WorldWideScience

Sample records for reactors nouvelle methode

  1. New modelling method for fast reactor neutronic behaviours analysis; Nouvelles methodes de modelisation neutronique des reacteurs rapides de quatrieme Generation

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, P.

    2011-05-23

    Due to safety rules running on fourth generation reactors' core development, neutronics simulation tools have to be as accurate as never before. First part of this report enumerates every step of fast reactor's neutronics simulation implemented in current reference code: ECCO. Considering the field of fast reactors that meet criteria of fourth generation, ability of models to describe self-shielding phenomenon, to simulate neutrons leakage in a lattice of fuel assemblies and to produce representative macroscopic sections is evaluated. The second part of this thesis is dedicated to the simulation of fast reactors' core with steel reflector. These require the development of advanced methods of condensation and homogenization. Several methods are proposed and compared on a typical case: the ZONA2B core of MASURCA reactor. (author) [French] Les criteres de surete qui regissent le developpement de coeurs de reacteurs de quatrieme generation implique l'usage d'outils de calcul neutronique performants. Une premiere partie de la these reprend toutes les etapes de modelisation neutronique des reacteurs rapides actuellement d'usage dans le code de reference ECCO. La capacite des modeles a decrire le phenomene d'autoprotection, a representer les fuites neutroniques au niveau d'un reseau d'assemblages combustibles et a generer des sections macroscopiques representatives est appreciee sur le domaine des reacteurs rapides innovants respectant les criteres de quatrieme generation. La deuxieme partie de ce memoire se consacre a la modelisation des coeurs rapides avec reflecteur acier. Ces derniers necessitent le developpement de methodes avancees de condensation et d'homogenisation. Plusieurs methodes sont proposees et confrontees sur un probleme de modelisation typique: le coeur ZONA2B du reacteur maquette MASURCA

  2. A new detector for the measurement of neutron flux in nuclear reactors; Nouvelle methode de mesure des flux de neutrons dans les reacteurs atomiques

    Energy Technology Data Exchange (ETDEWEB)

    Koch, L; Labeyrie, J; Tarassenko, S [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The detector described is designed for the instantaneous measurement of thermal neutron fluxes, in the presence of high {gamma} ray activity; this detector can withstand temperatures as high as 500 deg. C. It is based on the following principle: radioactive atoms resulting from heavy-nucleus fission are carried by a gas flow to a detector recording their {beta} and {gamma} disintegration. Thermal neutron fluxes as low as few neutrons per cm{sup 2} per second can be measured. This detector may be used to control a nuclear reactor, to plot the thermal flux distribution with an excellent definition (1 mm{sup 2}) for fluxes higher than 10{sup 8} n/cm{sup 2}/s. The time response of the system to a sharp variation of flux is limited, in case of large fluxes, to the transit time of the gas flow between the fission product emitter and the detector; of the order of one tenth of a sec per meter of piping. The detector may also be applied for spectroscopy of fission products eider than 0,1 s. (author)Fren. [French] On decrit un appareil permettant la mesure instantanee des flux de neutrons thermiques accompagnes de flux intenses de rayons {gamma} et situes dans des enceintes pouvant etre portees a des temperatures superieures a 500 deg. C. On utilise la radioactivite des atomes resultant de la fission des noyaux lourds; ces atomes sont entraines par un courant gazeux vers un detecteur de radioactivite qui enregistre leurs desintegrations {beta} et {gamma}. On peut mesurer des flux partir de quelques neutrons thermiques par cm{sup 2} et par seconde. L'appareil permet de suivre la puissance d'un reacteur atomique, de tracer des cartes de densite de neutrons avec une tres bonne definition (1 mm{sup 2}) dans le cas de flux superieurs a 10{sup 8} cm{sup 2}/s. Le temps de reponse du systeme a une variation du flux de neutrons est limite, poes flux importants, par le temps de transit du gaz entre l'emetteur de produits de fission et le detecteur: soit quelques dizaines de

  3. New methods of thermodynamics; Nouvelles methodes en thermodynamique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This day, organized by the SFT French Society of Thermology, took stock on the new methods in the domain of the thermodynamics. Eight papers have been presented during this day: new developments of the thermodynamics in finite time; the optimal efficiency of energy converters; a version of non-equilibrium thermodynamics with entropy and information as positive and negative thermal change; the role of thermodynamics in process integration; application of the thermodynamics to critical nuclear accidents; the entropic analysis help in the case of charge and discharge state of an energy storage process; fluid flow threw a stable state in the urban hydraulic; a computer code for phase diagram prediction. (A.L.B.)

  4. New methods and applications in emission spectroscopy (1960); Methodes et applications nouvelles en spectroscopie d'emission (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Baudin, G [Commissariat a l' Energie Atomique, Grenoble (France).Centre d' Etudes Nucleaires

    1960-07-01

    Emission spectroscopy, are already well-established instrumental analytical technique, has in recent years known important developments. Two mains factors are responsible; firstly the demands of metallurgy for purer and purer materials or alloys which are increasingly complex and difficult to analyse by chemical means; secondly, progress in optics, especially in the production of gratings, and in electronics in the field of photomultiplier tubes. We will not here catalogue all the new applications and methods, but we will consider a few amongst the most representative outside the conventional field. (author) [French] La spectroscopie d'emission, technique analytique instrumentale deja ancienne, a pris, depuis quelques annees, une extension notable. Deux facteurs principaux ont contribue a ce succes: d'une part, l'exigence de la metallurgie en materiaux de plus en plus pur ou en alliages de plus en plus complexes, difficiles a analyser chimiquement, d'autre part, les progres realises en optique, principalement dans la fabrication des reseaux, et en electronique dans le domaine des tubes photomultiplicateurs. Nous ne ferons pas ici le recensement de toutes les applications ou methodes nouvelles, mais nous en choisirons quelques unes des plus representatives hors du domaine classique. (auteur)

  5. Method of reactor operation

    International Nuclear Information System (INIS)

    Maeda, Katsuji.

    1982-01-01

    Purpose: To prevent stress corrosion cracks in stainless steels caused from hydrogen peroxide in reactor operation in which the density of hydrogen peroxide in the reactor water is controlled upon reactor start-up. Method: A heat exchanger equipped with a heat source for applying external heat is disposed into the recycling system for reactor coolants. Upon reactor start-up, the coolants are heated by the heat exchanger till arriving at a temperature at which the dissolving rate is faster than the forming rate of hydrogen peroxide in the coolants, and nuclear heating is started after reaching the above temperature. The temperature of the reactor water is increased in such a manner and, when it arrives at 140 0 C, extraction of control elements is started and the heat source for the heat exchanger is interrupted simultaneously. In this way spikes in the density of hydrogen peroxide are suppressed upon reactor start-up to thereby decrease the stress corrosion cracks in stainless steels. (Horiuchi, T.)

  6. Method of reactor fueling

    International Nuclear Information System (INIS)

    Saito, Toshiro.

    1983-01-01

    Purpose: To decrease the cost and shorten the working time by saving fueling neutron detectors and their components. Method: Incore drive tubes for the neutron source range monitor (SRM) and intermediate range monitor (IRM) are disposed respectively within in a reactor core and a SRM detector assembly is inserted to the IRM incore drive tube which is most nearest to the neutron source upon reactor fueling. The reactor core reactivity is monitored by the SRM detector assembly. The SRM detector asesembly inserted into the IRM drive tube is extracted at the time of charging fuels up to the frame connecting the SRM and, thereafter, IRM detection assembly is inserted into the IRM drive tube and the SRM detector assembly is inserted into the SRM drive tube respectively for monitoring the reactor core. (Sekiya, K.)

  7. Reactor operation method

    International Nuclear Information System (INIS)

    Osumi, Katsumi; Miki, Minoru.

    1979-01-01

    Purpose: To prevent stress corrosion cracks by decreasing the dissolved oxygen and hydrogen peroxide concentrations in the coolants within a reactor container upon transient operation such as at the start-up or shutdown of bwr type reactors. Method: After a condensate has been evacuated, deaeration operation is conducted while opening a main steam drain line, as well as a main steam separation valve and a by-pass valve in a turbine by-pass line connecting the main steam line and the condenser without by way of a turbine, and the reactor is started-up by the extraction of control rods after the concentration of dissolved oxygen in the cooling water within a pressure vessel has been decreased below a predetermined value. Nuclear heating is started after the reactor water has been increased to about 150 0 C by pump heating after the end of the deaeration operation for preventing the concentration of hydrogen peroxide and oxygen in the reactor water from temporarily increasing immediately after the start-up. The corrosive atmosphere in the reactor vessel can thus be moderated. (Horiuchi, T.)

  8. Spectral shift reactor control method

    International Nuclear Information System (INIS)

    Impink, A.J. Jr.

    1981-01-01

    A method of operating a nuclear reactor having a core and coolant displacer elements arranged in the core wherein is established a reator coolant temperature set point at which it is desired to operate said reactor and first reactor coolant temperature band limits are provided within which said set point is located and it is desired to operate said reactor charactrized in that said reactor coolant displacer elements are moved relative to the reactor core for adjusting the volume of reactor coolant in said core as said reactor coolant temperature approaches said first band limits thereby to maintain said reactor coolant temperature near said set point and within said first band limits

  9. Method of reactor operation

    International Nuclear Information System (INIS)

    Nakajima, Takeshi

    1988-01-01

    Purpose: To minimize the power change due to the increase in xenone and power distribution after reaching the rated power in the case of using fresh fuels no requiring conditioning operation thereby starting the nuclear reactor in a short period of time and stably. Method: When control rods are entirely inserted only with a purpose for the compensation of the reactivity in a xenon-unsaturated state such as upon starting of the nuclear reactor, peaking is generated in the lower portion of the reactor core. Therefore, it is necessary to insert control rods for additionally suppressing the peaking in the lower portion of the reactor core to a relatively shallow level. In view of the above, a plurality of control rods are divided into a first control rod group finally inserted in the rated power state and a second control rod group other than the above. Then, the power is once elevated to the rated power level by means of such an intermediate control rod pattern that the ratio of the total extraction amount between the first control rod group and the second control rod group is made constant. Then, the control rods are extracted stepwise while setting the ratio of the total extraction amount constant in accordance with the change of the accumulating amount of xenone, to thereby obtain the purpose. (kamimura, M.)

  10. New method of determining the thermal utilization factor of a cell; Nouvelle methode de determination du facteur d'utilisation thermique d'une cellule

    Energy Technology Data Exchange (ETDEWEB)

    Amouyal, A; Benoist, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    A new formula for the thermal utilization factor is derived, which, while comparable in simplicity to the formula given by elementary diffusion theory, furnishes much more precise results. This is clearly brought out by comparison with the results given by the S{sub n} and spherical harmonics methods. (author) [French] Une nouvelle expression du facteur d'utilisation thermique, d'une simplicite comparable a celle de Ia theorie elementaire, est etablie. La comparaison avec les resultats fournis par la methode S{sub n} et les methodes d'harmoniques spheriques montre que la precision obtenue par cette formule est tres superieure a celle que donne la theorie elementaire. (auteur)

  11. Reactor safety method

    International Nuclear Information System (INIS)

    Vachon, L.J.

    1980-01-01

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature

  12. Reactor operation method

    International Nuclear Information System (INIS)

    Suzuki, Toshio; Hida, Kazuki; Yoshioka, Ritsuo.

    1990-01-01

    The enrichment degree of fuels initially loaded in a reactor core was made extremely lower than that of fresh fuels to be loaded in the succeeding cycle, or the enrichment degree for all of the initially loaded fuels was made identical with that of the fresh fuels in the conventional reactor operation method. In this operation method, since the initially loaded fuels are sometimes taken out after the completion of the cycle at the low burnup degree as it is, it can not be said to reduce the fuel cycle cost. As a means for dissolving this problem, at least two different kinds of initially loaded fuels are prepared. The enrichment degree of the highly enriched fuels is made identical with that of the fresh fuels, and the enrichment degree and the number of low enriched fuels are not changed after the completion of the first cycle but they are operated till the end of the second cycle. Further, all of the fuels at the low enrichment degree are taken out after the completion of the second cycle and exchanged with the fresh fuels. As a result, high burnup ratio of the initially loaded fuels can be increased, to improve the fuel economy. (I.S.)

  13. Method of operating a reactor

    International Nuclear Information System (INIS)

    Oosumi, Katsumi; Yamamoto, Michiyoshi.

    1980-01-01

    Purpose: To prevent stress corrosion cracking in the structural material of a reactor pressure vessel. Method: Prior to the starting of a reactor, the reactor pressure vessel is evacuated to carry out degassing of reactor water, and, at the same time, reactor water is heated. After reactor water is heated to a predetermined temperature, control rods are extracted to start nuclear heating. While the temperature of the reactor water is in a temperature range where elution of a metal which is a structural material of the reactor pressure vessel becomes vigorous and the sensitivity to the stress corrosion cracks increases, the reactor is operated at the maximum permissible temperature raising speed or maximum permissible cooling speed. (Aizawa, K.)

  14. Spectral shift reactor control method

    International Nuclear Information System (INIS)

    Impink, A.J.

    1982-01-01

    A method of operating a nuclear reactor having a core and coolant displacer elements arranged in the core where there is established a reactor coolant temperature set point at which it is desired to operate the reactor and first reactor coolant temperature band limits within which the set point is characterized. The reactor coolant displacer elements are moved relative to the reactor core for adjusting the volume of reactor coolant in the core as the reactor coolant temperature approaches the first band limits to maintain the reactor coolant temperature near the set point and within the first band limits. The reactivity charges associated with movement of respective coolant displacer element clusters is calculated and compared with a calculated derived reactivity charge in order to select the cluster to be moved. (author)

  15. Reactor theory and power reactors. 1. Calculational methods for reactors. 2. Reactor kinetics

    International Nuclear Information System (INIS)

    Henry, A.F.

    1980-01-01

    Various methods for calculation of neutron flux in power reactors are discussed. Some mathematical models used to describe transients in nuclear reactors and techniques for the reactor kinetics' relevant equations solution are also presented

  16. New competition in the world market of nuclear reactors; La nouvelle concurrence sur le marche mondial des reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Finon, D. [Centre National de la Recherche Scientifique (CNRS), CIRED (EHESS et CNRS), 75 - Paris (France)

    2005-06-01

    As nuclear orders are picking up a little, there are strengths competing against one another in the world industry of reactors, an industry that has been deeply affected for twenty years, by the smallness of the market and the reorganization of the electromechanical industry. Competition remains particularly difficult, even though, in terms of exports, national markets in industrialized countries such as the American market and European market are now open to foreign newcomers. One of the reasons of the difficulty is the increased commercial competition based on advanced reactor techniques untested due to strong faith in technology leading to forget the learning difficulties of older reactor types. On a narrow market, demanding and with very specific political interference, the reasoning is not like on an ordinary capital equipment market. Each builder tries to sell by relying on the assets it has in addition to the offered price and related services: industrial reputation and experience that play confusedly when untested advanced reactors are competing with one another, credit terms offered by the State and the government's influence on the market of emerging economies, the backing o the State's financial insurance in the event of risks taken in the sale of turnkey untested reactors. In the competition of the five manufacturers in the export market, American builders do not seem to have the best place, though even the leading position of Framatome ANP shows some limits. (author)

  17. Method for operating nuclear reactor

    International Nuclear Information System (INIS)

    Utamura, Motoaki; Urata, Megumu; Uchida, Shunsuke

    1978-01-01

    Purpose: In order to judge the fuel failures, if any, without opening a reactor container for BWR type reactors, a method has been described for measuring the difference between the temperature dependent iodine spike value and the pressure dependent iodine spike value in the pressure vessel. Method: After the scram of a nuclear reactor, steam generated by decay heat is condensed in a remaining heat exchanger and cooling water is returned through a recycling pipe line to a reactor core. At the same time, a control rod drive system pump is operated, the reactor core is filled with the cooling water. Then, the coolant is taken from the recycling pipe line to cool the reactor core. After applying the temperature fluctuation, the cooling water is sampled at a predetermined time interval at a sampling point to determine the changes with time in the radioactive concentration of iodine. When the radioactivity of iodine in the cooling water is lowered sufficiently by a reactor purifying system, the nuclear reactor vessel is depressurized. After applying pressure fluctuation, iodine spike value is determined. (Kawakami, Y.)

  18. A new method for dosing uranium in biological media; Nouvelle methode de dosage de l'uranium dans les milieux biologiques

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Ph; Kobisch, Ch [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1964-07-01

    This report describes a new method for dosing uranium in biological media based on measurement of alpha activity. After treatment of the sample with a mineral acid, the uranium is reduced to the valency four by trivalent titanium and is precipitated as phosphate in acid solution. The uranium is then separated from the titanium by precipitation as UF{sub 4} with lanthanum as carrier. A slight modification, unnecessary in the case of routine analyses, makes it possible to eliminate other possible alpha emitters (thorium and transuranic elements). (authors) [French] Ce rapport decrit une nouvelle methode de dosage de l'uranium dans les milieux biologiques par mesure de l'activite alpha. Apres mineralisation de l'echantillon, l'uranium est reduit a la valence IV par le titane trivalent et precipite en milieu acide sous forme de phosphate. L'uranium est ensuite separe du titane par precipitation a l'etat d'UF{sub 4} avec du lanthane entraineur. Une legere modification, inutile dans le cas d'analyses de routine, permet d'effectuer l'elimination d'autres emetteurs alpha eventuels (thorium et transuraniens). (auteurs)

  19. Methods in nuclear reactors calculations

    International Nuclear Information System (INIS)

    Velarde, G.

    1966-01-01

    Studies are made of the neutron transport equation corresponding to the the real and virtual reactors, as well as the starting hypotheses. Methods are developed to solve the transport equation in slab geometry, and P l ; B l ; M l ; S n and discrete ordinates approximations. (Author)

  20. Method of safely operating nuclear reactor

    International Nuclear Information System (INIS)

    Ochiai, Kanehiro.

    1976-01-01

    Purpose: To provide a method of safely operating an nuclear reactor, comprising supporting a load applied to a reactor container partly with secondary container facilities thereby reducing the load borne by the reactor container when water is injected into the core to submerge the core in an emergency. Method: In a reactor emergency, water is injected into the reactor core thereby to submerge the core. Further, water is injected into a gap between the reactor container and the secondary container facilities. By the injection of water into the gap between the reactor container and the secondary container facilities a large apparent mass is applied to the reactor container, as a result of which the reactor container undergoes the same vibration as that of the secondary container facilities. Therefore, the load borne by the reactor container itself is reduced and stress at the bottom part of the reactor container is released. This permits the reactor to be operated more safely. (Moriyama, K.)

  1. Method of constructing reactor buildings

    International Nuclear Information System (INIS)

    Hyuga, Takenori; Nagai, Fumio; Akutsu, Masayoshi.

    1985-01-01

    Purpose: To shorten the construction period for LMFBR type reactors, as well as smoothly introduce high pressure steams generated in concretes upon loss of coolant accidents to the outside of the system. Method: After disposing a liner plate as a chamber lining of reactor buildings, heat insulation materials having steam discharge channels at the outer surface are attached to the outside of the liner plate and, further, an organic films are disposed to the outside of the heat insulation materials. Then, concretes are spiked to the outside of the organic films using the liner plate and the heat insulation material as the mold for concretes. In this way, the construction period can be shortened by utilizing the liner plate and the heat insulation materials as the mold for concretes, as well as steams at high temperature resulted in the concretes upon loss of coolant accidents can smoothly be discharged to the outside of the system. (Moriyama, K.)

  2. New recording methods and electromechanical analysis; Nouvelles methodes d'enregistrement et de depouillement electromecanique des numerations de particules

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, R.; Bonpas, M.; Legrand, J.P. [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1954-07-01

    The measurement that the most often occurs in nuclear physics are of the numerations of pulses representing the transit of a particle in a detector that can be a Geiger counter, a photomultiplier or a pulse chamber. We studied and constructed an electromagnetic recorder who permits to get automatically and without calculation: 1) the activity of a radioelement according to the time; 2) the curve of decrease of a radioelement and its period; 3) any curves of growth or decrease; 4) the activity, at any instant, of a neutron detector; 5) the neutron densities ratios in several points by the method of the detectors. (M.B.) [French] Les mesures qui se presentent le plus souvent en physique nucleaire sont des numerations d'impulsions representant le passage d'une particule dans un detecteur qui peut etre un compteur de Geiger, un photomultiplicateur ou une chambre a impulsions. Nous avons etudie et construit un enregistreur electromagnetique qui permet d'obtenir automatiquement et sans calcul: 1) l'activite d'un radioelement en fonction du temps; 2) la courbe de decroissance d'un radioelement et sa periode; 3) des courbes quelconques de croissance ou de decroissance; 4) l'activite, rapportee a un instant quelconque, d'un detecteur de neutrons; 5) les rapports des densites de neutrons en plusieurs points par la methode des detecteurs. (M.B.)

  3. New recording methods and electromechanical analysis; Nouvelles methodes d'enregistrement et de depouillement electromecanique des numerations de particules

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, R; Bonpas, M; Legrand, J P [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1954-07-01

    The measurement that the most often occurs in nuclear physics are of the numerations of pulses representing the transit of a particle in a detector that can be a Geiger counter, a photomultiplier or a pulse chamber. We studied and constructed an electromagnetic recorder who permits to get automatically and without calculation: 1) the activity of a radioelement according to the time; 2) the curve of decrease of a radioelement and its period; 3) any curves of growth or decrease; 4) the activity, at any instant, of a neutron detector; 5) the neutron densities ratios in several points by the method of the detectors. (M.B.) [French] Les mesures qui se presentent le plus souvent en physique nucleaire sont des numerations d'impulsions representant le passage d'une particule dans un detecteur qui peut etre un compteur de Geiger, un photomultiplicateur ou une chambre a impulsions. Nous avons etudie et construit un enregistreur electromagnetique qui permet d'obtenir automatiquement et sans calcul: 1) l'activite d'un radioelement en fonction du temps; 2) la courbe de decroissance d'un radioelement et sa periode; 3) des courbes quelconques de croissance ou de decroissance; 4) l'activite, rapportee a un instant quelconque, d'un detecteur de neutrons; 5) les rapports des densites de neutrons en plusieurs points par la methode des detecteurs. (M.B.)

  4. The photothermal camera - a new non destructive inspection tool; La camera photothermique - une nouvelle methode de controle non destructif

    Energy Technology Data Exchange (ETDEWEB)

    Piriou, M. [AREVA NP Centre Technique SFE - Zone Industrielle et Portuaire Sud - BP13 - 71380 Saint Marcel (France)

    2007-07-01

    The Photothermal Camera, developed by the Non-Destructive Inspection Department at AREVA NP's Technical Center, is a device created to replace penetrant testing, a method whose drawbacks include environmental pollutants, industrial complexity and potential operator exposure. We have already seen how the Photothermal Camera can work alongside or instead of conventional surface inspection techniques such as penetrant, magnetic particle or eddy currents. With it, users can detect without any surface contact ligament defects or openings measuring just a few microns on rough oxidized, machined or welded metal parts. It also enables them to work on geometrically varied surfaces, hot parts or insulating (dielectric) materials without interference from the magnetic properties of the inspected part. The Photothermal Camera method has already been used for in situ inspections of tube/plate welds on an intermediate heat exchanger of the Phenix fast reactor. It also replaced the penetrant method for weld inspections on the ITER vacuum chamber, for weld crack detection on vessel head adapter J-welds, and for detecting cracks brought on by heat crazing. What sets this innovative method apart from others is its ability to operate at distances of up to two meters from the inspected part, as well as its remote control functionality at distances of up to 15 meters (or more via Ethernet), and its emissions-free environmental cleanliness. These make it a true alternative to penetrant testing, to the benefit of operator and environmental protection. (author) [French] La Camera Photothermique, developpee par le departement des Examens Non Destructifs du Centre Technique de AREVA NP, est un equipement destine a remplacer le ressuage, source de pollution pour l'environnement, de complexite pour l'industrialisation et eventuellement de dosimetrie pour les operateurs. Il a ete demontre que la Camera Photothermique peut etre utilisee en complement ou en remplacement des

  5. Reactor physics methods development at Westinghouse

    International Nuclear Information System (INIS)

    Mueller, E.; Mayhue, L.; Zhang, B.

    2007-01-01

    The current state of reactor physics methods development at Westinghouse is discussed. The focus is on the methods that have been or are under development within the NEXUS project which was launched a few years ago. The aim of this project is to merge and modernize the methods employed in the PWR and BWR steady-state reactor physics codes of Westinghouse. (author)

  6. Reactor power reduction system and method

    International Nuclear Information System (INIS)

    Bruno, S.J.; Dunn, S.A.; Raber, M.

    1978-01-01

    A method of operating a nuclear power reactor is disclosed which enables an accelerated power reduction of the reactor without completely shutting the reactor down. The method includes monitoring the incidents which, upon their occurrence, would require an accelerated power reduction in order to maintain the reactor in a safe operation mode; calculating the power reduction required on the occurrence of such an incident; determining a control rod insertion sequence for the normal operation of the reactor, said sequence being chosen to optimize reactor power capability; selecting the number of control rods necessary to respond to the accelerated power reduction demand, said selection being made according to a priority determined by said control rod insertion sequence; and inserting said selected control rods into the reactor core. 11 claims, 13 figures

  7. Baking method for thermonuclear reactor

    International Nuclear Information System (INIS)

    Kobayashi, Shigetada.

    1986-01-01

    Purpose: To improve the heat transmission property to the reactor core structures thereby shortening the baking time for the reactor core in thermonuclear reactors. Constitution: High temperature airs are supplied from a baking system to cooling pipeways disposed within reactor core structures and helium gas is supplied from a helium gas supply system through the reactor core structures to the inside of the reactor core for scavenging. The scavenging operation may be combined with vacuum suction. Further, the inside of the reactor is scavenged while maintaining at such a negative pressure as within a range not degrading the heat conduction property. Since the helium gas is chemically inert and poor in the depositing property, it shows no adsorbability even for the material heated to high temperature. Further, since the diffusion and heat conduction properties are high, the heat conduction property to the materials upon baking can be improved to shorten the baking time. No disadvantages are caused by the introduction of the helium gas upon baking. (Kawakami, Y.)

  8. Method for refuelling a nuclear reactor core

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This invention relates to an improved method for refuelling a nuclear reactor core inside a reactor vessel. The technique allows a substantial reduction in the refuelling time as compared with previously known methods and permits fewer out of core operations and smaller temporary storage space. (U.K.)

  9. Study of new structures adapted to gas-graphite and gas-heavy water reactors; Etude de structures nouvelles adaptees aux reacteurs graphite-gaz et eau lourde-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R; Roche, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The experience acquired as a result of the operation of the Marcoule reactors and of the construction and start-up of the E.D.F. reactors on the one hand, and the conclusions of research and tests carried out out-of-pile on the other hand, lead to a considerable change in the general design of reactors of the gas-graphite type. The main modifications envisaged are analysed in the paper. The adoption of an annular fuel element and of a down-current cooling will make it possible to increase considerably the specific power and the power output of each channel; as a result there will be a considerable reduction in the number of the channels and a corresponding increase in the size of the unit cell. The graphite stack will have to be adapted to there new conditions. For security reasons, the use of prestressed concrete for the construction of the reactor vessel is becoming more widespread; they could lead to the exchangers and the fuel-handling apparatus becoming integrated inside the vessel (the so-called 'attic' device). A full-size mode) of this attic has been built at Saclay with the participation of EURATOM; the operational results obtained are presented as well as a new original design for the control rods. As for as the gas-heavy-water system is concerned, the research is carried out on two points of design; the first, which retains the use of horizontal pressure tubes, takes into account the experience acquired during the construction of the EL 4 reactor of which it will constitute an extrapolation; the second, arising from the research carried out on the gas-graphite system, will use a pre-stressed concrete vessel for holding the pressure, the moderator being almost at the same pressure as the cooling fluid and the fuel being placed in vertical channels. The relative merits of these two variants are analysed in the present paper. (authors) [French] L'experience acquise par l'exploitation des reacteurs de MARCOULE, la construction et le demarrage des reacteurs d

  10. Reactor power control method and device

    International Nuclear Information System (INIS)

    Fushimi, Atsushi; Ishii, Yoshihiko; Miyamoto, Yoshiyuki; Ishii, Kazuhiko; Kiyoharu, Norihiko; Aizawa, Yuko.

    1997-01-01

    The present invention provides a method and a device suitable to rise the temperature and increase the pressure of the reactor to an aimed pressure in accordance with an aimed value for a reactor water temperature changing rate in the course of rising temperature and increasing pressure of the reactor upon start up of a BWR type power plant. Namely, neutron fluxes in the reactor and the temperature of reactor water are detected respectively. The maximum value among the detected values for the neutron fluxes is detected. The reactor water temperature changing rate is calculated based on the detected values of the reactor water temperature, from which the maximum value of the reactor water temperature changing rate is detected. An aimed value for the neutron flux is calculated in accordance with both detected maximum values and the aimed value of the reactor water temperature changing rate. The position of control rods is adjusted in accordance with the aimed value for the calculated neutron flux. Then, an aimed value for the neutron flux for realizing the aimed value for the reactor water temperature changing rate can be obtained accurately with no influence of the sensitivity of the detected values of the neutron fluxes and the time delay of the reactor water temperature changing rate. (I.S.)

  11. Subcriticality monitoring method for reactor

    International Nuclear Information System (INIS)

    Ueda, Makoto.

    1991-01-01

    The present invention accurately monitors the reactor subcriticality and ensures the critical safety, irrespective of the presence or absence of artificial neutron sources. That is, when the subcriticality is monitored upon reactivity changing operation which causes reactivity change to the reactor during shutdown, neutron monitors are disposed at a plurality of monitoring positions. Then, neutron counting ratio before and after conducting the reactivity changing operation is determined. The subcriticality of the reactor is monitored by the ratio and the state of scattering of the ratio of neutron counting rate between each of the neutron monitors. With such procedures, signals of the neutron monitors are used, the characteristic that the change of the signals depend on the change of the neutron multiplication of the reactor core can be utilized whether artificial neutron sources (external neutron sources) are disposed or not. Accordingly, the subcriticality can be monitored more reliably. (I.S.)

  12. Detection method for nuclear reactor material

    International Nuclear Information System (INIS)

    Isobe, Yusuke; Hashimoto, Motoyuki.

    1995-01-01

    A fine state of a test piece taken out of a reactor core is analyzed upon periodical inspection, and a new test piece previously reproducing the state described above at the outside of the reactor is disposed to the reactor core upon completion of the periodical inspection. Further, a fine state of the material at a time preceding to the operation time at a certain periodical inspection is forecast, and a test piece reproducing the state at the outside of the reactor is disposed to the reactor core upon the completion of the periodical inspection. Since a test piece previously reproducing the change of the state up to a certain periodical inspection by a method other than irradiation of neutrons is newly disposed, radiation of the test piece is not extremely increased even after an extremely long period of summed up reactor operation time, to provide substantially constant radiation level on every test piece. (T.M.)

  13. Core homogenization method for pebble bed reactors

    International Nuclear Information System (INIS)

    Kulik, V.; Sanchez, R.

    2005-01-01

    This work presents a core homogenization scheme for treating a stochastic pebble bed loading in pebble bed reactors. The reactor core is decomposed into macro-domains that contain several pebble types characterized by different degrees of burnup. A stochastic description is introduced to account for pebble-to-pebble and pebble-to-helium interactions within a macro-domain as well as for interactions between macro-domains. Performance of the proposed method is tested for the PROTEUS and ASTRA critical reactor facilities. Numerical simulations accomplished with the APOLLO2 transport lattice code show good agreement with the experimental data for the PROTEUS reactor facility and with the TRIPOLI4 Monte Carlo simulations for the ASTRA reactor configuration. The difference between the proposed method and the traditional volume-averaged homogenization technique is negligible while only one type of fuel pebbles present in the system, but it grows rapidly with the level of pebble heterogeneity. (authors)

  14. Nouvelle methode d'integration energetique pour la retro-installation des procedes industriels et la transformation des usines papetieres

    Science.gov (United States)

    Bonhivers, Jean-Christophe

    The increase in production of goods over the last decades has led to the need for improving the management of natural resources management and the efficiency of processes. As a consequence, heat integration methods for industry have been developed. These have been successful for the design of new plants: the integration principles are largely employed, and energy intensity has dramatically decreased in many processes. Although progress has also been achieved in integration methods for retrofit, these methods still need further conceptual development. Furthermore, methodological difficulties increase when trying to retrofit heat exchange networks that are closely interrelated to water networks, such as the case of pulp and paper mills. The pulp and paper industry seeks to increase its profitability by reducing production costs and optimizing supply chains. Recent process developments in forestry biorefining give this industry the opportunity for diversification into bio-products, increasing potential profit margins, and at the same time modernizing its energy systems. Identification of energy strategies for a mill in a changing environment, including the possibility of adding a biorefinery process on the industrial site, requires better integration methods for retrofit situations. The objective of this thesis is to develop an energy integration method for the retrofit of industrial systems and the transformation of pulp and paper mills, ant to demonstrate the method in case studies. Energy is conserved and degraded in a process. Heat can be converted into electricity, stored as chemical energy, or rejected to the environment. A systematic analysis of successive degradations of energy between the hot utilities until the environment, through process operations and existing heat exchangers, is essential in order to reduce the heat consumption. In this thesis, the "Bridge Method" for energy integration by heat exchanger network retrofit has been developed. This method

  15. Reactor and method for production of nanostructures

    Science.gov (United States)

    Sunkara, Mahendra Kumar; Kim, Jeong H.; Kumar, Vivekanand

    2017-04-25

    A reactor and method for production of nanostructures, including metal oxide nanowires or nanoparticles, are provided. The reactor includes a regulated metal powder delivery system in communication with a dielectric tube; a plasma-forming gas inlet, whereby a plasma-forming gas is delivered substantially longitudinally into the dielectric tube; a sheath gas inlet, whereby a sheath gas is delivered into the dielectric tube; and a microwave energy generator coupled to the dielectric tube, whereby microwave energy is delivered into a plasma-forming gas. The method for producing nanostructures includes providing a reactor to form nanostructures and collecting the formed nanostructures, optionally from a filter located downstream of the dielectric tube.

  16. Method of operating a nuclear reactor

    International Nuclear Information System (INIS)

    Spurgin, A.J.; Schaefer, W.F.

    1978-01-01

    A method of controlling a nuclear power generting station in the event of a malfunction of particular operating components is described. Upon identification of a malfunction, preselected groups of control rods are fully inserted sequentially until a predetermined power level is approached. Additional control rods are then selectively inserted to quickly bring the reactor to a second given power level to be compatible with safe operation of the system with the malfunctioning component. At the time the thermal power output of the reactor is being reduced, the turbine is operated at a rate consistent with the output of the reactor. In the event of a malfunction, the power generating system is operated in a turbine following reactor mode, with the reactor power rapidly reduced, in a controlled manner, to a safe level compatible with the type of malfunction experienced

  17. Method of operating heavy water moderated reactors

    International Nuclear Information System (INIS)

    Masuda, Hiroyuki.

    1980-01-01

    Purpose: To enable stabilized reactor control, and improve the working rate and the safety of the reactor by removing liquid poison in heavy water while maintaining the power level constant to thereby render the void coefficient of the coolants negative in the low power operation. Method: The operation device for a heavy water moderated reactor comprises a power detector for the reactor, a void coefficient calculator for coolants, control rods inserted into the reactor, a poison regulator for dissolving poisons into or removing them out of heavy water and a device for removing the poisons by the poison regulator device while maintaining the predetermined power level or inserting the control rods by the signals from the power detector and the void coefficient calculator in the high temperature stand-by conditions of the reactor. Then, the heavy water moderated reactor is operated so that liquid poisons in the heavy water are eliminated in the high temperature stand-by condition prior to the start for the power up while maintaining the power level constant and the plurality of control rods are inserted into the reactor core and the void coefficient of the coolants is rendered negative in the low power operation. (Seki, T.)

  18. Reactor kinetics methods development. Final report

    International Nuclear Information System (INIS)

    Hansen, K.F.; Henry, A.F.

    1978-01-01

    This report is a qualitative summary of research conducted at MIT from 1967 to 1977 in the area of reactor kinetics methods. The objectives of the research were to find methods of integration of various mathematical models of nuclear reactor transients. From the beginning the work was aimed at numerical integration methods. Specific areas of research, discussed in more detail following, included: integration of multigroup diffusion theory models by finite difference and finite element methods; response matrix and nodal methods; coarse-mesh homogenization; and special treatment of boundary conditions

  19. New methods for leaks detection and localisation using acoustic emission; Nouvelles methodes de detection et de localisation de fuites par emission acoustique

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, P

    1993-12-08

    Real time monitoring of Pressurized Water nuclear Reactor secondary coolant system tends to integrate digital processing machines. In this context, the method of acoustic emission seems to exhibit good performances. Its principle is based on passive listening of noises emitted by local micro-displacements inside a material under stress which propagate as elastic waves. The lack of a priori knowledge on leak signals leads us to go deeper into understanding flow induced noise generation. Our studies are conducted using a simple leak model depending on the geometry and the king of flow inside the slit. Detection and localization problems are formulated according to the maximum likelihood principle. For detection, the methods using a indicator of similarity (correlation, higher order correlation) seems to give better results than classical ones (rms value, envelope, filter banks). For leaks location, a large panel of classical (generalized inter-correlation) and innovative (convolution, adaptative, higher order statistics) methods of time delay estimation are presented. The last part deals with the applications of higher order statistics. The analysis of higher order estimators of a non linear non Gaussian stochastic process family, the improvement of non linear prediction performances and the optimal-order choice problem are addressed in simple analytic cases. At last, possible applications to leak signals analysis are pointed out. (authors).264 refs., 7 annexes.

  20. Method of operating FBR type reactors

    International Nuclear Information System (INIS)

    Arie, Kazuo.

    1984-01-01

    Purpose: To secure the controlling performance and the safety of FBR type reactors by decreasing the amount of deformation due to the difference in the heat expansion of a control rod guide tube. Method: The reactor is operated while disposing reactor core fuel assemblies of a same power at point-to-point symmetrical positions relative to the axial center for the control rod assembly. This can eliminate the temperature difference between opposing surfaces of the control rod guide tube and eliminate the difference in the thermal expansion. (Yoshino, Y.)

  1. An advanced method of heterogeneous reactor theory

    International Nuclear Information System (INIS)

    Kochurov, B.P.

    1994-08-01

    Recent approaches to heterogeneous reactor theory for numerical applications were presented in the course of 8 lectures given in JAERI. The limitations of initial theory known after the First Conference on Peacefull Uses of Atomic Energy held in Geneva in 1955 as Galanine-Feinberg heterogeneous theory:-matrix from of equations, -lack of consistent theory for heterogeneous parameters for reactor cell, -were overcome by a transformation of heterogeneous reactor equations to a difference form and by a development of a consistent theory for the characteristics of a reactor cell based on detailed space-energy calculations. General few group (G-number of groups) heterogeneous reactor equations in dipole approximation are formulated with the extension of two-dimensional problem to three-dimensions by finite Furie expansion of axial dependence of neutron fluxes. A transformation of initial matrix reactor equations to a difference form is presented. The methods for calculation of heterogeneous reactor cell characteristics giving the relation between vector-flux and vector-current on a cell boundary are based on a set of detailed space-energy neutron flux distribution calculations with zero current across cell boundary and G calculations with linearly independent currents across the cell boundary. The equations for reaction rate matrices are formulated. Specific methods were developed for description of neutron migration in axial and radial directions. The methods for resonance level's approach for numerous high-energy resonances. On the basis of these approaches the theory, methods and computer codes were developed for 3D space-time react or problems including simulation of slow processes with fuel burn-up, control rod movements, Xe poisoning and fast transients depending on prompt and delayed neutrons. As a result reactors with several thousands of channels having non-uniform axial structure can be feasibly treated. (author)

  2. Water feeding method upon reactor isolation

    International Nuclear Information System (INIS)

    Sasaki, Koichi; Takahara, Kuniaki; Hamamura, Kenji; Arakawa, Masahiro.

    1990-01-01

    The present invention concerns a method of feeding water upon reactor isolation in a plural loop type reactor having a plurality of reactor cooling systems. Water can be injected to a plurality of pools even if the pressure between the pools is not balanced and the water level in the reactor cooling system is optimally controlled. That is, water can be injected in accordance with the amount required for each of the pools by setting the opening of a turbine inlet steam control valve to somewhat higher than the cooling system pressure of the highest pressure loop. Water feeding devices upon reactor isolation were required by the same number as that for the reactor cooling systems. Whereas since pumps and turbines are used in common without worsening the water injection controllability to each of the loops according to the method of this invention and, accordingly, the cost performance can be improved. Further, since the opening degree of the turbine inlet steam control valve is controlled while making the difference pressure constant between the turbine inlet pressure and the pump exhaust pressure, the amount of the turbine exhausted steams can be reduced and, further, water injection controllability of the flow rate control valve in the injection line is improved. (I.S.)

  3. Method of operating BWR type reactors

    International Nuclear Information System (INIS)

    Sekimizu, Koichi

    1980-01-01

    Purpose: To enable reactor control depending on any demanded loads by performing control by the insertion of control rods in addition to the control by the regulation of the flow rate of the reactor core water at high power operation of a BWR type reactor. Method: The power is reduced at high power operation by decreasing the flow rate of reactor core water from the starting time for the power reduction and the flow rate is maintained after the time at which it reaches the minimum allowable flow rate. Then, the control rod is started to insert from the above time point to reduce the power to an aimed level. Thus, the insufficiency in the reactivity due to the increase in the xenon concentration can be compensated by the withdrawal of the control rods and the excess reactivity due to the decrease in the xenon concentration can be compensated by the insertion of the control rods, whereby the reactor power can be controlled depending on any demanded loads without deviating from the upper or lower limit for the flow rate of the reactor core water. (Moriyama, K.)

  4. Two further years of operation of the reactor G1 (july 1958 - july 1960); Deux nouvelles annees de fonctionnement du reacteur G1. (juillet 1958 - Juillet 1960)

    Energy Technology Data Exchange (ETDEWEB)

    Mathot, P; Bauzit, J; Cante, R; Hebrard, L [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The aim of the present report is to present certain observations and to give the results obtained during the period from july the 1{sup st} 1958 to july the 1{sup st} 1960. The main operations carried out during this period were, chronologically: - From july the 5{sup th} to october the 18{sup th} 1958: preparation and execution of the first annealing of the graphite. - From dec. the 15{sup th} 1958 to july the 15{sup th} 1959: a discharging campaign which resulted in the complete renewal of the fuel elements. During the monthly stoppages of this campaign, it was possible to make certain observations concerning the packing of the graphite, while at the same time measurements of the temperature of the element cans were made at an increased number of points. - From september the 25{sup th} 1959 to december the 9{sup th} 1959: preparation and execution of the second annealing. At the end of the annealing, the thorium lattice was modified and extra thermocouples were installed for measuring the temperature of the body of the graphite. An apparatus was built for measuring the radial flux. - From december the 9{sup th} 1959 to july 1960: a continuous operation campaign, with a minimum of stoppages. The experimental results are re-assembled, independently of their chronological order, under three main headings which describe the reactors history: - continuous operation, - discharges, - annealing of the reactor. (author) [French] Le but du present rapport est d'exposer certaines observations faites et les resultats obtenus au cours de la periode du 1{sup er} juillet 1958 au 1{sup er} juillet 1960. Cette periode a ete marquee chronologiquement par les operations essentielles suivantes: - du 5 juillet au 18 octobre 1958: preparation et execution du premier recuit du graphite. - du 15 decembre 1958 au 15 juillet 1959: campagne de dechargement entrainant un renouvellement total des cartouches de combustibles. Au cours des arrets mensuels de cette campagne, certaines

  5. Feedback of reactor operating data to nuclear methods development

    International Nuclear Information System (INIS)

    Crowther, R.L.; Kang, C.M.; Parkos, G.R.; Wolters, R.A.

    1978-01-01

    The problems in obtaining power reactor data for reliable nuclear methods development and the major sources of power reactor data for this purpose are reviewed. Specific examples of the use of power reactor data in nuclear methods development are discussed. The paper concludes with recommendations on the key elements of an effective program to use power reactor data in nuclear methods development

  6. Leak monitoring method for a reactor container

    International Nuclear Information System (INIS)

    Uehara, Toshio.

    1987-01-01

    Purpose: To confirm leakages from a container upon nuclear reactor operation. Method: Leakages from a nuclear reactor container has been prevented by lowering the inner pressure of the container relative to the external pressure. In the conventional method of calculating the leakage by applying an inner pressure to the container and measuring the pressure change, etc. after the elapse of a pre-determined time, the measurement has to be conducted at periodical inspection when the nuclear reactor is shut-down. In view of the above, the leak test is conducted in the present invention by applying a slight inner pressure to the inside of the reactor container by supplying gases from a gas supply system and detecting the flow rate of the gases in the gas supply system while maintaining the slight inner pressure constant by controlling the supply and discharge of the gases. By applying such a inner pressure as causing no effect to the reactor operation, it is possible to monitor the leaks during operation and to detect the flow rate value surely and continuously if the leak is resulted. (Kamimura, M.)

  7. Nodal method for fast reactor analysis

    International Nuclear Information System (INIS)

    Shober, R.A.

    1979-01-01

    In this paper, a nodal method applicable to fast reactor diffusion theory analysis has been developed. This method has been shown to be accurate and efficient in comparison to highly optimized finite difference techniques. The use of an analytic solution to the diffusion equation as a means of determining accurate coupling relationships between nodes has been shown to be highly accurate and efficient in specific two-group applications, as well as in the current multigroup method

  8. Method for processing spent nuclear reactor fuel

    International Nuclear Information System (INIS)

    Levenson, M.; Zebroski, E.L.

    1981-01-01

    A method and apparatus are claimed for processing spent nuclear reactor fuel wherein plutonium is continuously contaminated with radioactive fission products and diluted with uranium. Plutonium of sufficient purity to fabricate nuclear weapons cannot be produced by the process or in the disclosed reprocessing plant. Diversion of plutonium is prevented by radiation hazards and ease of detection

  9. New trends in reactor physics design methods

    International Nuclear Information System (INIS)

    Jagannathan, V.

    1993-01-01

    Reactor physics design methods are aimed at safe and efficient management of nuclear materials in a reactor core. The design methodologies require a high level of integration of different calculational modules of many a key areas like neutronics, thermal hydraulics, radiation transport etc in order to follow different 3-D phenomena under normal and transient operating conditions. The evolution of computer hardware technology is far more rapid than the software development and has rendered such integration a meaningful and realizable proposition. The aim of this paper is to assess the state of art of the physics design codes used in Indian thermal power reactor applications with respect to meeting the design, operational and safety requirements. (author). 50 refs

  10. Method for controlling FBR type reactor

    International Nuclear Information System (INIS)

    Tamano, Toyomi; Iwashita, Tsuyoshi; Sakuragi, Masanori

    1991-01-01

    The present invention provides a controlling method for moderating thermal transient upon trip in an FBR type reactor. A flow channel for bypassing an intermediate heat exchanger is disposed in a secondary Na system. Then, bypassing flow rate is controlled so as to suppress fluctuations of temperature at a primary exit of the intermediate heat exchanger. Bypassing operation by using the bypassing flow channel is started at the same time with plant trip, to reduce the flow rate of secondary Na flown to the intermediate heat exchanger, so that the imbalance between the primary and the secondary Na flowrates is reduced. Accordingly, fluctuations of the temperature at the primary exit of the intermediate heat exchanger upon trip is suppressed. In view of the above, thermal transient applied to the reactor container upon plant trip can be moderated. As a result, the working life of the reactor can be extended, to improve plant integrity and safety. (I.S.)

  11. Method of reducing radioactivity in nuclear reactors

    International Nuclear Information System (INIS)

    Koshino, Yasuo

    1987-01-01

    Purpose: To prevent increase of radiation dose ratio in primary coolant circuit pipeways of nuclear reactor and reduce operators' exposure dose upon periodical inspection, etc. Method: β-diketone such as acetylacetone is added in a predetermined amount to reactor cooling water. β-diketone dissolves to catch metal ions and iron oxides as the main ingredient of cruds. The resultant β-diketone complex of metals is slightly water soluble neutron molecule, and the total metal amount in the reactor coolant is at a concentration of less than 10 ppb and completely dissolved in water. Accordingly, deposition of clads in the coolant to pipeways can be prevented thereby enabling to prevent the increase in the radiation dose ratio in the pipeways and thus reduce the operators' exposure dose. (Takahashi, M.)

  12. Power controlling method for BWR type reactors

    International Nuclear Information System (INIS)

    Yoshida, Kenji.

    1983-01-01

    Purpose: To enable reactor operation exactly following after an aimed curve in the high power resuming and maintaining period without failures in cladding tubes. Method: Upon recovery of the reactor power to a high power level after changing the reactor power from the high power to the low power level, control rod is operated under such conditions that the linear power density after operation of the control rod does not exceed the PC envelope in the low power period, and the core flow rate is coordinated to the control rod operation. The linear power density can be suppressed within an allowable linear power density by the above operation during high power resuming and maintaining period and, as the result, PCI failures can be prevented. (Kamimura, M.)

  13. Reactor perturbation calculations by Monte Carlo methods

    International Nuclear Information System (INIS)

    Gubbins, M.E.

    1965-09-01

    Whilst Monte Carlo methods are useful for reactor calculations involving complicated geometry, it is difficult to apply them to the calculation of perturbation worths because of the large amount of computing time needed to obtain good accuracy. Various ways of overcoming these difficulties are investigated in this report, with the problem of estimating absorbing control rod worths particularly in mind. As a basis for discussion a method of carrying out multigroup reactor calculations by Monte Carlo methods is described. Two methods of estimating a perturbation worth directly, without differencing two quantities of like magnitude, are examined closely but are passed over in favour of a third method based on a correlation technique. This correlation method is described, and demonstrated by a limited range of calculations for absorbing control rods in a fast reactor. In these calculations control rod worths of between 1% and 7% in reactivity are estimated to an accuracy better than 10% (3 standard errors) in about one hour's computing time on the English Electric KDF.9 digital computer. (author)

  14. Reactor Section standard analytical methods. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Sowden, D.

    1954-07-01

    the Standard Analytical Methods manual was prepared for the purpose of consolidating and standardizing all current analytical methods and procedures used in the Reactor Section for routine chemical analyses. All procedures are established in accordance with accepted practice and the general analytical methods specified by the Engineering Department. These procedures are specifically adapted to the requirements of the water treatment process and related operations. The methods included in this manual are organized alphabetically within the following five sections which correspond to the various phases of the analytical control program in which these analyses are to be used: water analyses, essential material analyses, cotton plug analyses boiler water analyses, and miscellaneous control analyses.

  15. Method of measuring reactor water level

    International Nuclear Information System (INIS)

    Shinohara, Kaoru.

    1979-01-01

    Purpose: To provide a water level measuring system so that a reactor water level detecting signal can be corrected in correspondence to a recirculation flow, thereby to carry out a correct water level detection in a wide range of the reactor. Method: According to the operation record of a precursor reactor, the ratio Δh of the lowering of the water level due to the recirculation flow is lowered in proportion to the ratiowith respect to the rated differential pressure of the recirculation flow. Accordingly, the flow of recirculation pump is measured by an elbow differential pressure generator utilizing an elbow of a pipe, and the measured value is multiplied by a gain by a ratio setter, and therefter, an addition computation is carried out by an adder for correcting the signal from a water level detector. When the signal from the water level detector is corrected in this manner, the influence of the lowering of the water level due to the recirculation flow can be removed, and an interlocker predetermined in the defined water level can be actuated, thus the influence of the dynamic pressure due to the recirculation flow acting on the instrumental pipe line detecting the reactor water level can be removed effectively. (Yoshino, Y.)

  16. Method of dismantling a nuclear reactor

    International Nuclear Information System (INIS)

    Shirai, Masato; Hashimoto, Osamu.

    1984-01-01

    Purpose: To enable rapid and simple positioning for a plasma arc torch disposed to the inside of a nuclear reactor main body. Method: After removing the upper semi-spherical portion, fuel portion and control rod portion of a nuclear reactor, a rotary type girder is placed on the upper edge of a cylindrical portion remained after the removal of the upper semi-spherical portion. Then, the upper portion of a supporting rod provided with a swing arm having a plasma arc torch at the top end is situated at the center of the reactor main body. Then, the top end of the support rod is inserted to fix in the housing of control rod drives. Then, the swing arm is actuated to situate the plasma arc torch to a desired position to be cut, whereafter cutting is initiated while rotating the rotary type girder. Thus, plasma arc torch is moved horizontally along an arcuate trace, whereby pipeways, accessories or the likes disposed to the inside of the main body are at first cut and then the cylindrical portion constituting the main body is cut to dismantle the reactor. (Moriyama, K.)

  17. Method of repairing pressure tube type reactors

    International Nuclear Information System (INIS)

    Asada, Takashi.

    1983-01-01

    Purpose: To enable to re-start the reactor operation in a short time, upon occurrence of failures in a pressure tube, as well as directly examine the cause for the failures in the pressure tube. Method: The pressure tube reactor main body comprises a calandria tank of a briquette form, pressure tubes, fuel assemblies and an iron-water shielding body. If failure is resulted to a pressure tube, the reactor operation is at first shutdown and nuclear fuel assemblies are extracted to withdraw from the pressure tube. Then, to an inlet pipe way and an outlet pipeway connected to the failed pressure tube, are attached plugs by means of welding or the like at the appropriate position where the radiation exposure dose is lower and the repairing work can be performed with ease. The pressure tube is disconnected to withdraw from the inlet pipeway and the outlet pipeway and, instead, radiation shielding plug tube is inserted and shield cooling device is actuated if required, wherein the reactor is actuated to re-start the operation. (Yoshino, Y.)

  18. Coolant cleanup method in a nuclear reactor

    International Nuclear Information System (INIS)

    Kubota, Masayoshi; Nishimura, Shigeoki; Takahashi, Sankichi; Izumi, Kenkichi; Motojima, Kenji.

    1983-01-01

    Purpose : To effectively adsorb to remove low molecular weight organic substances from iron exchange resins for use in the removal of various radioactive nucleides contained in reactor coolants. Method : Reactor coolants are recycled by a main recyling pump in a nuclear reactor and a portion of the coolants is cooled and, thereafter, purified in a coolant desalter. While on the other hand, high pressure steams generated from the reactor are passed through a turbine, cooled in a condensator, eliminated with claddings or the likes by the passage through a filtration desalter using powderous ion exchange resins and then further passed through a desalter (filled with granular ion exchange resins). For instance, an adsorption and removing device for organic substances (resulted through the decomposition of ion exchange resins) precoated with activated carbon powder or filled with granular activated carbon is disposed at the downstream for each of the desalters. In this way, the organic substances in the coolants are eliminated to prevent the reduction in the desalting performance of the ion exchange resins caused by the formation of complexes between organic substances and cobalt in the coolants, etc. In this way, the coolant cleanup performance is increased and the amount of wasted ion exchange resins can be decreased. (Horiuchi, T.)

  19. Fueling method in LMFBR type reactors

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Inoue, Kotaro.

    1985-01-01

    Purpose: To extend the burning cycle and decrease the number of fuel exchange batches without increasing the excess reactivity at the initial stage of burning cycles upon fuel loading to an LMFBR type reactor. Method: Each of the burning cycles is divided into a plurality of burning sections. Fuels are charged at the first burning section in each of the cycles such that driver fuel assemblies and blanket assemblies or those assemblies containing neutron absorbers such as boron are distributed in mixture in the reactor core region. At the final stage of the first burning section, the blanket assemblies or neutron absorber-containing assemblies present in mixture are partially or entirely replaced with driver fuel assemblies depending on the number of burning sections such that all of them are replaced with the driver fuel assemblies till the start of the final burning section of the abovementioned cycle. The object of this invention can thus be attained. (Horiuchi, T.)

  20. Method of controlling ECCS system in reactors

    International Nuclear Information System (INIS)

    Oohashi, Hideaki; Ikehara, Morihiko.

    1982-01-01

    Purpose: To eliminate the risk of misoperation and thereby improve the reliability of ECCS system upon accident. Method: ECCS system for nuclear reactor is automatically started by either of signals from a water level detector in a pressure vessel or from a pressure detector in a reactor container. Further, the ECCS system is started or stopped by the manual operation irrespective of the signals, and the signals from the pressure detector are isolated from the ECCS-starting signal by the contacts which actuate interlocked with the stopping operation of the manual operation switch. Then, after stopping the ECCS system by the manual operation, the ECCS system is started by the signals from the water level detector irrespective of the signals from the pressure detector. (Seki, T.)

  1. Method of controlling the reactor operation

    International Nuclear Information System (INIS)

    Ishiguro, Akira; Nakakura, Hiroyuki.

    1987-01-01

    Purpose: To moderate vibratory response due to delayed operation thereby obtain stable controlled response in the operation control for a PWR type reactor. Method: the reactor operation is controlled by the axial power distribution control by regulating the boron concentration in primary coolants with a boron density control system and controlling the average temperature for the primary coolants with the control rod control system. In this case, the control operation and the control response become instable due to transmission delay, etc. of aqueous boric acid injection to the primary coolant circuits to result in vibratory response. In the present invention, signals are prepared by adding the amount in proportion to the variation coefficient with time of xenone concentration obtained from the measured value for the reactor power added to the conventional axial power distribution parameter deviation and used as the input signals for the boron concentration control system. As a result, the instability due to the transmission delay of the aqueous boric acid injection is improved by the preceding control by the amount in proportion with the variation coefficient with time of the xenone concentration. An advantageous effect can be expected for the load following operation during day time according to the present invention. (Kamimura, M.)

  2. La nouvelle-tableau (2

    Directory of Open Access Journals (Sweden)

    Géraldine Jenvrin

    2012-06-01

    Full Text Available La nouvelle « Frémissante, la feuille se flétrit » met en scène le trouble d'un détenu qui par les seuls objets dont il dispose, lutte pour s'échapper intérieurement. L'usage du regard cinématographique porté sur les détails infimes de la matérialité carcérale, leur exposition sous forme de tableaux se faisant échos, les techniques de l’anonymat et du brouillage des repères objectifs, portent à son comble les dimensions énigmatiques et l'esthétique de la  brièveté propre à la nouvelle tout en permettant de  représenter la résistance de l'homme à l'enfermement et à la persécution.

  3. High spin exotic states and new method for pairing energy; Etats exotiques a hauts spins et nouvelle methode pour l`energie d`appariement nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Molique, H.

    1996-01-19

    We present a new method called `PSY-MB`, initially developed in the framework of abstract group theory for the solution of the problem of strongly interacting multi-fermionic systems with particular to systems in an external rotating field. The validity of the new method (PSY-MB) is tested on model Hamiltonians. A detailed comparison between the obtained solutions and the exact ones is performed. The new method is used in the study of realistic nuclear Hamiltonians based on the Woods-Saxon potential within the cranking approximation to study the influence of residual monopole pairing interactions in the rare-earth mass region. In parallel with this new technique we present original results obtained with the Woods-Saxon mean-field and the self-consistent Hartree-Fock approximation in order to investigate such exotic effects as octupole deformations and hexadecapole C{sub 4}-polarizing deformations in the framework of high-spin physics. By developing these three approaches in one single work we prepare the ground for the nuclear structure calculations of the new generation - where the residual two-body interactions are taken into account also in the weak pairing limit. (author). 2370refs.

  4. Molten Salt Breeder Reactor Analysis Methods

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinsu; Jeong, Yongjin; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Utilizing the uranium-thorium fuel cycle shows considerable potential for the possibility of MSR. The concept of MSBR should be revised because of molten salt reactor's advantage such as outstanding neutron economy, possibility of continuous online reprocessing and refueling, a high level of inherent safety, and economic benefit by keeping off the fuel fabrication process. For the development of MSR research, this paper provides the MSBR single-cell, two-cell and whole core model for computer code input, and several calculation results including depletion calculation of each models. The calculations are carried out by using MCNP6, a Monte Carlo computer code, which has CINDER90 for depletion calculation using ENDF-VII nuclear data. From the calculation results of various reactor design parameters, the temperature coefficients are all negative at the initial state and MTC becomes positive at the equilibrium state. From the results of core rod worth, the graphite control rod alone cannot makes the core subcritical at initial state. But the equilibrium state, the core can be made subcritical state only by graphite control rods. Through the comparison of the results of each models, the two-cell method can represent the MSBR core model more accurately with a little more computational resources than the single-cell method. Many of the thermal spectrum MSR have adopted a multi-region single-fluid strategy.

  5. Reactor water quality degradation suppressing method upon reactor start up

    International Nuclear Information System (INIS)

    Maeda, Katsuharu.

    1993-01-01

    Preceding to reactor start-up, vacuum degree in a condenser is increased, and after the vacuum degree has been increased sufficiently, a desalting tower is inserted. Then, water feed to the reactor is started and the reactor is operated so that water is supplied gradually. Thus, dissolved oxygen in the feedwater and condensates is kept low and an entire organic carbon leaching rate from resins in the condensate desalting tower is reduced. Further, since feedwater is gradually supplied after the start-up, the entire organic carbon brought into the reactor is decomposed by heat and radiation and efficiently removed by a reactor coolant cleanup system. As a result, corrosion of stainless steel or the like is suppressed, as well as integrity of fuels can be maintained. Further, degradation of water quality can be suppressed effectively not by additionally putting the condensate desalting towers to in-service in accordance with the increase of the feedwater flow rate accompanying the power up but by previously putting the condensate desalting towers to in-service. (N.H.)

  6. New logarithmic technique of diffusivity identification using the flash method; Nouvelle technique logarithmique d`identification de la diffusivite par la methode flash

    Energy Technology Data Exchange (ETDEWEB)

    Thermitus, M.A.; Laurent, M. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)

    1997-12-31

    Using a logarithmic transformation, the thermogram of a flash experiment can be interpreted as the sum of the adiabatic model solution with a term representative of the losses. Two methods based on this transformation are proposed in this study. They are based on the identification of a parameter that depends on the thickness of the sample and on its diffusivity and not on the experimental conditions. They allow to identify the diffusivity with a high precision even for materials with a low conductivity at high temperatures. (J.S.) 12 refs.

  7. Development of new non destructive methods for bituminized radioactive waste drums characterization; Developpement de nouvelles methodes de caracterisation non destructive pour des dechets radioactifs enrobes dans du bitume

    Energy Technology Data Exchange (ETDEWEB)

    Pin, P

    2004-10-15

    Radioactive waste constitute a major issue for the nuclear industry. One of the key points is their characterization to optimize their management: treatment and packaging, orientation towards the suited disposal. This thesis proposes an evaluation method of the low-energy photon attenuation, based on the gamma-ray spectra Compton continuum. Effectively, the {sup 241}Am measurement by gamma-ray spectrometry is difficult due to the low energy of its main gamma-ray (59.5 keV). The photon attenuation strongly depends on the bituminous mix composition, which includes very absorbing elements. As the Compton continuum also depends on this absorption, it is possible to link the 59.5 keV line attenuation to the Compton level. Another technique is proposed to characterize uranium thanks to its fluorescence X-rays induced by the gamma emitters already present in the waste. The uranium present in the drums disturbs the neutron measurements and its measurement by self-induced X-ray fluorescence allows to correct this interference. Due to various causes of error, the total uncertainty is around 50 % on the activity of the radioisotope {sup 241}Am, corrected by the peak to Compton technique. The same uncertainty is announced on the uranium mass measured by self induced X-ray fluorescence. As a consequence of these promising results, the two methods were included in the industrial project of the 'Marcoule Sorting Unit'. One major advantage is that they do not imply any additional material because they use information already present in the gamma-ray spectra. (author)

  8. Method of starting up PWR type reactor

    International Nuclear Information System (INIS)

    Kadokami, Akira; Ueno, Ryuji; Tsuge, Ayao; Onimura, Kichiro; Ochi, Tatsuya.

    1988-01-01

    Purpose: To start-up a PWR type reactor so as to effectively impregnate and concentrate corrosion inhibitors in intergranular corrosive faces. Method: Upon reactor start-up, after transferring from the warm zero output state to thermal power loaded state and injecting corrosion inhibitors, thermal power is returned to zero and, subsequently, increased up to a rated power. By selecting the thermal power upon injecting the corrosion inhibitors to a steam generator body, that is, by selecting a thermal power load that starts to boil in heat conduction tubes, feedwater in the clavis portion can be formed into an appropriate boiling convection and, accordingly, the corrosion inhibitors can be penetrated to the clevis portion at a higher rate and in a greater amount as compared with those under zero power condition. Subsequently, when the thermal power is reduced, a sub-cooled state is attained in the clevis portion, in which steams present in the intergranular corrosion faces in the heat conduction tubes are condensated. As a result, the corrosion inhibitors at high concentration are impregnated into the intergranular corrosive faces to provide excellent effects. (Kamimura, M.)

  9. BWR type reactor and its operating method

    International Nuclear Information System (INIS)

    Ootsuji, Niro.

    1983-01-01

    Purpose: To regulate the control rod extraction operation such that an assumed control rod drop accident, if should occur, may not lead to further serious accidents, as well as enable to improve the working life of the control rod. Method: A plurality of control rods disposed among a plurality of fuel assemblies constituting the reactor core for suppressing the reactor core reactivity are divided into two groups depending on the descending speed, and the number of rods with a faster descending speed is set to less than 1/4 of the total number of the control rods. Then, the control rods are arranged such that those rods of the faster descending speed may be set every one another in any of the vertical, lateral and orthogonal directions. Further, it is always judged as to the possibility of extracting the control rods with the faster descending speed by a fast control rod extraction judging circuit to issue a signal to a control rod extraction inhibition circuit, so that the extraction operation for the control rods with the faster descending speed is started after all of the control rods with the slow descending speed have been extracted. Accordingly, if a control rod dropping accident should occur, abrupt power change can be avoided to thereby minimize the development of the accident. (Horiuchi, T.)

  10. Statistic method of research reactors maximum permissible power calculation

    International Nuclear Information System (INIS)

    Grosheva, N.A.; Kirsanov, G.A.; Konoplev, K.A.; Chmshkyan, D.V.

    1998-01-01

    The technique for calculating maximum permissible power of a research reactor at which the probability of the thermal-process accident does not exceed the specified value, is presented. The statistical method is used for the calculations. It is regarded that the determining function related to the reactor safety is the known function of the reactor power and many statistically independent values which list includes the reactor process parameters, geometrical characteristics of the reactor core and fuel elements, as well as random factors connected with the reactor specific features. Heat flux density or temperature is taken as a limiting factor. The program realization of the method discussed is briefly described. The results of calculating the PIK reactor margin coefficients for different probabilities of the thermal-process accident are considered as an example. It is shown that the probability of an accident with fuel element melting in hot zone is lower than 10 -8 1 per year for the reactor rated power [ru

  11. Pseudo-harmonics method: an application to thermal reactors

    International Nuclear Information System (INIS)

    Silva, F.C. da; Rotenberg, S.; Thome Filho, Z.D.

    1985-10-01

    Several applications of the Pseudo-Harmonics method are presented, aiming to calculate the neutron flux and the perturbed eigenvalue of a nuclear reactor, like PWR, with three enrichment regions as Angra-1 reactor. In the reference reactor, perturbations of several types as global as local were simulated. The results were compared with those from the direct calculation. (E.G.) [pt

  12. Fail-safe reactivity compensation method for a nuclear reactor

    Science.gov (United States)

    Nygaard, Erik T.; Angelo, Peter L.; Aase, Scott B.

    2018-01-23

    The present invention relates generally to the field of compensation methods for nuclear reactors and, in particular to a method for fail-safe reactivity compensation in solution-type nuclear reactors. In one embodiment, the fail-safe reactivity compensation method of the present invention augments other control methods for a nuclear reactor. In still another embodiment, the fail-safe reactivity compensation method of the present invention permits one to control a nuclear reaction in a nuclear reactor through a method that does not rely on moving components into or out of a reactor core, nor does the method of the present invention rely on the constant repositioning of control rods within a nuclear reactor in order to maintain a critical state.

  13. New or improved computational methods and advanced reactor design

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Takeda, Toshikazu; Ushio, Tadashi

    1997-01-01

    Nuclear computational method has been studied continuously up to date, as a fundamental technology supporting the nuclear development. At present, research on computational method according to new theory and the calculating method thought to be difficult to practise are also continued actively to find new development due to splendid improvement of features of computer. In Japan, many light water type reactors are now in operations, new computational methods are induced for nuclear design, and a lot of efforts are concentrated for intending to more improvement of economics and safety. In this paper, some new research results on the nuclear computational methods and their application to nuclear design of the reactor were described for introducing recent trend of the nuclear design of the reactor. 1) Advancement of the computational method, 2) Reactor core design and management of the light water reactor, and 3) Nuclear design of the fast reactor. (G.K.)

  14. EDF Energies Nouvelles - 2010 Registration Document

    International Nuclear Information System (INIS)

    2011-01-01

    EDF Energies Nouvelles is a world leader in renewable energy electricity. The company develops, builds and operates clean energy power plants both for its own account and for third parties. Historically, EDF Energies Nouvelles primarily developed its business in two geographical areas, Europe and North America (U.S., Canada and Mexico). EDF Energies Nouvelles is a subsidiary of EDF, helping the Group to achieve its renewable energy goals. The EDF Group generates low-carbon electricity around the world and actively participates in the energy transition. EDF Energies Nouvelles prioritizes development of wind and photovoltaic solar capacity. As an integrated operator with global reach, EDF Energies Nouvelles covers the entire renewable energy chain, from development to operation and maintenance, and manages all project phases in-house. This document is EDF Energies Nouvelles' registration document for the year 2010. It contains information about Group profile, governance, business, investments, property, plant and equipment, management, financial position, employees, shareholders, etc. The document includes the half-year and full year financial reports

  15. Improving Battery Reactor Core Design Using Optimization Method

    International Nuclear Information System (INIS)

    Son, Hyung M.; Suh, Kune Y.

    2011-01-01

    The Battery Omnibus Reactor Integral System (BORIS) is a small modular fast reactor being designed at Seoul National University to satisfy various energy demands, to maintain inherent safety by liquid-metal coolant lead for natural circulation heat transport, and to improve power conversion efficiency with the Modular Optimal Balance Integral System (MOBIS) using the supercritical carbon dioxide as working fluid. This study is focused on developing the Neutronics Optimized Reactor Analysis (NORA) method that can quickly generate conceptual design of a battery reactor core by means of first principle calculations, which is part of the optimization process for reactor assembly design of BORIS

  16. Exchange method for reactor inner structural member

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Hiroshi; Kurosawa, Koichi; Ono, Shigeki; Uozumi, Hiroto; Takada, Ko; Watanabe, Yoshio; Ito, Masato; Yoshie, Yutaka [Hitachi Ltd., Tokyo (Japan); Nihei, Ken-ichi

    1996-09-13

    A dryer and a shroud head are removed from the inside of a reactor pressure vessel (RPV) of a BWR type reactor, and they are stacked in a dryer and steam separator pool (DSP). Next, fuel assemblies, fuel support fittings, control rods and control rode guide tubes are successively removed and stored in an exclusive storage vessel. Then, guide rods are removed by cutting and temporarily placed in the DSP. Then, an upper lattice plate and a reactor core support plate are successively removed and temporarily placed in the DSP. Reactor core spray pipes are removed by cutting and temporarily placed in the DSP. Then, a shroud support cylinder is cut, and the shroud is removed and temporarily placed in the DSP. Subsequently, reactor water is drained, and a reactor core shroud to which the upper lattice plate and the reactor core support plate are previously disposed is suspended in the RPV, and the existent shroud support cylinder and the new reactor core shroud are welded. (I.N.)

  17. Method of fueling for a nuclear reactor

    International Nuclear Information System (INIS)

    Igarashi, Takao.

    1983-01-01

    Purpose: To enable the monitoring of reactor power with sufficient accuracy, upon starting even without existence of neutron source in case of a low average burnup degree in the reactor core. Constitution: Each of fuel assemblies is charged such that neutron source region monitors for the start-up system in a reactor core neutron instrumentation system having nuclear fuel assemblies and a neutron instrumentation system are surrounded with 4 or 16 fuel assemblies of a low burnup degree. Then, the average burnup degree of the fuel assemblies surrounding the neutron source region monitors are increased than the reactor core burnup degree, whereby neutrons released from the peripheral fuels are increased, sufficient number of neutron counts can be obtained even with no neutron sources upon start-up and the reactor power can be monitored at a sufficient accuracy. (Sekiya, K.)

  18. Method for filling a reactor with a catalyst

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method for filling a reactor with a catalyst for the carbonylation of carbonylated compounds in the gas phase. According to said method, a SILP catalyst is covered with a filling agent which is liquid under normal conditions and is volatile under carbonylation reaction...... conditions, and a thus-treated catalyst is introduced into the reactor and the reactor is sealed....

  19. Measurement of reactor parameters of the 'Nora' reactor by noise analysis method - power spectral density

    International Nuclear Information System (INIS)

    Jovanovic, S.; Stormark, E.

    1966-01-01

    Measurements of reactor parameters the Nora reactor by Power Spectral Density (PSD) method are described. In case of critical reactor this method was applied for direct measurement of β/l ratio, β is the effective yield of delayed neutrons and l is the neutron lifetime. In case of subcritical reactor values of α+β-ρ/l were measured, ρ is the negative reactivity. Out coming PSD was measured by a filter or by ISAC. PSD was registered by ISAC as well as the auto-correlation function [sr

  20. Method for temporary shielding of reactor vessel internals

    International Nuclear Information System (INIS)

    Grimm, N.P.; Sejvar, J.

    1991-01-01

    This patent describes a method for shielding stored internals for reactor vessel annealing. It comprises removing nuclear fuel from the reactor vessel containment building; removing and storing upper and lower core internals under water in a refueling canal storage area; assembling a support structure in the refueling canal between the reactor vessel and the stored internals; introducing vertical shielding tanks individually through a hatch in the containment building and positioning each into the support structure; introducing horizontal shielding tanks individually through a hatch in the containment building and positioning each above the stored internals and vertical tanks; draining water from the refueling canal to the level of a flange of the reactor vessel; placing an annealing apparatus in the reactor vessel; pumping the remaining water from the reactor vessel; and annealing the reactor vessel

  1. Cascading pressure reactor and method for solar-thermochemical reactions

    Science.gov (United States)

    Ermanoski, Ivan

    2017-11-14

    Reactors and methods for solar thermochemical reactions are disclosed. The reactors and methods include a cascade of reduction chambers at successively lower pressures that leads to over an order of magnitude pressure decrease compared to a single-chambered design. The resulting efficiency gains are substantial, and represent an important step toward practical and efficient solar fuel production on a large scale.

  2. Methods and equipments used in power reactors

    International Nuclear Information System (INIS)

    Beraha, R.; Delevallee, A.

    1976-01-01

    The various reactor γ fuel scanning facilities presently operating around the world are reviewed. Both equipments proposed by FRAMATOME are described: one is intended for scanning removable fuel pencils, and the other one for fuel assembly scanning [fr

  3. Method and device for controlling reactor power

    International Nuclear Information System (INIS)

    Oohashi, Masahisa; Masuda, Hiroyuki.

    1982-01-01

    Purpose: To enable load following-up operation of a reactor adapted to perform power conditioning by the control of the liquid poison density in the core and by the control rods. Constitution: In a case where the reactor power is repeatedly changed in a reactor having a liquid poison density control device and control rods, the time period for the power control is divided depending on the magnitude of the change with time in the reactivity and the optimum values are set for the injection and removal amount of the liquid poison within the divided period. Then, most parts of the control required for the power change are alloted to the liquid poison that gives no effect on the power distribution while minimizing the movement of the control rods, whereby the power change in the reactor as in the case of the load following-up operation can be practiced with ease. (Kawakami, Y.)

  4. A method of installing a reactor container

    International Nuclear Information System (INIS)

    Hayashi, Kenji; Murakawa, Hisao.

    1975-01-01

    Object: To achieve exact installation of a reactor container at a site. Structure: A pole is set upright at the center of a cylindrical base portion, a plurality of beams are disposed around the pole in a radial fashion to form a cone, a plurality of steel plates are mounted successively around the cone through a ring, and the steel plates are welded to each other to assemble and install a reactor container at the same time. (Kamimura, M.)

  5. Ventilation method and device for nuclear reactor

    International Nuclear Information System (INIS)

    Nakamura, Hideki; Ono, Kiyoshi; Ohara, Atsushi.

    1997-01-01

    In a BWR type reactor, a device for removing radioactive materials is disposed on the midway of a vent pipeline in order to prevent pressurization failure caused by elevation of pressure in the reactor container. Namely, when the pressure in the reactor container is released, particulate or gaseous radioactive materials are led from an extraction gas of a main condensator to a gaseous waste processing system through the vent pipeline, and then radioactive materials are removed by the gaseous waste processing system, and led to a gas exhaustion cylinder. In addition, as a countermeasure for a severe accident, one end of the vent pipeline having the other end opened to a dry well and a wet well of a reactor container is connected upstream of an exhausted gas condensator of the gaseous waste processing system. This can prevent the failure of the reactor container upon occurrence of a severe accident, and the release of radioactive materials to the atmosphere can be greatly reduced without disposing a large-scaled removing device. (N.H.)

  6. Advanced methods in teaching reactor physics

    International Nuclear Information System (INIS)

    Snoj, Luka; Kromar, Marjan; Zerovnik, Gasper; Ravnik, Matjaz

    2011-01-01

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software.

  7. Advanced methods in teaching reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Snoj, Luka, E-mail: luka.snoj@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Kromar, Marjan, E-mail: marjan.kromar@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Zerovnik, Gasper, E-mail: gasper.zerovnik@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Ravnik, Matjaz [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)

    2011-04-15

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software.

  8. Qualitative methods in nuclear reactor dynamics. Issue 23

    International Nuclear Information System (INIS)

    Goryachenko, V.D.

    1983-01-01

    Applicability of qualitative methods of the theory of nonlinear oscillations including the bifurcation theory to the problems of nuclear reactor nonlinear dynamics is investigated. Basic statements of the dynamic system qualitative theory on a phase plane and the bifurcation theory of multidimensional dynamic systems are briefly outlined. The model of reactor dynamics with two reactivity temperature coefficients neglecting delayed neutrons, the model of slow process dynamics in a reactor with two reactivity temperature coefficients, the simplified model of reactor dynamics as an object with delay and the model of a reactor with linear feedback are considered. A conclusion is drawn that the usage of the above models allows one to reveal qualitative peculiarities of reactor dynamics creating conditions for more purposeful utilization of more complicated models

  9. Reactor power control method upon accidents of electrical power system

    International Nuclear Information System (INIS)

    Hirose, Masao.

    1983-01-01

    Purpose: To enable to continue the operation of a BWR type reactor by avoiding the scram while suppressing the reactor power, just after the external disturbance such as earth-trouble in power-transmission network. Method: Steep power drop of an electrical generator is to be detected not only by a current-type power-load-unbalance relay but also with a power-type power-load-unbalance-relay. If steep power-drop was detected by the latter relay, a previously selected control rod is rapidly inserted into the reactor. In this way, in the case where there is a possibility of the reactor scram, the scram can be avoided by suppressing the reactor power, thus the reactor operation can be continued. (Kamimura, M.)

  10. Probabilistic method for evaluating reactivity margin of nuclear reactors

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko

    1984-01-01

    A probabilistic method is proposed that will permit in the design stage to estimate quantitatively the likelihood with which any or all design criteria applicable to a nuclear reactor are actually satisfied after its construction. The method is trially applied to the core reactivity balance problem of the experimental Very High Temperature Reactor, and calculations are performed on the probability with which a design study core will, upon construction, satisfy design criteria concerning (a) one rod stuck and (b) startup margin. The method should prove useful in making engineering judgments before approving reactor core design. (author)

  11. Non-linear programming method in optimization of fast reactors

    International Nuclear Information System (INIS)

    Pavelesku, M.; Dumitresku, Kh.; Adam, S.

    1975-01-01

    Application of the non-linear programming methods on optimization of nuclear materials distribution in fast reactor is discussed. The programming task composition is made on the basis of the reactor calculation dependent on the fuel distribution strategy. As an illustration of this method application the solution of simple example is given. Solution of the non-linear program is done on the basis of the numerical method SUMT. (I.T.)

  12. Operation monitoring and protection method for nuclear reactor

    International Nuclear Information System (INIS)

    Tochihara, Hiroshi.

    1995-01-01

    In an operation and monitoring method for a PWR-type reactor by using a tetra-sected neutron detector, axial off set is defined by neutron detector signals with respect to an average of the reactor core, the upper half of the reactor core, and the lower half of the reactor core. A departure from nucleate boiling (DNBR) is represented by standardized signals, and the DNBR is calculated by using the axial off set of the average of the reactor core, the upper half of the reactor core, and the lower half of the reactor core, and they are graphically displayed. In addition, a thermal flow rate-water channel coefficient is also graphically displayed, and the DNBR and the thermal flow rate-water channel coefficient are restricted based on the display, to determine an allowable operation range. As a result, it is possible to provide an operation monitoring and protection method for nuclear reactor capable of reducing labors and frequencies for the change of protection system setting in a case of using a tetra-sected neutron detector disposed at the outside and, at the same time, protecting each of DNR and the highest linear power or the thermal water coefficient channel. (N.H.)

  13. Method of operating a nuclear reactor

    International Nuclear Information System (INIS)

    Gyorey, G.L.; Parkos, G.R.; Roupe, G.A.; Thomson, O.A.; Crowther, R.L.

    1979-01-01

    The invention concerns the configuration of control rods in the lattice of the reactor core, as well as an instruction on the sequence of with drawal for the control rods, arranged in groups, in order to achieve for the control rod reactivity of the control rods remaining in the reactor core to adopt the lowest possible value. The rods are combined in several 3 x 3 matrices which in their turn are grouped into two networks. The groups are moved successively according to a specified schedule. There can be achieved maximum control rod reactivities between 0.025 and 0.035 (referred to the totally withdrawn state). (RW) 891 RW/RW 892 MKO [de

  14. Reactor container and controlling method thereof

    International Nuclear Information System (INIS)

    Hosaka, Seiichi.

    1990-01-01

    An object of the present invention is to prevent stress corrosion crack caused in pipelines made of stainless steels by preventing deposition of chlorine, etc. on the surface, etc. of the pipelines. That is, an internal evolving gas elimination system comprises a gas extraction device for extracting gases in the reactor container, an obstacle elimination device for eliminating obstacles contained in the extracted gases and an internal gas elimination device for eliminating internal evolving gases contained in the extracted gases. Further, gases in the upper portion of the reactor container are extracted and then the ingredients of the internal evolving gases contained in the gases are eliminated and, thereafter, the gases are supplied to the lower portion of the container to keep the relative humidity in the reactor container to less than 20%RH. As a result, since the internal evolving gases are eliminated and the relative humidity at the inside is kept to less than 20%RH, deposition of chlorine or salts on the pipelines can be prevented to thereby prevent the stress corrosion cracks. (I.S.)

  15. Method of driving control rod in reactor

    International Nuclear Information System (INIS)

    Osa, Hirotaka.

    1986-01-01

    Purpose: To improve security and safety of the reactor by reducing reactor output automatically and quickly when circulation of cooling water is stopped. Constitution: When the circulating pump is under operation, fluid pressure in the discharge pipe is transferred to the fluid room of fluid pressure cylinder via the control rod drive pipe and lift up the piston, and then the control rod is drawn out of the reactor core. When the circulating pump is lowered in its functions, discharge pipe fluid pressure decreases, fluid pressure in the fluid room decreases, and with less force of piston movement, the control rod gets lowered by its own weight. At this time, the blocked state of the opening by the piston is released, fluid flows into the room. Lowering of pressure and the control rod is promoted by transferring out fluid below the piston in the fluid room to the upper part of the piston via a small gap when the control rod falls by gravity. (Horiuchi, T.)

  16. Method of estimating the reactor power distribution

    International Nuclear Information System (INIS)

    Mitsuta, Toru; Fukuzaki, Takaharu; Doi, Kazuyori; Kiguchi, Takashi.

    1984-01-01

    Purpose: To improve the calculation accuracy for the power distribution thereby improve the reliability of power distribution monitor. Constitution: In detector containing strings disposed within a reactor core, movable type neutron flux monitors are provided in addition to position fixed type neutron monitors conventionally disposed so far. Upon periodical monitoring, a power distribution X1 is calculated from a physical reactor core model. Then, a higher power position X2 is detected by position detectors and value X2 is sent to a neutron flux monitor driving device to displace the movable type monitors to a higher power position in each of the strings. After displacement, the value X1 is amended by an amending device using measured values from the movable type and fixed type monitors and the amended value is sent to a reactor core monitor device. Upon failure of the fixed type monitors, the position is sent to the monitor driving device and the movable monitors are displaced to that position for measurement. (Sekiya, K.)

  17. Methods for studying fuel management in advanced gas cooled reactors

    International Nuclear Information System (INIS)

    Buckler, A.N.; Griggs, C.F.; Tyror, J.G.

    1971-07-01

    The methods used for studying fuel and absorber management problems in AGRs are described. The basis of the method is the use of ARGOSY lattice data in reactor calculations performed at successive time steps. These reactor calculations may be quite crude but for advanced design calculations a detailed channel-by-channel representation of the whole core is required. The main emphasis of the paper is in describing such an advanced approach - the ODYSSEUS-6 code. This code evaluates reactor power distributions as a function of time and uses the information to select refuelling moves and determine controller positions. (author)

  18. Permeated defect detecting test method and device in reactor

    International Nuclear Information System (INIS)

    Sakurai, Yoshishige.

    1996-01-01

    The present invention provides a method of and a device capable of performing a test for entire inner surfaces of the reactor upon periodical inspection of a BWR type reactor while sufficiently taking countermeasures for radiation rays into consideration. Namely, the present invention comprises following steps. (1) A provisional step for taking a shroud head of a reactor core shroud and incore structural components above and below the shroud out of the reactor, discharging reactor water and water tightly closing openings such as reactor wall perforation holes, (2) a pretreatment step for washing exposed inner surfaces of the reactor and peeling deteriorated materials, (3) a first drying step for drying portions washed and peeled in the step (2), (4) a permeation step for applying a permeation liquid of a defect detecting medium on the exposed inner surfaces of the reactor, (5) a permeation liquid removing step for removing the an excess permeation liquid in the step (4), (6) a second drying step for drying corresponding portions after performing the step (5), and (7) a flaw detecting step for optically observing the corresponding portions after performing the step (6) and detecting flaws. (I.S.)

  19. Nouvelles méthodes d'identification des fractures par diagraphie acoustique en full wave form New Methods of Identifying Fractures by Full Wave Form Acoustic Logging

    Directory of Open Access Journals (Sweden)

    Denis A.

    2006-11-01

    Full Text Available Les outils acoustiques de dernière génération permettent maintenant d'enregistrer l'ensemble des ondes générées par une source acoustique à l'intérieur d'une géométrie cylindrique telle qu'un puits de sondage. Le train d'onde qu'il est alors possible d'analyser se compose successivement de trois composantes majeures (l'onde de compression, de cisaillement et de Stoneley dont nous avons une représentation pour chaque position de la sonde à l'intérieur du puits. Nous présentons, dans ce texte, trois méthodes originales et rapides (calculs possibles sur le site même pour identifier, à partir du traitement de l'onde de Stoneley, les fractures ouvertes recoupées par un forage. Nous donnons, dans un premier temps, nos motivations pour le choix unique du traitement de l'onde de Stoneley pour, dans un deuxième temps, exposer les trois méthodes développées et montrer pour chacune d'entre elles une application pratique. Interest in recognizing and identifying fractures in a coherent formation for the petroleum, geothermal and storage (oil and gas, wastes sectors has led to the development of indirect prospection methods inside boreholes such as acoustic logging. The latest acoustic tools are capable of recording all waves generated by an acoustic logging tool inside a cyclindrical geometry such as a borehole. The wavetrain that can then be analyzed is successively made up of three major components (the P compression wave, the S shear wave and the Stoneley wave for which we have a representation for each position of the logging tool in the borehole. An example of a recording is shown in Fig. 1. Because of its specific features (high amplitudes, low frequency, high signal-to-noise ratio, the Stoneley wave is recognized to be a good indicator of open fractures. Therefore, we use simple digital processing to quantify the influence of fracturing on the propagation of the Stoneley wave. Three methods stemming from the digital processing of

  20. Reactor abnormality diagnosis device and its method

    International Nuclear Information System (INIS)

    Honma, Hitoshi; Hirayama, Tatsuya.

    1992-01-01

    The present invention rapidly detects leakage of primary coolants due to rupture of heat transfer pipes of a steam generator in a PWR type reactor to diagnose the operation state of the reactor. That is, a radiation detector is disposed to a secondary main steam pipeline for supplying steams generated from the steam generator to a turbine. The radiation detector detects a dose rate or a counting rate continuously. The measured data are transferred to an calculation and processing system and compared with the standard of normal values to diagnose the presence of leaks. Alternatively, radiation detectors are disposed at the upstream and the downstream of the secondary system main steam pipeline respectively. The signals from each of the radiation detectors are processed by the calculation and processing system as the change with lapse of time. As a result, the scale of the ruptured portion of the heat transfer pipe in the steam generator is diagnosed based on the value of radioactivity concentration in the main steams. (I.S.)

  1. Study of power reactor dynamics by stochastic reactor oscillator method; Proucavanje dinamike reaktora snage metodom stohastickog reaktorskog oscilatora

    Energy Technology Data Exchange (ETDEWEB)

    Velickovic, Lj; Petrovic, M [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1968-12-15

    Stochastic reactor oscillator and cross correlation method were used for determining reactor dynamics characteristics. Experimental equipment, fast reactor oscillator (BOR-1) was activated by random pulses from the GBS-16 generator. Tape recorder AMPEX-SF-300 and data acquisition tool registered reactor response to perturbations having different frequencies. Reactor response and activation signals were cross correlated by digital computer for different positions of stochastic oscillator and ionization chamber.

  2. Development of High Flux Isotope Reactor (HFIR) subcriticality monitoring methods

    International Nuclear Information System (INIS)

    Rothrock, R.B.

    1991-01-01

    Use of subcritical source multiplication measurements during refueling has been investigated as a possible replacement for out-of-reactor subcriticality measurements formerly made on fresh HFIR fuel elements at the ORNL Critical Experiment Facility. These measurements have been used in the past for preparation of estimated critical rod positions, and as a partial verification, prior to reactor startup, that the requirements for operational shutdown margin would be met. Results of subcritical count rate data collection during recent HFIR refuelings and supporting calculations are described illustrating the intended measurement method and its expected uncertainty. These results are compared to historical uses of the out-of-reactor core measurements and their accuracy requirements, and a planned in-reactor test is described which will establish the sensitivity of the method and calibrate it for future routine use during HFIR refueling. 2 refs., 1 fig., 2 tabs

  3. Method of producing gaseous products using a downflow reactor

    Science.gov (United States)

    Cortright, Randy D; Rozmiarek, Robert T; Hornemann, Charles C

    2014-09-16

    Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.

  4. Neutron spectrometric methods for core inventory verification in research reactors

    International Nuclear Information System (INIS)

    Ellinger, A.; Filges, U.; Hansen, W.; Knorr, J.; Schneider, R.

    2002-01-01

    In consequence of the Non-Proliferation Treaty safeguards, inspections are periodically made in nuclear facilities by the IAEA and the EURATOM Safeguards Directorate. The inspection methods are permanently improved. Therefore, the Core Inventory Verification method is being developed as an indirect method for the verification of the core inventory and to check the declared operation of research reactors

  5. UK methods for studying fuel management in water moderated reactors

    International Nuclear Information System (INIS)

    Fayers, F.J.

    1970-10-01

    Current UK methods for studying fuel management and for predicting the reactor physics performance for both light and heavy water moderated power reactors are reviewed. Brief descriptions are given of the less costly computer codes used for initial assessment studies, and also the more elaborate programs associated with detailed evaluation are discussed. Some of the considerations influencing the accuracy of predictions are included with examples of various types of experimental confirmation. (author)

  6. An optimization method for parameters in reactor nuclear physics

    International Nuclear Information System (INIS)

    Jachic, J.

    1982-01-01

    An optimization method for two basic problems of Reactor Physics was developed. The first is the optimization of a plutonium critical mass and the bruding ratio for fast reactors in function of the radial enrichment distribution of the fuel used as control parameter. The second is the maximization of the generation and the plutonium burnup by an optimization of power temporal distribution. (E.G.) [pt

  7. Methods for thermal reactor lattice calculations

    International Nuclear Information System (INIS)

    Schneider, A.

    1976-12-01

    The American code HAMMER and the British code WIMS, for the analysis of thermal reactor lattices, have been investigated. The primary objective of this investigation was to identify the causes for the discrepancies that exist between the calculated and the experimentally determined reactivity of clean critical experiments. Three phases have been undertaken in the research: (a) Detailed comparison between the group cross-sections used by the codes; (b) Definition of the various approximations incorporated into the codes; (c) Comparison between the values of a variety of reaction rates calculated by the two codes. It was concluded that the main cause of discrepancy between calculations and experiments is due to data inaccuracies, while approximations introduced in solving the transport equation are of smaller importance

  8. Method of judging leak sources in a reactor container

    International Nuclear Information System (INIS)

    Maeda, Katsuji.

    1984-01-01

    Purpose: To enable exact judgement for leak sources upon leak accident in a reactor container of BWR type power plants as to whether the sources are present in the steam system or coolant system. Method: If leak is resulted from the main steam system, the hydrogen density in the reactor container is about 170 times as high as the same amount of leak from the reactor water. Accordingly, it can be judged whether the leak source is present in the steam system or reactor water system based on the change in the indication of hydrogen densitometer within the reactor container, and the indication from the drain amount from the sump in the container or the indication of a drain flow meter in the container dehumidifier. Further, I-131, Na-24 and the like as the radioactive nucleides in sump water of the container are measured to determine the density ratio R = (I-131)/(Na-24), and it is judged that the leak is resulted in nuclear water if the density ratio R is equal to that of reactor water and that the leak is resulted from the main steam or like other steam system if the density ratio R is higher than by about 100 times than that of reactor water. (Horiuchi, T.)

  9. A Multivariate Time Series Method for Monte Carlo Reactor Analysis

    International Nuclear Information System (INIS)

    Taro Ueki

    2008-01-01

    A robust multivariate time series method has been established for the Monte Carlo calculation of neutron multiplication problems. The method is termed Coarse Mesh Projection Method (CMPM) and can be implemented using the coarse statistical bins for acquisition of nuclear fission source data. A novel aspect of CMPM is the combination of the general technical principle of projection pursuit in the signal processing discipline and the neutron multiplication eigenvalue problem in the nuclear engineering discipline. CMPM enables reactor physicists to accurately evaluate major eigenvalue separations of nuclear reactors with continuous energy Monte Carlo calculation. CMPM was incorporated in the MCNP Monte Carlo particle transport code of Los Alamos National Laboratory. The great advantage of CMPM over the traditional Fission Matrix method is demonstrated for the three space-dimensional modeling of the initial core of a pressurized water reactor

  10. Method for inspecting nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    A technique for disassembling a nuclear reactor fuel element without destroying the individual fuel pins and other structural components from which the element is assembled is described. A traveling bridge and trolley span a water-filled spent fuel storage pool and support a strongback. The strongback is under water and provides a working surface on which the spent fuel element is placed for inspection and for the manipulation that is associated with disassembly and assembly. To remove, in a non-destructive manner, the grids that hold the fuel pins in the proper relative positions within the element, bars are inserted through apertures in the grids with the aid of special tools. These bars are rotated to flex the adjacent grid walls and, in this way relax the physical engagement between protruding portions of the grid walls and the associated fuel pins. With the grid structure so flexed to relax the physical grip on the individual fuel pins, these pins can be withdrawn for inspection or replacement as necessary without imposing a need to destroy fuel element components

  11. Repairing method for reactor primary system pipeline

    International Nuclear Information System (INIS)

    Hosokawa, Hideyuki; Uetake, Naoto; Hara, Teruo.

    1997-01-01

    Pipelines after decontamination of radioactive nuclides deposited on the pipelines in a nuclear power plant during operation or pipelines to replace pipelines deposited with radioactive nuclide are connected to each system of the nuclear power plant. They are heated in a gas phase containing oxygen to form an oxide film on the surface of the pipelines. The thickness of the oxide film formed in the gas phase is 1nm or greater, preferably 100nm. The concentration of oxygen in the gas phase containing oxygen must be 0.1% or greater. The heating is conducted by circulating a heated gas to the inside of the pipelines or disposing a movable heater such as a high frequency induction heater inside of the pipelines to form the oxide film. Then, redeposition of radioactive nuclide can be suppressed and since the oxide film is formed in the gas phase, a large scaled facilities are not necessary, thereby enabling to repair pipelines of reactor primary system at low cost. (N.H.)

  12. Steam leak detection in advance reactors via acoustics method

    International Nuclear Information System (INIS)

    Singh, Raj Kumar; Rao, A. Rama

    2011-01-01

    Highlights: → Steam leak detection system is developed to detect any leak inside the reactor vault. → The technique uses leak noise frequency spectrum for leak detection. → Testing of system and method to locate the leak is also developed and discussed in present paper. - Abstract: Prediction of LOCA (loss of coolant activity) plays very important role in safety of nuclear reactor. Coolant is responsible for heat transfer from fuel bundles. Loss of coolant is an accidental situation which requires immediate shut down of reactor. Fall in system pressure during LOCA is the trip parameter used for initiating automatic reactor shut down. However, in primary heat transport system operating in two phase regimes, detection of small break LOCA is not simple. Due to very slow leak rates, time for the fall of pressure is significantly slow. From reactor safety point of view, it is extremely important to find reliable and effective alternative for detecting slow pressure drop in case of small break LOCA. One such technique is the acoustic signal caused by LOCA in small breaks. In boiling water reactors whose primary heat transport is to be driven by natural circulation, small break LOCA detection is important. For prompt action on post small break LOCA, steam leak detection system is developed to detect any leak inside the reactor vault. The detection technique is reliable and plays a very important role in ensuring safety of the reactor. Methodology developed for steam leak detection is discussed in present paper. The methods to locate the leak is also developed and discussed in present paper which is based on analysis of the signal.

  13. Review of analysis methods for prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Dodge, W.G.; Bazant, Z.P.; Gallagher, R.H.

    1977-02-01

    Theoretical and practical aspects of analytical models and numerical procedures for detailed analysis of prestressed concrete reactor vessels are reviewed. Constitutive models and numerical algorithms for time-dependent and nonlinear response of concrete and various methods for modeling crack propagation are discussed. Published comparisons between experimental and theoretical results are used to assess the accuracy of these analytical methods

  14. Real time simulation method for fast breeder reactors dynamics

    International Nuclear Information System (INIS)

    Miki, Tetsushi; Mineo, Yoshiyuki; Ogino, Takamichi; Kishida, Koji; Furuichi, Kenji.

    1985-01-01

    The development of multi-purpose real time simulator models with suitable plant dynamics was made; these models can be used not only in training operators but also in designing control systems, operation sequences and many other items which must be studied for the development of new type reactors. The prototype fast breeder reactor ''Monju'' is taken as an example. Analysis is made on various factors affecting the accuracy and computer load of its dynamic simulation. A method is presented which determines the optimum number of nodes in distributed systems and time steps. The oscillations due to the numerical instability are observed in the dynamic simulation of evaporators with a small number of nodes, and a method to cancel these oscillations is proposed. It has been verified through the development of plant dynamics simulation codes that these methods can provide efficient real time dynamics models of fast breeder reactors. (author)

  15. The multigrid method for reactor calculations

    International Nuclear Information System (INIS)

    Douglas, S.R.

    1991-07-01

    Iterative solutions to linear systems of equations are discussed. The emphasis is on the concepts that affect convergence rates of these solution methods. The multigrid method is described, including the smoothing property, restriction, and prolongation. A simple example is used to illustrate the ideas

  16. Method of operating water cooled reactor with blanket

    International Nuclear Information System (INIS)

    Suzuki, Katsuo.

    1988-01-01

    Purpose: To increase the production amount of fissionable plutonium by increasing the burnup degree of blanket fuels in a water cooled reactor with blanket. Method: Incore insertion assemblies comprising water elimination rods, fertile material rods or burnable poison rods are inserted to those fuel assemblies at the central portion of the reactor core that are situated at the positions not inserted with control rods in the earlier half of the operation cycle, while the incore reactor insertion assemblies are withdrawn at the latter half of the operation cycle of a nuclear reactor. As a result, it is possible to increase the power share of the blanket fuels and increase the fuel burnup degree to thereby increase the production amount of fissionable plutonium. Furthermore, at the initial stage of the cycle, the excess reactivity of the reactor can be suppressed to decrease the reactivity control share on the control rod. At the final stage of the cycle, the excess reactivity of the reactor core can be increased to improve the cycle life. (Kamimura, M.)

  17. Advanced repair methods for enhanced reactor safety

    International Nuclear Information System (INIS)

    Kornfeldt, H.

    1993-01-01

    A few innovative concepts are described of the ABB Atom Service Division for repair and mitigation techniques for primary systems in nuclear power plants. The concepts are based on Shape Memory Alloy (SMA) technology. A basic feature of all methods is that welding and component replacement is being avoided and the radiation dose imposed on maintenance personnel reduced. The SMA-based repair methods give plant operators new ways to meet increased safety standards and rising maintenance costs. (Z.S.) 4 figs

  18. Methods in nuclear reactors calculations; Metodos de calculo en reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, G

    1966-07-01

    Studies are made of the neutron transport equation corresponding to the the real and virtual reactors, as well as the starting hypotheses. Methods are developed to solve the transport equation in slab geometry, and P{sub l}; B{sub l}; M{sub l}; S{sub n} and discrete ordinates approximations. (Author)

  19. Thermal-hydraulic methods in fast reactor safety

    International Nuclear Information System (INIS)

    Weber, D.P.; Briggs, L.L.

    1985-01-01

    Methods for the solution of thermal-hydraulic problems in liquid metal fast breeder reactors (LMFBRs) arising primarily from transient accident analysis are reviewed. Principal emphasis is given to the important phenomenological issues of sodium boiling and fuel motion. Descriptions of representative phenomenological and mathematical models, computational algorithms, advantages and limitations of the approaches, and current research needs and directions are provided

  20. Device and method for shortening reactor process tubes

    Science.gov (United States)

    Frantz, Charles E.; Alexander, William K.; Lander, Walter E. B.

    1980-01-01

    This disclosure describes a device and method for in situ shortening of nuclear reactor zirconium alloy process tubes which have grown as a result of radiation exposure. An upsetting technique is utilized which involves inductively heating a short band of a process tube with simultaneous application of an axial load sufficient to cause upsetting with an attendant decrease in length of the process tube.

  1. Method to fabricate block fuel elements for high temperature reactors

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1977-01-01

    The fabrication of block fuel elements for gas-cooled high temperature reactors can be improved upon by adding 0.2 to 2 wt.% of a hydrocarbon compound to the lubricating mixture prior to pressing. Hexanol or octanol are named as substances. The dimensional accuracy of the block is thus improved. 2 examples illustrate the method. (RW) [de

  2. Method to fabricate block fuel elements for high temperature reactors

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1978-01-01

    The fabrication of block fuel elements for gas-cooled high temperature reactors can be improved upon by adding 0.2 to 2 wt.% of a hydrocarbon compound to the lubricating mixture prior to pressing. Hexanol or octanol are named as substances. The dimensional accuracy of the block is thus improved. 2 examples illustrate the method. (orig./PW)

  3. Method of controlling power distribution in FBR type reactors

    International Nuclear Information System (INIS)

    Sawada, Shusaku; Kaneto, Kunikazu.

    1982-01-01

    Purpose: To attain the power distribution flattening with ease by obtaining a radial power distribution substantially in a constant configuration not depending on the burn-up cycle. Method: As the fuel burning proceeds, the radial power distribution is effected by the accumulation of fission products in the inner blancket fuel assemblies which varies the effect thereof as the neutron absorbing substances. Taking notice of the above fact, the power distribution is controlled in a heterogeneous FBR type reactor by varying the core residence period of the inner blancket assemblies in accordance with the charging density of the inner blancket assemblies in the reactor core. (Kawakami, Y.)

  4. Nodal methods in numerical reactor calculations

    International Nuclear Information System (INIS)

    Hennart, J.P.; Valle, E. del

    2004-01-01

    The present work describes the antecedents, developments and applications started in 1972 with Prof. Hennart who was invited to be part of the staff of the Nuclear Engineering Department at the School of Physics and Mathematics of the National Polytechnic Institute. Since that time and up to 1981, several master theses based on classical finite element methods were developed with applications in point kinetics and in the steady state as well as the time dependent multigroup diffusion equations. After this period the emphasis moved to nodal finite elements in 1, 2 and 3D cartesian geometries. All the thesis were devoted to the numerical solution of the neutron multigroup diffusion and transport equations, few of them including the time dependence, most of them related with steady state diffusion equations. The main contributions were as follows: high order nodal schemes for the primal and mixed forms of the diffusion equations, block-centered finite-differences methods, post-processing, composite nodal finite elements for hexagons, and weakly and strongly discontinuous schemes for the transport equation. Some of these are now being used by several researchers involved in nuclear fuel management. (Author)

  5. Nodal methods in numerical reactor calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hennart, J P [UNAM, IIMAS, A.P. 20-726, 01000 Mexico D.F. (Mexico); Valle, E del [National Polytechnic Institute, School of Physics and Mathematics, Department of Nuclear Engineering, Mexico, D.F. (Mexico)

    2004-07-01

    The present work describes the antecedents, developments and applications started in 1972 with Prof. Hennart who was invited to be part of the staff of the Nuclear Engineering Department at the School of Physics and Mathematics of the National Polytechnic Institute. Since that time and up to 1981, several master theses based on classical finite element methods were developed with applications in point kinetics and in the steady state as well as the time dependent multigroup diffusion equations. After this period the emphasis moved to nodal finite elements in 1, 2 and 3D cartesian geometries. All the thesis were devoted to the numerical solution of the neutron multigroup diffusion and transport equations, few of them including the time dependence, most of them related with steady state diffusion equations. The main contributions were as follows: high order nodal schemes for the primal and mixed forms of the diffusion equations, block-centered finite-differences methods, post-processing, composite nodal finite elements for hexagons, and weakly and strongly discontinuous schemes for the transport equation. Some of these are now being used by several researchers involved in nuclear fuel management. (Author)

  6. Method and device for controlling nuclear reactor power

    International Nuclear Information System (INIS)

    Takigawa, Yukio; Ebata, Shigeo.

    1988-01-01

    Purpose: To detect and suppress the special power oscillations in the reactor core. Method: Four pairs of LPRM detectors, each pair comprising two detectors are disposed at an identical axial direction of the reactor core and situated at substantially insymmetrical positions at least in longitudinal, vertical and orthogonal directions with respect to the center of te reactor core and LPRM signals from them are inputted into a device for judging special power oscillations. In this case, a standardized mutual relation function is determined on every pair for the respective LPRM signals. Generation of special power oscillations in the reactor core is judged when it is detected that peaks appearing at least in one of the function forms for each pair are negative and have absolute values exceeding a predetermined value and that time of peak is within a predetermined time. The judged signal is inputted to a selected control rod insertion device. The selected control rod insertion device, upon preceiving the signal, inserts selected control rods into the reactor core to suppress the special power oscillations. Accordingly, it is possible to improve the fuel integrity. (Horiuchi, T.)

  7. Method of starting internal pumps of a nuclear reactor

    International Nuclear Information System (INIS)

    Kumagami, Shoji.

    1985-01-01

    Purpose: To reduce the noise effects by decreasing the invading current into the main line upon starting an internal pump type nuclear reactor adapted to forcively recycle the reactor water by a plurality of internal pumps. Method: A plurality of internal pumps are divided into several groups and, upon starting pumps belonging to the individual unit group, the starting instances for the respective pumps are deviated to reduce the surges applied to the main line and suppress the invading current lower to reduce the earth noises. As a result, effects caused to other devices or equipments can be moderated to improve the reliability. Furthermore, by actuating the respective pumps on every group units in a starting pattern along the orthogonal line, flow rate distribution in the reactor can be balanced. Then, the instability region during low rotation of pumps, that is, instability of the flow rate near the resonance frequency can be decreased. (Kawakami, Y.)

  8. Methods for reactor physics calculations for control rods in fast reactors

    International Nuclear Information System (INIS)

    Grimstone, M.J.; Rowlands, J.L.

    1988-12-01

    The IAEA Specialists' Meeting on ''Methods for Reactor Physics Calculations for Control Rods in Fast Reactors'' was held in Winfrith, United Kingdom, on 6-8 December, 1988. The meeting was attended by 23 participants from nine countries. The purpose of the meeting was to review the current calculational methods and their accuracy as assessed by theoretical studies and comparisons with measurements, and then to identify the requirements for improved methods or additional studies and comparisons. The control rod properties or effects to be considered were their reactivity worths, their effect on the power distribution through the core, and the reaction rates and energy deposition both within and adjacent to the rods. The meeting was divided into five sessions, in the first of which each national delegation presented a brief overview of their programme of work on calculational methods for fast reactor control rods. In the next three sessions a total of seventeen papers were presented describing calculational methods and assessments of their accuracy. The final session was a discussion to draw conclusions regarding the current status of methods and the further developments and validation work required. A separate abstract was prepared for each of the 23 papers presented at the meeting. Refs, figs and tabs

  9. Method of controlling the water quality in nuclear reactors

    International Nuclear Information System (INIS)

    Ibe, Hidefumi.

    1985-01-01

    Purpose: To obtain a simple and reliable water quality calculation system and water quality control method based thereon for the entire primary coolant circuits in BWR type reactors. Method: In a method of controlling the water quality of the reactor water by injecting hydrogen into the primary coolant circuits of a nuclear reactor, by utilizing a first linear relationship established between the concentration of oxygen and hydrogen in the main steam system and the concentration of radiolysis products in the reactor core and separators and mixing plenum portions, each of the above-mentioned concentrations is calculated from the concentrations for hydrogen or oxygen. Further, by utilizing the first linear relationship established between the concentrations for the oxygen and hydrogen in the recycling system and the concentration of the radiolysis products in the system from the downcomer to the lower plenum portion, the above-mentioned concentration is calculated from the concentration for oxygen and hydrogen. Then, the hydrogen injection rate into the primary coolant system is determined such that the calculated value takes an aimed value. (Ikeda, J.)

  10. Comparative Analysis of Hydrogen Production Methods with Nuclear Reactors

    International Nuclear Information System (INIS)

    Morozov, Andrey

    2008-01-01

    Hydrogen is highly effective and ecologically clean fuel. It can be produced by a variety of methods. Presently the most common are through electrolysis of water and through the steam reforming of natural gas. It is evident that the leading method for the future production of hydrogen is nuclear energy. Several types of reactors are being considered for hydrogen production, and several methods exist to produce hydrogen, including thermochemical cycles and high-temperature electrolysis. In the article the comparative analysis of various hydrogen production methods is submitted. It is considered the possibility of hydrogen production with the nuclear reactors and is proposed implementation of research program in this field at the IPPE sodium-potassium eutectic cooling high temperature experimental facility (VTS rig). (authors)

  11. Modal method for crack identification applied to reactor recirculation pump

    International Nuclear Information System (INIS)

    Miller, W.H.; Brook, R.

    1991-01-01

    Nuclear reactors have been operating and producing useful electricity for many years. Within the last few years, several plants have found cracks in the reactor coolant pump shaft near the thermal barrier. The modal method and results described herein show the analytical results of using a Modal Analysis test method to determine the presence, size, and location of a shaft crack. The authors have previously demonstrated that the test method can analytically and experimentally identify shaft cracks as small as five percent (5%) of the shaft diameter. Due to small differences in material property distribution, the attempt to identify cracks smaller than 3% of the shaft diameter has been shown to be impractical. The rotor dynamics model includes a detailed motor rotor, external weights and inertias, and realistic total support stiffness. Results of the rotor dynamics model have been verified through a comparison with on-site vibration test data

  12. Methods and strategies for future reactor safety goals

    Science.gov (United States)

    Arndt, Steven Andrew

    -informed analyses and discussions. This dissertation examines potential approaches to updating the safety goals that include the establishment of new quantitative safety goal associated with the comparative risk of generating electricity by viable competing technologies and modifications of the goals to account for multi-plant reactor sites, and issues associated with the use of safety goals in both initial licensing and operational decision making. This research develops a new quantitative health objective that uses a comparable benefit risk metric based on the life-cycle risk of the construction, operation and decommissioning of a comparable non-nuclear electric generation facility, as well as the risks associated with mining and transportation. This dissertation also evaluates the effects of using various methods for aggregating site risk as a safety metric, as opposed to using single plant safety goals. Additionally, a number of important assumptions inherent in the current safety goals, including the effect of other potential negative societal effects such as the generation of greenhouse gases (e.g., carbon dioxide) have on the risk of electric power production and their effects on the setting of safety goals, is explored. Finally, the role risk perception should play in establishing safety goals has been explored. To complete this evaluation, a new method to analytically compare alternative technologies of generating electricity was developed, including development of a new way to evaluate risk perception, and a new method was developed for evaluating the risk at multiple units on a single site. To test these modifications to the safety goals a number of possible reactor designs and configurations were evaluated using these new proposed safety goals to determine the goals' usefulness and utility. The results of the analysis showed that the modifications provide measures that more closely evaluate the potential risk to the public from the operation of nuclear power plants than

  13. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  14. An analytical method for neutron thermalization calculations in heterogenous reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J [Boris Kidric Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)

    1965-07-01

    It is well known that the use of the diffusion approximation for stureactors may result in considerable errors. On the other hand, more exact numerical methods are rather laborious and require the use of large digital computers. In this paper, the use of the diffusion approximation in absorbing media has been avoided, but the treatment remained analytical, thus simplifying practical calculations.

  15. Method for fuel element leak detection in pressurized water reactors

    International Nuclear Information System (INIS)

    Kunze, U.

    1983-01-01

    The method is aimed at detecting fuel element leaks during reactor operation. It is based on neutron flux measurements at many points in the core, using at least two detectors at a time. The detectors must be arranged in the direction of the coolant flow. Values obtained from periodic measurements are compared with threshold values. The location of fuel element leaks is determined from those values exceeding the threshold of individual detectors

  16. An analytical method for neutron thermalization calculations in heterogenous reactors

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1965-01-01

    It is well known that the use of the diffusion approximation for studying neutron thermalization in heterogeneous reactors may result in considerable errors. On the other hand, more exact numerical methods are rather laborious and require the use of large digital computers. In this paper, the use of the diffusion approximation in absorbing media has been avoided, but the treatment remained analytical, thus simplifying practical calculations

  17. Comparison of calculational methods for EBT reactor nucleonics

    International Nuclear Information System (INIS)

    Henninger, R.J.; Seed, T.J.; Soran, P.D.; Dudziak, D.J.

    1980-01-01

    Nucleonic calculations for a preliminary conceptual design of the first wall/blanket/shield/coil assembly for an EBT reactor are described. Two-dimensional Monte Carlo, and one- and two-dimensional discrete-ordinates calculations are compared. Good agreement for the calculated values of tritium breeding and nuclear heating is seen. We find that the three methods are all useful and complementary as a design of this type evolves

  18. Sensitivity and Uncertainty Analysis of Coupled Reactor Physics Problems : Method Development for Multi-Physics in Reactors

    NARCIS (Netherlands)

    Perkó, Z.

    2015-01-01

    This thesis presents novel adjoint and spectral methods for the sensitivity and uncertainty (S&U) analysis of multi-physics problems encountered in the field of reactor physics. The first part focuses on the steady state of reactors and extends the adjoint sensitivity analysis methods well

  19. Development of inelastic design method for liquid metal reactor plants

    International Nuclear Information System (INIS)

    Takahashi, Yukio; Take, Kohji; Kaguchi, Hitoshi; Fukuda, Yoshio; Uno, Tetsuro.

    1991-01-01

    Effective utilization of inelastic analysis in structural design assessment is expected to play an important role for avoiding too conservative design of liquid metal reactor plants. Studies have been conducted by the authors to develop a guideline for application of detailed inelastic analysis in design assessment. Both fundamental material characteristics tests and structural failure tests were conducted. Fundamental investigations were made on inelastic analysis method and creep-fatigue life prediction method based on the results of material characteristics tests. It was demonstrated through structural failure tests that the design method constructed based on these fundamental investigations can predict failure lives in structures subjected to cyclic thermal loadings with sufficient accuracy. (author)

  20. Survey of methods and measurements of nuclear reactor time and frequency responses

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1961-11-01

    Methods of measuring reactivity effects in nuclear reactors are described and the main control engineering analytical problems in nuclear reactors are detailed. A description of the use of reactor models and adaptive control in improving the economy of power producing nuclear reactors is included. (author)

  1. Metaphysics methods development for high temperature gas cooled reactor analysis

    International Nuclear Information System (INIS)

    Seker, V.; Downar, T. J.

    2007-01-01

    Gas cooled reactors have been characterized as one of the most promising nuclear reactor concepts in the Generation-IV technology road map. Considerable research has been performed on the design and safety analysis of these reactors. However, the calculational tools being used to perform these analyses are not state-of-the-art and are not capable of performing detailed three-dimensional analyses. This paper presents the results of an effort to develop an improved thermal-hydraulic solver for the pebble bed type high temperature gas cooled reactors. The solution method is based on the porous medium approach and the momentum equation including the modified Ergun's resistance model for pebble bed is solved in three-dimensional geometry. The heat transfer in the pebble bed is modeled considering the local thermal non-equilibrium between the solid and gas, which results in two separate energy equations for each medium. The effective thermal conductivity of the pebble-bed can be calculated both from Zehner-Schluender and Robold correlations. Both the fluid flow and the heat transfer are modeled in three dimensional cylindrical coordinates and can be solved in steady-state and time dependent. The spatial discretization is performed using the finite volume method and the theta-method is used in the temporal discretization. A preliminary verification was performed by comparing the results with the experiments conducted at the SANA test facility. This facility is located at the Institute for Safety Research and Reactor Technology (ISR), Julich, Germany. Various experimental cases are modeled and good agreement in the gas and solid temperatures is observed. An on-going effort is to model the control rod ejection scenarios as described in the OECD/NEA/NSC PBMR-400 benchmark problem. In order to perform these analyses PARCS reactor simulator code will be coupled with the new thermal-hydraulic solver. Furthermore, some of the other anticipated accident scenarios in the benchmark

  2. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  3. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    International Nuclear Information System (INIS)

    Blanford, E.; Keldrauk, E.; Laufer, M.; Mieler, M.; Wei, J.; Stojadinovic, B.; Peterson, P.F.

    2010-01-01

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  4. Benchmarking burnup reconstruction methods for dynamically operated research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sternat, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Charlton, William S. [Univ. of Nebraska, Lincoln, NE (United States). National Strategic Research Institute; Nichols, Theodore F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The burnup of an HEU fueled dynamically operated research reactor, the Oak Ridge Research Reactor, was experimentally reconstructed using two different analytic methodologies and a suite of signature isotopes to evaluate techniques for estimating burnup for research reactor fuel. The methods studied include using individual signature isotopes and the complete mass spectrometry spectrum to recover the sample’s burnup. The individual, or sets of, isotopes include 148Nd, 137Cs+137Ba, 139La, and 145Nd+146Nd. The storage documentation from the analyzed fuel material provided two different measures of burnup: burnup percentage and the total power generated from the assembly in MWd. When normalized to conventional units, these two references differed by 7.8% (395.42GWd/MTHM and 426.27GWd/MTHM) in the resulting burnup for the spent fuel element used in the benchmark. Among all methods being evaluated, the results were within 11.3% of either reference burnup. The results were mixed in closeness to both reference burnups; however, consistent results were achieved from all three experimental samples.

  5. Methods and tools to detect thermal noise in fast reactors

    International Nuclear Information System (INIS)

    Motta, M.; Giovannini, R.

    1985-07-01

    The Specialists' Meeting on ''Methods and Tools to Detect Thermal Noise in Fast Reactors'' was held in Bologna on 8-10 October 1984. The meeting was hosted by the ENEA and was sponsored by the IAEA on the recommendation of the International Working Group on Fast Reactors. 17 participants attended the meeting from France, the Federal Republic of Germany, Italy, Japan, the United Kingdom, Joint Research Centre of CEC and from IAEA. The meeting was presided over by Prof. Mario Motta of Italy. The purpose of the meeting was to review and discuss methods and tools for temperature noise detection and related analysis as a potential means for detecting local blockages in fuel and blanket subassemblies and other faults in LMFBR. The meeting was divided into four technical sessions as follows: 1. National review presentations on application purposes and research activities for thermal noise detection. (5 papers); 2. Detection instruments and electronic equipment for temperature measurements in fast reactors. (5 papers); 3. Physical models. (2 papers); 4. Signal processing techniques. (3 papers). A separate abstract was prepared for each of these papers

  6. Ceramic oxygen transport membrane array reactor and reforming method

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-11-08

    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.

  7. Method of eliminating cruds in the primary coolants of reactors

    International Nuclear Information System (INIS)

    Tamura, Takaaki.

    1984-01-01

    Purpose: To eliminate cruds in the primary coolants by using rind of onions or peanuts. Method: Since cruds contained in the reactor primary coolants increase the radioactive exposure to reactor operators, they have been intended to remove by ion exchange resins. In this invention, rind of onions or peanuts are crushed into an adequate particle size and packed into an absorption column instead of ion exchange resins into which primary coolants are circulated. The powderous onions or peanuts rind contain glucoside such as cosmosiin and has an effect of cationic exchanger, they satisfactorily catch heavy metals such as Fe and Cu. They have an excellent filtering effect even under a high pH condition and are excellent in economical point of view. They can be decrease the volume of the absorption column, reduce their devolume after use through corrosion and easily subjected to waste procession through oxidizing combustion in liquid. (Nakamoto, H.)

  8. Development of probabilistic fast reactor fuel design method

    International Nuclear Information System (INIS)

    Ozawa, Takayuki

    1997-01-01

    Under the current method of evaluating fuel robustness in FBR fuel rod design, a variety of uncertain quantities including fuel production tolerance and power density are estimated conservatively. In the future, in order to proceed with improvements in the FBR core's performance and optimize the fuel's specifications, a rationalization of fuel design tolerance is required. Among the measures aimed at realizing this rationalization, the introduction of a probabilistic fast reactor fuel design method is currently under consideration. I have developed a probabilistic fast reactor fuel design code named BORNFREE, in order to make use of this method in FBR fuel design. At the same time, I have carried out a trial calculation of the cladding stress using this code and made a study and an evaluation of the possibility of employing tolerance rationalization in fuel rod design. In this paper, I provide an outline description of BORNFREE and report the results of the above study and evaluation. After performing cladding stress trial calculations using the probabilistic method, I was able to confirm that this method promises more rational design evaluation results than the conventional deterministic method. (author)

  9. Kartini reactor tank inspection using NDT method for safety improvement of the reactor operation

    International Nuclear Information System (INIS)

    Syarip; Sutondo, Tegas; Saleh, Chaerul; Nitiswati; Puradwi; Andryansah; Mudiharjo

    2002-01-01

    The inspection of Kartini reactor tank liner (TRK) by using Non Destructive Testing (NDT) methods to improve the reactor operation safety, have been done. The type of NDT used were: visual examination using an underwater camera and magnifier, replication survey using dental putty, hardness test using an Equotip D indentor, thickness test using ultrasonic probe, and dye penetrant test. The visual examination showed that the surface of TRK was in good condition. The hardness readings were considered to be consistent with the original condition of the tank and the slight hardness increase at the reactor core area consistent with the neutron fluence experienced -10 1 4 n/cm 2 . Results of ultrasonic thickness survey showed that in average the TRK thickness is between 5,0 mm - 6,5 mm, a low 2,1 mm thickness exists at the top of the TRK in the belt area (double layer aluminum plat, therefore do not influencing the safety ). The replica and dye penetrant test at the low thickness area and several suspected areas showed that it could be some defect from original manufacture. Therefore, it can be concluded that the TRK is still feasible for continued operation safely

  10. Fuel loading method to exchangeable reactor core of BWR type reactor and its core

    International Nuclear Information System (INIS)

    Koguchi, Kazushige.

    1995-01-01

    In a fuel loading method for an exchangeable reactor core of a BWR type reactor, at least two kinds of fresh fuel assemblies having different reactivities between axial upper and lower portions are preliminarily prepared, and upon taking out fuel assemblies of advanced combustion and loading the fresh fuel assemblies dispersingly, they are disposed so as to attain a predetermined axial power distribution in the reactor. At least two kinds of fresh fuel assemblies have a content of burnable poisons different between the axial upper portion and lower portions. In addition, reactivity characteristics are made different at a region higher than the central boundary and a region lower than the central boundary which is set within a range of about 6/24 to 16/24 from the lower portion of the fuel effective length. There can be attained axial power distribution as desired such as easy optimization of the axial power distribution, high flexibility, and flexible flattening of the power distribution, and it requires no special change in view of the design and has a good economical property. (N.H.)

  11. Determination of reactor thermal power using a more accurate method

    International Nuclear Information System (INIS)

    Papuga, J.; Madron, F.; Pliska, J.

    2005-01-01

    Reactor thermal power is an important operational parameter in many respects such as nuclear safety, reactor physics or evaluation of turbine thermal performance. Thermal power of a pressurized water reactor is determined on the basis of the steam generator thermal balance. The balance can be made in several variants differing from one another by the selection of different measuring circuits whose data are used in the balancing. In principle, no one such variant gives the true value of the thermal power. Among the variant values, the one nearest to the unknown true value of reactor thermal power is probably the value calculated with the lowest uncertainty. The determination of such uncertainty is not easy and its value can make even several percent, which has significant economic consequences. This paper presents the method of data reconciliation and its application to the data of the third of Dukovany NPP. The data reconciliation method allows to exploit all the information which process data contain. It is based on the statistical adjustment of the redundant data in such a way that the adjusted data obey generally valid laws of nature (e.g. conservation laws). Mass and energy balances based on the data not yet reconciled do not obey those laws because of measurement errors. For data reconciliation in Dukovany, a detailed model of mass and energy flows describing the 3rd unit from steam generators to alternator and condenser was set up. Laws of mass and energy conservation and phase equilibrium in water-steam systems are thus fulfilled. Moreover, the user can model momentum balances in pipelines and create other equations, which are respected during calculation. The data reconciliation is done regularly for hourly averages (Authors)

  12. Methods for the sodium cooled fast reactor fire safety provisions

    International Nuclear Information System (INIS)

    Gryaznov, B.V.; Dergachev, N.P.

    1983-01-01

    Problems of fire safety provision on NPPs with sodium cooled fast reactor are under discussion. Methods of sodium leak localization, measures eliminating sodium flaring up during leaks and main means of sodium fire extinguishing are considered. An extinguishing of sodium flaring up is performed by means of sodium temperatUre decrease and by limitation of hydrogen access to the flaring up surface. A conclusion is made that the most effective methods of extinguishing are the following: self-extinguishing (due to hydrogen burning out in a limiting volume); extinguishing by a gas mixture of nitrogen and carbonic acid (initial filling and blowing of rooms during sodium flaring up); extinguishing by special powders

  13. Nuclear calculation methods for light water moderated reactors

    International Nuclear Information System (INIS)

    Hicks, D.

    1961-02-01

    This report is intended as an introductory review. After a brief discussion of problems encountered in the nuclear design of water moderated reactors a comprehensive scheme of calculations is described. This scheme is based largely on theoretical methods and computer codes developed in the U.S.A. but some previously unreported developments made in this country are also described. It is shown that the effective reproduction factor of simple water moderated lattices may be estimated to an accuracy of approximately 1%. Methods for treating water gap flux peaking and control absorbers are presented in some detail, together with a brief discussion of temperature coefficients, void coefficients and burn-up problems. (author)

  14. Reactor internals vibration monitoring by neutron noise methods in PWRs

    International Nuclear Information System (INIS)

    Pazsit, I.; Por, G.; Lux, I.

    1983-01-01

    Certain elements of PWR cores such as control/fuel rods or cassettes, or other parts of reactor internals, often represent a vibration problem. Early analyses at operating PWR plant revealed that these vibrations can be detected by in-core neutron detectors, opening up the possibility of vibration monitoring and diagnostics by noise methods. Theoretical methods of calculating vibration induced neutron noise and its application to vibration diagnostics are summarized. Experiments to check theoretical conclusions are under way at the Central Research Institute for Physics, Budapest. (author)

  15. Method of injecting iron ion into reactor coolant

    International Nuclear Information System (INIS)

    Ito, Kazuyuki; Sawa, Toshio; Nishino, Yoshitaka; Adachi, Tetsuro; Osumi, Katsumi.

    1988-01-01

    Purpose: To form iron ions stably and inject them into nuclear reactor coolants with no substantial degradation of the severe water quality conditions for reactor coolants. Method: Iron ions are formed by spontaneous corrosion of iron type materials and electroconductivity is increased with the iron ions. Then, the liquids are introduced into an electrolysis vessel using iron type material as electrodes and, thereafter, incorporation of newly added ions other than the iron ions are prevented by supplying electric current. Further, by retaining the iron type material in the packing vessel by the magnetic force therein, only the iron ions are flow out substantially from the packing vessel while preventing the discharge of iron type materials per se or solid corrosion products and then introduced into the electrolysis vessel. Powdery or granular pure iron or carbon steel is used as the iron type material. Thus, iron ions and hydroxides thereof can be injected into coolants by using reactor water at low electroconductivity and incapable of electrolysis. (Kamimura, M.)

  16. Fault Diagnosis of Batch Reactor Using Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Sujatha Subramanian

    2014-01-01

    Full Text Available Fault diagnosis of a batch reactor gives the early detection of fault and minimizes the risk of thermal runaway. It provides superior performance and helps to improve safety and consistency. It has become more vital in this technical era. In this paper, support vector machine (SVM is used to estimate the heat release (Qr of the batch reactor both normal and faulty conditions. The signature of the residual, which is obtained from the difference between nominal and estimated faulty Qr values, characterizes the different natures of faults occurring in the batch reactor. Appropriate statistical and geometric features are extracted from the residual signature and the total numbers of features are reduced using SVM attribute selection filter and principle component analysis (PCA techniques. artificial neural network (ANN classifiers like multilayer perceptron (MLP, radial basis function (RBF, and Bayes net are used to classify the different types of faults from the reduced features. It is observed from the result of the comparative study that the proposed method for fault diagnosis with limited number of features extracted from only one estimated parameter (Qr shows that it is more efficient and fast for diagnosing the typical faults.

  17. Method for pre-heating lmfbr type reactors

    International Nuclear Information System (INIS)

    Yokozawa, Atsushi; Kataoka, Hajime.

    1978-01-01

    Purpose: To enable pre-heating for the inside of the reactor container and the inside of the coolant recycling system with no additional facilities. Method: The coolant recycling system is composed of a heat exchanger, a mechanical pump, a check valve, a flow meter or the like and it is connected in series by way of a pipe line to a reactor container. The mechanical pump is used as a gas recycling device upon pre-heating and it is designed so that a blower such as a fan can be replaced for the impeller of the pump. The inside of the reactor container and the inside of the coolant recycling system is at first filled with an inert gas such as for use with cover gas. Then, nuclear fuels are loaded to attain criticality. Simultaneously, the blower is started and the control rods are operated while cooling the nuclear fuel with the inert gas thus to obtain heat required for pre-heating the pipe line or the like from the nuclear fuels. After the completion of the pre-heating, the liquid metal is charged. (Ikeda, J.)

  18. Method of freezing type dismantling for wasted reactors

    International Nuclear Information System (INIS)

    Tatsumi, Toshiyuki.

    1985-01-01

    Purpose: To enable to operate a cutting device in the air by placing a working table on ice while utilizing the ice as radiation shielding materials thereby prevent the diffusion of air contaminations. Method: Upon dismantling a BWR type reactor, ice is packed into a reactor container and a pressure vessel and frozen state is maintained by cooling coils disposed to the outer circumference of the pressure vessel. Then, an airtight hood is covered over the pressure vessel and a working table is rotatably disposed therein. Upon working, when the upper layer ice is melted by a heat pump and discharged, the airtight hood is lowered to a predetermined level. After freezing the melted portion again at the lowered level, cutting work is conducted by an operator in the hood. The cut pieces are conveyed after hoisting the airtight hood by a crane. The pressure vessel is dismantled by repeating the foregoing procedures. In this way, cut pieces can be recovered without falling them to the reactor bottom as in the conventional work in water. In addition, since the procedures are conducted while covering the airtight hood, diffusion of air contaminations can be prevented. (Kamimura, M.)

  19. Nuclear data and multigroup methods in fast reactor calculations

    International Nuclear Information System (INIS)

    Gur, Y.

    1975-03-01

    The work deals with fast reactor multigroup calculations, and the efficient treatment of basic nuclear data, which serves as raw material for the calculations. Its purpose is twofold: to build a computer code system that handles a large, detailed library of basic neutron cross section data, (such as ENDF/B-III) and yields a compact set of multigroup cross sections for reactor calculations; to use the code system for comparative analysis of different libraries, in order to discover basic uncertainties that still exist in the measurement of neutron cross sections, and to determine their influence upon uncertainties in nuclear calculations. A program named NANICK which was written in two versions is presented. The first handles the American basic data library, ENDF/B-III, while the second handles the German basic data library, KEDAK. The mathematical algorithm is identical in both versions, and only the file management is different. This program calculates infinitely diluted multigroup cross sections and scattering matrices. It is complemented by the program NASIF that calculates shielding factors from resonance parameters. Different versions of NASIF were written to handle ENDF/B-III or KEDAK. New methods for evaluating in reactor calculations the long term behavior of the neutron flux as well as its fine structure are described and an efficient calculation of the shielding factors from resonance parameters is offered. (B.G.)

  20. A digital method for period measurements in a nuclear reactor

    International Nuclear Information System (INIS)

    Mundim, Sergio Gorretta

    1971-02-01

    The present paper begins by giving a theoretical treatment for the nuclear reactor period. The conventional method of measuring the period is analysed and some previously developed digital methods are described. The paper criticises the latter, pointing out some deficiencies which the proposed process is able to eliminate. All errors connected with this process are also analysed. The paper presents suitable solutions to reduce them to a minimum. The total error is found to he less than the error presented by the other methods described. A digital period meter is designed with memory resources and an automatic scaler changer. Integrated circuits specifications are used in it. Real time experiments with nuclear reactors were made in order to check te validity of the method. The data acquired were applied to a simulated digital period meter implemented in a general purpose computer. The nuclear part of the work was developed at the 'Comissao Nacional de Energia Nuclear' and the simulation work was dane at the 'Departamento de Calculo Cientifico' of COPPE, which also advised the author in the completion of this thesis. (author)

  1. Optimal reload and depletion method for pressurized water reactors

    International Nuclear Information System (INIS)

    Ahn, D.H.

    1984-01-01

    A new method has been developed to automatically reload and deplete a PWR so that both the enriched inventory requirements during the reactor cycle and the cost of reloading the core are minimized. This is achieved through four stepwise optimization calculations: 1) determination of the minimum fuel requirement for an equivalent three-region core model, 2) optimal selection and allocation of fuel requirement for an equivalent three-region core model, 2) optimal selection and allocation of fuel assemblies for each of the three regions to minimize the cost of the fresh reload fuel, 3) optimal placement of fuel assemblies to conserve regionwise optimal conditions and 4) optimal control through poison management to deplete individual fuel assemblies to maximize EOC k/sub eff/. Optimizing the fuel cost of reloading and depleting a PWR reactor cycle requires solutions to two separate optimization calculations. One of these minimizes the enriched fuel inventory in the core by optimizing the EOC k/sub eff/. The other minimizes the cost of the fresh reload cost. Both of these optimization calculations have now been combined to provide a new method for performing an automatic optimal reload of PWR's. The new method differs from previous methods in that the optimization process performs all tasks required to reload and deplete a PWR

  2. Comparison study on cell calculation method of fast reactor

    International Nuclear Information System (INIS)

    Chiba, Gou

    2002-10-01

    Effective cross sections obtained by cell calculations are used in core calculations in current deterministic methods. Therefore, it is important to calculate the effective cross sections accurately and several methods have been proposed. In this study, some of the methods are compared to each other using a continuous energy Monte Carlo method as a reference. The result shows that the table look-up method used in Japan Nuclear Cycle Development Institute (JNC) sometimes has a difference over 10% in effective microscopic cross sections and be inferior to the sub-group method. The problem was overcome by introducing a new nuclear constant system developed in JNC, in which the ultra free energy group library is used. The system can also deal with resonance interaction effects between nuclides which are not able to be considered by other methods. In addition, a new method was proposed to calculate effective cross section accurately for power reactor fuel subassembly where the new nuclear constant system cannot be applied. This method uses the sub-group method and the ultra fine energy group collision probability method. The microscopic effective cross sections obtained by this method agree with the reference values within 5% difference. (author)

  3. Analytic function expansion nodal method for nuclear reactor core design

    International Nuclear Information System (INIS)

    Noh, Hae Man

    1995-02-01

    In most advanced nodal methods the transverse integration is commonly used to reduce the multi-dimensional diffusion equation into equivalent one- dimensional diffusion equations when derving the nodal coupling equations. But the use of the transverse integration results in some limitations. The first limitation is that the transverse leakage term which appears in the transverse integration procedure must be appropriately approximated. The second limitation is that the one-dimensional flux shapes in each spatial direction resulted from the nodal calculation are not accurate enough to be directly used in reconstructing the pinwise flux distributions. Finally the transverse leakage defined for a non-rectangular node such as a hexagonal node or a triangular node is too complicated to be easily handled and may contain non-physical singular terms of step-function and delta-function types. In this thesis, the Analytic Function Expansion Nodal (AFEN) method and its two variations : the Polynomial Expansion Nodal (PEN) method and the hybrid of the AFEN and PEN methods, have been developed to overcome the limitations of the transverse integration procedure. All of the methods solve the multidimensional diffusion equation without the transverse integration. The AFEN method which we believe is the major contribution of this study to the reactor core analysis expands the homogeneous flux distributions within a node in non-separable analytic basis functions satisfying the neutron diffusion equations at any point of the node and expresses the coefficients of the flux expansion in terms of the nodal unknowns which comprise a node-average flux, node-interface fluxes, and corner-point fluxes. Then, the nodal coupling equations composed of the neutron balance equations, the interface current continuity equations, and the corner-point leakage balance equations are solved iteratively to determine all the nodal unknowns. Since the AFEN method does not use the transverse integration in

  4. Automatic diagnostic methods of nuclear reactor collected signals

    International Nuclear Information System (INIS)

    Lavison, P.

    1978-03-01

    This work is the first phase of an opwall study of diagnosis limited to problems of monitoring the operating state; this allows to show all what the pattern recognition methods bring at the processing level. The present problem is the research of the control operations. The analysis of the state of the reactor gives a decision which is compared with the history of the control operations, and if there is not correspondence, the state subjected to the analysis will be said 'abnormal''. The system subjected to the analysis is described and the problem to solve is defined. Then, one deals with the gaussian parametric approach and the methods to evaluate the error probability. After one deals with non parametric methods and an on-line detection has been tested experimentally. Finally a non linear transformation has been studied to reduce the error probability previously obtained. All the methods presented have been tested and compared to a quality index: the error probability [fr

  5. EDF Energies Nouvelles. Financial report at June 30, 2011

    International Nuclear Information System (INIS)

    2011-01-01

    EDF Energies Nouvelles is a world leader in renewable energy electricity. The company develops, builds and operates clean energy power plants both for its own account and for third parties. Historically, EDF Energies Nouvelles primarily developed its business in two geographical areas, Europe and North America (U.S., Canada and Mexico). EDF Energies Nouvelles is a subsidiary of EDF, helping the Group to achieve its renewable energy goals. The EDF Group generates low-carbon electricity around the world and actively participates in the energy transition. EDF Energies Nouvelles prioritizes development of wind and photovoltaic solar capacity. As an integrated operator with global reach, EDF Energies Nouvelles covers the entire renewable energy chain, from development to operation and maintenance, and manages all project phases in-house. This document is EDF Energies Nouvelles's half-year financial report for 2011. It contains a half-year activity report, the consolidated financial statements at June 30, 2011 and the report drafted by the Statutory Auditors

  6. EDF Energies Nouvelles. Consolidated financial statements at 30 June 2009

    International Nuclear Information System (INIS)

    2010-01-01

    EDF Energies Nouvelles is a world leader in renewable energy electricity. The company develops, builds and operates clean energy power plants both for its own account and for third parties. Historically, EDF Energies Nouvelles primarily developed its business in two geographical areas, Europe and North America (U.S., Canada and Mexico). EDF Energies Nouvelles is a subsidiary of EDF, helping the Group to achieve its renewable energy goals. The EDF Group generates low-carbon electricity around the world and actively participates in the energy transition. EDF Energies Nouvelles prioritizes development of wind and photovoltaic solar capacity. As an integrated operator with global reach, EDF Energies Nouvelles covers the entire renewable energy chain, from development to operation and maintenance, and manages all project phases in-house. This document is EDF Energies Nouvelles's registration document for the year 2009. It contains information about Group profile, governance, business, investments, property, plant and equipment, management, financial position, employees, shareholders, etc. The document includes the group's consolidated financial statements at 31 December 2008

  7. A stochastic physical-mathematical method for reactor kinetics analysis

    International Nuclear Information System (INIS)

    Velickovic, Lj.

    1966-01-01

    The developed theoretical model is concerned with BF 3 counter placed in the core of a low power reactor (a few MW) where statistical neutron effects are most evident. Our experiments were somewhat different. The detector used was and ionization chamber with double sampling, in ADC and in the time analyzer. The objective of this model was not to obtain precise numerical calculations, but to explain the method and the essentials of the correlation. Introducing all the six groups of delayed neutrons and possibly photoneutrons the model could be improved to obtained more realistic results

  8. Assessment of nucleonic methods and data for fusion reactors

    International Nuclear Information System (INIS)

    Dudziak, D.J.

    1976-01-01

    An assessment is provided of nucleonic methods, codes, and data necessary for a sound experimental fusion power reactor (EPR) technology base. Gaps in the base are identified and specific development recommendations are made in three areas: computational tools, nuclear data, and integral experiments. The current status of the first two areas is found to be sufficiently inadequate that viable engineering design of an EPR is precluded at this time. However, a program to provide the necessary data and computational capability is judged to be a low-risk effort

  9. Application of noise analysis methods in nuclear reactor diagnostics

    International Nuclear Information System (INIS)

    Dach, K.

    1985-01-01

    By statistical evaluation of the fluctuation component of signals from selected detectors, noise diagnostics detects conditions of equipment which might later result in failure. The objective of early diagnostics is to detect the failed integrity of primary circuit components, failed detectors or anomalies of the thermohydraulic process. The commonest method of experimental data analysis is spectral analysis in the frequency range 0 to 50 Hz. Recently, expert diagnostic systems have been built based on artificial intelligence systems. Czechoslovakia participates in the experimental research of noise diagnostics in the context of the development of diagnostic assemblies for WWER-440 reactors. (M.D.)

  10. Methods for solving the stochastic point reactor kinetic equations

    International Nuclear Information System (INIS)

    Quabili, E.R.; Karasulu, M.

    1979-01-01

    Two new methods are presented for analysis of the statistical properties of nonlinear outputs of a point reactor to stochastic non-white reactivity inputs. They are Bourret's approximation and logarithmic linearization. The results have been compared with the exact results, previously obtained in the case of Gaussian white reactivity input. It was found that when the reactivity noise has short correlation time, Bourret's approximation should be recommended because it yields results superior to those yielded by logarithmic linearization. When the correlation time is long, Bourret's approximation is not valid, but in that case, if one can assume the reactivity noise to be Gaussian, one may use the logarithmic linearization. (author)

  11. The Dynamic Monte Carlo Method for Transient Analysis of Nuclear Reactors

    NARCIS (Netherlands)

    Sjenitzer, B.L.

    2013-01-01

    In this thesis a new method for the analysis of power transients in a nuclear reactor is developed, which is more accurate than the present state-of-the-art methods. Transient analysis is important tool when designing nuclear reactors, since they predict the behaviour of a reactor during changing

  12. Improvement in or relating to methods and apparatus for refuelling nuclear reactors

    International Nuclear Information System (INIS)

    Shumyakin, E.P.; Sabir-de-Ribas, K.I.; Druzhinsky, I.A.; Kondratiev, P.V.; Andreichikov, B.I.; Slepov, L.M.; Borisjuk, E.V.; Smirnov, A.M.

    1977-01-01

    This invention relates to improvements in the methods and in the apparatus used for refuelling liquid metal cooled fast reactors and in particular to systems for cooling the fuel assemblies as they are removed from the reactor. (UK)

  13. Proposal for a new method of reactor neutron flux distribution determination

    Energy Technology Data Exchange (ETDEWEB)

    Popic, V R [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1964-01-15

    A method, based on the measurements of the activity produced in a medium flowing with variable velocity through a reactor, for the determination of the neutron flux distribution inside a reactor is considered theoretically (author)

  14. Study on reactor power transient characteristics (reactor training experiments). Control rod reactivity calibration by positive period method and other experiment

    International Nuclear Information System (INIS)

    Ozaki, Yoshihiko; Sunagawa, Takeyoshi

    2014-01-01

    In this paper, it is reported about some experiments that have been carried out in the reactor training that targets sophomore of the department of applied nuclear engineering, FUT. Reactor of Kinki University Atomic Energy Research Institute (UTR-KINKI) was used for reactor training. When each critical state was achieved at different reactor output respectively in reactor operating, it was confirmed that the control rod position at that time does not change. Further, control rod reactivity calibration experiments using positive Period method were carried out for shim safety rod and regulating rod, respectively. The results were obtained as reasonable values in comparison with the nominal value of the UTR-KINKI. The measurement of reactor power change after reactor scram was performed, and the presence of the delayed neutron precursor was confirmed by calculating the half-life. The spatial dose rate measurement experiment of neutrons and γ-rays in the reactor room in a reactor power 1W operating conditions were also performed. (author)

  15. High power ring methods and accelerator driven subcritical reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Tahar, Malek Haj [Univ. of Grenoble (France)

    2016-08-07

    High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in the synthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept of sub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective of achieving cleaner, safer and more efficient process than today’s technologies allow. Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime, MW power class still remains a challenge nowadays. There is a limited number of installations at present achieving beam characteristics in that class, e.g., PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS in Oakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MW beam from a linear accelerator. Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some of the key issues/requirements are the design of a spallation target to withstand high power densities as well as ensure the safety of the installation. These two domains are the grounds of the PhD work: the focus is on the high power ring methods in the frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensity is crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamics and benchmarking of different codes was undertaken to validate the simulation results. Experimental results revealed some major losses that need to be understood and eventually overcome. By developing analytical models that account for the field defects, one identified major sources of imperfection in the design of scaling FFAG that explain the important tune variations resulting in the crossing of several betatron resonances. A new formula is derived to compute the tunes and properties established that characterize the effect of the field imperfections on the

  16. A study of the literature on nodal methods in reactor physics calculations

    International Nuclear Information System (INIS)

    Van de Wetering, T.F.H.

    1993-01-01

    During the last few decades several calculation methods have been developed for the three-dimensional analysis of a reactor core. A literature survey was carried out to gain insights in the starting points and method of operation of the advanced nodal methods. These methods are applied in reactor core analyses of large nuclear power reactors, because of their high computing speed. The so-called Nodal-Expansion method is described in detail

  17. Observation method for inside of FBR type reactor

    International Nuclear Information System (INIS)

    Shimano, Kunio; Ishitori, Takashi.

    1992-01-01

    The method of the present invention provides such a method that the surface of a metal case of an ultrasonic transducer keep a good intimate contact with liquid sodium always in a normal state in a short period of time while exhibiting satisfactory wettability. That is, an oxygen concentration in liquid sodium is increased and the inside of the reactor is seen through. Liquid sodium in a state of high oxygen concentration has extremely satisfactory wettability with metals. Accordingly, the metal surface of the ultrasonic transducer can be put to a intimate contact with the liquid metal sodium in a normal state. Further, a coating layer made of nickel or gold is disposed on the surface of the ultrasonic transducer. With such a constitution, the wettability with the liquid metal sodium can further be improved. (I.S.)

  18. Treatment of fast reactor liquid waste- electrochemical method

    International Nuclear Information System (INIS)

    Mahato, Swapan Kumar; Sudha, R.; Anthonysamy, S.; Muralidaran, P.

    2015-01-01

    During the operation of fast reactors, components get wetted by sodium. The sodium wetted primary components such as pumps and intermediate heat exchangers (IHX) in fast reactors are cleaned free of sodium followed by suitable chemical decontamination process before taking them for maintenance or for disposal. This helps in reduction of radiation dose to the operating personnel. Sodium cleaning and decontamination generates large volumes of liquid effluent. The activity in the liquid effluent during sodium cleaning/decontamination is due to 22 Na, 54 Mn, 58 Co, 60 Co, 59 Fe, 137 Cs and 134 Cs. It is required to chemically treat the effluent to reduce the activity levels prior to storage in tanks and transportation to the waste management facility for final disposal. Conventionally the ion exchange method is used for removal of radionuclides which produces large quantities of secondary waste. A method which is suitable both for removal of radionuclides present in low concentration and that avoids generation of large quantities of secondary waste is required. Hence an electrochemical method for metal ion removal is attempted in this work which produces little or no secondary waste. Electrochemical method towards removal of manganese ions was finalized earlier using reticulated vitreous carbon (RVC) from simulated decontamination solution containing a mixture of sulphuric and phosphoric acids. In continuation of the experiments for the removal of cesium ions from simulated cleaning solution which has an alkaline pH, a thin film of nickel hexacyanoferrate (NiHCF) was deposited electrochemically on the surface of RVC. Hexacyanoferrates are known for selectively binding cesium. This NiHCF coated RVC was used for electrodeposition of Cs ions. NiHCF coated and Cs deposited RVC was characterized using SEM/EDX analysis. EDX analysis confirms the presence of Cs on NiHCF coated RVC. (author)

  19. Operational methods of the fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Borges, V.; Sefidvash, F.

    1993-01-01

    The operational curve of reactivity as a function of porosity of the Fluidized Bed Nuclear Reactor is presented. The strategies for start-up, shut-down and maintaining the reactor critical during operation are described. The inherent safety of the reactor from neutronic point of view under steady state condition is demonstrated. (author)

  20. Integral reactor system and method for fuel cells

    Science.gov (United States)

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  1. La nouvelle vague in polarized neutron scattering

    International Nuclear Information System (INIS)

    Mezei, F.

    1986-01-01

    Polarized neutron research, like many other subjects in neutron scattering developed in the footsteps of Cliff Shull. The classical polarized neutron technique he pioneered was generalized around 1970 to vectorial beam polarizations and this opened up the way to a ''nouvelle vague'' of neutron scattering experiments. In this paper I will first reexamine the old controversy on the question whether the nature of the neutron magnetic moment is that of a microscopic dipole or of an Amperian current loop. The problem is not only of historical interest, but also of relevance to modern applications. This will be followed by a review of the fundamentals on spin coherence effects in neutron beams and scattering, which are the basis of vectorial beam polarization work. As an example of practical importance, paramagnetic scattering will be discussed. The paper concludes with some examples of applications of the vector polarization techniques, such as study of ferromagnetic domains by neutron beam depolarization and Neutron Spin Echo high resolution inelastic spectroscopy. The sample results presented demonstrate the new opportunities this novel approach opened up in neutrons scattering research. (orig.)

  2. Reactor calculation in coarse mesh by finite element method applied to matrix response method

    International Nuclear Information System (INIS)

    Nakata, H.

    1982-01-01

    The finite element method is applied to the solution of the modified formulation of the matrix-response method aiming to do reactor calculations in coarse mesh. Good results are obtained with a short running time. The method is applicable to problems where the heterogeneity is predominant and to problems of evolution in coarse meshes where the burnup is variable in one same coarse mesh, making the cross section vary spatially with the evolution. (E.G.) [pt

  3. Proceedings of the ANS/ASME/NRC international topical meeting on nuclear reactor thermal-hydraulics: LMFBR and HTGR advanced reactor concepts and analysis methods

    International Nuclear Information System (INIS)

    1980-01-01

    Separate abstracts are included for each of the papers presented concerning the thermal-hydraulics of LMFBR type reactors; mathematical methods in nuclear reactor thermal-hydraulics; heat transfer in gas-cooled reactors; and thermal-hydraulics of pebble-bed reactors. Two papers have been previously abstracted and input to the data base

  4. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    Science.gov (United States)

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  5. A new method for characterizing super-insulators. Application to the identification of conduction modes; Nouvelle methode de caracterisation thermique des super-isolants. Application a l'identification des differents modes de conduction

    Energy Technology Data Exchange (ETDEWEB)

    Demange, D.; Bejet, M.; Laizet, J.C.

    2002-07-01

    In order to obtain thermal data necessary to the design of space systems, the ONERA developed a method to measure the thermal flux crossing an insulating structure under high thermal gradients. This method gives the thermal conductivity of material for an homogeneous composition of the structure. It allows the characterization of insulators under controlled atmosphere and at very high temperature, 2500 C. (A.L.B.)

  6. Method of nuclear reactor control using a variable temperature load dependent set point

    International Nuclear Information System (INIS)

    Kelly, J.J.; Rambo, G.E.

    1982-01-01

    A method and apparatus for controlling a nuclear reactor in response to a variable average reactor coolant temperature set point is disclosed. The set point is dependent upon percent of full power load demand. A manually-actuated ''droop mode'' of control is provided whereby the reactor coolant temperature is allowed to drop below the set point temperature a predetermined amount wherein the control is switched from reactor control rods exclusively to feedwater flow

  7. A New Method of Estimating Wind Tunnel Wall Interference in the Unsteady Two-Dimensional Flow (Nouvelle Methode D’Estimation de la Perturbation des Ecoulements Instationnaires par les Parois d’une Soufflerie).

    Science.gov (United States)

    1983-01-01

    disturbance theory . The main feature of the method is the use of measured pressure along lines in the flow direction near the tunnel walls. This method...disturbance theory , then $can be written ( , = qo( , ) .@ (:. S-in(.t + 0.( or s CO (8) Defining cw as co S . ^(9) gives Sin= C, f(4,.) + OCr,z)co.s(0t...AUTHOR (S)/ AUTEUR (S) H. Sawada, visiting scientist 2nd Aerodynamics Division, National Aerospace Laboratory, Japan SERIES/SERIE Aeronautical Note 6

  8. Air and gas cleaning methods for reactor containment vessels

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, L.

    1963-11-15

    In this paper, a survey is made of the existing and some proposed new methods for the control and purification of air and gases which might be released from a reactor contained or confined for protection of the health and safety of the public from potential accidents. The difference between confinement and containment concepts must be considered. The problems involved and the need for decontamination, site selection, exclusion area, population density, distance, etc., have been discussed elsewhere. We propose to discuss here the safety measures necessary to control the release of radioactive materials to the environment. This requires special systems which must function effectively to minimize loss of fission products such as halogens and particulates. These can penetrate the confinement filters or the containment vessel to a limited extent even after cleaning.

  9. Comparison of calculational methods for liquid metal reactor shields

    International Nuclear Information System (INIS)

    Carter, L.L.; Moore, F.S.; Morford, R.J.; Mann, F.M.

    1985-09-01

    A one-dimensional comparison is made between Monte Carlo (MCNP), discrete ordinances (ANISN), and diffusion theory (MlDX) calculations of neutron flux and radiation damage from the core of the Fast Flux Test Facility (FFTF) out to the reactor vessel. Diffusion theory was found to be reasonably accurate for the calculation of both total flux and radiation damage. However, for large distances from the core, the calculated flux at very high energies is low by an order of magnitude or more when the diffusion theory is used. Particular emphasis was placed in this study on the generation of multitable cross sections for use in discrete ordinates codes that are self-shielded, consistent with the self-shielding employed in the generation of cross sections for use with diffusion theory. The Monte Carlo calculation, with a pointwise representation of the cross sections, was used as the benchmark for determining the limitations of the other two calculational methods. 12 refs., 33 figs

  10. Probabilistic methods in the field of reactor safety in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Birkhofer, A [Technische Univ. Muenchen (Germany, F.R.). Lehrstuhl fuer Reaktordynamik und Reaktorsicherheit

    1979-01-01

    The present status and future prospects in Germany of reliability, as well as risk analysis, in the field of reactor safety are examined. The development of analytical methods with respect to the available data base is reviewed with consideration of the roles of reliability codes, component data, common mode failures, human influence, structural analysis and process computers. Some examples of the application of probability assessments are discussed and the extension of reliability analysis beyond the loss-of-coolant accident is considered. In the case of risk analysis, the object is to determine not only the probability of failure of systems but also the probability and extent of possible consequences. Some risk studies under investigation in Germany and the methodology of risk analysis are discussed. Reliability and risk analysis are involved to an increasing extent in safety research and licensing procedures and their influence in other fields such as the public perception of risk is also discussed.

  11. Repairing method for shroud in reactor pressure vessel

    International Nuclear Information System (INIS)

    Watanabe, Yusuke.

    1996-01-01

    The present invention provides a method of repairing a shroud disposed in a pressure vessel of a BWR type reactor. Namely, a baffle plate is disposed on the outer surface of the lower portion of the shroud supported by a shroud support of the pressure vessel. The baffle plate is connected with a lug for securing a shroud head bolt disposed on the outer surface of an upper portion of the shroud by reinforcing members. With such a constitution, when crackings are caused in the shroud, the development of the crackings can be prevented without losing the function of securing the shroud head bolt. Further, if a material having thermal expansion coefficient lower than that of austenite stainless steel is used for the material of the reinforcing member, clamping load to be applied upon attaching the auxiliary member can be reduced. As a result, operation for the attachment is facilitated. (I.S.)

  12. New method for studying the efficiency of chelating agents of the polyamine acid series for internal decontamination; Methode nouvelle d'etude de l'efficacite des chelateurs de la serie des acides polyamines pour la decontamination interne

    Energy Technology Data Exchange (ETDEWEB)

    Lafuma, J; Nenot, J C; Morin, M [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    We followed the biological fate of a complex formed on one side with either a rare earth (cerium-144) or a transuranium element (plutonium-239), and on the other side with a chelating agent of the polyamino acid series (EDTA, BAETA, DTPA, TTHA). This method allowed to study: 1 - the in vivo stability of the various complexes and to compare them; 2 - the stability of the complexes as a function of the isotope - chelating agent weight relationships; 3 - the metabolism of the chelating agents resulting in stable complexes, i. e. DTPA and TTHA mainly. This simple method brought out the higher efficiency, of DTPA in chelating rare earths and plutonium and for therapeutic purposes. (authors) [French] La methode consiste a suivre le devenir biologique d'un complexe forme d'une part avec une terre rare (cerium 144) ou un transuranien (plutonium 239) et d'autre part avec un chelateur de la serie des acides polyamines (EDTA, BAETA, DTPA, TTHA). Elle permet d'etudier: 1 - la stabilite in vivo des differents complexes, de les comparer; 2 - la stabilite des complexes en fonction des rapports ponderaux isotope - chelateurs; 3 - le metabolisme des chelateurs formant des complexes stables, essentiellement DTPA et TTHA. Cette methode simple degage la suprematie du DTPA en ce qui concerne la chelation des terres rares et du plutonium, et son utilisation a des fins therapeutiques. (auteurs)

  13. New method for studying the efficiency of chelating agents of the polyamine acid series for internal decontamination; Methode nouvelle d'etude de l'efficacite des chelateurs de la serie des acides polyamines pour la decontamination interne

    Energy Technology Data Exchange (ETDEWEB)

    Lafuma, J.; Nenot, J.C.; Morin, M. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    We followed the biological fate of a complex formed on one side with either a rare earth (cerium-144) or a transuranium element (plutonium-239), and on the other side with a chelating agent of the polyamino acid series (EDTA, BAETA, DTPA, TTHA). This method allowed to study: 1 - the in vivo stability of the various complexes and to compare them; 2 - the stability of the complexes as a function of the isotope - chelating agent weight relationships; 3 - the metabolism of the chelating agents resulting in stable complexes, i. e. DTPA and TTHA mainly. This simple method brought out the higher efficiency, of DTPA in chelating rare earths and plutonium and for therapeutic purposes. (authors) [French] La methode consiste a suivre le devenir biologique d'un complexe forme d'une part avec une terre rare (cerium 144) ou un transuranien (plutonium 239) et d'autre part avec un chelateur de la serie des acides polyamines (EDTA, BAETA, DTPA, TTHA). Elle permet d'etudier: 1 - la stabilite in vivo des differents complexes, de les comparer; 2 - la stabilite des complexes en fonction des rapports ponderaux isotope - chelateurs; 3 - le metabolisme des chelateurs formant des complexes stables, essentiellement DTPA et TTHA. Cette methode simple degage la suprematie du DTPA en ce qui concerne la chelation des terres rares et du plutonium, et son utilisation a des fins therapeutiques. (auteurs)

  14. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  15. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  16. Identification of reactor failure states using noise methods, and spatial power distribution

    International Nuclear Information System (INIS)

    Vavrin, J.; Blazek, J.

    1981-01-01

    A survey is given of the results achieved. Methodical means and programs were developed for the control computer which may be used in noise diagnostics and in the control of reactor power distribution. Statistical methods of processing the noise components of the signals of measured variables were used for identifying failures of reactors. The method of the synthesis of the neutron flux was used for modelling and evaluating the reactor power distribution. For monitoring and controlling the power distribution a mathematical model of the reactor was constructed suitable for control computers. The uses of noise analysis methods are recommended and directions of further development shown. (J.P.)

  17. Improvement of methods to evaluate brittle failure resistance of the WWER reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Popov, A A; Parshutin, E V [Engineering Center of Nuclear Equipment Strength, Research and Development Inst. of Power Engineering, Moscow (Russian Federation); Rogov, M F; Dragunov, U G [Experimenter` s and Designer` s Office ` ` Hydropress` ` (Russian Federation)

    1997-09-01

    At the next 10 years a number of Russian WWER nuclear power plants will complete its design lifetime. Normative methods to evaluate brittle failure resistance of the reactor pressure vessels used in Russia have been intended for design stage. The evaluation of reactor pressure vessel lifetime in operation stage demands to create new methods of calculation and new methods for experimental evaluation of brittle failure resistance degradation. The main objective of the study in this type of reactor is weldment number 4. In this report an analysis is made of methods to determine critical temperature of reactor materials including the results of instrumented Charpy testing. 12 figs.

  18. Method of cooling a pressure tube type reactor

    International Nuclear Information System (INIS)

    Kanazawa, Nobuhiro.

    1983-01-01

    Purpose: To improve the operation efficiency of a nuclear reactor by carrying out cooling depending on the power distribution in the reactor core. Constitution: Reactor core channels are divided into a plurality of channel groups depending on the reactor power, and a water drum and a pump are disposed to each of the channel groups so as to increase the amount of coolants in response to the magnitude of the power from each of the channel groups. In this way, the minimum limiting power ratio can be increased. (Seki, T.)

  19. Method and program for complex calculation of heterogeneous reactor

    International Nuclear Information System (INIS)

    Kalashnikov, A.G.; Glebov, A.P.; Elovskaya, L.F.; Kuznetsova, L.I.

    1988-01-01

    An algorithm and the GITA program for complex one-dimensional calculation of a heterogeneous reactor which permits to conduct calculations for the reactor and its cell simultaneously using the same algorithm are described. Multigroup macrocross sections for reactor zones in the thermal energy range are determined according to the technique for calculating a cell with complicate structure and then the continuous multi group calculation of the reactor in the thermal energy range and in the range of neutron thermalization is made. The kinetic equation is solved using the Pi- and DSn- approximations [fr

  20. Parallelised Krylov subspace method for reactor kinetics by IQS approach

    International Nuclear Information System (INIS)

    Gupta, Anurag; Modak, R.S.; Gupta, H.P.; Kumar, Vinod; Bhatt, K.

    2005-01-01

    Nuclear reactor kinetics involves numerical solution of space-time-dependent multi-group neutron diffusion equation. Two distinct approaches exist for this purpose: the direct (implicit time differencing) approach and the improved quasi-static (IQS) approach. Both the approaches need solution of static space-energy-dependent diffusion equations at successive time-steps; the step being relatively smaller for the direct approach. These solutions are usually obtained by Gauss-Seidel type iterative methods. For a faster solution, the Krylov sub-space methods have been tried and also parallelised by many investigators. However, these studies seem to have been done only for the direct approach. In the present paper, parallelised Krylov methods are applied to the IQS approach in addition to the direct approach. It is shown that the speed-up obtained for IQS is higher than that for the direct approach. The reasons for this are also discussed. Thus, the use of IQS approach along with parallelised Krylov solvers seems to be a promising scheme

  1. Nouvelles et activités | Page 6 | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Consultez les nouvelles et les activités. Utilisez cet outil de recherche pour trouver des nouvelles ou des activités précis dans le site Web du CRDI. Content type. Tout. Activités. Avis aux médias. Bulletins. Communiqués. Nouvelle ...

  2. Nouvelles et activités | Page 2 | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Consultez les nouvelles et les activités. Utilisez cet outil de recherche pour trouver des nouvelles ou des activités précis dans le site Web du CRDI. Content type. Tout. Activités. Avis aux médias. Bulletins. Communiqués. Nouvelle ...

  3. Nouvelles et activités | Page 7 | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Consultez les nouvelles et les activités. Utilisez cet outil de recherche pour trouver des nouvelles ou des activités précis dans le site Web du CRDI. Content type. Tout. Activités. Avis aux médias. Bulletins. Communiqués. Nouvelle ...

  4. Nouvelles et activités | Page 5 | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Consultez les nouvelles et les activités. Utilisez cet outil de recherche pour trouver des nouvelles ou des activités précis dans le site Web du CRDI. Content type. Tout. Activités. Avis aux médias. Bulletins. Communiqués. Nouvelle ...

  5. A study of reactor monitoring method with neural network

    Energy Technology Data Exchange (ETDEWEB)

    Nabeshima, Kunihiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    The purpose of this study is to investigate the methodology of Nuclear Power Plant (NPP) monitoring with neural networks, which create the plant models by the learning of the past normal operation patterns. The concept of this method is to detect the symptom of small anomalies by monitoring the deviations between the process signals measured from an actual plant and corresponding output signals from the neural network model, which might not be equal if the abnormal operational patterns are presented to the input of the neural network. Auto-associative network, which has same output as inputs, can detect an kind of anomaly condition by using normal operation data only. The monitoring tests of the feedforward neural network with adaptive learning were performed using the PWR plant simulator by which many kinds of anomaly conditions can be easily simulated. The adaptively trained feedforward network could follow the actual plant dynamics and the changes of plant condition, and then find most of the anomalies much earlier than the conventional alarm system during steady state and transient operations. Then the off-line and on-line test results during one year operation at the actual NPP (PWR) showed that the neural network could detect several small anomalies which the operators or the conventional alarm system didn't noticed. Furthermore, the sensitivity analysis suggests that the plant models by neural networks are appropriate. Finally, the simulation results show that the recurrent neural network with feedback connections could successfully model the slow behavior of the reactor dynamics without adaptive learning. Therefore, the recurrent neural network with adaptive learning will be the best choice for the actual reactor monitoring system. (author)

  6. The influence of Triga 2000 reactor operation on the surface contamination at reactor room using smear test method

    International Nuclear Information System (INIS)

    Bintu Khoiriyyah; Budi Purnama; Tri Cahyo Laksono

    2016-01-01

    The monitoring of surface contamination should be conducted to determine the safety of work areas. Surface contamination at the TRIGA 2000 reactor room which is on PSTNT-BATAN Bandung remain to be implemented although reactor not operating. In this research monitoring of surface contamination when TRIGA 2000 in operation of the first time after several years not operating aims to determine the influence on the results of monitoring. The monitoring of surface contamination has been done using smear test method at some predetermined in TRIGA 2000 reactor room. The highest surface contamination activities is obtained 0.32 Bq/cm 2 and there are some points that are not detected. Based on keputusan kepala BAPETEN No.1/Ka BAPETEN/ V/99 the work showed that the TRIGA 2000 reactor in the category of low area contamination, that is <3.7 Bq/cm 2 to gross beta. (author)

  7. A new biological method for preparing certain sulphurated substances labelled with S{sup 35}; Methode nouvelle de preparation par voie biologique de quelques substances soufrees marquees au soufre-35

    Energy Technology Data Exchange (ETDEWEB)

    Chapeville, F.; Maier-Huser, H.; Fromageot, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Previous investigations have shown that the yolk-sac of embryonic bird's eggs can be used to produce the following reactions: (a) reduction of sulphate to sulphite; (b) fixation of the sulphite on the carbon chain produced by the desulf-hydration of l-cysteine, with formation of l-cysteic acid; (c) decarboxylation of the l-cysteine acid into taurine. The enzymatic system which causes reaction (b) has been purified. It also acts as a catalyst in the sulphur-exchange between the cysteine and the mineral sulphide. The authors have utilized these data in preparing sulphurated substances labelled with S{sup 35}: taurine S{sup 35}, l-cysteine S{sup 35} and l-cysteic acid S{sup 35}. For each of the three, they discuss the chemical reactions involved, the methods of preparation, the experimental conditions of extraction and purity-control, together with the yields and specific activities obtained. (authors) [French] Des travaux anterieurs ont montre l'aptitude du sac vitellin d'oeufs embryonn d'oiseaux a realiser les reactions suivantes: a) reduction du sulfate en sulfite, b) fixation du sulfite sur la chaine carbonee issue de la desulfhydration de la L-cysteine avec formation de l'acide L-cysteique. c) decarboxylation de l 'acide L-cysteique en taurine. Le systeme enzymatique responsable de la reaction b a ete purifie; il catalyse aussi l'echange du soufre de la cysteine avec celui du sulfure mineral. Les auteurs ont utilise ces donnees pour la preparation de substances soufrees marquees au {sup 35}S: taurine {sup 35}S, L-cysteine{sup 35} et acide L-cysteique {sup 35}S. Pour chacun de ces trois corps, ils decrivent les reactions chimiques mises en jeu, les modes operatoires de fabrication, les conditions experimentales d'extraction et de controle de la purete, ainsi que les resultats obtenus tant pour les rendements que pour les activites specifiques obtenues. (auteurs)

  8. A new biological method for preparing certain sulphurated substances labelled with S{sup 35}; Methode nouvelle de preparation par voie biologique de quelques substances soufrees marquees au soufre-35

    Energy Technology Data Exchange (ETDEWEB)

    Chapeville, F; Maier-Huser, H; Fromageot, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Previous investigations have shown that the yolk-sac of embryonic bird's eggs can be used to produce the following reactions: (a) reduction of sulphate to sulphite; (b) fixation of the sulphite on the carbon chain produced by the desulf-hydration of l-cysteine, with formation of l-cysteic acid; (c) decarboxylation of the l-cysteine acid into taurine. The enzymatic system which causes reaction (b) has been purified. It also acts as a catalyst in the sulphur-exchange between the cysteine and the mineral sulphide. The authors have utilized these data in preparing sulphurated substances labelled with S{sup 35}: taurine S{sup 35}, l-cysteine S{sup 35} and l-cysteic acid S{sup 35}. For each of the three, they discuss the chemical reactions involved, the methods of preparation, the experimental conditions of extraction and purity-control, together with the yields and specific activities obtained. (authors) [French] Des travaux anterieurs ont montre l'aptitude du sac vitellin d'oeufs embryonn d'oiseaux a realiser les reactions suivantes: a) reduction du sulfate en sulfite, b) fixation du sulfite sur la chaine carbonee issue de la desulfhydration de la L-cysteine avec formation de l'acide L-cysteique. c) decarboxylation de l 'acide L-cysteique en taurine. Le systeme enzymatique responsable de la reaction b a ete purifie; il catalyse aussi l'echange du soufre de la cysteine avec celui du sulfure mineral. Les auteurs ont utilise ces donnees pour la preparation de substances soufrees marquees au {sup 35}S: taurine {sup 35}S, L-cysteine{sup 35} et acide L-cysteique {sup 35}S. Pour chacun de ces trois corps, ils decrivent les reactions chimiques mises en jeu, les modes operatoires de fabrication, les conditions experimentales d'extraction et de controle de la purete, ainsi que les resultats obtenus tant pour les rendements que pour les activites specifiques obtenues. (auteurs)

  9. Development of methods for monitoring and controlling power in nuclear reactors

    International Nuclear Information System (INIS)

    Mesquita, Amir Zacarias; Rezende, Hugo Cesar; Santos, Andre Augusto Campagnole dos; Silva, Vitor Vasconcelos Araujo

    2012-01-01

    Redundancy and diversity are two important criteria for power measurement in nuclear reactors. Other criteria such as accuracy, reliability and response speed are also of major concern. Power monitoring of nuclear reactors is normally done by means of neutronic instruments, i.e. by the measurement of neutron flux. The greater the number of channels for power measuring the greater is the reliability and safety of reactor operations. The aim of this research is to develop new methodologies for on-line monitoring of nuclear reactor power using other reliable processes. One method uses the temperature difference between an instrumented fuel element and the pool water below the reactor core. Another method consists of the steady-state energy balance of the primary and secondary reactor cooling loops. A further method is the calorimetric procedure whereby a constant reactor power is monitored as a function of the temperature-rise rate and the system heat capacity. Another methodology, which does not employ thermal methods, is based on measurement of Cherenkov radiation produced within and around the core. The first three procedures, fuel temperature, energy balance and calorimetric, were implemented in the IPR-R1 TRIGA nuclear research reactor at Belo Horizonte (Brazil) and are the focus of the work described here. Knowledge of the reactor thermal power is very important for precise neutron flux and fuel element burnup calculations. The burnup is linearly dependent on the reactor thermal power and its accuracy is important in the determination of the mass of burned 235 U, fission products, fuel element activity, decay heat power generation and radiotoxicity. The thermal balance method developed in this project is now the standard methodology used for IPR-R1 TRIGA reactor power calibration and the fuel temperature measuring is the most reliable way of on-line monitoring of the reactor power. This research project primarily aims at increasing the reliability and safety of

  10. New instruments and methods for measuring the concentration of radioactive products in the atmosphere; Appareils recents et methodes nouvelles pour la mesure de la concentration des produits radioactifs dans l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Jehanno, C; Blanc, A; Lallemant, C; Roux, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    Different recorders for radioactive aerosols have been developed for measuring the pollution of the atmosphere in laboratories or the external atmosphere. EAR 600. - Allows continuous measurement, instantaneously and 3 to 10 hours after sampling, of concentrations of {alpha} or {beta} emitting aerosols varying between some 10{sup -11} and some 10{sup -8} curie per cubic metre of air. EAR 800. - Allows continuous measurement of concentration of {alpha} emitting aerosols varying between 10{sup -11} and 10{sup -5} curie per cubic metre of air and concentration of {beta} emitting aerosols from 10{sup -11} to 10{sup -1} curie per cubic metre of air. EAR Plutonium. - Allows detection after several minutes of 1000 MPD (2 x 10{sup -9} curie par cubic metre), and after 8 hours 1 MPD (2 x 10{sup -12} curie per cubic metre). Two methods are used to separate the activity due to plutonium from that due to the descendants of radon and thoron: a) by amplitude discrimination, b) by RaC-RaC' and ThC-ThC' ({alpha} {beta} ) coincidences. SP4. This system, mounted on a jeep, allows the measurement of irradiation produced on the ground by the smoke from the piles. The sensitivity is 5{mu}R/h. A.D.I.R. - This autonomous and portable instrument is designed for the instantaneous measurement of the radon content of the atmosphere in mines. It allows the measurement of contents in air varying between 0.4 and 400 x 10{sup -10} curie per litre of air (0.4 and 400 MPD). The measurement of radioactive fall-out is carried out after collection of this activity by a special rain gauge which comprises an adhesive surface and a tube containing ion exchange resins. The radioactivity of the fall-out varies between some 10{sup -9} and some 10{sup -7} curie per square metre per month. Concentrations in fission products of the atmosphere are measured after collecting on filter paper. Concentrations measured in air at ground level vary between 10{sup -13} and 10{sup -12} curie per cubic metre. (author

  11. Method for compacting spent nuclear reactor fuel rods

    International Nuclear Information System (INIS)

    Wachter, W.J.

    1988-01-01

    In a nuclear reactor system which requires periodic physical manipulation of spent fuel rods, the method of compacting fuel rods from a fuel rod assembly is described. The method consists of: (1) removing the top end from the fuel rod assembly; (2) passing each of multiple fuel rod pulling elements in sequence through a fuel rod container and thence through respective consolidating passages in a fuel rod directing chamber; (3) engaging one of the pulling elements to the top end of each of the fuel rods; (4) drawing each of the pulling elements axially to draw the respective engaged fuel rods in one axial direction through the respective the passages in the chamber to thereby consolidate the fuel rods into a compacted configuration of a cross-sectional area smaller than the cross-sectional area occupied thereby within the fuel rod assembly; and (5) drawing all of the engaged fuel rods concurrently and substantially parallel to one another in the one axial direction into the fuel rod container while maintaining the compacted configuration whereby the fuel rods are aligned within the container in a fuel rod density of the the fuel rod assembly

  12. Physics methods for calculating light water reactor increased performances

    International Nuclear Information System (INIS)

    Vandenberg, C.; Charlier, A.

    1988-01-01

    The intensive use of light water reactors (LWRs) has induced modification of their characteristics and performances in order to improve fissile material utilization and to increase their availability and flexibility under operation. From the conceptual point of view, adequate methods must be used to calculate core characteristics, taking into account present design requirements, e.g., use of burnable poison, plutonium recycling, etc. From the operational point of view, nuclear plants that have been producing a large percentage of electricity in some countries must adapt their planning to the need of the electrical network and operate on a load-follow basis. Consequently, plant behavior must be predicted and accurately followed in order to improve the plant's capability within safety limits. The Belgonucleaire code system has been developed and extensively validated. It is an accurate, flexible, easily usable, fast-running tool for solving the problems related to LWR technology development. The methods and validation of the two computer codes LWR-WIMS and MICROLUX, which are the main components of the physics calculation system, are explained

  13. Method of reactivity control in pressure tube reactor

    International Nuclear Information System (INIS)

    Fukumura, Nobuo.

    1988-01-01

    Purpose: To provide a method of controlling reactivity in a pressure tube reactor at high conversion ratio intended for high burn-up degree. Method: Control tubes are inserted in heavy water moderator. Light water is filled in the tubes at the initial burning stage. Along with the advance of the burning, the light water is gradually removed and replaced with gases of less reactive nuclear reactivity with neutrons such as air or gaseous carbon dioxide. The tubes are made of less neutron absorbing material such as aluminum. By filling light water, infinite multiplication factor is reduced to suppress the reactivity at the initial burning stage. As light water is gradually removed and replaced with air, etc., it provides an effect like that elimination of heavy water moderator to increase the conversion ratio. Accordingly, nuclear fission materials are produced additionally by so much to extend the burn-up degree. In this way, it can provide excellent effect in realizing high burn-up ratio and high conversion ratio. (Kamimura, M.)

  14. Feedwater processing method in a boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Izumitani, M; Tanno, K

    1976-09-06

    The purpose of the invention is to decrease a quantity of corrosion products moving from the feedwater system to the core. Water formed into vapor after heated in a reactor is fed to the turbine through a main steam line to drive a generator to return it to liquid-state water in a condenser. The water is then again cycled into the reactor via the condensate pump, desalting unit, low pressure feedwater heater, medium pressure feedwater heater, and high pressure feedwater heater. The reactor water is recycled by a recycling pump. At this time, the reactor water recycled by the recycling pump is partially poured into a middle point between the desalting unit and the low pressure feedwater heater through a reducing valve or the like. With the structure described above, the quantity of the corrosion products from the feedwater system may be decreased by the function of a large quantity of active oxygen contained in the reactor water.

  15. Analysis of the neutron flux in an annular pulsed reactor by using finite volume method

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mário A.B. da; Narain, Rajendra; Bezerra, Jair de L., E-mail: mabs500@gmail.com, E-mail: narain@ufpe.br, E-mail: jairbezerra@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociências. Departamento de Energia Nuclear

    2017-07-01

    Production of very intense neutron sources is important for basic nuclear physics and for material testing and isotope production. Nuclear reactors have been used as sources of intense neutron fluxes, although the achievement of such levels is limited by the inability to remove fission heat. Periodic pulsed reactors provide very intense fluxes by a rotating modulator near a subcritical core. A concept for the production of very intense neutron fluxes that combines features of periodic pulsed reactors and steady state reactors was proposed by Narain (1997). Such a concept is known as Very Intense Continuous High Flux Pulsed Reactor (VICHFPR) and was analyzed by using diffusion equation with moving boundary conditions and Finite Difference Method with Crank-Nicolson formalism. This research aims to analyze the flux distribution in the Very Intense Continuous Flux High Pulsed Reactor (VICHFPR) by using the Finite Volume Method and compares its results with those obtained by the previous computational method. (author)

  16. Analysis of the neutron flux in an annular pulsed reactor by using finite volume method

    International Nuclear Information System (INIS)

    Silva, Mário A.B. da; Narain, Rajendra; Bezerra, Jair de L.

    2017-01-01

    Production of very intense neutron sources is important for basic nuclear physics and for material testing and isotope production. Nuclear reactors have been used as sources of intense neutron fluxes, although the achievement of such levels is limited by the inability to remove fission heat. Periodic pulsed reactors provide very intense fluxes by a rotating modulator near a subcritical core. A concept for the production of very intense neutron fluxes that combines features of periodic pulsed reactors and steady state reactors was proposed by Narain (1997). Such a concept is known as Very Intense Continuous High Flux Pulsed Reactor (VICHFPR) and was analyzed by using diffusion equation with moving boundary conditions and Finite Difference Method with Crank-Nicolson formalism. This research aims to analyze the flux distribution in the Very Intense Continuous Flux High Pulsed Reactor (VICHFPR) by using the Finite Volume Method and compares its results with those obtained by the previous computational method. (author)

  17. Dismantling method for reactor pressure vessel and system therefor

    International Nuclear Information System (INIS)

    Hayashi, Makoto; Enomoto, Kunio; Kurosawa, Koichi; Saito, Hideyo.

    1994-01-01

    Upon dismantling of a reactor pressure vessel, a containment building made of concretes is disposed underground and a spent pressure vessel is contained therein, and incore structures are contained in the spent pressure vessel. Further, a plasma-welder and a pressing machine are disposed to a pool for provisionally placing reactor equipments in the reactor building for devoluming the incore structures by welding and compression. An overhead-running crane and rails therefor are disposed on the roof and the outer side of the reactor building for transporting the pressure vessel from the reactor building to the containment building. They may be contained in the containment building after incorporation of the incore structures into the pressure vessel at the outside of the reactor building. For the devoluming treatment, a combination of cutting, welding, pressing and the like are optically conducted. A nuclear power plant can be installed by using a newly manufactured nuclear reactor, with no requirement for a new site and it is unnecessary to provide a new radioactive waste containing facility. (N.H.)

  18. measurements of the absorption resonance integrals by reactor oscillator method

    International Nuclear Information System (INIS)

    Markovic, V.; Kocic, A.

    1965-12-01

    Experimental values of resonance integrals for silver vary significantly dependent on authors. That is why we have chosen this sample to measure RI. On the other hand, nuclear fuel (for example natural uranium) still represents an interesting objective for research in reactor physics. Measurements of natural uranium are done as a function of S/M. Measurements were done by amplitude reactor oscillator ROB-1/5 with precision from 0.5% - 2% dependent on the conditions of the oscillator. Measurements were completed at the heavy water reactor RB with 2% enriched uranium fuel [fr

  19. Research on Monte Carlo improved quasi-static method for reactor space-time dynamics

    International Nuclear Information System (INIS)

    Xu Qi; Wang Kan; Li Shirui; Yu Ganglin

    2013-01-01

    With large time steps, improved quasi-static (IQS) method can improve the calculation speed for reactor dynamic simulations. The Monte Carlo IQS method was proposed in this paper, combining the advantages of both the IQS method and MC method. Thus, the Monte Carlo IQS method is beneficial for solving space-time dynamics problems of new concept reactors. Based on the theory of IQS, Monte Carlo algorithms for calculating adjoint neutron flux, reactor kinetic parameters and shape function were designed and realized. A simple Monte Carlo IQS code and a corresponding diffusion IQS code were developed, which were used for verification of the Monte Carlo IQS method. (authors)

  20. Method and apparatus for compacting spent nuclear reactor fuel rods

    International Nuclear Information System (INIS)

    Wachter, W.J.

    1988-01-01

    In a nuclear reactor system requiring periodic physical manipulation of spent fuel rods, the method of compacting fuel rods from a fuel rod assembly is described comprising the steps of: (1) removing the top end from pulling members having electrodes of weld elements in leading ends thereof in sequence through a fuel rod container and thence through respective consolidating passages in a fuel-rod directing chamber; (3) welding the weld elements of the pulling members to the top end of respective fuel rods corresponding to the respective pulling members; (4) drawing each of the pulling members axially to draw the respective engaged fuel rods in one axial direction through the respective passages in the chamber to thereby consolidate the fuel rods into a compacted configuration of a cross-sectional area smaller than the cross-sectional area occupied thereby within the fuel rod assembly; and (5) drawing all of the engaged fuel rods concurrently and substantially parallel to one another to the one axial direction into the fuel rod container while maintaining the compacting configuration in a fuel rod density which is greater than that of the fuel rod density of the fuel rod assembly

  1. Method of operating control rods for BWR type reactors

    International Nuclear Information System (INIS)

    Shirakawa, Toshihisa.

    1979-01-01

    Purpose: To eliminate the danger such as fuel element failures due to rapid power increase and form a control rod pattern for obtaining a required power level in a relatively short time. Method: Control rods are disposed so as to vertically enter into and retract from the central region of each four fuel assemblies adjacent to each other respectively. Upon operation of the control rods, every other control rods in the lateral and longitudinal directions among the entire control rods that are inserted completely are extracted completely at the lower flow limit of coolants. Then, the control rods completely inserted are divided into groups inserted deeply and groups inserted less deeply. The less deeply inserted groups are extracted just before the excess of thermal limit value successively in the lower flow limit of the coolants and then the deeply inserted groups are extracted successively till a predetermined power level in the same manner. Therefore, the coolant flow to the reactor core is increased and the power level is raised. (Furukawa, Y.)

  2. Method and device for fire extinction of fast breeder reactors

    International Nuclear Information System (INIS)

    Yokota, Norikatsu; Shimoyashiki, Shigehiro; Hikichi, Takayoshi; Sato, Yoshihiko.

    1986-01-01

    Purpose: To effectively restrain fires with coolant in liquid-metal fast breeder reactors. Method: The core material of fire-extinguishing agent is coated with a non-combustible material and capsulated to prevent moisture absorption and at the same time the capsule thus made is coated with a suitable material to restrain a fire with a coolant. A desirable coating material to be used is a material which is little reactive to sodium; for example such a low-melting point metal as Pb or Sn, or paraffin, or sodium-silicate should be used. For the core material, Na 2 CO 3 , NaCl sand are recommendable materials. The core material thus made will never absorb moisture during long-time storage and has no hazard to promote a fire likely to be caused by moisture absorption. Furthermore, the coating material and the core material act to each other, restraining a sodium fire. The fire-extinguishing agent, being granular and capsulated, is easy to transport, thereby reducing a cost required for disposition. (Kamimura, M.)

  3. Development of 3D CFD simulation method in nuclear reactor safety analysis

    International Nuclear Information System (INIS)

    Rosli Darmawan; Mariah Adam

    2012-01-01

    One of the most prevailing issues in the operation of nuclear reactor is the safety of the system. Worldwide publicity on a few nuclear accidents as well as the notorious Hiroshima and Nagasaki bombing have always brought about public fear on anything related to nuclear. Most findings on the nuclear reactor accidents are closely related to the reactor cooling system. Thus, the understanding of the behaviour of reactor cooling system is very important to ensure the development and improvement on safety can be continuously done. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last three decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. This paper discusses the development of 3D CFD usage in nuclear reactor safety analysis worldwide. A brief review on the usage of CFD at Malaysia's Reactor TRIGA PUSPATI is also presented. (author)

  4. Access. Challenge for Change/Societe Nouvelle Number Twelve.

    Science.gov (United States)

    Prinn, Elizabeth, Ed.; Henaut, Dorothy Todd, Ed.

    This issue of Access, the journal issued periodically by Challenge for Change/Societe Nouvelle, contains two groups of articles. The first focuses upon the Skyriver Project, relating how a project was developed which used film and video tape as a means of helping Alaskan communities to assess their own needs and to advocate for themselves the…

  5. Access. Challenge for Change/Societe Nouvelle Number Eleven.

    Science.gov (United States)

    Prinn, Elizabeth, Ed.

    Access is a journal published three or four times a year by Challenge for Change/Societe Nouvelle (CCSN). CCSN is an experimental program established by the Government of Canada as a cooperative effort between the National Film Board of Canada and certain of the Government's departments. Its purposes are to improve communications, create greater…

  6. Startup method for natural convection type nuclear reactor

    International Nuclear Information System (INIS)

    Utsuno, Hideaki.

    1993-01-01

    In a nuclear reactor started by natural convection, no sufficient stability margin can be ensured upon start up. Then, in the present invention, a deaerating operation is conducted before start-up of the reactor, then control rods are withdrawn after conducting the deaerating operation and temperature and pressure are raised by nuclear heating, to obtain a rated power. As a result, reactor power and subcooling at the inlet of the reactor core are within a range of lower than a geysering forming region, thereby enabling to prevent occurence of geysering inherent to the start-up of operation in a natural convection state, shorten the start-up time, as well as remove oxygen dissolved in coolants. (N.H.)

  7. Method of inspecting the function of reactor noise monitoring device

    International Nuclear Information System (INIS)

    Yamanaka, Hirohito.

    1985-01-01

    Purpose: To enable to inspect the function of a reactor noise monitoring device used for monitoring the operation abnormality in coolant circuits during reactor operation. Constitution: A cylinder incorporating a steel ball moved laterally by a pneumatic pressure is disposed to the main body of a reactor coolant circuit. A three-way solenoid valve disposed to a central control room outside to a radiation controlled area is connected with the cylinder by way of pneumatic pipeways. The three-way solenoid valve is operated for a certain period of time by a timer in the central control room to thereby impinge the steel ball in the cylinder against the main body of the coolant circuit and it is inspected as to whether the reactor noise monitoring system can detect the impinging energy or not. Accordingly, the remote control is possible from out of the radiation controlled area and the inspection work can be simplified. (Seki, T.)

  8. Method of operating a water-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Lysell, G.

    1975-01-01

    When operating a water-cooled nuclear reactor, in which the fuel rods consist of zirconium alloy tubes containing an oxidic nuclear fuel, stress corrosion in the tubes can be reduced or avoided if the power of the reactor is temporarily increased so much that the thermal expansion of the nuclear fuel produces a flow of the material in the tube. After that temporary power increase the power output is reduced to the normal power

  9. Dismantling method for reactor shielding wall and device therefor

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko.

    1995-01-01

    A ring member having an outer diameter slightly smaller than an inner diameter of a reactor shielding wall to be dismantled is lowered in the inside of the reactor shielding wall while keeping a horizontal posture. A cutting device is disposed at the lower peripheral edge of the ring member. The cutting device can move along the peripheral edge of the circular shape of the ring member. The ring member is urged against the inner surface of the reactor shielding wall by using an urging member to immobilize the ring member. Then, the cutting device is operated to cut the reactor shielding wall into a plurality of ring-like blocks at a plurality of inner horizontal ribs or block connection ribs. Then, the blocks of the cut reactor shielding wall are supported by the ring member, and transported out of the reactor container by a lift. The cut blocks transported to the outside are finely dismantled for every block in a closed chamber. (I.N.)

  10. Application of cellular neural network (CNN) method to the nuclear reactor dynamics equations

    International Nuclear Information System (INIS)

    Hadad, K.; Piroozmand, A.

    2007-01-01

    This paper describes the application of a multilayer cellular neural network (CNN) to model and solve the nuclear reactor dynamic equations. An equivalent electrical circuit is analyzed and the governing equations of a bare, homogeneous reactor core are modeled via CNN. The validity of the CNN result is compared with numerical solution of the system of nonlinear governing partial differential equations (PDE) using MATLAB. Steady state as well as transient simulations, show very good comparison between the two methods. We used our CNN model to simulate space-time response of different reactivity excursions in a typical nuclear reactor. On line solution of reactor dynamic equations is used as an aid to reactor operation decision making. The complete algorithm could also be implemented using very large scale integrated circuit (VLSI) circuitry. The efficiency of the calculation method makes it useful for small size nuclear reactors such as the ones used in space missions

  11. Reactor power automatically controlling method and device for BWR type reactor

    International Nuclear Information System (INIS)

    Murata, Akira; Miyamoto, Yoshiyuki; Tanigawa, Naoshi.

    1997-01-01

    For an automatic control for a reactor power, when a deviation exceeds a predetermined value, the aimed value is kept at a predetermined value, and when the deviation is decreased to less than the predetermined value, the aimed value is increased from the predetermined value again. Alternatively, when a reactor power variation coefficient is decreased to less than a predetermine value, an aimed value is maintained at a predetermined value, and when the variation coefficient exceeds the predetermined value, the aimed value is increased. When the reactor power variation coefficient exceeds a first determined value, an aimed value is increased to a predetermined variation coefficient, and when the variation coefficient is decreased to less than the first determined value and also when the deviation between the aimed value and an actual reactor power exceeds a second determined value, the aimed value is maintained at a constant value. When the deviation is increased or when the reactor power variation coefficient is decreased, since the aimed value is maintained at predetermined value without increasing the aimed value, the deviation is not increased excessively thereby enabling to avoid excessive overshoot. (N.H.)

  12. Calculation methods for advanced concept light water reactor lattices

    International Nuclear Information System (INIS)

    Carmona, S.

    1986-01-01

    In the last few years s several advanced concepts for fuel rod lattices have been studied. Improved fuel utilization is one of the major aims in the development of new fuel rod designs and lattice modifications. By these changes s better performance in fuel economics s fuel burnup and material endurance can be achieved in the frame of the well-known basic Light Water Reactor technology. Among the new concepts involved in these studies that have attracted serious attention are lattices consisting of arrays of annular rods duplex pellet rods or tight multicells. These new designs of fuel rods and lattices present several computational problems. The treatment of resonance shielded cross sections is a crucial point in the analyses of these advanced concepts . The purpose of this study was to assess adequate approximation methods for calculating as accurately as possible, resonance shielding for these new lattices. Although detailed and exact computational methods for the evaluation of the resonance shielding in these lattices are possible, they are quite inefficient when used in lattice codes. The computer time and memory required for this kind of computations are too large to be used in an acceptable routine manner. In order to over- come these limitations and to make the analyses possible with reasonable use of computer resources s approximation methods are necessary. Usual approximation methods, for the resonance energy regions used in routine lattice computer codes, can not adequately handle the evaluation of these new fuel rod lattices. The main contribution of the present work to advanced lattice concepts is the development of an equivalence principle for the calculation of resonance shielding in the annular fuel pellet zone of duplex pellets; the duplex pellet in this treatment consists of two fuel zones with the same absorber isotope in both regions. In the transition from a single duplex rod to an infinite array of this kind of fuel rods, the similarity of the

  13. Method and apparatus for monitoring the axial power distribution within the core of a nuclear reactor, exterior of the reactor

    International Nuclear Information System (INIS)

    Graham, K.F.; Gopal, R.

    1978-01-01

    A method and apparatus for establishing the axial flux distribution of a reactor core from monitored responses obtained exterior of the reactor is described. The monitored responses are obtained from at least three axially spaced flux responsive detectors that are positioned within proximity of the periphery of the reactor core. The detectors provide corresponding electrical outputs representative of the flux monitored. The axial height of the core is figuratively divided at a plurality of space coordinates sufficient to provide reconstruction in point representation of the relative flux shape along the core axis. The relative value of flux at each of the spaced coordinates is then established from a sum of the electrical outputs of the detectors, respectively, algebraically modified by a corresponding preestablished constant

  14. Neutronics methods for transient and safety analysis of fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Marco

    2017-07-01

    Modeling the evolution of possible or postulated accidents in nuclear reactors is fundamental in designing safe systems. For the next generation of reactors, in particular fast reactors, fuel movement during an accident can, in principle, drive an energetic event. Such is the issue of recriticality. The thermal energy produced during these events will, possibly, be converted into mechanical energy by some mechanisms. For example, the nuclear heat deposited in the fuel could cause fuel vaporization and its subsequent expansion. This movement would accelerate the surrounding sodium: part of the initial energy in the fuel is thus converted into sodium kinetic energy. This mechanical energy will finally be absorbed, in some way or another, by the reactor vessel. Providing an accurate estimate for the maximum mechanical work that any accidental sequence can do onto the reactor vessel is an essential step in designing a reactor containment that would withstand any load generated by any accident. That would assure accident containment, without consequences for the general public. Fast reactor accident modeling is a complicated task. The outcome of an accident is determined by different physical phenomena, all acting at almost the same time. Safety analysts must track all these different phenomena. Multi-physics codes have been developed for this task. They must contain accurate models for fluid-dynamics, neutronics, and structures. This work has to do with neutronics modeling of such accidents. Past and recent analyses have been limited to the approximate description of the neutronic field, for example by using a rough description of the energy and/or of the angular dependence of the neutron flux. In this work, different neutronic solvers are selected and coupled into a general multi-physics code for fast reactor accident analysis. Performances of each of them is then assessed. Some emphasis has been put also in assessing the speed of these solvers for determining the

  15. Nuclear power reactor analysis, methods, algorithms and computer programs

    International Nuclear Information System (INIS)

    Matausek, M.V

    1981-01-01

    Full text: For a developing country buying its first nuclear power plants from a foreign supplier, disregarding the type and scope of the contract, there is a certain number of activities which have to be performed by local stuff and domestic organizations. This particularly applies to the choice of the nuclear fuel cycle strategy and the choice of the type and size of the reactors, to bid parameters specification, bid evaluation and final safety analysis report evaluation, as well as to in-core fuel management activities. In the Nuclear Engineering Department of the Boris Kidric Institute of Nuclear Sciences (NET IBK) the continual work is going on, related to the following topics: cross section and resonance integral calculations, spectrum calculations, generation of group constants, lattice and cell problems, criticality and global power distribution search, fuel burnup analysis, in-core fuel management procedures, cost analysis and power plant economics, safety and accident analysis, shielding problems and environmental impact studies, etc. The present paper gives the details of the methods developed and the results achieved, with the particular emphasis on the NET IBK computer program package for the needs of planning, construction and operation of nuclear power plants. The main problems encountered so far were related to small working team, lack of large and powerful computers, absence of reliable basic nuclear data and shortage of experimental and empirical results for testing theoretical models. Some of these difficulties have been overcome thanks to bilateral and multilateral cooperation with developed countries, mostly through IAEA. It is the authors opinion, however, that mutual cooperation of developing countries, having similar problems and similar goals, could lead to significant results. Some activities of this kind are suggested and discussed. (author)

  16. Man-machine communication in reactor control using AI methods

    International Nuclear Information System (INIS)

    Klebau, J.; Lindner, A.; Fiedler, U.

    1987-01-01

    In the last years the interest in process control has expecially focused on problems of man-machine communication. It depends on its great importance to process performance and user acceptance. Advanced computerized operator aids, e.g. in nuclear power plants, are as well as their man-machine interface. In the Central Institute for Nuclear Research in Rossendorf a computerized operator support system for nuclear power plants is designed, which is involved in a decentralized process automation system. A similar but simpler system, the Hierarchical Informational System (HIS) at the Rossendorf Research Reactor, works with a computer controlled man-machine interface, based on menu. In the special case of the disturbance analysis program SAAP-2, which is included in the HIS, the limits of menu techniques are obviously. Therefore it seems to be necessary and with extended hard- and software possible to realize an user controlled natural language interface using Artificial Intelligence (AI) methods. The draft of such a system is described. It should be able to learn during a teaching phase all phrases and their meanings. The system will work on the basis of a self-organizing, associative data structure. It is used to recognize a great amount of words which are used in language analysis. Error recognition and, if possible, correction is done by means of a distance function in the word set. Language analysis should be carried out with a simplified word class controlled functional analysis. With this interface it is supposed to get experience in intelligent man-machine communication to enhance operational safety in future. (author)

  17. The flow measurement methods for the primary system of integral reactors

    International Nuclear Information System (INIS)

    Lee, J.; Seo, J. K.; Lee, D. J.

    2001-01-01

    It is the common features of the integral reactors that the main components of the primary system are installed within the reactor vessel, and so there are no any flow pipes connecting the reactor coolant pumps or steam generators. Due to no any flow pipes, it is impossible to measure the differential pressure at the primary system of the integral reactors, and it also makes impossible measure the primary coolant flow rate. The objective of the study is to draw up the flow measurement methods for the primary system of integral reactors. As a result of the review, we have made a selection of the flow measurement method by pump speed, bt HBM, and by pump motor power as the flow measurement methods for the primary system of integral reactors. Peculiarly, we did not found out a precedent which the direct pump motor power-flow rate curve is used as the flow measurement method in the existing commercial nuclear power reactors. Therefore, to use this method for integral reactors, it is needed to bear the follow-up measures in mind. The follow-up measures is included in this report

  18. A method for evaluation the activity of the reactor components

    International Nuclear Information System (INIS)

    Gugiu, E.D.; Roth, Cs.

    2003-01-01

    The ability to predict the radioactivity levels of the reactor components is an important aspect from waste management point of view, as well as from radioprotection purposes. A special case is represented by the research reactors where, one of the major contributions to the radioactivity inventory is due to the experimental devices involved in various research works during reactor life. Generally, aluminum and aluminum alloys are used in manufacturing these devices; as a result, the work presented in this paper is focused on the qualitative and quantitative analysis of the radioactive isotopes contained in these materials. A device used for silicon doping by neutron transmutation that was placed near TRIGA reactor core is investigated. The isotopic content of various samplings drawn from various points of the device was analyzed by gamma spectrometry using a HPGe detector. Computations, using the MCNP5 code, are also performed in order to evaluate the reaction rates for all the isotopes and their reactions. The Monte Carlo simulations are performed for a detailed geometry and material composition of the reactor core and the device. The Origen-S code is also used in order to evaluate the isotopic inventory and the activity values. A detailed analysis regarding the possibility to estimate by computations and/or by gamma spectrometry the activity values of the isotopes which are of interest for decommissioning is presented in the paper. (authors)

  19. A contribution to the method of fast reactor thermal output calculation

    International Nuclear Information System (INIS)

    Harant, M.

    1978-01-01

    The method of stating the heat sources is discussed as being one of the factors influencing the accuracy of the thermal output calculation of fast reactors. The distribution of heat sources in the core and in other inner parts of the fast reactor is described using the least square fit method. Relations are derived of outputs of both individual components of fuel elements and of whole inner parts of the reactor. A comparison is made of various methods used for obtaining source integrals. The optimum integration method was found. (author)

  20. Reactor auxiliary cooling facility and coolant supplying method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1996-06-07

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  1. Reactor auxiliary cooling facility and coolant supplying method therefor

    International Nuclear Information System (INIS)

    Ando, Koji; Kinoshita, Shoichiro.

    1996-01-01

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  2. ECORA - Evaluation of Computational Methods for Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Scheuerer, Martina

    2002-01-01

    There were three motivations behind the ECORA Project: - the shortcomings of 0-D system codes in the simulation of 3-D, local flow and heat transfer phenomena, - increased interest in the application of 3-D CFD software as supplement to system codes, - high safety requirements in the nuclear industry required consistent standards for the use and assessment of CFD software. The purpose of ECORA was therefore: - to establish performance criteria for the assessment of CFD software, - to establish Best Practice Guidelines for application and use of CFD software, with the following objectives: - assessment of CFD applications in reactor safety: flows in containment (PANDA experiments) and flows in primary system (UPTF experiments) - Best Practice Guidelines for reactor safety: starting point (ERCOFTAC Best Practice Guidelines), adaptation to CFD application for nuclear safety, extension to assessment of experimental data - recommendations for improvements of CFD software, - network of European 'Centres of Competence for CFD Applications in Reactor Safety'. Currently, there were twelve partners in the ECORA Project, representing nine European countries. The Project was scheduled to last until September 2004. Ms Scheuerer then described the work programme and project structure, the Best Practice Guidelines for CFD simulations, the procedures for quantifying errors, applications of Best Practice Guidelines, Best Practice Guidelines for experimental data, applications to primary system, UPTF and PANDA data. Her conclusions were the following: - the Project had led to the improvement of the quality of CFD calculations in reactor safety, through: the ECORA Best Practice Guidelines, the assessment of shortcomings and the improvement of mathematical models. - It had also led to higher acceptance of CFD in reactor safety. - The next step was the establishment of European 'Centres of Competence for CFD Applications in reactor Safety'

  3. Parallel algorithms for nuclear reactor analysis via domain decomposition method

    International Nuclear Information System (INIS)

    Kim, Yong Hee

    1995-02-01

    In this thesis, the neutron diffusion equation in reactor physics is discretized by the finite difference method and is solved on a parallel computer network which is composed of T-800 transputers. T-800 transputer is a message-passing type MIMD (multiple instruction streams and multiple data streams) architecture. A parallel variant of Schwarz alternating procedure for overlapping subdomains is developed with domain decomposition. The thesis provides convergence analysis and improvement of the convergence of the algorithm. The convergence of the parallel Schwarz algorithms with DN(or ND), DD, NN, and mixed pseudo-boundary conditions(a weighted combination of Dirichlet and Neumann conditions) is analyzed for both continuous and discrete models in two-subdomain case and various underlying features are explored. The analysis shows that the convergence rate of the algorithm highly depends on the pseudo-boundary conditions and the theoretically best one is the mixed boundary conditions(MM conditions). Also it is shown that there may exist a significant discrepancy between continuous model analysis and discrete model analysis. In order to accelerate the convergence of the parallel Schwarz algorithm, relaxation in pseudo-boundary conditions is introduced and the convergence analysis of the algorithm for two-subdomain case is carried out. The analysis shows that under-relaxation of the pseudo-boundary conditions accelerates the convergence of the parallel Schwarz algorithm if the convergence rate without relaxation is negative, and any relaxation(under or over) decelerates convergence if the convergence rate without relaxation is positive. Numerical implementation of the parallel Schwarz algorithm on an MIMD system requires multi-level iterations: two levels for fixed source problems, three levels for eigenvalue problems. Performance of the algorithm turns out to be very sensitive to the iteration strategy. In general, multi-level iterations provide good performance when

  4. Method of constructing lower dry well access tunnel for nuclear reactor container

    International Nuclear Information System (INIS)

    Kume, Tadashi; Furukawa, Hedeyasu.

    1993-01-01

    The method of the present invention facilitates construction of a lower dry well access tunnel for a nuclear reactor container. The lower dry well access tunnel is constructed across the reactor container and the reactor main body foundation. In this case, the lower dry well access tunnel is divided into three sections, i.e., axial end portions and a central portion. At first, each of the end portions is attached to the walls of the reactor container and the reactor main body foundation respectively. Subsequently, the central portion is attached to each of the end portions. An adjusting margin is previously provided to the central portion upon manufacturing each of the sections for adjusting deviation from a nominal size upon construction. In such a construction method, it is possible to eliminate interference accident during construction between the end portions of the lower dry well access tunnel and the reactor container and the reactor main body foundation, to facilitate the construction. Further, this facilitates the fabricating operation for dimensional alignment between the lower dry well access tunnel, and the reactor container and the reactor main body foundation. (I.S.)

  5. A nodal Grean's function method of reactor core fuel management code, NGCFM2D

    International Nuclear Information System (INIS)

    Li Dongsheng; Yao Dong.

    1987-01-01

    This paper presents the mathematical model and program structure of the nodal Green's function method of reactor core fuel management code, NGCFM2D. Computing results of some reactor cores by NGCFM2D are analysed and compared with other codes

  6. The development of the physical conceptions of the FBR type reactors control methods

    International Nuclear Information System (INIS)

    Matveev, V.I.; Ivanov, A.P.

    1984-01-01

    The physical concepts and specific problems of the control elements for LMFBR type reactors are discussed in this paper. Typical temperature coefficient of reactivity, its dependency on reactor power and burnup level are given. The authors give us the most advisable methods of the reactivity coefficient compensation

  7. Experimental Methods Related to Coupled Fast-Thermal Systems at the RB Reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2002-01-01

    In addition to the review of RB reactor characteristics this presentation is focused on the coupled fast-thermal systems achieved at the reactor. The following experimental methods are presented: neutron spectra measurements; steady state experiments and kinetic measurements ( β eff ) related to the coupled fast-thermal cores

  8. Methods of assembling and disassembling spider and burnable poison rod structures for nuclear reactors

    International Nuclear Information System (INIS)

    Walton, L.A.

    1981-01-01

    A method is described of joining burnable poison rods to the spider arms of a pressurised water power reactor fuel assembly which is proof against the reactor core environment but permits these rods to be removed from the spider simply, swiftly and delicately. (U.K.)

  9. Remaining life diagnosis method and device for nuclear reactor

    International Nuclear Information System (INIS)

    Yamamoto, Michiyoshi.

    1996-01-01

    A neutron flux measuring means is inserted from the outside of a reactor pressure vessel during reactor operation to forecast neutron-degradation of materials of incore structural components in the vicinity of portions to be measured based on the measured values, and the remaining life of the reactor is diagnosed by the forecast degraded state. In this case, the neutron fluxes to be measured are desirably fast and/or medium neutron fluxes. As the positions where the measuring means is to be inserted, for example, the vicinity of the structural components at the periphery of the fuel assembly is selected. Aging degradation characteristics of the structural components are determined by using the aging degradation data for the structural materials. The remaining life is analyzed based on obtained aging degradation characteristics and stress evaluation data of the incore structural components at portions to be measured. Neutron irradiation amount of structural components at predetermined positions can be recognized accurately, and appropriate countermeasures can be taken depending on the forecast remaining life thereby enabling to improve the reliability of the reactor. (N.H.)

  10. SMORN-III benchmark test on reactor noise analysis methods

    International Nuclear Information System (INIS)

    Shinohara, Yoshikuni; Hirota, Jitsuya

    1984-02-01

    A computational benchmark test was performed in conjunction with the Third Specialists Meeting on Reactor Noise (SMORN-III) which was held in Tokyo, Japan in October 1981. This report summarizes the results of the test as well as the works made for preparation of the test. (author)

  11. A Graphite Isotope Ratio Method: A Primer on Estimating Plutonium Production in Graphite Moderated Reactors

    International Nuclear Information System (INIS)

    Gesh, Christopher J.

    2004-01-01

    The Graphite Isotope Ratio Method (GIRM) is a technique used to estimate the total plutonium production in a graphite-moderated reactor. The cumulative plutonium production in that reactor can be accurately determined by measuring neutron irradiation induced isotopic ratio changes in certain impurity elements within the graphite moderator. The method does not require detailed knowledge of a reactor's operating history, although that knowledge can decrease the uncertainty of the production estimate. The basic premise of the Graphite Isotope Ratio Method is that the fluence in non-fuel core components is directly related to the cumulative plutonium production in the nuclear fuel

  12. On use of ZPR research reactors and associated instrumentation and measurement methods for reactor physics studies

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, J.P. [CEA,DEN, DER, SPEX, Experimental Physics Service, Cadarache, F-13108 St-Paul-Lez-Durance (France); Blaise, P. [CEA, DEN, DER, SPEX Experimental Programs Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-07-01

    The French atomic and alternative energies -CEA- is strongly involved in research and development programs concerning the use of nuclear energy as a clean and reliable source of energy and consequently is working on the present and future generation of reactors on various topics such as ageing plant management, optimization of the plutonium stockpile, waste management and innovative systems exploration. Core physics studies are an essential part of this comprehensive R and D effort. In particular, the Zero Power Reactor (ZPR) of CEA: EOLE, MINERVE and MASURCA play an important role in the validation of neutron (as well photon) physics calculation tools (codes and nuclear data). The experimental programs defined in the CEA's ZPR facilities aim at improving the calculation routes by reducing the uncertainties of the experimental databases. They also provide accurate data on innovative systems in terms of new materials (moderating and decoupling materials) and new concepts (ADS, ABWR, new MTR (e.g. JHR), GENIV) involving new fuels, absorbers and coolant materials. Conducting such interesting experimental R and D programs is based on determining and measuring main parameters of phenomena of interest to qualify calculation tools and nuclear data 'libraries'. Determining these parameters relies on the use of numerous and different experimental techniques using specific and appropriate instrumentation and detection tools. Main ZPR experimental programs at CEA, their objectives and challenges will be presented and discussed. Future development and perspectives regarding ZPR reactors and associated programs will be also presented. (authors)

  13. Transforming criticality control methods for EBR-II fuel handling during reactor decommissioning

    International Nuclear Information System (INIS)

    Eberle, C.S.; Dean, E.M.; Angelo, P.L.

    1995-01-01

    A review of the Department of Energy (DOE) request to decommission the Experimental Breeder Reactor-II (EBR-II) was conducted in order to develop a scope of work and analysis method for performing the safety review of the facility. Evaluation of the current national standards, DOE orders, EBR-II nuclear safeguards and criticality control practices showed that a decommissioning policy for maintaining criticality safety during a long term fuel transfer process did not exist. The purpose of this research was to provide a technical basis for transforming the reactor from an instrumentation and measurement controlled system to a system that provides both physical constraint and administrative controls to prevent criticality accidents. Essentially, this was done by modifying the reactor core configuration, reactor operations procedures and system instrumentation to meet the safety practices of ANS-8.1-1983. Subcritical limits were determined by applying established liquid metal reactor methods for both the experimental and computational validations

  14. On-line method to identify control rod drops in Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Souza, T.J.; Martinez, A.S.; Medeiros, J.A.C.C.; Palma, D.A.P.; Gonçalves, A.C.

    2014-01-01

    Highlights: • On-line method to identify control rod drops in PWR reactors. • Identification method based on the readings of the ex-core detector. • Recognition of the patterns in the ex-core detector responses. - Abstract: A control rod drop event in PWR reactors leads to an unsafe operating condition. It is important to quickly identify the rod to minimise undesirable effects in such a scenario. The goal of this work is to develop an online method to identify control rod drops in PWR reactors. The method entails the construction of a tool based on ex-core detector responses. It proposes to recognize patterns in the neutron ex-core detectors responses and thus to make an online identification of a control rod drop in the core during the reactor operation. The results of the study, as well as the behaviour of the detector responses demonstrated the feasibility of this method

  15. Reactors

    DEFF Research Database (Denmark)

    Shah, Vivek; Vaz Salles, Marcos António

    2018-01-01

    The requirements for OLTP database systems are becoming ever more demanding. Domains such as finance and computer games increasingly mandate that developers be able to encode complex application logic and control transaction latencies in in-memory databases. At the same time, infrastructure...... engineers in these domains need to experiment with and deploy OLTP database architectures that ensure application scalability and maximize resource utilization in modern machines. In this paper, we propose a relational actor programming model for in-memory databases as a novel, holistic approach towards......-level function calls. In contrast to classic transactional models, however, reactors allow developers to take advantage of intra-transaction parallelism and state encapsulation in their applications to reduce latency and improve locality. Moreover, reactors enable a new degree of flexibility in database...

  16. Jean Gadrey, Nouvelle économie, nouveau mythe ?

    Directory of Open Access Journals (Sweden)

    Diane-Gabrielle Tremblay

    2002-10-01

    Full Text Available La « nouvelle économie » est partout dans les médias nord-américains, comme européens. L’ouvrage de Jean Gadrey est rafraîchissant, car il présente une critique et une analyse minutieuse du concept, de son apparition, des développements qui y sont associés, des thèses et idées défendues au nom de la « nouvelle économie ».Comme il le note bien « les mythes mobilisateurs fleurissent, mais la réflexion sur les contours de cet âge et sur les risques sociaux à prévenir est inexistante : les formul...

  17. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, D.M.; Burns, K.; Campbell, L.W.; Greenfield, B.; Kos, M.S., E-mail: markskos@gmail.com; Orrell, J.L.; Schram, M.; VanDevender, B.; Wood, L.S.; Wootan, D.W.

    2015-03-11

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  18. Neutronics comparative analysis of plate-type research reactor using deterministic and stochastic methods

    International Nuclear Information System (INIS)

    Liu, Shichang; Wang, Guanbo; Wu, Gaochen; Wang, Kan

    2015-01-01

    Highlights: • DRAGON and DONJON are applied and verified in calculations of research reactors. • Continuous-energy Monte Carlo calculations by RMC are chosen as the references. • “ECCO” option of DRAGON is suitable for the calculations of research reactors. • Manual modifications of cross-sections are not necessary with DRAGON and DONJON. • DRAGON and DONJON agree well with RMC if appropriate treatments are applied. - Abstract: Simulation of the behavior of the plate-type research reactors such as JRR-3M and CARR poses a challenge for traditional neutronics calculation tools and schemes for power reactors, due to the characteristics of complex geometry, highly heterogeneity and large leakage of the research reactors. Two different theoretical approaches, the deterministic and the stochastic methods, are used for the neutronics analysis of the JRR-3M plate-type research reactor in this paper. For the deterministic method the neutronics codes DRAGON and DONJON are used, while the continuous-energy Monte Carlo code RMC (Reactor Monte Carlo code) is employed for the stochastic approach. The goal of this research is to examine the capability of the deterministic code system DRAGON and DONJON to reliably simulate the research reactors. The results indicate that the DRAGON and DONJON code system agrees well with the continuous-energy Monte Carlo simulation on both k eff and flux distributions if the appropriate treatments (such as the ECCO option) are applied

  19. Method of shielding a liquid-metal-cooled reactor

    International Nuclear Information System (INIS)

    Sayre, R.K.

    1978-01-01

    The primary heat transport system of a nuclear reactor - particularly for a liquid-metal-cooled fast-breeder reactor - is shielded and protected from leakage by establishing and maintaining a bed of a powdered oxide closely and completely surrounding all components thereof by passing a gas upwardly therethrough at such a rate as to slightly expand the bed to the extent that the components of the system are able to expand without damage and yet the particles of a the bed remain close enough so that the bed acts as a guard vessel for the system. Preferably the gas contains 1 to 10% oxygen and the gas is passed upwardly through the bed at such a rate that the lower portion of the bed is a fixed bed while the upper portion is a fluidized bed, the line of demarcation therebetween being high enough that the fixed bed portion of the bed serves as guard vessel for the system

  20. Reactor noise analysis by statistical pattern recognition methods

    International Nuclear Information System (INIS)

    Howington, L.C.; Gonzalez, R.C.

    1976-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis is presented. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, updating, and data compacting capabilities. System design emphasizes control of the false-alarm rate. Its abilities to learn normal patterns, to recognize deviations from these patterns, and to reduce the dimensionality of data with minimum error were evaluated by experiments at the Oak Ridge National Laboratory (ORNL) High-Flux Isotope Reactor. Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the pattern recognition system

  1. Advanced methods for nuclear reactor gas laser coupling

    International Nuclear Information System (INIS)

    Miley, G.H.; Verdeyen, J.T.

    1978-06-01

    Research is described that led to the discovery of three nuclear-pumped lasers (NPLs) using mixtures of Ne--N 2 , He--Hg, and He or Ne with CO or CO 2 . The Ne--N 2 NPL was the first laser obtained with modest neutron fluxes from a TRIGA reactor (vs fast burst reactors used elsewhere in such work), the He--Hg NPL was the first visible nuclear-pumped laser, while the Ne--CO and He--CO 2 lasers are the first to provide energy storage on a millisecond time scale. Important potential applications of NPLs include coupling and power transmission from remote power stations such as nuclear plants in satellites and neutron-feedback operation of inertial confinement fusion plants

  2. Method for optimizing the passive safety of nuclear reactor operation

    International Nuclear Information System (INIS)

    Schubert, W.

    1987-01-01

    In order to avoid severe accidents with secondary large-area damage, small nuclear reactor units have to be spatially distributed and placed, if possible, into buried containments which show a staggered arrangement. The opening of each containment has to be tightly closed. The containments can be provided with protective equipment against eruption and explosion which absorb the forces of pressure front effects, e.g. gas-filled bags or cushions which are attached to the side walls of the containment. Such an equipment mostly is only useful for a single pressure front. Additional walls with numerous wall penetrations are also suited for absorbing several not too strong pressure fronts. For the maximum credible accident (MCA) dry sand has to be kept at hand in appropriate containers over the containment so that an uncontrollable nuclear reactor beyond repair can be 'buried' in a few seconds. (orig./HP) [de

  3. Ceramic oxygen transport membrane array reactor and reforming method

    Science.gov (United States)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R; Gonzalez, Javier E.; Doraswami, Uttam R.

    2017-10-03

    The invention relates to a commercially viable modular ceramic oxygen transport membrane system for utilizing heat generated in reactively-driven oxygen transport membrane tubes to generate steam, heat process fluid and/or provide energy to carry out endothermic chemical reactions. The system provides for improved thermal coupling of oxygen transport membrane tubes to steam generation tubes or process heater tubes or reactor tubes for efficient and effective radiant heat transfer.

  4. La hernie ombilicale africaine : nouvelle classification et revue de 30 ...

    African Journals Online (AJOL)

    L'objectif de ce travail était de proposer une nouvelle classification de la hernie ombilicale de l'enfant africain et d'évaluer les résultats du traitement chirurgical.Il s'agit d'une étude prospective portant sur 30 patients porteurs de hernie ombilicale, qui s'est déroulée sur une période de un an et demi dans les services de ...

  5. Nouvelle espèce des Syntomides (Lepidoptera Heterocera)

    NARCIS (Netherlands)

    Snellen, P.C.T.

    1886-01-01

    Quatre mâles frais et bien conservés de 58—64 millim. d’envergure. Cette nouvelle espèce, gigantesque pour une Syntomide, appartient au genre Automolis, tel qu’il a été défini par Herrich-Schäffer, dans son ouvrage »Sammlung aussereuropäischer Schmetterlinge” (p. 21); le nom est emprunté au bien

  6. Neutron spectrum determination by activation method in fast neutron fields at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1994-01-01

    The fast neutron fields of the RB reactor are presented in this paper. The activation method for spectrum determination is described and explained. The obtained results for intermediate and fast spectrum are given and discussed. (author)

  7. Neutron spectrum determination by activation method in fast neutron fields at the RB reactors

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.S.; Pesic, M.P.; Antic, D.P.

    1994-01-01

    The fast neutron fields of the RB reactor are presented in this paper. The activation method for spectrum determination is described and explained. The obtained results for intermediate and fast spectrum are given and discussed. (authors). 7 refs., 3 tabs

  8. A method to determine the dampening system of control rod drop mechanism for PWR reactors

    International Nuclear Information System (INIS)

    Trindade, C.E.; Mattos, J.R.L. de; Perrotta, J.A.

    1988-08-01

    A method to determine the Control Assembly damping drop system (dashpot/guide tube) was developed. It's presented a theoretical model, an experimental device and the procedures to determine this system, which is used in PWR reactors. (author) [pt

  9. Experimental methods of investigation of kinetics and dynamics of nuclear reactors

    International Nuclear Information System (INIS)

    Costa Oliveira, Jaime M.

    1969-03-01

    The author presents experimental methods used to study kinetic and dynamic properties of nuclear reactors. Kinetic methods aim at determining characteristic parameters of the behaviour in time of neutrons. Dynamic methods aim at establishing the relationships between the reactor behaviour and its internal and external causes (notably the measurement of transfer functions). The author proposes a classification with respect to the excitation type: periodic excitation (reactivity sinusoidal modulation, source sinusoidal modulation, periodic pulse excitation), non periodic excitation (reactivity monitoring, reactivity linear variation, reactivity variation according to any given law, removal of starting source), random excitation (random reactivity or source excitation), natural fluctuations (alpha-Rossi method, methods of reduced variance, probabilistic methods, correlation methods, spectral analysis method). He also addresses space and energy effects. Applications are reported for low power and power reactors

  10. Case study for one-piece removal method of reactor vessel of nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Nagane, Satoru; Kitahara, Katsumi; Yoshikawa, Seiji; Miyasaka, Yasuhiko; Fukumura, Nobuo; Nisizawa, Ichiou

    2010-01-01

    A reactor installed at the center part of the nuclear ship 'Mutsu' has been stored safely and exhibited in a reactor room building since 1996. The reactor vessel and its internals are key components because of main radioactive wastes for the reasonable decommissioning plan in the future. This report describes the one-piece removal method as the one package of the reactor vessel with its internals intact with a shipping container or additional shields. The reactor vessel package (Max.100ton) will be classified acceptable for burial at the low level radioactive waste (LLW), which will be buried at a LLW pit facility under waste disposal regulations. And also, the package will be classified as an IP-2-equivalent package according to the requirement for Shipments and Packagings. (author)

  11. Experimental methods of reactor physics; Methodes experimentales de physique des reacteurs a neutrons thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Breton, D; Lafore, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    This paper is a synthesis of various experimental methods in use with the reactors of the Commissariat a l'Energie Atomique. The main techniques used are mentioned and the difficulties encountered and the accuracy obtained are particularly dwelt upon. The application of these various methods to reactors in order to obtain specific results is also indicated. This paper consists of five parts. I - General methods. Macroscopic and microscopic flux distribution (anisotropy effect), power distribution, etc... II - Kinetic measurements a) pulsed neutron technique: apparatus and accuracy; application to {lambda}t and to anti reactivity measurements; application to graphite, light water and beryllium oxide. b) oscillation techniques: equipment and accuracy; application to the measurements of effective cross sections and resonance integrals. c) fluctuations: apparatus and technique of measurement. III - Poison methods. Description of methods for introducing and extracting the poison, difficulties encountered with light and heavy water, measurement of temperature coefficients and anti-reactivity. IV - Spectra measurements. Choice and development of foils, problems of measurement, application to spectral measurements for thermalization studies, application to dosimetry. V - Experimental shielding measurements. The technique and apparatus recently developed in this field are presented. (authors) [French] Cette communication fait une synthese des differentes methodes experimentales mises en oeuvre sur les reacteurs du CEA. Elle presente les principales techniques utilisees et insiste plus particulierement sur les difficultes rencontrees et la precision obtenue; elle indique egalement l'application de ces differentes methodes sur les reacteurs, en vue de l'obtention des resultats determines. Elle comporte cinq parties: I - METHODES GENERALES: Distribution de flux macroscopique et microscopique (effet d'anisotropie), distribution de puissance, etc... II - MESURES CINETIQUES: a

  12. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  13. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  14. Surface modification method for reactor incore structural component

    International Nuclear Information System (INIS)

    Obata, Minoru; Sudo, Akira.

    1996-01-01

    A large number of metal or ceramic small spheres accelerated by pressurized air are collided against a surface of a reactor incore structures or a welded surface of the structural components, and then finishing is applied by polishing to form compression stresses on the surface. This can change residual stresses into compressive stress without increasing the strength of the surface. Accordingly, stress corrosion crackings of the incore structural components or welded portions thereof can be prevented thereby enabling to extend the working life of equipments. (T.M.)

  15. Derivation methods for clearance levels applied to reactors

    International Nuclear Information System (INIS)

    Okoshi, Minoru; Seki, Takeo

    2001-01-01

    In order to support the discussion by the Nuclear Safety Commission, JAERI derived the unconditional clearance levels for concrete and metal arising from the operation and dismantling of nuclear reactors. The clearance levels of 20 radionuclides were derived from 10 μSv/y of individual doses by deterministic approach. In this approach, calculation models were established to assess individual doses resulting from 73 exposure pathways related to disposal and recycle/reuse, and realistic parameter values were selected considering Japanese natural and social conditions. The appropriateness of selected parameter values was confirmed by stochastic analyses. (author)

  16. A method to calculate spatial xenon oscillations in PWR reactors

    International Nuclear Information System (INIS)

    Ronig, H.

    1976-01-01

    The new digital computer programme SEXI for the calculation of spatial Xe oscillations is described. A series expansion of the flux density and the particle densities following the geometrical eigenfunctions of a homogeneous block reactor is chosen as an approach to the solution of the system of differential equations describing this feedback process between neutron flux density and Xe particle density. To calculate the neutron flux density, the time-dependent form of the diffusion equation is used instead of the more common stationary form. Integration is carried out using formal time differential quotients of the Fourier coefficients. (orig./RW) [de

  17. A boolean optimization method for reloading a nuclear reactor

    International Nuclear Information System (INIS)

    Misse Nseke, Theophile.

    1982-04-01

    We attempt to solve the problem of optimal reloading of fuel assemblies in a PWR, without any assumption on the fuel nature. Any loading is marked by n 2 boolean variables usub(ij). The state of the reactor is characterized by his Ksub(eff) and the related power distribution. The resulting non-linear allocation problems are solved throught mathematical programming technics combining the simplex algorithm and an extension of the Balas-Geoffrion's one. Some optimal solutions are given for PWR with assemblies of different enrichment [fr

  18. Real-time stability monitoring method for boiling water reactor nuclear power plants

    International Nuclear Information System (INIS)

    Fukunishi, K.; Suzuki, S.

    1987-01-01

    A method for real-time stability monitoring is developed for supervising the steady-state operation of a boiling water reactor core. The decay ratio of the reactor power fluctuation is determined by measuring only the output neutron noise. The concept of an inverse system is introduced to identify the dynamic characteristics of the reactor core. The adoption of an adaptive digital filter is useful in real-time identification. A feasibility test that used measured output noise as an indication of reactor power suggests that this method is useful in a real-time stability monitoring system. Using this method, the tedious and difficult work for modeling reactor core dynamics can be reduced. The method employs a simple algorithm that eliminates the need for stochastic computation, thus making the method suitable for real-time computation with a simple microprocessor. In addition, there is no need to disturb the reactor core during operation. Real-time stability monitoring using the proposed algorithm may allow operation under less stable margins

  19. Solution of the Lambda modes problem of a nuclear power reactor using an h–p finite element method

    International Nuclear Information System (INIS)

    Vidal-Ferrandiz, A.; Fayez, R.; Ginestar, D.; Verdú, G.

    2014-01-01

    Highlights: • An hp finite element method is proposed for the Lambda modes problem of a nuclear reactor. • Different strategies can be implemented for increasing the accuracy of the solutions. • 2D and 3D benchmarks have been studied obtaining accurate results. - Abstract: Lambda modes of a nuclear power reactor have interest in reactor physics since they have been used to develop modal methods and to study BWR reactor instabilities. An h–p-Adaptation finite element method has been implemented to compute the dominant modes the fundamental mode and the next subcritical modes of a nuclear reactor. The performance of this method has been studied in three benchmark problems, a homogeneous 2D reactor, the 2D BIBLIS reactor and the 3D IAEA reactor

  20. INCA: method of analyzing in-core detector data in power reactors

    International Nuclear Information System (INIS)

    Ober, T.G.; Terney, W.B.; Marks, G.H.

    1975-04-01

    A method (INCA) is described by which signals from fixed in-core detectors are related to estimates of the three dimensional power distribution in an operating reactor core and to the maximum linear heat rate in the core. A description of the large library of data accompanying the method is provided. A detailed examination of the analytical verifications performed using the method is presented, and a summary of the uncertainty associated with the method is given. The uncertainty assigned to the maximum linear heat rate inferred by the method from operating reactor data is found to be 5.8 percent at a 95/95 confidence level. (U.S.)

  1. Calculation method for control rod dropping time in reactor

    International Nuclear Information System (INIS)

    Nogami, Takeki; Kato, Yoshifumi; Ishino, Jun-ichi; Doi, Isamu.

    1996-01-01

    If a control rod starts dropping, the dropping speed is rapidly increased, then settled substantially constant, rapidly decreased when it reaches a dash pot. A second detection signal generated by removing an AC component from a first detection signal is differentiated twice. The time when the maximum value among the twice differentiated values is generated is determined as a time when the control rods starts dropping. The time when minimum value among the twice differentiated values is generated is determined as a time when the control rod reaches the dash pot of the reactor. The measuring time within a range from the time when the control rod starts dropping to the time when the control rod reaches the dash pot of the reactor is determined. As a result, processing for the calculation of the dropping start time and dash pot reaching time of the control rod can be automatized. Further, it is suffice to conduct differentiation twice till the reaching time, which can facilitate the processing thereby enabling to determine a reliable time range. (N.H.)

  2. Method of stopping operation of PWR type reactor

    International Nuclear Information System (INIS)

    Ueno, Takashi; Tsuge, Ayao; Kawanishi, Yasuhira; Onimura, Kichiro; Kadokami, Akira.

    1989-01-01

    In PWR type reactors after long period of l00 % power operation, since boiling is caused in heat conduction pipes and water is depleted within the intergranular corrosion fracture face in the crevis portion to result in a dry-out state, impregnation and concentration of corrosion inhibitors into the intergranular corrosion fracture face are insufficient. In view of the above, the corrosion inhibitor at a high concentration is impregnated into the intergranular corrosion fracture face by keeping to inject the corrosion inhibitor from l00 % thermal power load by way of the thermal power reduction to the zero power state upon operatioin shutdown. That is, if the thermal power is reduced to or near the 0 power upon reactor shutdown, feedwater in the crevis portion is put to subcooled state, by which the steam present in the intergranular corrosion fracture face are condensated and the corrosion inhibitor at high concentration impregnated into the crevis portion are penetrated into the intergranular corrosion fracture face. (K.M.)

  3. Structure of steel reactor building and construction method therefor

    International Nuclear Information System (INIS)

    Yamakawa, Toshikimi.

    1997-01-01

    The building of the present invention contains a reactor pressure vessel, and has double steel plate walls endurable to elevation of inner pressure and keeping airtightness, and shielding concretes are filled between the double steel plate walls. It also has empty double steel plate walls not filled with concretes and has pipelines, vent ducts, wirings and a support structures for attaching them between the double steel plate walls. It is endurable to a great inner pressure satisfactory and keeps airtightness by the two spaced steel plates. It can be greatly reduced in the weight, and can be manufactured efficiently with high quality in a plant by so called module construction, and the dimension of the entire of the reactor building can be reduced. It is constructed in a dock, transported on the sea while having the space between the two steel plate walls as a ballast tanks, placed in the site, and shielding concretes are filled between the double steel plate walls. The term for the construction can be reduced, and the cost for the construction can be saved. (N.H.)

  4. Some methods of failed fuel element detection in water cooled reactors

    International Nuclear Information System (INIS)

    Strindehag, O.M.

    1976-01-01

    The methods are surveyed using fission products released in the coolant for the detection of failed fuel elements in water cooled reactors. The classification of the detection methods is made with respect to fission product detection in the coolant and to gaseous fission product detection. The detection systems are listed used for the AGESTA power reactor and for the experimental loops of the RA research reactor based on the detection of either gaseous fission products or gaseous daughter products. The AGESTA reactor detection systems using electrostatic precipitators consist of five precipitator channels of which three are intended for detection and two for localization. A special detection unit was developed for the failed fuel element detection in the R-2 reactor experimental steam loop. Its description is listed. In the reactor pressurized-water loop a Cherenkov counter was used in the detection of fission products. An ion exchange monitor whose application is described was used in the total measurement of the main coolant flow in the AGESTA reactor. (J.P.)

  5. Design and implementation of new design of numerical experiments for non linear models; Conception et mise en oeuvre de nouvelles methodes d'elaboration de plans d'experiences pour l'apprentissage de modeles non lineaires

    Energy Technology Data Exchange (ETDEWEB)

    Gazut, St

    2007-03-15

    This thesis addresses the problem of the construction of surrogate models in numerical simulation. Whenever numerical experiments are costly, the simulation model is complex and difficult to use. It is important then to select the numerical experiments as efficiently as possible in order to minimize their number. In statistics, the selection of experiments is known as optimal experimental design. In the context of numerical simulation where no measurement uncertainty is present, we describe an alternative approach based on statistical learning theory and re-sampling techniques. The surrogate models are constructed using neural networks and the generalization error is estimated by leave-one-out, cross-validation and bootstrap. It is shown that the bootstrap can control the over-fitting and extend the concept of leverage for non linear in their parameters surrogate models. The thesis describes an iterative method called LDR for Learner Disagreement from experiment Re-sampling, based on active learning using several surrogate models constructed on bootstrap samples. The method consists in adding new experiments where the predictors constructed from bootstrap samples disagree most. We compare the LDR method with other methods of experimental design such as D-optimal selection. (author)

  6. Measurement of fatigue crack growth rate of reactor structural material in air based on DCPD method

    International Nuclear Information System (INIS)

    Du Donghai; Chen Kai; Yu Lun; Zhang Lefu; Shi Xiuqiang; Xu Xuelian

    2014-01-01

    The principles and details of direct current potential drop (DCPD) in monitoring the crack growth of reactor structural materials was introduced in this paper. Based on this method, the fatigue crack growth rate (CGR) of typical structural materials in nuclear power systems was measured. The effects of applied load, load ratio and loading frequency on the fatigue crack growth rate of reactor structural materials were discussed. The result shows that the fatigue crack growth rate of reactor structural materials depends on the hardness of materials, and the harder the material is, the higher the rate of crack growth is. (authors)

  7. A method of reactor power decrease by 2DOF control system during BWR power oscillation

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Suzuki, Katsuo

    1998-09-01

    Occurrence of power oscillation events caused by void feedback effects in BWRs operated at low-flow and high-power condition has been reported. After thoroughly examining these events, BWRs have been equipped with the SRI (Selected Rod Insertion) system to avoid the power oscillation by decreasing the power under such reactor condition. This report presents a power control method for decreasing the reactor power stably by a two degree of freedom (2DOF) control. Performing a numerical simulation by utilizing a simple reactor dynamics model, it is found that the control system designed attains a satisfactory control performance of power decrease from a viewpoint of setting time and oscillation. (author)

  8. A new method for evaluation and correction of thermal reactor power and present operational applications

    International Nuclear Information System (INIS)

    Langenstein, M.; Streit, S.; Laipple, B.; Eitschberger, H.

    2005-01-01

    The determination of the thermal reactor power is traditionally be done by heat balance: 1) for a boiling water reactor (BWR) at the interface of reactor control volume and heat cycle. 2) for a pressurised-water reactor (PWR) at the interface of the steam generator control volume and turbine island on the secondary side. The uncertainty of these traditional methods is not easy to determine and can be in the range of several percent. Technical and legal regulations (e.g. 10CFR50) cover an estimated error of instrumentation up to 2% by increasing the design thermal reactor power for emergency analysis to 102 % of the licensed thermal reactor power. Basically the licensee has the duty to warrant at any time operation inside the analyzed region for thermal reactor power. This is normally done by keeping the indicated reactor power at the licensed 100% value. The better way is to use a method which allows a continuous warranty evaluation. The quantification of the level of fulfilment of this warranty is only achievable by a method which: 1) is independent of single measurements accuracies. 2) results in a certified quality of single process values and for the total heat cycle analysis. 3)leads to complete results including 2-sigma deviation especially for thermal reactor power. Here this method, which is called 'process data reconciliation based on VDI 2048 guideline', is presented [1, 2]. This method allows to determine the true process parameters with a statistical probability of 95%, by considering closed material, mass- and energy balances following the Gaussian correction principle. The amount of redundant process information and complexity of the process improves the final results. This represents the most probable state of the process with minimized uncertainty according to VDI 2048. Hence, calibration and control of the thermal reactor power are possible with low effort but high accuracy and independent of single measurement accuracies. Further more, VDI 2048

  9. Research and Development Program in Reactor Diagnostics and Monitoring with Neutron Noise Methods, Stage 18

    International Nuclear Information System (INIS)

    Pazsit, Imre; Nam, Tran Hoai; Dykin, Victor; Jonsson, Anders

    2013-01-01

    This report constitutes Stage 18 of a long-term research and development program concerning the development of diagnostics and monitoring methods for nuclear reactors. The objective of the research program is to contribute to the strategic research goal of competence and research capacity by building up competence within the Department of Nuclear Engineering at Chalmers University of Technology, regarding reactor physics, reactor dynamics and noise diagnostics. The purpose is also to contribute to the research goal of giving a basis for SSM's supervision by developing methods for identification and localization of perturbations in reactor cores. Results up to Stage 17 were reported in SKI and SSM reports, as listed in the report's summary

  10. Reactor

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1976-01-01

    Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)

  11. A method for measuring power signal background and source strength in a fission reactor

    International Nuclear Information System (INIS)

    Baers, B.; Kall, L.; Visuri, P.

    1977-01-01

    Theory and experimental verification of a novel method for measuring power signal bias and source strength in a fission reactor are reported. A minicomputer was applied in the measurements. The method is an extension of the inverse kinetics method presented by Mogilner et al. (Auth.)

  12. Noise analysis method for monitoring the moderator temperature coefficient of pressurized water reactors: Neural network calibration

    International Nuclear Information System (INIS)

    Thomas, J.R. Jr.; Adams, J.T.

    1994-01-01

    A neural network was trained with data for the frequency response function between in-core neutron noise and core-exit thermocouple noise in a pressurized water reactor, with the moderator temperature coefficient (MTC) as target. The trained network was subsequently used to predict the MTC at other points in the same fuel cycle. Results support use of the method for operating pressurized water reactors provided noise data can be accumulated for several fuel cycles to provide a training base

  13. A method and programme (BREACH) for predicting the flow distribution in water cooled reactor cores

    International Nuclear Information System (INIS)

    Randles, J.; Roberts, H.A.

    1961-03-01

    The method presented here of evaluating the flow rate in individual reactor channels may be applied to any type of water cooled reactor in which boiling occurs The flow distribution is calculated with the aid of a MERCURY autocode programme, BREACH, which is described in detail. This programme computes the steady state longitudinal void distribution and pressure drop in a single channel on the basis of the homogeneous model of two phase flow. (author)

  14. A method and programme (BREACH) for predicting the flow distribution in water cooled reactor cores

    Energy Technology Data Exchange (ETDEWEB)

    Randles, J; Roberts, H A [Technical Assessments and Services Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1961-03-15

    The method presented here of evaluating the flow rate in individual reactor channels may be applied to any type of water cooled reactor in which boiling occurs The flow distribution is calculated with the aid of a MERCURY autocode programme, BREACH, which is described in detail. This programme computes the steady state longitudinal void distribution and pressure drop in a single channel on the basis of the homogeneous model of two phase flow. (author)

  15. Reliability analysis of reactor systems by applying probability method; Analiza pouzdanosti reaktorskih sistema primenom metoda verovatnoce

    Energy Technology Data Exchange (ETDEWEB)

    Milivojevic, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1974-12-15

    Probability method was chosen for analysing the reactor system reliability is considered realistic since it is based on verified experimental data. In fact this is a statistical method. The probability method developed takes into account the probability distribution of permitted levels of relevant parameters and their particular influence on the reliability of the system as a whole. The proposed method is rather general, and was used for problem of thermal safety analysis of reactor system. This analysis enables to analyze basic properties of the system under different operation conditions, expressed in form of probability they show the reliability of the system on the whole as well as reliability of each component.

  16. Method of controlling power of a heavy water reactor

    International Nuclear Information System (INIS)

    Masuda, Hiroyuki.

    1975-01-01

    Object: To adjust a level of heavy water in a region of reflection body to control power in a heavy water reactor. Structure: The interior of a core tank filled with heavy water is divided by a partition into a core heavy water region and a reflection body region formed by surrounding the core heavy water region, and a level of heavy water within the reflection body region is adjusted to control power. Preferably, it is desirable to communicate the core heavy water region with the reflection body heavy water region at their lower portion, and gas pressure applied to an upper portion within at least one of said regions is adjusted to adjust the level of heavy water within the reflection body heavy water region. Thereby, the heavy water within the reflection body heavy water region may be introduced into the core region, thus requiring no tank which stores heavy water within the reflection body region. (Kamimura, M.)

  17. A New In-core Production Method of Co-60 in CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Jinqi; Kim, Woosong; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of); Park, Younwon [BEES Inc, Daejeon (Korea, Republic of)

    2016-05-15

    This study introduces an innovative method for Co-60 production in the CANDU6 core. In this new scheme, the central fuel element is replaced by a Co-59 target and Co-60 is obtained after the fuel bundle is discharged. It has been shown that the new method can produce significantly higher amount of Co-60 than the conventional Co production method in CANDU6 reactors without compromising the fuel burnup by removing some (<50%) of the adjuster rods in the whole core. The coolant void reactivity is noticeably reduced when a Co-59 target is loaded into the central pin of the fuel bundle. Meanwhile, the peak power in a fuel bundle is just a little higher due to the central Co-59 target than in conventional CANDU6 fuel design. The basic technology for Co-60 producing was developed by MDS Nordion and Atomic Energy of Canada Limited (AECL) in 1946 and the same technology was adapted and applied in CANDU6 power reactors. The standard CANDU6 reactor has 21 adjuster rods which are fully inserted into the core during normal operation. The stainless steel adjuster rods are replaced with neutronically-equivalent Co-59 adjusters to produce Co-60. Nowadays, the roles of the adjuster rods are rather vague since nuclear reactors cannot be quickly restarted after a sudden reactor trip due to more stringent regulations. In some Canadian CANDU6 reactors, some or all the adjuster rods are removed from the core to maximize the uranium utilization.

  18. Experimental study on reactivity measurement in thermal reactor by polarity correlation method

    International Nuclear Information System (INIS)

    Yasuda, Hideshi

    1977-11-01

    Experimental study on the polarity correlation method for measuring the reactivity of a thermal reactor, especially the one possessing long prompt neutron lifetime such as graphite on heavy water moderated core, is reported. The techniques of reactor kinetics experiment are briefly reviewed, which are classified in two groups, one characterized by artificial disturbance to a reactor and the other by natural fluctuation inherent in a reactor. The fluctuation phenomena of neutron count rate are explained using F. de Hoffman's stochastic method, and correlation functions for the neutron count rate fluctuation are shown. The experimental results by polarity correlation method applied to the β/l measurements in both graphite-moderated SHE core and light water-moderated JMTRC and JRR-4 cores, and also to the measurement of SHE shut down reactivity margin are presented. The measured values were in good agreement with those by a pulsed neutron method in the reactivity range from critical to -12 dollars. The conditional polarity correlation experiments in SHE at -20 cent and -100 cent are demonstrated. The prompt neutron decay constants agreed with those obtained by the polarity correlation experiments. The results of experiments measuring large negative reactivity of -52 dollars of SHE by pulsed neutron, rod drop and source multiplication methods are given. Also it is concluded that the polarity and conditional polarity correlation methods are sufficiently applicable to noise analysis of a low power thermal reactor with long prompt neutron lifetime. (Nakai, Y.)

  19. Method of changing the control rod pattern in BWR type reactors

    International Nuclear Information System (INIS)

    Yoshida, Kenji.

    1984-01-01

    Purpose: To enable to change the control rod pattern in a short time with ease, as well as improve the availability factor of the reactor. Method: Control rods other than those being inserted into the reactor core are inserted into the reactor core to reduce the power by the reduction in the reactor core flow rate. Then, the control rod to be operated is operated partially for the change of the control rod pattern to restrict the linear heat rating of the fuels to less than 0.1 kW/ft per one hour to change the control pattern to the aimed control rod pattern. Then, the reactor core flow rate is increased after the pattern exchange for the control rod to increase the power. Since only the control rod operation is performed without adjusting the reactor core flow rate upon change of the control rod pattern, procedures can be made simply in a short time to thereby improve the availability factor of the reactor. (Moriyama, K.)

  20. Failure analysis of pebble bed reactors during earthquake by discrete element method

    International Nuclear Information System (INIS)

    Keppler, Istvan

    2013-01-01

    Highlights: ► We evaluated the load acting on the central reflector beam of a pebble bed reactor. ► The load acting on the reflector beam highly depends on fuel element distribution. ► The contact force values do not show high dependence on fuel element distribution. ► Earthquake increases the load of the reflector, not the contact forces. -- Abstract: Pebble bed reactors (PBR) are graphite-moderated, gas-cooled nuclear reactors. PBR reactors use a large number of spherical fuel elements called pebbles. From mechanical point of view, the arrangement of “small” spherical fuel elements in a container poses the same problem, as the so-called silo problem in powder technology and agricultural engineering. To get more exact information about the contact forces arising between the fuel elements in static and dynamic case, we simulated the static case and the effects of an earthquake on a model reactor by using discrete element method. We determined the maximal contact forces acting between the individual fuel elements. We found that the value of the maximal bending moment in the central reflector beam has a high deviation from the average value even in static case, and it can significantly increase in case of an earthquake. Our results can help the engineers working on the design of such types of reactors to get information about the contact forces, to determine the dust production and the crush probability of fuel elements within the reactor, and to model different accident scenarios

  1. Failure analysis of pebble bed reactors during earthquake by discrete element method

    Energy Technology Data Exchange (ETDEWEB)

    Keppler, Istvan, E-mail: keppler.istvan@gek.szie.hu [Department of Mechanics and Engineering Design, Szent István University, Páter K.u.1., Gödöllő H-2103 (Hungary)

    2013-05-15

    Highlights: ► We evaluated the load acting on the central reflector beam of a pebble bed reactor. ► The load acting on the reflector beam highly depends on fuel element distribution. ► The contact force values do not show high dependence on fuel element distribution. ► Earthquake increases the load of the reflector, not the contact forces. -- Abstract: Pebble bed reactors (PBR) are graphite-moderated, gas-cooled nuclear reactors. PBR reactors use a large number of spherical fuel elements called pebbles. From mechanical point of view, the arrangement of “small” spherical fuel elements in a container poses the same problem, as the so-called silo problem in powder technology and agricultural engineering. To get more exact information about the contact forces arising between the fuel elements in static and dynamic case, we simulated the static case and the effects of an earthquake on a model reactor by using discrete element method. We determined the maximal contact forces acting between the individual fuel elements. We found that the value of the maximal bending moment in the central reflector beam has a high deviation from the average value even in static case, and it can significantly increase in case of an earthquake. Our results can help the engineers working on the design of such types of reactors to get information about the contact forces, to determine the dust production and the crush probability of fuel elements within the reactor, and to model different accident scenarios.

  2. Method of neutronic calculations for a spherical cell equivalent to cylindrical one for using computer codes in light water reactors in the fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Borges, V.; Sefidvash, F.; Rastogi, E.P.; Huria, H.C.; Krishnani, P.D.

    1989-01-01

    In order to use the existing light water reactor cell calculation codes for fluidized bed nuclear reactor having spherical fuel cells, an equivalence method has been developed. This method is shown to be adequate in calculation of the Dancoff factor. This method also was applicable in LEOPARD code and the results obtained in calculation of K ∞ was compared with the obtained using the DTF IV code, the results showed that the method is adequate for the calculations neutronics of the fluidized bed nuclear reactor. (author) [pt

  3. Present status of reactor physics in the United States and Japan-II. 1. Deterministic Transport Methods for Reactor Analysis

    International Nuclear Information System (INIS)

    Adams, Marvin L.

    2001-01-01

    We discuss deterministic transport methods used today in neutronic analysis of nuclear reactors. This discussion is not exhaustive; our goal is to provide an overview of the methods that are most widely used for analyzing light water reactors (LWRs) and that (in our opinion) hold the most promise for the future. The current practice of LWR analysis involves the following steps: 1. Evaluate cross sections from measurements and models. 2. Obtain weighted-average cross sections over dozens to hundreds of energy intervals; the result is a 'fine-group' cross-section set. 3. [Optional] Modify the fine-group set: Further collapse it using information specific to your class of reactors and/or alter parameters so that computations better agree with experiments. The result is a 'many-group library'. 4. Perform pin cell transport calculations (usually one-dimensional cylindrical); use the results to collapse the many-group library to a medium-group set, and/or spatially average the cross sections over the pin cells. 5. Perform assembly-level transport calculations with the medium-group set. It is becoming common practice to use essentially exact geometry (no pin cell homogenization). It may soon become common to skip step 4 and use the many-group library. The output is a library of few-group cross sections, spatially averaged over the assembly, parameterized to cover the full range of operating conditions. 6. Perform full-core calculations with few-group diffusion theory that contains significant homogenizations and limited transport corrections. We discuss steps 4, 5, and 6 and focus mainly on step 5. One cannot review a large topic in a short summary without simplifying reality, omitting important details, and neglecting some methods that deserve attention; for this we apologize in advance. (author)

  4. Feasibility study of applying reactor oscillator phase method at the RB reactor; Razmatranje mogucnosti primene fazne metode reaktorskog oscilatora na reaktoru RB

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, M; Kocic, A; Markovic, V [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This paper decsribes the principles of amplitude and phase methods for applying reactor oscillator; experimental procedure and choice of optimum parameters for usractor oscillator at the RB reactor, dependent on the values of absorption properties of moderator and construction materials. Short description of the oscillator and the electronic equipment is included.

  5. Coarse mesh finite element method for boiling water reactor physics analysis

    International Nuclear Information System (INIS)

    Ellison, P.G.

    1983-01-01

    A coarse mesh method is formulated for the solution of Boiling Water Reactor physics problems using two group diffusion theory. No fuel assembly cross-section homogenization is required; water gaps, control blades and fuel pins of varying enrichments are treated explicitly. The method combines constrained finite element discretization with infinite lattice super cell trial functions to obtain coarse mesh solutions for which the only approximations are along the boundaries between fuel assemblies. The method is applied to bench mark Boiling Water Reactor problems to obtain both the eigenvalue and detailed flux distributions. The solutions to these problems indicate the method is useful in predicting detailed power distributions and eigenvalues for Boiling Water Reactor physics problems

  6. The use of genetic algorithms with niching methods in nuclear reactor related problems

    International Nuclear Information System (INIS)

    Sacco, Wagner Figueiredo

    2000-03-01

    Genetic Algorithms (GAs) are biologically motivated adaptive systems which have been used, with good results, in function optimization. However, traditional GAs rapidly push an artificial population toward convergence. That is, all individuals in the population soon become nearly identical. Niching Methods allow genetic algorithms to maintain a population of diverse individuals. GAs that incorporate these methods are capable of locating multiple, optimal solutions within a single population. The purpose of this study is to test existing niching techniques and two methods introduced herein, bearing in mind their eventual application in nuclear reactor related problems, specially the nuclear reactor core reload one, which has multiple solutions. Tests are performed using widely known test functions and their results show that the new methods are quite promising, specially in real world problems like the nuclear reactor core reload. (author)

  7. Utilization of niching methods of genetic algorithms in nuclear reactor problems optimization

    International Nuclear Information System (INIS)

    Sacco, Wagner Figueiredo; Schirru, Roberto

    2000-01-01

    Genetic Algorithms (GAs) are biologically motivated adaptive systems which have been used, with good results, in function optimization. However, traditional GAs rapidly push an artificial population toward convergence. That is, all individuals in the population soon become nearly identical. Niching Methods allow genetic algorithms to maintain a population of diverse individuals. GAs that incorporate these methods are capable of locating multiple, optimal solutions within a single population. The purpose of this study is to test existing niching techniques and two methods introduced herein, bearing in mind their eventual application in nuclear reactor related problems, specially the nuclear reactor core reload one, which has multiple solutions. Tests are performed using widely known test functions and their results show that the new methods are quite promising, specially in real world problems like the nuclear reactor core reload. (author)

  8. Automatic optimized reload and depletion method for a pressurized water reactor

    International Nuclear Information System (INIS)

    Ahn, D.H.; Levene, S.H.

    1985-01-01

    A new method has been developed to automatically reload and deplete a pressurized water reactor (PWR) so that both the enriched inventory requirements during the reactor cycle and the cost of reloading the core are minimized. This is achieved through four stepwise optimization calculations: (a) determination of the minimum fuel requirement for an equivalent three-region core model, (b) optimal selection and allocation of fuel assemblies for each of the three regions to minimize the reload cost, (c) optimal placement of fuel assemblies to conserve regionwise optimal conditions, and (d) optimal control through poison management to deplete individual fuel assemblies to maximize end-of-cycle k /SUB eff/ . The new method differs from previous methods in that the optimization process automatically performs all tasks required to reload and deplete a PWR. In addition, the previous work that developed optimization methods principally for the initial reactor cycle was modified to handle subsequent cycles with fuel assemblies having burnup at beginning of cycle. Application of the method to the fourth reactor cycle at Three Mile Island Unit 1 has shown that both the enrichment and the number of fresh reload fuel assemblies can be decreased and fully amortized fuel assemblies can be reused to minimize the fuel cost of the reactor

  9. Development of source term evaluation method for Korean Next Generation Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keon Jae; Cheong, Jae Hak; Park, Jin Baek; Kim, Guk Gee [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-10-15

    This project had investigate several design features of radioactive waste processing system and method to predict nuclide concentration at primary coolant basic concept of next generation reactor and safety goals at the former phase. In this project several prediction methods of source term are evaluated conglomerately and detailed contents of this project are : model evaluation of nuclide concentration at Reactor Coolant System, evaluation of primary and secondary coolant concentration of reference Nuclear Power Plant(NPP), investigation of prediction parameter of source term evaluation, basic parameter of PWR, operational parameter, respectively, radionuclide removal system and adjustment values of reference NPP, suggestion of source term prediction method of next generation NPP.

  10. Research on acceleration method of reactor physics based on FPGA platforms

    International Nuclear Information System (INIS)

    Li, C.; Yu, G.; Wang, K.

    2013-01-01

    The physical designs of the new concept reactors which have complex structure, various materials and neutronic energy spectrum, have greatly improved the requirements to the calculation methods and the corresponding computing hardware. Along with the widely used parallel algorithm, heterogeneous platforms architecture has been introduced into numerical computations in reactor physics. Because of the natural parallel characteristics, the CPU-FPGA architecture is often used to accelerate numerical computation. This paper studies the application and features of this kind of heterogeneous platforms used in numerical calculation of reactor physics through practical examples. After the designed neutron diffusion module based on CPU-FPGA architecture achieves a 11.2 speed up factor, it is proved to be feasible to apply this kind of heterogeneous platform into reactor physics. (authors)

  11. Investigation for calculation methods used in analyzing the physics characteristics of nuclear power reactor

    International Nuclear Information System (INIS)

    Nguyen Tuan Khai; Hoang Van Khanh; Phan Quoc Vuong; Tran Viet Phu; Tran Vinh Thanh; Nguyen Thi Mai Huong; Nguyen Thi Dung; Le Tran Chung; Nguyen Minh Tuan; Tran Quoc Duong

    2014-01-01

    The project aims at nuclear human resource development and enhancement in research capability in reactor physics and kinetics at Nuclear Energy Center (Institute for Nuclear Science and Technology) and Nuclear Reactor Center (Nuclear Research Institute, Dalat). The main research items of the project can be summarized as follows: i) Considering possibility on using modern calculation techniques and methods in investigating neutronic characteristics and neutronics-thermal hydraulics coupling. This item is proposed to carry out based on international collaboration with Prof. Le Trong Thuy, San Jose University, US; ii) Carrying out the collaborative activities in research and training between Nuclear Energy Center (Institute for Nuclear Science and Technology) and Nuclear Reactor Center (Nuclear Research Institute, Dalat); iii) Opening two-week training course on nuclear reactor engineering (25 Nov - 12 Dec 2013) in collaboration with Japan Atomic Energy Agency (JAEA). (author)

  12. Method and apparatus for removing radioactive gases from a nuclear reactor

    International Nuclear Information System (INIS)

    Frumerman, R.; Brown, W.W.

    1975-01-01

    A description is given of a method for removing radioactive gases from a nuclear reactor including the steps of draining coolant from a nuclear reactor to a level just below the coolant inlet and outlet nozzles to form a vapor space and then charging the space with an inert gas, circulating coolant through the reactor to assist the release of radioactive gases from the coolant into the vapor space, withdrawing the radioactive gases from the vapor space by a vacuum pump which then condenses and separates water from gases carried forward by the vacuum pump, discharging the water to a storage tank and supplying the separated gases to a gas compressor which pumps the gases to gas decay tanks. After the gases in the decay tanks lose their radioactive characteristics, the gases may be discharged to the atmosphere or returned to the reactor for further use

  13. Pressure test method for reactor pressure vessel in construction field

    International Nuclear Information System (INIS)

    Takeda, Masakado; Ushiroda, Koichi; Miyahara, Ryohei; Takano, Hiroshi; Matsuura, Tadashi; Sato, Keiya.

    1998-01-01

    Plant constitutional parts as targets of both of a primary pressure test and a secondary pressure test are disposed in communication with a reactor pressure vessel, and a pressure of the primary pressure test is applied to the targets of both tests, so that the primary pressure test and the second pressure test are conducted together. Since the number of pressure tests can be reduced to promote construction, and the number of workers can also be reduced. A pressure exceeding the maximum pressure upon use is applied to the pressure vessel after disposing the incore structures, to continuously conduct the primary pressure test and the secondary pressure test joined together and an incore flowing test while closing the upper lid of the pressure vessel as it is in the construction field. The number of opening/closing of the upper lid upon conducting every test can be reduced, and since the pressure resistance test is conducted after arranging circumference conditions for the incore flowing test, the tests can be conducted collectively also in view of time. (N.H.)

  14. Method of advancing research and development of fast breeder reactors

    International Nuclear Information System (INIS)

    1988-01-01

    In the long term plan of atomic energy development and utilization, fast breeder reactors are to be developed as the main of the future nuclear power generation in Japan, and when their development is advanced, it has been decided to positively aim at building up the plutonium utilization system using FBRs superior to the uranium utilization system using LWRs. Also it has been decided that the development of FBRs requires to exert incessant efforts for a considerable long period under the proper cooperation system of government and people, and as for its concrete development, hereafter the deliberation is to be carried out in succession by the expert subcommittee on FBR development projects of the Atomic Energy Commission. The subcommittee was founded in May, 1986, to deliberate on the long term promotion measures for FBR development, the measures for promoting the research and development, the examination of the basic specification of a demonstration FBR, the measures for promoting international cooperation, and other important matters. As the results of investigation, the situation around the development of FBRs, the fundamentals at the time of promoting the research and development, the subjects of the research and development and so on are reported. (Kako, I.)

  15. Method and apparatus for detecting failed fuels in nuclear reactor

    International Nuclear Information System (INIS)

    Tsuji, Tadashi.

    1981-01-01

    Purpose: To enable safety and automatic sampling for sample water in failed fuel detection. Constitution: A cap containing inner caps by the number of fuel assemblies inserted into each grid of a nuclear reactor is mounted to the upper end of the fuel assemblies. After the mounting, it is confirmed if the mounting is collectly made by the mounting state detection device utilizing the change in the pressure within the tube communicating to a water seal pipe. Then, air at a predetermined pressure introduced from an air supply tube opening into the cap is introduced into the cap to replace the coolants in the cap with the air. The pressure difference between the inside and the outside of the cap is detected and, if it shows a set value, it is confirmed that the cooling water level is independent for every fuel assembly. Then, sample water is sampled by the sampling tube within the guide cap provided to the upper end of the inner cap. (Furukawa, Y.)

  16. La viticulture bio, une nouvelle modernité

    OpenAIRE

    Raphaël Schirmer

    2004-01-01

    Les difficultés d'expansion de la viticulture biologique en France proviennent avant tout de la rupture conséquente qu'elle introduit en ce qui concerne notre rapport à l'espace. La place de l'agriculteur dans la société est refondée, les paysages tels que nous les entendions sont bouleversés. Il semble bien qu'une nouvelle modernité soit en train de se développer, à côté de tant d'autres il est vrai.

  17. Nolinear stability analysis of nuclear reactors : expansion methods for stability domains

    International Nuclear Information System (INIS)

    Yang, Chae Yong

    1992-02-01

    Two constructive methods for estimating asymptotic stability domains of nonlinear reactor models are developed in this study: an improved Chang and Thorp's method based on expansion of a Lyapunov function and a new method based on expansion of any positive definite function. The methods are established on the concept of stability definitions of Lyapunov itself. The first method provides a sequence of stability regions that eventually approaches the exact stability domain, but requires many expansions in order to obtain the entire stability region because the starting Lyapunov function usually corresponds to a small stability region and because most dynamic systems are stiff. The second method (new method) requires only a positive definite function and thus it is easy to come up with a starting region. From a large starting region, the entire stability region is estimated effectively after sufficient iterations. It is particularly useful for stiff systems. The methods are applied to several nonlinear reactor models known in the literature: one-temperature feedback model, two-temperature feedback model, and xenon dynamics model, and the results are compared. A reactor feedback model for a pressurized water reactor (PWR) considering fuel and moderator temperature effects is developed and the nonlinear stability regions are estimated for the various values of design parameters by using the new method. The steady-state properties of the nonlinear reactor system are analyzed via bifurcation theory. The analysis of nonlinear phenomena is carried out for the various forms of reactivity feedback coefficients that are both temperature- (or power-) independent and dependent. If one of two temperature coefficients is positive, unstable limit cycles or multiplicity of the steady-state solutions appear when the other temperature coefficient exceeds a certain critical value. As an example, even though the fuel temperature coefficient is negative, if the moderator temperature

  18. PKI, Gamma Radiation Reactor Shielding Calculation by Point-Kernel Method

    International Nuclear Information System (INIS)

    Li Chunhuai; Zhang Liwu; Zhang Yuqin; Zhang Chuanxu; Niu Xihua

    1990-01-01

    1 - Description of program or function: This code calculates radiation shielding problem of gamma-ray in geometric space. 2 - Method of solution: PKI uses a point kernel integration technique, describes radiation shielding geometric space by using geometric space configuration method and coordinate conversion, and makes use of calculation result of reactor primary shielding and flow regularity in loop system for coolant

  19. A review of the physics methods for advanced gas-cooled reactors

    International Nuclear Information System (INIS)

    Buckler, A.N.

    1982-01-01

    A review is given of steady-state reactor physics methods and associated codes used in AGR design and operation. These range from the basic lattice codes (ARGOSY, WIMS), through homogeneous-diffusion theory fuel management codes (ODYSSEUS, MOPSY) to a fully heterogeneous code (HET). The current state of development of the methods is discussed, together with illustrative examples of their application. (author)

  20. An assessment of methods of calculating sodium voiding reactivity in plutonium fuelled fast reactors

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Simmons, W.N.; Stevenson, J.M.

    1979-01-01

    After a survey of the requirements an assessment of the accuracy of calculations of the sodium void effect using UK methods and data is made on the basis of the following work. First, the analysis of small and large sodium voids in the MOZART and Zebra 13 small (300 MW(E)) fast reactor mock-ups and the BIZET large fast reactor mock-ups, all of conventional design. The analysis was carried out using the UK FGL5 fine group nuclear data library, the MURAL cell code, whole reactor diffusion theory calculations of the neutron flux and perturbation theory methods. Exact perturbation theory was used in many cases, otherwise first order perturbation theory calculations were adjusted to give results equivalent to exact perturbation theory. Second, theoretical studies of some effects, including, the effects of extrapolating to fuel operating temperatures, fuel cycle and burn-up effects, and the heterogeneity effects of large fuelled subassemblies in pin geometry. Third, theoretical studies of approximations in the calculational methods including, the importance in the whole reactor calculation of the energy group structure and the spatial mesh, the importance of reactor material boundaries in the calculation of resonance shielding effects, and the use of neutron fluxes calculated using neutron diffusion theory rather than transport theory. (U.K.)

  1. Method of injecting cooling water in emergency core cooling system (ECCS) of PWR type reactor

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Adachi, Michihiro; Tasaka, Kanji; Suzuki, Mitsuhiro.

    1979-01-01

    Purpose: To provide a cooling water injection method in an ECCS, which can perform effective cooling of the reactor core. Method: In a method of injecting cooling water in an ECCS as a countermeasure against a rupture accident of a pwr type reactor, cooling water in the first pressure storage injection system is injected into the upper plenum of the reactor pressure vessel at a set pressure of from 50 to 90 atg. and a set temperature of from 80 to 200 0 C, cooling water in the second pressure storage injection system is injected into the lower plenum of the reactor pressure vessel at a pressure of from 25 to 60 atg. which is lower than the set pressure and a temperature less than 60 0 C, and further in combination with these procedures, cooling water of less than 60 0 C is injected into a high-temperature side piping, in the high-pressure injection system of upstroke of 100 atg. by means of a pump and the low-pressure injection system of upstroke of 20 atg. also by means of a pump, thereby cooling the reactor core. (Aizawa, K.)

  2. Methods and codes for neutronic calculations of the MARIA research reactor

    International Nuclear Information System (INIS)

    Andrzejewski, K.; Kulikowska, T.; Bretscher, M.M.; Hanan, N.A.; Matos, J.E.

    1998-01-01

    The core of the MARIA high flux multipurpose research reactor is highly heterogeneous. It consists of beryllium blocks arranged in 6x8 matrix, tubular fuel assemblies, control rods and irradiation channels. The reflector is also heterogeneous and consists of graphite blocks clad with aluminium. Its structure is perturbed by the experimental beam tubes. This paper presents methods and codes used to calculate the MARIA reactor neutronics characteristics and experience gained thus far at IAE and ANL. At ANL the methods of MARIA calculations were developed in connection with RERTR program. At IAE the package of programs was developed to help its operator in optimization of fuel utilization. (author)

  3. Physical models and numerical methods of the reactor dynamic computer program RETRAN

    International Nuclear Information System (INIS)

    Kamelander, G.; Woloch, F.; Sdouz, G.; Koinig, H.

    1984-03-01

    This report describes the physical models and the numerical methods of the reactor dynamic code RETRAN simulating reactivity transients in Light-Water-Reactors. The neutron-physical part of RETRAN bases on the two-group-diffusion equations which are solved by discretization similar to the TWIGL-method. An exponential transformation is applied and the inner iterations are accelerated by a coarse-mesh-rebalancing procedure. The thermo-hydraulic model approximates the equation of state by a built-in steam-water-table and disposes of options for the calculation of heat-conduction coefficients and heat transfer coefficients. (Author) [de

  4. Modelling dynamic processes in a nuclear reactor by state change modal method

    Science.gov (United States)

    Avvakumov, A. V.; Strizhov, V. F.; Vabishchevich, P. N.; Vasilev, A. O.

    2017-12-01

    Modelling of dynamic processes in nuclear reactors is carried out, mainly, using the multigroup neutron diffusion approximation. The basic model includes a multidimensional set of coupled parabolic equations and ordinary differential equations. Dynamic processes are modelled by a successive change of the reactor states. It is considered that the transition from one state to another occurs promptly. In the modal method the approximate solution is represented as eigenfunction expansion. The numerical-analytical method is based on the use of dominant time-eigenvalues of a group diffusion model taking into account delayed neutrons.

  5. Review of the status of reactor physics predictive methods for burnable poisons in CAGRs

    International Nuclear Information System (INIS)

    Edens, D.J.; McEllin, M.

    1983-01-01

    An essential component of the design of Commercial Advanced Gas Cooled Reactor fuel necessary to achieve higher discharge irradiations is the incorporation of burnable poisons. The poisons enable the more highly enriched fuel required to reach higher irradiation to be loaded without increasing the peak channel power. The optimum choice of fuel enrichment and poison loading will be made using reactor physics predictive methods developed by Berkeley Nuclear Laboratories. These methods and the evidence available to support them from theoretical comparisons, zero energy experiments, WAGR irradiations, and measurements on operating CAGRs are described. (author)

  6. Review of the status of reactor physics predictive methods for burnable poisons in CAGRs

    International Nuclear Information System (INIS)

    Edens, D.J.; McEllin, M.

    1983-01-01

    An essential component of the design of Commercial Advanced Gas Cooled Reactor fuel necessary to achieve higher discharge irradiations is the incorporation of burnable poisons. The poisons enable the more highly enriched fuel required to reach higher irradiation to be loaded without increasing the peak channel power. The optimum choice of fuel enrichment and poison loading will be made using reactor physics predictive methods developed by Berkeley Nuclear Laboratories. The paper describes these methods and the evidence available to support them from theoretical comparisons, zero energy experiments, WAGR irradiations, and measurements on operating CAGR's. (author)

  7. Criticality analysis of thermal reactors for two energy groups applying Monte Carlo and neutron Albedo method

    International Nuclear Information System (INIS)

    Terra, Andre Miguel Barge Pontes Torres

    2005-01-01

    The Albedo method applied to criticality calculations to nuclear reactors is characterized by following the neutron currents, allowing to make detailed analyses of the physics phenomena about interactions of the neutrons with the core-reflector set, by the determination of the probabilities of reflection, absorption, and transmission. Then, allowing to make detailed appreciations of the variation of the effective neutron multiplication factor, keff. In the present work, motivated for excellent results presented in dissertations applied to thermal reactors and shieldings, was described the methodology to Albedo method for the analysis criticality of thermal reactors by using two energy groups admitting variable core coefficients to each re-entrant current. By using the Monte Carlo KENO IV code was analyzed relation between the total fraction of neutrons absorbed in the core reactor and the fraction of neutrons that never have stayed into the reflector but were absorbed into the core. As parameters of comparison and analysis of the results obtained by the Albedo method were used one dimensional deterministic code ANISN (ANIsotropic SN transport code) and Diffusion method. The keff results determined by the Albedo method, to the type of analyzed reactor, showed excellent agreement. Thus were obtained relative errors of keff values smaller than 0,78% between the Albedo method and code ANISN. In relation to the Diffusion method were obtained errors smaller than 0,35%, showing the effectiveness of the Albedo method applied to criticality analysis. The easiness of application, simplicity and clarity of the Albedo method constitute a valuable instrument to neutronic calculations applied to nonmultiplying and multiplying media. (author)

  8. Interface of nanocatalysis and microfluidic reactors for green chemistry methods

    CSIR Research Space (South Africa)

    Makgwane, PR

    2013-10-01

    Full Text Available The development of green catalytic methods for chemical synthesis and energy generation based on nanocoated catalyst microfluidic systems is a growing area of innovative research. The interface between heterogeneous catalysis and microchannel...

  9. Testing of VVER reactor pressure vessels by TOFD method

    International Nuclear Information System (INIS)

    Skala, Z.; Vit, J.

    2002-01-01

    The Time of Flight Diffraction Method (TOFD) - one of the new testing methods capable to obtain the real dimensions of flaws - is presented in the paper.The laboratory experiments on samples with artificial flaws and samples with artificially prepared cracks confirmed the high accuracy of flaw through wall extent sizing by TOFD. This accuracy was confirmed by qualification of methods and systems used by Skoda JS for the in-service inspections of WWER 440 vessel circumferential weld. The qualification also confirmed the ability of TOFD to detect reliably flaws, which can are not reliably detected by standard pulse echo testing. Based on the result of experiments and qualification, the TOFD method shall be used routinely by Skoda JS for the inspection of vessel circumferential welds root area and for sizing of flaws exceeding the acceptance level

  10. Perturbation method for experimental determination of neutron spatial distribution in the reactor cell

    International Nuclear Information System (INIS)

    Takac, S.M.

    1972-01-01

    The method is based on perturbation of the reactor cell from a few up to few tens of percent. Measurements were performed for square lattice calls of zero power reactors Anna, NORA and RB, with metal uranium and uranium oxide fuel elements, water, heavy water and graphite moderators. Character and functional dependence of perturbations were obtained from the experimental results. Zero perturbation was determined by extrapolation thus obtaining the real physical neutron flux distribution in the reactor cell. Simple diffusion theory for partial plate cell perturbation was developed for verification of the perturbation method. The results of these calculation proved that introducing the perturbation sample in the fuel results in flattening the thermal neutron density dependent on the amplitude of the applied perturbation. Extrapolation applied for perturbed distributions was found to be justified

  11. Perturbative methods for sensitivity calculation in safety problems of nuclear reactors: state-of-the-art

    International Nuclear Information System (INIS)

    Lima, Fernando R.A.; Lira, Carlos A.B.O.; Gandini, Augusto

    1995-01-01

    During the last two decades perturbative methods became an efficient tool to perform sensitivity analysis in nuclear reactor safety problems. In this paper, a comparative study taking into account perturbation formalisms (Diferential and Matricial Mthods and generalized Perturbation Theory - GPT) is considered. Then a few number of applications are described to analyze the sensitivity of some functions relavant to thermal hydraulics designs or safety analysis of nuclear reactor cores and steam generators. The behaviours of the nuclear reactor cores and steam generators are simulated, respectively, by the COBRA-IV-I and GEVAP codes. Results of sensitivity calculations have shown a good agreement when compared to those obtained directly by using the mentioned codes. So, a significative computational time safe can be obtained with perturbative methods performing sensitivity analysis in nuclear power plants. (author). 25 refs., 5 tabs

  12. Development of a fast reactor for minor actinides transmutation - (1) Overview and method development - 5092

    International Nuclear Information System (INIS)

    Takeda, T.; Usami, S.; Fujimura, K.; Takakuwa, M.

    2015-01-01

    The Ministry of Education, Culture, Sports, Science and Technology in Japan has launched a national project entitled 'technology development for the environmental burden reduction' in 2013. The present study is one of the studies adopted as the national project. The objective of the study is the efficient and safe transmutation and volume reduction of minor actinides (MA) with long-lived radioactivity and high decay heat contained in high level radioactive wastes by using sodium cooled fast reactors. We are developing MA transmutation core concepts which harmonize efficient MA transmutation with core safety. To accurately design the core concepts we have improved calculation methods for estimating the transmutation rate of individual MA nuclides, and estimating and reducing uncertainty of MA transmutation. The overview of the present project is first described. Then the method improvement is presented with numerical results for a minor-actinide transmutation fast reactor. The analysis is based on Monju reactor data. (authors)

  13. Application of synthesis methods to two-dimensional fast reactor transient study

    International Nuclear Information System (INIS)

    Izutsu, Sadayuki; Hirakawa, Naohiro

    1978-01-01

    Space time synthesis and time synthesis codes were developed and applied to the space-dependent kinetics benchmark problem of a two-dimensional fast reactor model, and it was found both methods are accurate and economical for the fast reactor kinetics study. Comparison between the space time synthesis and the time synthesis was made. Also, in space time synthesis, the influence of the number of trial functions on the error and on the computing time and the effect of degeneration of expansion coefficients are investigated. The matrix factorization method is applied to the inversion of the matrix equation derived from the synthesis equation, and it is indicated that by the use of this scheme space-dependent kinetics problem of a fast reactor can be solved efficiently by space time synthesis. (auth.)

  14. A mathematical method for boiling water reactor control rod programming

    International Nuclear Information System (INIS)

    Tokumasu, S.; Hiranuma, H.; Ozawa, M.; Yokomi, M.

    1985-01-01

    A new mathematical programming method has been developed and utilized in OPROD, an existing computer code for automatic generation of control rod programs as an alternative inner-loop routine for the method of approximate programming. The new routine is constructed of a dual feasible direction algorithm, and consists essentially of two stages of iterative optimization procedures Optimization Procedures I and II. Both follow almost the same algorithm; Optimization Procedure I searches for feasible solutions and Optimization Procedure II optimizes the objective function. Optimization theory and computer simulations have demonstrated that the new routine could find optimum solutions, even if deteriorated initial control rod patterns were given

  15. Elements of a method to scale ignition reactor Tokamak

    International Nuclear Information System (INIS)

    Cotsaftis, M.

    1984-08-01

    Due to unavoidable uncertainties from present scaling laws when projected to thermonuclear regime, a method is proposed to minimize these uncertainties in order to figure out the main parameters of ignited tokamak. The method mainly consists in searching, if any, a domain in adapted parameters space which allows Ignition, but is the least sensitive to possible change in scaling laws. In other words, Ignition domain is researched which is the intersection of all possible Ignition domains corresponding to all possible scaling laws produced by all possible transports

  16. Adaptive control method for core power control in TRIGA Mark II reactor

    Science.gov (United States)

    Sabri Minhat, Mohd; Selamat, Hazlina; Subha, Nurul Adilla Mohd

    2018-01-01

    The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  17. A nodal method of calculating power distributions for LWR-type reactors with square fuel lattices

    International Nuclear Information System (INIS)

    Hoeglund, Randolph.

    1980-06-01

    A nodal model is developed for calculating the power distribution in the core of a light water reactor with a square fuel lattice. The reactor core is divided into a number of more or less cubic nodes and a nodal coupling equation, which gives the thermal power density in one node as a function of the power densities in the neighbour nodes, is derived from the neutron diffusion equations for two energy groups. The three-dimensional power distribution can be computed iteratively using this coupling equation, for example following the point Jacobi, the Gauss-Seidel or the point successive overrelaxation scheme. The method has been included as the neutronic model in a reactor core simulation computer code BOREAS, where it is combined with a thermal-hydraulic model in order to make a simultaneous computation of the interdependent power and void distributions in a boiling water reactor possible. Also described in this report are a method for temporary one-dimensional iteration developed in order to accelerate the iterative solution of the problem and the Haling principle which is widely used in the planning of reloading operations for BWR reactors. (author)

  18. Nuclear reactor control method for maintaining an appreciably constant axial distribution of power with load variations

    International Nuclear Information System (INIS)

    Morita, Toshio.

    1975-01-01

    A nuclear reactor control method is described in which the power variations of the reactor are controlled partly by varying the concentration of the neutron absorbing element and partly by varying the positions of the control rods, in order to maintain the axial distribution of power appreciably symmetrical during the normal operation of the reactor. The control points are located in the upper and lower halves of the core. The controls are operated to maintain the output power difference between the upper and lower halves of the core, based on the total output power (axial deviation) significantly equal to a predetermined optimum figure during the entire running of the reactor, including when there are power variations. The optimum value is obtained by determining the axial deviation at full power with the xenon in balance and all the control rods withdrawn from the fuel area of the core. This optimum value is recalculated after a period appreciably equal to that of a month's operation at full power. This method applies in particular to PWR type reactors [fr

  19. Utilization of the perturbation method for determination of the buckling heterogenous reactors

    International Nuclear Information System (INIS)

    Gheorghe, R.

    1975-01-01

    Evaluation of material buckling for heterogenous nulcear reactors is a key-problem for reactor people. In this direction several methods have been elaborated: bi-group method, heterogenous method and perturbation methods. Out of them, mostly employed is the perturbation method which is also presented in this paper and is applied in some parameter calculations of a new cell type for which fuel is positioned in the marginal area and the moderator is in the centre. It is based on the technique of progressive substitution. Advantages of the method: buckling comes out clearly, high level defects due to differences between O perturbated fluxes and the unperturbated flux Osub(o) can be corrected by an iterative procedure; using a modified bi-group theory, one can clearly describe effects of other parameters

  20. A Comparative Study on the Refueling Simulation Method for a CANDU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Do, Quang Binh; Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    The Canada deuterium uranium (CANDU) reactor calculation is typically performed by the RFSP code to obtain the power distribution upon a refueling. In order to assess the equilibrium behavior of the CANDU reactor, a few methods were suggested for a selection of the refueling channel. For example, an automatic refueling channel selection method (AUTOREFUEL) and a deterministic method (GENOVA) were developed, which were based on a reactor's operation experience and the generalized perturbation theory, respectively. Both programs were designed to keep the zone controller unit (ZCU) water level within a reasonable range during a continuous refueling simulation. However, a global optimization of the refueling simulation, that includes constraints on the discharge burn-up, maximum channel power (MCP), maximum bundle power (MBP), channel power peaking factor (CPPF) and the ZCU water level, was not achieved. In this study, an evolutionary algorithm, which is indeed a hybrid method based on the genetic algorithm, the elitism strategy and the heuristic rules for a multi-cycle and multi-objective optimization of the refueling simulation has been developed for the CANDU reactor. This paper presents the optimization model of the genetic algorithm and compares the results with those obtained by other simulation methods.

  1. Non-iterative method to calculate the periodical distribution of temperature in reactors with thermal regeneration

    International Nuclear Information System (INIS)

    Sanchez de Alsina, O.L.; Scaricabarozzi, R.A.

    1982-01-01

    A matrix non-iterative method to calculate the periodical distribution in reactors with thermal regeneration is presented. In case of exothermic reaction, a source term will be included. A computer code was developed to calculate the final temperature distribution in solids and in the outlet temperatures of the gases. The results obtained from ethane oxidation calculation in air, using the Dietrich kinetic data are presented. This method is more advantageous than iterative methods. (E.G.) [pt

  2. Moderator feedback effects in two-dimensional nodal methods for pressurized water reactor analysis

    International Nuclear Information System (INIS)

    Downar, T.J.

    1987-01-01

    A method was developed for incorporating moderator feedback effects in two-dimensional nodal codes used for pressurized water reactor (PWR) neutronic analysis. Equations for the assembly average quality and density are developed in terms of the assembly power calculated in two dimensions. The method is validated with a Westinghouse PWR using the Electric Power Research Institute code SIMULATE-E. Results show a several percent improvement is achieved in the two-dimensional power distribution prediction compared to methods without moderator feedback

  3. Methods on TLD management be applicable in nuclear power plantsunder the multi-reactor operational mode

    International Nuclear Information System (INIS)

    Luo Huiyong; Wen Qinghua; Li Ruirong; Yu Enjian

    2006-01-01

    This paper discusses the methods on management of TLD dosimeters adopted in DNMC and other NPPs, analyzes and evaluates their both defects and advantages. Facing the coming of the multi-reactor operational mode applied in NPPs, a new method intelligent management mode is put forward, this optimized method not only assures the accuracy of TLD's measurement but also reduces the cost of production and improves the efficiency of management greatly. (authors)

  4. Development of numerical methods for thermohydraulic problems in reactor safety

    International Nuclear Information System (INIS)

    Chabrillac, M.; Kavenoky, A.; Le Coq, G.; L'Heriteau, J.P.; Stewart, B.; Rousseau, J.C.

    1976-01-01

    Numerical methods are being developed for the LOCA calculation; the first part is devoted to the BERTHA model and the associated characteristic treatment for the first seconds of the blowdown, the second part presents the problems encountered for accounting for velocity difference between phases. The FLIRA treatment of the reflooding is presented in the last part: this treatment allows the calculation of the quenching front velocity

  5. Development of alarm handling methods for boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yukiharu, Ohga; Hiroshi, Seki; Setsuo, Arita [Power and Industrial Systems R and D Div., Hitachi, Ltd., Hitachi, Ibaraki (Japan)

    1997-09-01

    A method was developed to select important alarms in two steps: first, selection is based on the physical relationship between the alarms, and second, selection is according to the initial event. An approach combining a neural network and knowledge processing was proposed to identify the event rapidly. A prototype system was evaluated in the Kashiwazaki/Kariwa-4 Nuclear Power Plant during the startup test. The evaluation test confirmed that about 30% of the alarms are selected from among the many activated alarms. The second method, dealing with presentation, supports operators in their selection and confirmation of the required information for plant operation. The method selects and offers plant information in response to plant status changes and operators` demands. The selection procedure is based on the knowledge and data as structured by the plant functional structure; i.e. a means-ends abstraction hierarchy model. A prototype system was evaluated using a BWR simulator. The results showed that appropriate information items are automatically selected according to plant status changes and information on generated alarms is presented to operators together with the related trend graph and system diagram. Answers are generated in reply to the operators` demands and operators can confirm the generated alarms on each plant function, such as systems and components. 8 refs, 10 figs, 2 tabs.

  6. Development of alarm handling methods for boiling water reactors

    International Nuclear Information System (INIS)

    Ohga Yukiharu; Seki Hiroshi; Arita Setsuo

    1997-01-01

    A method was developed to select important alarms in two steps: first, selection is based on the physical relationship between the alarms, and second, selection is according to the initial event. An approach combining a neural network and knowledge processing was proposed to identify the event rapidly. A prototype system was evaluated in the Kashiwazaki/Kariwa-4 Nuclear Power Plant during the startup test. The evaluation test confirmed that about 30% of the alarms are selected from among the many activated alarms. The second method, dealing with presentation, supports operators in their selection and confirmation of the required information for plant operation. The method selects and offers plant information in response to plant status changes and operators' demands. The selection procedure is based on the knowledge and data as structured by the plant functional structure; i.e. a means-ends abstraction hierarchy model. A prototype system was evaluated using a BWR simulator. The results showed that appropriate information items are automatically selected according to plant status changes and information on generated alarms is presented to operators together with the related trend graph and system diagram. Answers are generated in reply to the operators' demands and operators can confirm the generated alarms on each plant function, such as systems and components. 8 refs, 10 figs, 2 tabs

  7. Evaluation of incompressible hydrodynamic mass methods in reactor applications

    International Nuclear Information System (INIS)

    Takeuchi, K.

    1981-01-01

    The hydrodynamic (or virtual) mass approach is evaluated by comparison of structural responses computed by the hydrodynamic mass method with those computed by MULTIFLEX code for a fluid/structure interaction problem with fluid compression effects taken into account. A sample problem used in that evaluation is a simplified 1-D PWR model which is first subjected to a LOCA type transient. The time history of structural displacement computed with the hydrodynamic mass approach is compared with MULTIFLEX results. The frequencies of structural oscillation of these two computations agree. The amplitudes disagree by more than 50%, which is attributed to the effect of fluid compressibility. For the seismic study, sinusoidal forces are applied to the floor at the vessel support. The system responses are expressed by the response functions or the maximum values of the barrel/vessel relative displacements as the applied frequency is varied. The response functions are computed by the hydrodynamic mass method and by MULTIFLEX for evaluation of the virtual mass method. For the pump pulsation study, sinusoidal pressure oscillations are applied at the pump outlet and the response functions are computed as above. 12 refs

  8. Method for removing cesium from aqueous liquid, method for purifying the reactor coolant in boiling water and pressurized water reactors and a mixed ion exchanged resin bed, useful in said purification

    International Nuclear Information System (INIS)

    Otte, J.N.A.; Liebmann, D.

    1989-01-01

    The invention relates to a method for removing cesium from an aqueous liquid, and to a resin bed containing a mixture of an anion exchange resin and cation exchange resin useful in said purification. In a preferred embodiment, the present invention is a method for purifying the reactor coolant of a presurized water or boiling water reactor. Said method, which is particularly advantageously employed in purifying the reactor coolant in the primary circuit of a pressurized reactor, comprises contacting at least a portion of the reactor coolant with a strong base anion exchange resin and the strong acid cation exchange resin derived from a highly cross-linked, macroporous copolymer of a monovinylidene aromatic and a cross-linking monomer copolymerizable therewith. Although the reactor coolant can sequentially be contacted with one resin type and thereafter with the second resin type, the contact is preferably conducted using a resin bed comprising a mixture of the cation and anion exchange resins. 1 fig., refs

  9. Method for determining the outlet temperature of fuel assemblies unsupplied with thermometer in WWER-440 reactors

    International Nuclear Information System (INIS)

    Miko, S.; Kalya, Z.; Hamvas, I.

    1987-09-01

    The paper outlines a method for the evaluation of the outlet temperatures of fuel assemblies unsupplied with thermometer in WWER-440 reactors. The process is based on interpolation of directly measured assembly temperatures. A quantitative comparison of the errors of described algorithm to those of standard plant-computer interpolation rutine is also presented. (author)

  10. A New Application of Support Vector Machine Method: Condition Monitoring and Analysis of Reactor Coolant Pump

    International Nuclear Information System (INIS)

    Meng Qinghu; Meng Qingfeng; Feng Wuwei

    2012-01-01

    Fukushima nuclear power plant accident caused huge losses and pollution and it showed that the reactor coolant pump is very important in a nuclear power plant. Therefore, to keep the safety and reliability, the condition of the coolant pump needs to be online condition monitored and fault analyzed. In this paper, condition monitoring and analysis based on support vector machine (SVM) is proposed. This method is just to aim at the small sample studies such as reactor coolant pump. Both experiment data and field data are analyzed. In order to eliminate the noise and useless frequency, these data are disposed through a multi-band FIR filter. After that, a fault feature selection method based on principal component analysis is proposed. The related variable quantity is changed into unrelated variable quantity, and the dimension is descended. Then the SVM method is used to separate different fault characteristics. Firstly, this method is used as a two-kind classifier to separate each two different running conditions. Then the SVM is used as a multiple classifier to separate all of the different condition types. The SVM could separate these conditions successfully. After that, software based on SVM was designed for reactor coolant pump condition analysis. This software is installed on the reactor plant control system of Qinshan nuclear power plant in China. It could monitor the online data and find the pump mechanical fault automatically.

  11. Benchmarking lattice physics data and methods for boiling water reactor analysis

    International Nuclear Information System (INIS)

    Cacciapouti, R.J.; Edenius, M.; Harris, D.R.; Hebert, M.J.; Kapitz, D.M.; Pilat, E.E.; VerPlanck, D.M.

    1983-01-01

    The objective of the work reported was to verify the adequacy of lattice physics modeling for the analysis of the Vermont Yankee BWR using a multigroup, two-dimensional transport theory code. The BWR lattice physics methods have been benchmarked against reactor physics experiments, higher order calculations, and actual operating data

  12. Adaptation of eddy current methods to the multiple problems of reactor testing

    International Nuclear Information System (INIS)

    Stumm, W.

    1975-01-01

    In reactor testing, the eddy current method is mainly used for the testing of surface regions inside the pressure vessel, on welds and joints, and for the testing of thin-walled pipes, e.g. the heat exchanger pipes. (RW/AK) [de

  13. New method for the determination of precipitation kinetics using a laminar jet reactor

    NARCIS (Netherlands)

    Al Tarazi, M.Y.M.; Heesink, Albertus B.M.; Versteeg, Geert

    2005-01-01

    In this paper a new experimental method for determining the kinetics of fast precipitation reactions is introduced. Use is made of a laminar jet reactor, which is also frequently applied to determine the kinetics of homogeneous gas–liquid reactions. The liquid containing one or more of the

  14. New method for the determination of precipitation kinetics using a laminar jet reactor

    NARCIS (Netherlands)

    Al-Tarazi, Mousa; Heesink, A. Bert M.; Versteeg, Geert F.

    2005-01-01

    In this paper a new experimental method for determining the kinetics of fast precipitation reactions is introduced. Use is made of a laminar jet reactor, which is also frequently applied to determine the kinetics of homogeneous gas-liquid reactions. The liquid containing one or more of the

  15. Recent Development of Radioanalytical Methods at the IBR-2 Pulsed Fast Reactor

    International Nuclear Information System (INIS)

    Nazarov, V.M.; Peresedov, V.F.

    1994-01-01

    Experience in the application of radioanalytical methods, including NAA, at the IBR-2 pulsed fast reactor is reviewed. Details of the instruments dedicated to neutron activation analysis and radiography studies are reported. Applications of resonance neutrons to environmental monitoring and to the investigation of high-purity materials, are examplified. 15 refs. 9 figs., 9 tabs

  16. A method of inferring k-infinity from reaction rate measurements in thermal reactor systems

    International Nuclear Information System (INIS)

    Newmarch, D.A.

    1967-05-01

    A scheme is described for inferring a value of k-infinity from reaction rate measurements. The method is devised with the METHUSELAH group structure in mind and was developed for the analysis of S.G.H.W. reactor experiments; the underlying principles, however, are general. (author)

  17. A new nodal kinetics method for analyzing fast control rod motions in nuclear reactor cores

    International Nuclear Information System (INIS)

    Kaya, S.; Yavuz, H.

    2001-01-01

    A new nodal kinetics approach is developed for analyzing large reactivity accidents in nuclear reactor cores. This method shows promising that it has capability of inspecting promt criticality transients and it gives comparable results with respect to those of other techniques. (orig.)

  18. Variational methods in the kinetic modeling of nuclear reactors: Recent advances

    International Nuclear Information System (INIS)

    Dulla, S.; Picca, P.; Ravetto, P.

    2009-01-01

    The variational approach can be very useful in the study of approximate methods, giving a sound mathematical background to numerical algorithms and computational techniques. The variational approach has been applied to nuclear reactor kinetic equations, to obtain a formulation of standard methods such as point kinetics and quasi-statics. more recently, the multipoint method has also been proposed for the efficient simulation of space-energy transients in nuclear reactors and in source-driven subcritical systems. The method is now founded on a variational basis that allows a consistent definition of integral parameters. The mathematical structure of multipoint and modal methods is also investigated, evidencing merits and shortcomings of both techniques. Some numerical results for simple systems are presented and the errors with respect to reference calculations are reported and discussed. (authors)

  19. Improved Monte Carlo-perturbation method for estimation of control rod worths in a research reactor

    International Nuclear Information System (INIS)

    Kalcheva, Silva; Koonen, Edgar

    2009-01-01

    A hybrid method dedicated to improve the experimental technique for estimation of control rod worths in a research reactor is presented. The method uses a combination of Monte Carlo technique and perturbation theory. Perturbation method is used to obtain the equation for the relative efficiency of control rod insertion. A series of coefficients, describing the axial absorption profile are used to correct the equation for a composite rod, having a complicated burn-up irradiation history. These coefficients have to be determined - by experiment or by using some theoretical/numerical method. In the present paper they are derived from the macroscopic absorption cross-sections, obtained from detailed Monte Carlo calculations by MCNPX 2.6.F of the axial burn-up profile during control rod life. The method is validated on measurements of control rod worths at the BR2 reactor. Comparison with direct MCNPX evaluations of control rod worths is also presented

  20. Application study of EPICS-based redundant method for reactor control system

    International Nuclear Information System (INIS)

    Zhang Ning; Han Lifeng; Chen Yongzhong; Guo Bing; Yin Congcong

    2013-01-01

    In the reactor control system prototype development of TMSR (Thorium Molten Salt Reactor system, CAS) project, EPICS (Experimental Physics and Industrial Control System) is adopted as Instrument and Control software platform. For the aim of IOC (Input/Output Controller) redundancy and data synchronization of the system, the EPICS-based RMT (Redundancy Monitor Task ) software package and its data-synchronization component CCE (Continuous Control Executive) were introduced. By the development of related IOC driver, redundant switch-over control of server IOC was implemented. The method of redundancy implementation using RMT in server and redundancy performance test for power control system are discussed in this paper. (authors)

  1. Reactor Network Synthesis Using Coupled Genetic Algorithm with the Quasi-linear Programming Method

    OpenAIRE

    Soltani, H.; Shafiei, S.; Edraki, J.

    2016-01-01

    This research is an attempt to develop a new procedure for the synthesis of reactor networks (RNs) using a genetic algorithm (GA) coupled with the quasi-linear programming (LP) method. The GA is used to produce structural configuration, whereas continuous variables are handled using a quasi-LP formulation for finding the best objective function. Quasi-LP consists of LP together with a search loop to find the best reactor conversions (xi), as well as split and recycle ratios (yi). Quasi-LP rep...

  2. Methods and technologies for cost reduction in the design of water cooled reactor power plants

    International Nuclear Information System (INIS)

    1991-05-01

    The Specialists Meeting was organized in the framework of the IAEA International Working Group on Advanced Technologies for Water-Cooled Reactors. Its purpose was to provide an international forum for review and discussion on recent results in research and development on different methods and technologies of current and advanced water-cooled reactor power plants, which can lead to reduced investment and operation, maintenance and fuel-cycle costs of the plants. 27 specialists representing 10 countries and the IAEA took part in the meeting. 10 papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  3. A method for statistical steady state thermal analysis of reactor cores

    International Nuclear Information System (INIS)

    Whetton, P.A.

    1981-01-01

    In a previous publication the author presented a method for undertaking statistical steady state thermal analyses of reactor cores. The present paper extends the technique to an assessment of confidence limits for the resulting probability functions which define the probability that a given thermal response value will be exceeded in a reactor core. Establishing such confidence limits is considered an integral part of any statistical thermal analysis and essential if such analysis are to be considered in any regulatory process. In certain applications the use of a best estimate probability function may be justifiable but it is recognised that a demonstrably conservative probability function is required for any regulatory considerations. (orig.)

  4. Method of monitoring fuel-rod vibrations in a nuclear fuel reactor

    International Nuclear Information System (INIS)

    Kawamura, Makoto; Takai, Katsuaki.

    1985-01-01

    Purpose: To monitor the vibration modes of fuel rods continuously and on real time during operation of a PWR type nuclear reactor. Method: Vibrations of fuel rods during reactor operation are mainly caused by the lateral flow of coolants flowing through the gaps at the joints of reactor core buffle plates into a reactor core and fretting damages may possibly be caused to the fuel rod support portions due to the vibrations. In view of the above, self-powered detectors are disposed at a plurality of axial positions for the respective peripheral fuel assemblies in adjacent with the buffle plates and the detection signals from neutron detectors, that is, the fluctuations in neutrons are subjected to a frequency analysis during the operation period. The neutron detectors are disposed at the periphery of the reactor core, because the fuel assemblies disposed at the peripheral portion directly undergo the lateral flow from the joints of the buffle plates and vibrates most violently. Thus, the vibration situations can be monitored continuously, in a three demensional manner and on real time. (Moriyama, K.)

  5. Apparatus and method for controlling a nuclear reactor

    International Nuclear Information System (INIS)

    Musick, C.R.

    1978-01-01

    A control system and method for a nuclear steam supply system for calculating the appropriate operating limits of the system based on the system's design limits are described. The control system monitors the appropriate parameters of the nuclear steam supply system, modifies one of the parameters, and calculates the desired operating limit on the basis of the unmodified and modified parameters. The parameter selected to be modified is adjusted in such a way as to account for the possible occurrence of all anticipated operational occurrences. The degree of adjustment encompasses the factors of the possibility of the occurrence of a worst case accident; axial power distribution; and the delay times of the protection system which include sensing, calculating, and activation time delays. The operating limit thus generated includes a margin which allows sufficient time for the termination of operation or for control of the system such that the design limits are not violated

  6. Method of fabricating a poision tube for reactor control rods

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Yasuhiko; Yoshida, Toshimi; Masaoka, Isao; Naruse, Akisuke

    1983-04-28

    A method to unify the neutron absorbing performance, enhance the workability in the insertion of neutron absorber tube and further decrease the stresses acting on the neutron absorber coating tube is described. The neutron absorber coated rod comprising neutron absorbing substance and a metal pipe is fabricated by compressing a metal pipe filled with the neutron absorber. Specifically, neutron absorbing substance such as boron carbide powder or the like is filled in a metal pipe such as made of stainless steel tube by way of vibration packing or the like. Then, after heating the metal pipe, it is applied with compression working such as swaging into a fine tube to increase the packing density of the absorbing substance filled in the pipe to greater than 60% of the theoretical density and completely contacted closely to the inner wall of the pipe. The neutron absorber coated rod thus fabricated can be inserted to an external coating tube with ease at a predetermined gap.

  7. Applied methods for mitigation of damage by stress corrosion in BWR type reactors

    International Nuclear Information System (INIS)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C.

    1998-01-01

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  8. Nuclear power plant monitoring method by neural network and its application to actual nuclear reactor

    International Nuclear Information System (INIS)

    Nabeshima, Kunihiko; Suzuki, Katsuo; Shinohara, Yoshikuni; Tuerkcan, E.

    1995-11-01

    In this paper, the anomaly detection method for nuclear power plant monitoring and its program are described by using a neural network approach, which is based on the deviation between measured signals and output signals of neural network model. The neural network used in this study has three layered auto-associative network with 12 input/output, and backpropagation algorithm is adopted for learning. Furthermore, to obtain better dynamical model of the reactor plant, a new learning technique was developed in which the learning process of the present neural network is divided into initial and adaptive learning modes. The test results at the actual nuclear reactor shows that the neural network plant monitoring system is successfull in detecting in real-time the symptom of small anomaly over a wide power range including reactor start-up, shut-down and stationary operation. (author)

  9. A new integral method for solving the point reactor neutron kinetics equations

    International Nuclear Information System (INIS)

    Li Haofeng; Chen Wenzhen; Luo Lei; Zhu Qian

    2009-01-01

    A numerical integral method that efficiently provides the solution of the point kinetics equations by using the better basis function (BBF) for the approximation of the neutron density in one time step integrations is described and investigated. The approach is based on an exact analytic integration of the neutron density equation, where the stiffness of the equations is overcome by the fully implicit formulation. The procedure is tested by using a variety of reactivity functions, including step reactivity insertion, ramp input and oscillatory reactivity changes. The solution of the better basis function method is compared to other analytical and numerical solutions of the point reactor kinetics equations. The results show that selecting a better basis function can improve the efficiency and accuracy of this integral method. The better basis function method can be used in real time forecasting for power reactors in order to prevent reactivity accidents.

  10. Surveillance of a nuclear reactor core by use of a pattern recognition method

    International Nuclear Information System (INIS)

    Invernizzi, Michel.

    1982-07-01

    A pattern recognition system is described for the surveillance of a PWR reactor. This report contains four chapters. The first one succinctly deals with statistical pattern recognition principles. In the second chapter we show how a surveillance problem may be treated by pattern recognition and we present methods for surveillances (detection of abnormalities), controls (kind of running recognition) and diagnotics (kind of abnormality recognition). The third chapter shows a surveillance method of a nuclear plant. The signals used are the neutron noise observations made by the ionization chambers inserted in the reactor. Abnormality is defined in opposition with the training set witch is supposed to be an exhaustive summary of normality. In the fourth chapter we propose a scheme for an adaptative recognition and a method based on classes modelisations by hyper-spheres. This method has been tested on simulated training sets in two-dimensional feature spaces. It gives solutions to problems of non-linear separability [fr

  11. The improved quasi-static method vs the direct method: a case study for CANDU reactor transients

    International Nuclear Information System (INIS)

    Kaveh, S.; Koclas, J.; Roy, R.

    1999-01-01

    Among the large number of methods for the transient analysis of nuclear reactors, the improved quasi-static procedure is one of the most widely used. In recent years, substantial increase in both computer speed and memory has motivated a rethinking of the limitations of this method. The overall goal of the present work is a systematic comparison between the improved quasi-static and the direct method (mesh-centered finite difference) for realistic CANDU transient simulations. The emphasis is on the accuracy of the solutions as opposed to the computational speed. Using the computer code NDF, a typical realistic transient of CANDU reactor has been analyzed. In this transient the response of the reactor regulating system to a substantial local perturbation (sudden extraction of the five adjuster rods) has been simulated. It is shown that when updating the detector responses is of major importance, it is better to use a well-optimized direct method rather than the improved quasi-static method. (author)

  12. LHC 2008 lectures "Une nouvelle vision du monde"

    CERN Multimedia

    2008-01-01

    The history of the science of the Universe and the science of matter have been marked by a small number of "revolutions" that have turned our understanding of the infinitesimally large and the infinitesimally small on its head. New ways of looking at the world have come about sometimes through conceptual advances and sometimes through innovations in scientific instrumentation. How do things stand at the beginning of the 21st century? Will today’s large-scale machine projects like the LHC and gravitational wave detectors pave the way for a new scientific revolution? Thursday, 15 May 2008 at 8.00 p.m. Une nouvelle vision du monde Jean-Pierre Luminet, Research Director at the CNRS The Globe, first floor No specialist knowledge required. Entrance free. To reserve call + 41 (0) 22 767 76 76 http://www.cern.ch/globe

  13. An analog computer method for solving flux distribution problems in multi region nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Radanovic, L; Bingulac, S; Lazarevic, B; Matausek, M [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1963-04-15

    The paper describes a method developed for determining criticality conditions and plotting flux distribution curves in multi region nuclear reactors on a standard analog computer. The method, which is based on the one-dimensional two group treatment, avoids iterative procedures normally used for boundary value problems and is practically insensitive to errors in initial conditions. The amount of analog equipment required is reduced to a minimum and is independent of the number of core regions and reflectors. (author)

  14. Analysis of Moderator System Failure Accidents by Using New Method for Wolsong-1 CANDU 6 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Dongsik; Kim, Jonghyun; Cho, Cheonhwey [Atomic Creative Technology Co., Ltd., Daejeon (Korea, Republic of); Kim, Sungmin [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2013-05-15

    To reconfirm the safety of moderator system failure accidents, the safety analysis by using the reactor physics code, RFSP-IST, coupled with the thermal hydraulics code, CATHENA is performed additionally. In the present paper, the newly developed analysis method is briefly described and the results obtained from the moderator system failure accident simulations for Wolsong-1 CANDU 6 reactor by using the new method are summarized. The safety analysis of the moderator system failure accidents for Wolsong-1 CANDU 6 reactor was carried out by using the new code system, i. e., CATHENA and RFSP-IST, instead of the non-IST old codes, namely, SMOKIN G-2 and MODSTBOIL. The analysis results by using the new method revealed as same with the results by using the old method that the fuel integrity is warranted because the localized power peak remained well below the limits and, most importantly, the reactor operation enters into the self-shutdown mode due to the substantial loss of moderator D{sub 2}O inventory from the moderator system. In the analysis results obtained by using the old method, it was predicted that the ROP trip conditions occurred for the transient cases which are also studied in the present paper. But, in the new method, it was found that the ROP trip conditions did not occur. Consequently, in the safety analysis performed additionally by using the new method, the safety of moderator system failure accidents was reassured. In the future, the new analysis method by using the IST codes instead of the non-IST old codes for the moderator system failure accidents is strongly recommended.

  15. An improvement of source-jerk method for measuring high anti reactivities of reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Bosevski, T; Spiric, V [Institut za nuklearne nauke ' Boris Kidric' , Vinca, Belgrade (Yugoslavia)

    1966-07-01

    In this paper we modified the well known source jerk method (1) thus obtaining a method for experimental determination of negative reactivities of reactor systems by which, based on the basic idea of the source jerk method, a new experimental procedure and an exact analysis were developed. The analysis and numerical preparation allows direct application of the method to heavy water and graphite systems. Compared with the source jerk method the experimental procedure and the interpretation of results is faster, simpler and more exact (author)

  16. An improvement of source-jerk method for measuring high antireactivities of reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Bosevski, T; Spiric, V [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-10-15

    In this paper we modified the well known source jerk method /1/ thus obtaining a method for experimental determination of negative reactivities of reactor systems by which, based on the basic idea of the source jerk method, a new experimental procedure and an analysis were developed. The analysis and numerical preparation allows direct application of the method to heavy water and graphite systems. Compared with the source jerk method the experimental procedure and the interpretation of results is faster, simpler and more exact (author)

  17. NOUVELLES PERSPECTIVES EN ONCOLOGIE MEDICALE MEDECINE MOLECULAIRE ET SES PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Jean-Yves BLAY

    2017-05-01

    Full Text Available La médecine  moléculaire du cancer  s’appuie sur l’identification d’anomalies génomique de  l’ADN des cellules tumorales, permettant de guider le traitement des patients, en choisissant des inhibiteurs agissant sur les protéines mutées codées par les gènes mutés. Cependant, on assiste depuis 10 ans à l’émergence très rapide d’un nouveau corpus de connaissance décrivant les anomalies génomiques des cellules cancéreuses au sein des programmes internationaux  comme ICGC ou TCGA, permettant de déboucher sur de nouvelles classifications nosologiques mais démontrant aussi l’extrème  complexité et variabilité clonale des cellules cancéreuses  chez le patient humain. Il s’agit désormais d’utiliser ces données  nouvelles de manière  efficace. Ceci requiert la constitution de plateformes de diagnostic  explorant progressivement avec  une plus grande profondeur  les anomalies moléculaire de chaque patient individuel, et l’organisation de réunions de concertation pluridisciplinaires moléculaire permettant d’intégrer ces données au contexte  clinique et global du patient, et requérant la  contribution  croissante des bio-informaticiens. Ce  court article  fait le point  sur l’évolution de cette médecine moléculaire.

  18. Testing the applicability of the k 0-NAA method at the MINT's TRIGA MARK II reactor

    International Nuclear Information System (INIS)

    Siong, Wee Boon; Dung, Ho Manh; Wood, Ab. Khalik; Salim, Nazaratul Ashifa Abd.; Elias, Md. Suhaimi

    2006-01-01

    The Analytical Chemistry Laboratory at MINT is using the NAA technique since 1980s and is the only laboratory in Malaysia equipped with a research reactor, namely the TRIGA MARK II. Throughout the years the development of NAA technique has been very encouraging and was made applicable to a wide range of samples. At present, the k 0 method has become the preferred standardization method of NAA (k 0 -NAA) due to its multi-elemental analysis capability without using standards. Additionally, the k 0 method describes NAA in physically and mathematically understandable definitions and is very suitable for computer evaluation. Eventually, the k 0 -NAA method has been adopted by MINT in 2003, in collaboration with the Nuclear Research Institute (NRI), Vietnam. The reactor neutron parameters (α and f) for the pneumatic transfer system and for the rotary rack at various locations, as well as the detector efficiencies were determined. After calibration of the reactor and the detectors, the implemented k 0 method was validated by analyzing some certified reference materials (including IAEA Soil 7, NIST 1633a, NIST 1632c, NIST 1646a and IAEA 140/TM). The analysis results of the CRMs showed an average u score well below the threshold value of 2 with a precision of better than ±10% for most of the elemental concentrations obtained, validating herewith the introduction of the k 0 -NAA method at the MINT

  19. Testing the applicability of the k0-NAA method at the MINT's TRIGA MARK II reactor

    Science.gov (United States)

    Siong, Wee Boon; Dung, Ho Manh; Wood, Ab. Khalik; Salim, Nazaratul Ashifa Abd.; Elias, Md. Suhaimi

    2006-08-01

    The Analytical Chemistry Laboratory at MINT is using the NAA technique since 1980s and is the only laboratory in Malaysia equipped with a research reactor, namely the TRIGA MARK II. Throughout the years the development of NAA technique has been very encouraging and was made applicable to a wide range of samples. At present, the k0 method has become the preferred standardization method of NAA ( k0-NAA) due to its multi-elemental analysis capability without using standards. Additionally, the k0 method describes NAA in physically and mathematically understandable definitions and is very suitable for computer evaluation. Eventually, the k0-NAA method has been adopted by MINT in 2003, in collaboration with the Nuclear Research Institute (NRI), Vietnam. The reactor neutron parameters ( α and f) for the pneumatic transfer system and for the rotary rack at various locations, as well as the detector efficiencies were determined. After calibration of the reactor and the detectors, the implemented k0 method was validated by analyzing some certified reference materials (including IAEA Soil 7, NIST 1633a, NIST 1632c, NIST 1646a and IAEA 140/TM). The analysis results of the CRMs showed an average u score well below the threshold value of 2 with a precision of better than ±10% for most of the elemental concentrations obtained, validating herewith the introduction of the k0-NAA method at the MINT.

  20. Oxygen transport membrane reactor based method and system for generating electric power

    Science.gov (United States)

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  1. Detection of SBLOCA in the reactor of PHT system of Indian PHWR using GLR method

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Dipankar [Indian Institute of Technology, Kanpur (India). Nuclear Engineering and Technology Programme

    1990-01-01

    Detection of Small Break Loss of Coolant Accident (SBLOCA) in nuclear power plants is important from the point of view of safety. Generalised Likelihood Ratio (GLR) test is one of the ways to detect faults like leak, controller bias etc. It can differentiate and diagnose different types of faults. A simplified state-space variable model of a PHWR reactor is developed and the utility of GLR method is investigated to detect leaks in the coolant channel in the reactor portion of the primary heat transport (PHT) system. A simple digital control system to control the outlet pressure of the reactor by manipulating the flow rate through the reactor is also developed. The results indicate that a leak of magnitude as low as 0.25% of the total flow rate through one coolant channel can be detected efficiently and promptly by this method. For instance a leak was detected within 3 minutes properly for 97 times out of 100 leaks simulated. (M.G.B.). 20 refs., 1 appendix.

  2. Use of the Streaming Matrix Hybrid Method for discrete-ordinates fusion reactor calculations

    International Nuclear Information System (INIS)

    Battat, M.E.; Davidson, J.W.; Dudziak, D.J.; Thayer, G.R.

    1984-01-01

    The use of the discrete-ordinates method for solving two-dimensional, neutral-particle transport in fusion reactor blankets and shields is often limited by inherent inaccuracies due to the ray-effect. This effect presents a particular problem in the case of neutron streaming in the large internal void regions of a fusion reactor. A deterministic streaming technique called the Streaming Matrix Hybrid Method (SMHM) has been incorporated in the two-dimensional discrete-ordinates code TRIDENT-CTR. Calculations have been performed for an actual inertial-confinement fusion (ICF) reactor design using TRIDENT-CTR both with and without the SMHM. Comparisons of the calculated fluxes indicate that substantial mitigation of the ray effect can be achieved with the SMHM. Calculations were performed for the Los Alamos FIRST STEP hybrid ICF reactor designed for tritium production. Conventional 238 U fuel rod assemblies surround the spherical steel target chamber to form an annular cylindrical blanket. An axial fuel region is included to complete the blanket

  3. New Monte Carlo-based method to evaluate fission fraction uncertainties for the reactor antineutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ma, X.B., E-mail: maxb@ncepu.edu.cn; Qiu, R.M.; Chen, Y.X.

    2017-02-15

    Uncertainties regarding fission fractions are essential in understanding antineutrino flux predictions in reactor antineutrino experiments. A new Monte Carlo-based method to evaluate the covariance coefficients between isotopes is proposed. The covariance coefficients are found to vary with reactor burnup and may change from positive to negative because of balance effects in fissioning. For example, between {sup 235}U and {sup 239}Pu, the covariance coefficient changes from 0.15 to −0.13. Using the equation relating fission fraction and atomic density, consistent uncertainties in the fission fraction and covariance matrix were obtained. The antineutrino flux uncertainty is 0.55%, which does not vary with reactor burnup. The new value is about 8.3% smaller. - Highlights: • The covariance coefficients between isotopes vs reactor burnup may change its sign because of two opposite effects. • The relation between fission fraction uncertainty and atomic density are first studied. • A new MC-based method of evaluating the covariance coefficients between isotopes was proposed.

  4. An assessment of methods of calculating sodium-voiding reactivity in plutonium-fuelled fast reactors

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Simmons, W.N.; Stevenson, J.M.

    1980-01-01

    After a survey of the requirements an assessment of the accuracy of calculations of the sodium-void effect using UK methods and data is made on the basis of the following work: (a) The analysis of small and large sodium voids in the MOZART and Zebra 13 small (300 MW(e)) fast reactor mock-ups and the BIZET large fast reactor mock-ups, all of conventional design. The analysis was carried out using the UK FGL5 fine group nuclear data library, the MURAL cell code, whole reactor diffusion theory calculations of the neutron flux and perturbation theory methods. Exact perturbation theory was used in many cases, otherwise first-order perturbation theory calculations were adjusted to give results equivalent to exact perturbation theory. (b) Theoretical studies of some effects, including the following: (i) The effects of extrapolating to fuel operating temperature; (ii) Fuel-cycle and burnup effects, including the gradual replacement through a fuel cycle of control-rod absorption by fission product absorption, the loss of fissile material and the change in fuel nuclide relative composition; (iii) The heterogeneity effects of large fuelled subassemblies in pin geometry. (c) Theoretical studies of approximations in the calculational methods, including the following: (i) The importance in the whole reactor calculation of the energy group structure and the spatial mesh, including comparisons of calculations in two (RZ) and three-dimensional geometry; (ii) The importance of reactor material boundaries in the calculation of resonance shielding effects; (iii) The use of neutron fluxes calculated using neutron diffusion theory rather than transport theory. (author)

  5. Application of Campbell's MSV method in monitoring of reactor's fission power

    International Nuclear Information System (INIS)

    Stankovic, S.J.; Vukcevic, M.; Loncar, B.; Vasic, A.; Osmokrovic, P.

    2003-01-01

    This paper presents some possibilities of Campbell's MSV (Mean Square Value) method in monitoring the reactor's fission power. Investigation of gamma discrimination compared to neutron component of signal along with change of variance and mean value the detector output signal for a specified range of reactor's fission power (10mW-22W) was carried out. The uncompensated ionization chamber for mixed n- gamma fields was used as detector element. Experimental measurements were performed using digitized MSV method, and obtained results were compared to those obtained by classical measuring chain. The final conclusion is that the order of discrimination in MSV signal processing is about fifty times larger than for classical measuring method (author)

  6. Using activation method to measure neutron spectrum in an irradiation chamber of a research reactor

    International Nuclear Information System (INIS)

    Zhou Xuemei; Liu Guimin; Wang Xiaohe; Li Da; Meng Lingjie

    2014-01-01

    Neutron spectrum should be measured before test samples are irradiated. Neutron spectrum in an irradiation chamber of a research reactor was measured by using activation method when the reactor is in normal operation under 2 MW. Sixteen kinds of non-fission foils (19 reaction channels) were selected, of which 10 were sensitive to thermal and intermediate energy regions, while the others were of different threshold energy and sensitive to fast energy regions. By measuring the foil radioactivity, the neutron spectrum was unfolded with the iterative methods SAND-II and MSIT. Finally, shielding corrections of group cross-section and main factors affecting the calculation accuracy were studied and the uncertainty of solution was analyzed using the Monte Carlo method in the process of SAND-II. (authors)

  7. Measurement of the epithermal neutron flux of the Argonauta reactor by the Sandwich method

    International Nuclear Information System (INIS)

    Nascimento, H.M.

    1973-01-01

    A common method of obtaining information about the neutron spectrum in the energy range of 1 eV to a few keV is by using resonance sandwich detectors. A sandwich detector is usually made up of three foils placed one on top of the other, each having the same thickness and being made of the same material which has a pronounced absorption resonance. To make an adequate evaluation, the sandwich method was compared with one using an isolated detector. The results obtained from approximate theoretical calculations were checked experimentally, using In, Au and Mn foils, in an isotropic 1/E flux in the Argonaut Reactor at I.E.N. As practical application of this method, the deviation from a 1/E spectrum of the epithermal neutron flux in the core and external graphite reflector of the Argonaut Reactor has been measured with the sandwich foils previously calibrated in a 1/E spectrum. (author)

  8. Exxon nuclear neutronics design methods for pressurized water reactors. Supplement 2

    International Nuclear Information System (INIS)

    Skogen, F.B.; Stout, R.B.

    1977-01-01

    Modifications to the Exxon Nuclear PWR neutronic design calculational methods are presented as well as the results obtained when these improved methods are compared to reactor measurements. The basic PWR design tools remain unchanged; i.e., the XPOSE code is used for generating the basic nuclear parameters, the PDQ-7 code is used for calculating reactivity and x-y power distributions, and the XTG code is used for three-dimensional analysis. The recent start-up experiences at D. C. Cook Unit 1 and H. B. Robinson Unit 2 have provided a significant increase in the data base supporting the current ENC PWR neutronic methods. The verification comparisons contained in the supplement include reactor measurements from D. C. Cook Unit 1, Cycle 2; H. B. Robinson Unit 2, Cycles 4 and 5; Palisades Cycle 2, and R. E. Ginna, Cycle 7

  9. Improved Monte Carlo - Perturbation Method For Estimation Of Control Rod Worths In A Research Reactor

    International Nuclear Information System (INIS)

    Kalcheva, Silva; Koonen, Edgar

    2008-01-01

    A hybrid method dedicated to improve the experimental technique for estimation of control rod worths in a research reactor is presented. The method uses a combination of Monte Carlo technique and perturbation theory. The perturbation theory is used to obtain the relation between the relative rod efficiency and the buckling of the reactor with partially inserted rod. A series of coefficients, describing the axial absorption profile are used to correct the buckling for an arbitrary composite rod, having complicated burn up irradiation history. These coefficients have to be determined - by experiment or by using some theoretical/numerical method. In the present paper they are derived from the macroscopic absorption cross sections, obtained from detailed Monte Carlo calculations by MCNPX 2.6.F of the axial burn up profile during control rod life. The method is validated on measurements of control rod worths at the BR2 reactor. Comparison with direct Monte Carlo evaluations of control rod worths is also presented. The uncertainties, arising from the used approximations in the presented hybrid method are discussed. (authors)

  10. Comparative Studies of Core Thermal Hydraulic Design Methods for the Prototype Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Lim, Jae Yong; Kim, Sang Ji

    2013-01-01

    In this work, various core thermal-hydraulic design methods, which have arisen during the development of a prototype SFR, are compared to establish a proper design procedure. Comparative studies have been performed to determine the appropriate design method for the prototype SFR. The results show that the minimization method show a lower cladding midwall temperature than the fixed outlet temperature methods and superior thermal safety margin with the same coolant flow. The Korea Atomic energy Research Institute (KAERI) has performed a conceptual SFR design with the final goal of constructing a prototype plant by 2028. The main objective of the SFR prototype plant is to verify the TRU metal fuel performance, reactor operation, and transmutation ability of high-level wastes. The core thermal-hydraulic design is used to ensure the safe fuel performance during the whole plant operation. Compared to the critical heat flux in typical light water reactors, nuclear fuel damages in SFR subassemblies are arisen from a creep induced failure. The creep limit is evaluated based on both the maximum cladding temperature and the uncertainties of the design parameters. Therefore, the core thermalhydraulic design method, which eventually determines the cladding temperature, is highly important to assure a safe and reliable operation of the reactor systems

  11. Application of nonlinear nodal diffusion method for a small research reactor

    International Nuclear Information System (INIS)

    Jaradat, Mustafa K.; Alawneh, Luay M.; Park, Chang Je; Lee, Byungchul

    2014-01-01

    Highlights: • We applied nonlinear unified nodal method for 10 MW IAEA MTR benchmark problem. • TRITION–NEWT system was used to obtain two-group burnup dependent cross sections. • The criticality and power distribution compared with reference (IAEA-TECDOC-233). • Comparison between different fuel materials was conducted. • Satisfactory results were provided using UNM for MTR core calculations. - Abstract: Nodal diffusion methods are usually used for LWR calculations and rarely used for research reactor calculations. A unified nodal method with an implementation of the coarse mesh finite difference acceleration was developed for use in plate type research reactor calculations. It was validated for two PWR benchmark problems and then applied for IAEA MTR benchmark problem for static calculations to check the validity and accuracy of the method. This work was conducted to investigate the unified nodal method capability to treat material testing reactor cores. A 10 MW research reactor core is considered with three calculation cases for low enriched uranium fuel depending on the core burnup status of fresh, beginning-of-life, and end-of-life cores. The validation work included criticality calculations, flux distribution, and power distribution; in addition, a comparison between different fuel materials with the same uranium content was conducted. The homogenized two-group cross sections were generated using the TRITON–NEWT system. The results were compared with a reference, which was taken from IAEA-TECDOC-233. The unified nodal method provides satisfactory results for an all-rod out case, and the three-dimensional, two-group diffusion model can be considered accurate enough for MTR core calculations

  12. Extending the subspace hybrid method for eigenvalue problems in reactor physics calculation

    International Nuclear Information System (INIS)

    Zhang, Q.; Abdel-Khalik, H. S.

    2013-01-01

    This paper presents an innovative hybrid Monte-Carlo-Deterministic method denoted by the SUBSPACE method designed for improving the efficiency of hybrid methods for reactor analysis applications. The SUBSPACE method achieves its high computational efficiency by taking advantage of the existing correlations between desired responses. Recently, significant gains in computational efficiency have been demonstrated using this method for source driven problems. Within this work the mathematical theory behind the SUBSPACE method is introduced and extended to address core wide level k-eigenvalue problems. The method's efficiency is demonstrated based on a three-dimensional quarter-core problem, where responses are sought on the pin cell level. The SUBSPACE method is compared to the FW-CADIS method and is found to be more efficient for the utilized test problem because of the reason that the FW-CADIS method solves a forward eigenvalue problem and an adjoint fixed-source problem while the SUBSPACE method only solves an adjoint fixed-source problem. Based on the favorable results obtained here, we are confident that the applicability of Monte Carlo for large scale reactor analysis could be realized in the near future. (authors)

  13. Pressurized water reactor monitoring. Study of detection, diagnostic and estimation (least squares and filtering) methods

    International Nuclear Information System (INIS)

    Gillet, M.

    1986-07-01

    This thesis presents a study for the surveillance of the Primary circuit water inventory of a pressurized water reactor. A reference model is developed for the development of an automatic system ensuring detection and real-time diagnostic. The methods to our application are statistical tests and adapted a pattern recognition method. The estimation of the detected anomalies is treated by the least square fit method, and by filtering. A new projected optimization method with superlinear convergence is developed in this framework, and a segmented linearization of the model is introduced, in view of a multiple filtering. 46 refs [fr

  14. A new method for studying iodine metabolism; the isotopic equilibrium method - kinetic and quantitative aspects of measurements made on rats; Une nouvelle methode d'etude du metabolisme de l'iode: la methode d'equilibre isotopique - aspects cinetiques et quantitatifs obtenus chez le rat

    Energy Technology Data Exchange (ETDEWEB)

    Simon, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-05-15

    The isotopic equilibrium method which has been developed in the case of the rat has made it possible to measure the absolute values of the principal parameters of iodine metabolism in this animal. The quantities and concentrations of iodine have been measured in the thyroid gland and in the plasma with a sensitivity of 0.001 {mu}g of {sup 127}I. This sensitivity has made it possible to measure pools as small as the iodide and the free iodotyrosines of the thyroid and to demonstrate the absence of free iodotyrosines in the plasma of the normal rat. In vivo, the isotopic equilibrium method has made it possible to measure the iodine content of the thyroid gland and to calculate the intensity of this gland's secretion without removing it. By double labelling with {sup 125}I and {sup 131}I the isotopic equilibrium method has made it possible to measure the flux, intensity of the intrathyroidal recycling as well as the turnover rates of all the iodine containing compounds of the thyroid gland. For this gland no precursor-product relationship has been found between The iodotyrosines (MIT and DIT) and the iodothyronines (T{sub 4} and T{sub 3}). The absence of this relationship is due to the heterogeneity of the thyroglobulin turnover. It has been shown furthermore that there exists in the plasma an organic fraction of the iodine which is different to thyroglobulin and which is renewed more rapidly than the circulating hormones T{sub 3} and T{sub 4}. The isotopic equilibrium method is very useful for series measurements of iodine. It makes it possible furthermore to improve the biochemical fractionations by adding carriers without affecting the subsequent {sup 127}I measurements. (author) [French] La methode d'equilibre isotopique, mise au point chez le rat, a permis de mesurer en valeur absolue les principaux parametres du metabolisme de l'iode chez cet animal. Les quantites ou les concentrations d'iode ont ete mesurees pour la thyroide et pour le

  15. A new method for studying iodine metabolism; the isotopic equilibrium method - kinetic and quantitative aspects of measurements made on rats; Une nouvelle methode d'etude du metabolisme de l'iode: la methode d'equilibre isotopique - aspects cinetiques et quantitatifs obtenus chez le rat

    Energy Technology Data Exchange (ETDEWEB)

    Simon, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-05-15

    The isotopic equilibrium method which has been developed in the case of the rat has made it possible to measure the absolute values of the principal parameters of iodine metabolism in this animal. The quantities and concentrations of iodine have been measured in the thyroid gland and in the plasma with a sensitivity of 0.001 {mu}g of {sup 127}I. This sensitivity has made it possible to measure pools as small as the iodide and the free iodotyrosines of the thyroid and to demonstrate the absence of free iodotyrosines in the plasma of the normal rat. In vivo, the isotopic equilibrium method has made it possible to measure the iodine content of the thyroid gland and to calculate the intensity of this gland's secretion without removing it. By double labelling with {sup 125}I and {sup 131}I the isotopic equilibrium method has made it possible to measure the flux, intensity of the intrathyroidal recycling as well as the turnover rates of all the iodine containing compounds of the thyroid gland. For this gland no precursor-product relationship has been found between The iodotyrosines (MIT and DIT) and the iodothyronines (T{sub 4} and T{sub 3}). The absence of this relationship is due to the heterogeneity of the thyroglobulin turnover. It has been shown furthermore that there exists in the plasma an organic fraction of the iodine which is different to thyroglobulin and which is renewed more rapidly than the circulating hormones T{sub 3} and T{sub 4}. The isotopic equilibrium method is very useful for series measurements of iodine. It makes it possible furthermore to improve the biochemical fractionations by adding carriers without affecting the subsequent {sup 127}I measurements. (author) [French] La methode d'equilibre isotopique, mise au point chez le rat, a permis de mesurer en valeur absolue les principaux parametres du metabolisme de l'iode chez cet animal. Les quantites ou les concentrations d'iode ont ete mesurees pour la thyroide et pour le plasma avec une

  16. A hybrid source-driven method to compute fast neutron fluence in reactor pressure vessel - 017

    International Nuclear Information System (INIS)

    Ren-Tai, Chiang

    2010-01-01

    A hybrid source-driven method is developed to compute fast neutron fluence with neutron energy greater than 1 MeV in nuclear reactor pressure vessel (RPV). The method determines neutron flux by solving a steady-state neutron transport equation with hybrid neutron sources composed of peripheral fixed fission neutron sources and interior chain-reacted fission neutron sources. The relative rod-by-rod power distribution of the peripheral assemblies in a nuclear reactor obtained from reactor core depletion calculations and subsequent rod-by-rod power reconstruction is employed as the relative rod-by-rod fixed fission neutron source distribution. All fissionable nuclides other than U-238 (such as U-234, U-235, U-236, Pu-239 etc) are replaced with U-238 to avoid counting the fission contribution twice and to preserve fast neutron attenuation for heavy nuclides in the peripheral assemblies. An example is provided to show the feasibility of the method. Since the interior fuels only have a marginal impact on RPV fluence results due to rapid attenuation of interior fast fission neutrons, a generic set or one of several generic sets of interior fuels can be used as the driver and only the neutron sources in the peripheral assemblies will be changed in subsequent hybrid source-driven fluence calculations. Consequently, this hybrid source-driven method can simplify and reduce cost for fast neutron fluence computations. This newly developed hybrid source-driven method should be a useful and simplified tool for computing fast neutron fluence at selected locations of interest in RPV of contemporary nuclear power reactors. (authors)

  17. Three-dimensional static and dynamic reactor calculations by the nodal expansion method

    International Nuclear Information System (INIS)

    Christensen, B.

    1985-05-01

    This report reviews various method for the calculation of the neutron-flux- and power distribution in an nuclear reactor. The nodal expansion method (NEM) is especially described in much detail. The nodal expansion method solves the diffusion equation. In this method the reactor core is divided into nodes, typically 10 to 20 cm in each direction, and the average flux in each node is calculated. To obtain the coupling between the nodes the local flux inside each node is expressed by use of a polynomial expansion. The expansion is one-dimensional, so inside each node such three expansions occur. To calculate the expansion coefficients it is necessary that the polynomial expansion is a solution to the one-dimensional diffusion equation. When the one-dimensional diffusion equation is established a term with the transversal leakage occur, and this term is expanded after the same polynomials. The resulting equation system with the expansion coefficients as the unknowns is solved with weigthed residual technique. The nodal expansion method is built into a computer program (also called NEM), which is divided into two parts, one part for steady-state calculations and one part for dynamic calculations. It is possible to take advantage of symmetry properties of the reactor core. The program is very flexible with regard to the number of energy groups, the node size, the flux expansion order and the transverse leakage expansion order. The boundary of the core is described by albedos. The program and input to it are described. The program is tested on a number of examples extending from small theoretical one up to realistic reactor cores. Many calculations are done on the wellknown IAEA benchmark case. The calculations have tested the accuracy and the computing time for various node sizes and polynomial expansions. In the dynamic examples various strategies for variation of the time step-length have been tested. (author)

  18. Simplified method for measuring the response time of scram release electromagnet in a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Patri, Sudheer, E-mail: patri@igcar.gov.in; Mohana, M.; Kameswari, K.; Kumar, S. Suresh; Narmadha, S.; Vijayshree, R.; Meikandamurthy, C.; Venkatesan, A.; Palanisami, K.; Murthy, D. Thirugnana; Babu, B.; Prakash, V.; Rajan, K.K.

    2015-04-15

    Highlights: • An alternative method for estimating the electromagnet clutch release time. • A systematic approach to develop a computer based measuring system. • Prototype tests on the measurement system. • Accuracy of the method is ±6% and repeatability error is within 2%. - Abstract: The delay time in electromagnet clutch release during a reactor trip (scram action) is an important safety parameter, having a bearing on the plant safety during various design basis events. Generally, it is measured using current decay characteristics of electromagnet coil and its energising circuit. A simplified method of measuring the same in a Sodium cooled fast reactors (SFR) is proposed in this paper. The method utilises the position data of control rod to estimate the delay time in electromagnet clutch release. A computer based real time measurement system for measuring the electromagnet clutch delay time is developed and qualified for retrofitting in prototype fast breeder reactor. Various stages involved in the development of the system are principle demonstration, experimental verification of hardware capabilities and prototype system testing. Tests on prototype system have demonstrated the satisfactory performance of the system with intended accuracy and repeatability.

  19. EDF Energies Nouvelles. Consolidated financial statements at 31 December 2008 Prepared in accordance with IFRSs

    International Nuclear Information System (INIS)

    2009-01-01

    EDF Energies Nouvelles is a world leader in renewable energy electricity. The company develops, builds and operates clean energy power plants both for its own account and for third parties. Historically, EDF Energies Nouvelles primarily developed its business in two geographical areas, Europe and North America (U.S., Canada and Mexico). EDF Energies Nouvelles is a subsidiary of EDF, helping the Group to achieve its renewable energy goals. The EDF Group generates low-carbon electricity around the world and actively participates in the energy transition. EDF Energies Nouvelles prioritizes development of wind and photovoltaic solar capacity. As an integrated operator with global reach, EDF Energies Nouvelles covers the entire renewable energy chain, from development to operation and maintenance, and manages all project phases in-house. This document is EDF Energies Nouvelles's registration document for the year 2008. It contains information about Group profile, governance, business, investments, property, plant and equipment, management, financial position, employees, shareholders, etc. The document includes the group's consolidated financial statements at 31 December 2008

  20. EDF Energies Nouvelles. Consolidated financial statements at 31 December 2007 Prepared in accordance with IFRSs

    International Nuclear Information System (INIS)

    2008-01-01

    EDF Energies Nouvelles is a world leader in renewable energy electricity. The company develops, builds and operates clean energy power plants both for its own account and for third parties. Historically, EDF Energies Nouvelles primarily developed its business in two geographical areas, Europe and North America (U.S., Canada and Mexico). EDF Energies Nouvelles is a subsidiary of EDF, helping the Group to achieve its renewable energy goals. The EDF Group generates low-carbon electricity around the world and actively participates in the energy transition. EDF Energies Nouvelles prioritizes development of wind and photovoltaic solar capacity. As an integrated operator with global reach, EDF Energies Nouvelles covers the entire renewable energy chain, from development to operation and maintenance, and manages all project phases in-house. This document is EDF Energies Nouvelles's registration document for the year 2007. It contains information about Group profile, governance, business, investments, property, plant and equipment, management, financial position, employees, shareholders, etc. The document includes the group's consolidated financial statements at 31 December 2007

  1. EDF Energies Nouvelles. Consolidated financial statements at 31 December 2006 Prepared in accordance with IFRSs

    International Nuclear Information System (INIS)

    2007-01-01

    EDF Energies Nouvelles is a world leader in renewable energy electricity. The company develops, builds and operates clean energy power plants both for its own account and for third parties. Historically, EDF Energies Nouvelles primarily developed its business in two geographical areas, Europe and North America (U.S., Canada and Mexico). EDF Energies Nouvelles is a subsidiary of EDF, helping the Group to achieve its renewable energy goals. The EDF Group generates low-carbon electricity around the world and actively participates in the energy transition. EDF Energies Nouvelles prioritizes development of wind and photovoltaic solar capacity. As an integrated operator with global reach, EDF Energies Nouvelles covers the entire renewable energy chain, from development to operation and maintenance, and manages all project phases in-house. This document is EDF Energies Nouvelles's registration document for the year 2006. It contains information about Group profile, governance, business, investments, property, plant and equipment, management, financial position, employees, shareholders, etc. The document includes the group's Consolidated financial statements at 31 December 2006

  2. Material characteristics and construction methods for a typical research reactor concrete containment in Iran

    International Nuclear Information System (INIS)

    Ebrahimia, Mahsa; Suha, Kune Y.; Eghbalic, Rahman; Jahan, Farzaneh Asadi malek

    2012-01-01

    Generally selecting an appropriate material and also construction style for a concrete containment due to its function and special geometry play an important role in applicability and also construction cost and duration decrease in a research reactor (RR) project. The reactor containment enclosing the reactor vessel comprises physical barriers reflecting the safety design and construction codes, regulations and standards so as to prevent the community and the environment from uncontrolled release of radioactive materials. It is the third and the last barrier against radioactivity release. It protects the reactor vessel from such external events as earthquake and aircraft crash as well. Thus, it should be designed and constructed in such a manner as to withstand dead and live loads, ground and seismic loads, missiles and aircraft loads, and thermal and shrinkage loads. This study aims to present a construction method for concrete containment of a typical RR in Iran. The work also presents an acceptable characteristic for concrete and reinforcing re bar of a typical concrete containment. The current study has evaluated the various types of the RR containments. The most proper type was selected in accordance with the current knowledge and technology of Iran

  3. Study on thermal neutron spectra in reactor moderators by time-of-flight method

    International Nuclear Information System (INIS)

    Akino, Fujiyoshi

    1982-12-01

    Prediction of thermal neutron spectra in a reactor core plays very important role in the neutronic design of the reactor for obtaining the accurate thermal group constants. It is well known that the neutron scattering properties of the moderator materials markedly influence the thermal neutron spectra. Therefore, 0 0 angular dependent thermal neutron spectra were measured by the time-of-flight method in the following moderator bulks 1) Graphite bulk poisoned with boron at the temperatures from 20 to 800 0 C, 2) Light water bulk poisoned with Cadmium and/or Indium, 3) Light water-natural uranium heterogeneous bulk. The measured results were compared with calculation utilizing Young-Koppel and Haywood scattering model for graphite and light water respectively. On the other hand, a variety of 20% enriched uranium loaded and graphite moderated cores consisting of the different lattice cell in a wide range of the carbon to uranium atomic ratio have been built at Semi-Homogeneous Critical Experimental Assembly (SHE) to perform the critical experiments related to Very High Temperature Reactor (VHTR). The experimental data were for the critical masses in 235 U, reactivity worths of experimental burnable poison rods, thorium rods, natural-uranium rods and experimental control rods and kinetic parameters. It is made clear from comparison between measurement and calculation that the accurate thermal group constants can be obtained by use of the Young-Koppel and Haywood neutron scattering models if heterogeneity of reactor core lattices is taken into account precisely. (author)

  4. The method of life extension for the High Flux Isotope Reactor vessel

    International Nuclear Information System (INIS)

    Chang, Shib-Jung.

    1995-01-01

    The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in the nil ductility temperature (NDT). This temperature is sometimes referred to as the brittle-ductile transition temperature (DBT) for fracture. The life extension of the High Flux Isotope Reactor (HFIR) vessel is calculated by using the method of fracture mechanics. A hydrostatic pressure test (hydrotest) is performed in order to determine a safe vessel static pressure. It is then followed by using fracture mechanics to project the reactor life from the safe hydrostatic pressure. The life extension calculation provides the following information on the remaining life of the reactor as a function of the nil ductility temperature increase: the probability of vessel fracture due to hydrotest vs vessel life at several hydrotest pressures; the hydrotest time interval vs the uncertainty of the nil ductility temperature increase rate; and the hydrotest pressure vs the uncertainty of the nil ductility temperature increase rate. It is understood that the use of a complete range of uncertainties of the nil ductility temperature increase is equivalent to the entire range of radiation damage that can be experienced by the vessel steel. From the numerical values for the probabilities of the vessel fracture as a result of hydrotest, it is estimated that the reactor vessel life can be extended up to 50 EFPY (100 MW) with the minimum vessel operating temperature equal to 85 degree F

  5. Method of estimating thermal power distribution of core of BWR type reactor

    International Nuclear Information System (INIS)

    Sekimizu, Koichi

    1982-01-01

    Purpose: To accurately and rapidly predict the thermal power of the core of a BWR they reactor at load follow-up operating time. Method: A parameter value corrected from a correction coefficient deciding unit and a xenon density distribution value predicted and calculated from a xenon density distributor are inputted to a thermal power distribution predicting devise, the status amount such as coolant flow rate or the like predetermined at this and next high power operating times is substituted for physical model to predict and calculate the thermal power distribution. The status amount of a nuclear reactor at the time of operating in previous high power corresponding to the next high power operation to be predicted is read from the status amount of the reactor stored in time series manner is a reactor core status memory, and the physical model used in the prediction and calculation of the thermal power distribution at the time of next high power operation is corrected. (Sikiya, K.)

  6. Material characteristics and construction methods for a typical research reactor concrete containment in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimia, Mahsa; Suha, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of); Eghbalic, Rahman; Jahan, Farzaneh Asadi malek [School of Architecture and Urbanism, Qazvin (Iran, Islamic Republic of)

    2012-10-15

    Generally selecting an appropriate material and also construction style for a concrete containment due to its function and special geometry play an important role in applicability and also construction cost and duration decrease in a research reactor (RR) project. The reactor containment enclosing the reactor vessel comprises physical barriers reflecting the safety design and construction codes, regulations and standards so as to prevent the community and the environment from uncontrolled release of radioactive materials. It is the third and the last barrier against radioactivity release. It protects the reactor vessel from such external events as earthquake and aircraft crash as well. Thus, it should be designed and constructed in such a manner as to withstand dead and live loads, ground and seismic loads, missiles and aircraft loads, and thermal and shrinkage loads. This study aims to present a construction method for concrete containment of a typical RR in Iran. The work also presents an acceptable characteristic for concrete and reinforcing re bar of a typical concrete containment. The current study has evaluated the various types of the RR containments. The most proper type was selected in accordance with the current knowledge and technology of Iran.

  7. Hybrid and Parallel Domain-Decomposition Methods Development to Enable Monte Carlo for Reactor Analyses

    International Nuclear Information System (INIS)

    Wagner, John C.; Mosher, Scott W.; Evans, Thomas M.; Peplow, Douglas E.; Turner, John A.

    2010-01-01

    This paper describes code and methods development at the Oak Ridge National Laboratory focused on enabling high-fidelity, large-scale reactor analyses with Monte Carlo (MC). Current state-of-the-art tools and methods used to perform real commercial reactor analyses have several undesirable features, the most significant of which is the non-rigorous spatial decomposition scheme. Monte Carlo methods, which allow detailed and accurate modeling of the full geometry and are considered the gold standard for radiation transport solutions, are playing an ever-increasing role in correcting and/or verifying the deterministic, multi-level spatial decomposition methodology in current practice. However, the prohibitive computational requirements associated with obtaining fully converged, system-wide solutions restrict the role of MC to benchmarking deterministic results at a limited number of state-points for a limited number of relevant quantities. The goal of this research is to change this paradigm by enabling direct use of MC for full-core reactor analyses. The most significant of the many technical challenges that must be overcome are the slow, non-uniform convergence of system-wide MC estimates and the memory requirements associated with detailed solutions throughout a reactor (problems involving hundreds of millions of different material and tally regions due to fuel irradiation, temperature distributions, and the needs associated with multi-physics code coupling). To address these challenges, our research has focused on the development and implementation of (1) a novel hybrid deterministic/MC method for determining high-precision fluxes throughout the problem space in k-eigenvalue problems and (2) an efficient MC domain-decomposition (DD) algorithm that partitions the problem phase space onto multiple processors for massively parallel systems, with statistical uncertainty estimation. The hybrid method development is based on an extension of the FW-CADIS method, which

  8. Hybrid and parallel domain-decomposition methods development to enable Monte Carlo for reactor analyses

    International Nuclear Information System (INIS)

    Wagner, J.C.; Mosher, S.W.; Evans, T.M.; Peplow, D.E.; Turner, J.A.

    2010-01-01

    This paper describes code and methods development at the Oak Ridge National Laboratory focused on enabling high-fidelity, large-scale reactor analyses with Monte Carlo (MC). Current state-of-the-art tools and methods used to perform 'real' commercial reactor analyses have several undesirable features, the most significant of which is the non-rigorous spatial decomposition scheme. Monte Carlo methods, which allow detailed and accurate modeling of the full geometry and are considered the 'gold standard' for radiation transport solutions, are playing an ever-increasing role in correcting and/or verifying the deterministic, multi-level spatial decomposition methodology in current practice. However, the prohibitive computational requirements associated with obtaining fully converged, system-wide solutions restrict the role of MC to benchmarking deterministic results at a limited number of state-points for a limited number of relevant quantities. The goal of this research is to change this paradigm by enabling direct use of MC for full-core reactor analyses. The most significant of the many technical challenges that must be overcome are the slow, non-uniform convergence of system-wide MC estimates and the memory requirements associated with detailed solutions throughout a reactor (problems involving hundreds of millions of different material and tally regions due to fuel irradiation, temperature distributions, and the needs associated with multi-physics code coupling). To address these challenges, our research has focused on the development and implementation of (1) a novel hybrid deterministic/MC method for determining high-precision fluxes throughout the problem space in k-eigenvalue problems and (2) an efficient MC domain-decomposition (DD) algorithm that partitions the problem phase space onto multiple processors for massively parallel systems, with statistical uncertainty estimation. The hybrid method development is based on an extension of the FW-CADIS method

  9. Finite Element Method in the Three Dimensions Deformation Computation ofKartini Reactor Stack

    International Nuclear Information System (INIS)

    Supriyono; Syarip; Wibisono, I

    2000-01-01

    The calculation of the Kartini reactor stack i.e. one of the nuclearinstallations in P3TM-BATAN Yogyakarta by using SAP 90 software have beendone. The calculation is done as a safety review of building towards theearthquake style in Yogyakarta. The 3-dimension deformation calculation isperformed by the numeric method i.e. finite element method with the form ofelements is the shell. The result obtained showed that the construction oftower safe to the existing earthquake, where the moment exerted as a resultof earthquake style was different under the moment having been kept by thebuilding structure. By knowing the deformation on the stack it is expectedcould be used for concluding the strength of the whole reactor building.(author)

  10. Application of Pareto optimization method for ontology matching in nuclear reactor domain

    International Nuclear Information System (INIS)

    Meenachi, N. Madurai; Baba, M. Sai

    2017-01-01

    This article describes the need for ontology matching and describes the methods to achieve the same. Efforts are put in the implementation of the semantic web based knowledge management system for nuclear domain which necessitated use of the methods for development of ontology matching. In order to exchange information in a distributed environment, ontology mapping has been used. The constraints in matching the ontology are also discussed. Pareto based ontology matching algorithm is used to find the similarity between two ontologies in the nuclear reactor domain. Algorithms like Jaro Winkler distance, Needleman Wunsch algorithm, Bigram, Kull Back and Cosine divergence are employed to demonstrate ontology matching. A case study was carried out to analysis the ontology matching in diversity in the nuclear reactor domain and same was illustrated.

  11. Methods for monitoring the initial load to critical in the fast test reactor

    International Nuclear Information System (INIS)

    Johnson, D.L.

    1975-08-01

    Conventional symmetric fuel loadings for the initial loading to critical of the Fast Test Reactor (FTR) are predicted to be more time consuming than asymmetric or trisector loadings. Potentially significant time savings can be realized by the latter, since adequate intermediate assessments of neutron multiplication can be made periodically without control rod reconnection in all trisectors. Experimental simulation of both loading schemes was carried out in the Reverse Approach to Critical (RAC) experiments in the Fast Test Reactor-Engineering Mockup Critical facility. Analyses of these experiments indicated that conventional source multiplication methods can be applied for monitoring either a symmetric or asymmetric fuel loading scheme equally well provided that detection efficiency corrections are employed. Methods for refining predictions of reactivity and count rates for the stages in a load to critical were also investigated. (auth)

  12. Application of Pareto optimization method for ontology matching in nuclear reactor domain

    Energy Technology Data Exchange (ETDEWEB)

    Meenachi, N. Madurai [Indira Gandhi Centre for Atomic Research, HBNI, Tamil Nadu (India). Planning and Human Resource Management Div.; Baba, M. Sai [Indira Gandhi Centre for Atomic Research, HBNI, Tamil Nadu (India). Resources Management Group

    2017-12-15

    This article describes the need for ontology matching and describes the methods to achieve the same. Efforts are put in the implementation of the semantic web based knowledge management system for nuclear domain which necessitated use of the methods for development of ontology matching. In order to exchange information in a distributed environment, ontology mapping has been used. The constraints in matching the ontology are also discussed. Pareto based ontology matching algorithm is used to find the similarity between two ontologies in the nuclear reactor domain. Algorithms like Jaro Winkler distance, Needleman Wunsch algorithm, Bigram, Kull Back and Cosine divergence are employed to demonstrate ontology matching. A case study was carried out to analysis the ontology matching in diversity in the nuclear reactor domain and same was illustrated.

  13. Mixed first- and second-order transport method using domain decomposition techniques for reactor core calculations

    International Nuclear Information System (INIS)

    Girardi, E.; Ruggieri, J.M.

    2003-01-01

    The aim of this paper is to present the last developments made on a domain decomposition method applied to reactor core calculations. In this method, two kind of balance equation with two different numerical methods dealing with two different unknowns are coupled. In the first part the two balance transport equations (first order and second order one) are presented with the corresponding following numerical methods: Variational Nodal Method and Discrete Ordinate Nodal Method. In the second part, the Multi-Method/Multi-Domain algorithm is introduced by applying the Schwarz domain decomposition to the multigroup eigenvalue problem of the transport equation. The resulting algorithm is then provided. The projection operators used to coupled the two methods are detailed in the last part of the paper. Finally some preliminary numerical applications on benchmarks are given showing encouraging results. (authors)

  14. Perturbation method utilization in the analysis of the Convertible Spectral Shift Reactor (RCVS)

    International Nuclear Information System (INIS)

    Bruna, G.B; Legendre, J.F.; Porta, J.; Doriath, J.Y.

    1988-01-01

    In the framework of the preliminary faisability studies on a new core concept, techniques derived from perturbation theory show-up very useful in the calculation and physical analysis of project parameters. We show, in the present work, some applications of these methods to the RCVS (Reacteur Convertible a Variation de Spectre - Convertible Spectral Shift Reactor) Concept studies. Actually, we present here the search of a few group project type energy structure and the splitting of reactivity effects into individual components [fr

  15. Ion transport membrane reactor systems and methods for producing synthesis gas

    Science.gov (United States)

    Repasky, John Michael

    2015-05-12

    Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.

  16. Method for the construction of a nuclear reactor with a prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Schoening, J.; Schwiers, H.G.

    1981-01-01

    Method for the construction of nuclear reactors with prestressed concrete pressure vessel, providing during the initial stage of construction of the prestressed concrete pressure vessel a support structure around the liner. This enables an early mounting of core components in clean conditions as well as load reductions for final concreting in layers of the prestressed concrete pressure vessel. By applying the support structure, the overall assembly time of these nuclear power plant is considerably reduced without extra cost. (orig.) [de

  17. Reactor antineutrino monitoring with a plastic scintillator array as a new safeguards method

    OpenAIRE

    Oguri, S.; Kuroda, Y.; Kato, Y.; Nakata, R.; Inoue, Y.; Ito, C.; Minowa, M.

    2014-01-01

    We developed a segmented reactor-antineutrino detector made of plastic scintillators for application as a tool in nuclear safeguards inspection and performed mostly unmanned field operations at a commercial power plant reactor. At a position outside the reactor building, we measured the difference in reactor antineutrino flux above the ground when the reactor was active and inactive.

  18. The application of modern nodal methods to PWR reactor physics analysis

    International Nuclear Information System (INIS)

    Knight, M.P.

    1988-06-01

    The objective of this research is to develop efficient computational procedures for PWR reactor calculations, based on modern nodal methods. The analytic nodal method, which is characterised by the use of exact exponential expansions in transverse-integrated equations, is implemented within an existing finite-difference code. This shows considerable accuracy and efficiency on standard benchmark problems, very much in line with existing experience with nodal methods., Assembly powers can be calculated to within 2.0% with just one mesh per assembly. (author)

  19. Multiregion, multigroup collision probability method with white boundary condition for light water reactor thermalization calculations

    International Nuclear Information System (INIS)

    Ozgener, B.; Ozgener, H.A.

    2005-01-01

    A multiregion, multigroup collision probability method with white boundary condition is developed for thermalization calculations of light water moderated reactors. Hydrogen scatterings are treated by Nelkin's kernel while scatterings from other nuclei are assumed to obey the free-gas scattering kernel. The isotropic return (white) boundary condition is applied directly by using the appropriate collision probabilities. Comparisons with alternate numerical methods show the validity of the present formulation. Comparisons with some experimental results indicate that the present formulation is capable of calculating disadvantage factors which are closer to the experimental results than alternative methods

  20. A design method to isothermalize the core of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Takano, M.; Sawa, K.

    1987-01-01

    A practical design method is developed to isothermalize the core of block-type high-temperature gas-cooled reactors (HTGRs). Isothermalization plays an important role in increasing the design margin on fuel temperature. In this method, the fuel enrichment and the size and boron content of the burnable poison rod are determined over the core blockwise so that the axially exponential and radially flat power distribution are kept from the beginning to the end of core life. The method enables conventional HTGRs to raise the outlet gas temperature without increasing the maximum fuel temperature

  1. Development of source term evaluation method for Korean Next Generation Reactor(III)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Jae; Park, Jin Baek; Lee, Yeong Il; Song, Min Cheonl; Lee, Ho Jin [Korea Advanced Institue of Science and Technology, Taejon (Korea, Republic of)

    1998-06-15

    This project had investigated irradiation characteristics of MOX fuel method to predict nuclide concentration at primary and secondary coolant using a core containing 100% of all MOX fuel and development of source term evaluation tool. In this study, several prediction methods of source term are evaluated. Detailed contents of this project are : an evaluation of model for nuclear concentration at Reactor Coolant System, evaluation of primary and secondary coolant concentration of reference Nuclear Power Plant using purely MOX fuel, suggestion of source term prediction method of NPP with a core using MOX fuel.

  2. Application of preconditioned conjugate gradient-like methods to reactor kinetics

    International Nuclear Information System (INIS)

    Yang, D.Y.; Chen, G.S.; Chou, H.P.

    1993-01-01

    Several conjugate gradient-like (CG-like) methods are applied to solve the nonsymmetric linear systems of equations derived from the time-dependent two-dimensional two-energy-group neutron diffusion equations by a finite difference approximation. The methods are: the generalized conjugate residual method; the generalized conjugate gradient least-square method; the generalized minimal residual method (GMRES); the conjugate gradient square method; and a variant of bi-conjugate gradient method (Bi-CGSTAB). In order to accelerate these methods, six preconditioning techniques are investigated. Two are based on pointwise incomplete factorization: the incomplete LU (ILU) and the modified incomplete LU (MILU) decompositions; two, based on the block tridiagonal structure of the coefficient matrix, are blockwise and modified blockwise incomplete factorizations, BILU and MBILU; two are the alternating-direction implicit and symmetric successive overrelaxation (SSOR) preconditioners, derived from the basic iterative schemes. Comparisons are made by using CG-like methods combined with different preconditioners to solve a sequence of time-step reactor transient problems. Numerical tests indicate that preconditioned BI-CGSTAB with the preconditioner MBILU requires less CPU time and fewer iterations than other methods. The preconditioned CG-like methods are less sensitive to the time-step size used than the Chebyshev semi-iteration method and line SOR method. The indication is that the CGS, Bi-CGSTAB and GMRES methods are, on average, better than the other methods in reactor kinetics computation and that a good preconditioner is more important than the choice of CG-like methods. The MILU decomposition based on the conventional row-sum criterion has difficulty yielding a convergent solution and an improved version is introduced. (author)

  3. Evaluation method for core thermohydraulics during natural circulation in fast reactors numerical predictions of inter-wrapper flow

    International Nuclear Information System (INIS)

    Kamide, H.; Kimura, N.; Miyakoshi, H.; Nagasawa, K.

    2001-01-01

    Decay heat removal using natural circulation is one of the important functions for the safety of fast reactors. As a decay heat removal system, direct reactor auxiliary cooling system has been selected in current designs of fast reactors. In this design, dumped heat exchanger provides cold sodium and it covers the reactor core outlet. The cold sodium can penetrate into the gap region between the subassemblies. This gap flow is referred as inter-wrapper flow (IWF). A numerical estimation method for such natural circulation phenomena in a reactor core has been developed, which models each subassembly as a rectangular duct with gap region between the subassemblies and also the upper plenum in a reactor vessel. This numerical simulation method was verified based on experimental data of a sodium test using 7- subassembly core model and also a water test which simulates IWF using the 1/12 sector model of a reactor core. We applied the estimation method to the natural circulation in a 600 MW class fast reactor. The temperature in the core strongly depended on IWF, flow redistribution in the core, and inter-subassembly heat transfer. It is desired for prediction methods on the natural circulation to simulate these phenomena. (author)

  4. Features and validation of discrete element method for simulating pebble flow in reactor core

    International Nuclear Information System (INIS)

    Xu Yong; Li Yanjie

    2005-01-01

    The core of a High-Temperature Gas-cooled Reactor (HTGR) is composed of big number of fuel pebbles, their kinetic behaviors are of great importance in estimating the path and residence time of individual pebble, the evolution of the mixing zone for the assessment of the efficiency of a reactor. Numerical method is highlighted in modern reactor design. In view of granular flow, the Discrete Element Model based on contact mechanics of spheres was briefly described. Two typical examples were presented to show the capability of the DEM method. The former is piling with glass/steel spheres, which provides validated evidences that the simulated angles of repose are in good coincidence with the experimental results. The later is particle discharge in a flat- bottomed silo, which shows the effects of material modulus and demonstrates several features. The two examples show the DEM method enables to predict the behaviors, such as the evolution of pebble profiles, streamlines etc., and provides sufficient information for pebble flow analysis and core design. In order to predict the cyclic pebble flow in a HTGR core precisely and efficiently, both model and code improvement are needed, together with rational specification of physical properties with proper measuring techniques. Strategic and methodological considerations were also discussed. (authors)

  5. Application of the k0-NAA method at the HANARO research reactor

    International Nuclear Information System (INIS)

    Jong-Hwa Moon; Sun-Ha Kim; Yong-Sam Chung; Young-Jin Kim

    2007-01-01

    The k 0 -standardization method (k 0 -NAA) is known as one of the most remarkable progresses of the NAA with its many advantages. For the application of k 0 -NAA method at the NAA 1 irradiation position where the neutrons are well thermalized in the HANARO research reactor, KAERI, Korea, the determination of the reactor neutron spectrum parameters such as α and f have been carried out. The measured values of a and f using the 'Cd-ratio' triple monitor method were 0.127±0.022 and 1010±70, respectively. To evaluate the applicability of k 0 -NAA in our analytical system, the analysis of three kinds of SRMs was executed. The analytical results showed that the relative error of most of the elements was less than 10% and the U-scores were within 2. It is turned out that the procedure of the k 0 -NAA in the HANARO research reactor is available for a practical application in the environmental fields. (author)

  6. Campbell's MSV method the neutron-gamma discrimination in mixed field of nuclear reactor

    International Nuclear Information System (INIS)

    Stankovic, S. J.; Loncar, B.; Avramovic, I.; Osmokrovic, P.

    2003-10-01

    In this paper it is carried out the analysis some capabilities of Campbell's MSV (Mean Square Value) measuring chain on base the principles derived by Campbell's theorem. Nevertheless, measurements have performed with digitized MSV method and results have compared related to they attained with classic measuring chain, when the mean value of signal from detector output has measured. In our case, detector element was uncompensated ionization chamber for mixed n-gamma fields. Thermal neutron flux, absorbed dose rate, equivalent dose rate and exposure rate in surrounding the reactor vessel of system HERBE, at nuclear reactor RB in 'VINCA' Institute, are determined. The examination of discrimination for gamma relate to neutron component in signal of detector output is performed whereby experimental work and the calculation according to linear theoretical model. The dependencies of changes for variance and mean value output detector signal versus four-decade change of fission reactor power, in range from 10 mW to 22W, are obtained. The advantage of MSV method is confirmed and concluded that the order n-gamma discrimination in MSV signal processing is around fifty times larger than classical measuring method. (author)

  7. Method for calculating the forces and deformations in the fast reactor fuel assembly accounting for the effects of reactor control system elements and shutdown

    International Nuclear Information System (INIS)

    Likhachev, Yu.I.; Vashlyaev, Yu.N.; Kravchenko, I.N.

    1980-01-01

    Methods for calculating deformations and interaction forces of heat-generating assemblies (HGA) of fast reactor core with account for the effect of control and protection system (CPS) elements at the reactor operation and change of interaction efforts between HGA at the reactor shutdown, are described. The results of testing the suggested methods on example of estimate of HGA behaviour of the BN-350 reactor are presented. For estimating the effect of CPS elements on HGA bending the sector model has been used. It is assumed that HGA deformation inside each sector is independent of HGA deformation of other sectors. A higher calculation accuracy is attained by means of laying out of sectors into regions of preferable influence of emergency protection elements and compensating packets. When determining deformation and interaction efforts between HGA caused by temperature change in the course of shutdown it is supposed that the HGA deformation is purely elastic. The methods described are realized in the form of ABRI-CPS and ABRI-HOL programs written in FORTRAN for the BESM-6 computer. The results of HGA calculations of the BN-350 reactor core show that CPS elements decrease contact efforts in the middle of the central packet, increase contact efforts in the peak of the central packet, increase contact efforts in the peaks of packets from the eight row to the periphery and increase contact efforts in the middles of packets from the 5th to 9th row [ru

  8. An Assessment of Remote Visual Methods to Detect Cracking in Reactor Components

    International Nuclear Information System (INIS)

    Cumblidge, Stephen E.; Anderson, Michael T.; Doctor, Steven R.; Simonen, Fredric A.; Elliot, Anthony J.

    2008-01-01

    Recently, the U.S. nuclear industry has proposed replacing current volumetric and/or surface examinations of certain components in commercial nuclear power plants, as required by the American Society of Mechanical Engineers Boiler and Pressure Vessel Code Section XI, Inservice Inspection of Nuclear Power Plant Components, with a simpler visual testing (VT) method. The advantages of VT are that these tests generally involve much less radiation exposure and time to perform the examination than do volumetric examinations such as ultrasonic testing. The issues relative to the reliability of VT in determining the structural integrity of reactor components were examined. Some piping and pressure vessel components in a nuclear power station are examined using VT as they are either in high radiation fields or component geometry precludes the use of ultrasonic testing (UT) methodology. Remote VT with radiation-hardened video systems has been used by nuclear utilities to find cracks in pressure vessel cladding in pressurized water reactors, core shrouds in boiling water reactors, and to investigate leaks in piping and reactor components. These visual tests are performed using a wide variety of procedures and equipment. The techniques for remote VT use submersible closed-circuit video cameras to examine reactor components and welds. PNNL conducted a parametric study that examined the important variables influencing the effectiveness of a remote visual test. Tested variables included lighting techniques, camera resolution, camera movement, and magnification. PNNL also conducted a limited laboratory test using a commercial visual testing camera system to experimentally determine the ability of the camera system to detect cracks of various widths under ideal conditions. The results of these studies and their implications are presented in this paper

  9. Selective methods for the maintainability and standardization of the engineering of a research reactor

    International Nuclear Information System (INIS)

    Rico, N.

    1999-01-01

    Full text: The main point of this work consists of a selective method for the engineering of a research reactor based on parameters, which determine a safer design, installation, operation and maintenance. The variety of tasks in a research reactor are: research, development, production of radioisotopes, etc. They are developed within the installation and the different specialties gathered for these activities. It is necessary to count on an intrinsically safe environment, from the point of view of the investigator, the operator and the maintenance personnel. In general, in both nuclear and conventional installation, independent of its size, certain investment necessities prevail, starting from its design, such as: Nuclear Security, Engineering, Versatility, Production (both for investigation and development)), Conventional Security and Physical Protection, Profitability, etc. The concepts which help us accentuate a greater benefit for the research are not found within these parameters, purpose for which this facility was created. When obtaining a simple engineering the results show an increase in security, decrease in maintenance and operative costs, less ageing and an easy operation. The plant engineering of research reactors could be titled, from the engineering and maintenance point of view, as a technological chaos. Not only for its aspect but for its physiognomy too: inaccessible to certain areas; impassable in its circulation aisles; hard to check and measure; disassemble; clean its components; thus increasing unnecessarily the personnel's exposure time. The facilities of research reactors have different disciplines used as rules for the development of the design, such as nuclear, mechanical, thermodynamical, electronic, chemical, electrical, etc. Common guide lines - from design to operation - are non-existent. This is why different manufacturers and models are found within instruments, pumps, electrical engines, illumination, etc. even when they perform

  10. Fluid-Induced Vibration Analysis for Reactor Internals Using Computational FSI Method

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jong Sung; Yi, Kun Woo; Sung, Ki Kwang; Im, In Young; Choi, Taek Sang [KEPCO E and C, Daejeon (Korea, Republic of)

    2013-10-15

    This paper introduces a fluid-induced vibration analysis method which calculates the response of the RVI to both deterministic and random loads at once and utilizes more realistic pressure distribution using the computational Fluid Structure Interaction (FSI) method. As addressed above, the FIV analysis for the RVI was carried out using the computational FSI method. This method calculates the response to deterministic and random turbulence loads at once. This method is also a simple and integrative method to get structural dynamic responses of reactor internals to various flow-induced loads. Because the analysis of this paper omitted the bypass flow region and Inner Barrel Assembly (IBA) due to the limitation of computer resources, it is necessary to find an effective way to consider all regions in the RV for the FIV analysis in the future. Reactor coolant flow makes Reactor Vessel Internals (RVI) vibrate and may affect the structural integrity of them. U. S. NRC Regulatory Guide 1.20 requires the Comprehensive Vibration Assessment Program (CVAP) to verify the structural integrity of the RVI for Fluid-Induced Vibration (FIV). The hydraulic forces on the RVI of OPR1000 and APR1400 were computed from the hydraulic formulas and the CVAP measurements in Palo Verde Unit 1 and Yonggwang Unit 4 for the structural vibration analyses. In this method, the hydraulic forces were divided into deterministic and random turbulence loads and were used for the excitation forces of the separate structural analyses. These forces are applied to the finite element model and the responses to them were combined into the resultant stresses.

  11. A method for statistical steady state thermal analysis of reactor cores

    International Nuclear Information System (INIS)

    Whetton, P.A.

    1980-01-01

    This paper presents a method for performing a statistical steady state thermal analysis of a reactor core. The technique is only outlined here since detailed thermal equations are dependent on the core geometry. The method has been applied to a pressurised water reactor core and the results are presented for illustration purposes. Random hypothetical cores are generated using the Monte-Carlo method. The technique shows that by splitting the parameters into two types, denoted core-wise and in-core, the Monte Carlo method may be used inexpensively. The idea of using extremal statistics to characterise the low probability events (i.e. the tails of a distribution) is introduced together with a method of forming the final probability distribution. After establishing an acceptable probability of exceeding a thermal design criterion, the final probability distribution may be used to determine the corresponding thermal response value. If statistical and deterministic (i.e. conservative) thermal response values are compared, information on the degree of pessimism in the deterministic method of analysis may be inferred and the restrictive performance limitations imposed by this method relieved. (orig.)

  12. Correction method for critical extrapolation of control-rods-rising during physical start-up of reactor

    International Nuclear Information System (INIS)

    Zhang Fan; Chen Wenzhen; Yu Lei

    2008-01-01

    During physical start-up of nuclear reactor, the curve got by lifting the con- trol rods to extrapolate to the critical state is often in protruding shape, by which the supercritical phenomena is led. In the paper, the reason why the curve was in protruding was analyzed. A correction method was introduced, and the calculations were carried out by the practical data used in a nuclear power plant. The results show that the correction method reverses the protruding shape of the extrapolating curve, and the risk of reactor supercritical phenomena can be reduced using the extrapolated curve got by the correction method during physical start-up of the reactor. (authors)

  13. Forward-Weighted CADIS Method for Variance Reduction of Monte Carlo Reactor Analyses

    International Nuclear Information System (INIS)

    Wagner, John C.; Mosher, Scott W.

    2010-01-01

    Current state-of-the-art tools and methods used to perform 'real' commercial reactor analyses use high-fidelity transport codes to produce few-group parameters at the assembly level for use in low-order methods applied at the core level. Monte Carlo (MC) methods, which allow detailed and accurate modeling of the full geometry and energy details and are considered the 'gold standard' for radiation transport solutions, are playing an ever-increasing role in correcting and/or verifying the several-decade-old methodology used in current practice. However, the prohibitive computational requirements associated with obtaining fully converged system-wide solutions restrict the role of MC to benchmarking deterministic results at a limited number of state-points for a limited number of relevant quantities. A goal of current research at Oak Ridge National Laboratory (ORNL) is to change this paradigm by enabling the direct use of MC for full-core reactor analyses. The most significant of the many technical challenges that must be overcome is the slow non-uniform convergence of system-wide MC estimates and the memory requirements associated with detailed solutions throughout a reactor (problems involving hundreds of millions of different material and tally regions due to fuel irradiation, temperature distributions, and the needs associated with multi-physics code coupling). To address these challenges, research has focused on development in the following two areas: (1) a hybrid deterministic/MC method for determining high-precision fluxes throughout the problem space in k-eigenvalue problems and (2) an efficient MC domain-decomposition algorithm that partitions the problem phase space onto multiple processors for massively parallel systems, with statistical uncertainty estimation. The focus of this paper is limited to the first area mentioned above. It describes the FW-CADIS method applied to variance reduction of MC reactor analyses and provides initial results for calculating

  14. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Ronen, Y.; Elias, E.

    1994-01-01

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  15. Method of experimental and theoretical modeling for multiple pressure tube rupture for RBMK reactor

    International Nuclear Information System (INIS)

    Medvedeva, N.Y.; Goldstein, R.V.; Burrows, J.A.

    2001-01-01

    The rupture of single RBMK reactor channels has occurred at a number of stations with a variety of initiating events. It is assumed in RBMK Safety Cases that the force of the escaping fluid will not cause neighbouring channels to break. This assumption has not been justified. A chain reaction of tube breaks could over-pressurise the reactor cavity leading to catastrophic failure of the containment. To validate the claims of the RBMK Safety Cases the Electrogorsk Research and Engineering Centre, in participation with experts from the Institute of Mechanics of RAS, has developed the method of interacting multiscale physical and mathematical modelling for coupled thermophysical, hydrogasodynamic processes and deformation and break processes causing and (or) accompanying potential failures, design and beyond the design RBMK reactor accidents. To realise the method the set of rigs, physical and mathematical models and specialized computer codes are under creation. This article sets out an experimental philosophy and programme for achieving this objective to solve the problem of credibility or non-credibility for multiple fuel channel rupture in RBMK.(author)

  16. Toward a Competitive Process Intensification: A New Generation of Heat Exchanger-Reactors Vers une intensification des procédés économiquement viable : une nouvelle génération de réacteur-échangeur de chaleur

    Directory of Open Access Journals (Sweden)

    Tochon P.

    2010-10-01

    Full Text Available Process Intensification (PI in chemical production is a major concern of chemical manufacturers. Among the numerous options to intensify a process, the transposition from a batch reactor to a continuous plug flow reactor is a good alternative when the selectivity and the thermal exchange are an issue. In this context, the RAPIC R&D project aims to develop an innovative low-cost component (in the 10 kg/h range. This project deals with the design from the local to the global scale and with testing, from elementary mock-ups to pilot scale. The present paper gives a detailed description of this research project and presents the main results on specification and definition of the reaction channel and the first simple mock-ups. L’intensification des procédés (IP constitue une des préoccupations majeures de l’industrie chimique. Parmi les nombreuses options possibles pour intensifier un procédé, lorsque le sujet concerne la sélectivité et l’échange thermique, la transposition d’un réacteur discontinu à un réacteur tubulaire continu paraît une bonne alternative. Dans ce contexte, le projet de R&D RAPIC consiste à développer un composant innovant à bas coût (environ 10 kg/heure. Ce projet porte sur la phase de conception, du niveau local au niveau global, et sur la phase de tests, depuis les maquettes élémentaires jusqu’aux essais pilote. Cet article propose une description détaillée de ce projet de recherche et présente les principaux résultats obtenus sur la définition et la spécification du canal de réaction, ainsi que les premières maquettes simples.

  17. Power ramp testing method for PWR fuel rod at research reactor

    International Nuclear Information System (INIS)

    Zhou Yidong; Zhang Peisheng; Zhang Aimin; Gao Yongguang; Wang Huarong

    2003-01-01

    A tentative power ramp test for short PWR fuel rod has been conducted at the Heavy Water Research Reactor (HWRR) in China Institute of Atomic Energy (CIAE). The test fuel rod was cooled by the circulating water in the test loop. The power ramp was realized by moving solid neutron-absorbing screen around the fuel rod. The linear power of the fuel rod increased from 220 W/cm to 340 W/cm with a power ramp rate of 20 W/cm/min. The power of the fuel rod was monitored by both in-core thermal and nuclear measurement sensors in the test rig. This test provides experiences for further developing the power ramp test methods for PWR fuel rods at research reactor. (author)

  18. State of the art seismic analysis for CANDU reactor structure components using condensation method

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, S A; Ibraham, A M; Hodgson, S [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada)

    1996-12-31

    The reactor structure assembly seismic analysis is a relatively complex process because of the intricate geometry with many different discontinuities, and due to the hydraulic attached mass which follows the structure during its vibration. In order to simulate reasonably accurate behaviour of the reactor structure assembly, detailed finite element models are generated and used for both modal and stress analysis. Guyan reduction condensation method was used in the analysis. The attached mass, which includes the fluid mass contained in the components plus the added mass which accounts for the inertia of the surrounding fluid entrained by the accelerating structure immersed in the fluid, was calculated and attached to the vibrating structures. The masses of the attached components, supported partly or totally by the assembly which includes piping, reactivity control units, end fittings, etc. are also considered in the analysis. (author). 4 refs., 6 tabs., 4 figs.

  19. Standard Guide for Application of Neutron Transport Methods for Reactor Vessel Surveillance, E706 (IID)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 Need for Neutronics Calculations—An accurate calculation of the neutron fluence and fluence rate at several locations is essential for the analysis of integral dosimetry measurements and for predicting irradiation damage exposure parameter values in the pressure vessel. Exposure parameter values may be obtained directly from calculations or indirectly from calculations that are adjusted with dosimetry measurements; Guide E944 and Practice E853 define appropriate computational procedures. 1.2 Methodology—Neutronics calculations for application to reactor vessel surveillance encompass three essential areas: (1) validation of methods by comparison of calculations with dosimetry measurements in a benchmark experiment, (2) determination of the neutron source distribution in the reactor core, and (3) calculation of neutron fluence rate at the surveillance position and in the pressure vessel. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is th...

  20. evelopment of a boiling water reactor fault diagnostic system with a signed directed graph method

    International Nuclear Information System (INIS)

    Chen, M.; Yu, C.C.; Liou, C.T.; Liao, L.Y.

    1990-01-01

    The fault diagnostic system for a nuclear power reactor is expected to be a useful decision support system for the operators during transients and accident conditions. A considerable research effort has been devoted to the development of automated fault diagnostic systems. One major approach, which has been widely used in chemical engineering, is to identify the possible causes of process disturbance using a logic-oriented method called signed directed graph (SDG). A knowledge based system was developed with the rules derived from the SDG representation. The SDG for the Chinshan nuclear power plant, which is a typical boiling water reactor, is established. The personal consultant system is used as the expert system development tool in this paper

  1. Comparison of the methods of seismic analysis applicable to fast reactors in the EEC countries

    International Nuclear Information System (INIS)

    Defalque, M.; Kunsch, P.; Preumont, A.

    1986-01-01

    The countries in the Community which are concerned by this study are those currently involved in the operation or development of fast reactors, namely: FRANCE (Phenix - Superphenix), FRG - BELGIUM - THE NETHERLANDS associated within DeBeNe (SNR - 300), UNITED KINGDOM (UK) (PFR-CDFR), ITALY (PEC). The first aim of the study is to enumerate the common points and differences in the national rules and regulations for the seismic analysis of fast breeder reactors. Such divergences may be encountered at different design stages, namely: in the definition of the seismic input data, in the choice of design limits and in the degree of conservatism applied to the calculation methods employed. For every one of these three stages, it is necessary to identify the points likely to influence the results of the analysis and consequently the over-all safety margin with regard to the event concerned. 73 refs

  2. Training simulator for nuclear power plant reactor control model and method

    International Nuclear Information System (INIS)

    Czerbuejewski, F.R.

    1975-01-01

    A description is given of a method and system for the real-time dynamic simulation of a nuclear power plant for training purposes, wherein a control console has a plurality of manual and automatic remote control devices for operating simulated control rods and has indicating devices for monitoring the physical operation of a simulated reactor. Digital computer means are connected to the control console to calculate data values for operating the monitoring devices in accordance with the control devices. The simulation of the reactor control rod mechanism is disclosed whereby the digital computer means operates the rod position monitoring devices in a real-time that is a fraction of the computer time steps and simulates the quick response of a control rod remote control lever together with the delayed response upon a change of direction

  3. A comparative study of time series modeling methods for reactor noise analysis

    International Nuclear Information System (INIS)

    Kitamura, Masaharu; Shigeno, Kei; Sugiyama, Kazusuke

    1978-01-01

    Two modeling algorithms were developed to study at-power reactor noise as a multi-input, multi-output process. A class of linear, discrete time description named autoregressive-moving average model was used as a compact mathematical expression of the objective process. One of the model estimation (modeling) algorithms is based on the theory of Kalman filtering, and the other on a conjugate gradient method. By introducing some modifications in the formulation of the problem, realization of the practically usable algorithms was made feasible. Through the testing with several simulation models, reliability and effectiveness of these algorithms were confirmed. By applying these algorithms to experimental data obtained from a nuclear power plant, interesting knowledge about the at-power reactor noise was found out. (author)

  4. New sampling method in continuous energy Monte Carlo calculation for pebble bed reactors

    International Nuclear Information System (INIS)

    Murata, Isao; Takahashi, Akito; Mori, Takamasa; Nakagawa, Masayuki.

    1997-01-01

    A pebble bed reactor generally has double heterogeneity consisting of two kinds of spherical fuel element. In the core, there exist many fuel balls piled up randomly in a high packing fraction. And each fuel ball contains a lot of small fuel particles which are also distributed randomly. In this study, to realize precise neutron transport calculation of such reactors with the continuous energy Monte Carlo method, a new sampling method has been developed. The new method has been implemented in the general purpose Monte Carlo code MCNP to develop a modified version MCNP-BALL. This method was validated by calculating inventory of spherical fuel elements arranged successively by sampling during transport calculation and also by performing criticality calculations in ordered packing models. From the results, it was confirmed that the inventory of spherical fuel elements could be reproduced using MCNP-BALL within a sufficient accuracy of 0.2%. And the comparison of criticality calculations in ordered packing models between MCNP-BALL and the reference method shows excellent agreement in neutron spectrum as well as multiplication factor. MCNP-BALL enables us to analyze pebble bed type cores such as PROTEUS precisely with the continuous energy Monte Carlo method. (author)

  5. Methods and means of the radioisotope flaw detection of the nuclear power reactors components

    International Nuclear Information System (INIS)

    Dekopov, A.S.; Majorov, A.N.; Firsov, V.G.

    1979-01-01

    Methods and means are considered for the radioisotopic flaw detection of the nuclear reactors pressure vessels and structural components of the reactor circuit. Methods of control are described as in the technological process of fabrication of the power reactors assemblies as during the systematic-preventive repair of the nuclear power station equipment during exploitation. Methodological base is given of the technology of radiation control of welded joints of the pressure vessel branch piper of the WWER-440 and WWER-1000 reactors in the process of assembling and exploitation and joining pipes with the pipe-plate of the steamgenerator in the process of fabrication. Methods of the radioisotope flaw detection in the process of exploitation take into consideration the influence of the radioisotope background, and ensure obtaining of the demanded by the rules of control, sensitivity. Methods of control of welded joints of the steamgenerator of nuclear power plants are based on the simultaneous examination of all joints with application of the shaped radiographic plate-holders. Special gamma-flaw-detection equipment is developed for control of the welded joints of the main branch-pipes. Design peculiarities are given of the installation for flaw detection. These installations are equipped with the system for emergency return of the radiation source into the storage position from the position for exposure. They have automatic exposure-meters for determination of the exposure time. Successfull exploitation of such installations in the Finland during assembling equipment for the nuclear reactor of the nuclear power plant ''Loviisa-1'' and in the USSR on the Novovoronezh nuclear power plant has shown possibility for detection of flaws having dimensions about 1% of the equipment used. For control of welded joints of pipes with pipe-plates at the steam generators, portable flaw-detectors are used. Sensitivity of these flaw-detectors towards detection of the wire standards has

  6. Optimal Protection of Reactor Hall Under Nuclear Fuel Container Drop Using Simulation Methods

    Directory of Open Access Journals (Sweden)

    Králik Juraj

    2014-12-01

    Full Text Available This paper presents of the optimal design of the damping devices cover of reactor hall under impact of nuclear fuel container drop of type TK C30. The finite element idealization of nuclear power plant structure is used in software ANSYS. The steel pipe damper system is proposed for dissipation of the kinetic energy of the container free fall in comparison with the experimental results. The probabilistic and sensitivity analysis of the damping devices was considered on the base of the simulation methods in program AntHill using the Monte Carlo method.

  7. Computer methods for transient fluid-structure analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Belytschko, T.; Liu, W.K.

    1985-01-01

    Fluid-structure interaction problems in nuclear engineering are categorized according to the dominant physical phenomena and the appropriate computational methods. Linear fluid models that are considered include acoustic fluids, incompressible fluids undergoing small disturbances, and small amplitude sloshing. Methods available in general-purpose codes for these linear fluid problems are described. For nonlinear fluid problems, the major features of alternative computational treatments are reviewed; some special-purpose and multipurpose computer codes applicable to these problems are then described. For illustration, some examples of nuclear reactor problems that entail coupled fluid-structure analysis are described along with computational results

  8. Using the probability method for multigroup calculations of reactor cells in a thermal energy range

    International Nuclear Information System (INIS)

    Rubin, I.E.; Pustoshilova, V.S.

    1984-01-01

    The possibility of using the transmission probability method with performance inerpolation for determining spatial-energy neutron flux distribution in cells of thermal heterogeneous reactors is considered. The results of multigroup calculations of several uranium-water plane and cylindrical cells with different fuel enrichment in a thermal energy range are given. A high accuracy of results is obtained with low computer time consumption. The use of the transmission probability method is particularly reasonable in algorithms of the programmes compiled computer with significant reserve of internal memory

  9. Continuous method for refining sodium. [for use in LMFBR type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Batoux, B; Laurent-Atthalin, A; Salmon, M

    1973-11-16

    The invention relates to a refining method according to which commercial sodium provides a high purity sodium with, in particular, a very small calcium content. The method consists in continuously feeding a predetermined amount of sodium peroxide into a sodium stream, mixing and causing said sodium peroxide to reach with sodium at an appropriate temperature, and, finally, separating the reaction products from sodium by decanting and filtering same. The thus obtained high purity sodium meets the requirements of atomic industries in particular, in view of its possible use as coolant in nuclear reactors of the ''breeder'' type.

  10. Comparison of DNBR estimation methods in the Westinghouse and KWU reactor cores

    International Nuclear Information System (INIS)

    Camargo, C.T.M.; Pontedeiro, A.C.

    1984-11-01

    A method for foreseeing departure from nucleate boiling phenomenon in Westinghouse reator cores (OTΔT- signal for reator shut down) is described. The results from investigations done with the OTΔT system and in the efficiency of different methods used in the Westinghouse and KWU nuclear power plants to estimate thermohydraulic conditions of the PWR reactor cores, are presented. The investigations were done, by support of computer codes. The modifications, purposed by Westinghouse, in the original project of Angra-1 OTΔT system are analysed. (M.C.K.) [pt

  11. A functional method for estimating DPA tallies in Monte Carlo calculations of Light Water Reactors

    International Nuclear Information System (INIS)

    Read, Edward A.; Oliveira, Cassiano R.E. de

    2011-01-01

    There has been a growing need in recent years for the development of methodology to calculate radiation damage factors, namely displacements per atom (dpa), of structural components for Light Water Reactors (LWRs). The aim of this paper is to discuss the development and implementation of a dpa method using Monte Carlo method for transport calculations. The capabilities of the Monte Carlo code Serpent such as Woodcock tracking and fuel depletion are assessed for radiation damage calculations and its capability demonstrated and compared to those of the Monte Carlo code MCNP for radiation damage calculations of a typical LWR configuration. (author)

  12. A novel method for in-situ estimation of time constant for core temperature monitoring thermocouples of operating reactors

    International Nuclear Information System (INIS)

    Sylvia, J.I.; Chandar, S. Clement Ravi; Velusamy, K.

    2014-01-01

    Highlights: • Core temperature sensor was mathematically modeled. • Ramp signal generated during reactor operating condition is used. • Procedure and methodology has been demonstrated by applying it to FBTR. • Same technique will be implemented for all fast reactors. - Abstract: Core temperature monitoring system is an important component of reactor protection system in the current generation fast reactors. In this system, multiple thermocouples are housed inside a thermowell of fuel subassemblies. Response time of the thermocouple assembly forms an important input for safety analysis of fast reactor and hence frequent calibration/time constant estimation is essential. In fast reactors the central fuel subassembly is provided with bare fast response thermocouples to detect under cooling events in reactor and take proper safety action. On the other hand, thermocouples in thermowell are mainly used for blockage detection in individual fuel subassemblies. The time constant of thermocouples in thermowell can drift due to creep, vibration and thermal fatigue of the thermowell assembly. A novel method for in-situ estimation of time constant is proposed. This method uses the Safety Control Rod Accelerated Mechanism (SCRAM) or lowering of control Rod (LOR) signals of the reactor along with response of the central subassembly thermocouples as reference data. Validation of the procedure has been demonstrated by applying it to FBTR

  13. Methods and Models for the Coupled Neutronics and Thermal-Hydraulics Analysis of the CROCUS Reactor at EFPL

    Directory of Open Access Journals (Sweden)

    A. Rais

    2015-01-01

    Full Text Available In order to analyze the steady state and transient behavior of the CROCUS reactor, several methods and models need to be developed in the areas of reactor physics, thermal-hydraulics, and multiphysics coupling. The long-term objectives of this project are to work towards the development of a modern method for the safety analysis of research reactors and to update the Final Safety Analysis Report of the CROCUS reactor. A first part of the paper deals with generation of a core simulator nuclear data library for the CROCUS reactor using the Serpent 2 Monte Carlo code and also with reactor core modeling using the PARCS code. PARCS eigenvalue, radial power distribution, and control rod reactivity worth results were benchmarked against Serpent 2 full-core model results. Using the Serpent 2 model as reference, PARCS eigenvalue predictions were within 240 pcm, radial power was within 3% in the central region of the core, and control rod reactivity worth was within 2%. A second part reviews the current methodology used for the safety analysis of the CROCUS reactor and presents the envisioned approach for the multiphysics modeling of the reactor.

  14. Research program in reactor core diagnostics with neutron noise methods: Stage 3. Final report

    International Nuclear Information System (INIS)

    Pazsit, I.; Garis, N.S.; Karlsson, J.; Racz, A.

    1997-09-01

    Stage 3 of the program has been executed 96-04-12. The long term goal is to develop noise methods for identification and localization of perturbations in reactor cores. The main parts of the program consist of modelling the noise source, calculation of the space- and frequency dependent transfer function, calculation of the neutron noise via a convolution of the transfer function of the system and the noise source, i.e. the perturbation, and finally finding an inversion or unfolding procedure to determine noise source parameters from the neutron noise. Most previous work is based on very simple (analytical) reactor models for the calculation of the transfer function as well as analytical unfolding methods. The purpose of this project is to calculate the transfer function in a more realistic model as well as elaborating powerful inversion methods that do not require analytical transfer functions. The work in stage 3 is described under the following headlines: Further investigation of simplified models for the calculation of the neutron noise; Further investigation of methods based on neural networks; Further investigation of methods for detecting the vibrations and impacting of detectors; Application of static codes for determination of the neutron noise using the adiabatic approximation

  15. A two-step method for developing a control rod program for boiling water reactors

    International Nuclear Information System (INIS)

    Taner, M.S.; Levine, S.H.; Hsiao, M.Y.

    1992-01-01

    This paper reports on a two-step method that is established for the generation of a long-term control rod program for boiling water reactors (BWRs). The new method assumes a time-variant target power distribution in core depletion. In the new method, the BWR control rod programming is divided into two steps. In step 1, a sequence of optimal, exposure-dependent Haling power distribution profiles is generated, utilizing the spectral shift concept. In step 2, a set of exposure-dependent control rod patterns is developed by using the Haling profiles generated at step 1 as a target. The new method is implemented in a computer program named OCTOPUS. The optimization procedure of OCTOPUS is based on the method of approximation programming, in which the SIMULATE-E code is used to determine the nucleonics characteristics of the reactor core state. In a test in cycle length over a time-invariant, target Haling power distribution case because of a moderate application of spectral shift. No thermal limits of the core were violated. The gain in cycle length could be increased further by broadening the extent of the spetral shift

  16. Research on reactor physics analysis method based on Monte Carlo homogenization

    International Nuclear Information System (INIS)

    Ye Zhimin; Zhang Peng

    2014-01-01

    In order to meet the demand of nuclear energy market in the future, many new concepts of nuclear energy systems has been put forward. The traditional deterministic neutronics analysis method has been challenged in two aspects: one is the ability of generic geometry processing; the other is the multi-spectrum applicability of the multigroup cross section libraries. Due to its strong geometry modeling capability and the application of continuous energy cross section libraries, the Monte Carlo method has been widely used in reactor physics calculations, and more and more researches on Monte Carlo method has been carried out. Neutronics-thermal hydraulics coupling analysis based on Monte Carlo method has been realized. However, it still faces the problems of long computation time and slow convergence which make it not applicable to the reactor core fuel management simulations. Drawn from the deterministic core analysis method, a new two-step core analysis scheme is proposed in this work. Firstly, Monte Carlo simulations are performed for assembly, and the assembly homogenized multi-group cross sections are tallied at the same time. Secondly, the core diffusion calculations can be done with these multigroup cross sections. The new scheme can achieve high efficiency while maintain acceptable precision, so it can be used as an effective tool for the design and analysis of innovative nuclear energy systems. Numeric tests have been done in this work to verify the new scheme. (authors)

  17. Accuracy of cell calculation methods used for analysis of high conversion light water reactor lattice

    International Nuclear Information System (INIS)

    Jeong, Chang-Joon; Okumura, Keisuke; Ishiguro, Yukio; Tanaka, Ken-ichi

    1990-01-01

    Validation tests were made for the accuracy of cell calculation methods used in analyses of tight lattices of a mixed-oxide (MOX) fuel core in a high conversion light water reactor (HCLWR). A series of cell calculations was carried out for the lattices referred from an international HCLWR benchmark comparison, with emphasis placed on the resonance calculation methods; the NR, IR approximations, the collision probability method with ultra-fine energy group. Verification was also performed for the geometrical modelling; a hexagonal/cylindrical cell, and the boundary condition; mirror/white reflection. In the calculations, important reactor physics parameters, such as the neutron multiplication factor, the conversion ratio and the void coefficient, were evaluated using the above methods for various HCLWR lattices with different moderator to fuel volume ratios, fuel materials and fissile plutonium enrichments. The calculated results were compared with each other, and the accuracy and applicability of each method were clarified by comparison with continuous energy Monte Carlo calculations. It was verified that the accuracy of the IR approximation became worse when the neutron spectrum became harder. It was also concluded that the cylindrical cell model with the white boundary condition was not so suitable for MOX fuelled lattices, as for UO 2 fuelled lattices. (author)

  18. Improved collision probability method for thermal-neutron-flux calculation in a cylindrical reactor cell

    International Nuclear Information System (INIS)

    Bosevski, T.

    1986-01-01

    An improved collision probability method for thermal-neutron-flux calculation in a cylindrical reactor cell has been developed. Expanding the neutron flux and source into a series of even powers of the radius, one' gets a convenient method for integration of the one-energy group integral transport equation. It is shown that it is possible to perform an analytical integration in the x-y plane in one variable and to use the effective Gaussian integration over another one. Choosing a convenient distribution of space points in fuel and moderator the transport matrix calculation and cell reaction rate integration were condensed. On the basis of the proposed method, the computer program DISKRET for the ZUSE-Z 23 K computer has been written. The suitability of the proposed method for the calculation of the thermal-neutron-flux distribution in a reactor cell can be seen from the test results obtained. Compared with the other collision probability methods, the proposed treatment excels with a mathematical simplicity and a faster convergence. (author)

  19. Application Of WIMS Code To Calculation Kartini Reactor Parameters By Pin-Cell And Cluster Method

    International Nuclear Information System (INIS)

    Sumarsono, Bambang; Tjiptono, T.W.

    1996-01-01

    Analysis UZrH fuel element parameters calculation in Kartini Reactor by WIMS Code has been done. The analysis is done by pin cell and cluster method. The pin cell method is done as a function percent burn-up and by 8 group 3 region analysis and cluster method by 8 group 12 region analysis. From analysis and calculation resulted K ∼ = 1.3687 by pin cell method and K ∼ = 1.3162 by cluster method and so deviation is 3.83%. By pin cell analysis as a function percent burn-up at the percent burn-up greater than 59.50%, the multiplication factor is less than one (k ∼ < 1) it is mean that the fuel element reactivity is negative

  20. A comparative study to investigate burnup in research reactor fuel using two independent experimental methods

    International Nuclear Information System (INIS)

    Iqbal, M.; Mehmood, T.; Ayazuddin, S.K.; Salahuddin, A.; Pervez, S.

    2001-01-01

    Two independent experimental methods have been used for the comparative study of fuel burnup measurement in low enriched uranium, plate type research reactor. In the first method a gamma ray activity ratio method was employed. An experimental setup was established for gamma ray scanning using prior calibrated high purity germanium detector. The computer software KORIGEN gave the theoretical support. In the second method reactivity difference technique was used. At the same location in the same core configuration the fresh and burned fuel element's reactivity worth was estimated. For theoretical estimated curve, group cross-sections were generated using computer code WIMS-D/4, and three dimensional modeling was made by computer code CITATION. The measured burnup of different fuel elements using these methods were found to be in good agreement

  1. Creep/fatigue damage prediction of fast reactor components using shakedown methods

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.

    1997-01-01

    The present status of the shakedown method is reviewed, the application of the shakedown based principles to complex hardening and creep behaviour is described and justified and the prediction of damage against design criteria outlined. Comparisons are made with full inelastic analysis solutions where these are available and against damage assessments using elastic and inelastic design code methods. Current and future developments of the method are described including a summary of the advances made in the development of the post process ADAPT, which has enabled the method to be applied to complex geometry features and loading cases. The paper includes a review of applications of the method to typical Fast Reactor structural example cases within the primary and secondary circuits. For the primary circuit this includes structures such as the large diameter internal shells which are surrounded by hot sodium and subject to slow and rapid thermal transient loadings. One specific case is the damage assessment associated with thermal stratifications within sodium and the effects of moving sodium surfaces arising from reactor trip conditions. Other structures covered are geometric features within components such as the Above Core structure and Intermediate Heat Exchanger. For the secondary circuit the method has been applied to alternative and more complex forms of geometry namely thick section tubeplates of the Steam Generator and a typical secondary circuit piping run. Both of these applications are in an early stage of development but are expected to show significant advantages with respect to creep and fatigue damage estimation compared with existing code methods. The principle application of the method to design has so far been focused on Austenitic Stainless steel components however current work shows some significant benefits may be possible from the application of the method to structures made from Ferritic steels such as Modified 9Cr 1Mo. This aspect is briefly

  2. Application of software quality assurance methods in validation and maintenance of reactor analysis computer codes

    International Nuclear Information System (INIS)

    Reznik, L.

    1994-01-01

    Various computer codes employed at Israel Electricity Company for preliminary reactor design analysis and fuel cycle scoping calculations have been often subject to program source modifications. Although most changes were due to computer or operating system compatibility problems, a number of significant modifications were due to model improvement and enhancements of algorithm efficiency and accuracy. With growing acceptance of software quality assurance requirements and methods, a program of implementing extensive testing of modified software has been adopted within the regular maintenance activities. In this work survey has been performed of various software quality assurance methods of software testing which belong mainly to the two major categories of implementation ('white box') and specification-based ('black box') testing. The results of this survey exhibits a clear preference of specification-based testing. In particular the equivalence class partitioning method and the boundary value method have been selected as especially suitable functional methods for testing reactor analysis codes.A separate study of software quality assurance methods and techniques has been performed in this work objective to establish appropriate pre-test software specification methods. Two methods of software analysis and specification have been selected as the most suitable for this purpose: The method of data flow diagrams has been shown to be particularly valuable for performing the functional/procedural software specification while the entities - relationship diagrams has been approved to be efficient for specifying software data/information domain. Feasibility of these two methods has been analyzed in particular for software uncertainty analysis and overall code accuracy estimation. (author). 14 refs

  3. A preliminary report on methods of measuring and reducing Argon-41 production by a TRIGA reactor

    International Nuclear Information System (INIS)

    Smith, W.L.

    1972-01-01

    Methods to accurately determine and techniques to reduce the Argon-41 released from the one-megawatt Geological Survey TRIGA Reactor facility have been developed. Knowledge of the composition of the exhaust-gas effluent is of prime importance to the U.S. Geological Survey in minimizing all radioactive releases to the environment. The counting systems and control measures have enabled the Geological Survey TRIGA Reactor staff to reduce the amount of Argon-41 released from the facility by a factor of two, with no reduction in operation level of the reactor. The counting system has also enabled the staff to categorize the principal sources of Argon-41. Under normal conditions, a fully-loaded rotating-specimen rack is by far the largest contributor. With the current counting system, 10 -7 microcuries per cubic centimeter can be detected in the exhaust stack. It is intended to further improve this system to increase both the sensitivity and the reliability. The sensitivity is expected to be increased by utilizing a larger counting volume. To improve the reliability, it is planned to fabricate a loop parallel to the exhaust system, eliminating the need for a separate pump. (author)

  4. Modular head assembly and method of retrofitting existing nuclear reactor facilities

    International Nuclear Information System (INIS)

    Malandra, L.J.; Ledue, R.J.; Hankinson, M.F.; Kowalski, E.F.

    1987-01-01

    A method is described of retrofitting existing nuclear reactor facilities so as to form a modular closure head assembly for a nuclear reactor pressure vessel, where the existing nuclear reactor facilities comprise control rod drive mechanism cooling systems which include vertically extending elbow air ducts inter-connecting vertically spaced upper and lower air manifolds. The elbow air ducts extend radially beyond the peripheral envelope of the closure head, comprising the steps of: removing the upper air manifold; removing the vertically extending elbow air ducts; capping the air ports of the lower air manifold which ports were previously fluidically connecting the lower air manifold to the vertically extending elbow air ducts; disposing vertically upwardly extending air exhaust ducts above the lower air manifold in such an manner that the air exhaust ducts are disposed within the peripheral envelope of the closure head; fluidically connecting exhaust fans to the upper regions of the air exhaust ducts; fluidically connecting the lower regions of the air exhaust ducts the lower air manifold; permanently securing lift rods to the closure head at positions disposed radially outwardly of the lower air manifold; attaching a seismic support platform to the lift rods; proving fluidic passage of the vertically extending air exhaust ducts through the seismic support platform; attaching a missile shield plate to the lift rods; and proving fluidic passage of the vertically extending air exhaust ducts through the missile shield plate

  5. Classification of Reactor Facility Operational State Using SPRT Methods with Radiation Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Aviles, Camila A. [ORNL; Rao, Nageswara S. [ORNL

    2018-01-01

    We consider the problem of inferring the operational state of a reactor facility by using measurements from a radiation sensor network, which is deployed around the facility’s ventilation stack. The radiation emissions from the stack decay with distance, and the corresponding measurements are inherently random with parameters determined by radiation intensity levels at the sensor locations. We fuse measurements from network sensors to estimate the intensity at the stack, and use this estimate in a one-sided Sequential Probability Ratio Test (SPRT) to infer the on/off state of the reactor facility. We demonstrate the superior performance of this method over conventional majority vote fusers and individual sensors using (i) test measurements from a network of NaI sensors, and (ii) emulated measurements using radioactive effluents collected at a reactor facility stack. We analytically quantify the performance improvements of individual sensors and their networks with adaptive thresholds over those with fixed ones, by using the packing number of the radiation intensity space.

  6. Method for accounting for macroscopic heterogeneities in reactor material balance generation in fuel cycle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bagdatlioglu, Cem, E-mail: cemb@utexas.edu; Schneider, Erich

    2016-06-15

    Highlights: • Describes addition of spatially dependent power sharing to a previous methodology. • The methodology is used for calculating the input and output isotopics and burnup. • Generalizes to simulate reactors with strong spatial and flux heterogeneities. • Presents cases where the old approach would not have been sufficient. - Abstract: This paper describes the addition of spatially dependent power sharing to a methodology used for calculating the input and output isotopics and burnup of nuclear reactors within a nuclear fuel cycle simulator. Neutron balance and depletion calculations are carried out using pre-calculated fluence-based libraries. These libraries track the transmutation and neutron economy evolution of unit masses of nuclides available in input fuel. The work presented in the paper generalizes the method to simulate reactors that contain more than one type of fuel as well as strong spatial and flux heterogeneities, for instance breeders with a driver–blanket configuration. To achieve this, spatial flux calculations are used to determine the fluence-dependent relative average fluxes inside macroscopic spatial regions. These fluxes are then used to determine the average power of macroscopic spatial regions as well as to more accurately calculate region-specific transmutation rates. The paper presents several cases where the fluence based approach alone would not have been sufficient to determine results.

  7. Method to Reduce Long-lived Fission Products by Nuclear Transmutations with Fast Spectrum Reactors.

    Science.gov (United States)

    Chiba, Satoshi; Wakabayashi, Toshio; Tachi, Yoshiaki; Takaki, Naoyuki; Terashima, Atsunori; Okumura, Shin; Yoshida, Tadashi

    2017-10-24

    Transmutation of long-lived fission products (LLFPs: 79 Se, 93 Zr, 99 Tc, 107 Pd, 129 I, and 135 Cs) into short-lived or non-radioactive nuclides by fast neutron spectrum reactors without isotope separation has been proposed as a solution to the problem of radioactive wastes disposal. Despite investigation of many methods, such transmutation remains technologically difficult. To establish an effective and efficient transmutation system, we propose a novel neutron moderator material, yttrium deuteride (YD 2 ), to soften the neutron spectrum leaking from the reactor core. Neutron energy spectra and effective half-lives of LLFPs, transmutation rates, and support ratios were evaluated with the continuous-energy Monte Carlo code MVP-II/MVP-BURN and the JENDL-4.0 cross section library. With the YD 2 moderator in the radial blanket and shield regions, effective half-lives drastically decreased from 106 to 102 years and the support ratios reached 1.0 for all six LLFPs. This successful development and implementation of a transmutation system for LLFPs without isotope separation contributes to a the ability of fast spectrum reactors to reduce radioactive waste by consuming their own LLFPs.

  8. An assessment of methods of calculating Doppler effects in plutonium fuelled sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Reddell, G.

    1979-01-01

    After a survey of the requirements, an assessment of UK methods and data is made on the basis of the following work. First, the analysis of the SEFOR Doppler experiments, carried out using the UK FGL5 fine group nuclear data library, the MURAL cell code and whole reactor diffusion theory calculations of the neutron flux. Second, the analysis of some Japanese FCA central sample perturbation measurements of structural material Doppler effects. Third, an assessment of the accuracy of Doppler predictions in a sodium voided core using results from Zebra 5 and BIZET, and theoretical studies of additional effects relevant to power reactors and not covered by the above analyses, including the following, the calculation of Doppler effects at high temperature, fuel cycle and burn-up effects, and the heterogeneity effects of large fuelled subassemblies in pin geometry. The importance of crystalline binding effects in the fuel are discussed as is the importance of reactor material boundaries in the calculation of resonance shielding effects. Some suggestions for further Doppler studies are made. (U.K.)

  9. Repairing method and apparatus for weld portion of reactor core shroud

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Hiroshi; Tamai, Yasukata; Kurosawa, Koichi (Hitachi Ltd., Tokyo (Japan)); Toyota, Seiichi; Kikuchi, Toshikazu.

    1993-12-07

    A method of repairing a weld portion in a cylindrical reactor core shroud comprises a first step of inspecting a weld portion by an ultrasonic flow testing device from the surface of the reactor core shroud, a second step of applying repairing fabrication for cracked portion if it is discovered by the test and a third step of applying a surface modification to the fabricated portion after the repairing fabrication. As a result, repairing fabrication for the crack caused by stress corrosion crack or the like is enabled and reoccurrence of the stress corrosion crack in the repair fabrication portion can be prevented. Operator's exposure dose is minimized by shielding with reactor water or shielding plate. In a case of using the shielding plate, welding and surface improvement can be practiced in atmospheric air instead of water-submerged welding. Water does not intrude from the outside of the shroud and occurrence of penetration crack can be coped with. Further, it is possible to reduce cost and save labors for parts exchange by using the parts in common, to improve the operation efficiency. (N.H.).

  10. Repairing method and apparatus for weld portion of reactor core shroud

    International Nuclear Information System (INIS)

    Tsujimura, Hiroshi; Tamai, Yasukata; Kurosawa, Koichi; Toyota, Seiichi; Kikuchi, Toshikazu.

    1993-01-01

    A method of repairing a weld portion in a cylindrical reactor core shroud comprises a first step of inspecting a weld portion by an ultrasonic flow testing device from the surface of the reactor core shroud, a second step of applying repairing fabrication for cracked portion if it is discovered by the test and a third step of applying a surface modification to the fabricated portion after the repairing fabrication. As a result, repairing fabrication for the crack caused by stress corrosion crack or the like is enabled and reoccurrence of the stress corrosion crack in the repair fabrication portion can be prevented. Operator's exposure dose is minimized by shielding with reactor water or shielding plate. In a case of using the shielding plate, welding and surface improvement can be practiced in atmospheric air instead of water-submerged welding. Water does not intrude from the outside of the shroud and occurrence of penetration crack can be coped with. Further, it is possible to reduce cost and save labors for parts exchange by using the parts in common, to improve the operation efficiency. (N.H.)

  11. Method of collecting helium cover gas for heavy water moderated reactor

    International Nuclear Information System (INIS)

    Miyamoto, Keiji; Ueda, Hiroshi.

    1981-01-01

    Purpose: To reduce the systematic facility cost in a heavy water moderated reactor by contriving the simplification of a helium cover gas collecting intake system. Method: A detachable low pressure metal tank and a neoprene balloon are prepared for a vacuum pump in a permanent vacuum drying facility. When all of the helium cover gas is collected from a heavy water moderated reactor, a large capacity of neoprene balloon capable of temporarily storing it under low pressure is connected to the exhaust of the vacuum pump. On the other hand, while the reactor is operating, a suitable amount of the low pressure tank or neoprene balloon is connected to the exhaust side of the pump, thereby regulating the pressure of the helium cover gas. When refeeding the cover gas, the balloon, with a large capacity for collecting and storing the cover gas is connected to the intake side of the pump. Thus, the pressure regulation, collection of all of the cover gas and refeeding of the cover gas can be conducted without using a high discharge pump and high pressure tank. (Kamimura, M.)

  12. Methods and instrumentation for investigating Hall sensors during their irradiation in nuclear research reactors

    International Nuclear Information System (INIS)

    Bolshakova, I.; Holyaka, R.; Makido, E.; Marusenkov, A.; Shurygin, F.; Yerashok, V.; Moreau, P. J.; Vayakis, G.; Duran, I.; Stockel, J.; Chekanov, V.; Konopleva, R.; Nazarkin, I.; Kulikov, S.; Leroy, C.

    2009-01-01

    Present work discusses the issues of creating the instrumentation for testing the semiconductor magnetic field sensors during their irradiation with neutrons in nuclear reactors up to fluences similar to neutron fluences in steady-state sensor locations in ITER. The novelty of the work consists in Hall sensor parameters being investigated: first, directly during the irradiation (in real time), and, second, at high irradiation levels (fast neutron fluence > 10 18 n/cm 2 ). Developed instrumentation has been successfully tested and applied in the research experiments on radiation stability of magnetic sensors in IBR-2 (JINR, Dubna) and VVR-M (PNPI, Saint-Petersburg) reactors. The 'Remote-Rad' bench consists of 2 heads (head 1 and head 2) bearing investigated sensors put in a ceramic setting, of electronic unit, of personal computer and of signal lines. Each head contains 6 Hall sensors and a coil for generating test magnetic field. Moreover head 1 contains thermocouples for temperature measurement while the temperature of head 2 is measured by thermo-resistive method. The heads are placed in the reactor channel

  13. Neutronics investigation of CANada Deuterium Uranium 6 reactor fueled (transuranic–Th) O2 using a computational method

    OpenAIRE

    Zohreh Gholamzadeh; Seyed Mohammad Mirvakili; Hossein Khalafi

    2015-01-01

    Background: 241Am, 243Am, and 237Np isotopes are among the most radiotoxic components of spent nuclear fuel. Recently, researchers have planned different incineration scenarios for the highly radiotoxic elements of nuclear waste in critical reactors. Computational methods are widely used to predict burnup rates of such nuclear wastes that are used under fuel matrixes in critical reactors. Methods: In this work, the Monte Carlo N-particle transport code was used to calculate the neutronic b...

  14. Applied methods for mitigation of damage by stress corrosion in BWR type reactors; Metodos aplicados para la mitigacion del dano por corrosion bajo esfuerzo en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencia de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  15. Systematic assembly homogenization and local flux reconstruction for nodal method calculations of fast reactor power distributions

    International Nuclear Information System (INIS)

    Dorning, J.J.

    1991-01-01

    A simultaneous pin lattice cell and fuel bundle homogenization theory has been developed for use with nodal diffusion calculations of practical reactors. The theoretical development of the homogenization theory, which is based on multiple-scales asymptotic expansion methods carried out through fourth order in a small parameter, starts from the transport equation and systematically yields: a cell-homogenized bundled diffusion equation with self-consistent expressions for the cell-homogenized cross sections and diffusion tensor elements; and a bundle-homogenized global reactor diffusion equation with self-consistent expressions for the bundle-homogenized cross sections and diffusion tensor elements. The continuity of the angular flux at cell and bundle interfaces also systematically yields jump conditions for the scaler flux or so-called flux discontinuity factors on the cell and bundle interfaces in terms of the two adjacent cell or bundle eigenfunctions. The expressions required for the reconstruction of the angular flux or the 'de-homogenization' theory were obtained as an integral part of the development; hence the leading order transport theory angular flux is easily reconstructed throughout the reactor including the regions in the interior of the fuel bundles or computational nodes and in the interiors of the pin lattice cells. The theoretical development shows that the exact transport theory angular flux is obtained to first order from the whole-reactor nodal diffusion calculations, done using the homogenized nuclear data and discontinuity factors, is a product of three computed quantities: a ''cell shape function''; a ''bundle shape function''; and a ''global shape function''. 10 refs

  16. Heat Transfer Analysis of Methane Hydrate Sediment Dissociation in a Closed Reactor by a Thermal Method

    Directory of Open Access Journals (Sweden)

    Mingjun Yang

    2012-05-01

    Full Text Available The heat transfer analysis of hydrate-bearing sediment involved phase changes is one of the key requirements of gas hydrate exploitation techniques. In this paper, experiments were conducted to examine the heat transfer performance during hydrate formation and dissociation by a thermal method using a 5L volume reactor. This study simulated porous media by using glass beads of uniform size. Sixteen platinum resistance thermometers were placed in different position in the reactor to monitor the temperature differences of the hydrate in porous media. The influence of production temperature on the production time was also investigated. Experimental results show that there is a delay when hydrate decomposed in the radial direction and there are three stages in the dissociation period which is influenced by the rate of hydrate dissociation and the heat flow of the reactor. A significant temperature difference along the radial direction of the reactor was obtained when the hydrate dissociates and this phenomenon could be enhanced by raising the production temperature. In addition, hydrate dissociates homogeneously and the temperature difference is much smaller than the other conditions when the production temperature is around the 10 °C. With the increase of the production temperature, the maximum of ΔToi grows until the temperature reaches 40 °C. The period of ΔToi have a close relation with the total time of hydrate dissociation. Especially, the period of ΔToi with production temperature of 10 °C is twice as much as that at other temperatures. Under these experimental conditions, the heat is mainly transferred by conduction from the dissociated zone to the dissociating zone and the production temperature has little effect on the convection of the water in the porous media.

  17. Capabilities and limitations of fracture mechanics methods in the assessment of integrity of light water reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Burdekin, F M

    1988-12-31

    This document deals with fracture mechanics methods used for the assessment of Light Water Reactor (LWR) components. The background to analysis methods using elastic plastic parameters is described. Several results obtained with these methods are presented as well as results of reliability analysis methods. (TEC). 27 refs.

  18. Using the Jacobi-Davidson method to obtain the dominant Lambda modes of a nuclear power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Verdu, G. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain)]. E-mail: gverdu@iqn.upv.es; Ginestar, D. [Departamento de Matematica Aplicada, Universidad Politecnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain); Miro, R. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain); Vidal, V. [Departamento de Sistemas Informaticos y Computacion, Universidad Politecnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain)

    2005-07-15

    The Jacobi-Davidson method is a modification of Davidson method, which has shown to be very effective to compute the dominant eigenvalues and their corresponding eigenvectors of a large and sparse matrix. This method has been used to compute the dominant Lambda modes of two configurations of Cofrentes nuclear power reactor, showing itself a quite effective method, especially for perturbed configurations.

  19. Multiregion reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The study of reflected reactors can be done employing the multigroup diffusion method. The neutron conservation equations, inside the intervals, can be written by fluxes and group constants. A reflected reactor (one and two groups) for a slab geometry is studied, aplying the continuity of flux and current in the interface. At the end, the appropriated solutions for a infinite cylindrical reactor and for a spherical reactor are presented. (Author) [pt

  20. Utilization of OR method toward realization of better fast breeder reactor cycle

    International Nuclear Information System (INIS)

    Shiotani, Hiroki

    2008-01-01

    Fast Reactor Cycle Technology Development (FaCT) Project was now started aiming at commercialization of new nuclear power plants system. In parallel with development of component technology and technology demonstration by test, development of comprehensive evaluation method of the FBR cycle system is under way and scenario study, discounted cash flow (DCF) method, analytic hierarchy process (AHP), real option, supply chain management (SCM) and others are used. Since commercialized FBR cycle would request long-term and large-scale development contributed by so many participants, modeling of nuclear system and knowledge management are beneficial even for development of evaluation method and further utilization of OR technology is highly expected. Comprehensive evaluation methods now utilized or developing were overlooked from the standpoint of OR, 'Science of Better'. (T. Tanaka)

  1. Guideline for Bayesian Net based Software Fault Estimation Method for Reactor Protection System

    International Nuclear Information System (INIS)

    Eom, Heung Seop; Park, Gee Yong; Jang, Seung Cheol

    2011-01-01

    The purpose of this paper is to provide a preliminary guideline for the estimation of software faults in a safety-critical software, for example, reactor protection system's software. As the fault estimation method is based on Bayesian Net which intensively uses subjective probability and informal data, it is necessary to define formal procedure of the method to minimize the variability of the results. The guideline describes assumptions, limitations and uncertainties, and the product of the fault estimation method. The procedure for conducting a software fault-estimation method is then outlined, highlighting the major tasks involved. The contents of the guideline are based on our own experience and a review of research guidelines developed for a PSA

  2. Discrete nodal integral transport-theory method for multidimensional reactor physics and shielding calculations

    International Nuclear Information System (INIS)

    Lawrence, R.D.; Dorning, J.J.

    1980-01-01

    A coarse-mesh discrete nodal integral transport theory method has been developed for the efficient numerical solution of multidimensional transport problems of interest in reactor physics and shielding applications. The method, which is the discrete transport theory analogue and logical extension of the nodal Green's function method previously developed for multidimensional neutron diffusion problems, utilizes the same transverse integration procedure to reduce the multidimensional equations to coupled one-dimensional equations. This is followed by the conversion of the differential equations to local, one-dimensional, in-node integral equations by integrating back along neutron flight paths. One-dimensional and two-dimensional transport theory test problems have been systematically studied to verify the superior computational efficiency of the new method

  3. Installation method for the steel container and vessel of the nuclear heating reactor

    International Nuclear Information System (INIS)

    Chen Liying; Guo Jilin; Liu Wei

    2000-01-01

    The Nuclear Heating Reactor (NHR) has the advantages of inherent safety and better economics, integrated arrangement, full power natural circulation and dual vessel structure. However, the large thin container presents a new and difficult problem. The characteristics of the dual vessel installation method are analyzed with system engineering theory. Since there is no foreign or domestic experience, a new method was developed for the dual vessel installation for the 5 MW NHR. The result shows that the installation method is safe and reliable. The research on the dual vessel installation method has important significance for the design, manufacture and installation of the NHR dual vessel, as well as the industrialization and standardization of the NHR

  4. Pressurized water reactor monitoring. Study of detection, diagnostic and estimation methods (least error squares and filtering)

    International Nuclear Information System (INIS)

    Gillet, M.

    1986-07-01

    This thesis presents a study for the surveillance of the ''primary coolant circuit inventory monitoring'' of a pressurized water reactor. A reference model is developed in view of an automatic system ensuring detection and diagnostic in real time. The methods used for the present application are statistical tests and a method related to pattern recognition. The estimation of failures detected, difficult owing to the non-linearity of the problem, is treated by the least error squares method of the predictor or corrector type, and by filtering. It is in this frame that a new optimized method with superlinear convergence is developed, and that a segmented linearization of the model is introduced, in view of a multiple filtering [fr

  5. Probability-neighbor method of accelerating geometry treatment in reactor Monte Carlo code RMC

    International Nuclear Information System (INIS)

    She, Ding; Li, Zeguang; Xu, Qi; Wang, Kan; Yu, Ganglin

    2011-01-01

    Probability neighbor method (PNM) is proposed in this paper to accelerate geometry treatment of Monte Carlo (MC) simulation and validated in self-developed reactor Monte Carlo code RMC. During MC simulation by either ray-tracking or delta-tracking method, large amounts of time are spent in finding out which cell one particle is located in. The traditional way is to search cells one by one with certain sequence defined previously. However, this procedure becomes very time-consuming when the system contains a large number of cells. Considering that particles have different probability to enter different cells, PNM method optimizes the searching sequence, i.e., the cells with larger probability are searched preferentially. The PNM method is implemented in RMC code and the numerical results show that the considerable time of geometry treatment in MC calculation for complicated systems is saved, especially effective in delta-tracking simulation. (author)

  6. Method of detecting fuel failure in FBR type reactor and method of estimating fuel failure position

    International Nuclear Information System (INIS)

    Sonoda, Yukio; Tamaoki, Tetsuo

    1989-01-01

    Noise components in a normal state contained in detection signals from delayed neutron monitors disposed to a coolant inlet, etc. of an intermediate heat exchanger are forecast by self-recurring model and eliminated, and resultant detection signals are monitored thereby detecting fuel failure high sensitivity. Subsequently, the reactor is controlled to a low power operation state and a new self-recurring model to the detection signals from the delayed neutron monitors are prepared. Then, noise components in this state are removed and control rods near the delayed neutron monitors are extracted in a short stroke successively to examine the change of response of the delayed neutron monitors. Accordingly, the failed position for each of the fuels can be estimated at a level of one fuel assembly or a level of several assemblies containing the above-mentioned fuel assembly. Since the fuel failure can be detected at a high sensitivity and the position can be estimated, diffusion of abnormality can be prevented and plant shutdown for fuel exchange can be minimized. (I.S.)

  7. Numerical evaluation of fluid mixing phenomena in boiling water reactor using advanced interface tracking method

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Takase, Kazuyuki

    2008-01-01

    Thermal-hydraulic design of the current boiling water reactor (BWR) is performed with the subchannel analysis codes which incorporated the correlations based on empirical results including actual-size tests. Then, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. In this situation, development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason, we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, a detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. In this paper, firstly, we tried to verify the TPFIT code by comparing it with the existing 2-channel air-water mixing experimental results. Secondary, the TPFIT code was applied to simulation of steam-water two-phase flow in a model of two subchannels of a current BWRs and FLWRs rod bundle. The fluid mixing was observed at a gap between the subchannels. The existing two-phase flow correlation for fluid mixing is evaluated using detailed numerical simulation data. This data indicates that pressure difference between fluid channels is responsible for the fluid mixing, and thus the effects of the time average pressure difference and fluctuations must be incorporated in the two-phase flow correlation for fluid mixing. When inlet quality ratio of subchannels is relatively large, it is understood that evaluation precision of the existing two-phase flow correlations for fluid mixing are relatively low. (author)

  8. Assessment of uncertainty in full core reactor physics calculations using statistical methods

    International Nuclear Information System (INIS)

    McEwan, C.

    2012-01-01

    The best estimate method of safety analysis involves choosing a realistic set of input parameters for a proposed safety case and evaluating the uncertainty in the results. Determining the uncertainty in code outputs remains a challenge and is the subject of a benchmarking exercise proposed by the Organization for Economic Cooperation and Development. The work proposed in this paper will contribute to this benchmark by assessing the uncertainty in a depletion calculation of the final nuclide concentrations for an experiment performed in the Fukushima-2 reactor. This will be done using lattice transport code DRAGON and a tool known as DINOSAUR. (author)

  9. Measurement of thermal neutron distributions in a variety of reactor cells by the cell perturbation method

    Energy Technology Data Exchange (ETDEWEB)

    Takac, S M; Krcevinac, S B [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-07-15

    Measurements of thermal neutron density distributions were carried out in a variety of reactor cells by the newly developed cell perturbation method. The big geometrical and nuclear differences between the considered cells served as a very good testing ground for both the theory and experiments. The final experimental results are compared with a 'THERMOS'-type of calculation and in one case with the K-7 TRANSPO. In lattices L-1, L-2 and L-3 a very good agreement was reached with the results of K-7 THERMOS, while in lattice L-4, because of its complexity, the agreement was within the quoted errors (author)

  10. Recent development of radioanalytical method at IBR-2 pulsed fast reactor of the JINR

    International Nuclear Information System (INIS)

    Nazarov, V.M.; Pavlov, S.S.; Herrera, E.

    1991-01-01

    The experience of the use of radioanalytical methods, including NAA at IBR-2 pilsed fast reactor of the JINR, is discussed. Physical and technical parameters of the experimental installation designed for NAA and radiography are given. The detailed examples of the application of resonance neutrons to the control of the environment in the geology of oil, in multi-element analysis of food products and superpure materials as well as in nuclear physics are reviewed. The works on the application of the neutron isotopes sources for express determination of nitrogen content in original and synthetic materials are introduced. 7 refs.; 8 figs.; 3 tabs

  11. Preliminary design of fusion reactor fuel cleanup system by palladium alloy membrane method

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Konishi, Satoshi; Naruse, Yuji

    1981-10-01

    A design of palladium diffuser and Fuel Cleanup System (FCU) for D-T fusion reactor is proposed. Feasibility of palladium alloy membrane method is discussed based on the early studies by the authors. Operating conditions of the palladium diffuser are determined experimentally. Dimensions of the diffuser are estimated from computer simulation. FCU system is designed under the feed conditions of Tritium Systems Test Assembly (TSTA) at Los Alamos Scientific Laboratory. The system is composed of Pd-diffusers, catalytic oxidizer, freezer and zink beds, and has some advantages in system layout and operation. This design can readily be extended to other conditions of plasma exhaust gases. (author)

  12. Assessment of uncertainty in full core reactor physics calculations using statistical methods

    Energy Technology Data Exchange (ETDEWEB)

    McEwan, C., E-mail: mcewac2@mcmaster.ca [McMaster Univ., Hamilton, Ontario (Canada)

    2012-07-01

    The best estimate method of safety analysis involves choosing a realistic set of input parameters for a proposed safety case and evaluating the uncertainty in the results. Determining the uncertainty in code outputs remains a challenge and is the subject of a benchmarking exercise proposed by the Organization for Economic Cooperation and Development. The work proposed in this paper will contribute to this benchmark by assessing the uncertainty in a depletion calculation of the final nuclide concentrations for an experiment performed in the Fukushima-2 reactor. This will be done using lattice transport code DRAGON and a tool known as DINOSAUR. (author)

  13. Méthode analytique généralisée pour le calcul du coning. Nouvelle solution pour calculer le coning de gaz, d'eau et double coning dans les puits verticaux et horizontaux Generalized Analytical Method for Coning Calculation. New Solution to Calculation Both the Gas Coning, Water Coning and Dual Coning for Vertical and Horizontal Wells

    Directory of Open Access Journals (Sweden)

    Pietraru V.

    2006-11-01

    Full Text Available Une nouvelle méthode analytique d'évaluation du coning d'eau par bottom water drive et/ou de gaz par gas-cap drive dans les puits horizontaux et verticaux a été développée pour les réservoirs infinis [1]. Dans cet article, une généralisation de cette méthode est présentée pour les réservoirs confinés d'extension limitée dont le toit est horizontal. La généralisation proposée est basée sur la résolution des équations différentielles de la diffusivité avec prise en compte des effets de drainage par gravité et des conditions aux limites pour un réservoir confiné. La méthode est applicable aux réservoirs isotropes ou anisotropes. L'hypothèse de pression constante à la limite de l'aire de drainage dans l'eau et/ou dans le gaz a été adoptée. Les pertes de charge dans l'aquifère et dans le gas-cap sont donc négligées. Les principales contributions de cet article sont : - L'introduction de la notion de rayon de cône, différent du rayon de puits. La hauteur du cône et le débit critique dépendent du rayon de cône alors qu'ils sont indépendants du rayon du puits. - Une nouvelle corrélation pour le calcul du débit critique sous forme adimensionnelle en fonction de trois paramètres : le temps, la longueur du drain horizontal (nulle pour un puits vertical et le rayon de drainage. - Des corrélations pour le calcul du rapport des débits gaz/huile (GOR ou de la fraction en eau (fw, pendant les périodes critique et postcritique, qui tiennent compte de la pression capillaire et des perméabilités relatives. - Des corrélations pour le calcul des rapports de débits gaz/huile et eau/huile pendant les périodes pré, post et supercritique en double coning. - Des critères pour le calcul du temps de percée au puits en simple coning de gaz ou d'eau, ou en double coning de gaz et d'eau. A new analytical method for assessing water and/or gas coning in horizontal and vertical wells has been developed for infinite

  14. Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method

    Energy Technology Data Exchange (ETDEWEB)

    He, Mingtao; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China); Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-12-15

    Highlights: • A transport-based kinetics code for Accelerator Driven Subcritical Reactors is developed. • The performance of different kinetics methods adapted to the ADSR is investigated. • The impacts of neutronic parameters deteriorating with fuel depletion are investigated. - Abstract: The Accelerator Driven Subcritical Reactor (ADSR) is almost external source dominated since there is no additional reactivity control mechanism in most designs. This paper focuses on beam-induced transients with an in-house developed dynamic analysis code. The performance of different kinetics methods adapted to the ADSR is investigated, including the point kinetics approximation and space–time kinetics methods. Then, the transient responds of beam trip and beam overpower are calculated and analyzed for an ADSR design dedicated for minor actinides transmutation. The impacts of some safety-related neutronics parameters deteriorating with fuel depletion are also investigated. The results show that the power distribution varying with burnup leads to large differences in temperature responds during transients, while the impacts of kinetic parameters and feedback coefficients are not very obvious. Classification: Core physic.

  15. Experimental study on joint construction method for aseismatic walls of reactor buildings, (1)

    International Nuclear Information System (INIS)

    Sugita, Kazunao; Mogami, Tatsuo; Ezaki, Tetsuro

    1987-01-01

    On the aseismatic walls of a reactor auxiliary building, many temporary openings are provided at the time of the construction for carrying equipment in later, due to the demand of shortening the construction period. Thus on the aseismatic walls, in most cases there are the joints due to the concrete placed later. As equipment tends to be unitized and become large, the quipment is placed close to the wall having an opening, consequently, the workability is poor, and the standardization of construction method is urgently demanded. The conventional method of closing temporary openings has the problems of safety and connecting reinforcing bars, therefore, the new construction method was proposed. In reactor buildings, the joints of walls are unavoidable, and since those are large scale structures, the joints are numerous. Therefore, at the joint parts, it abandoned and buried frames are used, it is advantageous in the time and cost of joint construction. In both cases, the mechanical properties were confirmed by the fundamental performance test partially modeling the joints and the verifying test modeling the whole walls. In this paper, the test of applying only shearing force to joint models is reported. (Kako, I.)

  16. A computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui, E-mail: rhu@anl.gov; Yu, Yiqi

    2016-11-15

    Highlights: • Developed a computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors. • Applied fully-coupled JFNK solution scheme to avoid the operator-splitting errors. • The accuracy and efficiency of the method is confirmed with a 7-assembly test problem. • The effects of different spatial discretization schemes are investigated and compared to the RANS-based CFD simulations. - Abstract: For efficient and accurate temperature predictions of sodium fast reactor structures, a 3-D full-core conjugate heat transfer modeling capability is developed for an advanced system analysis tool, SAM. The hexagon lattice core is modeled with 1-D parallel channels representing the subassembly flow, and 2-D duct walls and inter-assembly gaps. The six sides of the hexagon duct wall and near-wall coolant region are modeled separately to account for different temperatures and heat transfer between coolant flow and each side of the duct wall. The Jacobian Free Newton Krylov (JFNK) solution method is applied to solve the fluid and solid field simultaneously in a fully coupled fashion. The 3-D full-core conjugate heat transfer modeling capability in SAM has been demonstrated by a verification test problem with 7 fuel assemblies in a hexagon lattice layout. Additionally, the SAM simulation results are compared with RANS-based CFD simulations. Very good agreements have been achieved between the results of the two approaches.

  17. Application of revised procedure on determining large excess reactivity of operating reactor. Fuel addition method

    International Nuclear Information System (INIS)

    Nagao, Yoshiharu

    2002-01-01

    The fuel addition method or the neutron absorption substitution method have been used for determination of large excess multiplication factor of large sized reactors. It has been pointed out, however, that all the experimental methods are possibly not free from the substantially large systematic error up to 20%, when the value of the excess multiplication factor exceeds about 15%Δk. Then, a basic idea of a revised procedure was proposed to cope with the problem, which converts the increase of multiplication factor in an actual core to that in a virtual core by calculation, because its value is in principle defined not for the former but the latter core. This paper proves that the revised procedure is able to be applicable for large sized research and test reactors through the theoretical analyses on the measurements undertaken at the JMTRC and JMTR cores. The values of excess multiplication factor are accurately determined utilizing the whole core calculation by the Monte Carlo code MCNP4A. (author)

  18. Optimization of an auto-thermal ammonia synthesis reactor using cyclic coordinate method

    Science.gov (United States)

    A-N Nguyen, T.; Nguyen, T.-A.; Vu, T.-D.; Nguyen, K.-T.; K-T Dao, T.; P-H Huynh, K.

    2017-06-01

    The ammonia synthesis system is an important chemical process used in the manufacture of fertilizers, chemicals, explosives, fibers, plastics, refrigeration. In the literature, many works approaching the modeling, simulation and optimization of an auto-thermal ammonia synthesis reactor can be found. However, they just focus on the optimization of the reactor length while keeping the others parameters constant. In this study, the other parameters are also considered in the optimization problem such as the temperature of feed gas enters the catalyst zone, the initial nitrogen proportion. The optimal problem requires the maximization of an objective function which is multivariable function and subject to a number of equality constraints involving the solution of coupled differential equations and also inequality constraint. The cyclic coordinate search was applied to solve the multivariable-optimization problem. In each coordinate, the golden section method was applied to find the maximum value. The inequality constraints were treated using penalty method. The coupled differential equations system was solved using Runge-Kutta 4th order method. The results obtained from this study are also compared to the results from the literature.

  19. Method to Assess the Radionuclide Inventory of Irradiated Graphite from Gas-Cooled Reactors - 13072

    Energy Technology Data Exchange (ETDEWEB)

    Poncet, Bernard [EDF-CIDEN, 154 Avenue Thiers, CS 60018, F-69458 LYON cedex 06 (France)

    2013-07-01

    About 17,000 t of irradiated graphite waste will be produced from the decommissioning of the six French gas-cooled nuclear reactors. Determining the radionuclide (RN) content of this waste is of relevant importance for safety reasons and in order to determine the best way to manage them. For many reasons the impurity content that gave rise to the RNs in irradiated graphite by neutron activation during operation is not always well known and sometimes actually unknown. So, assessing the RN content by the use of traditional calculation activation, starting from assumed impurity content, leads to a false assessment. Moreover, radiochemical measurements exhibit very wide discrepancies especially on RN corresponding to precursor at the trace level such as natural chlorine corresponding to chlorine 36. This wide discrepancy is unavoidable and is due to very simple reasons. The level of impurity is very low because the uranium fuel used at that very moment was not enriched, so it was a necessity to have very pure nuclear grade graphite and the very low size of radiochemical sample is a simple technical constraint because device size used to get mineralization product for measurement purpose is limited. The assessment of a radionuclide inventory only based on few number of radiochemical measurements lead in most cases, to a gross over or under-estimation that is detrimental for graphite waste management. A method using an identification calculation-measurement process is proposed in order to assess a radiological inventory for disposal sizing purpose as precise as possible while guaranteeing its upper character. This method present a closer approach to the reality of the main phenomenon at the origin of RNs in a reactor, while also incorporating the secondary effects that can alter this result such as RN (or its precursor) release during reactor operation. (authors)

  20. Blackness coefficients, effective diffusion parameters, and control rod worths for thermal reactors - Methods

    Energy Technology Data Exchange (ETDEWEB)

    Bretscher, M M [Argonne National Laboratory, Argonne, IL 60439 (United States)

    1985-07-01

    Simple diffusion theory cannot be used to evaluate control rod worths in thermal neutron reactors because of the strongly absorbing character of the control material. However, reliable control rod worths can be obtained within the framework of diffusion theory if the control material is characterized by a set of mesh-dependent effective diffusion parameters. For thin slab absorbers the effective diffusion parameters can be expressed as functions of a suitably-defined pair of 'blackness coefficients'. Methods for calculating these blackness coefficients in the P1, P3, and P5 approximations, with and without scattering, are presented. For control elements whose geometry does not permit a thin slab treatment, other methods are needed for determining the effective diffusion parameters. One such method, based on reaction rate ratios, is discussed. (author)