2013-01-01

    The paper presents results from a recent study in progress, involving an extensive analysis, based on several deterministic and stochastic indices, of the frequency content of ground motions recorded during strong Vrancea seismic events. The study, continuing those initiated by Lungu et al. in the early nineties, aims to better reveal the characteristics of the analyzed ground motions. Over 300 accelerograms, recorded during the strong Vrancea seismic events mentioned above and recently re-digitized, are used in the study. Various analytical estimators of the frequency content, such as those based on Fourier spectra, power spectral density, response spectra and peak ground motion values are evaluated and compared. The results are correlated and validated by using the information provided by various spectral bandwidth measures, as the Vanmarcke and the Cartwright and Longuet-Higgins indices. The capacity of the analyzed estimators to describe the frequency content of the analyzed ground motions is assessed com...

  7. The 26 January 2001 M 7.6 Bhuj, India, earthquake: Observed and predicted ground motions

    Science.gov (United States)

    Hough, S.E.; Martin, S.; Bilham, R.; Atkinson, G.M.

    2002-01-01

    Although local and regional instrumental recordings of the devastating 26, January 2001, Bhuj earthquake are sparse, the distribution of macroseismic effects can provide important constraints on the mainshock ground motions. We compiled available news accounts describing damage and other effects and interpreted them to obtain modified Mercalli intensities (MMIs) at >200 locations throughout the Indian subcontinent. These values are then used to map the intensity distribution throughout the subcontinent using a simple mathematical interpolation method. Although preliminary, the maps reveal several interesting features. Within the Kachchh region, the most heavily damaged villages are concentrated toward the western edge of the inferred fault, consistent with western directivity. Significant sediment-induced amplification is also suggested at a number of locations around the Gulf of Kachchh to the south of the epicenter. Away from the Kachchh region, intensities were clearly amplified significantly in areas that are along rivers, within deltas, or on coastal alluvium, such as mudflats and salt pans. In addition, we use fault-rupture parameters inferred from teleseismic data to predict shaking intensity at distances of 0-1000 km. We then convert the predicted hard-rock ground-motion parameters to MMI by using a relationship (derived from Internet-based intensity surveys) that assigns MMI based on the average effects in a region. The predicted MMIs are typically lower by 1-3 units than those estimated from news accounts, although they do predict near-field ground motions of approximately 80%g and potentially damaging ground motions on hard-rock sites to distances of approximately 300 km. For the most part, this discrepancy is consistent with the expected effect of sediment response, but it could also reflect other factors, such as unusually high building vulnerability in the Bhuj region and a tendency for media accounts to focus on the most dramatic damage, rather than

  8. Ground Motion Selection and Scaling for the Seismic Investigation of the Concrete Gravity Dams for Near Fault Earthquakes

    Science.gov (United States)

    Arici, Y.; Bybordiani, M.

    2016-12-01

    The use of time histories for the seismic design and analysis of dams is becoming increasingly common given the state of the art of the computational tools for assessing the seismic demands on these systems. Determination of the ground motions that will be used in time history analysis is a crucial task since the results usually show a wide variability in the required quantity due to the stochastic nature of the applied earthquake record. In order to reduce this variability and predict the "true" demand related to the seismic hazard conditions of the site, the ground motions are usually carefully selected and subjected to scaling procedures. A separate but equally important goal in this regard is to obtain the required demand with a small number of representative motions reducing the considerable analysis workload for these large systems. In this regard, the common ground motion scaling techniques are evaluated in this study in a robust dam-foundation-reservoir interaction (DFRI) setting for determining the efficiency and accuracy of the scaling techniques for predicting the target demands for concrete gravity dams. A large ensemble of ground motions were used on a range of systems with different canyon geometries and moduli ratios in order to consider the effect of the soil-structure interaction (SSI) on the motion selection for concrete gravity dams. The frequency response of different systems and their interaction with the frequency content of the ground motions were henceforth considered. The required number of ground motions for consistent and efficient analyses of such systems was investigated considering different engineering demand parameters on the dam systems. The choice of EDP, and the corresponding effect of the scaling procedure on the analyses were evaluated in order to provide guidelines on the scaling of the ground motions for the seismic analyses of these systems.

  9. A neural model of the temporal dynamics of figure-ground segregation in motion perception.

    Science.gov (United States)

    Raudies, Florian; Neumann, Heiko

    2010-03-01

    How does the visual system manage to segment a visual scene into surfaces and objects and manage to attend to a target object? Based on psychological and physiological investigations, it has been proposed that the perceptual organization and segmentation of a scene is achieved by the processing at different levels of the visual cortical hierarchy. According to this, motion onset detection, motion-defined shape segregation, and target selection are accomplished by processes which bind together simple features into fragments of increasingly complex configurations at different levels in the processing hierarchy. As an alternative to this hierarchical processing hypothesis, it has been proposed that the processing stages for feature detection and segregation are reflected in different temporal episodes in the response patterns of individual neurons. Such temporal epochs have been observed in the activation pattern of neurons as low as in area V1. Here, we present a neural network model of motion detection, figure-ground segregation and attentive selection which explains these response patterns in an unifying framework. Based on known principles of functional architecture of the visual cortex, we propose that initial motion and motion boundaries are detected at different and hierarchically organized stages in the dorsal pathway. Visual shapes that are defined by boundaries, which were generated from juxtaposed opponent motions, are represented at different stages in the ventral pathway. Model areas in the different pathways interact through feedforward and modulating feedback, while mutual interactions enable the communication between motion and form representations. Selective attention is devoted to shape representations by sending modulating feedback signals from higher levels (working memory) to intermediate levels to enhance their responses. Areas in the motion and form pathway are coupled through top-down feedback with V1 cells at the bottom end of the hierarchy

  10. Disaggregation of probabilistic ground motions in two cities of Western Iran, Kermanshah and Sanandaj

    Directory of Open Access Journals (Sweden)

    Elham Shabani

    2014-01-01

    Full Text Available This article presents the results of disaggregation of ground motion hazard obtained for two of Iran’s urban centers, Kermanshah and Sanandaj. Disaggregation of peak ground acceleration (PGA and spectral acceleration hazard corresponding to mean return periods of 475 and 50 years is performed. 12 area seismic sources in the study region as well as 15 area seismic sources in a 150-km distance from the region are delineated. The scenario earthquakes are characterized by bins of magnitude, M, source-to-site distance, R, and number of standard deviations, ε, that the ground-motion parameter is away from its median value for that M-R pair as estimated by a prediction equation. In most cases, the sources closer to the site dominate. Larger, more distant earthquakes contribute more significantly to hazard for longer periods than for shorter periods. Disaggregation plots can provide useful information on the distance and magnitude of predominant sources, which can be used to generate scenario earthquakes and select corresponding time histories for seismic design.

  11. Fault Structural Control on Earthquake Strong Ground Motions: The 2008 Wenchuan Earthquake as an Example

    Science.gov (United States)

    Zhang, Yan; Zhang, Dongli; Li, Xiaojun; Huang, Bei; Zheng, Wenjun; Wang, Yuejun

    2017-12-01

    Continental thrust faulting earthquakes pose severe threats to megacities across the world. Recent events show the possible control of fault structures on strong ground motions. The seismogenic structure of the 2008 Wenchuan earthquake is associated with high-angle listric reverse fault zones. Its peak ground accelerations (PGAs) show a prominent feature of fault zone amplification: the values within the 30- to 40-km-wide fault zone block are significantly larger than those on both the hanging wall and the footwall. The PGA values attenuate asymmetrically: they decay much more rapidly in the footwall than in the hanging wall. The hanging wall effects can be seen on both the vertical and horizontal components of the PGAs, with the former significantly more prominent than the latter. All these characteristics can be adequately interpreted by upward extrusion of the high-angle listric reverse fault zone block. Through comparison with a low-angle planar thrust fault associated with the 1999 Chi-Chi earthquake, we conclude that different fault structures might have controlled different patterns of strong ground motion, which should be taken into account in seismic design and construction.

  12. PROBABILISTIC SEISMIC ASSESSMENT OF BASE-ISOLATED NPPS SUBJECTED TO STRONG GROUND MOTIONS OF TOHOKU EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    AHMER ALI

    2014-10-01

    Full Text Available The probabilistic seismic performance of a standard Korean nuclear power plant (NPP with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  13. Investigation of the frequency content of ground motions recorded during strong Vrancea earthquakes, based on deterministic and stochastic indices

    OpenAIRE

    Craifaleanu, Iolanda-Gabriela

    2013-01-01

    The paper presents results from a recent study in progress, involving an extensive analysis, based on several deterministic and stochastic indices, of the frequency content of ground motions recorded during strong Vrancea seismic events. The study, continuing those initiated by Lungu et al. in the early nineties, aims to better reveal the characteristics of the analyzed ground motions. Over 300 accelerograms, recorded during the strong Vrancea seismic events mentioned above and recently re-di...

  14. "Working towards being ready": A grounded theory study of how practising midwives maintain their ongoing competence to practise their profession.

    Science.gov (United States)

    Calvert, Susan; Smythe, Elizabeth; McKenzie-Green, Barbara

    2017-07-01

    to present a grounded theory research study explaining how New Zealand midwives maintain their ongoing competence to practise their profession. grounded theory, an interpretive emergent research methodology was used to examine the process of maintaining competence in midwifery practice. New Zealand urban and rural practice settings. twenty-six midwives from across New Zealand were interviewed and asked about maintaining their competence to practise. Five midwives were interviewed twice, to explore the emerging findings and as one method of member checking. the grounded theory of 'working towards being ready' describes a continuous process in which midwives engage as they work to maintain practice competence. The component parts comprise professional positioning, identifying needs, strategizing solutions and reflecting on practice. The process is contextual, diverse and is influenced by the practice setting where the salient conditions of resourcing, availability and opportunity for engagement in activities are significant. across the midwifery profession, midwives in New Zealand are currently working under the generic umbrella of midwifery practice. Midwives work across a range of practice arenas in diverse ways focussed on providing safe care and require a range of professional development activities germane to their area of practice. When the midwife has access to professional development pertinent to their practice, women and the profession benefit. As there is diversity of practice, then mandated processes for ongoing competence need to have flexibility to reflect that diversity. midwives engage in development that allows them to remain current in practice and that enables them to provide appropriate care to women and their babies. As a consequence they can develop expertise in certain aspects of midwifery. Mandated processes that require engagement in activities aimed at demonstration of competence should be evaluated and tailored to ensure they meet the needs

  15. Analysis of the variability in ground-motion synthesis and inversion

    Science.gov (United States)

    Spudich, Paul A.; Cirella, Antonella; Scognamiglio, Laura; Tinti, Elisa

    2017-12-07

    In almost all past inversions of large-earthquake ground motions for rupture behavior, the goal of the inversion is to find the “best fitting” rupture model that predicts ground motions which optimize some function of the difference between predicted and observed ground motions. This type of inversion was pioneered in the linear-inverse sense by Olson and Apsel (1982), who minimized the square of the difference between observed and simulated motions (“least squares”) while simultaneously minimizing the rupture-model norm (by setting the null-space component of the rupture model to zero), and has been extended in many ways, one of which is the use of nonlinear inversion schemes such as simulated annealing algorithms that optimize some other misfit function. For example, the simulated annealing algorithm of Piatanesi and others (2007) finds the rupture model that minimizes a “cost” function which combines a least-squares and a waveform-correlation measure of misfit.All such inversions that look for a unique “best” model have at least three problems. (1) They have removed the null-space component of the rupture model—that is, an infinite family of rupture models that all fit the data equally well have been narrowed down to a single model. Some property of interest in the rupture model might have been discarded in this winnowing process. (2) Smoothing constraints are commonly used to yield a unique “best” model, in which case spatially rough rupture models will have been discarded, even if they provide a good fit to the data. (3) No estimate of confidence in the resulting rupture models can be given because the effects of unknown errors in the Green’s functions (“theory errors”) have not been assessed. In inversion for rupture behavior, these theory errors are generally larger than the data errors caused by ground noise and instrumental limitations, and so overfitting of the data is probably ubiquitous for such inversions.Recently, attention

  16. Adapting Surface Ground Motion Relations to Underground conditions: A case study for the Sudbury Neutrino Observatory in Sudbury, Ontario, Canada

    Science.gov (United States)

    Babaie Mahani, A.; Eaton, D. W.

    2013-12-01

    Ground Motion Prediction Equations (GMPEs) are widely used in Probabilistic Seismic Hazard Assessment (PSHA) to estimate ground-motion amplitudes at Earth's surface as a function of magnitude and distance. Certain applications, such as hazard assessment for caprock integrity in the case of underground storage of CO2, waste disposal sites, and underground pipelines, require subsurface estimates of ground motion; at present, such estimates depend upon theoretical modeling and simulations. The objective of this study is to derive correction factors for GMPEs to enable estimation of amplitudes in the subsurface. We use a semi-analytic approach along with finite-difference simulations of ground-motion amplitudes for surface and underground motions. Spectral ratios of underground to surface motions are used to calculate the correction factors. Two predictive methods are used. The first is a semi-analytic approach based on a quarter-wavelength method that is widely used for earthquake site-response investigations; the second is a numerical approach based on elastic finite-difference simulations of wave propagation. Both methods are evaluated using recordings of regional earthquakes by broadband seismometers installed at the surface and at depths of 1400 m and 2100 m in the Sudbury Neutrino Observatory, Canada. Overall, both methods provide a reasonable fit to the peaks and troughs observed in the ratios of real data. The finite-difference method, however, has the capability to simulate ground motion ratios more accurately than the semi-analytic approach.

  17. ARMA models for earthquake ground motions. Seismic safety margins research program

    Energy Technology Data Exchange (ETDEWEB)

    Chang, M. K.; Kwiatkowski, J. W.; Nau, R. F.; Oliver, R. M.; Pister, K. S.

    1981-02-01

    Four major California earthquake records were analyzed by use of a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It was possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters, and test the residuals generated by these models. It was also possible to show the connections, similarities, and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum-likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed is suitable for simulating earthquake ground motions in the time domain, and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. 60 references, 19 figures, 9 tables.

  18. On the coherence of ground motion in the San Fernando valley

    Science.gov (United States)

    Hough, S.E.; Field, E.H.

    1996-01-01

    We present an analysis of the coherence of seismic ground motion recorded on alluvial sediments in the San Fernando Valley, California. Using aftershocks of the 17 January 1994 Mw6.7 earthquake recorded at a quasi-dense array of portable stations, we analyze the coherence of three well-recorded magnitude 3.7 to 4.0 events over the frequency range 0.5 to 15 Hz and a distance range of 0.5 to 5.3 km. All stations are located at sites with broadly similar near-site geology, characterized by medium to fine-grain Quaternary alluvial sediments. On average, relatively high values of coherence are observed for distances up to 3 to 4 km and frequencies up to 2 to 3 Hz; coherence drops sharply at frequencies near and above 3 Hz. Although average coherence functions are described reasonably well by a log-linear relationship with frequency, the curves at all distances exhibit a flattening at low frequencies that is not consistent with previous observations of coherence at hardrock sites. The distance decay of coherence is also markedly less strong, with high coherence values observed over station separations corresponding to multiple wavelengths. This may reflect fundamental differences in shallow-wave propagation in the two environments, with high-frequency scattering relatively more dominant in regions of hard-rock near-surface geology. Within a sedimentary basin or valley, the site response itself generally reflects a resonance phenomenon that may tend to give rise to more uniform ground motions. However, previous studies have demonstrated the existence of pathological focusing and amplification effects within complex sedimentary basin environments such as the greater Los Angeles region; our results undoubtedly do not quantify the full range of ground-motion variability at all sites, but rather represent the level of that variability that can be expected, and quantified, for typical source/receiver paths.

  19. Overview of the relations earthquake source parameters and the specification of strong ground motion for design purposes

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D.L.

    1977-08-01

    One of the most important steps in the seismic design process is the specification of the appropriate ground motion to be input into the design analysis. From the point-of-view of engineering design analysis, the important parameters are peak ground acceleration, spectral shape and peak spectral levels. In a few cases, ground displacement is a useful parameter. The earthquake is usually specified by giving its magnitude and either the epicentral distance or the distance of the closest point on the causitive fault to the site. Typically, the appropriate ground motion parameters are obtained using the specified magnitude and distance in equations obtained from regression analysis among the appropriate variables. Two major difficulties with such an approach are: magnitude is not the best parameter to use to define the strength of an earthquake, and little near-field data is available to establish the appropriate form for the attenuation of the ground motion with distance, source size and strength. These difficulties are important for designing a critical facility; i.e., one for which a very low risk of exceeding the design ground motion is required. Examples of such structures are nuclear power plants, schools and hospitals. for such facilities, a better understanding of the relation between the ground motion and the important earthquake source parameters could be very useful for several reasons.

  20. Deaggregation of Probabilistic Ground Motions in the Central and Eastern United States

    Science.gov (United States)

    Harmsen, S.; Perkins, D.; Frankel, A.

    1999-01-01

    Probabilistic seismic hazard analysis (PSHA) is a technique for estimating the annual rate of exceedance of a specified ground motion at a site due to known and suspected earthquake sources. The relative contributions of the various sources to the total seismic hazard are determined as a function of their occurrence rates and their ground-motion potential. The separation of the exceedance contributions into bins whose base dimensions are magnitude and distance is called deaggregation. We have deaggregated the hazard analyses for the new USGS national probabilistic ground-motion hazard maps (Frankel et al., 1996). For points on a 0.2?? grid in the central and eastern United States (CEUS), we show color maps of the geographical variation of mean and modal magnitudes (M??, M??) and distances (D??, D??) for ground motions having a 2% chance of exceedance in 50 years. These maps are displayed for peak horizontal acceleration and for spectral response accelerations of 0.2, 0.3, and 1.0 sec. We tabulate M??, D??, M??, and D?? for 49 CEUS cities for 0.2- and 1.0-sec response. Thus, these maps and tables are PSHA-derived estimates of the potential earthquakes that dominate seismic hazard at short and intermediate periods in the CEUS. The contribution to hazard of the New Madrid and Charleston sources dominates over much of the CEUS; for 0.2-sec response, over 40% of the area; for 1.0-sec response, over 80% of the area. For 0.2-sec response, D?? ranges from 20 to 200 km, for 1.0 sec, 30 to 600 km. For sites influenced by New Madrid or Charleston, D is less than the distance to these sources, and M?? is less than the characteristic magnitude of these sources, because averaging takes into account the effect of smaller magnitude and closer sources. On the other hand, D?? is directly the distance to New Madrid or Charleston and M?? for 0.2- and 1.0-sec response corresponds to the dominating source over much of the CEUS. For some cities in the North Atlantic states, short

  1. On low-frequency errors of uniformly modulated filtered white-noise models for ground motions

    Science.gov (United States)

    Safak, Erdal; Boore, David M.

    1988-01-01

    Low-frequency errors of a commonly used non-stationary stochastic model (uniformly modulated filtered white-noise model) for earthquake ground motions are investigated. It is shown both analytically and by numerical simulation that uniformly modulated filter white-noise-type models systematically overestimate the spectral response for periods longer than the effective duration of the earthquake, because of the built-in low-frequency errors in the model. The errors, which are significant for low-magnitude short-duration earthquakes, can be eliminated by using the filtered shot-noise-type models (i. e. white noise, modulated by the envelope first, and then filtered).

  2. Seismology and Earthquake Ground Motions of the August 24, 2014 M6 South Napa Earthquake

    Science.gov (United States)

    Kishida, T.; Wang, S.; Mazzoni, S.; Markam, C.; Lu, Y.; Bozorgnia, Y.; Mahin, S.; Bray, J.; Panagiotou, M.; Stewart, J. P.; Darragh, R. B.; Abrahamson, N. A.; Hollenback, J. C.; Gutierrez, C.; Chiou, B.; Muin, S.; Dreger, D. S.

    2014-12-01

    The M6.0 South Napa earthquake produced strong ground motions in the northern San Francisco Bay area. A total of 214 three-component uncorrected digital accelerograms were downloaded from the CESMD website and processed following the PEER standard procedure (Ancheta et al. 2014). Intense ground motions were recorded in the heavily damaged area of Napa with peak acceleration greater than 0.3 g. Pulse-like waveforms were observed in several of the velocity time series at the near-fault stations. Near-fault velocity time series were rotated into fault normal and fault parallel directions and then characterized as pulse-like or non pulse-like according to previous studies by Hayden et al. (2014), Shahi (2013), and Lu and Panagiotou (2014). The near-fault velocity time series at five stations contained pulses with periods within the expected range of 0.7 s to 2.0 s for soil sites (Bray et al. 2009). However, they also contained longer period pulses than the expected range. High-frequency spikes were recorded at Carquinez Bridge Geotechnical Array #1 (CBGA1) of approximately 1.0 g on the NS component. These spikes were in the S-wave portion and were consistently observed in the downhole arrays and several other sites along the same azimuth from the source. The spikes increase in amplitude both from the Hwy 37/Napa River East Geotechnical Array to CBGA1 and from a depth below 100 m to the surface. This suggests that the spikes could be a result of path effects and site amplification through the surficial soft soil deposits. However, these observations do not exclude the possibility of soil-structure interaction effects on the measured recordings. The 5% damped pseudo-spectral accelerations (PSA) from the recorded ground motions compared well to those estimated from the recent NGA-West2 GMPEs. The exceptions are that PSA is under predicted from 1 to 3 seconds at several near fault records due to the velocity pulses and for short periods at Carquinez Bridge where the large

  3. Hydrostatic Level Sensors as High Precision Ground Motion Instrumentation for Tevatron and Other Energy Frontier Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Volk, James; Hansen, Sten; Johnson, Todd; Jostlein, Hans; Kiper, Terry; Shiltsev, Vladimir; Chupyra, Andrei; Kondaurov, Mikhail; Medvedko, Anatoly; Parkhomchuk, Vasily; Singatulin, Shavkat

    2012-01-01

    Particle accelerators require very tight tolerances on the alignment and stability of their elements: magnets, accelerating cavities, vacuum chambers, etc. In this article we describe the Hydrostatic Level Sensors (HLS) for very low frequency measurements used in a variety of facilities at Fermilab. We present design features of the sensors, outline their technical parameters, describe their test and calibration procedures, discuss different regimes of operation and give few illustrative examples of the experimental data. Detail experimental results of the ground motion measurements with these detectors will be presented in subsequent papers.

  4. Material Response Models and Ground Motion Calculations for High Explosive Tests in G-Tunnel Tuff.

    Science.gov (United States)

    1984-01-25

    through the use of a viscoelastic model in the form of a standard linear solid. 2.2 PHYSICAL PROPERTIES Physical properties from five G- Tunnel , U12G -OT...34Determination of In Situ Stress in U12g Tunnel , Rainier Mesa, Nevada Test Site, Nevada,’ U.S. Geological Survey, USGS-474-219, January 1976. 7. Patch, D. F...A -’"’- "’ " [ N • HilM61 AD-A151 737 DNA-TR-84-124 MATERIAL RESPONSE MODELS AND GROUND MOTION CALCULATIONS FOR HIGH EXPLOSIVE TESTS IN G- TUNNEL TUFF

  5. Broadband Ground Motion Simulation of the 2004 and 1977 Vrancea, Romania, Earthquakes Using Empirical Green's Function Method

    Science.gov (United States)

    Poiata, Natalia; Miyake, Hiroe

    2017-09-01

    We estimated the parameters of strong motion generation areas and simulated broadband ground motions for the moderate October 27, 2004 ( M w 5.8) and damaging March 4, 1977 ( M w 7.4) Vrancea (Romania) intermediate-depth subduction earthquakes using the empirical Green's function method. The method allows the simulation of ground motions in a broadband frequency range by summing up the subevent records, corresponding to small magnitude events in the near-source areas, which are assumed to follow the source-scaling relationship and the omega-square source spectral model. We first estimated the strong motion generation area that reproduces near-source ground motions in a broadband frequency range of 0.3-10 Hz for the 2004 earthquake, by fitting the synthetic acceleration, velocity, and displacement waveforms to the observed data. The source properties of the obtained strong motion generation area are in agreement with the predictions made using an empirical source scaling relationship for crustal earthquakes, implying a stress drop of approximately 10 MPa for the 2004 earthquake. We then modeled the strong motion generation area for the 1977 damaging earthquake using the 2004 earthquake as an empirical Green's function and constructing a source model based on its estimated source parameters. To simulate the unique record at Bucharest, capital city of Romania, the rupture was assumed to have propagated from the northeast bottom of the strong motion generation area having a stress drop of 50 MPa. Broadband ground motion simulations were further compared in terms of the modified Mercalli intensity values, calculated from the peak ground accelerations and peak ground velocities of synthetic waveforms, with the observed Medvedev-Sponheuer-Karnik intensity values. Our estimates of the source properties for the 2004 and 1977 Vrancea intermediate-depth earthquakes support the size-dependent stress drop.

  6. Site Specific Ground Motion Modeling and Seismic Response Analysis for Microzonation of Baku, Azerbaijan

    Science.gov (United States)

    Babayev, Gulam; Telesca, Luciano

    2016-12-01

    We investigated ground response for Baku (Azerbaijan) from two earthquakes of magnitude M6.3 occurred in Caspian Sea (characterized as a near event) and M7.5 in Shamakhi (characterized as a remote extreme event). S-wave velocity with the average shear wave velocity over the topmost 30 m of soil is obtained by experimental method from the VP values measured for the soils. The downtown part of Baku city is characterized by low VS30 values (< 250 m/s), related to sand, water-saturated sand, gravel-pebble, and limestone with clay. High surface PGA of 240 gal for the M7.5 event and of about 190 gal for the M6.3 event, and hence a high ground motion amplification, is observed in the shoreline area, through downtown, in the north-west, and in the east parts of Baku city with soft clays, loamy sands, gravel, sediments.

  7. Terrafirma product : case study for the application of Terrafirma ground motion services to areas of abandoned mining : Northumberland, UK

    OpenAIRE

    Bateson, Luke; Lawrence, David

    2012-01-01

    The UK Coal Authority are responsible for all areas of abandoned coal mining in the UK and are responsible for the settlement of subsidence claims raised by those living in areas of abandoned coal mining. The scope for radar based ground measurements to assist the Coal Authority with their understanding of ground motions which might relate to abandoned coal mines offers an interesting possibility.

  8. Ground motion prediction and earthquake scenarios in the volcanic region of Mt. Etna (Southern Italy

    Science.gov (United States)

    Langer, Horst; Tusa, Giuseppina; Luciano, Scarfi; Azzaro, Raffaela

    2013-04-01

    One of the principal issues in the assessment of seismic hazard is the prediction of relevant ground motion parameters, e. g., peak ground acceleration, radiated seismic energy, response spectra, at some distance from the source. Here we first present ground motion prediction equations (GMPE) for horizontal components for the area of Mt. Etna and adjacent zones. Our analysis is based on 4878 three component seismograms related to 129 seismic events with local magnitudes ranging from 3.0 to 4.8, hypocentral distances up to 200 km, and focal depth shallower than 30 km. Accounting for the specific seismotectonic and geological conditions of the considered area we have divided our data set into three sub-groups: (i) Shallow Mt. Etna Events (SEE), i.e., typically volcano-tectonic events in the area of Mt. Etna having a focal depth less than 5 km; (ii) Deep Mt. Etna Events (DEE), i.e., events in the volcanic region, but with a depth greater than 5 km; (iii) Extra Mt. Etna Events (EEE), i.e., purely tectonic events falling outside the area of Mt. Etna. The predicted PGAs for the SEE are lower than those predicted for the DEE and the EEE, reflecting their lower high-frequency energy content. We explain this observation as due to the lower stress drops. The attenuation relationships are compared to the ones most commonly used, such as by Sabetta and Pugliese (1987)for Italy, or Ambraseys et al. (1996) for Europe. Whereas our GMPEs are based on small earthquakes, the magnitudes covered by the two above mentioned attenuation relationships regard moderate to large magnitudes (up to 6.8 and 7.9, respectively). We show that the extrapolation of our GMPEs to magnitues beyond the range covered by the data is misleading; at the same time also the afore mentioned relationships fail to predict ground motion parameters for our data set. Despite of these discrepancies, we can exploit our data for setting up scenarios for strong earthquakes for which no instrumental recordings are

  9. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository.

  10. Simulation of strong ground motion parameters of the 1 June 2013 Gulf of Suez earthquake, Egypt

    Science.gov (United States)

    Toni, Mostafa

    2017-06-01

    This article aims to simulate the ground motion parameters of the moderate magnitude (ML 5.1) June 1, 2013 Gulf of Suez earthquake, which represents the largest instrumental earthquake to be recorded in the middle part of the Gulf of Suez up to now. This event was felt in all cities located on both sides of the Gulf of Suez, with minor damage to property near the epicenter; however, no casualties were observed. The stochastic technique with the site-dependent spectral model is used to simulate the strong ground motion parameters of this earthquake in the cities located at the western side of the Gulf of Suez and north Red Sea namely: Suez, Ain Sokhna, Zafarana, Ras Gharib, and Hurghada. The presence of many tourist resorts and the increase in land use planning in the considered cities represent the motivation of the current study. The simulated parameters comprise the Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), and Peak Ground Displacement (PGD), in addition to Pseudo Spectral Acceleration (PSA). The model developed for ground motion simulation is validated by using the recordings of three accelerographs installed around the epicenter of the investigated earthquake. Depending on the site effect that has been determined in the investigated areas by using geotechnical data (e.g., shear wave velocities and microtremor recordings), the investigated areas are classified into two zones (A and B). Zone A is characterized by higher site amplification than Zone B. The ground motion parameters are simulated at each zone in the considered areas. The results reveal that the highest values of PGA, PGV, and PGD are observed at Ras Gharib city (epicentral distance ∼ 11 km) as 67 cm/s2, 2.53 cm/s, and 0.45 cm respectively for Zone A, and as 26.5 cm/s2, 1.0 cm/s, and 0.2 cm respectively for Zone B, while the lowest values of PGA, PGV, and PGD are observed at Suez city (epicentral distance ∼ 190 km) as 3.0 cm/s2, 0.2 cm/s, and 0.05 cm/s respectively for Zone A

  11. Ground motion in the presence of complex topography: Earthquake and ambient noise sources

    Science.gov (United States)

    Hartzell, Stephen; Meremonte, Mark; Ramírez-Guzmán, Leonardo; McNamara, Daniel

    2014-01-01

    To study the influence of topography on ground motion, eight seismic recorders were deployed for a period of one year over Poverty Ridge on the east side of the San Francisco Bay Area, California. This location is desirable because of its proximity to local earthquake sources and the significant topographic relief of the array (439 m). Topographic amplification is evaluated as a function of frequency using a variety of methods, including reference‐site‐based spectral ratios and single‐station horizontal‐to‐vertical spectral ratios using both shear waves from earthquakes and ambient noise. Field observations are compared with the predicted ground motion from an accurate digital model of the topography and a 3D local velocity model. Amplification factors from the theoretical calculations are consistent with observations. The fundamental resonance of the ridge is prominently observed in the spectra of data and synthetics; however, higher‐frequency peaks are also seen primarily for sources in line with the major axis of the ridge, perhaps indicating higher resonant modes. Excitations of lateral ribs off of the main ridge are also seen at frequencies consistent with their dimensions. The favored directions of resonance are shown to be transverse to the major axes of the topographic features.

  12. Real-time ground motions monitoring system developed by Raspberry Pi 3

    Science.gov (United States)

    Chen, P.; Jang, J. P.; Chang, H.; Lin, C. R.; Lin, P. P.; Wang, C. C.

    2016-12-01

    Ground-motions seismic stations are usually installed in the special geological area, like high possibility landslide area, active volcanoes, or nearby faults, to real-time monitor the possible geo-hazards. Base on the demands, three main issues needs to be considered: size, low-power consumption and real-time data transmission. Raspberry Pi 3 has the suitable characteristics to fit our requests. Thus, we develop a real-time ground motions monitoring system by Raspberry Pi 3. The Raspberry Pi has the credit-card-sized with single-board computers. The operating system is based on the programmable Linux system.The volume is only 85.6 by 53.98 by 17 mm with USB and Ethernet interfaces. The power supply is only needed 5 Volts and 2.1 A. It is easy to get power by using solar power and transmit the real-time data through Ethernet or by the mobile signal through USB adapter. As Raspberry Pi still a kind of small computer, the service, software or GUI can be very flexibly developed, such as the basic web server, ftp server, SSH connection, and real-time visualization interface tool etc. Until now, we have developed ten instruments with on-line/ real-time data transmission and have installed in the Taiping Mountain in Taiwan to motor the geohazard like mudslide.

  13. Understanding Ground Motion in Las Vegas: Insights from Data Analysis and Two-Dimensional Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A; Tkalcic, H; McCallen, D

    2004-02-05

    Seismic ground motions are amplified in low velocity sedimentary basins relative to adjacent sites on high velocity hard rock. We used historical recordings of NTS nuclear explosions and earthquake recordings in Las Vegas Valley to quantify frequency-dependent basin amplification using Standard Spectral Ratios. We show that amplifications, referred to as site response, can reach a factor of 10 in the frequency band 0.4-2.0 Hz. Band-averaged site response between 0.4-2.0 Hz is strongly correlated with basin depth. However, it is also well known that site response is related to shallow shear-wave velocity structure. We simulated low frequency (f<1Hz) ground motion and site response with two-dimensional elastic finite difference simulations. We demonstrate that physically plausible models of the shallow subsurface, including low velocity sedimentary structure, can predict relative amplification as well as some of the complexity in the observed waveforms. This study demonstrates that site response can be modeled without invoking complex and computationally expensive three-dimensional structural models.

  14. Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations

    KAUST Repository

    Mai, Paul Martin

    2017-04-03

    Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω−2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation.

  15. A New Iterative Procedure for Deconvolution of Seismic Ground Motion in Dam-Reservoir-Foundation Systems

    Directory of Open Access Journals (Sweden)

    Gurinderbir S. Sooch

    2014-01-01

    Full Text Available The concrete gravity dams are designed to perform satisfactorily during an earthquake since the consequence of failure is catastrophic to the downstream communities. The foundation in a dam is usually modeled by a substructuring approach for the purpose of seismic response analysis. However, the substructuring cannot be used for solving nonlinear dynamic problems that may be encountered in dam-reservoir-foundation systems. For that reason, the time domain approach is preferred for such systems. The deconvolved earthquake input model is preferred as it can remove the seismic scattering effects due to artificial boundaries of the semi-infinite foundation domain. Deconvolution is a mathematical process that allows the adjustment of the amplitude and frequency contents of a seismic ground motion applied at the base of the foundation in order to get the desired output at the dam-foundation interface. It is observed that the existing procedures of deconvolution are not effective for all types of earthquake records. A modified procedure has been proposed here for efficient deconvolution of all types of earthquake records including high-frequency and low-frequency ground motions.

  16. Evaluation of modal pushover-based scaling of one component of ground motion: Tall buildings

    Science.gov (United States)

    Kalkan, Erol; Chopra, Anil K.

    2012-01-01

    Nonlinear response history analysis (RHA) is now increasingly used for performance-based seismic design of tall buildings. Required for nonlinear RHAs is a set of ground motions selected and scaled appropriately so that analysis results would be accurate (unbiased) and efficient (having relatively small dispersion). This paper evaluates accuracy and efficiency of recently developed modal pushover–based scaling (MPS) method to scale ground motions for tall buildings. The procedure presented explicitly considers structural strength and is based on the standard intensity measure (IM) of spectral acceleration in a form convenient for evaluating existing structures or proposed designs for new structures. Based on results presented for two actual buildings (19 and 52 stories, respectively), it is demonstrated that the MPS procedure provided a highly accurate estimate of the engineering demand parameters (EDPs), accompanied by significantly reduced record-to-record variability of the responses. In addition, the MPS procedure is shown to be superior to the scaling procedure specified in the ASCE/SEI 7-05 document.

  17. Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations

    Science.gov (United States)

    Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.; Dunham, Eric M.

    2017-09-01

    Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω-2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation.

  18. Ground Motion Data Profile of Western Turkey with Intelligent Hybrid Processing

    Science.gov (United States)

    Korkmaz, Kasim A.; Demir, Fuat

    2017-01-01

    The recent earthquakes caused severe damages on the existing buildings. By this motivation, an important amount of research work has been conducted to determine the seismic risk of seismically active regions. For an accurate seismic risk assessment, processing of ground motions would provide an advantage. Using the current technology, it is not possible to precisely predict the future earthquakes. Therefore, most of the current seismic risk assessment methodologies are based on statistical evaluation by using recurrence and magnitude of the earthquakes hit the specified region. Because of the limited number of records on earthquakes, the quality of definitions is questionable. Fuzzy logic algorithm can be used to improve the quality of the definition. In the present study, ground motion data profile of western Turkey is defined using an intelligent hybrid processing. The approach is given in a practical way for an easier and faster calculation. Earthquake data between 1970 and 1999 from western part of Turkey have been used for training. The results are tested and validated with the earthquake data between 2000 and 2015 of the same region. Enough approximation was validated between calculated values and the earthquake data by using the intelligent hybrid processing.

  19. Performance of Irikura Recipe Rupture Model Generator in Earthquake Ground Motion Simulations with Graves and Pitarka Hybrid Approach

    Science.gov (United States)

    Pitarka, Arben; Graves, Robert; Irikura, Kojiro; Miyake, Hiroe; Rodgers, Arthur

    2017-09-01

    We analyzed the performance of the Irikura and Miyake (Pure and Applied Geophysics 168(2011):85-104, 2011) (IM2011) asperity-based kinematic rupture model generator, as implemented in the hybrid broadband ground motion simulation methodology of Graves and Pitarka (Bulletin of the Seismological Society of America 100(5A):2095-2123, 2010), for simulating ground motion from crustal earthquakes of intermediate size. The primary objective of our study is to investigate the transportability of IM2011 into the framework used by the Southern California Earthquake Center broadband simulation platform. In our analysis, we performed broadband (0-20 Hz) ground motion simulations for a suite of M6.7 crustal scenario earthquakes in a hard rock seismic velocity structure using rupture models produced with both IM2011 and the rupture generation method of Graves and Pitarka (Bulletin of the Seismological Society of America, 2016) (GP2016). The level of simulated ground motions for the two approaches compare favorably with median estimates obtained from the 2014 Next Generation Attenuation-West2 Project (NGA-West2) ground motion prediction equations (GMPEs) over the frequency band 0.1-10 Hz and for distances out to 22 km from the fault. We also found that, compared to GP2016, IM2011 generates ground motion with larger variability, particularly at near-fault distances (1 s). For this specific scenario, the largest systematic difference in ground motion level for the two approaches occurs in the period band 1-3 s where the IM2011 motions are about 20-30% lower than those for GP2016. We found that increasing the rupture speed by 20% on the asperities in IM2011 produced ground motions in the 1-3 s bandwidth that are in much closer agreement with the GMPE medians and similar to those obtained with GP2016. The potential implications of this modification for other rupture mechanisms and magnitudes are not yet fully understood, and this topic is the subject of ongoing study. We concluded

  20. Performance of Irikura recipe rupture model generator in earthquake ground motion simulations with Graves and Pitarka hybrid approach

    Science.gov (United States)

    Pitarka, Arben; Graves, Robert; Irikura, Kojiro; Miyake, Hiroe; Rodgers, Arthur

    2017-01-01

    We analyzed the performance of the Irikura and Miyake (Pure and Applied Geophysics 168(2011):85–104, 2011) (IM2011) asperity-based kinematic rupture model generator, as implemented in the hybrid broadband ground motion simulation methodology of Graves and Pitarka (Bulletin of the Seismological Society of America 100(5A):2095–2123, 2010), for simulating ground motion from crustal earthquakes of intermediate size. The primary objective of our study is to investigate the transportability of IM2011 into the framework used by the Southern California Earthquake Center broadband simulation platform. In our analysis, we performed broadband (0–20 Hz) ground motion simulations for a suite of M6.7 crustal scenario earthquakes in a hard rock seismic velocity structure using rupture models produced with both IM2011 and the rupture generation method of Graves and Pitarka (Bulletin of the Seismological Society of America, 2016) (GP2016). The level of simulated ground motions for the two approaches compare favorably with median estimates obtained from the 2014 Next Generation Attenuation-West2 Project (NGA-West2) ground motion prediction equations (GMPEs) over the frequency band 0.1–10 Hz and for distances out to 22 km from the fault. We also found that, compared to GP2016, IM2011 generates ground motion with larger variability, particularly at near-fault distances (1 s). For this specific scenario, the largest systematic difference in ground motion level for the two approaches occurs in the period band 1–3 s where the IM2011 motions are about 20–30% lower than those for GP2016. We found that increasing the rupture speed by 20% on the asperities in IM2011 produced ground motions in the 1–3 s bandwidth that are in much closer agreement with the GMPE medians and similar to those obtained with GP2016. The potential implications of this modification for other rupture mechanisms and magnitudes are not yet fully understood, and this topic is the subject of ongoing study

  1. User manual for the NTS ground motion data base retrieval program: ntsgm

    Energy Technology Data Exchange (ETDEWEB)

    App, F.N. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.; Tunnell, T.W. [EG and G Energy Measurements, Inc., Los Alamos, NM (United States). Los Alamos Operations

    1994-05-01

    The NTS (Nevada Test Site) Ground Motion Data Base is composed of strong motion data recorded during the normal execution of the US underground test program. It contains surface, subsurface, and structure motion data as digitized waveforms. Currently the data base contains information from 148 underground explosions. This represents about 4,200 measurements and nearly 12,000 individual digitized waveforms. Most of the data was acquired by Los Alamos National Laboratory (LANL) in connection with LANL sponsored underground tests. Some was acquired by Los Alamos on tests conducted by the Defense Nuclear Agency (DNA) and Lawrence Livermore National Laboratory (LLNL), and there are some measurements that were acquired by the other test sponsors on their events and provided for inclusion in this data base. Data acquisition, creation of the data base, and development of the data base retrieval program (ntsgm) are the result of work in support of the Los Alamos Field Test Office and the Office of Nonproliferation and Arms Control.

  2. Analysis of Recorded and Simulated Far-Field Ground Motion From the Source Physics Experiment (Invited)

    Science.gov (United States)

    Pitarka, A.; Mellors, R. J.; Vorobiev, O. Y.; Rodgers, A. J.; Walter, W. R.; Antoun, T.; Matzel, E.; Ford, S. R.; Wagoner, J. L.; Petersson, A.; Sjogreen, B.

    2013-12-01

    The Source Physics Experiment (SPE) provides new data for investigating the excitation and propagation of seismic waves generated by buried explosions. The main subjects of our ongoing investigation are the generation of shear-waves, propagation of seismic energy at local and regional distances, and development of numerical techniques for simulating ground motion from underground explosions using physics based source models for different emplacement conditions. We will present an overview of our investigation results based on analysis of far-field waveforms recorded by five linear arrays of stations within 10 km of the shot point, and a small array of stations, with a 2km epicentral distance. We tested the efficiency of our numerical scheme that uses three-dimensional hydrodynamic methods, coupled with an anelastic wave propagation finite-difference method to model the explosion source and ground motion recorded at far-field stations. The best source models that fit the recorded shear and compressional near-field motion, and a calibrated 3D local velocity model, were used to evaluate the sensitivity of wave propagation near the source region to source process, including spall, underground structure, high frequency wave scattering, and surface topography. In particular, we focused on the contribution of these effects to S-wave generation and P/S amplitude ratio in the modeled frequency range of 0.1-8Hz. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  3. Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture

    Directory of Open Access Journals (Sweden)

    Angelos Karatsidis

    2016-12-01

    Full Text Available Ground reaction forces and moments (GRF&M are important measures used as input in biomechanical analysis to estimate joint kinetics, which often are used to infer information for many musculoskeletal diseases. Their assessment is conventionally achieved using laboratory-based equipment that cannot be applied in daily life monitoring. In this study, we propose a method to predict GRF&M during walking, using exclusively kinematic information from fully-ambulatory inertial motion capture (IMC. From the equations of motion, we derive the total external forces and moments. Then, we solve the indeterminacy problem during double stance using a distribution algorithm based on a smooth transition assumption. The agreement between the IMC-predicted and reference GRF&M was categorized over normal walking speed as excellent for the vertical (ρ = 0.992, rRMSE = 5.3%, anterior (ρ = 0.965, rRMSE = 9.4% and sagittal (ρ = 0.933, rRMSE = 12.4% GRF&M components and as strong for the lateral (ρ = 0.862, rRMSE = 13.1%, frontal (ρ = 0.710, rRMSE = 29.6%, and transverse GRF&M (ρ = 0.826, rRMSE = 18.2%. Sensitivity analysis was performed on the effect of the cut-off frequency used in the filtering of the input kinematics, as well as the threshold velocities for the gait event detection algorithm. This study was the first to use only inertial motion capture to estimate 3D GRF&M during gait, providing comparable accuracy with optical motion capture prediction. This approach enables applications that require estimation of the kinetics during walking outside the gait laboratory.

  4. Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture.

    Science.gov (United States)

    Karatsidis, Angelos; Bellusci, Giovanni; Schepers, H Martin; de Zee, Mark; Andersen, Michael S; Veltink, Peter H

    2016-12-31

    Ground reaction forces and moments (GRF&M) are important measures used as input in biomechanical analysis to estimate joint kinetics, which often are used to infer information for many musculoskeletal diseases. Their assessment is conventionally achieved using laboratory-based equipment that cannot be applied in daily life monitoring. In this study, we propose a method to predict GRF&M during walking, using exclusively kinematic information from fully-ambulatory inertial motion capture (IMC). From the equations of motion, we derive the total external forces and moments. Then, we solve the indeterminacy problem during double stance using a distribution algorithm based on a smooth transition assumption. The agreement between the IMC-predicted and reference GRF&M was categorized over normal walking speed as excellent for the vertical ( ρ = 0.992, rRMSE = 5.3%), anterior ( ρ = 0.965, rRMSE = 9.4%) and sagittal ( ρ = 0.933, rRMSE = 12.4%) GRF&M components and as strong for the lateral ( ρ = 0.862, rRMSE = 13.1%), frontal ( ρ = 0.710, rRMSE = 29.6%), and transverse GRF&M ( ρ = 0.826, rRMSE = 18.2%). Sensitivity analysis was performed on the effect of the cut-off frequency used in the filtering of the input kinematics, as well as the threshold velocities for the gait event detection algorithm. This study was the first to use only inertial motion capture to estimate 3D GRF&M during gait, providing comparable accuracy with optical motion capture prediction. This approach enables applications that require estimation of the kinetics during walking outside the gait laboratory.

  5. Source Process and Ground Motions of the 2008 Wenchuan, China, Earthquake

    Science.gov (United States)

    Koketsu, K.; Hikima, K.; Miyake, H.; Maruyama, T.; Wang, Z.

    2008-12-01

    The 2008 Wenchuan, China, earthquake occurred on May 12 (local time), and ground motions from this earthquake propagated around the world. We obtained the ground motion records observed at stations of FDSN from IRIS DMC. According to surface fault investigations (this study; Hao and Si, 2008) and the aftershock distribution by USGS, we defined a two-segment fault plane. The strike and dip angles for the southern and northern segments are respectively given to be (228, 35) and (232, 65) based on the results of point source analyses. We then carried out a finite source inversion of the first 140 s of 43 P and 8 SH teleseismic waves using the Green's functions of Kikuchi and Kanamori (1991) and the inverse algorithm of Yoshida et al. (1996) with modifications. We also used the location of the hypocenter determined by USGS (103.33E, 30.99N, depth 12 km) as a rupture initiation point. The resultant slip distribution indicates the first asperity with the largest reverse-faulting slip of about 9 m and the second asperity with a strike slip of about 4 m to be located 45 and 170 km northeast of the hypocenter, respectively. Major aftershocks are located surrounding these two asperities. The total seismic moment is 1.0 x 10**21 Nm, which corresponds to a moment magnitude (Mw) of 7.9, and the rupture duration is estimated to be 100 to 120 s. Significant slips appear in a 250 km long region (10,000 km**2) of the source fault, and these length and area are close to averages for an Mw 7.9 low-angle reverse-faulting earthquake. The area is ten times larger than that of the 1995 Kobe, Japan, earthquake. This fault area and the maximum slip three times larger result in energy release about thirty times larger than that of the 1995 Kobe earthquake (Mw 6.9). This difference almost coincides with the difference in the number of fatalities between the 2008 Sichuan and 1995 Kobe earthquakes. Heavily damaged towns such as Wenchuan and Beichuan are located within the surface projection of

  6. Ground motion measurement in the lake Mead (Nevada, USA) area by temporal analysis of multiple interferograms.

    Science.gov (United States)

    Cavalie, O.; Doin, M.; Lasserre, C.; Briole, P.

    2004-12-01

    SAR interferometry has proven to be a reliable method for detecting small displacements due to ground subsidence. In this study, we propose to measure ground motion around the lake Mead (Nevada, USA) using InSAR. This artificial lake has been filled with water in 1935. An earlier studie, based on levelling measurements, has shown that the lake impoundement has induced a subsidence of 17 centimeters (Kaufmann et al., 2000). This relaxation process is analogous to the postglacial rebound, but at a smaller scale. To quantify the deformation and constrain the crust and mantle rheological parameters in the lake area, we have analysed multiple interferograms (245) based on 45 ERS images between 1992 and 2001. The interferometric phase contains information about deformation occurring between two satellite passes, as well as satellite orbits errors, topographic, and atmospheric artefacts. The topographic signature is removed using the 3-arc seconds SRTM data. To correct for orbital errors, we remove a best fitting linear ramp. Atmospheric artefact, in our interferograms, are mainly due to the variation of water vapor vertical stratification between the two passes. This results in a interferometric phase correlation with altitude which we remove by minimization. These corrections are then refined through an iterative procedure and validated using data from global atmospheric models. Corrected interferograms are then inverted to solve for deformation using a method based on the large spatial coverage of coherent pixels, allowing to strengthen the signal to noise ratio (Schmidt and Burgmann, 2003). This data inversion provides a time series of the expected deformation in the lake Mead area. The analysis of the deformation evolution during the period covered by the ERS satellites (1992-2001) shows a correlation between the vertical motion and the water level changes. So, we observe a subsidence of up to 1.5 cm between 1996 and 1998, followed by an uplift due to the drop of the

  7. The SCEC-USGS Dynamic Earthquake Rupture Code Verification Exercise: Regular and Extreme Ground Motion

    Science.gov (United States)

    Harris, R.; Barall, M.; Archuleta, R. J.; Aagaard, B.; Ampuero, J. P.; Andrews, D. J.; Cruz-Atienza, V. M.; Dalguer Gudiel, L. A.; Day, S. M.; Duan, B.; Dunham, E. M.; Ely, G. P.; Gabriel, A. A.; Kaneko, Y.; Kase, Y.; Lapusta, N.; Ma, S.; Noda, H.; Oglesby, D. D.; Olsen, K. B.; Roten, D.; Song, S.

    2010-12-01

    We summarize recent progress by the SCEC-USGS Dynamic Rupture Code Verification Group, that examines if SCEC and USGS researchers’ spontaneous-rupture computer codes agree when computing benchmark scenarios for dynamic earthquake rupture. Our latest benchmarks are ‘regular’ dynamic ruptures on a vertical strike-slip fault and on a normal fault, at a range of resolutions, and, ‘extreme’ dynamic ruptures on a normal fault. The ‘extreme’ dynamic ruptures were designed as complete stress-drop, supershear ruptures that would be most likely to produce maximum possible ground motions. These simulated ruptures could be thought of as very unlikely, but still possible. Among the 2009 ‘extreme’ dynamic rupture benchmarks were those targeted to test two simplified versions of the Andrews et al. [BSSA, 2007] numerical simulations for hypothesized maximum-possible ground motion at a site near Yucca Mountain. To test the Andrews et al. methodology, we constructed a benchmark for a planar dipping normal-fault set in a medium where the off-fault response was designated to be elastic (TPV12), and another benchmark where the off-fault response was designated to be plastic (TPV13). Although most of our group’s previous benchmarks have concentrated on 3D solutions, both the TPV12 and TPV13 benchmarks were offered with both 2D and 3D options, partly because the Andrews et al. study was conducted in 2D, and partly because it is important to understand the differences and similarities among 2D and 3D rupture propagation and ground motion predictions. Seven researchers’ codes participated in the TPV12 2D benchmark test, seven participated in the TPV12 3D test, six participated in the TPV13 2D benchmark test, and four participated in the TPV13 3D test. Our findings were similar to those hypothesized in the Andrews et al. publication. At a proposed site for a nuclear waste repository, that was modeled to be 1-km from the fault, at 300 m depth, our 2D elastic benchmark

  8. Ground Motion Simulations of Scenario Earthquake Ruptures of the Hayward Fault

    Science.gov (United States)

    Aagaard, B.; Graves, R.; Larsen, S.; Ma, S.; Rodgers, A.; Brocher, T.; Graymer, R.; Harris, R.; Lienkaemper, J.; Ponce, D.; Schwartz, D.; Simpson, R.; Spudich, P.; Dreger, D.; Petersson, A.; Boatwright, J.

    2008-12-01

    We compute ground motions in the San Francisco Bay area for a suite of 35 magnitude 6.7--7.2 scenario earthquake ruptures involving the Hayward fault. The suite of scenarios encompasses variability in rupture length, hypocenter, distribution of slip, rupture speed, and rise time. The five rupture lengths include the Hayward fault and portions thereof, as well as combined rupture of the Hayward and Rodgers Creek faults and the Hayward and Calaveras faults. For most rupture lengths, we consider three hypocenters, yielding north-to-south rupture, bilateral rupture, and south-to-north rupture. We also consider multiple random realizations of the slip distribution, accounting for creeping patches (Funning et al., 2007) either through simple assumptions about how creep reduces coseismic slip or a slip-predictable approach. The kinematic rupture models include local variations in rupture speed and use a ray-tracing algorithm to propagate the rupture front. Although we are not attempting to simulate the 1868 Hayward fault earthquake in detail, a few of the scenarios are designed to have source parameters that might be similar to this event. This collaborative effort involves four modeling groups, using different wave propagation codes and domains of various sizes and resolutions, computing long-period (T > 1--2 s) or broadband (T > 0.1 s) synthetic ground motions for overlapping subsets of the suite of scenarios. The simulations incorporate the 3-D geologic structure as described by the USGS 3-D Geologic Model (Jachens et al., 2006; Watt et al., 2007) and USGS Bay Area Velocity Model (Brocher et al., 2007). The simulations illustrate the dramatic increase in intensity of shaking for a magnitude 7.0 bilateral rupture of the entire Hayward fault compared with a magnitude 6.8 bilateral rupture of the southern two-thirds of the fault; the area subjected to shaking stronger than MMI VII increases from about 10% to more than 40% of the San Francisco Bay urban area. For a given

  9. Report of Earthquake Drills with Experiences of Ground Motion in Childcare for Young Children, Japan

    Science.gov (United States)

    Yamada, N.

    2013-12-01

    After the Great East Japan Earthquake of 2011, this disaster has become one of the opportunities to raise awareness of earthquake and tsunami disaster prevention, and the improvement of disaster prevention education is to be emphasized. The influences of these bring the extension to the spatial axis in Japan, and also, it is important to make a development of the education with continuous to the expansion of time axes. Although fire or earthquake drills as the disaster prevention education are often found in Japan, the children and teachers only go from school building to outside. Besides, only the shortness of the time to spend for the drill often attracts attention. The complementary practice education by the cooperation with experts such as the firefighting is practiced, but the verification of the effects is not enough, and it is the present conditions that do not advance to the study either. Although it is expected that improvement and development of the disaster prevention educations are accomplished in future, there are a lot of the problems. Our target is construction and utilization of material contributing to the education about "During the strong motion" in case of the earthquake which may experience even if wherever of Japan. One of the our productions is the handicraft shaking table to utilize as teaching tools of the education to protect the body which is not hurt at the time of strong motion. This made much of simplicity than high reproduction of the earthquake ground motions. We aimed to helping the disaster prevention education including not only the education for young children but also for the school staff and their parents. In this report, the focusing on a way of the non-injured during the time of the earthquake ground motion, and adopting activity of the play, we are going to show the example of the framework of earthquake disaster prevention childcare through the virtual experience. This presentation has a discussion as a practice study with

  10. Ground Motion Measurement in the Lake Mead Area (Nevada, USA), by Temporal Analysis of Multiple Interferograms.

    Science.gov (United States)

    Doin, M.; Cavalie, O.; Lasserre, C.; Briole, P.

    2005-12-01

    SAR interferometry has proven to be a reliable method for detecting small displacements due to ground subsidence. In this study, we measure ground motion around the lake Mead (Nevada, USA) using InSAR. This artificial lake has been filled with water in 1935. An earlier study, based on leveling measurements, has shown that the load associated with lake impoundment has induced a delayed subsidence of 17 centimeters. This relaxation process has been argued to be due to viscous displacement in the uppermost mantle, analogous to the postglacial rebound, but at a smaller spatial scale and with a much lower viscous relaxation scale. To quantify the deformation and thus constrain the crust and mantle rheological parameters in the lake area, we analyse multiple interferograms (~280) based on 43 ERS images acquired between 1992 and 2001 and on 12 Envisat images acquired between 2003 and 2005. ERS-Envisat interferograms are performed to merge the two data sets in one time series. With baselines smaller than 300 m, all interferograms have a very good coherence due to the desert region. Most interferograms show strong atmospheric artefacts that are partly due to the variation of water vapor vertical stratification between two satellite passes. Tropospheric delay is computed for each interferogram using the correlation between phase and elevation far from the lake area. It is then inverted for each date of SAR images before interferograms correction. These corrections are validated using data from global atmospheric models (ERA40). Corrected interferograms are then inverted to solve for time series of the expected deformation in the lake Mead area . The linear inversion treats each pixel independently from its neighbours and use the data redundancy to reduce errors such as local decorrelations. Smoothing constraints added in the inversion efficiently eliminate local atmospheric artefacts. We obtain a time series of the expected deformation in the lake Mead area. The analysis of

  11. Simulation of Strong Ground Motion of the 2009 Bhutan Earthquake Using Modified Semi-Empirical Technique

    Science.gov (United States)

    Sandeep; Joshi, A.; Lal, Sohan; Kumar, Parveen; Sah, S. K.; Vandana; Kamal

    2017-09-01

    On 21st September 2009 an earthquake of magnitude (M w 6.1) occurred in the East Bhutan. This earthquake caused serious damage to the residential area and was widely felt in the Bhutan Himalaya and its adjoining area. We estimated the source model of this earthquake using modified semi empirical technique. In the rupture plane, several locations of nucleation point have been considered and finalised based on the minimum root mean square error of waveform comparison. In the present work observed and simulated waveforms has been compared at all the eight stations. Comparison of horizontal components of actual and simulated records at these stations confirms the estimated parameters of final rupture model and efficacy of the modified semi-empirical technique (Joshi et al., Nat Hazards 64:1029-1054, 2012b) of strong ground motion simulation.

  12. On large amplitude motions of simplest amides in the ground and excited electronic states

    Science.gov (United States)

    Tukachev, N. V.; Bataev, V. A.; Godunov, I. A.

    2017-01-01

    For the formamide, acetamide, N-methylformamide and N-methylacetamide molecules in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states equilibrium geometry parameters, harmonic vibrational frequencies, barriers to conformational transitions and conformer energy differences were estimated by means of MP2, CCSD(T), CASSCF, CASPT2 and MRCI ab initio methods. One-, two- and three-dimensional potential energy surface (PES) sections corresponding to different large amplitude motions (LAM) were calculated by means of MP2/aug-cc-pVTZ (S0) and CASPT2/cc-pVTZ (S1,T1). For these molecules, in each excited electronic state six minima were found on 2D PES sections. Using PES sections, different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were determined.

  13. Bubble motion in a rotating liquid body. [ground based tests for space shuttle experiments

    Science.gov (United States)

    Annamalai, P.; Subramanian, R. S.; Cole, R.

    1982-01-01

    The behavior of a single gas bubble inside a rotating liquid-filled sphere has been investigated analytically and experimentally as part of ground-based investigations aimed at aiding in the design and interpretation of Shuttle experiments. In the analysis, a quasi-static description of the motion of a bubble was developed in the limit of small values of the Taylor number. A series of rotation experiments using air bubbles and silicone oils were designed to match the conditions specified in the analysis, i.e., the bubble size, sphere rotation rate, and liquid kinematic viscosity were chosen such that the Taylor number was much less than unity. The analytical description predicts the bubble velocity and its asymptotic location. It is shown that the asymptotic position is removed from the axis of rotation.

  14. On large amplitude motions of simplest amides in the ground and excited electronic states

    Directory of Open Access Journals (Sweden)

    Tukachev N.V.

    2017-01-01

    Full Text Available For the formamide, acetamide, N-methylformamide and N-methylacetamide molecules in the ground (S0 and lowest excited singlet (S1 and triplet (T1 electronic states equilibrium geometry parameters, harmonic vibrational frequencies, barriers to conformational transitions and conformer energy differences were estimated by means of MP2, CCSD(T, CASSCF, CASPT2 and MRCI ab initio methods. One-, two- and three-dimensional potential energy surface (PES sections corresponding to different large amplitude motions (LAM were calculated by means of MP2/aug-cc-pVTZ (S0 and CASPT2/cc-pVTZ (S1,T1. For these molecules, in each excited electronic state six minima were found on 2D PES sections. Using PES sections, different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were determined.

  15. Deconvolution effect of near-fault earthquake ground motions on stochastic dynamic response of tunnel-soil deposit interaction systems

    Directory of Open Access Journals (Sweden)

    K. Hacıefendioğlu

    2012-04-01

    Full Text Available The deconvolution effect of the near-fault earthquake ground motions on the stochastic dynamic response of tunnel-soil deposit interaction systems are investigated by using the finite element method. Two different earthquake input mechanisms are used to consider the deconvolution effects in the analyses: the standard rigid-base input and the deconvolved-base-rock input model. The Bolu tunnel in Turkey is chosen as a numerical example. As near-fault ground motions, 1999 Kocaeli earthquake ground motion is selected. The interface finite elements are used between tunnel and soil deposit. The mean of maximum values of quasi-static, dynamic and total responses obtained from the two input models are compared with each other.

  16. Utilization of near-source video and ground motion in the assessment of seismic source functions from mining explosions

    Energy Technology Data Exchange (ETDEWEB)

    Stump, B.W. [Los Alamos National Lab., NM (United States); Anderson, D.P. [Southern Methodist Univ., Dallas, TX (United States). Dept. of Geological Sciences

    1995-04-01

    Constraint of the operative physical processes in the source region of mining explosions and the linkage to the generation of seismic waveforms provides the opportunity for controlling ground motion. Development of these physical models can also be used in conjunction with the ground motion data as diagnostics of blasting efficiency. In order to properly address the multi-dimensional aspect of data sets designed to constrain these sources, we are investigating a number of modem visualization tools that have only recently become available with new, high-speed graphical computers that can utilize relatively large data sets. The data sets that are combined in the study of mining explosion sources include near-source ground motion acceleration and velocity records, velocity of detonation measurements in each explosive hole, high speed film, video and shot design information.

  17. Emittance growth for the LHC beams due to head-on beam-beam interaction and ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Mari Paz Zorzano and Tanaji Sen

    2000-04-18

    The influence of ground motion on the LHC beam is estimated applying the existing theories of particle diffusion due to a weak-strong beam-beam collision with random offset at the interaction point. Noise at odd harmonics of the betatron frequency contributes significantly to particle diffusion. The spectrum of the random offset, as obtained from the ground motion spectrum at the LHC site, shows a fast fall-off with frequency and the amplitude is very small even at the first harmonic. They find that the head-on beam-beam force in the weak-strong approximation and ground motion by themselves do not induce significant diffusion over the lifetime of the beam.

  18. Comparison of the inelastic response of steel building frames to strong earthquake and underground nuclear explosion ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.C.; Tokarz, F.J.

    1976-06-30

    Analytic studies were made of the adequacy of simulating earthquake effects at the Nevada Test Site for structural testing purposes. It is concluded that underground nuclear explosion ground motion will produce inelastic behavior and damage comparable to that produced by strong earthquakes. The generally longer duration of earthquakes compared with underground nuclear explosions does not appear to significantly affect the structural behavior of the building frames considered. A comparison of maximum ductility ratios, maximum story drifts, and maximum displacement indicate similar structural behavior for both types of ground motion. Low yield (10 - kt) underground nuclear explosions are capable of producing inelastic behavior in large structures. Ground motion produced by underground nuclear explosions can produce inelastic earthquake-like effects in large structures and could be used for testing large structures in the inelastic response regime. The Nevada Test Site is a feasible earthquake simulator for testing large structures.

  19. Physically-Based Ground Motion Prediction and Validation A Case Study: Mid-sized Marmara Sea Earthquakes

    Science.gov (United States)

    Mert, A.

    2015-12-01

    In this study we have two main purposes. The first one is to simulate five midsize earthquakes (Mw≈5.0) recorded in the Marmara region, which has a geologically complex and heterogeneous crustal structure. We synthesize ground motion for the full wave train on three components, and applied a 'physics based' solution of earthquake rupture. The simulation methodology is based on the studies by Hutchings et al. (2007), Scognamiglio and Hutchings (2009). For each earthquake, we synthesized seismograms using by 500 different rupture scenarios that were generated by Monte Carlo selection of parameters within the range. Synthetic ground motion is a major challenge for seismic hazard assessment studies. Especially after the adoption of performance-based design approach with the Earthquake resistant design of engineering structures. To compute realistic time histories for different locations around Marmara region can be helpful for engineering design, retrofitting the existing structures, hazard and risk management studies and developing new seismic codes and standards.The second purpose is to validate synthetic seismograms with real seismograms. We follow the methodology presented by Anderson (2003) for validation. This methodology proposes a similarity score based on averages of the quality of fit measuring ground motion characteristics and uses a suite of measurements. Namely, the synthetics are compared to real data by ten representative ground motion criteria. The applicability of Empirical Green's functions methodology and physics based solution of earthquake rupture had been assessed in terms of modeling in complex geologic structure. Because the methodology produces source and site specific synthetic ground motion time histories and goodness-of-fit scores of obtained synthetics is between 'fair' to 'good' range based on Anderson's score, we concluded that it can be tried to produce ground motion that has not previously been recorded during catastrophic earthquake

  20. Evidence for orbital motion of CW Leonis from ground-based astrometry

    Science.gov (United States)

    Sozzetti, A.; Smart, R. L.; Drimmel, R.; Giacobbe, P.; Lattanzi, M. G.

    2017-10-01

    Recent Atacama Large Millimeter/submillimeter Array (ALMA) observations indicate that CW Leo, the closest carbon-rich asymptotic giant branch star to Sun, might have a low-mass stellar companion. We present archival ground-based astrometric measurements of CW Leo obtained within the context of the Torino Parallax Program and with >6 yr (1995-2001) of time baseline. The residuals to a single-star solution show significant curvature, and they are strongly correlated with the well-known I-band photometric variations due to stellar pulsations. We describe successfully the astrometry of CW Leo with a variability-induced motion (VIM) + acceleration model. We obtain proper motion and parallax of the centre-of-mass of the binary, the former in fair agreement with recent estimates, the latter at the near end of the range of inferred distances based on indirect methods. The VIM + acceleration model results allow us to derive a companion mass in agreement with that inferred by ALMA, they point towards a somewhat longer period than implied by ALMA, but are not compatible with much longer period estimates. These data will constitute a fundamental contribution towards the full understanding of the orbital architecture of the system when combined with Gaia astrometry, providing an ∼25 yr time baseline.

  1. Effects of surface geology on the ground-motion at New Borg El-Arab City, Alexandria, Northern Egypt

    OpenAIRE

    Abuoelela A. Mohamed; A.M.A. Helal; A.M.E. Mohamed; M.M.F. Shokry; M. Ezzelarab

    2016-01-01

    The effects of the near-surface geology on the ground-motion at New Borg El-Arab City were evaluated in the current work based on the analysis of the ambient noise records (microtremor). Sixty-nine microtremor measurements have been done in the studied area. The dataset was processed using horizontal-to-vertical-spectral ratio (HVSR) technique to estimate the fundamental frequencies corresponding to the ground-motion amplification due to the soil deposits. By spatial interpolation of the resu...

  2. Geophysical assessment of near-field ground motion and the implications for the design of nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D.L.

    1977-09-30

    This paper gives an in-depth discussion on the various methodologies currently available to predict the near-field ground motion from an earthquake. The limitations of the various methods are discussed in some detail in light of recently available data. It is shown that, (at least for California earthquakes) for an earthquake with a given magnitude a wide variation in the peak ground motion can occur. The change in the spectral content of the ground motion is given as a function of earthquake magnitude and peak ground acceleration. It is shown that the large g values associated with small earthquakes are relatively unimportant in the design provided the structures have a modest amount of ductility. Data recently obtained from the Friuli earthquake are also examined. Although not all the geophysical data are currently available, the provisional conclusion is reached that the relation between the strong ground motion from this earthquake and its source parameters is the same as for the western United States.

  3. Probabilistic sensitivity analysis of two suspension bridges in Istanbul, Turkey to near- and far-fault ground motion

    Directory of Open Access Journals (Sweden)

    Ö. Çavdar

    2012-02-01

    Full Text Available The aim of this paper is to compare the near-fault and far-fault ground motion effects on the probabilistic sensitivity dynamic responses of two suspension bridges in Istanbul. Two different types of suspension bridges are selected to investigate the near-fault (NF and far-fault (FF ground motion effects on the bridge sensitivity responses. NF and FF strong ground motion records, which have approximately identical peak ground accelerations, of the Kocaeli (1999 earthquake are selected for the analyses. Displacements and internal forces are determined using the probabilistic sensitivity method (PSM, which is one type of stochastic finite element method. The efficiency and accuracy of the proposed algorithm are validated by comparison with results of the Monte Carlo Simulation (MCS method. The displacements and internal forces obtained from the analyses of suspension bridges subjected to each fault effect are compared with each other. It is clearly seen that there is more seismic demand on displacements and internal forces when suspension bridges are subjected to NF and FF ground motion.

  4. Characterizing ground motions that collapse steel special moment-resisting frames or make them unrepairable

    Science.gov (United States)

    Olsen, Anna H.; Heaton, Thomas H.; Hall, John F.

    2015-01-01

    This work applies 64,765 simulated seismic ground motions to four models each of 6- or 20-story, steel special moment-resisting frame buildings. We consider two vector intensity measures and categorize the building response as “collapsed,” “unrepairable,” or “repairable.” We then propose regression models to predict the building responses from the intensity measures. The best models for “collapse” or “unrepairable” use peak ground displacement and velocity as intensity measures, and the best models predicting peak interstory drift ratio, given that the frame model is “repairable,” use spectral acceleration and epsilon (ϵ) as intensity measures. The more flexible frame is always more likely than the stiffer frame to “collapse” or be “unrepairable.” A frame with fracture-prone welds is substantially more susceptible to “collapse” or “unrepairable” damage than the equivalent frame with sound welds. The 20-story frames with fracture-prone welds are more vulnerable to P-delta instability and have a much higher probability of collapse than do any of the 6-story frames.

  5. Ground Motion Prediction Equations for the Central and Eastern United States

    Science.gov (United States)

    Seber, D.; Graizer, V.

    2015-12-01

    New ground motion prediction equations (GMPE) G15 model for the Central and Eastern United States (CEUS) is presented. It is based on the modular filter based approach developed by Graizer and Kalkan (2007, 2009) for active tectonic environment in the Western US (WUS). The G15 model is based on the NGA-East database for the horizontal peak ground acceleration and 5%-damped pseudo spectral acceleration RotD50 component (Goulet et al., 2014). In contrast to active tectonic environment the database for the CEUS is not sufficient for creating purely empirical GMPE covering the range of magnitudes and distances required for seismic hazard assessments. Recordings in NGA-East database are sparse and cover mostly range of Mindustry (Vs=2800 m/s). The number of model predictors is limited to a few measurable parameters: moment magnitude M, closest distance to fault rupture plane R, average shear-wave velocity in the upper 30 m of the geological profile VS30, and anelastic attenuation factor Q0. Incorporating anelastic attenuation Q0 as an input parameter allows adjustments based on the regional crustal properties. The model covers the range of magnitudes 4.010 Hz) and is within the range of other models for frequencies lower than 2.5 Hz

  6. Ground motion prediction from nearest seismogenic zones in and around Greater Cairo Area, Egypt

    Directory of Open Access Journals (Sweden)

    Abd El-Aziz Khairy Abd El-Aal

    2010-07-01

    Full Text Available This paper reviews the likely source characteristics, focal source mechanism and fault patterns of the nearest effective seismogenic zones to Greater Cairo Area. Furthermore, Mmax and ground accelerations related to the effective seismic events expected in future from those seismogenic zones are well evaluated. For this purpose, the digital waveform of earthquakes than ML=3 that occurred in and around Greater Cairo Area from 1997 to 2008 which have been recorded by the Egyptian National Seismological Network, are used to study source characterization, focal mechanism and fault pattern of the seismogenic zones around Greater Cairo Area. The ground motions are predicted from seismogenic zones to assess seismic hazard in the northeastern part of Greater Cairo, where three effective seismogenic zones, namely Abou Zabul, southeast Cairo trend and Dahshour area, have the largest effect to the Greater Cairo Area. The Mmax was determined, based upon an empirical relationship between the seismic moment and the rupture length of the fault during the earthquake. The estimated Mmax expected from Abou Zabul, southeast Cairo trend, Dahshour seismic sources are of Mw magnitudes equal to 5.4, 5.1, and 6.5, respectively. The predominant fundamental frequency and soil amplification characteristics at the area were obtained using boreholes data and in-situ ambient noise measurement.

  7. Site-specific uniform hazard spectrum in Eastern Turkey based on simulated ground motions including near-field directivity and detailed site effects

    Science.gov (United States)

    Azari Sisi, Aida; Askan, Ayşegül; Erberik, Murat Altuğ

    2017-04-01

    In this study, stochastic earthquake catalog of the Erzincan region in Turkey is generated based on synthetic ground motions. Monte Carlo simulation method is used to identify the spatial and temporal distribution of events. Ground motion time histories are generated using stochastic simulation methodology. Annual exceedance rate of each ground motion amplitude is calculated through statistical distribution of the complete set of ground motions. The results are compared with classical probabilistic seismic hazard analysis (PSHA). Classical PSHA generally produces larger spectral amplitudes than the proposed study due to wide range of aleatory variability. The effects of near-field forward directivity and detailed site response are also investigated on the results.

  8. Three decades of volume change of a small greenlandic glacier using ground penetrating radar, structure from motion, and aerial photogrammetry

    OpenAIRE

    Marcer, M.; Stentoft, Peter Alexander; Bjerre, Elisa; Cimoli, E.; A. A. Bjørk; Stenseng, Lars; MACHGUTH, HORST

    2017-01-01

    Glaciers in the Arctic are losing mass at an increasing rate. Here we use surface topography derived from Structure from Motion (SfM) and ice volume from ground penetrating radar (GPR) to describe the 2014 state of Aqqutikitsoq glacier (2.85 km2) on Greenland's west coast. A photogrammetrically derived 1985 digital elevation model (DEM) was subtracted from a 2014 DEM obtained using land-based SfM to calculate geodetic glacier mass balance. Furthermore, a detailed 2014 ground penetrating...

  9. Analysis and Simulations of Near-Field Ground Motion from Source Physics Experiments (spe)

    Science.gov (United States)

    Vorobiev, O.; Xu, H.; Lomov, I.; Herbold, E. B.; Glenn, L. A.; Antoun, T.

    2012-12-01

    This work is focused on analysis of near-field measurements (up to 50-70 m from the source) recorded during Source Physics Experiments SPE1, SPE2 and SPE3 in a granitic formation (the Climax Stock) at the Nevada National Security Site (NNSS). The explosive source used in these experiments is a sensitized heavy ANFO (SHANFO) with a well characterized equation of state. The first event, SPE1, had a yield of 0.1 ton, and was detonated at a 55 m depth of burial in a spherical cavity of about 0.3 m radius. SPE2 and SPE3 had an explosive yield of 1 ton, and they were both detonated in the same cavity at a depth of burial of 45 meters. One of the main goals of these experiments was to investigate the possible mechanisms of shear wave generation in the nonlinear source region. Another objective, relating specifically to the SPE2-SPE3 sequence, was to investigate the effect of damage from one explosion on the response of the medium to a second explosion of the same yield and at the same location as the first explosion. Comparison of the results from SPE2 and SPE3 show some interesting trends. . At the shot level, and at deeper locations, the data from SPE3 seem to agree quite well with SPE2 data, indicating that damage from SPE2 had little to no effect on the response of the medium at these locations. On the other hand, SPE3 data consistently show delay in arrival times as well as reduced wave amplitudes both at 50 ft (16 m) depth and at the ground surface, indicating that above the shot horizon damage from SPE2 had a perceptible effect on the SPE3 near field motions. The quality of the near field data at some gages from the SPE1 and SPE2 events is somewhat questionable, with orientation uncertainties making it difficult to ascertain with confidence the extent to which shear wave generation in the source region affected near field motions. New gages were strategically added to the SPE3 test bed to provide the data needed to address this issue and verify previous

  10. From Regional Hazard Assessment to Nuclear-Test-Ban Treaty Support - InSAR Ground Motion Services

    Science.gov (United States)

    Lege, T.; Kalia, A.; Gruenberg, I.; Frei, M.

    2016-12-01

    There are numerous scientific applications of InSAR methods in tectonics, earthquake analysis and other geologic and geophysical fields. Ground motion on local and regional scale measured and monitored via the application of the InSAR techniques provide scientists and engineers with plenty of new insights and further understanding of subsurface processes. However, the operational use of InSAR is not yet very widespread. To foster the operational utilization of the Copernicus Sentinel Satellites in the day-to-day business of federal, state and municipal work and planning BGR (Federal Institute for Geosciences and Natural Resources) initiated workshops with potential user groups. Through extensive reconcilement of interests and demands with scientific, technical, economic and governmental stakeholders (e.g. Ministries, Mining Authorities, Geological Surveys, Geodetic Surveys and Environmental Agencies on federal and state level, SMEs, German Aerospace Center) BGR developed the concept of the InSAR based German National Ground Motion Service. One important backbone for the nationwide ground motion service is the so-called Persistent Scatterer Interferometry Wide Area Product (WAP) approach developed with grants of European research funds. The presentation shows the implementation of the ground motion service and examples for product developments for operational supervision of mining, water resources management and spatial planning. Furthermore the contributions of Copernicus Sentinel 1 radar data in the context of CTBT are discussed. The DInSAR processing of Sentinel 1 IW (Interferometric Wide Swath) SAR acquisitions from January 1st and 13th Jan. 2016 allow for the first time a near real time ground motion measurement of the North Korean nuclear test site. The measured ground displacements show a strong spatio-temporal correlation to the calculated epicenter measured by teleseismic stations. We are convinced this way another space technique will soon contribute even

  11. Physics-Based Long-Period Ground Motion Scenarios in and Around the Po Plain Sedimentary Basin (Northern Italy)

    Science.gov (United States)

    Molinari, I.; Morelli, A.; Casarotti, E.

    2014-12-01

    Unexpected large and prolonged shaking (> 80s) associated with long-period ground motion has been observed inside the Po Plain sedimentary basin (Northern Italy) during the two M~6, May 20-29, 2012, earthquakes. Long-period ground motion impacts on the seismic response of taller structures. It is hence important to understand the characteristics of long-period ground motion associated with the 3D structure and finite fault properties, in particular in those regions with deep sedimentary basins and a complex geological context. We implement a recent high resolution model of the Po basin (MAMBo), derived from geological constraints, in spectral-element code SPECFEM3D_cartesian (Peter et al., 2012). The simulations are numerically accurate for periods of 2 sec and longer, and incorporate complex 3D basin structure and topography as well as the spatial and temporal heterogeneity of source rupture. The response of our basin model has been evaluated for several instrumental earthquakes. Synthetics seismograms reproduce well amplitude and long duration, as well as envelope and coda, observed in paths that travel through sediments. We also evaluate ground motion produced by plausible earthquakes inferred from historical data, such as the Modena (1501) and Verona (1117) events that caused well-documented strong effects in a unusually wide areas with lengths of hundreds of kilometers. We test different representations of the seismic source, from point source to finite sources with different rupture histories, evaluating the impact on shaking amplitude. We compare our results with damage maps (when available) and with the GMPEs currently adopted for this area, evaluating the effects of finite fault and 3D propagation on ground shaking. We show that deterministic ground motion calculation can indeed provide information to be actively used to mitigate the effects of destructive earthquakes on critical infrastructures.

  12. A procedure to select ground-motion time histories for deterministic seismic hazard analysis from the Next Generation Attenuation (NGA) database

    Science.gov (United States)

    Huang, Duruo; Du, Wenqi; Zhu, Hong

    2017-10-01

    In performance-based seismic design, ground-motion time histories are needed for analyzing dynamic responses of nonlinear structural systems. However, the number of ground-motion data at design level is often limited. In order to analyze seismic performance of structures, ground-motion time histories need to be either selected from recorded strong-motion database or numerically simulated using stochastic approaches. In this paper, a detailed procedure to select proper acceleration time histories from the Next Generation Attenuation (NGA) database for several cities in Taiwan is presented. Target response spectra are initially determined based on a local ground-motion prediction equation under representative deterministic seismic hazard analyses. Then several suites of ground motions are selected for these cities using the Design Ground Motion Library (DGML), a recently proposed interactive ground-motion selection tool. The selected time histories are representatives of the regional seismic hazard and should be beneficial to earthquake studies when comprehensive seismic hazard assessments and site investigations are unavailable. Note that this method is also applicable to site-specific motion selections with the target spectra near the ground surface considering the site effect.

  13. A procedure to select ground-motion time histories for deterministic seismic hazard analysis from the Next Generation Attenuation (NGA database

    Directory of Open Access Journals (Sweden)

    D. Huang

    2017-10-01

    Full Text Available In performance-based seismic design, ground-motion time histories are needed for analyzing dynamic responses of nonlinear structural systems. However, the number of ground-motion data at design level is often limited. In order to analyze seismic performance of structures, ground-motion time histories need to be either selected from recorded strong-motion database or numerically simulated using stochastic approaches. In this paper, a detailed procedure to select proper acceleration time histories from the Next Generation Attenuation (NGA database for several cities in Taiwan is presented. Target response spectra are initially determined based on a local ground-motion prediction equation under representative deterministic seismic hazard analyses. Then several suites of ground motions are selected for these cities using the Design Ground Motion Library (DGML, a recently proposed interactive ground-motion selection tool. The selected time histories are representatives of the regional seismic hazard and should be beneficial to earthquake studies when comprehensive seismic hazard assessments and site investigations are unavailable. Note that this method is also applicable to site-specific motion selections with the target spectra near the ground surface considering the site effect.

  14. Adaptation of the S-5-S Pendulím Seismometer for Measurement of Rotational Ground Motion

    Czech Academy of Sciences Publication Activity Database

    Knejzlík, Jaromír; Kaláb, Zdeněk; Rambouský, Zdeněk

    2012-01-01

    Roč. 16, č. 4 (2012), s. 649-656 ISSN 1383-4649 Institutional support: RVO:68145535 Keywords : rotational ground motion * experimental measurement * mining induced seismicity * S-5-S seismometer Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.388, year: 2012 http://link.springer.com/article/10.1007%2Fs10950-012-9279-6

  15. Experimental evaluation of four ground-motion scaling methods for dynamic response-history analysis of nonlinear structures

    Science.gov (United States)

    O'Donnell, Andrew P.; Kurama, Yahya C.; Kalkan, Erol; Taflanidis, Alexandros A.

    2017-01-01

    This paper experimentally evaluates four methods to scale earthquake ground-motions within an ensemble of records to minimize the statistical dispersion and maximize the accuracy in the dynamic peak roof drift demand and peak inter-story drift demand estimates from response-history analyses of nonlinear building structures. The scaling methods that are investigated are based on: (1) ASCE/SEI 7–10 guidelines; (2) spectral acceleration at the fundamental (first mode) period of the structure, Sa(T1); (3) maximum incremental velocity, MIV; and (4) modal pushover analysis. A total of 720 shake-table tests of four small-scale nonlinear building frame specimens with different static and dynamic characteristics are conducted. The peak displacement demands from full suites of 36 near-fault ground-motion records as well as from smaller “unbiased” and “biased” design subsets (bins) of ground-motions are included. Out of the four scaling methods, ground-motions scaled to the median MIV of the ensemble resulted in the smallest dispersion in the peak roof and inter-story drift demands. Scaling based on MIValso provided the most accurate median demands as compared with the “benchmark” demands for structures with greater nonlinearity; however, this accuracy was reduced for structures exhibiting reduced nonlinearity. The modal pushover-based scaling (MPS) procedure was the only method to conservatively overestimate the median drift demands.

  16. Identifying natural and anthropogenically-induced geohazards from satellite ground motion and geospatial data: Stoke-on-Trent, UK

    Science.gov (United States)

    Jordan, Hannah; Cigna, Francesca; Bateson, Luke

    2017-12-01

    Determining the location and nature of hazardous ground motion resulting from natural and anthropogenic processes such as landslides, tectonic movement and mining is essential for hazard mitigation and sustainable resource use. Ground motion estimates from satellite ERS-1/2 persistent scatterer interferometry (PSI) were combined with geospatial data to identify areas of observed geohazards in Stoke-on-Trent, UK. This investigation was performed within the framework of the EC FP7-SPACE PanGeo project which aimed to provide free and open access to geohazard information for 52 urban areas across Europe. Geohazards identified within the city of Stoke-on-Trent and neighbouring rural areas are presented here alongside an examination of the PanGeo methodology. A total of 14 areas experiencing ground instability caused by natural and anthropogenic processes have been defined, covering 122.35 km2. These are attributed to a range of geohazards, including landslides, ground dissolution, made ground and mining activities. The dominant geohazard (by area) is ground movement caused by post-mining groundwater recharge and mining-related subsidence (93.19% of total geohazard area), followed by landsliding (5.81%). Observed ground motions along the satellite line-of-sight reach maxima of +35.23 mm/yr and -22.57 mm/yr. A combination of uplift, subsidence and downslope movement is displayed. 'Construction sites' and 'continuous urban fabric' (European Urban Atlas land use types) form the land uses most affected (by area) by ground motion and 'discontinuous very low density urban fabric' the least. Areas of 'continuous urban fabric' also show the highest average velocity towards the satellite (5.08 mm/yr) and the highest PS densities (1262.92 points/km2) along with one of the lowest standard deviations. Rural land uses tend to result in lower PS densities and higher standard deviations, a consequence of fewer suitable reflectors in these regions. PSI is also limited in its ability to

  17. LISA Pathfinder test mass injection in geodesic motion: status of the on-ground testing

    Energy Technology Data Exchange (ETDEWEB)

    Bortoluzzi, D; Biral, F; Bosetti, P; Da Lio, M; De Cecco, M [Department of Mechanical and Structural Engineering and INFN, University of Trento, 38050 Trento (Italy); Baglivo, L [Department of Mechanical Engineering, University of Padova, 35122 Padova (Italy); Benedetti, M [Department of Materials Engineering and Industrial Technologies and INFN, University of Trento, 38050 Trento (Italy); Cavalleri, A; Dolesi, R; Weber, W; Vitale, S [Department of Physics and INFN, University of Trento, 38050 Trento (Italy); Lapolla, M, E-mail: daniele.bortoluzzi@ing.unitn.i [Thales Alenia Space Italia, 20090 Milano (Italy)

    2009-05-07

    The LISA Technology Package (LTP) onboard the LISA Pathfinder mission aims to demonstrate, in orbit, several critical technology milestones for LISA, including the purest geodesic motion ever achieved for a macroscopic body. The gravitational reference sensor in the LTP hosts a heavy test mass (TM) surrounded by electrodes, at a relatively large 'gap' distance of several mm, which are used to measure and control the TM position and attitude. The large gaps--necessary to minimize the force noise acting on the TM--limit the available level of electrostatic actuation force that can be applied to the TM and thus the authority to control its position and velocity. Due to the large mass and gaps, a caging mechanism is required to securely hold the TM during the launch phase, when the whole payload endures large accelerations. Later in orbit, the TM must be injected into its geodesic trajectory, through the release from the caging mechanism and subsequent capture by the electrostatic actuation. During the release phase, the constraining device must limit adhesion forces that exert a net impulse upon rupture, such that the required forces needed to control the TM do not exceed the actuation authority. The TM injection into geodesic motion, and most critically the release phase, constitutes a potential point of failure for the mission. The on-ground verification of this phase is performed by measuring the momentum transferred between TM-representative surfaces and the release device, reproducing the dynamics that will take place in flight. This paper reports on the testing activities performed at the Department of Mechanical and Structural Engineering of the University of Trento.

  18. Effect of the surface geology on strong ground motions due to the 2016 Central Tottori Earthquake, Japan

    Science.gov (United States)

    Kagawa, Takao; Noguchi, Tatsuya; Yoshida, Shohei; Yamamoto, Shinji

    2017-08-01

    On October 21, 2016, an earthquake with Japan Meteorological Agency (JMA) magnitude 6.6 hit the central part of Tottori Prefecture, Japan. This paper demonstrates two notable effects of the surface geology on strong ground motions due to the earthquake. One is a predominant period issue observed over a large area. A seismic intensity of 6 lower on the JMA scale was registered at three sites in the disaster area. However, the peak ground acceleration ranged from 0.3 to 1.4 G at the three sites because of the varying peak periods of observed strong ground motions. The spectral properties of the observations also reflect the damage around the sites. Three-component microtremors were observed in the area; the predominant ground period distributions based on horizontal to vertical spectral ratios were provided by the authors. The peak periods of the strong motion records agree well with predominant periods estimated from microtremor observations at a rather hard site; however, the predominant periods of the microtremors are slightly shorter than those of the main shock at the other two soft sites. We checked the nonlinear effect at the sites by comparing the site responses to small events and the main shock. The peak periods of the main shock were longer than those of the weak motions at the sites. This phenomenon indicates a nonlinear site effect due to large ground motions caused by the main shock. A horizontal component of the accelerogram showed rather pulsating swings that indicate cyclic mobility behavior, especially at a site close to a pond shore; ground subsidence of 20 cm was observed around the site. The peak periods of weak motions agree well with those of the microtremor observations. This implies an important issue that the predominant periods estimated by microtremors are not sufficient to estimate the effect of surface geology for disaster mitigation. We have to estimate the predominant periods under large ground motions considering the nonlinear site

  19. Motion

    CERN Document Server

    Graybill, George

    2007-01-01

    Take the mystery out of motion. Our resource gives you everything you need to teach young scientists about motion. Students will learn about linear, accelerating, rotating and oscillating motion, and how these relate to everyday life - and even the solar system. Measuring and graphing motion is easy, and the concepts of speed, velocity and acceleration are clearly explained. Reading passages, comprehension questions, color mini posters and lots of hands-on activities all help teach and reinforce key concepts. Vocabulary and language are simplified in our resource to make them accessible to str

  20. Effects of 2D small-scale sedimentary basins on strong ground motion characteristics

    Science.gov (United States)

    Movahedasl, R.; Ghayamghamian, M. R.

    2015-08-01

    A lot of research on the 2D or 3D effects of large-scale basins (within several kilometers depth) have been conducted in the past. However, different 2D aspects of small-scale sedimentary basins (within tens of meters depth) remain in the developing stage. Here, an attempt is made to analyze different aspects of small-scale basins using both numerical and empirical investigations. In the first step, the 2D effects of small-scale basins on strong motion characteristics are numerically examined both in the time and frequency domains. In addition, the effects of input motion are also explained by the results of model excitation in different orthogonal directions. Then, the numerical outcomes are verified by the analysis of actual earthquake data recorded at a downhole array in the Fujisawa small basin, Japan. In the second step, since available recorded earthquake data in small basins with a clear understanding of subsurface geology are very limited, different 2D aspects of the small basin are parametrically investigated. For this purpose, extensive parametrical studies are carried out on the main features of a small basin such as slope angle, shape, infill soil properties, and basin thickness by using the finite difference numerical method. The horizontal and vertical peak ground accelerations of 2D with respect to 1D ones are defined as the horizontal and vertical aggravation factors (AGH and AGV). The AGH and AGV factors show large sensitivity to infill soil properties, shape and thickness, and small sensitivity to slope angle. The values of AGH and AGV factors vary in the range of 0.5-2 with large variations around small basin edges due to wave coupling, conversion, scattering and focusing in the vicinity of small basin edges. These cause a complicated pattern of 2D de-amplification and amplification, which mostly affect the motion in the high frequency range (>1 Hz). Finally, the outcomes provide numerical and field evidence on the 2D effects of small basins

  1. Simulated ground motion in Santa Clara Valley, California, and vicinity from M≥6.7 scenario earthquakes

    Science.gov (United States)

    Harmsen, Stephen C.; Hartzell, Stephen

    2008-01-01

    Models of the Santa Clara Valley (SCV) 3D velocity structure and 3D finite-difference software are used to predict ground motions from scenario earthquakes on the San Andreas (SAF), Monte Vista/Shannon, South Hayward, and Calaveras faults. Twenty different scenario ruptures are considered that explore different source models with alternative hypocenters, fault dimensions, and rupture velocities and three different velocity models. Ground motion from the full wave field up to 1 Hz is exhibited as maps of peak horizontal velocity and pseudospectral acceleration at periods of 1, 3, and 5 sec. Basin edge effects and amplification in sedimentary basins of the SCV are observed that exhibit effects from shallow sediments with relatively low shear-wave velocity (330 m/sec). Scenario earthquakes have been simulated for events with the following magnitudes: (1) M 6.8–7.4 Calaveras sources, (2) M 6.7–6.9 South Hayward sources, (3) M 6.7 Monte Vista/Shannon sources, and (4) M 7.1–7.2 Peninsula segment of the SAF sources. Ground motions are strongly influenced by source parameters such as rupture velocity, rise time, maximum depth of rupture, hypocenter, and source directivity. Cenozoic basins also exert a strong influence on ground motion. For example, the Evergreen Basin on the northeastern side of the SCV is especially responsive to 3–5-sec energy from most scenario earthquakes. The Cupertino Basin on the southwestern edge of the SCV tends to be highly excited by many Peninsula and Monte Vista fault scenarios. Sites over the interior of the Evergreen Basin can have long-duration coda that reflect the trapping of seismic energy within this basin. Plausible scenarios produce predominantly 5-sec wave trains with greater than 30 cm/sec sustained ground-motion amplitude with greater than 30 sec duration within the Evergreen Basin.

  2. Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara

    KAUST Repository

    Oglesby, David D.

    2012-03-01

    Using the 3-D finite-element method, we develop dynamic spontaneous rupture models of earthquakes on the North Anatolian Fault system in the Sea of Marmara, Turkey, considering the geometrical complexity of the fault system in this region. We find that the earthquake size, rupture propagation pattern and ground motion all strongly depend on the interplay between the initial (static) regional pre-stress field and the dynamic stress field radiated by the propagating rupture. By testing several nucleation locations, we observe that those far from an oblique normal fault stepover segment (near Istanbul) lead to large through-going rupture on the entire fault system, whereas nucleation locations closer to the stepover segment tend to produce ruptures that die out in the stepover. However, this pattern can change drastically with only a 10° rotation of the regional stress field. Our simulations also reveal that while dynamic unclamping near fault bends can produce a new mode of supershear rupture propagation, this unclamping has a much smaller effect on the speed of the peak in slip velocity along the fault. Finally, we find that the complex fault geometry leads to a very complex and asymmetric pattern of near-fault ground motion, including greatly amplified ground motion on the insides of fault bends. The ground-motion pattern can change significantly with different hypocentres, even beyond the typical effects of directivity. The results of this study may have implications for seismic hazard in this region, for the dynamics and ground motion of geometrically complex faults, and for the interpretation of kinematic inverse rupture models.

  3. 3-D velocity structure model for long-period ground motion simulation of the hypothetical Nankai Earthquake

    Science.gov (United States)

    Kagawa, T.; Petukhin, A.; Koketsu, K.; Miyake, H.; Murotani, S.; Tsurugi, M.

    2010-12-01

    Three dimensional velocity structure model of southwest Japan is provided to simulate long-period ground motions due to the hypothetical subduction earthquakes. The model is constructed from numerous physical explorations conducted in land and offshore areas and observational study of natural earthquakes. Any available information is involved to explain crustal structure and sedimentary structure. Figure 1 shows an example of cross section with P wave velocities. The model has been revised through numbers of simulations of small to middle earthquakes as to have good agreement with observed arrival times, amplitudes, and also waveforms including surface waves. Figure 2 shows a comparison between Observed (dash line) and simulated (solid line) waveforms. Low velocity layers have added on seismological basement to reproduce observed records. The thickness of the layer has been adjusted through iterative analysis. The final result is found to have good agreement with the results from other physical explorations; e.g. gravity anomaly. We are planning to make long-period (about 2 to 10 sec or longer) simulations of ground motion due to the hypothetical Nankai Earthquake with the 3-D velocity structure model. As the first step, we will simulate the observed ground motions of the latest event occurred in 1946 to check the source model and newly developed velocity structure model. This project is partly supported by Integrated Research Project for Long-Period Ground Motion Hazard Maps by Ministry of Education, Culture, Sports, Science and Technology (MEXT). The ground motion data used in this study were provided by National Research Institute for Earth Science and Disaster Prevention Disaster (NIED). Figure 1 An example of cross section with P wave velocities Figure 2 Observed (dash line) and simulated (solid line) waveforms due to a small earthquake

  4. Significance of rotating ground motions on nonlinear behavior of symmetric and asymmetric buildings in near fault sites

    Science.gov (United States)

    Kalkan, Erol; ,

    2012-01-01

    Building codes in the U.S. require at least two horizontal ground motion components for three-dimensional (3D) response history analysis (RHA) of structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all non-redundant rotation angles. This assumption is examined here using 3D computer models of a single-story structure having symmetric (that is, torsionally-stiff) and asymmetric (that is, torsionally flexible) layouts subjected to an ensemble of bi-directional near-fault strong ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period of the structures is varied from 0.2 to 5 seconds, and yield strength reduction factors R is varied from a value that leads to linear-elastic design to 3 and 5. The influence that the rotation angle of the ground motion has on several engineering demand parameters (EDPs) is examined in linear-elastic and nonlinear-inelastic domains to form a benchmark for evaluating the use of the FN/FP directions as well as the maximum-direction (MD) ground motion, a new definition of horizontal ground motions for use in the seismic design of structures according to the 2009 NEHRP Provisions and Commentary.

  5. An operational-oriented approach to the assessment of low probability seismic ground motions for critical infrastructures

    Science.gov (United States)

    Garcia-Fernandez, Mariano; Assatourians, Karen; Jimenez, Maria-Jose

    2017-09-01

    Extreme natural hazard events have the potential to cause significant disruption to critical infrastructure (CI) networks. Among them, earthquakes represent a major threat as sudden-onset events with limited, if any, capability of forecast, and high damage potential. In recent years, the increased exposure of interdependent systems has heightened concern, motivating the need for a framework for the management of these increased hazards. The seismic performance level and resilience of existing non-nuclear CIs can be analyzed by identifying the ground motion input values leading to failure of selected key elements. Main interest focuses on the ground motions exceeding the original design values, which should correspond to low probability occurrence. A seismic hazard methodology has been specifically developed to consider low-probability ground motions affecting elongated CI networks. The approach is based on Monte Carlo simulation, which allows for building long-duration synthetic earthquake catalogs to derive low-probability amplitudes. This approach does not affect the mean hazard values and allows obtaining a representation of maximum amplitudes that follow a general extreme-value distribution. This facilitates the analysis of the occurrence of extremes, i.e., very low probability of exceedance from unlikely combinations, for the development of, e.g., stress tests, among other applications. Following this methodology, extreme ground-motion scenarios have been developed for selected combinations of modeling inputs including seismic activity models (source model and magnitude-recurrence relationship), ground motion prediction equations (GMPE), hazard levels, and fractiles of extreme ground motion. The different results provide an overview of the effects of different hazard modeling inputs on the generated extreme motion hazard scenarios. This approach to seismic hazard is at the core of the risk analysis procedure developed and applied to European CI transport

  6. Closed-form overturning limit of rigid block under critical near-fault ground motions

    Directory of Open Access Journals (Sweden)

    Kunihiko eNabeshima

    2016-05-01

    Full Text Available A closed-form limit on the input level of the double impulse as a substitute of a near-fault ground motion is derived for the overturning of a rigid block. The rocking vibration of the rigid block is formulated by using the conservation law of angular momentum and the conservation law of mechanical energy. The initial rotational velocity after the first impulse and the rotational velocity after the impact are determined by the conservation law of angular momentum. The velocity change after the second impulse is also characterized by the conservation law of angular momentum. The maximum angles of rotation of the rigid block in both the clockwise and anti-clockwise directions, which are needed for the computation of the overturning limit, are derived by the conservation law of mechanical energy. This enables us to avoid the computation of complicated non-linear time-history responses. The critical timing of the second impulse to the first impulse is characterized by the time of impact after the first impulse. It is clarified that the action of the second impulse just after the impact corresponds to the critical timing. It is derived from the closed-form expression of the critical velocity amplitude limit of the double impulse that its limit is proportional to the square root of size, i.e. the scale effect.

  7. Selecting ground-motion models developed for induced seismicity in geothermal areas

    Science.gov (United States)

    Edwards, Benjamin; Douglas, John

    2013-11-01

    We present a case study of the ranking and weighting of ground-motion prediction equations (GMPEs) for seismic hazard assessment of enhanced geothermal systems (EGSs). The study region is Cooper Basin (Australia), where a hot-fractured-rock project was established in 2002. We test the applicability of 36 GMPEs based on stochastic simulations previously proposed for use at EGSs. Each GMPE has a set of corresponding model parameters describing stress drop, regional and local (near-surface) attenuation. To select suitable GMPEs for Cooper Basin from the full set, we applied two methods. In the first, seismograms recorded on the local monitoring network were spectrally analysed to determine characteristic stress and attenuation parameters. In a second approach, residual analysis using the log-likelihood (LLH) method was used to directly compare recorded and predicted short-period response spectral accelerations. The resulting ranking was consistent with the models selected based on spectral analysis, with the advantage that a transparent weighting approach was available using the LLH method. Region-specific estimates of variability were computed, with significantly lower values observed compared to previous studies of small earthquakes. This was consistent with the limited range of stress drops and attenuation observed from the spectral analysis.

  8. Seismic microzoning from synthetic ground motion parameters Case study, Santiago de Cuba

    CERN Document Server

    Alvarez, L; Pico, R; Vaccari, F

    2003-01-01

    Synthetic seismograms (P - SV and SH waves) have been calculated along 6 profiles in Santiago de Cuba basin, with a cutoff frequency of 5 Hz, by using the hybrid approach (modal summation for a regional (ID) structure plus finite differences for a local (2D) structure embedded in the first). They correspond to a scenario earthquake of M sub S = 7 that may occur in Oriente fault zone, directly south of the city. As initial data for a seismic microzoning, the characterisation of earthquake effects has been made considering several relative (2D/1D) quantities (PGDR, PGVR, PGAR, DGAR, I sub A R etc.) and functions representative of the ground motion behaviour in soil (2D) with respect to bedrock (ID). The functions are the response spectra ratio RSR(f), already routinely used in this kind of work, and the elastic energy input ratio E sub I R(f), defined, for the first time, in this paper. These data, sampled at 105 sites within all the profiles have been classified in two steps, using logical combinatory algorith...

  9. Comparison between the Effects of Near- and Far-Fault Ground Motions on the Seismic Response of a Soil-Pile-Structure System

    Directory of Open Access Journals (Sweden)

    Saeed Abbasi Karafshani

    2016-03-01

    Full Text Available Ground motions recorded in near-fault sites, where the rupture propagates toward the site, are significantly different from those observed in far-fault regions. In this research, finite element modeling is used to compare the effects of near- and far-fault ground motions on a system consisting of soil, pile group and structure, considering the possibility of non-linear behavior for the structure. The Von Wolffersdorff hypoplastic model with intergranular strain concept is applied for modeling of granular soil (sand. Five fault-normal near-fault ground motion records and five far-fault ground motion records, recorded on rock, are applied to the model. The results show that when seismic waves pass through the soil layer, the fundamental period of the soil layer lengthens, due to non-linear deformations. Also, in near-fault pulse-like ground motions a displacement pulse is generated in the pile response. Whereas, in the far-fault ground motions, due to the more uniform distribution of energy during the record, such pulse-like displacements are not observed in the pile response. Based on the obtained results, for a constant PGA, there are positive correlations between the values of maximum pile displacement, and PGD and PGV values of near-fault ground motion records. But such correlations are not observed in the case of far-fault ground motions.

  10. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    Energy Technology Data Exchange (ETDEWEB)

    I. Wong

    2004-11-05

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.

  11. Evaluation of Soil-Structure Interaction on the Seismic Response of Liquid Storage Tanks under Earthquake Ground Motions

    Directory of Open Access Journals (Sweden)

    Mostafa Farajian

    2017-03-01

    Full Text Available Soil-structure interaction (SSI could affect the seismic response of structures. Since liquid storage tanks are vital structures and must continue their operation under severe earthquakes, their seismic behavior should be studied. Accordingly, the seismic response of two types of steel liquid storage tanks (namely, broad and slender, with aspect ratios of height to radius equal to 0.6 and 1.85 founded on half-space soil is scrutinized under different earthquake ground motions. For a better comparison, the six considered ground motions are classified, based on their pulse-like characteristics, into two groups, named far and near fault ground motions. To model the liquid storage tanks, the simplified mass-spring model is used and the liquid is modeled as two lumped masses known as sloshing and impulsive, and the interaction of fluid and structure is considered using two coupled springs and dashpots. The SSI effect, also, is considered using a coupled spring and dashpot. Additionally, four types of soils are used to consider a wide variety of soil properties. To this end, after deriving the equations of motion, MATLAB programming is employed to obtain the time history responses. Results show that although the SSI effect leads to a decrease in the impulsive displacement, overturning moment, and normalized base shear, the sloshing (or convective displacement is not affected by such effects due to its long period.

  12. Pros and cons of rotating ground motion records to fault-normal/parallel directions for response history analysis of buildings

    Science.gov (United States)

    Kalkan, Erol; Kwong, Neal S.

    2014-01-01

    According to the regulatory building codes in the United States (e.g., 2010 California Building Code), at least two horizontal ground motion components are required for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHAs should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here, for the first time, using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak values of engineering demand parameters (EDPs) were computed for rotation angles ranging from 0 through 180° to quantify the difference between peak values of EDPs over all rotation angles and those due to FN/FP direction rotated motions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.

  13. A Test of a Strong Ground Motion Prediction Methodology for the 7 September 1999, Mw=6.0 Athens Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L; Ioannidou, E; Voulgaris, N; Kalogeras, I; Savy, J; Foxall, W; Stavrakakis, G

    2004-08-06

    We test a methodology to predict the range of ground-motion hazard for a fixed magnitude earthquake along a specific fault or within a specific source volume, and we demonstrate how to incorporate this into probabilistic seismic hazard analyses (PSHA). We modeled ground motion with empirical Green's functions. We tested our methodology with the 7 September 1999, Mw=6.0 Athens earthquake, we: (1) developed constraints on rupture parameters based on prior knowledge of earthquake rupture processes and sources in the region; (2) generated impulsive point shear source empirical Green's functions by deconvolving out the source contribution of M < 4.0 aftershocks; (3) used aftershocks that occurred throughout the area and not necessarily along the fault to be modeled; (4) ran a sufficient number of scenario earthquakes to span the full variability of ground motion possible; (5) found that our distribution of synthesized ground motions span what actually occurred and their distribution is realistically narrow; (6) determined that one of our source models generates records that match observed time histories well; (7) found that certain combinations of rupture parameters produced ''extreme'' ground motions at some stations; (8) identified that the ''best fitting'' rupture models occurred in the vicinity of 38.05{sup o} N 23.60{sup o} W with center of rupture near 12 km, and near unilateral rupture towards the areas of high damage, and this is consistent with independent investigations; and (9) synthesized strong motion records in high damage areas for which records from the earthquake were not recorded. We then developed a demonstration PSHA for a source region near Athens utilizing synthesized ground motion rather that traditional attenuation. We synthesized 500 earthquakes distributed throughout the source zone likely to have Mw=6.0 earthquakes near Athens. We assumed an average return period of 1000 years for this

  14. Precise ground motion measurements to support multi-hazard analysis in Jakarta

    Science.gov (United States)

    Koudogbo, Fifamè; Duro, Javier; Garcia Robles, Javier; Abidin, Hasanuddin Z.

    2015-04-01

    Jakarta is the capital of Indonesia and is home to approximately 10 million people on the coast of the Java Sea. The Capital District of Jakarta (DKI) sits in the lowest lying areas of the basin. Its topography varies, with the northern part just meters above current sea level and lying on a flood plain. Subsequently, this portion of the city frequently floods. Flood events have been increasing in severity during the past decade. The February 2007 event inundated 235 Km2 (about 36%) of the city, by up to seven meters in some areas. This event affected more than 2.6 million people; the estimated financial and economic losses from this event amounted to US900 million [1][2]. Inundations continue to occur under any sustained rainfall conditions. Flood events in Jakarta are expected to become more frequent in coming years, with a shift from previously slow natural processes with low frequency to a high frequency process resulting in severe socio-economic damage. Land subsidence in Jakarta results in increased vulnerability to flooding due to the reduced gravitational capacity to channel storm flows to the sea and an increased risk of tidal flooding. It continues at increasingly alarming rates, principally caused by intensive deep groundwater abstraction [3]. Recent studies have found typical subsidence rates of 7.5-10 cm a year. In localized areas of north Jakarta subsidence in the range 15-25 cm a year is occurring which, if sustained, would result in them sinking to 4-5 m below sea level by 2025 [3]. ALTAMIRA INFORMATION, company specialized in ground motion monitoring, has developed GlobalSARTM, which combines several processing techniques and algorithms based on InSAR technology, to achieve ground motion measurements with millimetric precision and high accuracy [4]. Within the RASOR (Rapid Analysis and Spatialisation and Of Risk) project, ALTAMIRA INFORMATION will apply GlobalSARTM to assess recent land subsidence in Jakarta, based on the processing of Very High

  15. Characterisation of ground motion recording stations in the Groningen gas field

    Science.gov (United States)

    Noorlandt, Rik; Kruiver, Pauline P.; de Kleine, Marco P. E.; Karaoulis, Marios; de Lange, Ger; Di Matteo, Antonio; von Ketelhodt, Julius; Ruigrok, Elmer; Edwards, Benjamin; Rodriguez-Marek, Adrian; Bommer, Julian J.; van Elk, Jan; Doornhof, Dirk

    2018-01-01

    The seismic hazard and risk analysis for the onshore Groningen gas field requires information about local soil properties, in particular shear-wave velocity (V S). A fieldwork campaign was conducted at 18 surface accelerograph stations of the monitoring network. The subsurface in the region consists of unconsolidated sediments and is heterogeneous in composition and properties. A range of different methods was applied to acquire in situ V S values to a target depth of at least 30 m. The techniques include seismic cone penetration tests (SCPT) with varying source offsets, multichannel analysis of surface waves (MASW) on Rayleigh waves with different processing approaches, microtremor array, cross-hole tomography and suspension P-S logging. The offset SCPT, cross-hole tomography and common midpoint cross-correlation (CMPcc) processing of MASW data all revealed lateral variations on length scales of several to tens of metres in this geological setting. SCPTs resulted in very detailed V S profiles with depth, but represent point measurements in a heterogeneous environment. The MASW results represent V S information on a larger spatial scale and smooth some of the heterogeneity encountered at the sites. The combination of MASW and SCPT proved to be a powerful and cost-effective approach in determining representative V S profiles at the accelerograph station sites. The measured V S profiles correspond well with the modelled profiles and they significantly enhance the ground motion model derivation. The similarity between the theoretical transfer function from the V S profile and the observed amplification from vertical array stations is also excellent.

  16. Strong ground motion inferred from liquefaction caused by the 1811-1812 New Madrid, Missouri, earthquakes

    Science.gov (United States)

    Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.

    2015-01-01

    Peak ground accelerations (PGAs) in the epicentral region of the 1811–1812 New Madrid, Missouri, earthquakes are inferred from liquefaction to have been no greater than ∼0.35g. PGA is inferred in an 11,380  km2 area in the Lower Mississippi Valley in Arkansas and Missouri where liquefaction was extensive in 1811–1812. PGA was inferred by applying liquefaction probability curves, which were originally developed for liquefaction hazard mapping, to detailed maps of liquefaction by Obermeier (1989). The low PGA is inferred because both a shallow (1.5 m deep) water table and a large moment magnitude (M 7.7) earthquake were assumed in the analysis. If a deep (5.0 m) water table and a small magnitude (M 6.8) earthquake are assumed, the maximum inferred PGA is 1.10g. Both inferred PGA values are based on an assumed and poorly constrained correction for sand aging. If an aging correction is not assumed, then the inferred PGA is no greater than 0.22g. A low PGA value may be explained by nonlinear site response. Soils in the study area have an averageVS30 of 220±15  m/s. A low inferred PGA is consistent with PGA values estimated from ground‐motion prediction equations that have been proposed for the New Madrid seismic zone when these estimates are corrected for nonlinear soil site effects. This application of liquefaction probability curves demonstrates their potential usefulness in paleoseismology.

  17. Three-dimensional ground-motion simulations of earthquakes for the Hanford area, Washington

    Science.gov (United States)

    Frankel, Arthur; Thorne, Paul; Rohay, Alan

    2014-01-01

    This report describes the results of ground-motion simulations of earthquakes using three-dimensional (3D) and one-dimensional (1D) crustal models conducted for the probabilistic seismic hazard assessment (PSHA) of the Hanford facility, Washington, under the Senior Seismic Hazard Analysis Committee (SSHAC) guidelines. The first portion of this report demonstrates that the 3D seismic velocity model for the area produces synthetic seismograms with characteristics (spectral response values, duration) that better match those of the observed recordings of local earthquakes, compared to a 1D model with horizontal layers. The second part of the report compares the response spectra of synthetics from 3D and 1D models for moment magnitude (M) 6.6–6.8 earthquakes on three nearby faults and for a dipping plane wave source meant to approximate regional S-waves from a Cascadia great earthquake. The 1D models are specific to each site used for the PSHA. The use of the 3D model produces spectral response accelerations at periods of 0.5–2.0 seconds as much as a factor of 4.5 greater than those from the 1D models for the crustal fault sources. The spectral accelerations of the 3D synthetics for the Cascadia plane-wave source are as much as a factor of 9 greater than those from the 1D models. The differences between the spectral accelerations for the 3D and 1D models are most pronounced for sites with thicker supra-basalt sediments and for stations with earthquakes on the Rattlesnake Hills fault and for the Cascadia plane-wave source.

  18. Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions

    Science.gov (United States)

    Atkinson, G.M.; Boore, D.M.

    2003-01-01

    Ground-motion relations for earthquakes that occur in subduction zones are an important input to seismic-hazard analyses in many parts of the world. In the Cascadia region (Washington, Oregon, northern California, and British Columbia), for example, there is a significant hazard from megathrust earthquakes along the subduction interface and from large events within the subducting slab. These hazards are in addition to the hazard from shallow earthquakes in the overlying crust. We have compiled a response spectra database from thousands of strong-motion recordings from events of moment magnitude (M) 5-8.3 occurring in subduction zones around the world, including both interface and in-slab events. The 2001 M 6.8 Nisqually and 1999 M 5.9 Satsop earthquakes are included in the database, as are many records from subduction zones in Japan (Kyoshin-Net data), Mexico (Guerrero data), and Central America. The size of the database is four times larger than that available for previous empirical regressions to determine ground-motion relations for subduction-zone earthquakes. The large dataset enables improved determination of attenuation parameters and magnitude scaling, for both interface and in-slab events. Soil response parameters are also better determined by the data. We use the database to develop global ground-motion relations for interface and in-slab earthquakes, using a maximum likelihood regression method. We analyze regional variability of ground-motion amplitudes across the global database and find that there are significant regional differences. In particular, amplitudes in Cascadia differ by more than a factor of 2 from those in Japan for the same magnitude, distance, event type, and National Earthquake Hazards Reduction Program (NEHRP) soil class. This is believed to be due to regional differences in the depth of the soil profile, which are not captured by the NEHRP site classification scheme. Regional correction factors to account for these differences are

  19. Amplification of Earthquake Ground Motions in Washington, DC, and Implications for Hazard Assessments in Central and Eastern North America

    Science.gov (United States)

    Pratt, Thomas L.; Horton, J. Wright; Muñoz, Jessica; Hough, Susan E.; Chapman, Martin C.; Olgun, C. Guney

    2017-12-01

    The extent of damage in Washington, DC, from the 2011 Mw 5.8 Mineral, VA, earthquake was surprising for an epicenter 130 km away; U.S. Geological Survey "Did-You-Feel-It" reports suggest that Atlantic Coastal Plain and other unconsolidated sediments amplified ground motions in the city. We measure this amplification relative to bedrock sites using earthquake signals recorded on a temporary seismometer array. The spectral ratios show strong amplification in the 0.7 to 4 Hz frequency range for sites on sediments. This range overlaps with resonant frequencies of buildings in the city as inferred from their heights, suggesting amplification at frequencies to which many buildings are vulnerable to damage. Our results emphasize that local amplification can raise moderate ground motions to damaging levels in stable continental regions, where low attenuation extends shaking levels over wide areas and unconsolidated deposits on crystalline metamorphic or igneous bedrock can result in strong contrasts in near-surface material properties.

  20. Prediction of ground motion and dynamic stress change in Baekdusan (Changbaishan) volcano caused by a North Korean nuclear explosion.

    Science.gov (United States)

    Hong, Tae-Kyung; Choi, Eunseo; Park, Seongjun; Shin, Jin Soo

    2016-02-17

    Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green's function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s(2) in the horizontal direction and 0.0917 m/s(2) in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0-7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals.

  1. Sensitivity of ground motion parameters to local site effects for areas characterised by a thick buried low-velocity layer.

    Science.gov (United States)

    Farrugia, Daniela; Galea, Pauline; D'Amico, Sebastiano; Paolucci, Enrico

    2016-04-01

    It is well known that earthquake damage at a particular site depends on the source, the path that the waves travel through and the local geology. The latter is capable of amplifying and changing the frequency content of the incoming seismic waves. In regions of sparse or no strong ground motion records, like Malta (Central Mediterranean), ground motion simulations are used to obtain parameters for purposes of seismic design and analysis. As an input to ground motion simulations, amplification functions related to the shallow subsurface are required. Shear-wave velocity profiles of several sites on the Maltese islands were obtained using the Horizontal-to-Vertical Spectral Ratio (H/V), the Extended Spatial Auto-Correlation (ESAC) technique and the Genetic Algorithm. The sites chosen were all characterised by a layer of Blue Clay, which can be up to 75 m thick, underlying the Upper Coralline Limestone, a fossiliferous coarse grained limestone. This situation gives rise to a velocity inversion. Available borehole data generally extends down till the top of the Blue Clay layer therefore the only way to check the validity of the modelled shear-wave velocity profile is through the thickness of the topmost layer. Surface wave methods are characterised by uncertainties related to the measurements and the model used for interpretation. Moreover the inversion procedure is also highly non-unique. Such uncertainties are not commonly included in site response analysis. Yet, the propagation of uncertainties from the extracted dispersion curves to inversion solutions can lead to significant differences in the simulations (Boaga et al., 2011). In this study, a series of sensitivity analyses will be presented with the aim of better identifying those stratigraphic properties which can perturb the ground motion simulation results. The stochastic one-dimensional site response analysis algorithm, Extended Source Simulation (EXSIM; Motazedian and Atkinson, 2005), was used to perform

  2. The role of topography and lateral velocity heterogeneities on near-source scattering and ground-motion variability

    KAUST Repository

    Imperatori, W.

    2015-07-28

    The scattering of seismic waves travelling in the Earth is not only caused by random velocity heterogeneity but also by surface topography. Both factors are known to strongly affect ground-motion complexity even at relatively short distance from the source. In this study, we simulate ground motion with a 3-D finite-difference wave propagation solver in the 0–5 Hz frequency band using three topography models representative of the Swiss alpine region and realistic heterogeneous media characterized by the Von Karman correlation functions. Subsequently, we analyse and quantify the characteristics of the scattered wavefield in the near-source region. Our study shows that both topography and velocity heterogeneity scattering may excite large coda waves of comparable relative amplitude, especially at around 1 Hz, although large variability in space may occur. Using the single scattering model, we estimate average QC values in the range 20–30 at 1 Hz, 36–54 at 1.5 Hz and 62–109 at 3 Hz for constant background velocity models with no intrinsic attenuation. In principle, envelopes of topography-scattered seismic waves can be qualitatively predicted by theoretical back-scattering models, while forward- or hybrid-scattering models better reproduce the effects of random velocity heterogeneity on the wavefield. This is because continuous multiple scattering caused by small-scale velocity perturbations leads to more gentle coda decay and envelope broadening, while topography abruptly scatters the wavefield once it impinges the free surface. The large impedance contrast also results in more efficient mode mixing. However, the introduction of realistic low-velocity layers near the free surface increases the complexity of ground motion dramatically and indicates that the role of topography in elastic waves scattering can be relevant especially in proximity of the source. Long-period surface waves can form most of the late coda, especially when intrinsic attenuation is taken

  3. Distribution of Ground Motions for the 2008 Mw5.4 Chino Hills Earthquake

    Science.gov (United States)

    Yong, A.; Hough, S. E.; Wills, C. J.; Wald, D. J.

    2008-12-01

    The 29 July 2008 Mw5.4 Chino Hills earthquake was widely felt throughout the greater Los Angeles region. Over 40,000 people filled out the Community Internet Intensity Map (CIIM), also known as the "Did You Feel It?" questionnaire, and the ShakeMap for the event is constrained by amplitudes from over 500 stations. The CIIM responses provide Modified Mercalli Intensity (MMI) values for 802 Zip codes. Due to the dense population of the greater Los Angeles region, intensity values averaged within Zip codes provide good spatial correlation to the location of the actual reporting sites. We use a least-squares approach to fit the average MMI to a standard functional form, MMI = A - Br - C log r (where r represents distance from the observation site to the epicenter and A, B and C are constants), and calculate the residuals. The distribution of average intensities clusters closely around the curve of the equation, corroborating the conclusion (e.g., Atkinson and Wald, SRL, 2006) that CIIM intensities provide a consistent measure of earthquake ground motions. A comparison of CIIM intensities and instrumentally determined ShakeMap intensities reveals generally good correspondence, but suggests a tendency for ShakeMap intensities to be higher at basin sites. We conclude that the ShakeMap intensities reflect long-period amplification, whereas observed intensities were more controlled by higher frequency accelerations. Where both the CIIM map and ShakeMap show systematic variations, the distributions show a strong correlation with near-surface geological structure, as well as with basin depth. Our preliminary conclusions are: 1) as expected, intensities are lower at hard rock sites; 2) intensities are systematically higher in the deepest parts of the basin and significantly lower in shallow regions. Intensities are systematically lower to the west of the Newport-Inglewood fault correlating with subtle topographic relief and shallower basin depths; 3) there is a suggestion that

  4. Site Transfer Functions of Three-Component Ground Motion in Western Turkey

    Science.gov (United States)

    Ozgur Kurtulmus, Tevfik; Akyol, Nihal; Camyildiz, Murat; Gungor, Talip

    2015-04-01

    Because of high seismicity accommodating crustal deformation and deep graben structures, on which have, urbanized and industrialized large cities in western Turkey, the importance of site-specific seismic hazard assessments becomes more crucial. Characterizing source, site and path effects is important for both assessing the seismic hazard in a specific region and generation of the building codes/or renewing previous ones. In this study, we evaluated three-component recordings for micro- and moderate-size earthquakes with local magnitudes ranging between 2.0 and 5.6. This dataset is used for site transfer function estimations, utilizing two different spectral ratio approaches 'Standard Spectral Ratio-(SSR)' and 'Horizontal to Vertical Spectral Ratio-(HVSR)' and a 'Generalized Inversion Technique-(GIT)' to highlight site-specific seismic hazard potential of deep basin structures of the region. Obtained transfer functions revealed that the sites located near the basin edges are characterized by broader HVSR curves. Broad HVSR peaks could be attributed to the complexity of wave propagation related to significant 2D/3D velocity variations at the sediment-bedrock interface near the basin edges. Comparison of HVSR and SSR estimates for the sites located on the grabens showed that SSR estimates give larger values at lower frequencies which could be attributed to lateral variations in regional velocity and attenuation values caused by basin geometry and edge effects. However, large amplitude values of vertical component GIT site transfer functions were observed at varying frequency ranges for some of the stations. These results imply that vertical component of ground motion is not amplification free. Contamination of HVSR site transfer function estimates at different frequency bands could be related to complexities in the wave field caused by deep or shallow heterogeneities in the region such as differences in the basin geometries, fracturing and fluid saturation along

  5. Observations of basin ground motions from a dense seismic array in San Jose, California

    Science.gov (United States)

    Frankel, A.; Carver, D.; Cranswick, E.; Bice, T.; Sell, R.; Hanson, S.

    2001-01-01

    We installed a dense array of 41 digital seismographs in San Jose, California, to evaluate in detail the effects of a deep sedimentary basin and shallow sedimentary deposits on earthquake ground motions. This urban array is located near the eastern edge of the Santa Clara Valley and spans the Evergreen sedimentary basin identified by gravity data. Average station spacing is 1 km, with three stations initially spaced 110 m apart. Despite the high-noise urban environment, the stations of the array successfully triggered on and recorded small local earthquakes (M 2.5-2.8 at 10-25 km distance) and larger regional events such as the M 5.0 Bolinas earthquake (90 km distance), M 4.6-5.6 earthquakes near Mammoth Lakes (270 km distance), M 4.9-5.6 events in western Nevada (420 km distance) and the M 7.1 Hector Mine earthquake (590 km distance). Maps of spectral ratios across the array show that the highest amplitudes in all frequency bands studied (0.125-8 Hz) are generally observed at stations farther from the eastern edge of the Santa Clara Valley. Larger spectral amplitudes are often observed above the western edge of the Evergreen Basin. Snapshots of the recorded wavefield crossing the array for regional events to the east reveal that large, low-frequency (0.125-0.5 Hz) arrivals after the S-wave travel from south to north across the array. A moving-window, cross-correlation analysis finds that these later arrivals are surface waves traveling from the south. The timing and propagation direction of these arrivals indicates that they were likely produced by scattering of incident S waves at the border of the Santa Clara Valley to the south of the array. It is remarkable that the largest low-frequency phases at many of the valley sites for regional events to the east are basin surface waves coming from a direction about 70 degrees different from that of the epicenters. Basin surface waves emanating from the eastern edge of the valley are also identified by the cross

  6. Marine and Lacustrine Turbidite Records: Testing Linkages and Estimating Ground Motions, Central Cascadia Margin, USA

    Science.gov (United States)

    Hausmann, R. B.; Goldfinger, C.; Black, B.; Collins, T.; Romsos, C. G.; Medeiros, L.; Mutschler, M.; Galer, S.; Raymond, R.; Morey, A. E.

    2015-12-01

    measurements. Initial slope stability models suggest that slopes less than ~ 25 degrees are statically stable. We are investigating the levels of ground motion required to destabilize surface sediments around the lake, and radiocarbon dating the disturbance events for comparison to other paleoseismic records, including new offshore cores at a similar latitude.

  7. Seismic Source Process and Strong Ground Motion of 1920-Haiyuan Earthquake

    Science.gov (United States)

    Xu, X.; Zhang, Z.; Chen, X.

    2016-12-01

    The 16 December 1920 Haiyuan earthquake (M=7.8 8.3), which occurred near Gan-yanchi along the Haiyuan fault, was one of the largest devastating intraplate earthquakes in China and even in the world. The maximum epicentral intensity reached XI degree. Deng et al. (1989) found nearly 237km surface rupture and 10-11m maximum sinistral strike-slip dislocation in their geological survey. The seismogenic fault (Haiyuan fault) which is located in the northeast Tibetan Plateau, is extremely complex due to the crustal deformation. Many researchers have studied this earthquake and the seismogenic fault by magnetotelluric sounding, deep seismic reflection profile, LiDAR, GPS, InSAR and trenching, etc. However, Because of few seismic recordings available in Haiyuan earthquake, the detailed rupture mechanisms and hazard distribution need to further scientifically analyze. In order to figure out the rupture mechanism of 1920 Haiyuan earthquake, we use two popular methods to model the earthquake source. One is the characterized source model which is based on asperity model. This model can summarize the main features of the rupture process and more in-deep research. Another one is the dynamic rupture model which is based on earthquake source physics. The method can simulate the process of earthquake rupture initiation, extension and termination. Zhang et al. (2014) have studied the 3-D dynamic rupture process on non-planar fault using 3D curved-grid finite-difference method (CG-FDM) which is flexible in modeling a fault with complex geometry and have successfully simulated the dynamic rupture of Wenchuan earthquake. In this work, we build reasonable kinematic and dynamic models based on previous investigations including tectonic stress, friction parameters, co-seismic displacement, and so on. Then, the strong ground motion of Haiyuan earthquake is simulated by CG-FDM. Finally, we analyze the synthetic intensity distribution and the effect on the stress distribution around this

  8. Ground motion simulation for the 23 August 2011, Mineral, Virginia earthquake using physics-based and stochastic broadband methods

    Science.gov (United States)

    Sun, Xiaodan; Hartzell, Stephen; Rezaeian, Sanaz

    2015-01-01

    Three broadband simulation methods are used to generate synthetic ground motions for the 2011 Mineral, Virginia, earthquake and compare with observed motions. The methods include a physics‐based model by Hartzell et al. (1999, 2005), a stochastic source‐based model by Boore (2009), and a stochastic site‐based model by Rezaeian and Der Kiureghian (2010, 2012). The ground‐motion dataset consists of 40 stations within 600 km of the epicenter. Several metrics are used to validate the simulations: (1) overall bias of response spectra and Fourier spectra (from 0.1 to 10 Hz); (2) spatial distribution of residuals for GMRotI50 peak ground acceleration (PGA), peak ground velocity, and pseudospectral acceleration (PSA) at various periods; (3) comparison with ground‐motion prediction equations (GMPEs) for the eastern United States. Our results show that (1) the physics‐based model provides satisfactory overall bias from 0.1 to 10 Hz and produces more realistic synthetic waveforms; (2) the stochastic site‐based model also yields more realistic synthetic waveforms and performs superiorly for frequencies greater than about 1 Hz; (3) the stochastic source‐based model has larger bias at lower frequencies (spatial distribution of GMRotI50 residuals shows that there is no obvious pattern with distance in the simulation bias, but there is some azimuthal variability. The comparison between synthetics and GMPEs shows similar fall‐off with distance for all three models, comparable PGA and PSA amplitudes for the physics‐based and stochastic site‐based models, and systematic lower amplitudes for the stochastic source‐based model at lower frequencies (<0.5  Hz).

  9. Performance of Irikura's Recipe Rupture Model Generator in Earthquake Ground Motion Simulations as Implemented in the Graves and Pitarka Hybrid Approach.

    Energy Technology Data Exchange (ETDEWEB)

    Pitarka, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-22

    We analyzed the performance of the Irikura and Miyake (2011) (IM2011) asperity-­ based kinematic rupture model generator, as implemented in the hybrid broadband ground-­motion simulation methodology of Graves and Pitarka (2010), for simulating ground motion from crustal earthquakes of intermediate size. The primary objective of our study is to investigate the transportability of IM2011 into the framework used by the Southern California Earthquake Center broadband simulation platform. In our analysis, we performed broadband (0 -­ 20Hz) ground motion simulations for a suite of M6.7 crustal scenario earthquakes in a hard rock seismic velocity structure using rupture models produced with both IM2011 and the rupture generation method of Graves and Pitarka (2016) (GP2016). The level of simulated ground motions for the two approaches compare favorably with median estimates obtained from the 2014 Next Generation Attenuation-­West2 Project (NGA-­West2) ground-­motion prediction equations (GMPEs) over the frequency band 0.1–10 Hz and for distances out to 22 km from the fault. We also found that, compared to GP2016, IM2011 generates ground motion with larger variability, particularly at near-­fault distances (<12km) and at long periods (>1s). For this specific scenario, the largest systematic difference in ground motion level for the two approaches occurs in the period band 1 – 3 sec where the IM2011 motions are about 20 – 30% lower than those for GP2016. We found that increasing the rupture speed by 20% on the asperities in IM2011 produced ground motions in the 1 – 3 second bandwidth that are in much closer agreement with the GMPE medians and similar to those obtained with GP2016. The potential implications of this modification for other rupture mechanisms and magnitudes are not yet fully understood, and this topic is the subject of ongoing study.

  10. Scenario-Based Seismic Risk Analysis: An Engineering Approach to the Development of Source and Site-Specific Ground Motion Time Histories in Areas of Low Seismicity

    Science.gov (United States)

    Klügel, Jens-Uwe; Attinger, Richard

    2011-01-01

    Modern engineering design methods require ground motion time histories as input for non-linear dynamic structural analysis. Non-linear dynamic methods of analysis are increasingly applied in the context of probabilistic risk assessments and for cost-effective design of critical infrastructures. In current engineering practice artificial time histories matching deterministic design spectra or probabilistic uniform hazard spectra are most frequently used for engineering analysis. The intermediate step of generation of response spectra can lead to a biased estimate of the potential damage from earthquakes because of insufficient consideration of the true energy content and strong motion duration of earthquakes. Thus, assessment of seismic risk may seem unrealistic. An engineering approach to the development of three-component ground motion time histories has been established which enables consideration of the typical characteristics of seismic sources, regional ground motion attenuation, and the main geotechnical characteristics of the target site. Therefore, the approach is suitable for use in scenario-based risk analysis a larger number of time histories are required for representation of the seismic hazard. Near-field effects are implemented in the stochastic source model using engineering approximations. The approach is suggested for use in areas of low seismicity where ground motion records of larger earthquakes are not available. Uncertainty analysis indicates that ground motions generated by individual earthquakes are well constrained and that the usual lognormal model is not the best choice for predicting the upper tail of the distribution of the ground motions.

  11. Identifying the unique ground motion signatures of supershear earthquakes - The one-two punch effect on high-rise buildings

    Science.gov (United States)

    Rosakis, A.; Mello, M.; Bhat, H.; Krishnan, S.; Kanamori, H.

    2011-12-01

    Directly studying earthquakes presents a host of insurmountable difficulties, the least of which is our inability to trigger earthquakes of various magnitudes at will and the lack of means of scrutinizing the behavior at depth while the quake propagates. We have developed techniques to produce miniature (or surrogate) laboratory earthquakes and follow their progress with high-speed imaging tools. Our laboratory quakes mimic actual ones, and have allowed us to demonstrate the existence of ruptures of super-shear or intersonic rupture speeds. The propagating fronts of such supershear ruptures feature a Mach-cone of shear shock waves similar to that of supersonic aircraft. For earthquake ruptures transitioning from sub-Rayleigh to supershear rupture speeds, this unusual shear Mach cone feature is also followed by a trailing Rayleigh disturbance which is all that remains of the old sub-Rayleigh rupture after transition is complete. Each propagating disturbance contributes to the unique ground motion signature in the near field. We refer to this as a one-two punch scenario. In particular, ground motion associated with passage of the shear Mach features a dominant fault-parallel velocity component while ground motion from the trailing Rayleigh field is characterized by a dominant fault-normal velocity component (characteristic of common, sub-shear earthquake ruptures). Appropriate scaling of the laboratory ground velocity measurements are used to shake 3-D numerical models of high-rise buildings (located in near fault locations) with hypothetical supershear and sub-Rayleigh earthquakes with unexpected implication to building safety and seismic hazard analysis.

  12. Structure-specific selection of earthquake ground motions for the reliable design and assessment of structures

    DEFF Research Database (Denmark)

    Katsanos, E. I.; Sextos, A. G.

    2017-01-01

    A decision support process is presented to accommodate selecting and scaling of earthquake motions as required for the time domain analysis of structures. Code-compatible suites of seismic motions are provided being, at the same time, prequalified through a multi-criterion approach to induce...... was subjected to numerous suites of motions that were highly ranked according to both the proposed approach (δsv–sc) and the conventional one (δconv), that is commonly used for earthquake records selection and scaling. The findings from numerous linear response history analyses reveal the superiority...

  13. Reliable selection of earthquake ground motions for performance-based design

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Sextos, A.G.

    2016-01-01

    A decision support process is presented to accommodate selecting and scaling of earthquake motions as required for the time domain analysis of structures. Prequalified code-compatible suites of seismic motions are provided through a multi-criterion approach to satisfy prescribed reduced variability...... of the method, by being subjected to numerous suites of motions that were highly ranked according to both the proposed approach (δsv-sc) and the conventional index (δconv), already used by most existing code-based earthquake records selection and scaling procedures. The findings reveal the superiority...

  14. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system

    NARCIS (Netherlands)

    Faber, G.S.; Chang, C.C.; Kingma, I.; Dennerlein, J.T.; van Dieen, J.H.

    2016-01-01

    Inertial motion capture (IMC) systems have become increasingly popular for ambulatory movement analysis. However, few studies have attempted to use these measurement techniques to estimate kinetic variables, such as joint moments and ground reaction forces (GRFs). Therefore, we investigated the

  15. Repeatable source, site, and path effects on the standard deviation for empirical ground-motion prediction models

    Science.gov (United States)

    Lin, P.-S.; Chiou, B.; Abrahamson, N.; Walling, M.; Lee, C.-T.; Cheng, C.-T.

    2011-01-01

    In this study, we quantify the reduction in the standard deviation for empirical ground-motion prediction models by removing ergodic assumption.We partition the modeling error (residual) into five components, three of which represent the repeatable source-location-specific, site-specific, and path-specific deviations from the population mean. A variance estimation procedure of these error components is developed for use with a set of recordings from earthquakes not heavily clustered in space.With most source locations and propagation paths sampled only once, we opt to exploit the spatial correlation of residuals to estimate the variances associated with the path-specific and the source-location-specific deviations. The estimation procedure is applied to ground-motion amplitudes from 64 shallow earthquakes in Taiwan recorded at 285 sites with at least 10 recordings per site. The estimated variance components are used to quantify the reduction in aleatory variability that can be used in hazard analysis for a single site and for a single path. For peak ground acceleration and spectral accelerations at periods of 0.1, 0.3, 0.5, 1.0, and 3.0 s, we find that the singlesite standard deviations are 9%-14% smaller than the total standard deviation, whereas the single-path standard deviations are 39%-47% smaller.

  16. High nonlinear urban ground motion in Manila(Philippines) from 1993 to 2010 observed by DInSAR: implications for sea-level measurement

    OpenAIRE

    Raucoules, Daniel; Le Cozannet, Gonéri; Wöppelmann, Guy; De Michele, Marcello; Gravelle, Médéric; Daag, Arturo; Marcos, Marta

    2013-01-01

    International audience; In coastal low-lying urban areas, vertical ground motions can significantly exacerbate the hazards related to sea-level rise. However, their spatial extent, their temporal evolution, and even sometimes their existence are often poorly known. This study aims to monitor variable urban ground motion (uplift and subsidence) from 1993 to 2010 in the metropolitan area of Manila, Philippines. Because high subsidence rates have been reported in this city in previous studies, c...

  17. Effect Of Long-Period Earthquake Ground Motions On Nonlinear Vibration Of Shells With Variable Thickness

    Science.gov (United States)

    Abdikarimov, R.; Bykovtsev, A.; Khodzhaev, D.; Research Team Of Geotechnical; Structural Engineers

    2010-12-01

    Long-period earthquake ground motions (LPEGM) with multiple oscillations have become a crucial consideration in seismic hazard assessment because of the rapid increase of tall buildings and special structures (SP).Usually, SP refers to innovative long-span structural systems. More specifically, they include many types of structures, such as: geodesic showground; folded plates; and thin shells. As continuation of previous research (Bykovtsev, Abdikarimov, Khodzhaev 2003, 2010) analysis of nonlinear vibrations (NV) and dynamic stability of SP simulated as shells with variable rigidity in geometrically nonlinear statement will be presented for two cases. The first case will represent NV example of a viscoelastic orthotropic cylindrical shell with radius R, length L and variable thickness h=h(x,y). The second case will be NV example of a viscoelastic shell with double curvature, variable thickness, and bearing the concentrated masses. In both cases we count, that the SP will be operates under seismic load generated by LPEGM with multiple oscillations. For different seismic loads simulations, Bykovtsev’s Model and methodology was used for generating LPEGM time history. The methodology for synthesizing LPEGM from fault with multiple segmentations was developed by Bykovtev (1978-2010) and based on 3D-analytical solutions by Bykovtsev-Kramarovskii (1987&1989) constructed for faults with multiple segmentations. This model is based on a kinematics description of displacement function on the fault and included in consideration of all possible combinations of 3 components of vector displacement (two slip vectors and one tension component). The opportunities to take into consideration fault segmentations with both shear and tension vector components of displacement on the fault plane provide more accurate LPEGM evaluations. Radiation patterns and directivity effects were included in the model and more physically realistic results for simulated LPEGM were considered. The

  18. Evaluation equivalent pulse of pulse-like ground motion to estimate the response of RC moment-resisting frames

    Directory of Open Access Journals (Sweden)

    Seyed Rohollah Hosseini Vaez

    2017-08-01

    Full Text Available In this study the ability of equivalent pulse extracted by a mathematical model from pulse-like ground motion is investigated in order to estimate the response of RC moment-resisting frames. By examining the mathematical model, it is obvious that the model-based elastic response spectra are compatible with the actual pulse-like record. Also, the model simulates the long-period portion of actual pulse-like records by a high level of precision. The results indicate that the model adequately simulates the components of time histories. In order to investigate the ability of equivalent pulse of pulse-like ground motion in estimating the response of RC moment-resisting frames, five frame models including 3, 6, 9, 12 and 15 stories analyzed under actual record and simulated one. The results of the base shear demand, the maximum value of the inter-story drift and the distribution of inter-story drift along the height of the structures in three levels of design ductility is investigated. According to the results of this study, the equivalent pulses can predict accurately the response of regular RC moment-resisting frames when the fundamental period of the structure is equal to or greater than the equivalent pulse of the record. For the ground motion with high-frequency content the difference is high; but with increasing the number of stories and approaching pulse period to the fundamental period of the structure and increasing the level of design ductility of structure, more accurately predict the structural response.

  19. Agreement of spatio-temporal gait parameters between a vertical ground reaction force decomposition algorithm and a motion capture system.

    Science.gov (United States)

    Veilleux, Louis-Nicolas; Raison, Maxime; Rauch, Frank; Robert, Maxime; Ballaz, Laurent

    2016-01-01

    A ground reaction force decomposition algorithm based on large force platform measurements has recently been developed to analyze ground reaction forces under each foot during the double support phase of gait. However, its accuracy for the measurement of the spatiotemporal gait parameters remains to be established. The aim of the present study was to establish the agreement between the spatiotemporal gait parameters obtained using (1) a walkway (composed of six large force platforms) and the newly developed algorithm, and (2) an optoelectronic motion capture system. Twenty healthy children and adolescents (age range: 6-17 years) and 19 healthy adults (age range: 19-51 years) participated in this study. They were asked to walk at their preferred speed and at a speed that was faster than the preferred one. Each participant performed three blocks of three trials in each of the two walking speed conditions. The spatiotemporal gait parameters measured with the algorithm did not differ by more than 2.5% from those obtained with the motion capture system. The limits of agreement represented between 3% and 8% of the average spatiotemporal gait parameters. Repeatability of the algorithm was slightly higher than that of the motion capture system as the coefficient of variations ranged from 2.5% to 6%, and from 1.5% to 3.5% for the algorithm and the motion capture system, respectively. The proposed algorithm provides valid and repeatable spatiotemporal gait parameter measurements and offers a promising tool for clinical gait analysis. Further studies are warranted to test the algorithm in people with impaired gait. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A ground-based proper motion study of 12 nearby globular clusters

    Science.gov (United States)

    Narloch, W.; Kaluzny, J.; Poleski, R.; Rozyczka, M.; Pych, W.; Thompson, I. B.

    2017-10-01

    We derive relative proper motions of stars in the fields of the globular clusters M12, NGC 6362, M4, M55, M22, NGC 6752, NGC 3201, M30, M10, NGC 362, M5 and 47 Tucanae based on data collected between 1997 and 2015 with the 1-m Swope telescope of Las Campanas Observatory. We determine membership class and membership probability for over 446 000 objects, and show that these are efficient methods for separating field stars from members of the cluster. In particular, membership probabilities of variable stars and blue/yellow/red stragglers are determined. Finally, we find absolute proper motions for six globular clusters from our sample: M55, NGC 3201, M10, NGC 362, M5 and 47 Tuc. An electronic catalogue of the derived proper motions is publicly available via the internet.

  1. Three Decades of Volume Change of a Small Greenlandic Glacier Using Ground Penetrating Radar, Structure from Motion, and Aerial Photogrammetry

    DEFF Research Database (Denmark)

    Marcer, M.; Stentoft, Peter Alexander; Bjerre, Elisa

    2017-01-01

    topography, the approach constitutes a viable alternative where the use of drones is not possible. Our investigations constitute the first glacier on Greenland's west coast where ice volume was determined and volume change calculated. The glacier's thinning rate is comparable to, for example, the Swiss Alps......Glaciers in the Arctic are losing mass at an increasing rate. Here we use surface topography derived from Structure from Motion (SfM) and ice volume from ground penetrating radar (GPR) to describe the 2014 state of Aqqutikitsoq glacier (2.85 km) on Greenland's west coast. A photogrammetrically...

  2. Discrete and continuum simulations of near-field ground motion from Source Physics Experiments (SPE) (Invited)

    Science.gov (United States)

    Ezzedine, S. M.; Vorobiev, O.; Herbold, E. B.; Glenn, L. A.; Antoun, T.

    2013-12-01

    This work is focused on analysis of near-field measurements (up to 100 m from the source) recorded during Source Physics Experiments in a granitic formation. One of the main goals of these experiments is to investigate the possible mechanisms of shear wave generation in the nonlinear source region. SPE experiments revealed significant tangential motion (up to 30 % of the magnitude in the radial direction) at many locations. Furthermore, azimuthal variations in radial velocities were also observed which cannot be generated by a spherical source in isotropic materials. Understanding the nature of this non-radial motion is important for discriminating between the natural seismicity and underground explosions signatures. Possible mechanisms leading to such motion include, but not limited to, heterogeneities in the rock such as joints, faults and geologic layers as well as surface topography and vertical motion at the surface caused by material spall and gravity. We have performed a three dimensional computational studies considering all these effects. Both discrete and continuum methods have been employed to model heterogeneities. In the discrete method, the joints and faults were represented by cohesive contact elements. This enables us to examine various friction laws at the joints which include softening, dilatancy, water saturation and rate-dependent friction. Yet this approach requires the mesh to be aligned with joints, which may present technical difficulties in three dimensions when multiple non-persistent joints are present. In addition, the discrete method is more computationally expensive. The continuum approach assumes that the joints are stiff and the dilatancy and shear softening can be neglected. In this approach, the joints are modeled as weakness planes within the material, which are imbedded into and pass through many finite elements. The advantage of this approach is that it requires neither sophisticated meshing algorithms nor contact detection

  3. Three Decades of Volume Change of a Small Greenlandic Glacier Using Ground Penetrating Radar, Structure from Motion, and Aerial Photogrammetry

    DEFF Research Database (Denmark)

    Marcer, M.; Stentoft, Peter Alexander; Bjerre, Elisa

    2017-01-01

    topography, the approach constitutes a viable alternative where the use of drones is not possible. Our investigations constitute the first glacier on Greenland's west coast where ice volume was determined and volume change calculated. The glacier's thinning rate is comparable to, for example, the Swiss Alps......Glaciers in the Arctic are losing mass at an increasing rate. Here we use surface topography derived from Structure from Motion (SfM) and ice volume from ground penetrating radar (GPR) to describe the 2014 state of Aqqutikitsoq glacier (2.85 km) on Greenland's west coast. A photogrammetrically...... derived 1985 digital elevation model (DEM) was subtracted from a 2014 DEM obtained using land-based SfM to calculate geodetic glacier mass balance. Furthermore, a detailed 2014 ground penetrating radar survey was performed to assess ice volume. From 1985 to 2014, the glacier has lost 49.8 ± 9.4 10 m...

  4. Using 1 -D and 2-D modelling of ground motion for seismic zonation criteria: results for the city of Rome

    Directory of Open Access Journals (Sweden)

    A. Caserta

    1995-06-01

    Full Text Available The geological information collected in the last years by the Istituto Nazionale di Geofisica for the city of Rome is used to construct 1- and 2-D models of the nearsurface structure. These models are the basis for the numerical generation of synthetic accelerograms which can simulate the horizontal ground motion (SH waves produced in the different areas of the city by a large (M ? 7 potential earthquake 100 km away in Central Apennines. The proposed methodology yields earthquake engineering parameters (peak ground acceleration and velocity, Arias intensity, energy flux, response spectra whose spatial variations are consistent with the damage distribution caused by the strongest earthquakes felt in Rome during its long history. Based on the macroseismic inforination and the results of the numerical simulations, general criteria for seismic zonation of the city of Rome are proposed.

  5. Site correction of a high-frequency strong-ground-motion simulation based on an empirical transfer function

    Science.gov (United States)

    Huang, Jyun-Yan; Wen, Kuo-Liang; Lin, Che-Min; Kuo, Chun-Hsiang; Chen, Chun-Te; Chang, Shuen-Chiang

    2017-05-01

    In this study, an empirical transfer function (ETF), which is the spectrum difference in Fourier amplitude spectra between observed strong ground motion and synthetic motion obtained by a stochastic point-source simulation technique, is constructed for the Taipei Basin, Taiwan. The basis stochastic point-source simulations can be treated as reference rock site conditions in order to consider site effects. The parameters of the stochastic point-source approach related to source and path effects are collected from previous well-verified studies. A database of shallow, small-magnitude earthquakes is selected to construct the ETFs so that the point-source approach for synthetic motions might be more widely applicable. The high-frequency synthetic motion obtained from the ETF procedure is site-corrected in the strong site-response area of the Taipei Basin. The site-response characteristics of the ETF show similar responses as in previous studies, which indicates that the base synthetic model is suitable for the reference rock conditions in the Taipei Basin. The dominant frequency contour corresponds to the shape of the bottom of the geological basement (the top of the Tertiary period), which is the Sungshan formation. Two clear high-amplification areas are identified in the deepest region of the Sungshan formation, as shown by an amplification contour of 0.5 Hz. Meanwhile, a high-amplification area was shifted to the basin's edge, as shown by an amplification contour of 2.0 Hz. Three target earthquakes with different kinds of source conditions, including shallow small-magnitude events, shallow and relatively large-magnitude events, and deep small-magnitude events relative to the ETF database, are tested to verify site correction. The results indicate that ETF-based site correction is effective for shallow earthquakes, even those with higher magnitudes, but is not suitable for deep earthquakes. Finally, one of the most significant shallow large-magnitude earthquakes (the

  6. Capturing Invisible Motions in the Transition from Ground to Rare Excited States of T4 Lysozyme L99A.

    Science.gov (United States)

    Schiffer, Jamie M; Feher, Victoria A; Malmstrom, Robert D; Sida, Roxana; Amaro, Rommie E

    2016-10-18

    Proteins commonly sample a number of conformational states to carry out their biological function, often requiring transitions from the ground state to higher-energy states. Characterizing the mechanisms that guide these transitions at the atomic level promises to impact our understanding of functional protein dynamics and energy landscapes. The leucine-99-to-alanine (L99A) mutant of T4 lysozyme is a model system that has an experimentally well characterized excited sparsely populated state as well as a ground state. Despite the exhaustive study of L99A protein dynamics, the conformational changes that permit transitioning to the experimentally detected excited state (∼3%, ΔG ∼2 kcal/mol) remain unclear. Here, we describe the transitions from the ground state to this sparsely populated excited state of L99A as observed through a single molecular dynamics (MD) trajectory on the Anton supercomputer. Aside from detailing the ground-to-excited-state transition, the trajectory samples multiple metastates and an intermediate state en route to the excited state. Dynamic motions between these states enable cavity surface openings large enough to admit benzene on timescales congruent with known rates for benzene binding. Thus, these fluctuations between rare protein states provide an atomic description of the concerted motions that illuminate potential path(s) for ligand binding. These results reveal, to our knowledge, a new level of complexity in the dynamics of buried cavities and their role in creating mobile defects that affect protein dynamics and ligand binding. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Geological and seismological survey for new design-basis earthquake ground motion of Kashiwazaki-Kariwa NPS

    Science.gov (United States)

    Takao, M.; Mizutani, H.

    2009-05-01

    At about 10:13 on July 16, 2007, a strong earthquake named 'Niigata-ken Chuetsu-oki Earthquake' of Mj6.8 on Japan Meteorological Agencyfs scale occurred offshore Niigata prefecture in Japan. However, all of the nuclear reactors at Kashiwazaki-Kariwa Nuclear Power Station (KKNPS) in Niigata prefecture operated by Tokyo Electric Power Company shut down safely. In other words, automatic safety function composed of shutdown, cooling and containment worked as designed immediately after the earthquake. During the earthquake, the peak acceleration of the ground motion exceeded the design-basis ground motion (DBGM), but the force due to the earthquake applied to safety-significant facilities was about the same as or less than the design basis taken into account as static seismic force. In order to assess anew the safety of nuclear power plants, we have evaluated a new DBGM after conducting geomorphological, geological, geophysical, seismological survey and analyses. [Geomorphological, Geological and Geophysical survey] In the land area, aerial photograph interpretation was performed at least within the 30km radius to extract geographies that could possibly be tectonic reliefs as a geomorphological survey. After that, geological reconnaissance was conducted to confirm whether the extracted landforms are tectonic reliefs or not. Especially we carefully investigated Nagaoka Plain Western Boundary Fault Zone (NPWBFZ), which consists of Kakuda-Yahiko fault, Kihinomiya fault and Katakai fault, because NPWBFZ is the one of the active faults which have potential of Mj8 class in Japan. In addition to the geological survey, seismic reflection prospecting of approximate 120km in total length was completed to evaluate the geological structure of the faults and to assess the consecutiveness of the component faults of NPWBFZ. As a result of geomorphological, geological and geophysical surveys, we evaluated that the three component faults of NPWBFZ are independent to each other from the

  8. 3D ground‐motion simulations of Mw 7 earthquakes on the Salt Lake City segment of the Wasatch fault zone: Variability of long‐period (T≥1  s) ground motions and sensitivity to kinematic rupture parameters

    Science.gov (United States)

    Moschetti, Morgan P.; Hartzell, Stephen; Ramirez-Guzman, Leonardo; Frankel, Arthur; Angster, Stephen J.; Stephenson, William J.

    2017-01-01

    We examine the variability of long‐period (T≥1  s) earthquake ground motions from 3D simulations of Mw 7 earthquakes on the Salt Lake City segment of the Wasatch fault zone, Utah, from a set of 96 rupture models with varying slip distributions, rupture speeds, slip velocities, and hypocenter locations. Earthquake ruptures were prescribed on a 3D fault representation that satisfies geologic constraints and maintained distinct strands for the Warm Springs and for the East Bench and Cottonwood faults. Response spectral accelerations (SA; 1.5–10 s; 5% damping) were measured, and average distance scaling was well fit by a simple functional form that depends on the near‐source intensity level SA0(T) and a corner distance Rc:SA(R,T)=SA0(T)(1+(R/Rc))−1. Period‐dependent hanging‐wall effects manifested and increased the ground motions by factors of about 2–3, though the effects appeared partially attributable to differences in shallow site response for sites on the hanging wall and footwall of the fault. Comparisons with modern ground‐motion prediction equations (GMPEs) found that the simulated ground motions were generally consistent, except within deep sedimentary basins, where simulated ground motions were greatly underpredicted. Ground‐motion variability exhibited strong lateral variations and, at some sites, exceeded the ground‐motion variability indicated by GMPEs. The effects on the ground motions of changing the values of the five kinematic rupture parameters can largely be explained by three predominant factors: distance to high‐slip subevents, dynamic stress drop, and changes in the contributions from directivity. These results emphasize the need for further characterization of the underlying distributions and covariances of the kinematic rupture parameters used in 3D ground‐motion simulations employed in probabilistic seismic‐hazard analyses.

  9. The Seismic Response of High-Speed Railway Bridges Subjected to Near-Fault Forward Directivity Ground Motions Using a Vehicle-Track-Bridge Element

    Directory of Open Access Journals (Sweden)

    Chen Ling-kun

    2014-01-01

    Full Text Available Based on the Next Generation Attenuation (NGA project ground motion library, the finite element model of the high-speed railway vehicle-bridge system is established. The model was specifically developed for such system that is subjected to near-fault ground motions. In addition, it accounted for the influence of the rail irregularities. The vehicle-track-bridge (VTB element is presented to simulate the interaction between train and bridge, in which a train can be modeled as a series of sprung masses concentrated at the axle positions. For the short period railway bridge, the results from the case study demonstrate that directivity pulse effect tends to increase the seismic responses of the bridge compared with far-fault ground motions or nonpulse-like motions and the directivity pulse effect and high values of the vertical acceleration component can notably influence the hysteretic behaviour of piers.

  10. Three-Dimensional Finite Difference Simulation of Ground Motions from the August 24, 2014 South Napa Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Arthur J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States); Dreger, Douglas S. [Univ. of California, Berkeley, CA (United States); Pitarka, Arben [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-15

    We performed three-dimensional (3D) anelastic ground motion simulations of the South Napa earthquake to investigate the performance of different finite rupture models and the effects of 3D structure on the observed wavefield. We considered rupture models reported by Dreger et al. (2015), Ji et al., (2015), Wei et al. (2015) and Melgar et al. (2015). We used the SW4 anelastic finite difference code developed at Lawrence Livermore National Laboratory (Petersson and Sjogreen, 2013) and distributed by the Computational Infrastructure for Geodynamics. This code can compute the seismic response for fully 3D sub-surface models, including surface topography and linear anelasticity. We use the 3D geologic/seismic model of the San Francisco Bay Area developed by the United States Geological Survey (Aagaard et al., 2008, 2010). Evaluation of earlier versions of this model indicated that the structure can reproduce main features of observed waveforms from moderate earthquakes (Rodgers et al., 2008; Kim et al., 2010). Simulations were performed for a domain covering local distances (< 25 km) and resolution providing simulated ground motions valid to 1 Hz.

  11. 8 March 2010 Elazığ-Kovancilar (Turkey) Earthquake: observations on ground motions and building damage

    Science.gov (United States)

    Akkar, Sinan; Aldemir, A.; Askan, A.; Bakir, S.; Canbay, E.; Demirel, I.O.; Erberik, M.A.; Gulerce, Z.; Gulkan, Polat; Kalkan, Erol; Prakash, S.; Sandikkaya, M.A.; Sevilgen, V.; Ugurhan, B.; Yenier, E.

    2011-01-01

    An earthquake of MW = 6.1 occurred in the Elazığ region of eastern Turkey on 8 March 2010 at 02:32:34 UTC. The United States Geological Survey (USGS) reported the epicenter of the earthquake as 38.873°N-39.981°E with a focal depth of 12 km. Forty-two people lost their lives and 137 were injured during the event. The earthquake was reported to be on the left-lateral strike-slip east Anatolian fault (EAF), which is one of the two major active fault systems in Turkey. Teams from the Earthquake Engineering Research Center of the Middle East Technical University (EERC-METU) visited the earthquake area in the aftermath of the mainshock. Their reconnaissance observations were combined with interpretations of recorded ground motions for completeness. This article summarizes observations on building and ground damage in the area and provides a discussion of the recorded motions. No significant observations in terms of geotechnical engineering were made.

  12. Ground Motion Prediction for M7+ scenarios on the San Andreas Fault using the Virtual Earthquake Approach

    Science.gov (United States)

    Denolle, M.; Dunham, E. M.; Prieto, G.; Beroza, G. C.

    2013-05-01

    There is no clearer example of the increase in hazard due to prolonged and amplified shaking in sedimentary, than the case of Mexico City in the 1985 Michoacan earthquake. It is critically important to identify what other cities might be susceptible to similar basin amplification effects. Physics-based simulations in 3D crustal structure can be used to model and anticipate those effects, but they rely on our knowledge of the complexity of the medium. We propose a parallel approach to validate ground motion simulations using the ambient seismic field. We compute the Earth's impulse response combining the ambient seismic field and coda-wave enforcing causality and symmetry constraints. We correct the surface impulse responses to account for the source depth, mechanism and duration using a 1D approximation of the local surface-wave excitation. We call the new responses virtual earthquakes. We validate the ground motion predicted from the virtual earthquakes against moderate earthquakes in southern California. We then combine temporary seismic stations on the southern San Andreas Fault and extend the point source approximation of the Virtual Earthquake Approach to model finite kinematic ruptures. We confirm the coupling between source directivity and amplification in downtown Los Angeles seen in simulations.

  13. The Prospect of using Three-Dimensional Earth Models To Improve Nuclear Explosion Monitoring and Ground Motion Hazard Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Antoun, T; Harris, D; Lay, T; Myers, S C; Pasyanos, M E; Richards, P; Rodgers, A J; Walter, W R; Zucca, J J

    2008-02-11

    The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring and seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes a path by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas.

  14. Effects of surface geology on the ground-motion at New Borg El-Arab City, Alexandria, Northern Egypt

    Directory of Open Access Journals (Sweden)

    Abuoelela A. Mohamed

    2016-06-01

    Full Text Available The effects of the near-surface geology on the ground-motion at New Borg El-Arab City were evaluated in the current work based on the analysis of the ambient noise records (microtremor. Sixty-nine microtremor measurements have been done in the studied area. The dataset was processed using horizontal-to-vertical-spectral ratio (HVSR technique to estimate the fundamental frequencies corresponding to the ground-motion amplification due to the soil deposits. By spatial interpolation of the resulted fundamental frequencies (f0 of all the measured sites, the zonation map was produced. This map was correlated with the geological features of the study area and demonstrated that the fundamental frequency ranges between 5.8 Hz and 7 Hz were corresponding to the sites located over Quaternary deposit. However, the fundamental frequencies (f0 increased in the middle of the study area due to presence of parallel Alexandria limestone ridge. Finally, site effect was highlighted by performing a site response analysis. It indicated that, the PGA at surface of the analyzed site is 0.047 g and the maximum spectral acceleration (SA is 0.157 g. It was also found that, the maximum spectral period from site response analysis is in a good agreement with that one from HVSR technique. This confirmed the robustness of HVSR for determination of fundamental period or frequency.

  15. Effects of surface geology on the ground-motion at New Borg El-Arab City, Alexandria, Northern Egypt

    Science.gov (United States)

    Mohamed, Abuoelela A.; Helal, A. M. A.; Mohamed, A. M. E.; Shokry, M. M. F.; Ezzelarab, M.

    2016-06-01

    The effects of the near-surface geology on the ground-motion at New Borg El-Arab City were evaluated in the current work based on the analysis of the ambient noise records (microtremor). Sixty-nine microtremor measurements have been done in the studied area. The dataset was processed using horizontal-to-vertical-spectral ratio (HVSR) technique to estimate the fundamental frequencies corresponding to the ground-motion amplification due to the soil deposits. By spatial interpolation of the resulted fundamental frequencies (f0) of all the measured sites, the zonation map was produced. This map was correlated with the geological features of the study area and demonstrated that the fundamental frequency ranges between 5.8 Hz and 7 Hz were corresponding to the sites located over Quaternary deposit. However, the fundamental frequencies (f0) increased in the middle of the study area due to presence of parallel Alexandria limestone ridge. Finally, site effect was highlighted by performing a site response analysis. It indicated that, the PGA at surface of the analyzed site is 0.047 g and the maximum spectral acceleration (SA) is 0.157 g. It was also found that, the maximum spectral period from site response analysis is in a good agreement with that one from HVSR technique. This confirmed the robustness of HVSR for determination of fundamental period or frequency.

  16. The Italian Project S2 - Task 4:Near-fault earthquake ground motion simulation in the Sulmona alluvial basin

    Science.gov (United States)

    Stupazzini, M.; Smerzini, C.; Cauzzi, C.; Faccioli, E.; Galadini, F.; Gori, S.

    2009-04-01

    Recently the Italian Department of Civil Protection (DPC), in cooperation with Istituto Nazionale di Geofisica e Vulcanologia (INGV) has promoted the 'S2' research project (http://nuovoprogettoesse2.stru.polimi.it/) aimed at the design, testing and application of an open-source code for seismic hazard assessment (SHA). The tool envisaged will likely differ in several important respects from an existing international initiative (Open SHA, Field et al., 2003). In particular, while "the OpenSHA collaboration model envisions scientists developing their own attenuation relationships and earthquake rupture forecasts, which they will deploy and maintain in their own systems", the main purpose of S2 project is to provide a flexible computational tool for SHA, primarily suited for the needs of DPC, which not necessarily are scientific needs. Within S2, a crucial issue is to make alternative approaches available to quantify the ground motion, with emphasis on the near field region. The SHA architecture envisaged will allow for the use of ground motion descriptions other than those yielded by empirical attenuation equations, for instance user generated motions provided by deterministic source and wave propagation simulations. In this contribution, after a brief presentation of Project S2, we intend to illustrate some preliminary 3D scenario simulations performed in the alluvial basin of Sulmona (Central Italy), as an example of the type of descriptions that can be handled in the future SHA architecture. In detail, we selected some seismogenic sources (from the DISS database), believed to be responsible for a number of destructive historical earthquakes, and derive from them a family of simplified geometrical and mechanical source models spanning across a reasonable range of parameters, so that the extent of the main uncertainties can be covered. Then, purely deterministic (for frequencies Journal of Seismology, 1, 237-251. Field, E.H., T.H. Jordan, and C.A. Cornell (2003

  17. Strong ground motion in Port-au-Prince, Haiti, during the M7.0 12 January 2010 Haiti earthquake

    Science.gov (United States)

    Hough, Susan E; Given, Doug; Taniguchi, Tomoyo; Altidor, J.R.; Anglade, Dieuseul; Mildor, S-L.

    2011-01-01

    No strong motion records are available for the 12 January 2010 M7.0 Haiti earthquake. We use aftershock recordings as well as detailed considerations of damage to estimate the severity and distribution of mainshock shaking in Port-au-Prince. Relative to ground motions at a hard - rock reference site, peak accelerations are amplified by a factor of approximately 2 at sites on low-lying deposits in central Port-au-Prince and by a factor of 2.5 - 3.5 on a steep foothill ridge in the southern Port-au-Prince metropolitan region. The observed amplification along the ridge cannot be explained by sediment - induced amplification , but is consistent with predicted topographic amplification by a steep, narrow ridge. Although damage was largely a consequence of poor construction , the damage pattern inferred from analysis of remote sensing imagery provides evidence for a correspondence between small-scale (0.1 - 1.0 km) topographic relief and high damage. Mainshock shaking intensity can be estimated crudely from a consideration of macroseismic effects . We further present detailed, quantitative analysis of the marks left on a tile floor by an industrial battery rack displaced during the mainshock, at the location where we observed the highest weak motion amplifications. Results of this analysis indicate that mainshock shaking was significantly higher at this location (~0.5 g , MMI VIII) relative to the shaking in parts of Port-au-Prince that experienced light damage. Our results further illustrate how observations of rigid body horizontal displacement during earthquakes can be used to estimate peak ground accelerations in the absence of instrumental data .

  18. Ground-Motion Simulations of the 2008 Ms8.0 Wenchuan, China, Earthquake Using Empirical Green's Function Method

    Science.gov (United States)

    Zhang, W.; Zhang, Y.; Yao, X.

    2010-12-01

    On May 12, 2008, a huge earthquake with magnitude Ms8.0 occurred in the Wenhuan, Sichuan Province of China. This event was the most devastating earthquake in the mainland of China since the 1976 M7.8 Tangshan earthquake. It resulted in tremendous losses of life and property. There were about 90,000 persons killed. Due to occur in the mountainous area, this great earthquake and the following thousands aftershocks also caused many other geological disasters, such as landslide, mud-rock flow and “quake lakes” which formed by landslide-induced reservoirs. This earthquake occurred along the Longmenshan fault, as the result of motion on a northeast striking reverse fault or thrust fault on the northwestern margin of the Sichuan Basin. The earthquake's epicenter and focal-mechanism are consistent with it having occurred as the result of movement on the Longmenshan fault or a tectonically related fault. The earthquake reflects tectonic stresses resulting from the convergence of crustal material slowly moving from the high Tibetan Plateau, to the west, against strong crust underlying the Sichuan Basin and southeastern China. In this study, we simulate the near-field strong ground motions of this great event based on the empirical Green’s function method (EGF). Referring to the published inversion source models, at first, we assume that there are three asperities on the rupture area and choose three different small events as the EGFs. Then, we identify the parameters of the source model using a genetic algorithm (GA). We calculate the synthetic waveforms based on the obtained source model and compare with the observed records. Our result shows that for most of the synthetic waveforms agree very well with the observed ones. The result proves the validity and the stability of the method. Finally, we forward the near-field strong ground motions near the source region and try to explain the damage distribution caused by the great earthquake.

  19. Estimation of ground reaction forces and moments during gait using only inertial motion capture

    NARCIS (Netherlands)

    Karatsidis, Angelos; Bellusci, Giovanni; Schepers, H. Martin; de Zee, Mark; Andersen, Michael S.; Veltink, Petrus H.

    Ground reaction forces and moments (GRF&M) are important measures used as input in biomechanical analysis to estimate joint kinetics, which often are used to infer information for many musculoskeletal diseases. Their assessment is conventionally achieved using laboratory-based equipment that cannot

  20. Modelling strong seismic ground motion: three-dimensional loading path versus wavefield polarization

    Science.gov (United States)

    Santisi d'Avila, Maria Paola; Lenti, Luca; Semblat, Jean-François

    2012-09-01

    Seismic waves due to strong earthquakes propagating in surficial soil layers may both reduce soil stiffness and increase the energy dissipation into the soil. To investigate seismic wave amplification in such cases, past studies have been devoted to one-directional shear wave propagation in a soil column (1D-propagation) considering one motion component only (1C-polarization). Three independent purely 1C computations may be performed ('1D-1C' approach) and directly superimposed in the case of weak motions (linear behaviour). This research aims at studying local site effects by considering seismic wave propagation in a 1-D soil profile accounting for the influence of the 3-D loading path and non-linear hysteretic behaviour of the soil. In the proposed '1D-3C' approach, the three components (3C-polarization) of the incident wave are simultaneously propagated into a horizontal multilayered soil. A 3-D non-linear constitutive relation for the soil is implemented in the framework of the Finite Element Method in the time domain. The complex rheology of soils is modelled by mean of a multisurface cyclic plasticity model of the Masing-Prandtl-Ishlinskii-Iwan type. The great advantage of this choice is that the only data needed to describe the model is the modulus reduction curve. A parametric study is carried out to characterize the changes in the seismic motion of the surficial layers due to both incident wavefield properties and soil non-linearities. The numerical simulations show a seismic response depending on several parameters such as polarization of seismic waves, material elastic and dynamic properties, as well as on the impedance contrast between layers and frequency content and oscillatory character of the input motion. The 3-D loading path due to the 3C-polarization leads to multi-axial stress interaction that reduces soil strength and increases non-linear effects. The non-linear behaviour of the soil may have beneficial or detrimental effects on the seismic

  1. Linking ground motion measurements and macroseismic observations in France: a case study based on accelerometric and macroseismic databases

    Science.gov (United States)

    Lesueur, Chloé; Cara, Michel; Scotti, Oona; Schlupp, Antoine; Sira, Christophe

    2013-04-01

    Comparison between accelerometric and macroseismic observations is made for three M w = 4.5 earthquakes, which occurred in north-eastern France and south-western Germany in 2003 and 2004. Scalar and spectral instrumental parameters are processed from the accelerometric data recorded by nine accelerometric stations located between 29 and 180 km from the epicentres. Macroseismic data are based on French Internet reports. In addition to the single questionnaire intensity, analysis of the internal correlation between the encoded answers highlights four predominant fields of questions bearing different physical meanings: (1) "vibratory motions of small objects", (2) "displacement and fall of objects", (3) "acoustic noise" and (4) "personal feelings". Best correlations between macroseismic and instrumental observations are obtained when the macroseismic parameters are averaged over 10-km-radius circles around each station. Macroseismic intensities predicted by published peak ground velocity (PGV)-intensity relationships agree with our observed intensities, contrary to those based on peak ground acceleration (PGA). Correlation between the macroseismic and instrumental data for intensities between II and V (EMS-98) is better for PGV than for PGA. Correlation with the response spectra exhibits clear frequency dependence for all macroseismic parameters. Horizontal and vertical components are significantly correlated with the macroseismic parameters between 1 and 10 Hz, a range corresponding to both natural frequencies of most buildings and high energy content in the seismic ground motion. Between 10 and 25 Hz, a clear lack of correlation between macroseismic and instrumental observations exists. It could be due to a combination of the decrease in the energy signal above 10 Hz, a high level of anthropogenic noise and an increase in variability in soil conditions. Above 25 Hz, the correlation coefficients between the acceleration response spectra and the macroseismic

  2. Isoseismal map of the 2015 Nepal earthquake and its relationships with ground-motion parameters, distance and magnitude

    Science.gov (United States)

    Prajapati, Sanjay K.; Dadhich, Harendra K.; Chopra, Sumer

    2017-01-01

    A devastating earthquake of Mw 7.8 struck central Nepal on 25th April, 2015 (6:11:25 UT) which resulted in more than ∼9000 deaths, and destroyed millions of houses. Standing buildings, roads and electrical installations worth 25-30 billions of dollars are reduced to rubbles. The earthquake was widely felt in the northern parts of India and moderate damage have been observed in the northern part of UP and Bihar region of India. Maximum intensity IX, according to the USGS report, was observed in the meizoseismal zone, surrounding the Kathmandu region. In the present study, we have compiled available information from the print, electronic media and various reports of damages and other effects caused by the event, and interpreted them to obtain Modified Mercalli Intensities (MMI) at over 175 locations spread over Nepal and surrounding Indian and Tibet region. We have also obtained a number of strong motion recordings from India and Nepal seismic network and developed an empirical relationship between the MMI and peak ground acceleration (PGA), peak ground velocity (PGV). We have used least square regression technique to derive the empirical relation between the MMI and ground motion parameters and compared them with the empirical relationships available for other regions of the world. Further, seismic intensity information available for historical earthquakes, which have occurred in the Nepal Himalaya along with the present intensity data has been utilized for developing an attenuation relationship for the studied region using two step regression analyses. The derived attenuation relationship is useful for assessing damage of a potential future large earthquake (earthquake scenario-based planning purposes) in the region.

  3. Modified of ground motion prediction equation in Indonesia, case study: South and South-East of Sulawesi at 2011-2015

    Science.gov (United States)

    Octhav, Asyer; Julius, Musa, Admiral; Muzli, Muzli; Rudyanto, Ariska

    2017-07-01

    Within the last decade, advances on empirical formula to determine ground acceleration is strongly involved in order to undertake seismic hazard analysis. We need to provide a means of estimating the ground shaking from an earthquake given its earthquake source type, ray-path, and local site condition called Ground Motion Prediction Equations (GMPEs). However, this study is rarely done in South and South-East of Sulawesi. This study aims to determine the GMPEs coefficient using selected 481 record of ground motion database by 18 accelerometer at 2011-2015. Local site condition of station is classified by dominant period and the type of earthquake is segregate according to tectonic regime that is shallow crustal, interface and intraslab. We made statistical regression analysis to find the relation between attenuation and distance. The result shows that attenuation relation of low value ground acceleration to increasing of distance has peak ground acceleration much lower, compare to early equation that fitted to peak ground acceleration observation in South and South-East of Sulawesi. It also show the effect of magnitude, focal depth, source distance, and local site can affected PGA predicted. This study plays vital role to understand the characteristic of ground motion attenuation.

  4. Interaction response of maglev masses moving on a suspended beam shaken by horizontal ground motion

    Science.gov (United States)

    Yau, J. D.

    2010-01-01

    As a maglev transport route has to cross a region with occasional earthquakes, the train/guideway interaction is an issue of great concern in dominating safety of the maglev system. This paper intends to present a computational framework of interaction analysis for a maglev train traveling over a suspension bridge shaken by horizontal earthquakes. The suspended guideway girder is modeled as a single-span suspended beam and the maglev train traveling over it as a series of maglev masses. Due to motion- dependent nature of magnetic forces in a maglev suspension system, appropriate adjustments of the magnetic forces between magnets and guide-rail require the air gaps be continuously monitored. Thus an on-board hybrid LQR+PID controller with constraint rule base is designed to control the dynamic response of a running maglev mass. Then the governing equations of motion for the suspended beam associated with all the controlled maglev masses are transformed into a set of generalized equations by Galerkin's method, and solved using an incremental-iterative procedure. Numerical investigations demonstrate that when a controlled maglev train travels over a suspended guideway shaken by horizontal earthquakes, the proposed hybrid controller has the ability to adjust the levitation gaps in a prescribed stable region for safety reasons and to reduce the vehicle's acceleration response for ride quality.

  5. Modelling strong seismic ground motion: three-dimensional loading path versus wavefield polarization

    CERN Document Server

    D'Avila, Maria Paola Santisi; Semblat, Jean-François

    2013-01-01

    Seismic waves due to strong earthquakes propagating in surficial soil layers may both reduce soil stiffness and increase the energy dissipation into the soil. To investigate seismic wave amplification in such cases, past studies have been devoted to one-directional shear wave propagation in a soil column (1D-propagation) considering one motion component only (1C-polarization). Three independent purely 1C computations may be performed ('1D-1C' approach) and directly superimposed in the case of weak motions (linear behaviour). This research aims at studying local site effects by considering seismic wave propagation in a 1-D soil profile accounting for the influence of the 3-D loading path and non-linear hysteretic behaviour of the soil. In the proposed '1D-3C' approach, the three components (3C-polarization) of the incident wave are simultaneously propagated into a horizontal multilayered soil. A 3-D non-linear constitutive relation for the soil is implemented in the framework of the Finite Element Method in th...

  6. Should ground-motion records be rotated to fault-normal/parallel or maximum direction for response history analysis of buildings?

    Science.gov (United States)

    Reyes, Juan C.; Kalkan, Erol

    2012-01-01

    In the United States, regulatory seismic codes (for example, California Building Code) require at least two sets of horizontal ground-motion components for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 kilometers (3.1 miles) of an active fault, these records should be rotated to fault-normal and fault-parallel (FN/FP) directions, and two RHAs should be performed separately—when FN and then FP direction are aligned with transverse direction of the building axes. This approach is assumed to lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. The validity of this assumption is examined here using 3D computer models of single-story structures having symmetric (torsionally stiff) and asymmetric (torsionally flexible) layouts subjected to an ensemble of near-fault ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period is varied from 0.2 to 5 seconds, and yield-strength reduction factors, R, are varied from a value that leads to linear-elastic design to 3 and 5. Further validations are performed using 3D computer models of 9-story structures having symmetric and asymmetric layouts subjected to the same ground-motion set. The influence of the ground-motion rotation angle on several engineering demand parameters (EDPs) is examined in both linear-elastic and nonlinear-inelastic domains to form benchmarks for evaluating the use of the FN/FP directions and also the maximum direction (MD). The MD ground motion is a new definition for horizontal ground motions for use in site-specific ground-motion procedures for seismic design according to provisions of the American Society of Civil Engineers/Seismic Engineering Institute (ASCE/SEI) 7-10. The results of this study have important implications for current practice, suggesting that ground motions rotated to MD or FN/FP directions do not necessarily provide

  7. Stochastic vibration of the vehicle-bridge system subject to non-uniform ground motions

    Science.gov (United States)

    Zhu, D. Y.; Zhang, Y. H.; Kennedy, D.; Williams, F. W.

    2014-03-01

    A study of a train moving along a cable-stayed bridge is performed by considering both the stationary track irregularity and a non-stationary earthquake. A detailed bridge model with 3972 degrees of freedom is established while the train model consists of two locomotives and eight carriages. The equations of motion of the coupled system are obtained by using the displacement continuous condition at the contact, with track irregularities. The earthquake is assumed to occur once the train has entered the bridge. The pseudo-excitation method is used to find the random responses of the coupled system, and the results indicate that the effect of the earthquake is much greater than that of the track irregularities. The paper discusses the influence of the intensity of the earthquake, the wave propagation velocity, the speed of the train, and the dynamic interaction between the vehicles and the bridge.

  8. Comparison of ground motion from tremors and explosions in deep gold mines

    Science.gov (United States)

    McGarr, A.; Bicknell, J.; Churcher, J.; Spottiswoode, S.

    1990-01-01

    Seismic body waves, from tamped chemical explosions, two with yields of 50 and one of 150 kg, were compared with corresponding data from three mining-induced tremors with a view to testing methods of discriminating between the two types of events. It is concluded that for events of fixed low-frequency spectral asymptotes, the explosions typically have higher corner frequencies than tremors or earthquakes, although counterexamples certainly exist. Interestingly, the 150-kg explosion was identified as such on the basis of P and S wave polarities that are incompatible with the normally expected double-couple source model; instead these initial motions are consistent with an explosion in conjunction with normal faulting. The body wave spectra of this explosion and those of a nearby tremor, however, were indistinguishable. -from Authors

  9. Slepian simulation of plastic displacement distributions for shear frame excited by filtered Gaussian white noise ground motion

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Lazarov, Boyan Stefanov

    2003-01-01

    Application of the Slepian model process concept to obtain approximate plastic displacement distributions of elasto-plastic shear frame oscillators of one or more degrees of freedom has in previous works been for white noise force excitation acting directly on the first floor mass of the shear...... frame. A suitable number of the lower floors has been considered to represent the soil both as a filter of a white noise base rock excitation and as a simplified model for soil structure interaction. In the present paper the Slepian model is applied to obtain plastic displacement distributions...... for a single story shear frame excited by stationary Gaussian ground motion defined by the output of a Clough-Penzien filter with Gaussian white noise input. This is equivalent to considering an artificial three story elasto-plastic shear frame with possible yielding solely in the third column connection...

  10. Source characteristics of moderate-to-strong earthquakes in the Nantou area, Taiwan: insight from strong ground motion simulations

    Science.gov (United States)

    Wen, Yi-Ying; Chao, Shen-Yu; Yen, Yin-Tung; Wen, Strong

    2017-09-01

    In Taiwan, the Nantou area is a seismically active region where several moderate events have occurred, causing some disasters during the past century. Here, we applied the strong ground motion simulation with the empirical Green's function method to investigate the source characteristics for the eight moderate blind-fault events that struck the Nantou area in 1999 and 2013. The results show that for these Nantou events, a high stress drop and focal depth dependence were noted, which might be related to the immature buried fault in this area. From the viewpoint of seismic hazard prevention and preparation, future earthquake scenarios that include high stress drop should be applied to more analyses, especially the moderate-to-large events originating from the immature blind faulting.[Figure not available: see fulltext.

  11. Emittance Growth of the LHC Beam due to the Effect of Head-on Beam-Beam Interaction and Ground Motion

    CERN Document Server

    Sen, T

    2000-01-01

    The influence of ground motion on the LHC beam is estimated by applying the existing theories of particle diffusion due to a weak-strong beam-beam collision with random offset at the interaction point. Noise at odd harmonics of the betatron frequency contributes significantly to particle diffusion. Extrapolating the characteristics of the random offset from the ground motion spectrum at the LHC site shows a fast fall-off with frequency and the amplitude is very small even at the first harmonic. We find that the head-on beam-beam force in the weak-strong approximation and ground motion by themselves do not induce significant diffusion over the lifetime of the beam.

  12. Estimation of Seismic Ground Motions and Attendant Potential Human Fatalities from Scenario Earthquakes on the Chishan Fault in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Kun-Sung Liu

    2017-01-01

    Full Text Available The purpose of this study is to estimate maximum ground motions in southern Taiwan as well as to assess potential human fatalities from scenario earthquakes on the Chishan active faults in this area. The resultant Shake Map patterns of maximum ground motion in a case of Mw 7.2 show the areas of PGA above 400 gals are located in the northeastern, central and northern parts of southwestern Kaohsiung as well as the southern part of central Tainan, as shown in the regions inside the yellow lines in the corresponding figure. Comparing cities with similar distances located in Tainan, Kaohsiung, and Pingtung to the Chishan fault, the cities in Tainan area have relatively greater PGA and PGV, due to large site response factors in Tainan area. Furthermore, seismic hazards in terms of PGA and PGV in the vicinity of the Chishan fault are not completely dominated by the Chishan fault. The main reason is that some areas located in the vicinity of the Chishan fault are marked with low site response amplification values from 0.55 - 1.1 and 0.67 - 1.22 for PGA and PGV, respectively. Finally, from estimation of potential human fatalities from scenario earthquakes on the Chishan active fault, it is noted that potential fatalities increase rapidly in people above age 45. Total fatalities reach a high peak in age groups of 55 - 64. Another to pay special attention is Kaohsiung City has more than 540 thousand households whose residences over 50 years old. In light of the results of this study, I urge both the municipal and central governments to take effective seismic hazard mitigation measures in the highly urbanized areas with a large number of old buildings in southern Taiwan.

  13. Ground Motion in Areas of Abandoned Mining: Application of the Intermittent SBAS (ISBAS to the Northumberland and Durham Coalfield, UK

    Directory of Open Access Journals (Sweden)

    David Gee

    2017-09-01

    Full Text Available In this paper, we investigate land motion and groundwater level change phenomena using differential interferometric synthetic aperture radar (DInSAR over the Northumberland and Durham coalfield in the United Kingdom. The study re-visits earlier research that applied a persistent scatterers interferometry (PSI technique to ERS (European Remote Sensing and ENVISAT (Environmental Satellite data. Here, the Intermittent Small Baseline Subset (ISBAS DInSAR technique is applied to ERS, ENVISAT and Sentinel-1 SAR datasets covering the late 1990s, the 2000s and the mid-2010s, respectively, to increase spatial coverage, aid the geological interpretation and consider the latest Sentinel-1 data. The ERS data identify surface depressions in proximity to former collieries, while all three data sets ascertain broad areas are experiencing regional scale uplift, often occurring in previously mined areas. Uplift is attributed to increases in pore pressure in the overburden following the cessation of groundwater pumping after mine closure. Rising groundwater levels are found to correlate to ground motion measurements at selected monitoring sites, most notably in the surrounding area of Ashington. The area is divided by an impermeable EW fault; to the south, surface heave was identified as groundwater levels rose in the 1990s, whereas to the north, this phenomenon occurred two decades later in the 2010s. The data emphasize the complexity of the post-mining surface and subsurface environment and highlight the benefit that InSAR, utilizing the ISBAS technique, can provide in its characterization.

  14. The Las Vegas Valley Seismic Response Project: Ground Motions in Las Vegas Valley from Nuclear Explosions at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A; Tkalcic, H; McCallen, D

    2005-03-18

    Between 2001-2004 the Las Vegas Seismic Response Project has sought to understand the response of Las Vegas Valley (LVV) to seismic excitation. In this study, the author report the findings of this project with an emphasis on ground motions in LVV from nuclear explosions at the Nevada Test Site (NTS). These ground motions are used to understand building structural response and damage as well as human perception. Historical nuclear explosion observations are augmented with earthquake recordings from a temporary deployment of seismometers to improve spatial coverage of LVV. The nuclear explosions were conducted between 1968 and 1989 and were recorded at various sites within Las Vegas. The data from past nuclear tests were used to constrain ground motions in LVV and to gain a predictive capability of ground motions for possible future nuclear tests at NTS. Analysis of ground motion data includes peak ground motions (accelerations and velocities) and amplification of basin sites relative to hard rock sites (site response). Site response was measured with the Standard Spectral Ratios (SSR) technique relative to hard rock reference sites on the periphery of LVV. The site response curves indicate a strong basin amplification of up to a factor of ten at frequencies between 0.5-2 Hz. Amplifications are strongest in the central and northern portions of LVV, where the basin is deeper than 1 km based on the reported basin depths of Langenheim et al (2001a). They found a strong correlation between amplification and basin depth and shallow shear wave velocities. Amplification below 1 Hz is strongly controlled by slowness-averaged shear velocities to depths of 30 and 100 meters. Depth averaged shear velocities to 10 meters has modest control of amplifications between 1-3 Hz. Modeling reveals that low velocity material in the shallow layers (< 200 m) effectively controls amplification. They developed a method to scale nuclear explosion ground motion time series to sites around LVV

  15. Quantification of Ground Motion Reductions by Fault Zone Plasticity with 3D Spontaneous Rupture Simulations

    Science.gov (United States)

    Roten, D.; Olsen, K. B.; Cui, Y.; Day, S. M.

    2015-12-01

    We explore the effects of fault zone nonlinearity on peak ground velocities (PGVs) by simulating a suite of surface rupturing earthquakes in a visco-plastic medium. Our simulations, performed with the AWP-ODC 3D finite difference code, cover magnitudes from 6.5 to 8.0, with several realizations of the stochastic stress drop for a given magnitude. We test three different models of rock strength, with friction angles and cohesions based on criteria which are frequently applied to fractured rock masses in civil engineering and mining. We use a minimum shear-wave velocity of 500 m/s and a maximum frequency of 1 Hz. In rupture scenarios with average stress drop (~3.5 MPa), plastic yielding reduces near-fault PGVs by 15 to 30% in pre-fractured, low-strength rock, but less than 1% in massive, high quality rock. These reductions are almost insensitive to the scenario earthquake magnitude. In the case of high stress drop (~7 MPa), however, plasticity reduces near-fault PGVs by 38 to 45% in rocks of low strength and by 5 to 15% in rocks of high strength. Because plasticity reduces slip rates and static slip near the surface, these effects can partially be captured by defining a shallow velocity-strengthening layer. We also perform a dynamic nonlinear simulation of a high stress drop M 7.8 earthquake rupturing the southern San Andreas fault along 250 km from Indio to Lake Hughes. With respect to the viscoelastic solution (a), nonlinearity in the fault damage zone and in near-surface deposits would reduce long-period (> 1 s) peak ground velocities in the Los Angeles basin by 15-50% (b), depending on the strength of crustal rocks and shallow sediments. These simulation results suggest that nonlinear effects may be relevant even at long periods, especially for earthquakes with high stress drop.

  16. SWARM Observations of the Motion of Low-latitude Plasma Depletions Coordinated with Ground-based TEC Measurements

    Science.gov (United States)

    Valladares, C. E.; Pradipta, R.; Sheehan, R. E.; Coisson, P.; Knudsen, D. J.

    2015-12-01

    During the early phase of the SWARM mission, the distance between the trajectories of all three satellites of the constellation was tens of km and the temporal separation was of order one minute. This unique geometry allows us to conduct multiple and almost simultaneous in-situ measurements through the same low-latitude plasma depletion to investigate their spatial coherence and the motion of structures embedded within the equatorial plasma bubbles. We have used the number density measured with the Electric Field Instrument (EFI) on-board the three satellites of the SWARM constellation during December 2013 and January 2014 and concurrent TEC values obtained by ground-based GPS receivers to fully diagnose the bubble characteristics at multiple scale sizes. We have applied correlation and cross-spectra analysis to the density values measured by the EFI probes to derive the longitudinal variability of plasma density structures and their velocity. Our results indicate a very strong variability of the plasma bubbles in longitude. More specifically, it shows that structures with scale sizes corresponding to 100 and 10 seconds are not in phase. TEC values measures on the ground indicated that TEC plasma depletions moved with a velocity of order 100 m/s and have a westward tilt of order 10°. This presentation will show results for several specific days of SWARM observations during passes in the American sector.

  17. Site amplification and strong ground motion of the 2007 Noto Hanto, Japan, earthquake estimated from aftershock observation

    Science.gov (United States)

    Yoshimi, M.; Yoshida, K.

    2008-03-01

    Site amplifications in the lowlands most affected by the 2007 Noto Hanto earthquake, Monzen, Anamizu, and Wajima, are examined using aftershock records observed at eight temporary seismic stations installed just after the mainshock and at two K-NET stations. The predominant frequencies of spectral ratios at alluvium sites in Anamizu and Wajima are approximately 1 Hz. Site amplifications at the alluvium sites are successfully reproduced from 1-D response analysis, except for that at ISK005 where 2-D or higher amplification effects are inferred to play a significant role. A source model composed of two asperities reproduces the ground motions of the mainshock using the empirical Green's function method. The seismic moments of the asperities are 3.76×1018 N m and 2.21×1018 N m, respectively. Peak ground velocity (PGV) at alluvium sites during the mainshock are estimated to be 70-110 cm/s for Monzen, 50-110 cm/s for Anamizu, and 60-70 cm/s for Wajima.

  18. The SCEC-USGS Dynamic Earthquake Rupture Code Comparison Exercise - Simulations of Large Earthquakes and Strong Ground Motions

    Science.gov (United States)

    Harris, R.

    2015-12-01

    I summarize the progress by the Southern California Earthquake Center (SCEC) and U.S. Geological Survey (USGS) Dynamic Rupture Code Comparison Group, that examines if the results produced by multiple researchers' earthquake simulation codes agree with each other when computing benchmark scenarios of dynamically propagating earthquake ruptures. These types of computer simulations have no analytical solutions with which to compare, so we use qualitative and quantitative inter-code comparisons to check if they are operating satisfactorily. To date we have tested the codes against benchmark exercises that incorporate a range of features, including single and multiple planar faults, single rough faults, slip-weakening, rate-state, and thermal pressurization friction, elastic and visco-plastic off-fault behavior, complete stress drops that lead to extreme ground motion, heterogeneous initial stresses, and heterogeneous material (rock) structure. Our goal is reproducibility, and we focus on the types of earthquake-simulation assumptions that have been or will be used in basic studies of earthquake physics, or in direct applications to specific earthquake hazard problems. Our group's goals are to make sure that when our earthquake-simulation codes simulate these types of earthquake scenarios along with the resulting simulated strong ground shaking, that the codes are operating as expected. For more introductory information about our group and our work, please see our group's overview papers, Harris et al., Seismological Research Letters, 2009, and Harris et al., Seismological Research Letters, 2011, along with our website, scecdata.usc.edu/cvws.

  19. Ultimate Seismic Resistance Capacity for Long Span Lattice Structures under Vertical Ground Motions

    Directory of Open Access Journals (Sweden)

    Yoshiya Taniguchi

    2013-01-01

    Full Text Available Seismic resistance capacities of frame structures have been discussed with equilibrium of energies among many researchers. The early one is the limit design presented by Housner, 1956; that is, frame structures should possess the plastic deformation ability equivalent to an earthquake input energy given by a velocity response spectrum. On such studies of response estimation by the energy equilibrium, the potential energy has been generally abandoned, since the effect of self-weight or fixed loads on the potential energy is negligible, while ordinary buildings usually sway in the horizontal direction. However, it could be said that the effect of gravity has to be considered for long span structures since the mass might be concerned with the vertical response. In this paper, as for ultimate seismic resistance capacity of long span structures, an estimation method considering the potential energy is discussed as for plane lattice beams and double-layer cylindrical lattice roofs. The method presented can be done with the information of static nonlinear behavior, natural periods, and velocity response spectrum of seismic motions; that is, any complicated nonlinear time history analysis is not required. The value estimated can be modified with the properties of strain energy absorption and the safety static factor.

  20. Broadband Strong Ground Motion Simulation For a Potential Mw 7.1 Earthquake on The Enriquillo Fault in Haiti

    Science.gov (United States)

    Douilly, R.; Mavroeidis, G. P.; Calais, E.

    2015-12-01

    The devastating 2010 Haiti earthquake showed the need to be more vigilant toward mitigation for future earthquakes in the region. Previous studies have shown that this earthquake did not occur on the Enriquillo Fault, the main plate boundary fault running through the heavily populated Port-au-Prince region, but on the nearby and previously unknown Léogâne transpressional fault. Slip on that fault has increased stresses on the Enriquillo Fault mostly in the region closer to Port-au-Prince, the most populated city of the country. Here we investigate the ground shaking level in this region if a rupture similar to the Mw 7.0 2010 Haiti earthquake occurred on the Enriquillo fault. We use a finite element method and assumptions on regional stress to simulate low frequency dynamic rupture propagation for a 53 km long segment. We introduce some heterogeneity by creating two slip patches with shear traction 10% greater than the initial shear traction on the fault. The final slip distribution is similar in distribution and magnitude to previous finite fault inversions for the 2010 Haiti earthquake. The high-frequency ground motion components are calculated using the specific barrier model, and the hybrid synthetics are obtained by combining the low-frequencies (f 1Hz) from the stochastic simulation using matched filtering at a crossover frequency of 1 Hz. The average horizontal peak ground acceleration, computed at several sites of interest through Port-au-Prince, has a value of 0.35g. We also compute response spectra at those sites and compare them to the spectra from the microzonation study.

  1. Ground volume assessment using 'Structure from Motion' photogrammetry with a smartphone and a compact camera

    Science.gov (United States)

    Wróżyński, Rafał; Pyszny, Krzysztof; Sojka, Mariusz; Przybyła, Czesław; Murat-Błażejewska, Sadżide

    2017-06-01

    The article describes how the Structure-from-Motion (SfM) method can be used to calculate the volume of anthropogenic microtopography. In the proposed workflow, data is obtained using mass-market devices such as a compact camera (Canon G9) and a smartphone (iPhone5). The volume is computed using free open source software (VisualSFMv0.5.23, CMPMVSv0.6.0., MeshLab) on a PCclass computer. The input data is acquired from video frames. To verify the method laboratory tests on the embankment of a known volume has been carried out. Models of the test embankment were built using two independent measurements made with those two devices. No significant differences were found between the models in a comparative analysis. The volumes of the models differed from the actual volume just by 0.7‰ and 2‰. After a successful laboratory verification, field measurements were carried out in the same way. While building the model from the data acquired with a smartphone, it was observed that a series of frames, approximately 14% of all the frames, was rejected. The missing frames caused the point cloud to be less dense in the place where they had been rejected. This affected the model's volume differed from the volume acquired with a camera by 7%. In order to improve the homogeneity, the frame extraction frequency was increased in the place where frames have been previously missing. A uniform model was thereby obtained with point cloud density evenly distributed. There was a 1.5% difference between the embankment's volume and the volume calculated from the camera-recorded video. The presented method permits the number of input frames to be increased and the model's accuracy to be enhanced without making an additional measurement, which may not be possible in the case of temporary features.

  2. Evaluation of earthquake ground motions for aseismatic design of high rise buildings in Tokyo bay area. Tokyo wangan ni okeru koso kenchikubutsu no taishin sekkei yo nyuryoku jishindo hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Ota, T.; Shima, E.; Niwa, M.; Ikeura, T. (Kajima Inst. of Construction Technology, Tokyo (Japan)); Takemura, M. (Kajima Corp., Tokyo (Japan))

    1991-08-30

    A proposal is made on the evaluation method for design input ground motions, which is based on the examples of earthquake ground motions evaluated using fault models and is supported by the concept for future design earthquake ground motions. The features of this evaluation method are to designate earthquakes to be considered and evaluate the ground motions in the applicable site employing fault models. Waveform synthesis method is used where uneven sliding on the fault surface in the earthquake site is taken into consideration. A method of evaluating ground motions in the site using fault models is employed in lieu of the conventional method which is used for aseismatic design input ground motions for high rise buildings, and an example is given quoting the case of reclaimed land and alluvial ground at Yokohama City, Japan. The studied earthquakes are hypothetical recurrence of 1923 southern Kanto earthquake and hypothetical earthquake in Tokai region, and the evaluation of the ground motions is made by waveform synthesis method using fault models for which records of medium scale ground motions obtained near those sites are used. The maximum ground accelerations of about 330Gal and 115Gal, and the maximum velocities of about 40cm/s and 20cm/s are obtained for the hypothetical southern Kanto earthquake and the hypothetical earthquake in Tokai region, respectively. 32 refs., 16 figs., 3 tabs.

  3. Ground Motion Analysis of Co-Located DAS and Seismometer Sensors

    Science.gov (United States)

    Wang, H. F.; Fratta, D.; Lord, N. E.; Lancelle, C.; Thurber, C. H.; Zeng, X.; Parker, L.; Chalari, A.; Miller, D.; Feigl, K. L.; Team, P.

    2016-12-01

    The PoroTomo research team deployed 8700-meters of Distributed Acoustic Sensing (DAS) cable in a shallow trench and 400-meters in a borehole at Brady Hot Springs, Nevada in March 2016 together with an array of 246, three-component geophones. The seismic sensors occupied a natural laboratory 1500 x 500 x 400 meters overlying the Brady geothermal field. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 100-meters in length and geophones were spaced at approximately 50-m intervals. In several line segments, geophones were co-located within one meter of the DAS cable. Both DAS and the conventional geophones recorded continuously over 15 days. A large Vibroseis truck (T-Rex) provided the seismic source at approximately 250 locations outside and within the array. The Vibroseis protocol called for excitation in one vertical and two orthogonal horizontal directions at each location. For each mode, three, 5-to-80-Hz upsweeps were made over 20 seconds. In addition, a moderate-sized earthquake with a local magnitude of 4.3 was recorded on March 21, 2016. Its epicenter was approximately 150-km away. Several DAS line segments with co-located geophone stations were used to test relationships between the strain rate recorded by DAS and ground velocity recorded by the geophones.

  4. Prediction of earthquake ground motion at rock sites in Japan: evaluation of empirical and stochastic approaches for the PEGASOS Refinement Project

    Science.gov (United States)

    Edwards, Benjamin; Fäh, Donat

    2017-11-01

    Strong ground-motion databases used to develop ground-motion prediction equations (GMPEs) and calibrate stochastic simulation models generally include relatively few recordings on what can be considered as engineering rock or hard rock. Ground-motion predictions for such sites are therefore susceptible to uncertainty and bias, which can then propagate into site-specific hazard and risk estimates. In order to explore this issue we present a study investigating the prediction of ground motion at rock sites in Japan, where a wide range of recording-site types (from soil to very hard rock) are available for analysis. We employ two approaches: empirical GMPEs and stochastic simulations. The study is undertaken in the context of the PEGASOS Refinement Project (PRP), a Senior Seismic Hazard Analysis Committee (SSHAC) Level 4 probabilistic seismic hazard analysis of Swiss nuclear power plants, commissioned by swissnuclear and running from 2008 to 2013. In order to reduce the impact of site-to-site variability and expand the available data set for rock and hard-rock sites we adjusted Japanese ground-motion data (recorded at sites with 110 m s-1 simulation method was tested, allowing the direct incorporation of site-specific Fourier amplification information in forward simulations. We use an adjusted version of the model developed for Switzerland during the PRP. The median simulation prediction at true rock and hard-rock sites (Vs30 > 800 m s-1) was found to be comparable (within expected levels of epistemic uncertainty) to predictions using an empirical GMPE, with reduced residual misfit. As expected, due to including site-specific information in the simulations, the reduction in misfit could be isolated to a reduction in the site-related within-event uncertainty. The results of this study support the use of finite or pseudo-finite fault stochastic simulation methods in estimating strong ground motions in regions of weak and moderate seismicity, such as central and northern

  5. Effects of Irradiation Dose and O2 and CO2 Concentrations in Packages on Foodborne Pathogenic Bacteria and Quality of Ready-to-Cook Seasoned Ground Beef Product (Meatball) during Refrigerated Storage

    OpenAIRE

    Gunes, Gurbuz; Yilmaz, Neriman; Ozturk, Aylin

    2012-01-01

    Combined effects of gamma irradiation and concentrations of O2 (0, 5, 21%) and CO2 (0, 50%) on survival of Escherichia coli O157:H7, Salmonella enteritidis, Listeria monocytogenes, lipid oxidation, and color changes in ready-to-cook seasoned ground beef (meatball) during refrigerated storage were investigated. Ground beef seasoned with mixed spices was packaged in varying O2 and CO2 levels and irradiated at 2 and 4 kGy. Irradiation (4 kGy) caused about 6 Log inactivation of the inoculated pat...

  6. Analysis of strong ground motions and site effects at Kantipath, Kathmandu, from 2015 Mw 7.8 Gorkha, Nepal, earthquake and its aftershocks

    Science.gov (United States)

    Dhakal, Yadab P.; Kubo, Hisahiko; Suzuki, Wataru; Kunugi, Takashi; Aoi, Shin; Fujiwara, Hiroyuki

    2016-04-01

    Strong ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake and its eight aftershocks recorded by a strong-motion seismograph at Kantipath (KATNP), Kathmandu, were analyzed to assess the ground-motion characteristics and site effects at this location. Remarkably large elastic pseudo-velocity responses exceeding 300 cm/s at 5 % critical damping were calculated for the horizontal components of the mainshock recordings at peak periods of 4-5 s. Conversely, the short-period ground motions of the mainshock were relatively weak despite the proximity of the site to the source fault. The horizontal components of all large-magnitude (Mw ≥ 6.3) aftershock recordings showed peak pseudo-velocity responses at periods of 3-4 s. Ground-motion prediction equations (GMPEs) describing the Nepal Himalaya region have not yet been developed. A comparison of the observational data with GMPEs for Japan showed that with the exception of the peak ground acceleration (PGA) of the mainshock, the observed PGAs and peak ground velocities at the KATNP site are generally well described by the GMPEs for crustal and plate interface events. A comparison of the horizontal-to-vertical ( H/ V) spectral ratios for the S-waves of the mainshock and aftershock recordings suggested that the KATNP site experienced a considerable nonlinear site response, which resulted in the reduced amplitudes of short-period ground motions. The GMPEs were found to underestimate the response values at the peak periods (approximately 4-5 s) of the large-magnitude events. The deep subsurface velocity model of the Kathmandu basin has not been well investigated. Therefore, a one-dimensional velocity model was constructed for the deep sediments beneath the recording station based on an analysis of the H/ V spectral ratios for S-wave coda from aftershock recordings, and it was revealed that the basin sediments strongly amplified the long-period components of the ground motions of the mainshock and large

  7. Near-Fault Broadband Ground Motion Simulations Using Empirical Green's Functions: Application to the Upper Rhine Graben (France-Germany) Case Study

    Science.gov (United States)

    Del Gaudio, Sergio; Hok, Sebastien; Festa, Gaetano; Causse, Mathieu; Lancieri, Maria

    2017-09-01

    Seismic hazard estimation relies classically on data-based ground motion prediction equations (GMPEs) giving the expected motion level as a function of several parameters characterizing the source and the sites of interest. However, records of moderate to large earthquakes at short distances from the faults are still rare. For this reason, it is difficult to obtain a reliable ground motion prediction for such a class of events and distances where also the largest amount of damage is usually observed. A possible strategy to fill this lack of information is to generate synthetic accelerograms based on an accurate modeling of both extended fault rupture and wave propagation process. The development of such modeling strategies is essential for estimating seismic hazard close to faults in moderate seismic activity zones, where data are even scarcer. For that reason, we selected a target site in Upper Rhine Graben (URG), at the French-German border. URG is a region where faults producing micro-seismic activity are very close to the sites of interest (e.g., critical infrastructures like supply lines, nuclear power plants, etc.) needing a careful investigation of seismic hazard. In this work, we demonstrate the feasibility of performing near-fault broadband ground motion numerical simulations in a moderate seismic activity region such as URG and discuss some of the challenges related to such an application. The modeling strategy is to couple the multi-empirical Green's function technique (multi-EGFt) with a k -2 kinematic source model. One of the advantages of the multi-EGFt is that it does not require a detailed knowledge of the propagation medium since the records of small events are used as the medium transfer function, if, at the target site, records of small earthquakes located on the target fault are available. The selection of suitable events to be used as multi-EGF is detailed and discussed in our specific situation where less number of events are available. We

  8. The SCEC Broadband Platform: A Collaborative Open-Source Software Package for Strong Ground Motion Simulation and Validation

    Science.gov (United States)

    Silva, F.; Maechling, P. J.; Goulet, C.; Somerville, P.; Jordan, T. H.

    2013-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving SCEC researchers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Broadband Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms of a historical earthquake for which observed strong ground motion data is available. Also in validation mode, the Broadband Platform calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. During the past year, we have modified the software to enable the addition of a large number of historical events, and we are now adding validation simulation inputs and observational data for 23 historical events covering the Eastern and Western United States, Japan, Taiwan, Turkey, and Italy. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. By establishing an interface between scientific modules with a common set of input and output files, the Broadband

  9. Earth modeling and estimation of the local seismic ground motion due to site geology in complex volcanoclastic areas

    Directory of Open Access Journals (Sweden)

    V. Di Fiore

    2002-06-01

    Full Text Available Volcanic areas often show complex behaviour as far as seismic waves propagation and seismic motion at surface are concerned. In fact, the finite lateral extent of surface layers such as lava flows, blocks, differential welding and/or zeolitization within pyroclastic deposits, introduces in the propagation of seismic waves effects such as the generation of surface waves at the edge, resonance in lateral direction, diffractions and scattering of energy, which tend to modify the amplitude as well as the duration of the ground motion. The irregular topographic surface, typical of volcanic areas, also strongly influences the seismic site response. Despite this heterogeneity, it is unfortunately a common geophysical and engineering practice to evaluate even in volcanic environments the subsurface velocity field with monodimensional investigation method (i.e. geognostic soundings, refraction survey, down-hole, etc. prior to the seismic site response computation which in a such cases is obviously also made with 1D algorithms. This approach often leads to highly inaccurate results. In this paper we use a different approach, i.e. a fully 2D P-wave Çturning rayÈ tomographic survey followed by 2D seismic site response modeling. We report here the results of this approach in three sites located at short distance from Mt. Vesuvius and Campi Flegrei and characterized by overburdens constituted by volcanoclastic deposits with large lateral and vertical variations of their elastic properties. Comparison between 1D and 2D Dynamic Amplification Factor shows in all reported cases entirely different results, both in terms of peak period and spectral contents, as expected from the clear bidimensionality of the geological section. Therefore, these studies suggest evaluating carefully the subsoil geological structures in areas characterized by possible large lateral and vertical variations of the elastic properties in order to reach correct seismic site response

  10. The SCEC Broadband Platform: A Collaborative Open-Source Software Package for Strong Ground Motion Simulation and Validation

    Science.gov (United States)

    Silva, F.; Maechling, P. J.; Goulet, C. A.; Somerville, P.; Jordan, T. H.

    2014-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving geoscientists, earthquake engineers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform (BBP) is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms for a well-observed historical earthquake. Then, the BBP calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results

  11. Investigation of the influence of topographic irregularities and two dimensional effects on the intensity of surface ground motion with one- and two-dimensional analyses

    Science.gov (United States)

    Yılmazoğlu, L.; İnce, G. Ç.

    2013-12-01

    In this work, the surface ground motion that occurs during an earthquake in ground sections having different topographic forms has been examined with one and two dynamic site response analyses. One-dimensional analyses were undertaken using the Equivalent-Linear Earthquake Response Analysis program based on the equivalent linear analysis principle and the Deepsoil program which is able to make both equivalent linear and nonlinear analyses and two-dimensional analyses using the Plaxis software. The viscous damping parameters used in the dynamic site response analyses undertaken with the Plaxis software were obtained using the DeepSoil program. In the dynamic site response analyses, the synthetic acceleration over a 475 yr replication period representing the earthquakes in Istanbul was used as the basis of the bedrock ground motion. The peak ground acceleration obtained different depths of soils and acceleration spectrum values have been compared. The surface topography and layer boundaries in the 5-5' section were selected in order to examine the effect of the land topography and layer boundaries on the analysis results were flattened and compared with the actual status. The analysis results showed that the characteristics of the surface ground motion changes in relation to the varying local soil conditions and land topography.

  12. Investigating the influence of topographic irregularities and two-dimensional effects on surface ground motion intensity with one- and two-dimensional analyses

    Science.gov (United States)

    İnce, G. Ç.; Yılmazoğlu, L.

    2014-07-01

    In this work, the surface ground motion that occurs during an earthquake in ground sections having different topographic forms has been examined with one and two dynamic site response analyses. One-dimensional analyses were undertaken using the Equivalent-Linear Earthquake Response Analysis (EERA) program based on the equivalent linear analysis principle and the Deepsoil program which is able to make both equivalent linear and nonlinear analyses and two-dimensional analyses using the Plaxis 8.2 software. The viscous damping parameters used in the dynamic site response analyses undertaken with the Plaxis 8.2 software were obtained using the DeepSoil program. In the dynamic site response analyses, the synthetic acceleration over a 475-year return period representing the earthquakes in Istanbul was used as the basis of the bedrock ground motion. The peak ground acceleration obtained different depths of soils and acceleration spectrum values have been compared. The surface topography and layer boundaries in the 5-5' cross section which cuts across the study area west to east were selected in order to examine the effect of the land topography and layer boundaries on the analysis results, and were flattened and compared with the actual status. The analysis results showed that the characteristics of the surface ground motion change in relation to the varying local soil conditions and land topography.

  13. Nonlinear Responses of High-rise Buildings in Seattle for Simulated Ground Motions From Giant Cascadia Subduction Earthquakes (Mw 9.2)

    Science.gov (United States)

    Yang, J.; Heaton, T. H.

    2008-12-01

    With the exception of the 2003 Tokachi-oki earthquake, strong ground recordings from large subduction earthquakes (Mw > 8.0) are meager. Furthermore there are no strong motion recordings of giant earthquakes. However, there is a growing set of high-quality broadband teleseismic recordings of large and giant earthquakes. In this poster, we use recordings from the 2003 Tokachi-oki (Mw 8.3) earthquake as empirical Green's functions to simulate the rock and soil ground motions from a scenario Mw 9.2 subduction earthquake on Cascadia subduction zone in the frequency band of interest to flexible and large- scale buildings (0.075 to 1 Hz). The effect of amplification by the Seattle basin is considered by using a basin response Green's function which is derived from deconvolving the teleseismic waves recorded at rock sites from soil sites at the SHIP02 experiment. These strong ground motions are used to excite simulation of the fully nonlinear seismic responses of 20-story and 6-story steel moment-frame buildings designed according to both the U.S. 1994 UBC and also the Japanese building code published in 1987. We consider several realizations of the hypothetical subduction earthquake; the down-dip limit of rupture is of particular importance to the simulated ground motions in Seattle. If slip is assumed to be limited to offshore regions, then the building simulations indicate that the building responses are mostly in the linear range. However, our simulation shows that buildings with brittle welds would collapse for rupture models where rupture extends beneath the Olympic Mountains. The ground motions all have very long durations (more than 4 minutes), and our building simulations should be considered as a minimum estimate since we have used a very simple model of degradation of the structure.

  14. V S30, slope, H 800 and f 0: performance of various site-condition proxies in reducing ground-motion aleatory variability and predicting nonlinear site response

    Science.gov (United States)

    Derras, Boumédiène; Bard, Pierre-Yves; Cotton, Fabrice

    2017-09-01

    The aim of this paper is to investigate the ability of various site-condition proxies (SCPs) to reduce ground-motion aleatory variability and evaluate how SCPs capture nonlinearity site effects. The SCPs used here are time-averaged shear-wave velocity in the top 30 m ( V S30), the topographical slope (slope), the fundamental resonance frequency ( f 0) and the depth beyond which V s exceeds 800 m/s ( H 800). We considered first the performance of each SCP taken alone and then the combined performance of the 6 SCP pairs [ V S30- f 0], [ V S30- H 800], [ f 0-slope], [ H 800-slope], [ V S30-slope] and [ f 0- H 800]. This analysis is performed using a neural network approach including a random effect applied on a KiK-net subset for derivation of ground-motion prediction equations setting the relationship between various ground-motion parameters such as peak ground acceleration, peak ground velocity and pseudo-spectral acceleration PSA ( T), and M w, R JB, focal depth and SCPs. While the choice of SCP is found to have almost no impact on the median ground-motion prediction, it does impact the level of aleatory uncertainty. V S30 is found to perform the best of single proxies at short periods ( T site terms for soft sites and that the most relevant loading parameter for characterising nonlinear site response is the "stiff" spectral ordinate at the considered period.[Figure not available: see fulltext.

  15. Ground-based structure from motion - multi view stereo (SFM-MVS) for upland soil erosion assessment.

    Science.gov (United States)

    McShane, Gareth; James, Mike; Quniton, John; Farrow, Luke; Glendell, Miriam; Jones, Lee; Kirkham, Matthew; Morgan, David; Evans, Martin; Anderson, Karen; Lark, Murray; Rawlins, Barry; Rickson, Jane; Quine, Timothy; Benaud, Pia; Brazier, Richard

    2016-04-01

    In upland environments, quantifying soil loss through erosion processes at a high resolution can be time consuming, costly and logistically difficult. In this pilot study 'A cost effective framework for monitoring soil erosion in England and Wales', funded by the UK Department for Environment, Food and Rural Affairs (Defra), we evaluate the use of annually repeated ground-based photography surveys, processed using structure-from-motion and multi-view stereo (SfM-MVS) 3-D reconstruction software (Agisoft Photoscan). The aim is to enable efficient but detailed site-scale studies of erosion forms in inaccessible UK upland environments, in order to quantify dynamic processes, such as erosion and mass movement. The evaluation of the SfM-MVS technique is particularly relevant in upland landscapes, where the remoteness and inaccessibility of field sites may render some of the more established survey techniques impractical. We present results from 5 upland sites across the UK, acquired over a 2-year period. Erosion features of varying width (3 m to 35 m) and length (20 m to 60 m), representing a range of spatial scales (from 100 m2 to 1000 m2) were surveyed, in upland habitats including bogs, peatland, upland grassland and moorland. For each feature, around 150 to 600 ground-based photographs were taken at oblique angles over a 10 to 20 minute period, using an uncalibrated Canon 600D SLR camera with a 28 mm lens (focal length set to infinity). Camera settings varied based upon light conditions (exposure 100-400 ISO, aperture F4.5 to F8, shutter speed 1/100 to 1/250 second). For inter-survey comparisons, models were geo-referenced using 20 to 30 ground control points (numbered black markers with a white target) placed around and within the feature, with their co-ordinates measured by survey-grade differential GNSS (Trimble R4). Volumetric estimates of soil loss were quantified using digital surface models (DSMs) derived from the repeat survey data and subtracted from a

  16. Constraining ground motion parameters and determining the historic earthquake that damaged the vaults underneath the Old City of Jerusalem

    Science.gov (United States)

    Yagoda-Biran, G.; Hatzor, Y. H.

    2013-12-01

    Evidence for seismically induced damage are preserved in historic masonry structures below the Old City of Jerusalem at a site known locally as the 'Western Wall Tunnels' complex, possibly one of the most important tourist attractions in the world. In the tunnels, structures dated to 500 BC and up until modern times have been uncovered by recent archeological excavation. One of the interesting findings is a 100 m long bridge, composed of two rows of barrel vaults, believed to have been constructed during the 3rd century AD to allow easy access to the Temple Mount. In one of the vaults a single masonry block is displaced 7 cm downward with respect to its neighbors (see figure below). Since the damage seems seismically driven, back analysis of the damage with the numerical Discontinuous Deformation Analysis (DDA) method was performed, in order to constrain the peak ground acceleration (PGA) that had caused the damage. First the numerical method used for back analysis was verified with an analytical solution for the case of a rocking monolithic column, then validated with experimental results for site response analysis. The verification and validation prove the DDA is capable of handling dynamic and wave propagation problems. Next, the back analysis was performed. Results of the dynamic numerical simulations suggest that the damage observed at the vault was induced by seismic vibrations that must have taken place before the bridge was buried underground, namely when it was still in service. We find that the PGA required for causing the observed damage was high - between 1.5 and 2 g. The PGA calculated for Jerusalem on the basis of established attenuation relationships for historic earthquakes that struck the region during the relevant time period is about one order of magnitude lower: 0.14 and 0.48 g, for the events that took place at 362 and 746 AD, respectively. This discrepancy is explained by local site effects that must have amplified bedrock ground motions by a

  17. Low-Frequency Seismic Ground Motion At The Pier Positions Of The Planned Messina Straits Bridge For A Realistic Earthquake Scenario

    Science.gov (United States)

    Gusev, A. A.; Pavlov, V.; Romanelli, F.; Panza, G.

    2008-07-01

    We estimated longer-period (period T>0.5 s) components of the ground motion at the piers of the planned Messina straits bridge. As the shortest fault-to-site distance is only 3-5 km, the kinematic earthquake rupture process has to be described in a realistic way and thus, the causative fault is represented by a dense grid of subfaults. To model the 1908 event, we assume a Mw = 7 earthquake, with a 40×20 km rectangular fault, and pure reverse dip-slip. The horizontal upper side of the rectangle is at 3-km depth, and the N corner of the rectangle is just between the piers. For the fault nucleation point, the least favorable place is assumed and a randomized rupture velocity is used in a particular run. In a typical simulation, the fault motion is initially represented by the time history of slip in each of the subfaults and by the distribution of the final seismic moment among the subsources (forming "asperities"), both generated as lognormal random functions. The time histories are then filtered in order to fit a chosen source spectral model. The parameters that are conditioning the random functions can be based on the bulk of published fault inversions, or reproduced from an earlier successful attempt to simulate ground motions in the epicentral zone of the 1994, M = 6.7 Northridge, California, earthquake. In the second step of calculations, the Green functions (for each subfault and pier combination) are calculated for a layered halfspace model of the pier foundation stratigraphy, using an advanced Green function calculator, that allows an accurate calculation over the entire relevant frequency band including static terms. Finally, the 3-components of the strong ground motion are obtained at the two piers through convolution and summation over the different subsources. We compare a set of response horizontal velocity spectra (PRV) obtained from our calculations with a reference PRV that is considered as a reasonable upper bound for the possible ground motion near

  18. Observations of seismicity and ground motion in the northeast U.S. Atlantic margin from ocean bottom seismometer data

    Science.gov (United States)

    Flores, Claudia; ten Brink, Uri S.; McGuire, Jeffrey J.; Collins, John A.

    2017-01-01

    Earthquake data from two short-period ocean-bottom seismometer (OBS) networks deployed for over a year on the continental slope off New York and southern New England were used to evaluate seismicity and ground motions along the continental margin. Our OBS networks located only one earthquake of Mc∼1.5 near the shelf edge during six months of recording, suggesting that seismic activity (MLg>3.0) of the margin as far as 150–200 km offshore is probably successfully monitored by land stations without the need for OBS deployments. The spectral acceleration from two local earthquakes recorded by the OBS was found to be generally similar to the acceleration from these earthquakes recorded at several seismic stations on land and to hybrid empirical acceleration relationships for eastern North America. Therefore, the seismic attenuation used for eastern North America can be extended in this region at least to the continental slope. However, additional offshore studies are needed to verify these preliminary conclusions.

  19. Interpretation of deformed ionograms induced by vertical ground motion of seismic Rayleigh waves and infrasound in the thermosphere

    Directory of Open Access Journals (Sweden)

    T. Maruyama

    2016-02-01

    Full Text Available The vertical ground motion of seismic surface waves launches acoustic waves into the atmosphere and induces ionospheric disturbances. Disturbances due to Rayleigh waves near the short-period Airy phase appear as wavy fluctuations in the virtual height of an ionogram and have a multiple-cusp signature (MCS when the fluctuation amplitude is increased. An extremely developed MCS was observed at Kazan, Russia, after the 2010 M 8.8 Chile earthquake. The ionogram exhibited steep satellite traces for which the virtual heights increased rapidly with frequency starting near the top of cusps and continuing for 0.1–0.2 MHz. This complicated ionogram was analyzed by applying a ray tracing technique to the radio wave propagation in the ionosphere that was perturbed by acoustic waves. Acoustic wavefronts were inclined by the effects of finite Rayleigh wave velocity and sound speed in the thermosphere. The satellite echo traces were reproduced by oblique returns from the inclined wavefronts, in addition to the nearly vertical returns that are responsible for the main trace.

  20. Ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake constrained by a detailed assessment of macroseismic data

    Science.gov (United States)

    Martin, Stacey; Hough, Susan E.; Hung, Charleen

    2015-01-01

    To augment limited instrumental recordings of the Mw 7.8 Gorkha, Nepal, earthquake on 25 April 2015 (Nepali calendar: 12 Baisakh 2072, Bikram Samvat), we collected 3831 detailed media and first-person accounts of macroseismic effects that include sufficiently detailed information to assign intensities. The resulting intensity map reveals the distribution of shaking within and outside of Nepal, with the key result that shaking intensities throughout the near-field region only exceeded intensity 8 on the 1998 European Macroseismic Scale (EMS-98) in rare instances. Within the Kathmandu Valley, intensities were generally 6–7 EMS. This surprising (and fortunate) result can be explained by the nature of the mainshock ground motions, which were dominated by energy at periods significantly longer than the resonant periods of vernacular structures throughout the Kathmandu Valley. Outside of the Kathmandu Valley, intensities were also generally lower than 8 EMS, but the earthquake took a heavy toll on a number of remote villages, where many especially vulnerable masonry houses collapsed catastrophically in 7–8 EMS shaking. We further reconsider intensities from the 1833 earthquake sequence and conclude that it occurred on the same fault segment as the Gorkha earthquake.

  1. Non-Gaussian Stochastic Equivalent Linearization Method for Inelastic Nonlinear Systems with Softening Behaviour, under Seismic Ground Motions

    Directory of Open Access Journals (Sweden)

    Francisco L. Silva-González

    2014-01-01

    Full Text Available A non-Gaussian stochastic equivalent linearization (NSEL method for estimating the non-Gaussian response of inelastic non-linear structural systems subjected to seismic ground motions represented as nonstationary random processes is presented. Based on a model that represents the time evolution of the joint probability density function (PDF of the structural response, mathematical expressions of equivalent linearization coefficients are derived. The displacement and velocity are assumed jointly Gaussian and the marginal PDF of the hysteretic component of the displacement is modeled by a mixed PDF which is Gaussian when the structural behavior is linear and turns into a bimodal PDF when the structural behavior is hysteretic. The proposed NSEL method is applied to calculate the response of hysteretic single-degree-of-freedom systems with different vibration periods and different design displacement ductility values. The results corresponding to the proposed method are compared with those calculated by means of Monte Carlo simulation, as well as by a Gaussian equivalent linearization method. It is verified that the NSEL approach proposed herein leads to maximum structural response standard deviations similar to those obtained with Monte Carlo technique. In addition, a brief discussion about the extension of the method to muti-degree-of-freedom systems is presented.

  2. School readiness.

    Science.gov (United States)

    High, Pamela C

    2008-04-01

    School readiness includes the readiness of the individual child, the school's readiness for children, and the ability of the family and community to support optimal early child development. It is the responsibility of schools to be ready for all children at all levels of readiness. Children's readiness for kindergarten should become an outcome measure for community-based programs, rather than an exclusion criterion at the beginning of the formal educational experience. Our new knowledge of early brain and child development has revealed that modifiable factors in a child's early experience can greatly affect that child's learning trajectory. Many US children enter kindergarten with limitations in their social, emotional, cognitive, and physical development that might have been significantly diminished or eliminated through early identification of and attention to child and family needs. Pediatricians have a role in promoting school readiness for all children, beginning at birth, through their practices and advocacy. The American Academy of Pediatrics affords pediatricians many opportunities to promote the physical, social-emotional, and educational health of young children, with other advocacy groups. This technical report supports American Academy of Pediatrics policy statements "Quality Early Education and Child Care From Birth to Kindergarten" and "The Inappropriate Use of School 'Readiness' Tests."

  3. Using SW4 for 3D Simulations of Earthquake Strong Ground Motions: Application to Near-Field Strong Motion, Building Response, Basin Edge Generated Waves and Earthquakes in the San Francisco Bay Are

    Science.gov (United States)

    Rodgers, A. J.; Pitarka, A.; Petersson, N. A.; Sjogreen, B.; McCallen, D.; Miah, M.

    2016-12-01

    Simulation of earthquake ground motions is becoming more widely used due to improvements of numerical methods, development of ever more efficient computer programs (codes), and growth in and access to High-Performance Computing (HPC). We report on how SW4 can be used for accurate and efficient simulations of earthquake strong motions. SW4 is an anelastic finite difference code based on a fourth order summation-by-parts displacement formulation. It is parallelized and can run on one or many processors. SW4 has many desirable features for seismic strong motion simulation: incorporation of surface topography; automatic mesh generation; mesh refinement; attenuation and supergrid boundary conditions. It also has several ways to introduce 3D models and sources (including Standard Rupture Format for extended sources). We are using SW4 to simulate strong ground motions for several applications. We are performing parametric studies of near-fault motions from moderate earthquakes to investigate basin edge generated waves and large earthquakes to provide motions to engineers study building response. We show that 3D propagation near basin edges can generate significant amplifications relative to 1D analysis. SW4 is also being used to model earthquakes in the San Francisco Bay Area. This includes modeling moderate (M3.5-5) events to evaluate the United States Geologic Survey's 3D model of regional structure as well as strong motions from the 2014 South Napa earthquake and possible large scenario events. Recently SW4 was built on a Commodity Technology Systems-1 (CTS-1) at LLNL, new systems for capacity computing at the DOE National Labs. We find SW4 scales well and runs faster on these systems compared to the previous generation of LINUX clusters.

  4. Rupture process and strong ground motions of the 2007 Niigataken Chuetsu-Oki earthquake -Directivity pulses striking the Kashiwazaki-Kariwa Nuclear Power Plant-

    Science.gov (United States)

    Irikura, K.; Kagawa, T.; Miyakoshi, K.; Kurahashi, S.

    2007-12-01

    The Niigataken Chuetsu-Oki earthquake occurred on July 16, 2007, northwest-off Kashiwazaki in Niigata Prefecture, Japan, causing severe damages of ten people dead, about 1300 injured, about 1000 collapsed houses and major lifelines suspended. In particular, strong ground motions from the earthquake struck the Kashiwazaki-Kariwa nuclear power plant (hereafter KKNPP), triggering a fire at an electric transformer and other problems such as leakage of water containing radioactive materials into air and the sea, although the radioactivity levels of the releases are as low as those of the radiation which normal citizens would receive from the natural environment in a year. The source mechanism of this earthquake is a reverse fault, but whether it is the NE-SW strike and NW dip or the SW-NE strike and SE dip are still controversial from the aftershock distribution and geological surveys near the source. Results of the rupture processes inverted by using the GPS and SAR data, tsunami data and teleseismic data so far did not succeed in determining which fault planes moved. Strong ground motions were recorded at about 390 stations by the K-NET of NIED including the stations very close to the source area. There was the KKNPP which is probably one of buildings and facilities closest to the source area. They have their own strong motion network with 22 three-components' accelerographs locating at ground-surface, underground, buildings and basements of reactors. The PGA attenuation-distance relationships made setting the fault plane estimated from the GPS data generally follow the empirical relations in Japan, for example, Fukushima and Tanaka (1990) and Si and Midorikawa (1999), even if either fault plane, SE dip or NW dip, is assumed. However, the strong ground motions in the site of the KKNPP had very large accelerations and velocities more than those expected from the empirical relations. The surface motions there had the PGA of more than 1200 gals and even underground

  5. Hybrid Broadband Ground-Motion Simulations: Combining Long-Period Deterministic Synthetics with High-Frequency Multiple S-to-S Backscattering

    KAUST Repository

    Mai, Paul Martin

    2010-09-20

    We present a new approach for computing broadband (0-10 Hz) synthetic seismograms by combining high-frequency (HF) scattering with low-frequency (LF) deterministic seismograms, considering finite-fault earthquake rupture models embedded in 3D earth structure. Site-specific HF-scattering Green\\'s functions for a heterogeneous medium with uniformly distributed random isotropic scatterers are convolved with a source-time function that characterizes the temporal evolution of the rupture process. These scatterograms are then reconciled with the LF-deterministic waveforms using a frequency-domain optimization to match both amplitude and phase spectra around the target intersection frequency. The scattering parameters of the medium, scattering attenuation ηs, intrinsic attenuation ηi, and site-kappa, as well as frequency-dependent attenuation, determine waveform and spectral character of the HF-synthetics and thus affect the hybrid broadband seismograms. Applying our methodology to the 1994 Northridge earthquake and validating against near-field recordings at 24 sites, we find that our technique provides realistic broadband waveforms and consistently reproduces LF ground-motion intensities for two independent source descriptions. The least biased results, compared to recorded strong-motion data, are obtained after applying a frequency-dependent site-amplification factor to the broadband simulations. This innovative hybrid ground-motion simulation approach, applicable to any arbitrarily complex earthquake source model, is well suited for seismic hazard analysis and ground-motion estimation.

  6. Deep Borehole Instrumentation Along San Francisco Bay Bridges: 1996 - 2003 and Strong Ground Motion Systhesis Along the San Francisco/Oakland Bay Bridge

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L; Foxall, W; Kasameyer, P; larsen, S; Hayek, C; Tyler-Turpin, C; Aquilino, J; Long, L

    2005-04-22

    As a result of collaboration between the Berkeley Seismographic Station, Lawrence Livermore National Laboratory, and Caltrans, instrument packages have been placed in bedrock in six boreholes and two surface sites along the San Francisco/Oakland Bay Bridge. Since 1996 over 200 local earthquakes have been recorded. Prior to this study few seismic recording instruments existed in bed-rock in San Francisco Bay. We utilized the data to perform analysis of ground motion variability, wave passage, site response, and up-and down-hole wave propagation along the Bay Bridge. We also synthesized strong ground motion at nine locations along the Bay Bridge. Key to these studies is LLNL's effort to exploit the information available in weak ground motions (generally from earthquakes < M=4.0) to enhance predictions of seismic hazards. We found that Yerba Island has no apparent site response at the surface relative to a borehole site. The horizontal to vertical spectral ratio method best revealed no site response, while the complex signal spectral ratio method had the lowest variance for spectral ratios and best predicted surface recordings when the borehole recording was used as input. Both methods identified resonances at about the same frequencies. Regional attenuation results in a significant loss of high frequencies in both surface and borehole recordings. Records are band limited at near 3 Hz. Therefore a traditional rock outcrop site response, flat to high frequency in displacement, is not available. We applied a methodology to predict and synthesize strong ground motion along the San Francisco/Oakland Bay Bridge from a M=7.25 earthquake along the Hayward fault, about12 km distant. We synthesized for three-components and broad-band (0.0-25.0 Hz) ground motion accelerations, velocities, and displacements. We examined two different possible rupture scenarios, a ''mean'' and ''one standard deviation'' model. We combined the high

  7. Comparison of ground motions estimated from prediction equations and from observed damage during the M = 4.6 1983 Liège earthquake (Belgium

    Directory of Open Access Journals (Sweden)

    D. García Moreno

    2013-08-01

    Full Text Available On 8 November 1983 an earthquake of magnitude 4.6 damaged more than 16 000 buildings in the region of Liège (Belgium. The extraordinary damage produced by this earthquake, considering its moderate magnitude, is extremely well documented, giving the opportunity to compare the consequences of a recent moderate earthquake in a typical old city of Western Europe with scenarios obtained by combining strong ground motions and vulnerability modelling. The present study compares 0.3 s spectral accelerations estimated from ground motion prediction equations typically used in Western Europe with those obtained locally by applying the statistical distribution of damaged masonry buildings to two fragility curves, one derived from the HAZUS programme of FEMA (FEMA, 1999 and another developed for high-vulnerability buildings by Lang and Bachmann (2004, and to a method proposed by Faccioli et al. (1999 relating the seismic vulnerability of buildings to the damage and ground motions. The results of this comparison reveal good agreement between maxima spectral accelerations calculated from these vulnerability and fragility curves and those predicted from attenuation law equations, suggesting peak ground accelerations for the epicentral area of the 1983 earthquake of 0.13–0.20 g (g: gravitational acceleration.

  8. Drifting while stepping in place in old adults: Association of self-motion perception with reference frame reliance and ground optic flow sensitivity.

    Science.gov (United States)

    Agathos, Catherine P; Bernardin, Delphine; Baranton, Konogan; Assaiante, Christine; Isableu, Brice

    2017-04-07

    Optic flow provides visual self-motion information and is shown to modulate gait and provoke postural reactions. We have previously reported an increased reliance on the visual, as opposed to the somatosensory-based egocentric, frame of reference (FoR) for spatial orientation with age. In this study, we evaluated FoR reliance for self-motion perception with respect to the ground surface. We examined how effects of ground optic flow direction on posture may be enhanced by an intermittent podal contact with the ground, and reliance on the visual FoR and aging. Young, middle-aged and old adults stood quietly (QS) or stepped in place (SIP) for 30s under static stimulation, approaching and receding optic flow on the ground and a control condition. We calculated center of pressure (COP) translation and optic flow sensitivity was defined as the ratio of COP translation velocity over absolute optic flow velocity: the visual self-motion quotient (VSQ). COP translation was more influenced by receding flow during QS and by approaching flow during SIP. In addition, old adults drifted forward while SIP without any imposed visual stimulation. Approaching flow limited this natural drift and receding flow enhanced it, as indicated by the VSQ. The VSQ appears to be a motor index of reliance on the visual FoR during SIP and is associated with greater reliance on the visual and reduced reliance on the egocentric FoR. Exploitation of the egocentric FoR for self-motion perception with respect to the ground surface is compromised by age and associated with greater sensitivity to optic flow. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Source and ground-motion parameters of the 2011 Lorca earthquake; Parametros de la fuente y del movimiento del suelo del terremoto de Lorca de 2011

    Energy Technology Data Exchange (ETDEWEB)

    Alguacil de la Blanca, G.; Vidal Sanchez, F.; Stich, D.; Mancilla Perez, F. L.; Lopez Comino, J. A.; Morales Soto, J.; Navarro Bernal, M.

    2012-07-01

    113 events of the Lorca seismic series has been relocated by using Double difference algorithm and data from both temporary and permanent seismic networks. Relocations yield shallow hypo central distribution of aftershocks with a {approx}5 km long, NE-SW trending, placed SW of the mainshock, suggesting a SW propagating rupture along the Alhama de Murcia fault. Similar oblique reverse faulting mechanism has been obtained for three largest events. Source parameters of these three earthquakes have been estimated. Horizontal ground motion was estimated at 11 city points whose local structure was known by SPAC experiments. A set of ground motion parameters (PGA, PGV, AI, CAV, SI, SA and SV) here calculated, have higher values at these points respect to the ones at LOR station. All parameter values are also above the expected values for Euro -Mediterranean earthquakes with local intensity VIII (EMS). Nevertheless, SD values are unusually short and less than the reference ones. Higher values of the response spectra of acceleration and velocity are given for periods of less than 0.7 s, with maximum spectral acceleration at 0.15 s and velocity at 0.5 s. The elastic input energy spectrum is well connected to the shake destructiveness in each place. Equivalent velocity > 60 cm/s is found in almost all sites and > 100 cm/s (for periods 0.3 to 0.6 s) in someone. Factors such as proximity, and focal mechanism and ground response characteristics explain the high ground motion parameter values obtained in Lorca sites and show the great influence of the source and site conditions on the characteristics of strong ground motion in the vicinity of the rupture. (Author) 68 refs.

  10. Estimating Empirical Site Amplification of Taiwan near-surface structure by Spectral Ratio Methods with CWB Next Generation Seismic Network: toward broadband waveform ground motion prediction

    Science.gov (United States)

    Liou, Y. H.; Ma, K. F.; Wang, Y. J.

    2016-12-01

    Site effect is one of the most important factors dominating ground motion prediction. For engineering usage, the ground motion prediction equation (GMPE) usually includes the site-effect factor (e.g. Vs30, Z1.0). The site-effect, however, is considered as non-linear response, and could be critical for the aspect in broadband waveform modeling for ground motion prediction through simulation. In this study, we utilized four large earthquakes data of surface and borehole seismometers from Central Weather Bureau (CWB) next generation seismic network to analyze the site amplification factors and the transfer functions for sediments over the basement. We used a spectral ratio method by comparing the ground motions of surface and borehole record to acquire empirical amplification factors (EAF) for PGA, PGV and frequency spectra from 0.1 to 20 Hz. The relationship between the EAF and Vs30 value were analyzed as well. The first part of results showed that nonlinear relationship between PGA (or PGV) amplification and Vs30, suggested that the amplification of PGA or PGV from borehole to surface was not dominated by shallow structure (i.e., top 30 m of strata). Thus, estimating the site effect should include not only Vs30 but EAF, because EAF could directly response the amplification of ground motion by site characters. The second part of results showed that the relationships between EAF for frequency spectra range of 0.1 to 20 Hz and Vs30 could be divided into two site types which are strongly correlated to Vs30 values of sites. For Type I sites, the EAF increased with increasing frequency, and the Vs30 of these sites are generally over 760 (m/s). Type II sites which Vs30 are generally lower than 760 (m/s), the peak value of EAF shown around frequency range of 1 to 3 Hz attributed to the soft-soil conditions. The empirical amplification and transfer function analysis could be applied to obtain the GMPE for basement rock and be adopted in ground motion simulation. The effort

  11. A comparison of accuracy and precision of 5 gait-event detection algorithms from motion capture in horses during over ground walk

    DEFF Research Database (Denmark)

    Olsen, Emil; Boye, Jenny Katrine; Pfau, Thilo

    2012-01-01

    Motion capture is frequently used over ground in equine locomotion science to study kinematics. Determination of gait events (hoof-on/off and stance) without force plates is essential to cut the data into strides. The lack of comparative evidence emphasise the need to compare existing algorithms...... surrounded by a 12-camera infrared motion capture system. The algorithms were based on horizontal or vertical velocity displacement and velocity of the hoof relative to the centre of mass movement or fetlock angle and velocity or displacement of the hoof. Horizontal hoof velocity relative to the centre...

  12. Earthquake Ground Motion Selection

    Science.gov (United States)

    2012-05-01

    Nonlinear analyses of soils, structures, and soil-structure systems offer the potential for more accurate characterization of geotechnical and structural response under strong earthquake shaking. The increasing use of advanced performance-based desig...

  13. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment

    Science.gov (United States)

    James, M. R.; Robson, S.; d'Oleire-Oltmanns, S.; Niethammer, U.

    2017-03-01

    Structure-from-motion (SfM) algorithms greatly facilitate the production of detailed topographic models from photographs collected using unmanned aerial vehicles (UAVs). However, the survey quality achieved in published geomorphological studies is highly variable, and sufficient processing details are never provided to understand fully the causes of variability. To address this, we show how survey quality and consistency can be improved through a deeper consideration of the underlying photogrammetric methods. We demonstrate the sensitivity of digital elevation models (DEMs) to processing settings that have not been discussed in the geomorphological literature, yet are a critical part of survey georeferencing, and are responsible for balancing the contributions of tie and control points. We provide a Monte Carlo approach to enable geomorphologists to (1) carefully consider sources of survey error and hence increase the accuracy of SfM-based DEMs and (2) minimise the associated field effort by robust determination of suitable lower-density deployments of ground control. By identifying appropriate processing settings and highlighting photogrammetric issues such as over-parameterisation during camera self-calibration, processing artefacts are reduced and the spatial variability of error minimised. We demonstrate such DEM improvements with a commonly-used SfM-based software (PhotoScan), which we augment with semi-automated and automated identification of ground control points (GCPs) in images, and apply to two contrasting case studies - an erosion gully survey (Taroudant, Morocco) and an active landslide survey (Super-Sauze, France). In the gully survey, refined processing settings eliminated step-like artefacts of up to 50 mm in amplitude, and overall DEM variability with GCP selection improved from 37 to 16 mm. In the much more challenging landslide case study, our processing halved planimetric error to 0.1 m, effectively doubling the frequency at which changes in

  14. After the damages: Lessons learned from recent earthquakes for ground-motion prediction and seismic hazard assessment (C.F. Gauss Lecture)

    Science.gov (United States)

    Cotton, Fabrice

    2017-04-01

    Recent damaging earthquakes (e.g. Japan 2011, Nepal 2014, Italy 2016) and associated ground-shaking (ground-motion) records challenge the engineering models used to quantify seismic hazard. The goal of this presentation is to present the lessons learned from these recent events and discuss their implications for ground-motion prediction and probabilistic seismic hazard assessment. The following points will be particularly addressed: 1) Recent observations clearly illustrate the dependency of ground-shaking on earthquake source related factors (e.g. fault properties and geometry, earthquake depth, directivity). The weaknesses of classical models and the impact of these factors on hazard evaluation will be analysed and quantified. 2) These observations also show that events of similar magnitude and style of faulting are producing ground-motions which are highly variable. We will analyse this variability and show that the exponential growth of recorded data give a unique opportunity to quantify regional or between-events shaking variations. Indeed, most seismic-hazard evaluations do not consider the regional specificities of earthquake or wave-propagation properties. There is little guidance in the literature on how this should be done and we will show that this challenge is interdisciplinary, as structural geology, neotectonic and tomographic images can provide key understanding of these regional variations. 3) One of the key lessons of recent earthquakes is that extreme hazard scenarios and ground-shaking are difficult to predict. In other words, we need to mobilize "scientific imagination" and define new strategies based on the latest research results to capture epistemic uncertainties and integrate them in engineering seismology projects. We will discuss these strategies and show an example of their implementation to develop new seismic hazard maps of Europe (Share and Sera FP7 projects) and Germany.

  15. Response of Seismically Isolated Steel Frame Buildings with Sustainable Lead-Rubber Bearing (LRB Isolator Devices Subjected to Near-Fault (NF Ground Motions

    Directory of Open Access Journals (Sweden)

    Jong Wan Hu

    2014-12-01

    Full Text Available Base isolation has been used as one of the most wildly accepted seismic protection systems that should substantially dissociate a superstructure from its substructure resting on a shaking ground, thereby sustainably preserving entire structures against earthquake forces as well as inside non-structural integrities. Base isolation devices can operate very effectively against near-fault (NF ground motions with large velocity pulses and permanent ground displacements. In this study, comparative advantages for using lead-rubber bearing (LRB isolation systems are mainly investigated by performing nonlinear dynamic time-history analyses with NF ground motions. The seismic responses with respects to base shears and inter-story drifts are compared according to the installation of LRB isolation systems in the frame building. The main function of the base LRB isolator is to extend the period of structural vibration by increasing lateral flexibility in the frame structure, and thus ground accelerations transferred into the superstructure can dramatically decrease. Therefore, these base isolation systems are able to achieve notable mitigation in the base shear. In addition, they make a significant contribution to reducing inter-story drifts distributed over the upper floors. Finally, the fact that seismic performance can be improved by installing isolation devices in the frame structure is emphasized herein through the results of nonlinear dynamic analyses.

  16. Moments, magnitudes, and radiated energies of non-volcanic tremor near Cholame, CA, from ground motion spectra at UPSAR

    Science.gov (United States)

    Fletcher, Joe B.; McGarr, A.

    2011-01-01

    By averaging the spectra of events within two episodes of tremor (on Jan. 21 and 24, 2005) across the 12 stations of UPSAR, we improved the S/N sufficiently to define source spectra. Analysis of eleven impulsive events revealed attenuation-corrected spectra of displacement similar to those of earthquakes, with a low-frequency plateau, a corner frequency, and a high frequency decay proportional to f−2. Seismic moments, M0, estimated from these spectra range from about 3 to 10 × 1011 N-m or moment magnitudes in the range 1.6 to 1.9. The corner frequencies range from 2.6 to 7.2 Hz and, if interpreted in the same way as for earthquakes, indicate low stress drops that vary from 0.001 to 0.04 MPa. Seismic energies, estimated from the ground motion spectra, vary from 0.2 × 105 to 4.4 × 105 J, or apparent stresses in the range 0.002 to 0.02 MPa. The low stress parameters are consistent with a weak fault zone in the lower crust at the depth of tremor. In contrast, the same analysis on a micro-earthquake, located near Cholame (depth = 10.3 km), revealed a stress drop of 0.5 MPa and an apparent stress of 0.02 MPa. Residual spectra from ω−2 model fits to the displacement spectra of the non-volcanic tremor events show peaks near 4 Hz that are not apparent in the spectra for the microearthquake nor for the spectrum of earth noise. These spectral peaks may indicate that tremor entails more than shear failure reminiscent of mechanisms, possibly entailing fluid flow, associated with volcanic tremor or deep volcanic earthquakes.

  17. Study of the effects of local geological structure on seismic ground motion and building vulnerability with microtremors

    Directory of Open Access Journals (Sweden)

    Andrej Gosar

    2007-06-01

    Full Text Available Examples of several earthquakes in last decades have shown that the influenceoflocalgeological structure (site effects on seismic ground motion was often underestimated; the effects of the earthquake were therefore greater than expected. Especially dangerous is the situation when both the fundamental frequency of sediments and of structures are similar and a resonance occurs. Among the other methods for assessing the effects of local geology the use of microtremors achieved a recognition in the last decade. The method is based on measurements of ambient vibration of natural and artificial origin with three-component sensor. Spectral ratio between the records on horizontal and vertical component yield fundamental frequency of soft sediments deposited over hard bedrock. By measurements inside buildings the main building frequency in longitudinal and transverse direction and consequently the range of increased vulnerability is determined. By comparison of thefundamental frequency map of sediments and measurements inside buildings, we can perform quantitative microzonation of urbane areas and identify areas where the danger of soil-structure resonance exists. In Slovenia microtremors investigations are carried out in the frame of a NATO Science for peace project. By measurements in a very dense grid of 200 m x 200 m a new microzonation of Ljubljana will be performed. In the Bovec basin, where the site effects were very prominent during 1998 and 2004 damaging earthquakes, we found out that relative high damage to some buildings were caused by soil-structure resonance effects. In Ilirska Bistrica, which is one of the most seismically active regions in Slovenia, we also established that most of the buildings damaged during stronger earthquakesare located in areas characterised by the fundamental frequency of soil which coincide with the range of the main building frequencies.

  18. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment

    Science.gov (United States)

    James, Mike R.; Robson, Stuart; d'Oleire-Oltmanns, Sebastian; Niethammer, Uwe

    2016-04-01

    Structure-from-motion (SfM) algorithms are greatly facilitating the production of detailed topographic models based on images collected by unmanned aerial vehicles (UAVs). However, SfM-based software does not generally provide the rigorous photogrammetric analysis required to fully understand survey quality. Consequently, error related to problems in control point data or the distribution of control points can remain undiscovered. Even if these errors are not large in magnitude, they can be systematic, and thus have strong implications for the use of products such as digital elevation models (DEMs) and orthophotos. Here, we develop a Monte Carlo approach to (1) improve the accuracy of products when SfM-based processing is used and (2) reduce the associated field effort by identifying suitable lower density deployments of ground control points. The method highlights over-parameterisation during camera self-calibration and provides enhanced insight into control point performance when rigorous error metrics are not available. Processing was implemented using commonly-used SfM-based software (Agisoft PhotoScan), which we augment with semi-automated and automated GCPs image measurement. We apply the Monte Carlo method to two contrasting case studies - an erosion gully survey (Taurodont, Morocco) carried out with an fixed-wing UAV, and an active landslide survey (Super-Sauze, France), acquired using a manually controlled quadcopter. The results highlight the differences in the control requirements for the two sites, and we explore the implications for future surveys. We illustrate DEM sensitivity to critical processing parameters and show how the use of appropriate parameter values increases DEM repeatability and reduces the spatial variability of error due to processing artefacts.

  19. Calibration and Recovery of Nuclear Test Seismic Ground-Motion Data from the Leo Brady Seismic Network

    Science.gov (United States)

    Young, B.; Abbott, R. E.

    2016-12-01

    In 1960, Sandia National Laboratories established a small seismic network with stations in Nevada, Utah, and California with the mission to monitor underground nuclear tests (UGTs) at the Nevada National Security Site (NNSS, formerly known as the Nevada Test Site). Over time, this seismic network came to be known as the Leo Brady Seismic Network (LBSN). The LBSN recorded approximately 800 UGTs at the NNSS from its inception through the end of testing in 1992. These irreplaceable data, mostly archived on analog, frequency-modulated magnetic tapes and stored in vaults, are now being digitized. This necessitated a calibration method to take the data from analog FM to digital counts to ground-motion units. Complicating the issue, the seismic system setup, telemetering, instrumentation, and calibration methods changed several times over the course of the LBSN's service life, and much of the documentation and knowledge of the system has been lost to time. The information necessary to understand, interpret, and ultimately calibrate these data was therefore collected from many disparate sources, each of which contains bits and pieces of relevant information. Contradictory information was often the rule rather than the exception. Where necessary (due to a lack of direct information) we made educated guesses as to the exact system, setup, and methodologies used. Ultimately, we documented the evolution and configuration of the seismic network, and determined both empirical and analytical approaches to calibrating these data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. The CMS Experiment: on and under Ground Motions of Structures Due to the Magnetic Field Forces as Observed by the Link Alignment System

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Arce, J.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.; Brochero, J.; Calderon, A.; Fernandez, M. G.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martinez-Ribero, C.; Matorras, F.; Rodrigo, T.; Rui-Arbol, P.; Scodellaro, L.; Sobron, M.; Vila, I.; Virto, A. L.; Fernandez, J.

    2010-05-01

    This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test (at SX5 on ground Hall) and the CRAFT08 and 09 periods data taking in the point P5 (UX5), 100 m underground. A brief description of the system is followed by the discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotation of detector structures (from microradiants to milliradiants). Observed motions are studied as functions of the magnetic fi eld intensity. Comparisons between recorded data on and under ground are made. (Author) 23 refs.

  1. An attempt to model the relationship between MMI attenuation and engineering ground-motion parameters using artificial neural networks and genetic algorithms

    Directory of Open Access Journals (Sweden)

    G-A. Tselentis

    2010-12-01

    Full Text Available Complex application domains involve difficult pattern classification problems. This paper introduces a model of MMI attenuation and its dependence on engineering ground motion parameters based on artificial neural networks (ANNs and genetic algorithms (GAs. The ultimate goal of this investigation is to evaluate the target-region applicability of ground-motion attenuation relations developed for a host region based on training an ANN using the seismic patterns of the host region. This ANN learning is based on supervised learning using existing data from past earthquakes. The combination of these two learning procedures (that is, GA and ANN allows us to introduce a new method for pattern recognition in the context of seismological applications. The performance of this new GA-ANN regression method has been evaluated using a Greek seismological database with satisfactory results.

  2. Simulation of strong ground motion for the 25 April 2015 Nepal (Gorkha) Mw 7.8 earthquake using the SCEC broadband platform

    Science.gov (United States)

    M. C., Raghucharan; Somala, Surendra Nadh

    2017-07-01

    The 25th April 2015 Nepal (Gorkha) earthquake has been introduced into the SCEC BBP v15.3, and validation simulations are run using EXSIM methodology with the strong ground motion data of the earthquake. Synthetic seismograms are generated along with the response spectra for engineering applications. Goodness-of-fit metrics have been computed from response spectra for 14 stations located in the Central Indo-Gangetic Plains (CIGP). Plots of residuals are made as a function of hypocentral distance for various time periods. Spatial distribution of residuals as well as average residuals for all stations for the horizontal components are computed. The results demonstrate that there was a good match between the actual data and synthetics generated by the broadband platform. Finally, four of the widely used ground motion prediction equations around the world are chosen to compare how they predict the synthetics for Gorkha earthquake in CIGP.

  3. Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green's function technique

    Directory of Open Access Journals (Sweden)

    K. Kamae

    1994-06-01

    Full Text Available We introduce a generalized method for simulating strong ground motion from large earthquakes by summing subevent records to follow the ?2 law. The original idea of the method is based on a constant stress parameter between the target event and the subevent. It is applicable to a case where both events have a different stress drop after some manipulation. However, the simulation for a very large earthquake from a small event with this method has inevitably some deficiencies of spectral amplitudes in the intermediate frequency range deviating f`rom the ?2 model, although the high and low frequency motions match the scaling. We improve the simulation algorithm so as not to make spectral sags, introducing self-similar distribution of subfaults with different sizes in the fault plane, so-called fractal composite faulting model. We show successful simulations for intermediate-sized earthquakes (MJMA = 5.0, 6.0 and 6.1, the large aftershocks of the 1983 Akita-Oki earthquake. using the records of smaller aftershocks (MJMA = 3.9 and 5.0 as an empirical Green's function. Further, we attempted to estimate strong ground motion for the 1946 Nankai earthquake with Mw 8.2, using the records of a MJMA 5.1 earthquake occurring near the source region of the mainshock. We found that strong ground motions simulated for the fractal composite faulting model with two asperities radiating significantly high frequency motions matched well the observed data such as the near-field displacement record, the source spectrum estimated from the teleseismic record, and the seismic intensity distribution during the 1946 Nankai earthquake.

  4. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system

    OpenAIRE

    Faber, G S; Chang, C. C.; Kingma, I.; Dennerlein, J.T.; van Dieen, J.H.

    2016-01-01

    Inertial motion capture (IMC) systems have become increasingly popular for ambulatory movement analysis. However, few studies have attempted to use these measurement techniques to estimate kinetic variables, such as joint moments and ground reaction forces (GRFs). Therefore, we investigated the performance of a full-body ambulatory IMC system in estimating 3D L5/S1 moments and GRFs during symmetric, asymmetric and fast trunk bending, performed by nine male participants. Using an ambulatory IM...

  5. Ground motion measurement in the Lake Mead area, Nevada, by differential synthetic aperture radar interferometry time series analysis: Probing the lithosphere rheological structure

    OpenAIRE

    Cavalié, O; Doin, M.-P; Lasserre, C; Briole, P.

    2007-01-01

    International audience; [1] We measure ground motion around the Lake Mead, Nevada, using synthetic aperture radar interferometry. The lake water level has fluctuated through time since impoundment in 1935. To quantify the deformation due to water level variations over the past decade, and to constrain the crust and mantle rheological parameters in the lake area, we analyze 241 interferograms based on 43 ERS images acquired between 1992 and 2002. All interferograms have a high coherence due to...

  6. Development of ground-motion prediction equations relevant to shallow-mining-induced seismicity in the Trial Mountain area, Emery County, Utah

    Science.gov (United States)

    McGarr, A.; Fletcher, Joe B.

    2005-01-01

    To provide a basis for assessing the seismic hazard to the Joes Valley Dam due to future coal mining in the nearby Cottonwood Tract, central Utah, we developed ground-motion prediction relations using data recorded by a seismic network, established and operated by the University of Utah Seismograph Stations. The network was centered on the Trail Mountain coal mine, located adjacent to the Cottonwood Tract. From late 2000 until early 2001, this network recorded numerous mining-induced events with magnitudes as large as 2.17. The ground motion from these events, recorded at hypocentral distances ranging from about 500 m to approximately 10 km, were well suited to developing new ground-motion prediction relations, especially when augmented by data from a M 4.2 earthquake in the Willow Creek mine, about 50 km north of Trail Mountain. Using a two-stage regression analysis, we determined prediction relations for peak acceleration, peak velocity, and pseudovelocity response spectra, at 5% damping, for periods of 0.1, 0.2, 0.5, 1.0, and 2.0 s. To illustrate the potential seismic hazard at the Joes Valley dam, we used these ground-motion relations to predict a peak velocity of 6.8 cm/s due to an earthquake with the probable maximum magnitude of 3.9, at a hypocentral distance of 1 km, recorded at a rock site typical for this region. This result does not take into account the site response at the dam.

  7. The effect of a sedimentary wedge on earthquake ground motions: The influence of eastern U.S. Atlantic Coastal Plain strata

    Science.gov (United States)

    Pratt, Thomas; Magnani, Beatrice

    2017-04-01

    Coastal regions of the eastern U.S. are underlain by a wedge of partially consolidated Atlantic Coastal Plain (ACP) marine sedimentary strata overlying a bedrock of crystalline or indurated sedimentary rocks. The ACP strata extend more than 200 km inland, tapering landward from as much as 1 km near the coast. Unconsolidated, shallow sedimentary strata strongly influence earthquake ground motions due to low seismic impedance and strong reflections from the bedrock contact. Site response estimates primarily determine high-frequency amplifications from shear-wave velocities in the upper 30 m (Vs30), but thicker sedimentary sequences can increase longer-period ground motions important to large structures. Here we use data from continental-scale seismic experiments that span the ACP (e.g. Eastern North America Margin [ENAM], Earthscope Transportable Array) to examine the influence of ACP strata on earthquake ground motions. We use teleseismic and regional earthquake recordings to compute spectral ratios relative to bedrock sites. Thin ACP strata produce fundamental resonance peaks at high frequencies (>5 Hz), but the fundamental peaks decrease to about 0.45 Hz as the sediments thicken to about 500 m. Amplitudes of the fundamental resonance peaks decrease as the strata thicken, but even coastal sites show amplification factors as great as 5. In addition, we use the frequency of the resonance peaks to invert for an average velocity function within the ACP strata. A smaller array within the city of Washington, DC, which is underlain by a wedge 0- to 270-m-thick ACP strata, shows large amplifications at frequencies of 0.7 to 5 Hz. These amplifications likely contributed to the widespread damage to the city during the relatively modest, M5.8 Virginia earthquake in 2011. This work confirms amplification of short-period ground motions by thin ACP strata, and documents longer-period amplifications caused by thick sedimentary sequences beneath coastal regions of the eastern U.S.

  8. School Readiness

    OpenAIRE

    BENEŠOVÁ, Marcela

    2012-01-01

    Bachelor thesis titled School maturity deals with the development of preschool age. The aim is to evaluate the optimal maturity in pre-school ride. The theoretical part describes preschool age, his motor, cognitive, perceptual, emotional and social development. It defines the concepts of school readiness and its components, school readiness, school immaturity. Describes measures for education immature kids. The practical part contains the results of investigations on a selected sample of chil...

  9. Evaluation of fault-normal/fault-parallel directions rotated ground motions for response history analysis of an instrumented six-story building

    Science.gov (United States)

    Kalkan, Erol; Kwong, Neal S.

    2012-01-01

    According to regulatory building codes in United States (for example, 2010 California Building Code), at least two horizontal ground-motion components are required for three-dimensional (3D) response history analysis (RHA) of buildings. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHA analyses should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak responses of engineering demand parameters (EDPs) were obtained for rotation angles ranging from 0° through 180° for evaluating the FN/FP directions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.

  10. Sensitivity of broad-band ground-motion simulations to earthquake source and Earth structure variations: an application to the Messina Straits (Italy)

    KAUST Repository

    Imperatori, W.

    2012-03-01

    In this paper, we investigate ground-motion variability due to different faulting approximations and crustal-model parametrizations in the Messina Straits area (Southern Italy). Considering three 1-D velocity models proposed for this region and a total of 72 different source realizations, we compute broad-band (0-10 Hz) synthetics for Mw 7.0 events using a fault plane geometry recently proposed. We explore source complexity in terms of classic kinematic (constant rise-time and rupture speed) and pseudo-dynamic models (variable rise-time and rupture speed). Heterogeneous slip distributions are generated using a Von Karman autocorrelation function. Rise-time variability is related to slip, whereas rupture speed variations are connected to static stress drop. Boxcar, triangle and modified Yoffe are the adopted source time functions. We find that ground-motion variability associated to differences in crustal models is constant and becomes important at intermediate and long periods. On the other hand, source-induced ground-motion variability is negligible at long periods and strong at intermediate-short periods. Using our source-modelling approach and the three different 1-D structural models, we investigate shaking levels for the 1908 Mw 7.1 Messina earthquake adopting a recently proposed model for fault geometry and final slip. Our simulations suggest that peak levels in Messina and Reggio Calabria must have reached 0.6-0.7 g during this earthquake.

  11. A stochastic estimate of ground motion at Oceano, California, for the M 6.5 22 December 2003 San Simeon earthquake, derived from aftershock recordings

    Science.gov (United States)

    Di, Alessandro C.; Boatwright, J.

    2006-01-01

    The U.S. Geological Survey deployed a digital seismic station in Oceano, California, in February 2004, to investigate the cause of damage and liquefaction from the 22 December 2003 M 6.5 San Simeon earthquake. This station recorded 11 M > 2.8 aftershocks in almost 8 weeks. We analyze these recordings, together with recordings of the mainshock and the same aftershocks obtained from nearby stations in Park Hill and San Luis Obispo, to estimate the mainshock ground motion in Oceano. We estimate the Fourier amplitude spectrum using generalized spectral ratio analysis. We test a set of aftershocks as Green's functions by comparing simulated and recorded acceleration amplitude spectra for the mainshock at San Luis Obispo and Park Hill. We convolve the aftershock accelerograms with a stochastic operator to simulate the duration and phase of the mainshock accelerograms. This approximation allows us to extend the range of aftershocks that can be used as Green's functions to events nearly three magnitude units smaller than the mainshock. Our realizations for the mainshock accelerogram at Oceano yield peak ground accelerations distributed as 28% ?? 4%g. We interpret these realizations as upper bounds for the actual ground motion, because our analysis assumes a linear response, whereas the presence of liquefaction indicates that the ground behaved nonlinearly in Oceano.

  12. Microtremor Array Measurement Survey and Strong Ground Motion observation activities of The SATREPS, MarDiM project -Part 3-

    Science.gov (United States)

    Citak, Seckin; Safa Arslan, Mehmet; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Behiye Aksahin, Bengi; Hatayama, Ken; Sahin, Abdurrahman; Ohori, Michihiro; Safak, Erdal; Hori, Muneo

    2017-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul, Tekirdag, Canakkale and Edirne provinces at about 140 sites on October 2013, September 2014, 2015 and 2016. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor

  13. Microtremor Array Measurement Survey and Strong Ground Motion Observation Activities of The MarDiM (SATREPS) Project

    Science.gov (United States)

    Ozgur Citak, Seckin; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Aksahin, Bengi; Arslan, Safa; Hatayama, Ken; Ohori, Michihiro; Hori, Muneo

    2015-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul and Tekirdag province at about 81 sites on October 2013 and September 2014. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A2) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor (CV-374A2) consist of three servo

  14. Microtremor Array Measurement Survey and Strong Ground Motion observation activities of The SATREPS, MarDiM project -Part 2-

    Science.gov (United States)

    Citak, Seckin; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Arslan, Safa; Aksahin, Bengi; Hatayama, Ken; Ohori, Michihiro; Hori, Muneo

    2016-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul, Tekirdag, Canakkale and Edirne provinces at about 109 sites on October 2013, September 2014 and 2015. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor (CV-374

  15. The Prospect of using Three-Dimensional Earth Models To Improve Nuclear Explosion Monitoring and Ground Motion Hazard Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Zucca, J J; Walter, W R; Rodgers, A J; Richards, P; Pasyanos, M E; Myers, S C; Lay, T; Harris, D; Antoun, T

    2008-11-19

    The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of Earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring and seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D Earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes two specific paths by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas. Seismic monitoring agencies are tasked with detection, location, and characterization of seismic activity in near real time. In the case of nuclear explosion monitoring or seismic hazard, decisions to further investigate a suspect event or to launch disaster relief efforts may rely heavily on real-time analysis and results. Because these are weighty decisions, monitoring agencies are regularly called upon to meticulously document and justify every aspect of their monitoring system. In order to meet this level of scrutiny and maintain operational robustness requirements, only mature technologies are considered for operational monitoring systems, and operational technology necessarily lags

  16. Improving Dorsal Stream Function in Dyslexics by Training Figure/Ground Motion Discrimination Improves Attention, Reading Fluency, and Working Memory

    National Research Council Canada - National Science Library

    Lawton, Teri

    2016-01-01

    ... (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training...

  17. Ground motion measurement in the Lake Mead area, Nevada, by differential synthetic aperture radar interferometry time series analysis: Probing the lithosphere rheological structure

    Science.gov (United States)

    Cavalié, O.; Doin, M.-P.; Lasserre, C.; Briole, P.

    2007-03-01

    We measure ground motion around the Lake Mead, Nevada, using synthetic aperture radar interferometry. The lake water level has fluctuated through time since impoundment in 1935. To quantify the deformation due to water level variations over the past decade, and to constrain the crust and mantle rheological parameters in the lake area, we analyze 241 interferograms based on 43 ERS images acquired between 1992 and 2002. All interferograms have a high coherence due to arid conditions. Most of them show strong atmospheric artefacts. Tropospheric phase delays are estimated and corrected for each interferogram by analyzing the phase/elevation correlation. Corrections are validated using data from the ERA40 global atmospheric reanalysis. Corrected interferograms are inverted pixel by pixel to solve for the time series of ground motion in the lake area. Temporal smoothing is added to reduce random atmospheric artefacts. The observed deformation is nonlinear in time and spreads over a 50 × 50 km2 area. We observe a 16 mm subsidence between 1995 and 1998 due to an 11 m water level increase, followed by an uplift due to the water level drop after 2000. We model the deformation, taking into account the loading history of the lake since 1935. A simple elastic model with parameters constrained by seismic wave velocities does not explain the amplitude of the observed motion. The two-layer viscoelastic model proposed by Kaufmann and Amelung (2000), with a mantle viscosity of 1018 Pa s, adjusts well the data amplitude and its spatiotemporal shape.

  18. Ground motions recorded in Rome during the April 2009 L’Aquila seismic sequence: site response and comparison with ground‐motion predictions based on a global dataset

    Science.gov (United States)

    Caserta, Arrigo; Boore, David; Rovelli, Antonio; Govoni, Aladino; Marra, Fabrizio; Monica, Gieseppe Della; Boschi, Enzo

    2013-01-01

    The mainshock and moderate‐magnitude aftershocks of the 6 April 2009 M 6.3 L’Aquila seismic sequence, about 90 km northeast of Rome, provided the first earthquake ground‐motion recordings in the urban area of Rome. Before those recordings were obtained, the assessments of the seismic hazard in Rome were based on intensity observations and theoretical considerations. The L’Aquila recordings offer an unprecedented opportunity to calibrate the city response to central Apennine earthquakes—earthquakes that have been responsible for the largest damage to Rome in historical times. Using the data recorded in Rome in April 2009, we show that (1) published theoretical predictions of a 1 s resonance in the Tiber valley are confirmed by observations showing a significant amplitude increase in response spectra at that period, (2) the empirical soil‐transfer functions inferred from spectral ratios are satisfactorily fit through 1D models using the available geological, geophysical, and laboratory data, but local variability can be large for individual events, (3) response spectra for the motions recorded in Rome from the L’Aquila earthquakes are significantly amplified in the radial component at periods near 1 s, even at a firm site on volcanic rocks, and (4) short‐period response spectra are smaller than expected when compared to ground‐motion predictions from equations based on a global dataset, whereas the observed response spectra are higher than expected for periods near 1 s.

  19. Simulation of broad-band strong ground motion for a hypothetical Mw 7.1 earthquake on the Enriquillo Fault in Haiti

    Science.gov (United States)

    Douilly, Roby; Mavroeidis, George P.; Calais, Eric

    2017-10-01

    The devastating 2010 Mw 7.0 Haiti earthquake demonstrated the need to improve mitigation and preparedness for future seismic events in the region. Previous studies have shown that the earthquake did not occur on the Enriquillo Fault, the main plate boundary fault running through the heavily populated Port-au-Prince region, but on the nearby and previously unknown transpressional Léogâne Fault. Slip on that fault has increased stresses on the segment of Enriquillo Fault to the east of Léogâne, which terminates in the ˜3-million-inhabitant capital city of Port-au-Prince. In this study, we investigate ground shaking in the vicinity of Port-au-Prince, if a hypothetical rupture similar to the 2010 Haiti earthquake occurred on that segment of the Enriquillo Fault. We use a finite element method and assumptions on regional tectonic stress to simulate the low-frequency ground motion components using dynamic rupture propagation for a 52-km-long segment. We consider eight scenarios by varying parameters such as hypocentre location, initial shear stress and fault dip. The high-frequency ground motion components are simulated using the specific barrier model in the context of the stochastic modeling approach. The broad-band ground motion synthetics are subsequently obtained by combining the low-frequency components from the dynamic rupture simulation with the high-frequency components from the stochastic simulation using matched filtering at a crossover frequency of 1 Hz. Results show that rupture on a vertical Enriquillo Fault generates larger horizontal permanent displacements in Léogâne and Port-au-Prince than rupture on a south-dipping Enriquillo Fault. The mean horizontal peak ground acceleration (PGA), computed at several sites of interest throughout Port-au-Prince, has a value of ˜0.45 g, whereas the maximum horizontal PGA in Port-au-Prince is ˜0.60 g. Even though we only consider a limited number of rupture scenarios, our results suggest more intense ground

  20. Visualizing how Seismic Waves Propagate Across Seismic Arrays using the IRIS DMS Ground Motion Visualization (GMV) Products and Codes

    Science.gov (United States)

    Taber, J.; Bahavar, M.; Bravo, T. K.; Butler, R. F.; Kilb, D. L.; Trabant, C.; Woodward, R.; Ammon, C. J.

    2011-12-01

    Data from dense seismic arrays can be used to visualize the propagation of seismic waves, resulting in animations effective for teaching both general and advanced audiences. One of the first visualizations of this type was developed using Objective C code and EarthScope/USArray data, which was then modified and ported to the Matlab platform and has now been standardized and automated as an IRIS Data Management System (IRIS-DMS) data product. These iterative code developments and improvements were completed by C. Ammon, R. Woodward and M. Bahavar, respectively. Currently, an automated script creates Ground Motion Visualizations (GMVs) for all global earthquakes over magnitude 6 recorded by EarthScope's USArray Transportable Array (USArray TA) network. The USArray TA network is a rolling array of 400 broadband stations deployed on a uniform 70-km grid. These near real-time GMV visualizations are typically available for download within 4 hours or less of their occurrence (see: www.iris.edu/dms/products/usarraygmv/). The IRIS-DMS group has recently added a feature that allows users to highlight key elements within the GMVs, by providing an online tool for creating customized GMVs. This new interface allows users to select the stations, channels, and time window of interest, adjust the mapped areal extent of the view, and specify high and low pass filters. An online tutorial available from the IRIS Education and Public Outreach (IRIS-EPO) website, listed below, steps through a teaching sequence that can be used to explain the basic features of the GMVs. For example, they can be used to demonstrate simple concepts such as relative P, S and surface wave velocities and corresponding wavelengths for middle-school students, or more advanced concepts such as the influence of focal mechanism on waveforms, or how seismic waves converge at an earthquake's antipode. For those who desire a greater level of customization, including the ability to use the GMV framework with data

  1. Environmental effects and building damage induced by the vertical component of ground motion during the August 24, 2016 Amatrice (Central Italy) earthquake

    Science.gov (United States)

    Carydis, Panayotis; Lekkas, Efthymios; Mavroulis, Spyridon

    2017-04-01

    On August 24, 2016 an Mw 6.0 earthquake struck central Italy resulting in 299 fatalities, 388 injuries and about 3000 homeless. The provided focal mechanisms demonstrated a NW-SE striking seismic normal fault which is consistent with the spatial distribution of the coseismic surface ruptures observed along the western slope of Mt Vettore. Based on our field reconnaissance in the affected area immediately after the earthquake, extensive secondary environmental effects including landslides, rockfalls and ground cracks were also observed. Most landslides were generated within the Amatrice intermontane basin, which, instead of a flat surface, comprises isolated flat hills and ridges with relatively high and steep slopes extending several meters above the low-lying part of the basin consisting of Quaternary deposits and with several villages founded at their top. Landslides generated along the steep slopes of Amatrice, Accumoli and Pescara del Tronto flat hills were due to topographical amplification of the earthquake motion derived from accelerometric recordings analysis along with the action of the vertical component of the ground motion and the already established instability conditions resulting from river incision and erosion at the base of the hills. Strong evidences of the effect of the vertical ground motion in reinforced concrete (RC) buildings are the symmetrical buckling of reinforcement, compression damage and crushing at midheight and in other parts of columns, undamaged windows and unbroken glass panels as well as partial collapse of the buildings that usually occur along the vertical axis within the plan of the building. On the contrary, high flexible structures such as castle and bell towers in Arcuata del Tronto and Amatrice respectively were not affected by the vertical ground motion. During the action of the vertical component of the ground motion in Amatrice affected area, stationary waves were formed vertically in the observed structures resulting

  2. Effects of Surface Geology on Seismic Ground Motion Deduced from Ambient-Noise Measurements in the Town of Avellino, Irpinia Region (Italy)

    Science.gov (United States)

    Maresca, R.; Nardone, L.; Pasquale, G.; Pinto, F.; Bianco, F.

    2012-07-01

    The effects of surface geology on ground motion provide an important tool in seismic hazard studies. It is well known that the presence of soft sediments can cause amplification of the ground motion at the surface, particularly when there is a sharp impedance contrast at shallow depth. The town of Avellino is located in an area characterised by high seismicity in Italy, about 30 km from the epicentre of the 23 November 1980, Irpinia earthquake ( M = 6.9). No earthquake recordings are available in the area. The local geology is characterised by strong heterogeneity, with impedance contrasts at depth. We present the results from seismic noise measurements carried out in the urban area of Avellino to evaluate the effects of local geology on the seismic ground motion. We computed the horizontal-to-vertical (H/V) noise spectral ratios at 16 selected sites in this urban area for which drilling data are available within the first 40 m of depth. A Rayleigh wave inversion technique using the peak frequencies of the noise H/V spectral ratios is then presented for estimating Vs models, assuming that the thicknesses of the shallow soil layers are known. The results show a good correspondence between experimental and theoretical peak frequencies, which are interpreted in terms of sediment resonance. For one site, which is characterised by a broad peak in the horizontal-to-vertical spectral-ratio curve, simple one-dimensional modelling is not representative of the resonance effects. Consistent variations in peak amplitudes are seen among the sites. A site classification based on shear-wave velocity characteristics, in terms of Vs30, cannot explain these data. The differences observed are better correlated to the impedance contrast between the sediments and basement. A more detailed investigation of the physical parameters of the subsoil structure, together with earthquake data, are desirable for future research, to confirm these data in terms of site response.

  3. Depth-dependent Vertical-to-Horizontal (V/H) Ratios of Free-Field Ground Motion Response Spectra for Deeply Embedded Nuclear Structures

    Energy Technology Data Exchange (ETDEWEB)

    Wei, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Braverman, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Miranda, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rosario, M. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Costantino, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-02-01

    This report documents the results of a study to determine the depth-dependent V/H ratios of ground motion response spectra in the free field. The V/H ratios reported herein were developed from a worldwide database of surface and downhole acceleration recordings obtained from 45 vertical array stations. This database was specifically compiled for this project, and includes information from a diversity of active tectonic regions (California, Alaska, Taiwan, Japan), site conditions (rock to soft soil), ground motion intensity levels (PGAs between 0.01 g and 0.50 g), magnitudes (between ML 2.78 and JMA 8.1), epicentral distances (between 3.2 km and 812 km), and source depths (between 1.2 km and 112 km), as well as sensors at surface and at a wide range of depths relevant to the project. To study the significance of the depth effect, V/H ratios from all the records were sorted into a number of depth bins relevant to the project, and statistics (average, standard deviation, coefficient of variation, 16th, 50th, and 84th percentiles) of the V/H ratios within each bin were computed. Similar analyses were repeated, controlling for different site conditions, ground motion intensity levels, array locations, and source depths, to study their relative effect on the V/H ratios. Our findings confirm the importance of the depth effect on the V/H ratios. The research findings in this report can be used to provide guidance on the significance of the depth effect, and the extent to which this effect should be considered in the seismic design of deeply embedded SMR structures and NPP structures in general.

  4. Earthquake ground motion simulation at Zoser pyramid using the stochastic method: A step toward the preservation of an ancient Egyptian heritage

    Science.gov (United States)

    Khalil, Amin E.; Abdel Hafiez, H. E.; Girgis, Milad; Taha, M. A.

    2017-06-01

    Strong ground shaking during earthquakes can greatly affect the ancient monuments and subsequently demolish the human heritage. On October 12th 1992, a moderate earthquake (Ms = 5.8) shocked the greater Cairo area causing widespread damages. Unfortunately, the focus of that earthquake is located about 14 km to the south of Zoser pyramid. After the earthquake, the Egyptian Supreme council of antiquities issued an alarm that Zoser pyramid is partially collapsed and international and national efforts are exerted to restore this important human heritage that was built about 4000 years ago. Engineering and geophysical work is thus needed for the restoration process. The definition of the strong motion parameters is one of the required studies since seismically active zone is recorded in its near vicinity. The present study adopted the stochastic method to determine the peak ground motion (acceleration, velocity and displacement) for the three largest earthquakes recorded in the Egypt's seismological history. These earthquakes are Shedwan earthquake with magnitude Ms = 6.9, Aqaba earthquake with magnitude Mw = 7.2 and Cairo (Dahshour earthquake) with magnitude Ms = 5.8. The former two major earthquakes took place few hundred kilometers away. It is logic to have the predominant effects from the epicentral location of the Cairo earthquake; however, the authors wanted to test also the long period effects of the large distance earthquakes expected from the other two earthquakes under consideration. In addition, the dynamic site response was studied using the Horizontal to vertical spectral ratio (HVSR) technique. HVSR can provide information about the fundamental frequency successfully; however, the amplification estimation is not accepted. The result represented as either peak ground motion parameters or response spectra indicates that the effects from Cairo earthquake epicenter are the largest for all periods considered in the present study. The level of strong motion as

  5. Ground Motion Prediction Model Using Adaptive Neuro-Fuzzy Inference Systems: An Example Based on the NGA-West 2 Data

    Science.gov (United States)

    Ameur, Mourad; Derras, Boumédiène; Zendagui, Djawed

    2017-12-01

    Adaptive neuro-fuzzy inference systems (ANFIS) are used here to obtain the robust ground motion prediction model (GMPM). Avoiding a priori functional form, ANFIS provides fully data-driven predictive models. A large subset of the NGA-West2 database is used, including 2335 records from 580 sites and 137 earthquakes. Only shallow earthquakes and recordings corresponding to stations with measured V s30 properties are selected. Three basics input parameters are chosen: the moment magnitude (Mw), the Joyner-Boore distance (R JB) and V s30. ANFIS model output is the peak ground acceleration (PGA), peak ground velocity (PGV) and 5% damped pseudo-spectral acceleration (PSA) at periods from 0.01 to 4 s. A procedure similar to the random-effects approach is developed to provide between- and within-event standard deviations. The total standard deviation (SD) varies between [0.303 and 0.360] (log10 units) depending on the period. The ground motion predictions resulting from such simple three explanatory variables ANFIS models are shown to be comparable to the most recent NGA results (e.g., Boore et al., in Earthquake Spectra 30:1057-1085, 2014; Derras et al., in Earthquake Spectra 32:2027-2056, 2016). The main advantage of ANFIS compared to artificial neuronal network (ANN) is its simple and one-off topology: five layers. Our results exhibit a number of physically sound features: magnitude scaling of the distance dependency, near-fault saturation distance increasing with magnitude and amplification on soft soils. The ability to implement ANFIS model using an analytic equation and Excel is demonstrated.

  6. Using structures of the August 24, 2016 Amatrice earthquake affected area as seismoscopes for assessing ground motion characteristics and parameters of the main shock and its largest aftershocks

    Science.gov (United States)

    Carydis, Panayotis; Lekkas, Efthymios; Mavroulis, Spyridon

    2017-04-01

    On August 24, 2016 an Mw 6.0 earthquake struck Central Apennines (Italy) resulting in 299 fatalities, 388 injuries and about 3000 homeless in Amatrice wider area. Normal faulting surface ruptures along the western slope of Mt Vettore along with provided focal mechanisms demonstrated a NW-SE striking and SE dipping causative normal fault. The dominant building types in the affected area are unreinforced masonry (URM) and reinforced concrete (RC) buildings. Based on our macroseismic survey in the affected area immediately after the earthquake, RC buildings suffered non-structural damage including horizontal cracking of infill and internal partition walls, detachment of infill walls from the surrounding RC frame and detachment of large plaster pieces from infill walls as well as structural damage comprising soft story failure, symmetrical buckling of rods, compression damage at midheight of columns and bursting of over-stressed columns resulting in partial or total collapse. Damage in RC buildings was due to poor quality of concrete, inadequacy of reinforcement, inappropriate foundation close to the edge of slopes leading to differential settlements, poor workmanship and the destructive effect of vertical ground motions. Damage in URM buildings ranged from cracks and detachment of large plaster pieces from load-bearing walls to destruction due to poor workmanship with randomly placed materials bound by low-strength mortars, the effect of the vertical ground motion, inadequate repair and/or strengthening after previous earthquakes as well as inadequate interventions, additions and extensions to older URM buildings. During field surveying, the authors had the opportunity to observe damage induced not only by the main shock but also by its largest aftershocks (Mw 4.5-5.3) during the first three days of the aftershock sequence (August 24-26). Bearing in mind that: (a) soil conditions in foundations of the affected villages were more or less similar, (b) building damage

  7. Application of the EEMD method for distinction and suppression of motion-induced noise in grounded electrical source airborne TEM system

    Science.gov (United States)

    Liu, Fubo; Li, Jutao; Liu, Lihua; Huang, Ling; Fang, Guangyou

    2017-04-01

    Airborne electromagnetic (AEM) detection is an important method for obtaining subsurface conductivity distribution. However, the response of observation system includes not only the underground media response but also a variety of noise components. The motion-induced noise is one of the main noise sources of the airborne electromagnetic data, which has a low frequency, large amplitude, non-periodic and other characteristics. In this paper, we will introduce the principle of the ensemble empirical mode decomposition (EEMD) method and use it for decomposing electromagnetic signal of grounded electrical source airborne transient electromagnetic system. The EEMD method will decompose the electromagnetic signal into multi-stage intrinsic mode function (IMF) components and distinguish the IMF component containing the motion-induced noise. Then we can get the noise-free signal by reconstructing remaining IMF components and residual component. We use the EEMD method for the theoretical signal correction and compared with the cubic spline method, the correction result indicates that the EEMD method can fit the motion-induced noise more accurately with a higher signal-to-noise ratio. To verify the effect of the application of the EEMD method, we went to Weifang city, Shandong province, East China, for the concealed fault investigation. The correction result of the time series shows that the EEMD method can suppress the motion-induced noise more effectively than the cubic spline method. Compared with the uncorrected data and the corrected data using the cubic spline method, the result shows that the fake anomaly can be nearly avoided and a more clear geological structure can be obtained through the corrected data with EEMD method. The results also prove that the EEMD method is a practical as well as effective method for the motion-induced noise suppression.

  8. Near-Field to Far-Field Uncertainty Propagation and Quantification of Ground Motions Generated by the Source Physics Experiments (SPE)

    Science.gov (United States)

    Antoun, T.; Ezzedine, S. M.; Vorobiev, O.; Pitarka, A.; Hurley, R.; Hirakawa, E. T.; Glenn, L.; Walter, W. R.

    2016-12-01

    LLNL has developed a framework for uncertainty propagation and quantification using HPC numerical codes to simulate end-to-end, from source to receivers, the ground motions observed during the Source Physics Experiments (SPE) conducted in fractured granitic rock at the Nevada National Security Site (NNSS). SPE includes six underground chemical explosions designed with different yields initiated at different depths. To date we have successfully applied this framework to explain the near-field shear motions observed in the vicinity of SPE3 thru SPE5. However, systematic uncertainty propagation to the far-field seismic receiver has not been addressed yet. In the current study, we used a coupling between the non-linear inelastic hydrodynamic regime in the near-field and the seismic elastic regime in the far-field to conduct the analysis. Several realizations of the stochastic discrete fracture network were generated conditional to the observed sparse data. These realizations were then used to calculate the ground motions generated from the SPE shots up to the elastic radius. The latter serves as the handshake interface for the far-field simulations. By creating several realizations of near-field responses one can embed those sources into the far-field elastic wave code and further the uncertainty propagation to the receivers. We will present a full assessment from end-to-end for the near- and far-field measurements. Separate analyses of the effect of the different conceptual geological models are also carried over using a nested Monte Carlo scheme. We compare the observed frequency content at several gages with the simulated ones. We conclude that both regions experience different sampling of frequencies: small features are relevant to near-field simulations while larger feature are more dominant at the far-field. We finally rank the primary sensitive parameters for both regions to drive and refine the field characterization data collection.

  9. BlueSeis3A - full characterization of a 3C broadband rotational ground motion sensor for seismology

    Science.gov (United States)

    Bernauer, Felix; Wassermann, Joachim; Frenois, Arnaud; Krissou, Rahma; Bigueur, Alexandre; Gaillot, Arnaud; de Toldi, Elliot; Ponceau, Damien; Guattari, Frederic; Igel, Heiner

    2017-04-01

    In this contribution we present a full characterization of the first three component interferometric fiber-optic gyroscope (IFOG) especially designed for the needs of seismology. The sensor is called BlueSeis3A and is manufactured by iXBlue, France. It is developed in the framework of the European Research Council Project, ROMY (Rotational motions - a new observable for seismology). To fully explore the benefits of this new seismic observable especially in the fields of volcanology, ocean bottom seismology and geophysical exploration, a portable rotational motion sensor has to fulfill certain requirements regarding dynamic range, portability, power consumption and sensitivity to changes in ambient temperature and magnetic field. For BlueSeis3A, power consumption is in an acceptable range for a portable and field deployable instrument. We will quantify sensor self noise by means of operating range diagrams as well as Allan variance and show results from tests on thermal and magnetic sensitivity. Tests on orthogonality and sensitivity to linear motion complete our full characterization.

  10. How Much Can the Total Aleatory Variability of Empirical Ground Motion Prediction Equations Be Reduced Using Physics-Based Earthquake Simulations?

    Science.gov (United States)

    Jordan, T. H.; Wang, F.; Graves, R. W.; Callaghan, S.; Olsen, K. B.; Cui, Y.; Milner, K. R.; Juve, G.; Vahi, K.; Yu, J.; Deelman, E.; Gill, D.; Maechling, P. J.

    2015-12-01

    Ground motion prediction equations (GMPEs) in common use predict the logarithmic intensity of ground shaking, lnY, as a deterministic value, lnYpred(x), conditioned on a set of explanatory variables x plus a normally distributed random variable with a standard deviation σT. The latter accounts for the unexplained variability in the ground motion data used to calibrate the GMPE and is typically 0.5-0.7 in natural log units. Reducing this residual or "aleatory" variability is a high priority for seismic hazard analysis, because the probabilities of exceedance at high Y values go up rapidly with σT. adding costs to the seismic design of critical facilities to account for the prediction uncertainty. However, attempts to decrease σT by incorporating more explanatory variables to the GMPEs have been largely unsuccessful (e.g., Strasser et al., SRL, 2009). An alternative is to employ physics-based earthquake simulations that properly account for source directivity, basin effects, directivity-basin coupling, and other 3D complexities. We have explored the theoretical limits of this approach through an analysis of large (> 108) ensembles of 3D synthetic seismograms generated for the Los Angeles region by SCEC's CyberShake project using the new tool of averaging-based factorization (ABF, Wang & Jordan, BSSA, 2014). The residual variance obtained by applying GMPEs to the CyberShake dataset matches the frequency-dependence of σT obtained for the GMPE calibration dataset. The ABF analysis allows us to partition this variance into uncorrelated components representing source, path, and site effects. We show that simulations can potentially reduce σT by about one-third, which could lower the exceedance probabilities for high hazard levels at fixed x by orders of magnitude. Realizing this gain in forecasting probability would have a broad impact on risk-reduction strategies, especially for critical facilities such as large dams, nuclear power plants, and energy transportation

  11. 3D Dynamic Rupture process ans Near Source Ground Motion Simulation Using the Discrete Element Method: Application to the 1999 Chi-chi and 2000 Tottori Earthquakes

    Science.gov (United States)

    Dalguer Gudiel, L. A.; Irikura, K.

    2001-12-01

    We performed a 3D model to simulate the dynamic rupture of a pre-existing fault and near-source ground motion of actual earthquakes solving the elastodynamic equation of motion using the 3D Discrete Element Method (DEM). The DEM is widely employed in engineering to designate lumped mass models in a truss arrangement, as opposed to FEM (Finite Element) models that may also consist of lumped masses, but normally require to mount a full stiffness matrix for response determination. The term has also been used for models of solids consisting of assemblies of discrete elements, such as spheres in elastic contact, employed in the analysis of perforation or penetration of concrete or rock. It should be noted that the designation Lattice Models, common in Physics, may be more adequate, although it omits reference to a fundamental property of the approach, which is the lumped-mass representation. In the present DEM formulation, the method models any orthotropic elastic solid. It is constructed by a three dimensional periodic truss-like structures using cubic elements that consists of lumping masses in nodal points, which are interconnected by unidimensional elements. The method was previously used in 2D to simulate in a simplified way the 1999 Chi-chi (Taiwan) earthquake (Dalguer et. al., 2000). Now the method was extended to resolve 3D problems. We apply the model to simulate the dynamic rupture process and near source ground motion of the 1999 Chi-chi (Taiwan) and the 2000 Tottori (Japan) earthquakes. The attractive feature in the problem under consideration is the possibility of introducing internal cracks or fractures with little computational effort and without increasing the number of degrees of freedom. For the 3D dynamic spontaneous rupture simulation of these eartquakes we need to know: the geometry of the fault, the initial stress distribution along the fault, the stress drop distribution, the strength of the fault to break and the critical slip (because slip

  12. Effects of Irradiation Dose and O2 and CO2 Concentrations in Packages on Foodborne Pathogenic Bacteria and Quality of Ready-to-Cook Seasoned Ground Beef Product (Meatball) during Refrigerated Storage

    Science.gov (United States)

    Gunes, Gurbuz; Yilmaz, Neriman; Ozturk, Aylin

    2012-01-01

    Combined effects of gamma irradiation and concentrations of O2 (0, 5, 21%) and CO2 (0, 50%) on survival of Escherichia coli O157:H7, Salmonella enteritidis, Listeria monocytogenes, lipid oxidation, and color changes in ready-to-cook seasoned ground beef (meatball) during refrigerated storage were investigated. Ground beef seasoned with mixed spices was packaged in varying O2 and CO2 levels and irradiated at 2 and 4 kGy. Irradiation (4 kGy) caused about 6 Log inactivation of the inoculated pathogens. Inactivation of Salmonella was 0.9- and 0.4-Log lower in 0 and 5% O2, respectively, compared to 21% O2. Irradiation at 2 and 4 kGy increased thiobarbituric acid reactive substances in meatballs by 0.12 and 0.28 mg malondialdehyde kg−1, respectively, compared to control. In reduced-O2 packages, radiation-induced oxidation was lower, and the initial color of an irradiated sample was maintained. Packaging with 0% + 50% CO2 or 5% O2 + 50% CO2 maintained the oxidative and the color quality of irradiated meatballs during 14-day refrigerated storage. MAP with 5%O2 + 50% CO2 combined with irradiation up to 4 kGy is suggested for refrigerated meatballs to reduce the foodborne pathogen risk and to maintain the quality. PMID:22566763

  13. Effects of irradiation dose and O(2) and CO(2) concentrations in packages on foodborne pathogenic bacteria and quality of ready-to-cook seasoned ground beef product (meatball) during refrigerated storage.

    Science.gov (United States)

    Gunes, Gurbuz; Yilmaz, Neriman; Ozturk, Aylin

    2012-01-01

    Combined effects of gamma irradiation and concentrations of O(2) (0, 5, 21%) and CO(2) (0, 50%) on survival of Escherichia coli O157:H7, Salmonella enteritidis, Listeria monocytogenes, lipid oxidation, and color changes in ready-to-cook seasoned ground beef (meatball) during refrigerated storage were investigated. Ground beef seasoned with mixed spices was packaged in varying O(2) and CO(2) levels and irradiated at 2 and 4 kGy. Irradiation (4 kGy) caused about 6 Log inactivation of the inoculated pathogens. Inactivation of Salmonella was 0.9- and 0.4-Log lower in 0 and 5% O(2), respectively, compared to 21% O(2). Irradiation at 2 and 4 kGy increased thiobarbituric acid reactive substances in meatballs by 0.12 and 0.28 mg malondialdehyde kg(-1), respectively, compared to control. In reduced-O(2) packages, radiation-induced oxidation was lower, and the initial color of an irradiated sample was maintained. Packaging with 0% + 50% CO(2) or 5% O(2) + 50% CO(2) maintained the oxidative and the color quality of irradiated meatballs during 14-day refrigerated storage. MAP with 5%O(2) + 50% CO(2) combined with irradiation up to 4 kGy is suggested for refrigerated meatballs to reduce the foodborne pathogen risk and to maintain the quality.

  14. Effects of Irradiation Dose and O2 and CO2 Concentrations in Packages on Foodborne Pathogenic Bacteria and Quality of Ready-to-Cook Seasoned Ground Beef Product (Meatball during Refrigerated Storage

    Directory of Open Access Journals (Sweden)

    Gurbuz Gunes

    2012-01-01

    Full Text Available Combined effects of gamma irradiation and concentrations of O2 (0, 5, 21% and CO2 (0, 50% on survival of Escherichia coli O157:H7, Salmonella enteritidis, Listeria monocytogenes, lipid oxidation, and color changes in ready-to-cook seasoned ground beef (meatball during refrigerated storage were investigated. Ground beef seasoned with mixed spices was packaged in varying O2 and CO2 levels and irradiated at 2 and 4 kGy. Irradiation (4 kGy caused about 6 Log inactivation of the inoculated pathogens. Inactivation of Salmonella was 0.9- and 0.4-Log lower in 0 and 5% O2, respectively, compared to 21% O2. Irradiation at 2 and 4 kGy increased thiobarbituric acid reactive substances in meatballs by 0.12 and 0.28 mg malondialdehyde kg−1, respectively, compared to control. In reduced-O2 packages, radiation-induced oxidation was lower, and the initial color of an irradiated sample was maintained. Packaging with 0% + 50% CO2 or 5% O2 + 50% CO2 maintained the oxidative and the color quality of irradiated meatballs during 14-day refrigerated storage. MAP with 5%O2 + 50% CO2 combined with irradiation up to 4 kGy is suggested for refrigerated meatballs to reduce the foodborne pathogen risk and to maintain the quality.

  15. Ground Motion Measurement in the Lake Mead Area (Nevada, USA), by DinSAR Time Series Analysis : Probing of the Lithosphere Rheological Structure

    Science.gov (United States)

    Doin, M.; Cavalié, O.; Laserre, C.; Briole, P.

    2006-12-01

    SAR interferometry has proven to be a reliable method for detecting small displacements due to ground subsidence. In this study, we measure ground motion around the lake Mead (Nevada, USA) using InSAR. This artificial lake has been filled with water in 1935. An earlier study, based on leveling measurements, has shown that the load associated with lake impoundement induced a subsidence of 17 centimeters. This relaxation process has been argued as analogous to the postglacial rebound, but at a smaller spatial scale and with a much lower viscous relaxation scale. To quantify the deformation and thus constrain the crust and mantle rheological parameters in the lake area, we analyze multiple interferograms (241) based on 43 ERS images acquired between 1992 and 2001. With baselines smaller than 300 m, all interferograms have a very good coherence due to the desert region. Most of interferograms show strong atmospheric artefacts that are partly due to the variation of water vapor vertical stratification between two satellite passes. This tropospheric delay is computed for each interferogram and then inverted for each date of SAR images before interferogram correction. These corrections are validated using data from global atmospheric models (ERA40). Corrected interferograms are then inverted to solve for the time series of ground motion in the lake Mead area. The linear inversion treats each pixel independently from its neighbours and uses the data redundancy to reduce errors such as local decorrelations. Additionnal constraints such as temporal smoothing allow to reduce the local atmospheric artefacts. We obtain a time series of the deformation in the lake Mead area with a millimetric accuracy. The deformation is non linear in time and spreads over a large spatial scale. In particular, we observe a subsidence of up to 16 mm between 1995 and 1998 due to a 10 meters water level increase, followed by an uplift due to the drop of the water level after 2000. The deformation

  16. Site-specific seismic-hazard maps and deaggregation in the western United States using the NGA models for ground-motion prediction

    Science.gov (United States)

    Harmsen, Stephen

    2011-01-01

    The 2008 National Seismic Hazard Mapping Project (NSHMP) update for the conterminous United States employs several new ground-motion prediction equations which include modern empirical models of linear and nonlinear site response to local and regional earthquakes. The recent availability of attenuation functions incorporating site conditions via Vs30 values permits the calculation of site-specific hazard maps for a wide range of spectral accelerations. I compare alternative site specific hazard maps using Vs30 values estimated according to the methods of Wills and Clahan (2006), Wald and Allen (2007), and Yong and others (in press). These maps are presented for 5-hertz (Hz) and 3-second spectral accelerations having 2 percent probability of exceedance in 50 years for central California and the western part of southern California.

  17. Seismic Safety Margins Research Program, Phase I. Project II: seismic input. Compilation, assessment and expansion of the strong earthquake ground motion data base

    Energy Technology Data Exchange (ETDEWEB)

    Crouse, C B; Hileman, J A; Turner, B E; Martin, G R

    1980-04-01

    A catalog has been prepared which contains information for: (1) world-wide, ground-motion accelerograms, (2) the accelerograph sites where these records were obtained, and (3) the seismological parameters of the causative earthquakes. The catalog is limited to data for those accelerograms which have been digitized and published. In addition, the quality and completeness of these data are assessed. This catalog is unique because it is the only publication which contains comprehensive information on the recording conditions of all known digitized accelerograms. However, information for many accelerograms is missing. Although some literature may have been overlooked, most of the missing data has not been published. Nevertheless, the catalog provides a convenient reference and useful tool for earthquake engineering research and applications.

  18. The October 20, 2006 Manyas (ML=5.2 and October 24, 2006 Gemlik (ML=5.2 earthquakes in the Marmara region (NW Turkey: ground motion characteristics

    Directory of Open Access Journals (Sweden)

    Esref Yalcinkaya

    2015-03-01

    Full Text Available In this study, we analyze the ground motion characteristics of October 20, 2006 Manyas (ML=5.2 and October 24, 2006 Gemlik (ML=5.2 earthquakes. Both earthquakes occurred on the southern branch of the North Anatolian Fault Zone in Marmara region, which has a lower seismic hazard relative to the northern branch. The two events are the largest earthquakes on the southern branch recorded by a modern and vast seismological network; therefore their records are valuable to evaluate seismic risk of the region and the understanding of physics of wave propagation. The analysis show that the attenuation of PGAs is very similar for two earthquakes, but they are not represented by the empirical relation obtained for earthquakes occurred on the northern branch. The waveforms of the Gemlik earthquake recorded by BYTNet array indicate an EW rupture orientation with right-lateral slip which fits to the general character of the southern branch. Ground motions at the stations located within basin are strongly influenced by the presence of locally induced surface waves resulting in lengthening of significant shaking duration with respect to a nearby ridge site. Surface wave characteristics are very similar for the Manyas and Gemlik earthquakes, but variations are observed on components which may be related to 3D basin geometry. Resonance frequencies of the surface waves generated within basin are very close to the 1D site resonances at the stations obtained from H/V ratios of S waves. The resonance frequency is about 0.2 Hz within the large Bursa Plain, whereas it increases to about 0.9 Hz within the smaller Gemlik Plain.

  19. Simulation of earthquake ground motions in the eastern United States using deterministic physics‐based and site‐based stochastic approaches

    Science.gov (United States)

    Rezaeian, Sanaz; Hartzell, Stephen; Sun, Xiaodan; Mendoza, Carlos

    2017-01-01

    Earthquake ground‐motion recordings are scarce in the central and eastern United States (CEUS) for large‐magnitude events and at close distances. We use two different simulation approaches, a deterministic physics‐based method and a site‐based stochastic method, to simulate ground motions over a wide range of magnitudes. Drawing on previous results for the modeling of recordings from the 2011 Mw 5.8 Mineral, Virginia, earthquake and using the 2001 Mw 7.6 Bhuj, India, earthquake as a tectonic analog for a large magnitude CEUS event, we are able to calibrate the two simulation methods over this magnitude range. Both models show a good fit to the Mineral and Bhuj observations from 0.1 to 10 Hz. Model parameters are then adjusted to obtain simulations for Mw 6.5, 7.0, and 7.6 events in the CEUS. Our simulations are compared with the 2014 U.S. Geological Survey weighted combination of existing ground‐motion prediction equations in the CEUS. The physics‐based simulations show comparable response spectral amplitudes and a fairly similar attenuation with distance. The site‐based stochastic simulations suggest a slightly faster attenuation of the response spectral amplitudes with distance for larger magnitude events and, as a result, slightly lower amplitudes at distances greater than 200 km. Both models are plausible alternatives and, given the few available data points in the CEUS, can be used to represent the epistemic uncertainty in modeling of postulated CEUS large‐magnitude events.

  20. Measurements for monitoring ground motion resulting from mining operations in the Rhenish brown coal district; Messungen zur Ueberwachung von bergbaubedingten Bodenbewegungen im rheinischen Braunkohlenbergbau

    Energy Technology Data Exchange (ETDEWEB)

    Duddek, H.; Schaefer, W. [Rheinbraun AG, Koeln (Germany)

    1996-12-31

    Coal mining in the Rhenish brown coal district resulted in loose rock slopes with a total height of more than 350 m. Mining operations caused ground motion in open-cast mines, in the slopes and in the region ahead of the face. Internal dumping caused motions of the floors, the overburden tip and te slopes of the open-cast mines. The deformations were measured by different methods, and the evaluations are presented here. As examples, permanent monitoring of a slope using the GEOROBOT measuring system and continuous subsidence measurements in an overburdan dump by means of hydrostatic measuring systems are presented. GEOROBOT ensures quasi-continuous measurements of slope motion with an error of 5-7 mm. Hydrostatic measuring systems on the basis of pressure sensors were developed for measurements of single overburden dump strata and the overburden dump basis during dumping. (orig.) [Deutsch] In den rheinischen Braunkohlentagebauen entstehen Lockergesteinsboeschungen mit Gesamthoehen von mehr als 350 m. Die Gewinnungstaetigkeiten verursachen Entlastungsbewegungen im Tagebau, in den Boeschungen und im Tagebauvorfeld. Die Innenverkippung fuehrt erneut zu Bodenbewegungen im Liegenden, im Kippenkoerper und im Bereich der Tagebauraender. Die auftretenden Deformationen werden mit verschiedenen Messverfahren erfasst, ausgewertet und dargestellt. Beispielhaft werden die permanente Ueberwachung einer Boeschung mittels des automatischen Messsystems GEOROBOT und kontinuierliche Setzungsmessungen in einer Tagebaukippe mit hydrostatischen Messsystemen vorgestellt. Mit GEOROBOT werden quasi kontinuierlich Boeschungsbewegungsmessungen mit einer Genauigkeit von {+-}5 bis 7 mm durchgefuehrt. Auf der Basis von Drucksensoren wurden hydrostatische Messsysteme konzipiert, mit denen Setzungen einzelner Kippscheiben und der Kippenbasis waehrend des Kippenaufbaues ermittelt werden. (orig.)

  1. Use of fragile geologic structures as indicators of unexceeded ground motions and direct constraints on probabilistic seismic hazard analysis

    Science.gov (United States)

    Baker, J.W.; Whitney, John W.; Hanks, Thomas C.; Abramson, Norman A.; Board, Mark P.

    2013-01-01

    We present a quantitative procedure for constraining probabilistic seismic hazard analysis results at a given site, based on the existence of fragile geologic structures at that site. We illustrate this procedure by analyzing precarious rocks and undamaged lithophysae at Yucca Mountain, Nevada. The key metric is the probability that the feature would have survived to the present day, assuming that the hazard results are correct. If the fragile geologic structure has an extremely low probability of having survived (which would be inconsistent with the observed survival of the structure), then the calculations illustrate how much the hazard would have to be reduced to result in a nonnegligible survival probability. The calculations are able to consider structures the predicted failure probabilities of which are a function of one or more ground‐motion parameters, as well as structures that either rapidly or slowly evolved to their current state over time. These calculations are the only way to validate seismic hazard curves over long periods of time.

  2. Maintenance of safety and quality of refrigerated ready-to-cook seasoned ground beef product (meatball) by combining gamma irradiation with modified atmosphere packaging.

    Science.gov (United States)

    Gunes, Gurbuz; Ozturk, Aylin; Yilmaz, Neriman; Ozcelik, Beraat

    2011-08-01

    Meatballs were prepared by mixing ground beef and spices and inoculated with E. coli O157:H7, L. monocytogenes, and S. enteritidis before packaged in modified atmosphere (3% O₂ + 50% CO₂ + 47% N₂) or aerobic conditions. The packaged samples were irradiated at 0.75, 1.5, and 3 kGy doses and stored at 4 °C for 21 d. Survival of the pathogens, total plate count, lipid oxidation, color change, and sensory quality were analyzed during storage. Irradiation at 3 kGy inactivated all the inoculated (approximately 10⁶ CFU/g) S. enteritidis and L. monocytogenes cells in the samples. The inoculated (approximately 10⁶ CFU/g) E. coli O157:H7 cells were totally inactivated by 1.5 kGy irradiation. D¹⁰-values for E. coli O157:H7, S. enteritidis, and L. monocytogenes were 0.24, 0.43, and 0.41 kGy in MAP and 0.22, 0.39, and 0.39 kGy in aerobic packages, respectively. Irradiation at 1.5 and 3 kGy resulted in 0.13 and 0.36 mg MDA/kg increase in 2-thiobarbituric acid-reactive substances (TBARS) reaching 1.02 and 1.49 MDA/kg, respectively, on day 1. Irradiation also caused significant loss of color and sensory quality in aerobic packages. However, MAP effectively inhibited the irradiation-induced quality degradations during 21-d storage. Thus, combining irradiation (3 kGy) and MAP (3% O₂ + 50% CO₂ + 47% N₂) controlled the safety risk due to the potential pathogens and maintained qualities of meatballs during 21-d refrigerated storage. Combined use of gamma irradiation and modified atmosphere packaging (MAP) can maintain quality and safety of seasoned ground beef (meatball). Seasoned ground beef can be irradiated at 3 kGy and packaged in MAP with 3% O₂ + 50% CO₂ + 47% N₂ gas mixture in a high barrier packaging materials. These treatments can significantly decrease risk due to potential pathogens including E. coli O157:H7, L. monocytogenes, and S. enteritidis in the product. The MAP would reduce the undesirable effects of

  3. Assessment of UAV and Ground-Based Structure from Motion with Multi-View Stereo Photogrammetry in a Gullied Savanna Catchment

    Directory of Open Access Journals (Sweden)

    Jack Koci

    2017-10-01

    Full Text Available Structure from Motion with Multi-View Stereo photogrammetry (SfM-MVS is increasingly used in geoscience investigations, but has not been thoroughly tested in gullied savanna systems. The aim of this study was to test the accuracy of topographic models derived from aerial (via Unmanned Aerial Vehicle, ‘UAV’ and ground-based (via handheld digital camera, ‘ground’ SfM-MVS in modelling hillslope gully systems in a dry-tropical savanna, and to assess the strengths and limitations of the approach at a hillslope scale and an individual gully scale. UAV surveys covered three separate hillslope gully systems (with areas of 0.412–0.715 km2, while ground surveys assessed individual gullies within the broader systems (with areas of 350–750 m2. SfM-MVS topographic models, including Digital Surface Models (DSM and dense point clouds, were compared against RTK-GPS point data and a pre-existing airborne LiDAR Digital Elevation Model (DEM. Results indicate that UAV SfM-MVS can deliver topographic models with a resolution and accuracy suitable to define gully systems at a hillslope scale (e.g., approximately 0.1 m resolution with 0.4–1.2 m elevation error, while ground-based SfM-MVS is more capable of quantifying gully morphology (e.g., approximately 0.01 m resolution with 0.04–0.1 m elevation error. Despite difficulties in reconstructing vegetated surfaces, uncertainty as to optimal survey and processing designs, and high computational demands, this study has demonstrated great potential for SfM-MVS to be used as a cost-effective tool to aid in the mapping, modelling and management of hillslope gully systems at different scales, in savanna landscapes and elsewhere.

  4. Ab initio investigation of ground-states and ionic motion in particular in zirconia-based solid-oxide electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Hirschfeld, Julian Arndt

    2012-12-11

    Electrolytes with high ionic conductivity at lower temperatures are the prerequisite for the success of Solid Oxide Fuel Cells (SOFC). One candidate is doped zirconia. In the past, the electrical resistance of zirconia based SOFC electrolytes has mainly been decreased by reducing its thickness. But there are limits to reducing the thickness and one can say that nowadays the normal ways are basically exhausted to further enhance the conductivity of well-known electrolyte materials. Hence, new approaches need to be found to discover windows of enhanced ionic conductivity. This can be achieved by understanding the quantum-mechanical oxygen transport in unconventional configurations of doped zirconia. Therefore, such an understanding is of fundamental importance. In this thesis two approaches are pursued, the investigation of the strain dependent ionic migration in zirconia based electrolytes and the designing of an electrolyte material structure with enhanced and strongly anisotropic ionic conductivity. The first approach expands the elementary understanding of oxygen migration in oxide lattices. The migration barrier of the oxygen ion jumps in zirconia is determined by applying the Density Functional Theory (DFT) calculations in connection with the Nudged Elastic Band (NEB) method. These computations show an unexpected window of decreased migration barriers at high compressive strains. Similar to other publications a decrease in the migration barrier for expansive strain is observed. But, in addition, a migration barrier decrease under high compressive strains is found beyond a maximal height of the migration barrier. A simple analytic model offers an explanation. The drop of the migration barrier at high compressions originates from the elevation of the ground-state energy. This means: Increasing ground state energies becomes an interesting alternative to facilitate ionic mobility. The second approach is based on the idea, that actually, only in the direction of ion

  5. Improving Dorsal Stream Function in Dyslexics By Training Figure/Ground Motion Discrimination Improves Reading Fluency, Attention, and Working Memory

    Directory of Open Access Journals (Sweden)

    Teri Lawton

    2016-08-01

    Full Text Available There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average, two targeting the temporal dynamics (timing of either the auditory or visual pathways with a third reading intervention (control group using linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.

  6. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system.

    Science.gov (United States)

    Faber, G S; Chang, C C; Kingma, I; Dennerlein, J T; van Dieën, J H

    2016-04-11

    Inertial motion capture (IMC) systems have become increasingly popular for ambulatory movement analysis. However, few studies have attempted to use these measurement techniques to estimate kinetic variables, such as joint moments and ground reaction forces (GRFs). Therefore, we investigated the performance of a full-body ambulatory IMC system in estimating 3D L5/S1 moments and GRFs during symmetric, asymmetric and fast trunk bending, performed by nine male participants. Using an ambulatory IMC system (Xsens/MVN), L5/S1 moments were estimated based on the upper-body segment kinematics using a top-down inverse dynamics analysis, and GRFs were estimated based on full-body segment accelerations. As a reference, a laboratory measurement system was utilized: GRFs were measured with Kistler force plates (FPs), and L5/S1 moments were calculated using a bottom-up inverse dynamics model based on FP data and lower-body kinematics measured with an optical motion capture system (OMC). Correspondence between the OMC+FP and IMC systems was quantified by calculating root-mean-square errors (RMSerrors) of moment/force time series and the interclass correlation (ICC) of the absolute peak moments/forces. Averaged over subjects, L5/S1 moment RMSerrors remained below 10Nm (about 5% of the peak extension moment) and 3D GRF RMSerrors remained below 20N (about 2% of the peak vertical force). ICCs were high for the peak L5/S1 extension moment (0.971) and vertical GRF (0.998). Due to lower amplitudes, smaller ICCs were found for the peak asymmetric L5/S1 moments (0.690-0.781) and horizontal GRFs (0.559-0.948). In conclusion, close correspondence was found between the ambulatory IMC-based and laboratory-based estimates of back load. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Fast Identification of Near-Trench Earthquakes Along the Mexican Subduction Zone Based on Characteristics of Ground Motion in Mexico City

    Science.gov (United States)

    Perez-Campos, X.; Singh, S. K.; Arroyo, D.; Rodríguez, Q.; Iglesias, A.

    2015-12-01

    The disastrous 1985 Michoacan earthquake gave rise to a seismic alert system for Mexico City which became operational in 1991. Initially limited to earthquakes along the Guerrero coast, the system now has a much wider coverage. Also, the 2004 Sumatra earthquake exposed the need for a tsunami early warning along the Mexican subduction zone. A fast identification of near-trench earthquakes along this zone may be useful in issuing a reliable early tsunami alert. The confusion caused by low PGA for the magnitude of an earthquake, leading to "missed" seismic alert, would be averted if its near-trench origin can be quickly established. It may also help reveal the spatial extent and degree of seismic coupling on the near-trench portion of the plate interface. This would lead to a better understanding of tsunami potential and seismic hazard along the Mexican subduction zone. We explore three methods for quick detection of near-trench earthquakes, testing them on recordings of 65 earthquakes at station CU in Mexico City (4.8 ≤Mw≤8.0; 270≤R≤615 km). The first method is based on the ratio of total to high-frequency energy, ER (Shapiro et al., 1998). The second method is based on parameter Sa*(6) which is the pseudo-acceleration response spectrum with 5% damping, Sa, at 6 s normalized by the PGA. The third parameter is the PGA residual, RESN, at CU, with respect to a newly-derived ground motion prediction equation at CU for coastal shallow-dipping thrust earthquakes following a bayesian approach. Since the near-trench earthquakes are relatively deficient in high-frequency radiation, we expect ER and Sa*(6) to be relatively large and RESN to be negative for such events. Tests on CU recordings show that if ER ≥ 100 and/or Sa*(6) ≥ 0.70, then the earthquake is near trench; for these events RESN ≤ 0. Such an event has greater tsunami potential. Few misidentifications and missed events are most probably a consequence of poor location, although unusual depth and source

  8. Practical Considerations before Installing Ground-Based Geodetic Infrastructure for Integrated InSAR and cGNSS Monitoring of Vertical Land Motion

    Directory of Open Access Journals (Sweden)

    Amy L. Parker

    2017-07-01

    Full Text Available Continuously operating Global Navigation Satellite Systems (cGNSS can be used to convert relative values of vertical land motion (VLM derived from Interferometric Synthetic Aperture Radar (InSAR to absolute values in a global or regional reference frame. Artificial trihedral corner reflectors (CRs provide high-intensity and temporally stable reflections in SAR time series imagery, more so than naturally occurring permanent scatterers. Therefore, it is logical to co-locate CRs with cGNSS as ground-based geodetic infrastructure for the integrated monitoring of VLM. We describe the practical considerations for such co-locations using four case-study examples from Perth, Australia. After basic initial considerations such as land access, sky visibility and security, temporary test deployments of co-located CRs with cGNSS should be analysed together to determine site suitability. Signal to clutter ratios from SAR imagery are used to determine potential sites for placement of the CR. A significant concern is whether the co-location of a deliberately designed reflecting object generates unwanted multipath (reflected signals in the cGNSS data. To mitigate against this, we located CRs >30 m from the cGNSS with no inter-visibility. Daily RMS values of the zero-difference ionosphere-free carrier-phase residuals, and ellipsoidal heights from static precise point positioning GNSS processing at each co-located site were then used to ascertain that the CR did not generate unwanted cGNSS multipath. These steps form a set of recommendations for the installation of such geodetic ground-infrastructure, which may be of use to others wishing to establish integrated InSAR-cGNSS monitoring of VLM elsewhere.

  9. Practical Considerations before Installing Ground-Based Geodetic Infrastructure for Integrated InSAR and cGNSS Monitoring of Vertical Land Motion

    Science.gov (United States)

    Featherstone, Will E.; Filmer, Mick S.

    2017-01-01

    Continuously operating Global Navigation Satellite Systems (cGNSS) can be used to convert relative values of vertical land motion (VLM) derived from Interferometric Synthetic Aperture Radar (InSAR) to absolute values in a global or regional reference frame. Artificial trihedral corner reflectors (CRs) provide high-intensity and temporally stable reflections in SAR time series imagery, more so than naturally occurring permanent scatterers. Therefore, it is logical to co-locate CRs with cGNSS as ground-based geodetic infrastructure for the integrated monitoring of VLM. We describe the practical considerations for such co-locations using four case-study examples from Perth, Australia. After basic initial considerations such as land access, sky visibility and security, temporary test deployments of co-located CRs with cGNSS should be analysed together to determine site suitability. Signal to clutter ratios from SAR imagery are used to determine potential sites for placement of the CR. A significant concern is whether the co-location of a deliberately designed reflecting object generates unwanted multipath (reflected signals) in the cGNSS data. To mitigate against this, we located CRs >30 m from the cGNSS with no inter-visibility. Daily RMS values of the zero-difference ionosphere-free carrier-phase residuals, and ellipsoidal heights from static precise point positioning GNSS processing at each co-located site were then used to ascertain that the CR did not generate unwanted cGNSS multipath. These steps form a set of recommendations for the installation of such geodetic ground-infrastructure, which may be of use to others wishing to establish integrated InSAR-cGNSS monitoring of VLM elsewhere. PMID:28758970

  10. Ground motion attenuation during M 7.1 Darfield and M 6.2 Christchurch, New Zealand, earthquakes and performance of global Ppedictive models

    Science.gov (United States)

    Segou, Margaret; Kalkan, Erol

    2011-01-01

    fault with M 6.2, followed by a second event (M 6.9), releasing the largest portion of the energy on the right-lateral Greendale fault. The third sub-event (M 5.7) is due to a reverse fault with a right-lateral component (Holden et al. 2011). The Christchurch earthquake occurred on an oblique thrust fault. The comparison of spectral acceleration values at stations near Christchurch reveals that the second event produced much larger amplitudes of shaking than the Darfield event due to its proximity to the epicenter. Both events resulted in noticeably large amplitudes of the vertical motion, often exceeding horizontal motion in the near-fault area. The vertical motions, showing asymmetric acceleration traces and pulses, reached 1.26 g during the Darfield earthquake and 2.2 g during the Christchurch event. These events were recorded by more than 100 strong motion stations operated by the Institute of Geological and Nuclear Sciences (http://www.geonet.org.nz/). Using the processed data from these stations, peak ground acceleration (PGA) and 5%-damped spectral acceleration values at 0.3, 1, and 3 s are used for performance evaluation of the global ground motion predictive equations (GMPEs). The selected GMPEs are the Next Generation Attenuation (NGA) models of Abrahamson and Silva (2008), Boore and Atkinson (2008), Campbell and Bozorgnia (2008), and Chiou and Youngs (2008). The Graizer and Kalkan (2007, 2009) model, which is based on the NGA project database, is also included. These GMPEs are abbreviated respectively as AS08, BA08, CB08, CY08, and GK07. Because they have been used widely for seismic hazard analysis for crustal earthquakes, their performance assessment becomes a critical issue especially for immediate response and recovery planning after major events. The occurrence of aftershocks similar to the Christchurch event will most probably control seismic hazard in the broader area, as confirmed by the recent M 6.0 event on June 13, 2011.

  11. Critical response of 2DOF elastic-plastic building structures under double impulse as substitute of near-fault ground motion

    Directory of Open Access Journals (Sweden)

    Ryo eTaniguchi

    2016-02-01

    Full Text Available The double impulse is introduced as a substitute of the fling-step near-fault ground motion and a critical elastic-plastic response of a 2DOF (two-degree-of-freedom building structure under the ‘critical double impulse’ is evaluated. Since only the free-vibration appears under such double impulse, the energy balance approach plays an important and essential role in the derivation of the solution of a complicated elastic-plastic critical response. It is shown that the critical timing of the double impulse is characterized by the timing of the second impulse at the zero story shear force in the first story. This timing guarantees the maximum energy input by the second impulse which causes the maximum plastic deformation after the second impulse. Because the response of 2DOF elastic-plastic building structures is quite complicated due to the phase difference between two masses compared to SDOF models for which a closed-form critical response can be derived, the upper bound of the critical response is introduced by using the convex model.

  12. GPS derived ground motions (2005-2014) within the Gulf of Mexico region referred to a stable Gulf of Mexico reference frame

    Science.gov (United States)

    Yu, J.; Wang, G.

    2015-11-01

    This study investigates current ground motions derived from the GPS geodesy infrastructure in the Gulf of Mexico region. The positions and velocity vectors of 161 continuous GPS (CGPS) stations are presented with respect to a newly established local reference frame, the Stable Gulf of Mexico Reference Frame (SGOMRF). Thirteen long-term (> 5 years) CGPS are used to realize the local reference frame. The root-mean-square (RMS) of the velocities of the 13 SGOMRF reference stations achieves 0.2 mm yr-1 in the horizontal and 0.3 mm yr-1 in the vertical directions. GPS observations presented in this study indicate significant land subsidence in the coastal area of southeastern Louisiana, the greater Houston metropolitan area, and two cities in Mexico (Aguascalientes and Mexico City). The most rapid subsidence is recorded at the Mexico City International airport, which is up to 26.6 cm yr-1 (2008-2014). Significant spatial variation of subsidence rates is observed in both Mexico City and the Houston area. The overall subsidence rate in the Houston area is decreasing. GPS observations in southeastern Louisiana indicate minor (4.0-6.0 mm yr-1) but consistent subsidence over time and space. This poses a potential threat to the safety of costal infrastructure in the long-term.

  13. Seismic Behavior of RNC-Isolated Bridges: A Comparative Study under Near-Fault, Long-Period, and Pulse-Like Ground Motions

    Directory of Open Access Journals (Sweden)

    Mohammed Ismail

    2016-01-01

    Full Text Available This paper introduces a recent seismic isolation system, named Roll-in-Cage (RNC isolator, for efficient protection of bridges against destructive earthquakes. The RNC isolator is a rolling-based isolation system with several integrated features in a single unit providing all the necessary functions of vertical rigid support, horizontal flexibility, full stability, hysteretic energy dissipation, and resistance to minor vibration loads. Besides, it is distinguished by a self-stopping (buffer mechanism to limit the peak bearing displacement under abrupt severe excitations, a linear gravity-based self-recentering mechanism to prevent permanent dislocations after excitations, and a notable resistance to axial tension. A three-span box-girder prestressed concrete bridge is investigated under a set of different destructive real and synthetic earthquakes including near-fault, long-period, and pulse-like ground motions. As a performance measure, the responses of isolated and nonisolated cases are compared. In addition, the RNC isolator’s behavior is then compared with those of other isolation systems including HDB, FPS, and LRB. The results confirmed that the RNC isolator has a superior behavior in achieving a balance between the peak displacements and accelerations of the isolated deck, relative other isolation systems, besides being the most (relatively efficient isolator in the great majority of studies performed.

  14. Hybrid stochastic ground motion modeling of the Mw 7.8 Gorkha, Nepal earthquake of 2015 based on InSAR inversion

    Science.gov (United States)

    Shen, Wenhao; Li, Yongsheng; Zhang, Jingfa

    2017-06-01

    We derive the coseismic slip distribution on a fault for the 2015, Mw 7.8 Gorkha earthquake based on ALOS-2 wide scan data and the inversion code, SDM (Steepest Descend Method). The results show that the maximum slip is 4.7 m, and the total released seismic moment is 6.02 × 1020 N m, equivalent to an earthquake of Mw ∼7.82. Static stress and slip heterogeneity analyses show that both the average stress drop and corner wavenumber are at a low level. Additionally, we model the observed impulsive behavior at the near-source KATNP station using a hybrid stochastic approach, which combines an analytical approach at low frequencies with a stochastic approach at high frequencies. The good agreement between the hybrid modeling and observed records reveals that the input parameters, such as stress drop or slip distribution, are suitable for the Gorkha earthquake. The success of the modeling indicates that, in addition to the smooth onset of STF (slip-rate time function), the low stress drop and low degree of slip heterogeneity are also responsible for the low level of high-frequency ground motion during the Gorkha earthquake.

  15. Transfer Readiness Pilot Study.

    Science.gov (United States)

    Scott-Skillman, Thelma; And Others

    The California Community Colleges (CCC) has implemented a prototype model for determining student transfer readiness as a primary means of assessing community college transfer effectiveness. This report provides definitions of transfer readiness and guidelines for colleges participating in the CCC transfer readiness study. First, a memorandum from…

  16. Ground-motion site effects from multimethod shear-wave velocity characterization at 16 seismograph stations deployed for aftershocks of the August 2011 Mineral, Virginia earthquake

    Science.gov (United States)

    Stephenson, William J.; Odum, Jackson K.; McNamara, Daniel E.; Williams, Robert A.; Angster, Stephen J

    2014-01-01

    We characterize shear-wave velocity versus depth (Vs profile) at 16 portable seismograph sites through the epicentral region of the 2011 Mw 5.8 Mineral (Virginia, USA) earthquake to investigate ground-motion site effects in the area. We used a multimethod acquisition and analysis approach, where active-source horizontal shear (SH) wave reflection and refraction as well as active-source multichannel analysis of surface waves (MASW) and passive-source refraction microtremor (ReMi) Rayleigh wave dispersion were interpreted separately. The time-averaged shear-wave velocity to a depth of 30 m (Vs30), interpreted bedrock depth, and site resonant frequency were estimated from the best-fit Vs profile of each method at each location for analysis. Using the median Vs30 value (270–715 m/s) as representative of a given site, we estimate that all 16 sites are National Earthquake Hazards Reduction Program (NEHRP) site class C or D. Based on a comparison of simplified mapped surface geology to median Vs30 at our sites, we do not see clear evidence for using surface geologic units as a proxy for Vs30 in the epicentral region, although this may primarily be because the units are similar in age (Paleozoic) and may have similar bulk seismic properties. We compare resonant frequencies calculated from ambient noise horizontal:vertical spectral ratios (HVSR) at available sites to predicted site frequencies (generally between 1.9 and 7.6 Hz) derived from the median bedrock depth and average Vs to bedrock. Robust linear regression of HVSR to both site frequency and Vs30 demonstrate moderate correlation to each, and thus both appear to be generally representative of site response in this region. Based on Kendall tau rank correlation testing, we find that Vs30 and the site frequency calculated from average Vs to median interpreted bedrock depth can both be considered reliable predictors of weak-motion site effects in the epicentral region.

  17. Ground motion analysis of OSSY

    Energy Technology Data Exchange (ETDEWEB)

    Swift, R.P.; Snell, C.M. [Los Alamos National Lab., NM (United States)

    1993-11-01

    The On Site Seismic Yield experiment, OSSY, was performed to investigate the viability of a high-explosive technique to help estimate the yield of nuclear explosions. We have analyzed recorded data and conducted numerical simulations of the 100-pound OSSY experiments performed in hole UE-10 ITS No. 3 at the Nevada Test Site. Particle velocity wave forms from these experiments show a distinct dual-pulse structure in the close-in and far-field regions, with the amplitude of the second pulse being as large as or larger than the first pulse. To gain some insight into the cause of the dual-pulse feature, we examine how the explosion-induced close-in response is affected by (1) certain features of inelastic rock/soil constitutive models applied in the near-field region, (2) the large length-to-diameter charge ratio of 8, (3) the charge and gauge package emplacement, and (4) geology (e.g., layering) in the vicinity of the explosion. Our results from 1-D and 2-D simulations show the following: (a) the response, measured by accelerometers located above the charges, is significantly influenced by the charge length-to-diameter ratio out to a distance of 8 m. (b) the grout emplacement of the charge has very little effect on the response. (c) the geologic layering serves mainly to phase the arrival of the pulses. (d) the second pulse can be best accounted for by applying a dilatant feature that allows for pore recovery during unloading. Other material property variations do not provide any contribution to the formation of a second pulse.

  18. Ground-Control Networks for Image Based Surface Reconstruction: An Investigation of Optimum Survey Designs Using UAV Derived Imagery and Structure-from-Motion Photogrammetry

    Directory of Open Access Journals (Sweden)

    Toby N. Tonkin

    2016-09-01

    Full Text Available The use of small UAV (Unmanned Aerial Vehicle and Structure-from-Motion (SfM with Multi-View Stereopsis (MVS for acquiring survey datasets is now commonplace, however, aspects of the SfM-MVS workflow require further validation. This work aims to provide guidance for scientists seeking to adopt this aerial survey method by investigating aerial survey data quality in relation to the application of ground control points (GCPs at a site of undulating topography (Ennerdale, Lake District, UK. Sixteen digital surface models (DSMs were produced from a UAV survey using a varying number of GCPs (3-101. These DSMs were compared to 530 dGPS spot heights to calculate vertical error. All DSMs produced reasonable surface reconstructions (vertical root-mean-square-error (RMSE of <0.2 m, however, an improvement in DSM quality was found where four or more GCPs (up to 101 GCPs were applied, with errors falling to within the suggested point quality range of the survey equipment used for GCP acquisition (e.g., vertical RMSE of <0.09 m. The influence of a poor GCP distribution was also investigated by producing a DSM using an evenly distributed network of GCPs, and comparing it to a DSM produced using a clustered network of GCPs. The results accord with existing findings, where vertical error was found to increase with distance from the GCP cluster. Specifically vertical error and distance to the nearest GCP followed a strong polynomial trend (R2 = 0.792. These findings contribute to our understanding of the sources of error when conducting a UAV-SfM survey and provide guidance on the collection of GCPs. Evidence-driven UAV-SfM survey designs are essential for practitioners seeking reproducible, high quality topographic datasets for detecting surface change.

  19. Evaluating a kinematic method for generating broadband ground motions for great subduction zone earthquakes: Application to the 2003 Mw 8.3 Tokachi‐Oki earthquake

    Science.gov (United States)

    Wirth, Erin A.; Frankel, Arthur; Vidale, John E.

    2017-01-01

    We compare broadband synthetic seismograms with recordings of the 2003 Mw">MwMw 8.3 Tokachi‐Oki earthquake to evaluate a compound rupture model, in which slip on the fault consists of multiple high‐stress‐drop asperities superimposed on a background slip distribution with longer rise times. Low‐frequency synthetics (1  Hz">>1  Hz>1  Hz) stochastic synthetics using a matched filter at 1 Hz. We show that this compound rupture model and overall approach accurately reproduces waveform envelopes and observed response spectral accelerations (SAs) from the Tokachi‐Oki event. We find that sufficiently short subfault rise times (i.e., ∼1  Hz∼1  Hz. This is achieved by either (1) including distinct subevents with short rise times, as may be suggested by the Tokachi‐Oki data, or (2) imposing a fast‐slip velocity over the entire rupture area. We also include a systematic study on the effects of varying several kinematic rupture parameters. We find that simulated strong ground motions are sensitive to the average rupture velocity and coherence of the rupture front, with more coherent ruptures yielding higher response SAs. We also assess the effects of varying the average slip velocity and the character (i.e., area, magnitude, and location) of high‐stress‐drop subevents. Even in the absence of precise constraints on these kinematic rupture parameters, our simulations still reproduce major features in the Tokachi‐Oki earthquake data, supporting its accuracy in modeling future large earthquakes.

  20. Ground Motions Simulations of the 2004 Les Saintes Earthquake (Mw 6.4) and its Largest Aftershock (Mw 5.9)

    Science.gov (United States)

    Courboulex, F.; Converset, J.; Kohrs-Sansorny, C.

    2007-12-01

    The Guadeloupe Island situated in the Caribbean arc has been struck in November 2004 by a Mw 6.4 earthquake that occurred 20km offshore on a shallow crustal fault. This event caused the death of one person and serious damages to several buildings. The mainshock has been followed by a large number of aftershocks including about 20 events of magnitude larger than 4. The largest aftershocks occurred three month after the mainshock and reached a magnitude Mw 5.9. Most of the earthquake larger than 4 were well recorded by an accelerometric network situated on the nearby islands (the RAP network locally managed by IPGP and BRGM). Data from these stations are available freely on the web site of the RAP network (www-rap.obs.ujf-grenoble.fr). We used the recordings of ten earthquakes of magnitude 4 to 5.2 successively as empirical Green's functions to generate accelerograms for the mainshock and the largest aftershock at 13 stations. For each small event chosen as empirical Green's function, we simulated 500 accelerometers at each station using a two step stochastic approach (Kohrs-Sansorny et al, 2005, BSSA). We compared the results obtained with the signals recorded. We show that, if the parameter C (static stress drop ratio between the mainshock and the aftershock) is properly chosen, this method enables us to generate simulations that fit well the observed signals. We obtained particularly a good reproduction of site effects. This is true for almost all the small event taken as empirical Green's function, as if they are relatively far away from the mainshock. The choice of the parameter C is discussed in this paper by a comparison of the results obtained on rock stations and the values predicted by ground motion prediction equations.

  1. Ready for What? Constructing Meanings of Readiness for Kindergarten.

    Science.gov (United States)

    Graue, M. Elizabeth

    This book examines the issue of school readiness, focusing on children's readiness for entrance into kindergarten and promotion to first grade. Chapter 1 reviews the literature on school readiness, exploring trends in policy related to readiness and readiness as a child-centered characteristic. Chapter 2 examines various theoretical frameworks for…

  2. The Naval Aviation Enterprise Type/Model/Series Team and Its Effect on AH-1W Readiness

    Science.gov (United States)

    2012-03-23

    Team Structure 28 9 Current Readiness Process The Current Readiness Process assesses the readiness metrics, or Key Performance Indicators ( KPIs ...CR CFT and the Marine Corps leadership to shift resources to close the gap. Aircraft Readiness Aircraft availability is one of the KPIs that the T...Commandant of Aviation DRRS Defense Readiness Reporting System FMC Full Mission Capable GAO General Accounting Office GSE Ground Support Equipment KPI

  3. Knowledge Management Readiness In Organizations

    Directory of Open Access Journals (Sweden)

    Alanazi Sultan

    2015-06-01

    Full Text Available Abstract To generate a comprehensive model of Knowledge Management Readiness In Organizationsintending greater value to its practical applicability. This study was based on both secondary and primary data grounded on the deductive paradigm of social research. Survey with 13 professionals in the current business setting was conducted to justify the research findings. The key criterion of KM Readiness In Organizations i.e. its dependency on human acts was ignored in many traditional KM models although literary works paid substantial value to the aspect. Applicability of conventional KM models in the current context was also limited. The study lacked consideration to the influence of organizational characteristics on KM practices based on organizational readiness. The number of respondents was also limited for a wide research such as this. As this study was mainly guided by the contemporary beliefs and attributes of organizational management the developed model is likely to find its worthy applicability in practical experiences. Due emphasis was provided to ethical soundness throughout the paper confirming its originality and value in terms that anti-plagiarism strictness was taken into context and self-infliction of information was avoided entirely.

  4. Site-specific ground response analysis

    National Research Council Canada - National Science Library

    L. GovindaRaju; G. V. Ramana; C. HanumanthaRao; T. G. Sitharam

    2004-01-01

    ... modifications to the underlying motion. We highlight the engineering importance of site-specific ground response analysis and difficulties faced in conducting a complete ground response analysis...

  5. Study on the characteristics of earthquake ground motion in the Hanshin area based on microtremor measurements; Bido kansoku ni motozuku Hanshin chiiki no jiban shindo tokusei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H.; Seo, K.; Yamanaka, H. [Tokyo Institute of Technology, Tokyo (Japan)

    1997-05-27

    The Hyogoken-nanbu earthquake in 1995 was a local earthquake that has hit directly a large urban area, having caused damages the greatest since the War mainly in the city of Kobe. The present study has noticed the areas of Sumiyoshi, Nada Ward, Kobe City and Nanbu, Nishinomiya City where damages show different distribution; elucidated the characteristics of earthquake ground motion based on microtremor measurements; and discussed the relation thereof with the earthquake damage distribution. It was verified that microtremors and seismic motions are in rough agreement in the Sumiyoshi area, by comparing and discussing the spectrum ratio between the microtremors and the seismic motions. No correspondence was recognized in the Sumiyoshi area between distribution of the average microtremor spectrum ratio with cycles of 0.2 to 0.8 second and distribution of damages caused by the Hyogoken-nanbu earthquake. The ground characteristics evaluation alone is insufficient to explain distribution of the damages in a relatively wide range in the city of Nishinomiya, for which effects of distance decay should be taken into consideration. 6 refs., 7 figs.

  6. Functional criteria for assessing pointe-readiness.

    Science.gov (United States)

    Richardson, Megan; Liederbach, Marijeanne; Sandow, Emily

    2010-01-01

    The most popular criterion cited in the dance literature for advancement to pointe work is attainment of the chronological age of 12 years. However, dancers at this age vary greatly in terms of musculoskeletal maturity and motor skill development. The purpose of this study was to investigate whether objective, functional tests could be used in conjunction with dance teacher expertise to determine pointe-readiness. It was hypothesized that dynamic tests of motor control can better indicate pointe-readiness than chronological age alone or in combination with static musculoskeletal measurements. Thirty-seven pre-pointe students from two professional ballet schools were tested for muscular strength, ankle joint range of motion, single leg standing balance, dynamic alignment, and turning skill. In addition, the participating students' ballet teachers independently graded each student on her readiness to begin dancing en pointe. Performance on three functional tests (the Airplane test, Sauté test, and Topple test) was closely associated with teacher subjective rating for pointe-readiness. It is concluded that these tests may be more useful for gauging acquisition of the skills required for safe and successful performance than the traditionally accepted indicators of chronological age, years of dance training, and ankle joint range of motion.

  7. Some Observations on Colocated and Closely-Spaced 1-Second Sampled GPS and Ground-Motion Accelerograph Data From the 2003 San Simeon (M 6.5), California, Earthquake

    Science.gov (United States)

    Wang, G.; Tang, G.

    2006-05-01

    The 2003 San Simeon earthquake (M 6.5) generated a set of valuable high-rate (1-second sampled) continuous GPS positions and strong ground-motion accelerograms in near-source area. We perform a careful comparison on a set of colocated and closely-spaced GPS and accelerograph data both in time and frequency domains. We find 1-second sampled GPS data can not recover dynamic displacements with periods of less than 5 sec with a credible resolution. Hence a high-cut filtering (fcc=0.25 Hz) is recommended to be used in processing 1-second sampled GPS data. Waveforms of jerks (derivatives of accelerations) and accelerations from the GPS data match perfectly with those from their colocated accelerograph data (both high-cut filtered at 0.25 Hz), but not so well for waveforms of velocities, and poorly for waveforms of displacements. This observation implies that the GPS receivers would have the potential to catch even higher frequency ground-motions if they are operated with a higher sampling rate, because we know high-frequency signals are more sensitive to jerks and accelerations than to velocities and displacements. Ground-motions with periods up to about 30 sec can be recovered from the digital accelerograph data (BVR- EW and UPSAR-EW) corrected solely by a low-cut filtering. This result confirms our previous understanding that a low-cut filtering is very efficient in eliminating long-period noises superimposed in present digital ground- motion accelerograph data, and the cut-off period can be so long that little of the engineering interest is lost. One further understanding from this study is that the cut-off period of the filtering should not be too low (e.g. <10 sec). A filter with very low cut-off period will disorder the displacement positions considerably and have an unignorable effect on the maximum displacement (dmax). A reasonable value of dmax should be comparable with the difference of the real peak ground displacement (PGD) and residual displacement at this

  8. Readiness for Living Technology

    DEFF Research Database (Denmark)

    Peronard, Jean-Paul

    2013-01-01

    This paper is a comparative analysis between workers in healthcare with high and low degree of readiness for living technology such as robotics. To explore the differences among workers’ readiness for robotics in healthcare, statistical analysis was conducted in the data set obtained from 200...

  9. Preschool Children's School Readiness

    Science.gov (United States)

    Pekdogan, Serpil; Akgül, Esra

    2017-01-01

    The purpose of this study is to examine preschool teachers' perspectives about children's school readiness. Qualitative and quantitative research methods were used in the study as a mixed method research. Data, in the quantitative aspects of the research, were collected through the use of "School Readiness Form" developed by Boz (2004)…

  10. Building damage concentrated in Longtoushan town during the 2014 Ms. 6.5 Ludian earthquake, Yunnan, China: examination of cause and implications based on ground motion and vulnerability analyses

    Science.gov (United States)

    Wang, Xin; Kurahashi, Susumu; Wu, Hao; Si, Hongjun; Ma, Qiang; Dang, Ji; Tao, Dongwang; Feng, Jiwei; Irikura, Kojiro

    2017-09-01

    Though the 2014 Ludian Earthquake had only a moderate magnitude (Ms 6.5), high-level ground motions of almost 1 g occurred at Longtoushan Town (seismic station 53LLT), which located near the intersection of a conjugate-shaped seismogenic fault. The building damages on the pluvial fan and the river terrace at Longtoushan was clearly different. In order to examine the generation of the large acceleration at 53LLT, the focal mechanisms and the rupture processes of the conjugate-shaped seismogenic fault were determined. We found that there were two continuous impulsive waves in the records of 53LLT that were generated from two different faults, the Baogunao fault and the Xiaohe fault, respectively. Site effects on the pluvial fan and the river terrace at Longtoushan Town and their relations to different building damages were examined. We found that the predominant period at the pluvial fan was about 0.25 s, close to the fundamental natural period of multi-story confined masonry buildings. Ground motions on the pluvial fan and the river terrace were simulated through convolving synthesized bedrock motions with the transfer functions, which were analyzed using the one-dimensional underground velocity structures identified from H/V spectral ratios of ambient noise. Building collapse ratios (CRs) are estimated based on the vulnerability function of the 2008 Wenchuan Earthquake and are compared with the observed values. We found that the observed building CRs on the pluvial fan are much higher than the estimated values. High-level ground shaking that is far beyond the design level was a reason for serious building damage.

  11. Technology Readiness Level Guidebook

    Science.gov (United States)

    2017-09-01

    This guidebook provides the necessary information for conducting a Technology Readiness Level (TRL) Assessment. TRL Assessments are a tool for determining the maturity of technologies and identifying next steps in the research process. This guidebook...

  12. Characteristic ground motions of the 25th April 2015 Nepal earthquake (Mw 7.9) and its implications for the structural design codes for the border areas of India to Nepal

    Science.gov (United States)

    Sharma, Babita; Chingtham, Prasanta; Sharma, Varun; Kumar, Vikas; Mandal, H. S.; Mishra, O. P.

    2017-01-01

    The 25th April 2015 Nepal Earthquake was found associated with a series of aftershocks, and the mainshock rupture propagated predominantly towards SE direction where a major aftershock (Mw 7.3) rocked on 12th May 2015 to the east of the mainshock that enhanced the rate of occurrence of aftershocks in the affected region. We conducted a rigorous analysis of strong motion data to understand the characteristics of ground motion and their bearing on the structural design codes, responsible for the damage to the structures in the border area of India to Nepal. The effect of ground geology on the acceleration response spectra are also evaluated using main shock and its associated strong earthquakes. All the sites used in the present analysis are located on alluvium deposits showing a predominant period of 0.242 sec for horizontal components and at 0.193 sec for vertical components. Our results demonstrated that observed Peak Ground Acceleration (PGA) has prominent distribution in the border cities of UP and Bihar. PGA ranges from 3 to 80 cm/sec2 in the study region for the epicentral distance varying from 120 km to 495 km with respect to the source zone (mainshock). The Peak Ground Velocity (PGV) varies from 1 to 16 cm/sec while the Peak Ground Displacement (PGD) lies in between 1 cm and 20 cm for the same area. Our study shows that variation of PGD, PGV, and PGA are controlled and dictated by the geo-morphological constraints, besides the nature and extent of structural heterogeneities of the sub-surface geological formation materials. The obtained normalised spectral amplifications are compared with the Bureau of Indian Standard code for construction of buildings which shows that the current Indian building design code is within the structural limits proposed for the seismic forces at all periods for alluvium sites, suggesting that the structural heterogeneity has the strong role contributing towards the intrinsic attenuation in the seismic wave propagating medium. Our

  13. Modeling the effects of source and path heterogeneity on ground motions of great earthquakes on the Cascadia Subduction Zone Using 3D simulations

    Science.gov (United States)

    Delorey, Andrew; Frankel, Arthur; Liu, Pengcheng; Stephenson, William J.

    2014-01-01

    We ran finite‐difference earthquake simulations for great subduction zone earthquakes in Cascadia to model the effects of source and path heterogeneity for the purpose of improving strong‐motion predictions. We developed a rupture model for large subduction zone earthquakes based on a k−2 slip spectrum and scale‐dependent rise times by representing the slip distribution as the sum of normal modes of a vibrating membrane.Finite source and path effects were important in determining the distribution of strong motions through the locations of the hypocenter, subevents, and crustal structures like sedimentary basins. Some regions in Cascadia appear to be at greater risk than others during an event due to the geometry of the Cascadia fault zone relative to the coast and populated regions. The southern Oregon coast appears to have increased risk because it is closer to the locked zone of the Cascadia fault than other coastal areas and is also in the path of directivity amplification from any rupture propagating north to south in that part of the subduction zone, and the basins in the Puget Sound area are efficiently amplified by both north and south propagating ruptures off the coast of western Washington. We find that the median spectral accelerations at 5 s period from the simulations are similar to that of the Zhao et al. (2006) ground‐motion prediction equation, although our simulations predict higher amplitudes near the region of greatest slip and in the sedimentary basins, such as the Seattle basin.

  14. Formation keeping of unmanned ground vehicles

    Directory of Open Access Journals (Sweden)

    Muangmin Kamonwan

    2017-01-01

    Full Text Available Controlling motions of an unmanned ground vehicle becomes more popular in real world practices. Its application is useful for household chores, military services, medical purposes, and industrial revolutions, etc. An analysis of motions by using the Fundamental Equations of Constrained Motion (FECM is one effective tool to determine the motions. Its conceptualization is done in three-step procedure as follows: (I Determining an unconstrained motion (II Assigning constraint equations and (III Computing a constrained motion. The equations of motion obtained are expressed as liner functions of acceleration. Then other kinematical information of the unmanned ground vehicles can be obtained by integration its acceleration. In this work, the FECM is used as a tool to analyze motions of a group of unmanned ground vehicles in various forms. The simulation results show that control forces obtained from the approach can regulate motions of unmanned ground vehicles to maneuver in desired formations.

  15. GIS Readiness Survey 2014

    DEFF Research Database (Denmark)

    Schrøder, Lise; Hvingel, Line Træholt; Hansen, Henning Sten

    2014-01-01

    The GIS Readiness Survey 2014 is a follow-up to the corresponding survey that was carried out among public institutions in Denmark in 2009. The present survey thus provides an updated image of status and challenges in relation to the use of spatial information, the construction of the com- mon...

  16. Readiness System Management

    Science.gov (United States)

    1977-05-13

    Training rating. Training shortfall(3a above)is expressed as a readiness rating, 1 through A, through a tabular conversion given in AR 220-1. For...INDIVIDUAL STUDY PROJECT PREFERENCE STATEMENT STUDENT (LAST NAME, INITIALS) MEMORANDUM THRU: COL H.T. Reed WEEKJjiY, ß. M. 29 October I976 ( Dato

  17. Rethinking School Readiness

    Science.gov (United States)

    Farran, Dale C.

    2011-01-01

    In the United States, for typically developing children, age has historically been the most common factor determining when a child starts formal schooling. Recently, there has been increased emphasis on other indicators of being ready for school. Beginning with Head Start in 1965 and mushrooming into state-funded prekindergarten programs in most…

  18. Ready, set, go . . . well maybe

    Energy Technology Data Exchange (ETDEWEB)

    Alexandre, Melanie M; Bartolome, Terri-Lynn C

    2011-02-28

    The agenda for this presentation is: (1) understand organizational readiness for changes; (2) review benefits and challenges of change; (3) share case studies of ergonomic programs that were 'not ready' and some that were 'ready'; and (4) provide some ideas for facilitating change.

  19. Combining structure-from-motion derived point clouds from satellites and unmanned aircraft systems images with ground-truth data to create high-resolution digital elevation models

    Science.gov (United States)

    Palaseanu, M.; Thatcher, C.; Danielson, J.; Gesch, D. B.; Poppenga, S.; Kottermair, M.; Jalandoni, A.; Carlson, E.

    2016-12-01

    Coastal topographic and bathymetric (topobathymetric) data with high spatial resolution (1-meter or better) and high vertical accuracy are needed to assess the vulnerability of Pacific Islands to climate change impacts, including sea level rise. According to the Intergovernmental Panel on Climate Change reports, low-lying atolls in the Pacific Ocean are extremely vulnerable to king tide events, storm surge, tsunamis, and sea-level rise. The lack of coastal topobathymetric data has been identified as a critical data gap for climate vulnerability and adaptation efforts in the Republic of the Marshall Islands (RMI). For Majuro Atoll, home to the largest city of RMI, the only elevation dataset currently available is the Shuttle Radar Topography Mission data which has a 30-meter spatial resolution and 16-meter vertical accuracy (expressed as linear error at 90%). To generate high-resolution digital elevation models (DEMs) in the RMI, elevation information and photographic imagery have been collected from field surveys using GNSS/total station and unmanned aerial vehicles for Structure-from-Motion (SfM) point cloud generation. Digital Globe WorldView II imagery was processed to create SfM point clouds to fill in gaps in the point cloud derived from the higher resolution UAS photos. The combined point cloud data is filtered and classified to bare-earth and georeferenced using the GNSS data acquired on roads and along survey transects perpendicular to the coast. A total station was used to collect elevation data under tree canopies where heavy vegetation cover blocked the view of GNSS satellites. A subset of the GPS / total station data was set aside for error assessment of the resulting DEM.

  20. High-frequency seismic wave propagation within the heterogeneous crust: effects of seismic scattering and intrinsic attenuation on ground motion modelling

    Science.gov (United States)

    Takemura, Shunsuke; Kobayashi, Manabu; Yoshimoto, Kazuo

    2017-09-01

    For practical modelling of high-frequency (>1 Hz) seismic wave propagation, we analysed the apparent radiation patterns and attenuations of P and S waves using observed Hi-net velocity seismograms for small-to-moderate crustal earthquakes in the Chugoku region, southwestern Japan. By comparing observed and simulated seismograms, we estimated practical parameter sets of crustal small-scale velocity heterogeneity and intrinsic attenuations of P and S waves (QP.int-1 and QS.int-1). Numerical simulations of seismic wave propagation were conducted via the finite-difference method using a 1-D crustal velocity structure model with additional 3-D small-scale velocity heterogeneity and intrinsic attenuation. The estimated crustal small-scale velocity heterogeneity is stochastically characterized by an exponential-type power spectral density function with correlation length of 1 km and root-mean-square value of 0.03. Estimated QP.int-1 and QS.int-1 values range from 10-2.6 to 10-2.0 and 10-2.8 to 10-2.4, respectively, indicating QP.int-1 > QS.int-1 for high frequencies (>1 Hz). Intrinsic attenuation dominates over scattering attenuation, which is caused by small-scale velocity heterogeneity. The crustal parameters obtained in this study are useful for evaluating peak ground velocities and coda envelopes for moderate crustal earthquakes via physical-based simulations using a 3-D heterogeneous structure model.

  1. Managing Military Readiness

    Science.gov (United States)

    2017-02-01

    unemployment rate (ages 16 and older). They also acknowledge several external determinants that include the population of eligible youth (for example, those...requirements, are vetted by the Joint Staff and globally staffed and approved through the Secretary of Defense.8 Indirect effects: They are caused by...clear explanation of the causes of readiness degradations and options for how to mitigate them that can be traced to precise resource investments

  2. Using Leadership Competencies as a Framework for Career Readiness.

    Science.gov (United States)

    Howard, Anita R; Healy, Suzanne L; Boyatzis, Richard E

    2017-12-01

    This chapter provides an overview of how a leadership competency approach grounded in emotional and social intelligence can help educators promote career readiness for students. Strategies and approaches for building leadership competencies will be reviewed. © 2017 Wiley Periodicals, Inc., A Wiley Company.

  3. Motion Sickness

    Science.gov (United States)

    Motion sickness is a common problem in people traveling by car, train, airplanes, and especially boats. Anyone ... children, pregnant women, and people taking certain medicines. Motion sickness can start suddenly, with a queasy feeling ...

  4. Pre-shot simulations of far-field ground motion for the Source Physics Experiment (SPE) Explosions at the Climax Stock, Nevada National Security Site: SPE2

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, R J; Rodgers, A; Walter, W; Ford, S; Xu, H; Matzel, E; Myers, S; Petersson, N A; Sjogreen, B; Hauk, T; Wagoner, J

    2011-10-18

    The Source Physics Experiment (SPE) is planning a 1000 kg (TNT equivalent) shot (SPE2) at the Nevada National Security Site (NNSS) in a granite borehole at a depth (canister centroid) of 45 meters. This shot follows an earlier shot of 100 kg in the same borehole at a depth 60 m. Surrounding the shotpoint is an extensive array of seismic sensors arrayed in 5 radial lines extending out 2 km to the north and east and approximately 10-15 to the south and west. Prior to SPE1, simulations using a finite difference code and a 3D numerical model based on the geologic setting were conducted, which predicted higher amplitudes to the south and east in the alluvium of Yucca Flat along with significant energy on the transverse components caused by scattering within the 3D volume along with some contribution by topographic scattering. Observations from the SPE1 shot largely confirmed these predictions although the ratio of transverse energy relative to the vertical and radial components was in general larger than predicted. A new set of simulations has been conducted for the upcoming SPE2 shot. These include improvements to the velocity model based on SPE1 observations as well as new capabilities added to the simulation code. The most significant is the addition of a new source model within the finite difference code by using the predicted ground velocities from a hydrodynamic code (GEODYN) as driving condition on the boundaries of a cube embedded within WPP which provides a more sophisticated source modeling capability linked directly to source site materials (e.g. granite) and type and size of source. Two sets of SPE2 simulations are conducted, one with a GEODYN source and 3D complex media (no topography node spacing of 5 m) and one with a standard isotropic pre-defined time function (3D complex media with topography, node spacing of 5 m). Results were provided as time series at specific points corresponding to sensor locations for both translational (x,y,z) and rotational

  5. A theoretical explanation of RbBH4’s fractionally occupied ground-state phase and the reorientational motion of the [BH4]- group

    Science.gov (United States)

    Chen, Lei; Song, Qi; Zhou, Bo; Zhang, Xiaodong; Jiang, Zhenyi

    2017-11-01

    In this work, a pseudo-structure model is adopted to describe the fractionally occupied phase of RbBH4 at low temperatures. The fractionally occupied cubic ground state with Fm3m symmetry can be explained as a superposition and average of three well-defined pseudo-structures with P43m, F43m and P42/nmc symmetries. First, both mechanical and dynamical stability of these pseudo-structures are supported by the calculated elastic constants and phonon spectra, respectively. By comparing the electronic structure, elastic properties and thermodynamic properties of these well-defined pseudo-structures, it can be found that all pseudo-structures exhibit a certain degree of similarity. Second, the system is stabilized by charge transfer. Bader charge analysis of the pseudo-structures shows that charge transfer in RbBH4 contributes a constant shift in formation energy. Coulomb interaction energy and total electronic energy variations with the unit cell volume have been obtained. The results show that the larger the volume of the unit cell, the lower the difference of Coulomb interaction energy between the pseudo-structures P43m, F43m and P42/nmc. Third, the barrier energies calculated for paths of transitions between these pseudo-structures vary significantly with the volume. As the cell volume decreases from 512 to 216 Å3, the B-H covalent bonds are compressed from 1.242 to 1.208 Å. Meanwhile, the rotational barrier of [BH4]- anion increases rapidly, from 0.04 to 0.97 eV. Last, considering the temperature effect, the free energy and entropy contributions are calculated based on the rigid rotor harmonic oscillator approximation. The Gibbs free energy shows that at low temperature the P42/nmc structure is the preferred structure, and with increasing temperature, the P43m structure becomes the preferred structure. We found that the fractionally occupied phase of RbBH4 can be explained by the size of the Rb+ cation and a subtle balance between the Coulomb interaction energy

  6. Motion sickness

    NARCIS (Netherlands)

    Bles, W.; Bos, J.E.; Kruit, H.

    2000-01-01

    The number of recently published papers on motion sickness may convey the impression that motion sickness is far from being understood. The current review focusses on a concept which tends to unify the different manifestations and theories of motion sickness. The paper highlights the relations

  7. Analysis of K-net and Kik-net data: implications for ground motion prediction - acceleration time histories, response spectra and nonlinear site response; Analyse des donnees accelerometriques de K-net et Kik-net: implications pour la prediction du mouvement sismique - accelerogrammes et spectres de reponse - et la prise en compte des effets de site non-lineaire

    Energy Technology Data Exchange (ETDEWEB)

    Pousse, G

    2005-10-15

    This thesis intends to characterize ground motion during earthquake. This work is based on two Japanese networks. It deals with databases of shallow events, depth less than 25 km, with magnitude between 4.0 and 7.3. The analysis of K-net allows to compute a spectral ground motion prediction equation and to review the shape of the Eurocode 8 design spectra. We show the larger amplification at short period for Japanese data and bring in light the soil amplification that takes place at large period. In addition, we develop a new empirical model for simulating synthetic stochastic nonstationary acceleration time histories. By specifying magnitude, distance and site effect, this model allows to produce many time histories, that a seismic event is liable to produce at the place of interest. Furthermore, the study of near-field borehole records of the Kik-net allows to explore the validity domain of predictive equations and to explain what occurs by extrapolating ground motion predictions. Finally, we show that nonlinearity reduces the dispersion of ground motion at the surface. (author)

  8. Separation of source and site effects in ground motions recorded in the village of Onna during aftershocks of the 2009 April 6, Mw 6.1 L'Aquila earthquake

    Science.gov (United States)

    Cantore, Luciana; Rovelli, Antonio; Calderoni, Giovanna

    2017-07-01

    The village of Onna, a 10 km apart from L'Aquila, central Italy, was dramatically struck by the 2009 April 6, Mw 6.1 earthquake with 80 per cent of buildings collapsed or severely damaged. The high vulnerability of predominantly ancient buildings and the propensity of site geology to amplify ground motion on the Holocene sediments of the Aterno river valley were unanimously thought as responsible for the huge destruction. To quantify site effects in the damaged zone of Onna and study source scaling over a wide magnitude range (2.0 ≤ ML ≤ 5.4), we have used recordings of 20 stations installed in Onna and other villages around L'Aquila. We analyse more than 1000 seismograms of 202 aftershocks occurring up to source-to-receiver distances of 50 km and infer site and source parameters by means of an inversion procedure. The source spectra inferred from the data inversion confirm the large variability in the high-frequency radiation already found by other authors for L'Aquila earthquakes, with Brune stress drops around 10 MPa at the highest magnitudes of the investigated range and spreading mostly between 0.1 and 1 MPa at smaller magnitudes. Moreover, the inversion of our data yields larger amplitudes of empirical transfer functions in the village of Onna confirming the role of the local geology on damage. The site functions of Onna show a common resonance mode around 2.7 Hz, with amplitudes attaining a factor of 4-5. Moreover, we find that the transfer function amplitude does not decrease below 2 in a large high-frequency band above the site resonant frequency, up to more than 10 Hz. This indicates a further broad-band contribution to the ground motion amplification in Onna. In a simulation of the main shock scenario applying the estimated source scaling to aftershock records, Onna results in the highest accelerations among the villages around L'Aquila. In distinct contrast, transfer functions close to unity in the entire frequency band are found for stations

  9. Fine-resolution repeat topographic surveying of dryland landscapes using UAS-based structure-from-motion photogrammetry: Assessing accuracy and precision against traditional ground-based erosion measurements

    Science.gov (United States)

    Gillian, Jeffrey K.; Karl, Jason W.; Elaksher, Ahmed; Duniway, Michael C.

    2017-01-01

    Structure-from-motion (SfM) photogrammetry from unmanned aerial system (UAS) imagery is an emerging tool for repeat topographic surveying of dryland erosion. These methods are particularly appealing due to the ability to cover large landscapes compared to field methods and at reduced costs and finer spatial resolution compared to airborne laser scanning. Accuracy and precision of high-resolution digital terrain models (DTMs) derived from UAS imagery have been explored in many studies, typically by comparing image coordinates to surveyed check points or LiDAR datasets. In addition to traditional check points, this study compared 5 cm resolution DTMs derived from fixed-wing UAS imagery with a traditional ground-based method of measuring soil surface change called erosion bridges. We assessed accuracy by comparing the elevation values between DTMs and erosion bridges along thirty topographic transects each 6.1 m long. Comparisons occurred at two points in time (June 2014, February 2015) which enabled us to assess vertical accuracy with 3314 data points and vertical precision (i.e., repeatability) with 1657 data points. We found strong vertical agreement (accuracy) between the methods (RMSE 2.9 and 3.2 cm in June 2014 and February 2015, respectively) and high vertical precision for the DTMs (RMSE 2.8 cm). Our results from comparing SfM-generated DTMs to check points, and strong agreement with erosion bridge measurements suggests repeat UAS imagery and SfM processing could replace erosion bridges for a more synoptic landscape assessment of shifting soil surfaces for some studies. However, while collecting the UAS imagery and generating the SfM DTMs for this study was faster than collecting erosion bridge measurements, technical challenges related to the need for ground control networks and image processing requirements must be addressed before this technique could be applied effectively to large landscapes.

  10. Career Readiness: Has Its Time Finally Come?

    Science.gov (United States)

    DeWitt, Stephen

    2012-01-01

    In 2010, the Association for Career and Technical Education (ACTE) released a "What Is Career Ready?" definition. As the career-readiness definition explains, there is much overlap between "college readiness" and "career readiness," but academic preparedness for college alone is not enough to be truly career-ready.…

  11. "Ready to Acquire"

    DEFF Research Database (Denmark)

    Yetton, Philip; Henningsson, Stefan; Bjørn-Andersen, Niels

    2013-01-01

    This article describes the experiences of Danisco (a global food ingredients company) as it followed a growth-by-acquisition business strategy, focusing on how a new CIO built the IT resources to ensure the IT organization was "ready to acquire." We illustrate how these IT capabilities expedited...... the IT integration following two acquisitions, one of which involved Danisco expanding the scale of its business and the other extending the scope. Based on insights gained from Danisco, we provide lessons for CIOs to realize business benefits when managing post-acquisition IT integration....

  12. P- and S-wave velocity models incorporating the Cascadia subduction zone for 3D earthquake ground motion simulations—Update for Open-File Report 2007–1348

    Science.gov (United States)

    Stephenson, William J.; Reitman, Nadine G.; Angster, Stephen J.

    2017-12-20

    In support of earthquake hazards studies and ground motion simulations in the Pacific Northwest, threedimensional (3D) P- and S-wave velocity (VP and VS , respectively) models incorporating the Cascadia subduction zone were previously developed for the region encompassed from about 40.2°N. to 50°N. latitude, and from about 122°W. to 129°W. longitude (fig. 1). This report describes updates to the Cascadia velocity property volumes of model version 1.3 ([V1.3]; Stephenson, 2007), herein called model version 1.6 (V1.6). As in model V1.3, the updated V1.6 model volume includes depths from 0 kilometers (km) (mean sea level) to 60 km, and it is intended to be a reference for researchers who have used, or are planning to use, this model in their earth science investigations. To this end, it is intended that the VP and VS property volumes of model V1.6 will be considered a template for a community velocity model of the Cascadia region as additional results become available. With the recent and ongoing development of the National Crustal Model (NCM; Boyd and Shah, 2016), we envision any future versions of this model will be directly integrated with that effort

  13. Preparing Global-Ready Teachers

    Science.gov (United States)

    Larson, Lotta; Brown, Jennifer S.

    2017-01-01

    To produce glo