Sample records for reactor systems experimental

  1. Plasma heating systems planned for the Argonne experimental power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bertoncini, P.; Brooks, J.; Fasolo, J.; Mills, F.; Moretti, A.; Norem, J.


    A scoping study and conceptual design of a tokamak experimental power reactor (TEPR) have been completed. The design objectives of the TEPR are to operate for ten years at or near electrical power breakeven conditions with a duty factor of greater than or equal to 50 percent and to demonstrate the feasibility of tokamak fusion power reactor techniques. These objectives can be met by a design which has a major radius of 6.25 m and a plasma radius of 2.1 m. Parameters for this reactor are listed, and a diagram is given. This paper will describe TEPR plasma heating systems. Neutral beam heating and rf heating are described.

  2. Incipient Transient Detection in Reactor Systems: Experimental and Theoretical Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Lefteri H. Tsoukalas; S.T. Revankar; X Wang; R. Sattuluri


    The main goal of this research was to develop a method for detecting reactor system transients at the earliest possible time through a comprehensive experimental, testing and benchmarking program. This approach holds strong promise for developing new diagnostic technologies that are non-intrusive, generic and highly portable across different systems. It will help in the design of new generation nuclear power reactors, which utilize passive safety systems with a reliable and non-intrusive multiphase flow diagnostic system to monitor the function of the passive safety systems. The main objective of this research was to develop an improved fuzzy logic based detection method based on a comprehensive experimental testing program to detect reactor transients at the earliest possible time, practically at their birth moment. A fuzzy logic and neural network based transient identification methodology and implemented in a computer code called PROTREN was considered in this research and was compared with SPRT (Sequentially Probability Ratio Testing) decision and Bayesian inference. The project involved experiment, theoretical modeling and a thermal-hydraulic code assessment. It involved graduate and undergraduate students participation providing them with exposure and training in advanced reactor concepts and safety systems. In this final report, main tasks performed during the project period are summarized and the selected results are presented. Detailed descriptions for the tasks and the results are presented in previous yearly reports (Revankar et al 2003 and Revankar et al 2004).

  3. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira


    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  4. Design of a management information system for the Shielding Experimental Reactor ageing management

    Energy Technology Data Exchange (ETDEWEB)

    He Jie, E-mail: [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Xu Xianhong [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)


    The problem of nuclear reactor ageing is a topic of increasing importance in nuclear safety recent years. Ageing management is usually implemented for reactors maintenance. In the practice, a large number of data and records need to be processed. However, there are few professional software applications that aid reactor ageing management, especially for research reactors. This paper introduces the design of a new web-based management information system (MIS), named the Shielding Experimental Reactor Ageing Management Information System (SERAMIS). It is an auxiliary means that helps to collect data, keep records, and retrieve information for a research reactor ageing management. The Java2 Enterprise Edition (J2EE) and network database techniques, such as three-tiered model, Model-View-Controller architecture, transaction-oriented operations, and JavaScript techniques, are used in the development of this system. The functionalities of the application cover periodic safety review (PSR), regulatory references, data inspection, and SSCs classification according to ageing management methodology. Data and examples are presented to demonstrate the functionalities. For future work, techniques of data mining will be employed to support decision-making.

  5. Results of theoretical and experimental studies of hydrodynamics of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors (United States)

    Ryabov, G. A.; Folomeev, O. M.; Sankin, D. A.; Melnikov, D. A.


    Problems of the calculation of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors (polygeneration systems for the production of electricity, heat, and useful products and chemical cycles of combustion and gasification of solid fuels)are considered. A method has been developed for the calculation of circulation loop of fuel particles with respect to boilers with circulating fluidized bed (CFB) and systems with interconnected reactors with fluidized bed (FB) and CFB. New dependences for the connection between the fluidizing agent flow (air, gas, and steam) and performance of reactors and for the whole system (solids flow rate, furnace and cyclone pressure drops, and bed level in the riser) are important elements of this method. Experimental studies of hydrodynamics of circulation loops on the aerodynamic unit have been conducted. Experimental values of pressure drop of the horizontal part of the L-valve, which satisfy the calculated dependence, have been obtained.

  6. Experimental assessment of accident scenarios for the high temperature reactor fuel system

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, O.; Avincola, V.; Bottomley, P.D.W.; Rondinella, V.V. [European Commission Joint Research Centre - Institute for Transuranium Elements (JRC-ITU) (Germany)


    The High Temperature Reactor (HTR) is an advanced reactor concept with particular safety features. Fuel elements are constituted by a graphite matrix containing sub-mm-sized fuel particles with TRISO (tri-isotropic) coating designed to provide high fission product retention. Passive safety features of the HTR include a low power density in the core compared to other reactor designs; this ensures sufficient heat transport in a loss of coolant accident scenario. The temperature during such events would not exceed 1600 C, remaining well below the melting point of the fuel. An experimental assessment of the fuel behaviour under severe accident conditions is necessary to confirm the fission product retention of TRISO coated particles and to validate relevant computer codes. Though helium is used as coolant for the HTR system, additional corrosion effects come into play in case of an in-leakage affecting the primary circuit. The experimental scope of the present work focuses on two key aspects associated with the HTR fuel safety. Fission product retention at high temperatures (up to {proportional_to}1800 C) is analyzed with the so-called cold finger apparatus (KueFA: Kuehlfinger-Apparatur), while the performance of HTR fuel elements in case of air/steam ingress accidents is assessed with a high temperature corrosion apparatus (KORA: Korrosions-Apparatur). (orig.)

  7. Conceptual design of superconducting magnet systems for the Argonne Tokamak Experimental Power Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.T.; Turner, L.R.; Mills, F.E.; DeMichele, D.W.; Smelser, P.; Kim, S.H.


    As an integral effort in the Argonne Tokamak Experimental Power Reactor Conceptual Design, the conceptual design of a 10-tesla, pure-tension superconducting toroidal-field (TF) coil system has been developed in sufficient detail to define a realistic design for the TF coil system that could be built based upon the current state of technology with minimum technological extrapolations. A conceptual design study on the superconducting ohmic-heating (OH) coils and the superconducting equilibrium-field (EF) coils were also completed. These conceptual designs are developed in sufficient detail with clear information on high current ac conductor design, cooling, venting provision, coil structural support and zero loss poloidal coil cryostat design. Also investigated is the EF penetration into the blanket and shield.

  8. Experimental computer-controlled instrumentation system for the research reactor DR2

    DEFF Research Database (Denmark)

    Goodstein, L.P.


    An instrumentation system has been developed for one of the Danish Atomic Energy Commission's research reactors as part of an experiment on the advantages to be gained by the use of digital computers in a process plant application. Problem areas to be investigated include (a) reliability and safety...

  9. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, S. A., E-mail:; Dominguez-Ontiveros, E. E., E-mail:; Alhashimi, T., E-mail:; Budd, J. L., E-mail:; Matos, M. D., E-mail:; Hassan, Y. A., E-mail: [Department of Nuclear Engineering, Texas A and M University, College Station, TX, 77843-3133 (United States)


    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A and M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  10. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR (United States)

    Sulaiman, S. A.; Dominguez-Ontiveros, E. E.; Alhashimi, T.; Budd, J. L.; Matos, M. D.; Hassan, Y. A.


    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A&M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  11. Experimental and Thermalhydraulic Code Assessment of the Transient Behavior of the Passive Condenser System in an Advanced Boiling Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S.T. Revankar; W. Zhou; Gavin Henderson


    The main goal of the project was to study analytically and experimentally the condensation heat transfer for the passive condenser system such as GE Economic Simplified Boiling Water Reactor (ESBWR). The effect of noncondensable gas in condenser tube and the reduction of secondary pool water level to the condensation heat transfer coefficient was the main focus in this research. The objectives of this research were to : 1) obtain experimental data on the local and tube averaged condensation heat transfer rates for the PCCS with non-condensable and with change in the secondary pool water, 2) assess the RELAP5 and TRACE computer code against the experimental data, and 3) develop mathematical model and ehat transfer correlation for the condensation phenomena for system code application. The project involves experimentation, theoretical model development and verification, and thermal- hydraulic codes assessment.


    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.


    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  13. Experimental assessment of accident scenarios for the high temperature reactor fuel system

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, O.; Laurie, M.; Bottomley, P.D.W.; Rondinella, V.V. [European Commission, Joint Research Center, Karlsruhe (Germany). Inst. for Transuranium Elements; Avincola, V. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. fuer Angewandte Materialien (IAM-AWP); Allelein, H.J. [RWTH Aachen Univ. (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik


    case of breaches on the vessel or in other components, the pressure drops and air enters the reactor cavity. This scenario can affect the stability of graphite, which is used as a structural material for parts of the reactor core and the fuel. The presence of an oxidizing atmosphere leads to graphite corrosion and increases the risk for mechanical failure of TRISO coated particles, impeding the fission product retention barriers of the fuel and particularly leading to a sudden release of fission gases. In order to quantify such releases KORA was designed and operated in FZJ between 1992 and 1996: a high temperature furnace was installed in hot cell and able to simulate accident conditions in an oxidizing atmosphere. A successive version is planned to be installed at JRC-ITU in order to perform more tests. Currently, a non-radioactive 'cold' prototype is operated to investigate the oxidation behaviour of materials relevant for the HTR fuel system. Recent tests have been conducted on nuclear graphite. (orig.)


    Treshow, M.


    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  15. Numerical and experimental investigation of surface vortex formation in coolant reservoirs of reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Pandazis, Peter [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Babcsany, Boglarka [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques


    The reliable operation of the emergency coolant pumps and passive gravitational injection systems are an important safety issue during accident scenarios with coolant loss in pressurized water reactors. Because of the pressure drop and flow disturbances surface vortices develops at the pump intakes if the water level decreasing below a critical value. The induced swirling flow and gas entrainment lead to flow limitation and to pump failures and damages. The prediction of the critical submergence to avoid surface vortex building is difficult because it depends on many geometrical and fluid dynamical parameters. An alternative and new method has been developed for the investigation of surface vortices. The method based on the combination of CFD results with the analytical vortex model of Burgers and Rott. For further investigation the small scale experiments from the Institute of Nuclear Techniques of the Budapest University of Technology and Economics are used which were inspired from flow limitation problems during the draining of the bubble condenser trays at a VVER type nuclear power plants.

  16. Experimental Study of the Effect of Graphite Dispersion on the Heat Transfer Phenomena in a Reactor Cavity Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Vaghetto, Rodolfo; Capone, Luigi; Hassan, Yassin A


    An experimental activity was performed to observe and study the effects of graphite dispersion and deposition on thermal-hydraulic phenomena in a reactor cavity cooling system (RCCS). The small-scale RCCS experimental facility (16.5 x 16.5 x 30.4 cm) used for this activity represents half of the reactor cavity with an electrically heated vessel. Water flowing through five vertical pipes removes the heat produced in the vessel and releases it into the environment by mixing with cold water in a large tank. The particle image velocimetry technique was used to study the velocity field of the air inside the cavity. A set of 52 thermocouples was installed in the facility to monitor the temperature profiles of the vessel, pipe walls, and air. Ten grams of a fine graphite powder (average particle size 2 m) was injected into the cavity through a spraying nozzle placed at the bottom of the vessel. The temperatures and air velocity field were recorded and compared with the measurements obtained before the graphite dispersion, showing a decrease of the temperature surfaces that was related to an increase in their emissivity. The results contribute to the understanding of RCCS capability in an accident scenario.

  17. Large-scale experimental facility for emergency condition investigation of a new generation NPP WWER-640 reactor with passive safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Aniskevich, Y.N.; Vasilenko, V.A.; Zasukha, V.K.; Migrov, Y.A.; Khabensky, V.B. [Research Inst. of Technology NITI (Russian Federation)


    The creation of the large-scale integral experimental facility (KMS) is specified by the programme of the experimental investigations to justify the engineering decisions on the safety of the design of the new generation NPP with the reactor WWER-640. The construction of KMS in a full volume will allow to conduct experimental investigations of all physical phenomena and processes, practically, occurring during the accidents on the NPPs with the reactor of WWER type and including the heat - mass exchange processes with low rates of the coolant, which is typical during the utilization of the passive safety systems, process during the accidents with a large leak, and also the complex intercommunicated processes in the reactor unit, passive safety systems and in the containment with the condition of long-term heat removal to the final absorber. KMS is being constructed at the Research Institute of Technology (NITI), Sosnovy Bor, Leningrad region, Russia. (orig.). 5 refs.

  18. Experimental Breeder Reactor I Preservation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun


    Experimental Breeder Reactor I (EBR I) is a National Historic Landmark located at the Idaho National Laboratory, a Department of Energy laboratory in southeastern Idaho. The facility is significant for its association and contributions to the development of nuclear reactor testing and development. This Plan includes a structural assessment of the interior and exterior of the EBR I Reactor Building from a preservation, rather than an engineering stand point and recommendations for maintenance to ensure its continued protection.

  19. High power 1 MeV neutral beam system and its application plan for the international tokamak experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hemsworth, R.S. [ITER Joint Central Team, Naka, Ibaraki (Japan)


    This paper describes the Neutral Beam Injection system which is presently being designed for the International Tokamak Experimental Reactor, ITER, in Europe Japan and Russia, with co-ordination by the Joint Central Team of ITER at Naka, Japan. The proposed system consists of three negative ion based neutral injectors, delivering a total of 50 MW of 1 MeV D{sup 0} to the ITER plasma for a pulse length of >1000 s. Each injectors uses a single caesiated volume arc discharge negative ion source, and a multi-grid, multi-aperture accelerator, to produce about 40 A of 1 MeV D{sup -}. This will be neutralized by collisions with D{sub 2} in a sub-divided gas neutralizer, which has a conversion efficiency of about 60%. The charged fraction of the beam emerging from the neutralizer is dumped in an electrostatic residual ion dump. A water cooled calorimeter can be moved into the beam path to intercept the neutral beam, allowing commissioning of the injector independent of ITER. ITER is scheduled to produce its first plasma at the beginning of 2008, and the planning of the R and D, construction and installation foresees the neutral injection system being available from the start of ITER operations. (author)

  20. Nuclear reactor sealing system (United States)

    McEdwards, James A.


    A liquid metal-cooled nuclear reactor sealing system. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel.

  1. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Corradin, Michael [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Anderson, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Muci, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Hassan, Yassin [Texas A & M Univ., College Station, TX (United States); Dominguez, A. [Texas A & M Univ., College Station, TX (United States); Tokuhiro, Akira [Univ. of Idaho, Moscow, ID (United States); Hamman, K. [Univ. of Idaho, Moscow, ID (United States)


    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  2. Seclazone Reactor Modeling And Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Osinga, T. [ETH-Zuerich (Switzerland); Olalde, G. [CNRS Odeillo (France); Steinfeld, A. [PSI and ETHZ (Switzerland)


    A numerical model is formulated for the SOLZINC solar chemical reactor for the production of Zn by carbothermal reduction of ZnO. The model involves solving, by the finite-volume technique, a 1D unsteady state energy equation that couples heat transfer to the chemical kinetics for a shrinking packed bed exposed to thermal radiation. Validation is accomplished by comparison with experimentally measured temperature profiles and Zn production rates as a function of time, obtained for a 5-kW solar reactor tested at PSI's solar furnace. (author)

  3. Attrition reactor system (United States)

    Scott, Charles D.; Davison, Brian H.


    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  4. Experimental Criticality Benchmarks for SNAP 10A/2 Reactor Cores

    Energy Technology Data Exchange (ETDEWEB)

    Krass, A.W.


    This report describes computational benchmark models for nuclear criticality derived from descriptions of the Systems for Nuclear Auxiliary Power (SNAP) Critical Assembly (SCA)-4B experimental criticality program conducted by Atomics International during the early 1960's. The selected experimental configurations consist of fueled SNAP 10A/2-type reactor cores subject to varied conditions of water immersion and reflection under experimental control to measure neutron multiplication. SNAP 10A/2-type reactor cores are compact volumes fueled and moderated with the hydride of highly enriched uranium-zirconium alloy. Specifications for the materials and geometry needed to describe a given experimental configuration for a model using MCNP5 are provided. The material and geometry specifications are adequate to permit user development of input for alternative nuclear safety codes, such as KENO. A total of 73 distinct experimental configurations are described.

  5. Introduction of Nuclear Instrumentations and Radiation Measurements in Experimental Fast Reactor 「JOYO」


    大戸 敏弘; 鈴木 惣十


    This report introduces the nuclear instrumentation system and major R&D (research and development) activities using radiation measurement techniques in Experimental Fast Reactor "JOYO". In the introduction of the nuclear instrumentation system, following items are described; (1)system function (2)roles as a reactor plant equipment (3)specifications and charactelistics of neutron detectors, (4)construction and layout of the system. For reactor dosimetry at various irradiation tests and surveil...

  6. Solvent refined coal reactor quench system (United States)

    Thorogood, R.M.


    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream. 1 fig.

  7. Rapid starting methanol reactor system (United States)

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.


    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  8. Automatically scramming nuclear reactor system (United States)

    Ougouag, Abderrafi M.; Schultz, Richard R.; Terry, William K.


    An automatically scramming nuclear reactor system. One embodiment comprises a core having a coolant inlet end and a coolant outlet end. A cooling system operatively associated with the core provides coolant to the coolant inlet end and removes heated coolant from the coolant outlet end, thus maintaining a pressure differential therebetween during a normal operating condition of the nuclear reactor system. A guide tube is positioned within the core with a first end of the guide tube in fluid communication with the coolant inlet end of the core, and a second end of the guide tube in fluid communication with the coolant outlet end of the core. A control element is positioned within the guide tube and is movable therein between upper and lower positions, and automatically falls under the action of gravity to the lower position when the pressure differential drops below a safe pressure differential.

  9. Liquid metal cooled nuclear reactor plant system (United States)

    Hunsbedt, Anstein; Boardman, Charles E.


    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  10. Shutdown system for a nuclear reactor (United States)

    Groh, E.F.; Olson, A.P.; Wade, D.C.; Robinson, B.W.


    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion. 8 figs.

  11. Physics design of a 100 keV acceleration grid system for the diagnostic neutral beam for international tokamak experimental reactor. (United States)

    Singh, M J; De Esch, H P L


    This paper describes the physics design of a 100 keV, 60 A H(-) accelerator for the diagnostic neutral beam (DNB) for international tokamak experimental reactor (ITER). The accelerator is a three grid system comprising of 1280 apertures, grouped in 16 groups with 80 apertures per beam group. Several computer codes have been used to optimize the design which follows the same philosophy as the ITER Design Description Document (DDD) 5.3 and the 1 MeV heating and current drive beam line [R. Hemsworth, H. Decamps, J. Graceffa, B. Schunke, M. Tanaka, M. Dremel, A. Tanga, H. P. L. De Esch, F. Geli, J. Milnes, T. Inoue, D. Marcuzzi, P. Sonato, and P. Zaccaria, Nucl. Fusion 49, 045006 (2009)]. The aperture shapes, intergrid distances, and the extractor voltage have been optimized to minimize the beamlet divergence. To suppress the acceleration of coextracted electrons, permanent magnets have been incorporated in the extraction grid, downstream of the cooling water channels. The electron power loads on the extractor and the grounded grids have been calculated assuming 1 coextracted electron per ion. The beamlet divergence is calculated to be 4 mrad. At present the design for the filter field of the RF based ion sources for ITER is not fixed, therefore a few configurations of the same have been considered. Their effect on the transmission of the electrons and beams through the accelerator has been studied. The OPERA-3D code has been used to estimate the aperture offset steering constant of the grounded grid and the extraction grid, the space charge interaction between the beamlets and the kerb design required to compensate for this interaction. All beamlets in the DNB must be focused to a single point in the duct, 20.665 m from the grounded grid, and the required geometrical aimings and aperture offsets have been calculated.

  12. Upgrading program of the experimental fast reactor Joyo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, A.; Yogo, S. [Japan Nuclear Cycle Development Institute, Iibaraki-Ken (Japan)


    The experimental fast reactor Joyo finished its operation as an irradiation core in June, 2000. Throughout the operation of MK-I (breeder core) and MK-II (irradiation core), the net operation time has exceeded 60,000 hours. During these operations there were no fuel failures or serious plant problems. The MK-III modification program will improve irradiation capability to demonstrate advanced technologies for commercial Fast Breeder Reactor (FBR). When the MK-III core is started, it will support irradiation tests in feasibility studies for fast reactor and related fuel cycle research and development in Japan. (authors)

  13. Tandem Mirror Reactor Systems Code (Version I)

    Energy Technology Data Exchange (ETDEWEB)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.


    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  14. Passive modular gas safety system for a reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abalin, S.S.; Isaev, I.F.; Kulakov, A.A.; Sivokon, V.P.; Udovenko, A.N.; Ionaitis, R.R.


    Reactor safety systems have developed gradually. Today in particular, auxiliary systems are being developed which are based on nontraditional operational concepts, by using gaseous neutron absorbers. The Scientific-Research and Design Institute of Power Technology (NIKIET) and the Institute of Nuclear Reactors, Kurchatov Institute Reactor Science Center (RNTs), have done preliminary development and experimental verification of separate elements of this system, in which helium is used as the absorber. This article presents a rapid passive safety system based on gaseous absorber, which is made as autonomous modules as the final stage of reactor safety. Its effectiveness is discussed by using an RBMK reactor as an example. As opposed to traditional active, systems, it does not require a functioning power supply and information signals from outside the reactors system, which makes it stable against unsanctioned actions by personnel, the influence of other systems, and also outside actions (sabotage and natural calamities which could destroy the the nuclear power plant structure). Because the gas safety system can operate instantaneously (0.1-0.3 sec), in principle, it can shut down the reactor even with fast-neutron runaway, where traditional safety systems are ineffective.

  15. Investigation of mixing chamber for experimental FGD reactor

    Directory of Open Access Journals (Sweden)

    Novosád Jan


    Full Text Available This article deals with numerical investigation of flow and mixing of air and sulphur dioxide SO2 in designated mixing chamber. The mixing chamber is a part of experimental laboratory reactor designed for simulating the flue gas desulfurization (FGD process. Aim of this work is the numerical investigation of effect of different mixing chamber geometries to mixture composition, especially to mass fraction of sulphur dioxide. Using of similar concentration of sulphur dioxide in the experimental reactor as in the real process is necessary to be able to make additional research. Conclusion describes the effect of different geometries of mixing chamber to mixing. The aim of this work is to develop perfectly works mixing chamber, which will be manufactured and then implemented into experimental FGD reactor. The results will be validated by experiment after the mixing chamber will be manufactured.

  16. Experimental investigation of iodine removal and containment depressurization in containment spray system test facility of 700 MWe Indian pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Manish [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); Kandar, T.K.; Vhora, S.F.; Mohan, Nalini [Directorate of Technology Development, Nuclear Power Corporation of India Limited, Mumbai (India); Iyer, K.N. [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); Prabhu, S.V., E-mail: [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India)


    Highlights: • Depressurization rate in a scaled down vessel filled with air and steam is studied. • Iodine removal rate in a scaled down vessel filled with steam/air is investigated. • Effect of SMD and vessel pressure on depressurization rate is studied. • Depressurization rate decreases with the increase in the droplet size (590 μm – 1 mm) • Decrease in pressure and iodine concentration with time follow exponential trend. - Abstract: As an additional safety measure in the new 700 MWe Indian pressurized heavy water reactors, the first of a kind system called containment Spray System is introduced. The system is designed to cater/mitigate the conditions after design basis accidents i.e., loss of coolant accident and main steam line break. As a contribution to the safety analysis of condition following loss-of-coolant accidents, experiments are carried out to establish the performance of the system. The loss of coolant is simulated by injecting saturated steam and iodine vapors into the containment vessel in which air is enclosed at atmospheric and room temperature, and then the steam-air mixture is cooled by sprays of water. The effect of water spray on the containment vessel pressure and the iodine scrubbing in a scaled down facility is investigated for the containment spray system of Indian pressurized heavy water reactors. The experiments are carried out in the scaled down vessel of the diameter of 2.0 m and height of 3.5 m respectively. Experiments are conducted with water at room temperature as the spray medium. Two different initial vessel pressure i.e. 0.7 bar and 1.0 bar are chosen for the studies as they are nearing the loss of coolant accident & main steam line break pressures in Indian pressurized heavy water reactors. These pressures are chosen based on the containment resultant pressures after a design basis accident. The transient temperature and pressure distribution of the steam in the vessel are measured during the depressurization

  17. Nuclear electric propulsion reactor control systems status (United States)

    Ferg, D. A.


    The thermionic reactor control system design studies conducted over the past several years for a nuclear electric propulsion system are described and summarized. The relevant reactor control system studies are discussed in qualitative terms, pointing out the significant advantages and disadvantages including the impact that the various control systems would have on the nuclear electric propulsion system design. A recommendation for the reference control system is made, and a program for future work leading to an engineering model is described.

  18. Fission control system for nuclear reactor (United States)

    Conley, G.H.; Estes, G.P.

    Control system for nuclear reactor comprises a first set of reactivity modifying rods fixed in a reactor core with their upper ends stepped in height across the core, and a second set of reactivity modifying rods movable vertically within the reactor core and having their lower ends stepped to correspond with the stepped arrangement of the first set of rods, pairs of the rods of the first and second sets being in coaxial alignment.

  19. Experimental studies of irradiated and hydrogen implantation damaged reactor steels

    Energy Technology Data Exchange (ETDEWEB)

    Slugeň, Vladimír, E-mail:; Pecko, Stanislav; Sojak, Stanislav


    Radiation degradation of nuclear materials can be experimentally simulated via ion implantation. In our case, German reactor pressure vessel (RPV) steels were studied by positron annihilation lifetime spectroscopy (PALS). This unique non-destructive method can be effectively applied for the evaluation of microstructural changes and for the analysis of degradation of reactor steels due to neutron irradiation and proton implantation. Studied specimens of German reactor pressure vessel steels are originally from CARINA/CARISMA program. Eight specimens were measured in as-received state and two specimens were irradiated by neutrons in German experimental reactor VAK (Versuchsatomkraftwerk Kahl) in the 1980s. One of the specimens which was in as-received and neutron irradiated condition was also used for simulation of neutron damage by hydrogen nuclei implantation. Defects with the size of about 1–2 vacancies with relatively small contribution (with intensity on the level of 20–40 %) were observed in “as-received” steels. A significant increase in the size of the induced defects due to neutron damage was observed in the irradiated specimens resulting in 2–3 vacancies. The size and intensity of defects reached a similar level as in the specimens irradiated in the nuclear reactor due to the implantation of hydrogen ions with energies of 100 keV (up to the depth <500 nm).

  20. Experimental studies of irradiated and hydrogen implantation damaged reactor steels (United States)

    Slugeň, Vladimír; Pecko, Stanislav; Sojak, Stanislav


    Radiation degradation of nuclear materials can be experimentally simulated via ion implantation. In our case, German reactor pressure vessel (RPV) steels were studied by positron annihilation lifetime spectroscopy (PALS). This unique non-destructive method can be effectively applied for the evaluation of microstructural changes and for the analysis of degradation of reactor steels due to neutron irradiation and proton implantation. Studied specimens of German reactor pressure vessel steels are originally from CARINA/CARISMA program. Eight specimens were measured in as-received state and two specimens were irradiated by neutrons in German experimental reactor VAK (Versuchsatomkraftwerk Kahl) in the 1980s. One of the specimens which was in as-received and neutron irradiated condition was also used for simulation of neutron damage by hydrogen nuclei implantation. Defects with the size of about 1-2 vacancies with relatively small contribution (with intensity on the level of 20-40 %) were observed in "as-received" steels. A significant increase in the size of the induced defects due to neutron damage was observed in the irradiated specimens resulting in 2-3 vacancies. The size and intensity of defects reached a similar level as in the specimens irradiated in the nuclear reactor due to the implantation of hydrogen ions with energies of 100 keV (up to the depth <500 nm).

  1. Cooling system for a nuclear reactor (United States)

    Amtmann, Hans H.


    A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

  2. Seismic attenuation system for a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liszkai, Tamas; Cadell, Seth


    A system for attenuating seismic forces includes a reactor pressure vessel containing nuclear fuel and a containment vessel that houses the reactor pressure vessel. Both the reactor pressure vessel and the containment vessel include a bottom head. Additionally, the system includes a base support to contact a support surface on which the containment vessel is positioned in a substantially vertical orientation. An attenuation device is located between the bottom head of the reactor pressure vessel and the bottom head of the containment vessel. Seismic forces that travel from the base support to the reactor pressure vessel via the containment vessel are attenuated by the attenuation device in a direction that is substantially lateral to the vertical orientation of the containment vessel.

  3. Review of accident analyses of RB experimental reactor

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.


    Full Text Available The RB reactor is a uranium fuel heavy water moderated critical assembly that has been put and kept in operation by the VTNCA Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro, since April 1958. The first complete Safety Analysis Report of the RB reactor was prepared in 1961/62 yet, the first accident analysis had been made in late 1958 with the aim to examine a power transition and the total equivalent doses received by the staff during the reactivity accident that occurred on October 15, 1958. Since 1960, the RB reactor has been modified a few times. Beside the initial natural uranium metal fuel rods, new types of fuel (TVR-S types of Russian origin consisting of 2% enriched uranium metal and 80% enriched UO2 dispersed in aluminum matrix, have been available since 1962 and 1976 respectively. Modifications of the control and safety systems of the reactor were made occasionally. Special reactor cores were designed and constructed using all three types of fuel elements as well as the coupled fast-thermal ones. The Nuclear Safety Committee of the VINĆA Institute, an independent regulatory body, approved for usage all these modifications of the RB reactor on the basis of the Preliminary Safety Analysis Reports, which, beside proposed technical modifications and new regulation rules, included safety analyses of various possible accidents. A special attention was given (and a new safety methodology was proposed to thorough analyses of the design-based accidents related to the coupled fast-thermal cores that included central zones of the reactor filled by the fuel elements without any moderator. In this paper, an overview of some accidents, methodologies and computation tools used for the accident analyses of the RB reactor is given.

  4. Scanning tunneling microscope assembly, reactor, and system (United States)

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A


    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  5. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Neil Todreas; Pavel Hejzlar


    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  6. Tokamak experimental power reactor conceptual design. Volume I

    Energy Technology Data Exchange (ETDEWEB)


    A conceptual design has been developed for a tokamak Experimental Power Reactor to operate at net electrical power conditions with a plant capacity factor of 50 percent for 10 years. The EPR operates in a pulsed mode at a frequency of approximately 1/min., with an approximate 75 percent duty cycle, is capable of producing approximately 72 MWe and requires 42 MWe. The annual tritium consumption is 16 kg. The EPR vacuum chamber is 6.25 m in major radius and 2.4 m in minor radius, is constructed of 2-cm thick stainless steel, and has 2-cm thick detachable, beryllium-coated coolant panels mounted on the interior. An 0.28 m stainless steel blanket and a shield ranging from 0.6 to 1.0 m surround the vacuum vessel. The coolant is H/sub 2/O. Sixteen niobium-titanium superconducting toroidal-field coils provide a field of 10 T at the coil and 4.47 T at the plasma. Superconducting ohmic-heating and equilibrium-field coils provide 135 V-s to drive the plasma current. Plasma heating is accomplished by 12 neutral beam-injectors, which provide 60 MW. The energy transfer and storage system consists of a central superconducting storage ring, a homopolar energy storage unit, and a variety of inductor-converters.


    Miller, G.


    A nuclear reactor control rod mechanism is designed which mechanically moves the control rods into and out of the core under normal conditions but rapidly forces the control rods into the core by catapultic action in the event of an emergency. (AEC)

  8. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao


    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  9. The CABRI fast neutron Hodoscope: Renovation, qualification program and first results following the experimental reactor restart (United States)

    Chevalier, V.; Mirotta, S.; Guillot, J.; Biard, B.


    The CABRI experimental pulse reactor, located at the Cadarache nuclear research center, southern France, is devoted to the study of Reactivity Initiated Accidents (RIA). For the purpose of the CABRI International Program (CIP), managed and funded by IRSN, in the framework of an OECD/NEA agreement, a huge renovation of the facility has been conducted since 2003. The Cabri Water Loop was then installed to ensure prototypical Pressurized Water Reactor (PWR) conditions for testing irradiated fuel rods. The hodoscope installed in the CABRI reactor is a unique online fuel motion monitoring system, operated by IRSN and dedicated to the measurement of the fast neutrons emitted by the tested rod during the power pulse. It is one of the distinctive features of the CABRI reactor facility, which is operated by CEA. The system is able to determine the fuel motion, if any, with a time resolution of 1 ms and a spatial resolution of 3 mm. The hodoscope equipment has been upgraded as well during the CABRI facility renovation. This paper presents the main outcomes achieved with the hodoscope since October 2015, date of the first criticality of the CABRI reactor in its new Cabri Water Loop configuration. Results obtained during reactor commissioning phase functioning, either in steady-state mode (at low and high power, up to 23 MW) or in transient mode (start-up, possibly beyond 20 GW), are discussed.

  10. Development of essential system technologies for advanced reactor - Development of natural circulation analysis code for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Park, Ik Gyu; Kim, Jae Hak; Lee, Sang Min; Kim, Tae Wan [Seoul National University, Seoul (Korea)


    The objective of this study is to understand the natural circulation characteristics of integral type reactors and to develope the natural circulation analysis code for integral type reactors. This study is focused on the asymmetric 3-dimensional flow during natural circulation such as 1/4 steam generator section isolation and the inclination of the reactor systems. Natural circulation experiments were done using small-scale facilities of integral reactor SMART (System-Integrated Modular Advanced ReacTor). CFX4 code was used to investigate the flow patterns and thermal mixing phenomena in upper pressure header and downcomer. Differences between normal operation of all steam generators and the 1/4 section isolation conditions were observed and the results were used as the data 1/4 section isolation conditions were observed and the results were used as the data for RETRAN-03/INT code validation. RETRAN-03 code was modified for the development of natural circulation analysis code for integral type reactors, which was development of natural circulation analysis code for integral type reactors, which was named as RETRAN-03/INT. 3-dimensional analysis models for asymmetric flow in integral type reactors were developed using vector momentum equations in RETRAN-03. Analysis results using RETRAN-03/INT were compared with experimental and CFX4 analysis results and showed good agreements. The natural circulation characteristics obtained in this study will provide the important and fundamental design features for the future small and medium integral reactors. (author). 29 refs., 75 figs., 18 tabs.


    Moore, W.T.


    This patent relates to neutronic reactors and in particular to an improved fuel element and a novel reactor core system for facilitating removal of contaminating fission products, as they are fermed, from association with the flssionable fuel, so as to mitigate the interferent effects of such fission products during reactor operation. The fuel elements are comprised of tubular members impervious to fluid and contatning on their interior surfaces a thin layer of fissionable material providing a central void. The core structure is comprised of a plurality of the tubular fuel elements arranged in parallel and a closed manifold connected to their ends. In the reactor the core structure is dispersed in a water moderator and coolant within a pressure vessel, and a means connected to said manifuld is provided for withdrawing and disposing of mobile fission product contamination from the interior of the feel tubes and manifold.

  12. TCODE: a computer code for analysis of tritium and vacuum systems for tokamak fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Clemmer, R.G.


    TCODE can be used for either near-term experimental reactors or for commercial reactors. The code provides options for items that may be included in a commercial reactor such as a divertor, neutral beam heating, and a breeding blanket. The code was used to calculate tritium and vacuum system parameters for the near term reactors ITR, TNS-UP and EPR as well as for some commercial reactor designs, the UWMAK series. A selected sample of the tritium and vacuum parameters for these reactor designs is shown. Also shown are parameters for a hypothetical reactor UWMAK-III M having similar characteristics to UWMAK-III but with a higher fractional burnup (5.0% cf. 0.83%). The impact of the reactor design scenario upon major tritium and vacuum systems is discussed.

  13. Transients in reactors for power systems compensation (United States)

    Abdul Hamid, Haziah

    This thesis describes new models and investigations into switching transient phenomena related to the shunt reactors and the Mechanically Switched Capacitor with Damping Network (MSCDN) operations used for reactive power control in the transmission system. Shunt reactors and MSCDN are similar in that they have reactors. A shunt reactor is connected parallel to the compensated lines to absorb the leading current, whereas the MSCDN is a version of a capacitor bank designed as a C-type filter for use in the harmonic-rich environment. In this work, models have been developed and transient overvoltages due to shunt reactor deenergisation were estimated analytically using MathCad, a mathematical program. Computer simulations used the ATP/EMTP program to reproduce both single-phase and three-phase shunt reactor switching at 275 kV operational substations. The effect of the reactor switching on the circuit breaker grading capacitor was also examined by considering various switching conditions.. The main original achievement of this thesis is the clarification of failure mechanisms occurring in the air-core filter reactor due to MSCDN switching operations. The simulation of the MSCDN energisation was conducted using the ATP/EMTP program in the presence of surge arresters. The outcome of this simulation shows that extremely fast transients were established across the air-core filter reactor. This identified transient event has led to the development of a detailed air-core reactor model, which accounts for the inter-turn RLC parameters as well as the stray capacitances-to-ground. These parameters are incorporated into the transient simulation circuit, from which the current and voltage distribution across the winding were derived using electric field and equivalent circuit modelling. Analysis of the results has revealed that there are substantial dielectric stresses imposed on the winding insulation that can be attributed to a combination of three factors. (i) First, the

  14. Integral Reactor Containment Condensation Model and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiao [Oregon State Univ., Corvallis, OR (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States)


    plate may have been underestimated and thus the heat flux had been underestimated. The MELCOR model predicts a film thickness on the order of 100 microns, which agrees very well with film flow model developed in this study for scaling analysis. However, the expected differences in film thicknesses for near vacuum and near atmospheric test conditions are not significant. Further study on the behavior of condensate film is expected to refine the simulation results. Possible refinements include but are not limited to, the followings: CFD simulation focusing on the liquid film behavior and benchmarking with experimental analyses for simpler geometries. 16 1 INTRODUCTION This NEUP funded project, NEUP 12-3630, is for experimental, numerical and analytical studies on high-pressure steam condensation phenomena in a steel containment vessel connected to a water cooling tank, carried out at Oregon State University (OrSU) and the University of Wisconsin at Madison (UW-Madison). The experimental results are employed to validate the containment condensation model in reactor containment system safety analysis code for integral SMRs. Such a containment condensation model is important to demonstrate the adequate cooling. In the three years of investigation, following the original proposal, the following planned tasks have been completed: (1) Performed a scaling study for the full pressure test facility applicable to the reference design for the condensation heat transfer process during design basis accidents (DBAs), modified the existing test facility to route the steady-state secondary steam flow into the high pressure containment for controllable condensation tests, and extended the operations at negative gage pressure conditions (OrSU). (2) Conducted a series of DBA and quasi-steady experiments using the full pressure test facility to provide a reliable high pressure condensation database (OrSU). (3) Analyzed experimental data and evaluated condensation model for the experimental

  15. Laser fusion power reactor system (LFPRS)

    Energy Technology Data Exchange (ETDEWEB)

    Kovacik, W. P.


    This report gives detailed information for each of the following areas: (1) reference concept description, (2) nuclear design, (3) structural design, (4) thermal and fluid systems design, (5) materials design and analysis, (6) reactor support systems and balance of plant, (7) instrumentation and control, (8) environment and safety, (9) economics assessment, and (10) development requirements. (MOW)

  16. Experimental research in neutron physic and thermal-hydraulic at the CDTN Triga reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Amir Z.; Souza, Rose Mary G.P.; Ferreira, Andrea V.; Pinto, Antonio J.; Costa, Antonio C.L.; Rezende, Hugo C., E-mail: amir@cdtn.b, E-mail: souzarm@cdtn.b, E-mail: avf@cdtn.b, E-mail: ajp@cdtn.b, E-mail: aclc@cdtn.b, E-mail: hcr@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)


    The IPR-R1 TRIGA (Training, Research, Isotopes production, General Atomics) at Nuclear Technology Development Center (CDTN) is a pool type reactor cooled by natural circulation of light water and an open surface. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world and characterized by inherent safety. The IPR-R1 is the only Brazilian nuclear research reactor available and able to perform experiments in which interaction between neutronic and thermal-hydraulic areas occurs. The IPR-R1 has started up on November 11th, 1960. At that time the maximum thermal power was 30 kW. The present forced cooling system was built in the 70th and the power was upgraded to 100 kW. Recently the core configuration and instrumentation was upgraded again to 250 kW at steady state, and is awaiting the license of CNEN to operate definitely at this new power. This paper describes the experimental research project carried out in the IPR-R1 reactor that has as objective evaluate the behaviour of the reactor operational parameters, and mainly to investigate the influence of temperature on the neutronic variables. The research was supported by Research Support Foundation of the State of Minas Gerais (FAPEMIG) and Brazilian Council for Scientific and Technological Development (CNPq). The research project meets the recommendations of the IAEA, for safety, modernization and development of strategic plan for research reactors utilization. This work is in line with the strategic objectives of Brazil, which aims to design and construct the Brazilian Multipurpose research Reactor (RMB). (author)

  17. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter


    to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...... and malfunctions of anaerobic digesters occasionally experienced, leading to sub-optimal methane production and wastewater treatment. Using a variety of molecular techniques, we are able to determine which microorganisms are active, where they are active, and when they are active, but we still need to determine...

  18. Sandia Pulsed Reactor Facility (SPRF) calculator-assisted pulse analysis and display system

    Energy Technology Data Exchange (ETDEWEB)

    Estes, B.F.; Berry, D.T.


    Two solid-metal fast burst type reactors (SPR II and SPR III) are operated at the Sandia Pulsed Reactor Facility. Since startup of the reactors, oscilloscope traces have been used to record (by camera) the pulse (power) shape while log N systems have measured initial reactor period. Virtually no other pulse information is available. A decision was made to build a system that could collect the basic input data available from the reactor - fission chambers, photodiodes, and thermocouples - condition the signals and output the various parameters such as power, energy, temperature, period and lifetime on hard copy that would provide a record for operations personnel as well as the experimenter. Because the reactors operate in short time frames - pulse operation - it is convenient to utilize the classical Nordheim-Fuchs approximation of the diffusion equation to describe reactor behavior. This report describes the work performed to date in developing the calculator system and analytical models for computing the desired parameters.

  19. The D&D of the Experimental Boiling Water Reactor (EBWR)

    Energy Technology Data Exchange (ETDEWEB)

    Fellhauer, C.R.; Boling, L.E.; Yule, T.J.; Bhattacharyya, S.K.


    Argonne National Laboratory has completed the D&D of the Experimental Boiling Water Reactor. The Project consisted of decontaminating and for packaging as radioactive waste the reactor vessel and internals, contaminated piping systems, miscellaneous tanks, pumps, and associated equipment. The D&D work involved dismantling process equipment and associated plumbing, ductwork drain lines, etc., performing size reduction of reactor vessel internals in the fuel pool, packaging and manifesting all radioactive and mixed waste, and performing a thorough survey of the facility after the removal of activated and contaminated material. Non-radioactive waste was disposed of in the ANL-E landfill or recycled. In January 1996 the EBWR facility was formally decommissioned and transferred from EM-40 to EM-30. This paper will discuss the details of this ten year effort.

  20. Development of essential system technologies for advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y. Y.; Hwang, Y. D.; Cho, B. H. and others


    Basic design of SMART adopts the new advanced technologies which were not applied in the existing 1000MWe PWR. However, the R and D experience on these advanced essential technologies is lacking in domestic nuclear industry. Recently, a research on these advanced technologies has been performed as a part of the mid-and-long term nuclear R and D program, but the research was limited only for the small scale fundamental study. The research on these essential technologies such as helically coiled tube steam generator, self pressurizer, core cooling by natural circulation required for the development of integral reactor SMART have not been conducted in full scale. This project, therefore, was performed for the development of analysis models and methodologies, system analysis and thermal hydraulic experiments on the essential technologies to be applied to the 300MWe capacity of integral reactor SMART and the advanced passive reactor expected to be developed in near future with the emphasis on experimental investigation. (author)

  1. Rodded shutdown system for a nuclear reactor (United States)

    Golden, Martin P.; Govi, Aldo R.


    A top mounted nuclear reactor diverse rodded shutdown system utilizing gas fed into a pressure bearing bellows region sealed at the upper extremity to an armature. The armature is attached to a neutron absorber assembly by a series of shafts and connecting means. The armature is held in an uppermost position by an electromagnet assembly or by pressurized gas in a second embodiment. Deenergizing the electromagnet assembly, or venting the pressurized gas, causes the armature to fall by the force of gravity, thereby lowering the attached absorber assembly into the reactor core.

  2. Hybrid Molten Salt Reactor (HMSR) System Study

    Energy Technology Data Exchange (ETDEWEB)

    Woolley, Robert D [PPPL; Miller, Laurence F [PPPL


    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  3. Control system studies for thermionic reactors (United States)

    Hermsen, R. J.; Gronroos, H. G.


    In core thermionic reactor concepts are of interest for space missions that require electrical power in the range of a few tens of kilowatts up to several megawatts. The physical principle involved--thermionic direct conversion of heat to electricity at net efficiencies up to 15 percent--offers potential advantages when compared to other nuclear powerplant concepts. However, the integration of the thermionic diode electrode structure with high-temperature nuclear fuel materials presents new design problems and new reactor physical constraints. Among the topics that must be investigated are those associated with the control system. The results of analytical and simulation studies of thermionic reactor control performed at the Jet Propulsion Laboratory are discussed.

  4. Validation of High-Fidelity Reactor Physics Models for Support of the KJRR Experimental Campaign in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nielsen, Joseph W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Norman, Daren R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    The Korea Atomic Energy Research Institute is currently in the process of qualifying a Low-Enriched Uranium fuel element design for the new Ki-Jang Research Reactor (KJRR). As part of this effort, a prototype KJRR fuel element was irradiated for several operating cycles in the Northeast Flux Trap of the Advanced Test Reactor (ATR) at the Idaho National Laboratory. The KJRR fuel element contained a very large quantity of fissile material (618g 235U) in comparison with historical ATR experiment standards (<1g 235U), and its presence in the ATR flux trap was expected to create a neutronic configuration that would be well outside of the approved validation envelope for the reactor physics analysis methods used to support ATR operations. Accordingly it was necessary, prior to high-power irradiation of the KJRR fuel element in the ATR, to conduct an extensive set of new low-power physics measurements with the KJRR fuel element installed in the ATR Critical Facility (ATRC), a companion facility to the ATR that is located in an immediately adjacent building, sharing the same fuel handling and storage canal. The new measurements had the objective of expanding the validation envelope for the computational reactor physics tools used to support ATR operations and safety analysis to include the planned KJRR irradiation in the ATR and similar experiments that are anticipated in the future. The computational and experimental results demonstrated that the neutronic behavior of the KJRR fuel element in the ATRC is well-understood, both in terms of its general effects on core excess reactivity and fission power distributions, its effects on the calibration of the core lobe power measurement system, as well as in terms of its own internal fission rate distribution and total fission power per unit ATRC core power. Taken as a whole, these results have significantly extended the ATR physics validation envelope, thereby enabling an entire new class of irradiation experiments.

  5. High energy resolution characteristics on 14MeV neutron spectrometer for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Takada, Eiji; Nakazawa, Masaharu


    A 14MeV neutron spectrometer suitable for an ITER-like fusion experimental reactor is now under development on the basis of a recoil proton counter telescope principle in oblique scattering geometry. To verify its high energy resolution characteristics, preliminary experiments are made for a prototypical detector system. The comparison results show reasonably good agreement and demonstrate the possibility of energy resolution of 2.5% in full width at half maximum for 14MeV neutron spectrometry. (author)

  6. Reactor power system deployment and startup (United States)

    Wetch, J. R.; Nelin, C. J.; Britt, E. J.; Klein, G.


    This paper addresses issues that should receive further examination in the near-term as concept selection for development of a U.S. space reactor power system is approached. The issues include: the economics, practicality and system reliability associated with transfer of nuclear spacecraft from low earth shuttle orbits to operational orbits, via chemical propulsion versus nuclear electric propulsion; possible astronaut supervised reactor and nuclear electric propulsion startup in low altitude Shuttle orbit; potential deployment methods for nuclear powered spacecraft from Shuttle; the general public safety of low altitude startup and nuclear safe and disposal orbits; the question of preferred reactor power level; and the question of frozen versus molten alkali metal coolant during launch and deployment. These issues must be considered now because they impact the SP-100 concept selection, power level selection, weight and size limits, use of deployable radiators, reliability requirements, and economics, as well as the degree of need for and the urgency of developing space reactor power systems.

  7. Methanol synthesis in a countercurrent gas-solid-solid trickle flow reactor. An experimental study

    NARCIS (Netherlands)

    Kuczynski, M.; Oyevaar, M.H.; Pieters, R.T.; Westerterp, K.R.


    The synthesis of methanol from CO and H2 was executed in a gas-solid-solid trickle flow reactor. The reactor consisted of three tubular reactor sections with cooling sections in between. The catalyst was Cu on alumina, the adsorbent was a silica-alumina powder and the experimental range 498–523 K,

  8. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems. (United States)


    ... 10 Energy 1 2010-01-01 2010-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems required...

  9. Experimental investigation of a new method for advanced fast reactor shutdown cooling (United States)

    Pakholkov, V. V.; Kandaurov, A. A.; Potseluev, A. I.; Rogozhkin, S. A.; Sergeev, D. A.; Troitskaya, Yu. I.; Shepelev, S. F.


    We consider a new method for fast reactor shutdown cooling using a decay heat removal system (DHRS) with a check valve. In this method, a coolant from the decay heat exchanger (DHX) immersed into the reactor upper plenum is supplied to the high-pressure plenum and, then, inside the fuel subassemblies (SAs). A check valve installed at the DHX outlet opens by the force of gravity after primary pumps (PP-1) are shut down. Experimental studies of the new and alternative methods of shutdown cooling were performed at the TISEY test facility at OKBM. The velocity fields in the upper plenum of the reactor model were obtained using the optical particle image velocimetry developed at the Institute of Applied Physics (Russian Academy of Sciences). The study considers the process of development of natural circulation in the reactor and the DHRS models and the corresponding evolution of the temperature and velocity fields. A considerable influence of the valve position in the displacer of the primary pump on the natural circulation of water in the reactor through the DHX was discovered (in some modes, circulation reversal through the DHX was obtained). Alternative DHRS designs without a shell at the DHX outlet with open and closed check valve are also studied. For an open check valve, in spite of the absence of a shell, part of the flow is supplied through the DHX pipeline and then inside the SA simulators. When simulating power modes of the reactor operation, temperature stratification of the liquid was observed, which increased in the cooling mode via the DHRS. These data qualitatively agree with the results of tests at BN-600 and BN-800 reactors.

  10. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Utgikar, Vivek [Univ. of Idaho, Moscow, ID (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Christensen, Richard [The Ohio State Univ., Columbus, OH (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate the models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.

  11. Modification of the Core Cooling System of TRIGA 2000 Reactor (United States)

    Umar, Efrizon; Fiantini, Rosalina


    To accomplish safety requirements, a set of actions has to be performed following the recommendations of the IAEA safety series 35 applied to research reactor. Such actions are considered in modernization of the old system, improving the core cooling system and safety evaluations. Due to the complexity of the process and the difficulty in putting the apparatus in the reactor core, analytical and experimental study on the determination of flow and temperature distribution in the whole coolant channel are difficult to be done. In the present work, a numerical study of flow and temperature distribution in the coolant channel of TRIGA 2000 has been carried out using CFD package. For this study, simulations were carried out on 3-D tested model. The model consists of the reactor tank, thermal and thermalizing column, reflector, rotary specimen rack, chimney, fuel element, primary pipe, diffuser, beam tube and a part of the core are constructed by 1.50 million unstructured tetrahedral cell elements. The results show that for the initial condition (116 fuel elements in the core) and for the inlet temperature of 24°C and the primary velocity of 5.6 m/s, there no boiling phenomena occur in the coolant channel. Due to this result, it is now possible to improve the core cooling system of TRIGA 2000 reactor. Meanwhile, forced flow from the diffuser system only affected the flow pattern in the outside of chimney and put on a small effect to the fluid flow's velocity in the inside of chimney.

  12. Morphological evolution of copper nanoparticles: Microemulsion reactor system versus batch reactor system (United States)

    Xia, Ming; Tang, Zengmin; Kim, Woo-Sik; Yu, Taekyung; Park, Bum Jun


    In the synthesis of nanoparticles, the reaction rate is important to determine the morphology of nanoparticles. We investigated morphology evolution of Cu nanoparticles in this two different reactors, microemulsion reactor and batch reactor. In comparison with the batch reactor system, the enhanced mass and heat transfers in the emulsion system likely led to the relatively short nucleation time and the highly homogeneous environment in the reaction mixture, resulting in suppressing one or two dimensional growth of the nanoparticles. We believe that this work can offer a good model system to quantitatively understand the crystal growth mechanism that depends strongly on the local monomer concentration, the efficiency of heat transfer, and the relative contribution of the counter ions (Br- and Cl-) as capping agents.

  13. Decay heat measurement on fusion reactor materials and validation of calculation code system

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro; Wada, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    Decay heat rates for 32 fusion reactor relevant materials irradiated with 14-MeV neutrons were measured for the cooling time period between 1 minute and 400 days. With using the experimental data base, validity of decay heat calculation systems for fusion reactors were investigated. (author)

  14. Experimental and Kinetic Modeling Study of Ethyl Levulinate Oxidation in a Jet-Stirred Reactor

    KAUST Repository

    Wang, Jui-Yang


    A jet-stirred reactor was designed and constructed in the Clean Combustion Research Center (CCRC) at King Abdullah University of Science and Technology (KAUST); was validated with n-heptane, iso-octane oxidation and cyclohexene pyrolysis. Different configurations of the setup have been tested to achieve good agreement with results from the literature. Test results of the reactor indicated that installation of a pumping system at the downstream side in the experimental apparatus was necessary to avoid the reoccurrence of reactions in the sampling probe. Experiments in ethyl levulinate oxidation were conducted in the reactor under several equivalence ratios, from 600 to 1000 K, 1 bar and 2 s residence time. Oxygenated species detected included methyl vinyl ketone, levulinic acid and ethyl acrylate. Ethylene, methane, carbon monoxide, hydrogen, oxygen and carbon dioxide were further quantified with a gas chromatography, coupled with a flame ionization detector and a thermal conductivity detector. The ethyl levulinate chemical kinetic model was first developed by Dr. Stephen Dooley, Trinity College Dublin, and simulated under the same conditions, using the Perfect-Stirred Reactor code in Chemkin software. In comparing the simulation results with experimental data, some discrepancies were noted; predictions of ethylene production were not well matched. The kinetic model was improved by updating several classes of reactions: unimolecular decomposition, H-abstraction, C-C and C-O beta-scissions of fuel radicals. The updated model was then compared again with experimental results and good agreement was achieved, proving that the concerted eliminated reaction is crucial for the kinetic mechanism formulation of ethyl levulinate. In addition, primary reaction pathways and sensitivity analysis were performed to describe the role of molecular structure in combustion (800 and 1000 K for ethyl levulinate oxidation in the jet-stirred reactor).

  15. Integral reactor system and method for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Neil Edward; Brown, Michael S.; Cheekatamaria, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F.


    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert higher hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  16. Study of Natural Convection Passive Cooling System for Nuclear Reactors (United States)

    Abdillah, Habibi; Saputra, Geby; Novitrian; Permana, Sidik


    Fukushima nuclear reactor accident occurred due to the reactor cooling pumps and followed by all emergencies cooling systems could not work. Therefore, the system which has a passive safety system that rely on natural laws such as natural convection passive cooling system. In natural convection, the cooling material can flow due to the different density of the material due to the temperature difference. To analyze such investigation, a simple apparatus was set up and explains the study of natural convection in a vertical closed-loop system. It was set up that, in the closed loop, there is a heater at the bottom which is representing heat source system from the reactor core and cooler at the top which is showing the cooling system performance in room temperature to make a temperature difference for convection process. The study aims to find some loop configurations and some natural convection performances that can produce an optimum flow of cooling process. The study was done and focused on experimental approach and simulation. The obtained results are showing and analyzing in temperature profile data and the speed of coolant flow at some point on the closed-loop system.

  17. Conceptual studies of toroidal field magnets for the tokamak experimental power reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buncher, B.R.; Chi, J.W.H.; Fernandez, R.


    This report documents the principal results of a Conceptual Design Study for the Superconducting Toroidal Field System for a Tokamak Experimental Power Reactor. Two concepts are described for peak operating fields at the windings of 8 tesla, and 12 tesla, respectively. The design and manufacturing considerations are treated in sufficient detail that cost and schedule estimates could be developed. Major uncertainties in the design are identified and their potential impact discussed, along with recommendations for the necessary research and development programs to minimize these uncertainties. The minimum dimensions of a sub-size test coil for experimental qualification of the full size design are developed and a test program is recommended.

  18. Microchannel Reactor System for Catalytic Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie


    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  19. Reactor Design for Bioelectrochemical Systems

    KAUST Repository

    Mohanakrishna, G.


    Bioelectrochemical systems (BES) are novel hybrid systems which are designed to generate renewable energy from the low cost substrate in a sustainable way. Microbial fuel cells (MFCs) are the well studied application of BES systems that generate electricity from the wide variety of organic components and wastewaters. MFC mechanism deals with the microbial oxidation of organic molecules for the production of electrons and protons. The MFC design helps to build the electrochemical gradient on anode and cathode which leads for the bioelectricity generation. As whole reactions of MFCs happen at mild environmental and operating conditions and using waste organics as the substrate, it is defined as the sustainable and alternative option for global energy needs and attracted worldwide researchers into this research area. Apart from MFC, BES has other applications such as microbial electrolysis cells (MECs) for biohydrogen production, microbial desalinations cells (MDCs) for water desalination, and microbial electrosynthesis cells (MEC) for value added products formation. All these applications are designed to perform efficiently under mild operational conditions. Specific strains of bacteria or specifically enriched microbial consortia are acting as the biocatalyst for the oxidation and reduction of BES. Detailed function of the biocatalyst has been discussed in the other chapters of this book.

  20. Laser fusion hybrid reactor systems study

    Energy Technology Data Exchange (ETDEWEB)


    The work was performed in three phases. The first phase included a review of the many possible laser-reactor-blanket combinations and resulted in the selection of a ''demonstration size'' 500 MWe plant for further study. A number of fast fission blankets using uranium metal, uranium-molybdenum alloy, and uranium carbide as fuel were investigated. The second phase included design of the reactor vessel and internals, heat transfer system, tritium processing system, and the balance of plant, excluding the laser building and equipment. A fuel management scheme was developed, safety considerations were reviewed, and capital and operating costs were estimated. Costs developed during the second phase were unexpectedly high, and a thorough review indicated considerable unit cost savings could be obtained by scaling the plant to a larger size. Accordingly, a third phase was added to the original scope, encompassing the redesign and scaling of the plant from 500 MWe to 1200 MWe (less lasers).

  1. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Ahmmed Saadi Ibrehem


    Full Text Available A modified model for the neutralization process of Stirred Tank Reactors (CSTR reactor is presented in this study. The model accounts for the effect of strong acid [HCL] flowrate and strong base [NaOH] flowrate with the ionic concentrations of [Cl-] and [Na+] on the Ph of the system. In this work, the effect of important reactor parameters such as ionic concentrations and acid and base flowrates on the dynamic behavior of the CSTR is investigated and the behavior of mathematical model is compared with the reported models for the McAvoy model and Jutila model. Moreover, the results of the model are compared with the experimental data in terms of pH dynamic study. A good agreement is observed between our model prediction and the actual plant data. © 2011 BCREC UNDIP. All rights reserved(Received: 1st March 2011, Revised: 28th March 2011; Accepted: 7th April 2011[How to Cite: A.S. Ibrehem. (2011. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor. Bulletin of Chemical Reaction Engineering & Catalysis, 6(1: 47-52. doi:10.9767/bcrec.6.1.825.47-52][How to Link / DOI: || or local: ] | View in 

  2. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system (United States)

    Harto, Andang Widi


    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  3. Power conditioning for space nuclear reactor systems (United States)

    Berman, Baruch


    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  4. Staged membrane oxidation reactor system (United States)

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh


    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  5. Nuclear reactor pressure vessel support system (United States)

    Sepelak, George R.


    A support system for nuclear reactor pressure vessels which can withstand all possible combinations of stresses caused by a postulated core disrupting accident during reactor operation. The nuclear reactor pressure vessel is provided with a flange around the upper periphery thereof, and the flange includes an annular vertical extension formed integral therewith. A support ring is positioned atop of the support ledge and the flange vertical extension, and is bolted to both members. The plug riser is secured to the flange vertical extension and to the top of a radially outwardly extension of the rotatable plug. This system eliminates one joint through which fluids contained in the vessel could escape by making the fluid flow path through the joint between the flange and the support ring follow the same path through which fluid could escape through the plug risers. In this manner, the sealing means to prohibit the escape of contained fluids through the plug risers can also prohibit the escape of contained fluid through the securing joint.

  6. Development of a system model for advanced small modular reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,


    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandias concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  7. Weld monitor and failure detector for nuclear reactor system (United States)

    Sutton, Jr., Harry G.


    Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.


    Directory of Open Access Journals (Sweden)

    Vyacheslav K. Mayevski


    Full Text Available This paper describes a mathematical model of an industrial chemical reactor for production of synthetic rubber. During reactor operation the model parameters vary considerably. To create a control algorithm performed transformation of mathematical model of the reactor in order to obtain a dependency that can be used to determine the model parameters are changing during reactor operation.

  9. Radiolytic production of chemical fuels in fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J D


    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered.

  10. Summary of space nuclear reactor power systems, 1983--1992

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.


    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  11. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges

    Directory of Open Access Journals (Sweden)

    Sabharwall Piyush


    Full Text Available A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX and a secondary heat exchanger (SHX. Research topics to be addressed include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs at prototypical operating conditions. Each loop will also include an interchangeable high-temperature test section that can be customized to address specific research issues associated with each working fluid. This paper also discusses needs and challenges associated with advanced instrumentation for the multi-loop facility, which could be further applied to advanced high-temperature reactors. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST facility. A preliminary design configuration of the ARTIST facility will be presented with the required design and operating characteristics of the various components. The initial configuration will include a high-temperature (750 °C, high-pressure (7 MPa helium loop thermally integrated with a molten fluoride salt (KF-ZrF4 flow loop operating at low pressure (0.2 MPa, at a temperature of ∼450 °C. The salt loop will be thermally integrated with the steam/water loop operating at PWR conditions. Experiment design challenges include identifying suitable materials and components that will withstand the required loop operating conditions. The instrumentation needs to be highly accurate (negligible drift in measuring operational data for extended periods of times, as data collected will be

  12. Development of gas cooled reactors and experimental setup of high temperature helium loop for in-pile operation

    Energy Technology Data Exchange (ETDEWEB)

    Miletić, Marija, E-mail: [Czech Technical University in Prague, Prague (Czech Republic); Fukač, Rostislav, E-mail: [Research Centre Rez Ltd., Rez (Czech Republic); Pioro, Igor, E-mail: [University of Ontario Institute of Technology, Oshawa (Canada); Dragunov, Alexey, E-mail: [University of Ontario Institute of Technology, Oshawa (Canada)


    coolants. The purpose of the high temperature helium loop (HTHL) is to simulate technical and chemical conditions of VHTR's coolant. The loop is intended to serve an as experimental device for fatigue and creep tests of construction metallic materials for gas-cooled reactors and it should be also employed for research in field of gaseous coolant chemistry. The loop will serve also for tests of nuclear graphite, dosing and helium purification systems. Because the VHTR is a new reactor concept, major technical uncertainties remain relative to helium-cooled advanced reactor systems. This paper summarizes also the concept of the HTHL in the Research Centre Rez Ltd., its design, utilization and future plans for experimental setup.

  13. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Song, C. H.; Chung, M. K.; Park, C. K. and others


    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.

  14. Integrated systems analysis of the PIUS reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fullwood, F.; Kroeger, P.; Higgins, J. [Brookhaven National Lab., Upton, NY (United States)] [and others


    Results are presented of a systems failure analysis of the PIUS plant systems that are used during normal reactor operation and postulated accidents. This study was performed to provide the NRC with an understanding of the behavior of the plant. The study applied two diverse failure identification methods, Failure Modes Effects & Criticality Analysis (FMECA) and Hazards & Operability (HAZOP) to the plant systems, supported by several deterministic analyses. Conventional PRA methods were also used along with a scheme for classifying events by initiator frequency and combinations of failures. Principal results of this study are: (a) an extensive listing of potential event sequences, grouped in categories that can be used by the NRC, (b) identification of support systems that are important to safety, and (c) identification of key operator actions.

  15. High gamma-rays irradiation tests of critical components for ITER (International Thermonuclear Experimental Reactor) in-vessel remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan)] [and others


    In ITER, the in-vessel remote handling is inevitably required to assemble and maintain the activated in-vessel components due to deuterium and tritium operation. Since the in-vessel remote handling system has to be operated under the intense of gamma ray irradiation, the components of the remote handling system are required to have radiation hardness so as to allow maintenance operation for a sufficient length of time under the ITER in-vessel environments. For this, the Japan, European and Russian Home Teams have extensively conducted gamma ray irradiation tests and quality improvements including optimization of material composition through ITER R and D program in order to develop radiation hard components which satisfy the doses from 10 MGy to 100 MGy at a dose rate of 1 x 10{sup 6} R/h (ITER R and D Task: T252). This report describes the latest status of radiation hard component development which has been conducted by the Japan Home Team in the ITER R and D program. The number of remote handling components tested is about seventy and these are categorized into robotics (Subtask 1), viewing system (Subtask 2) and common components (Subtask 3). The irradiation tests, including commercial base products for screening, modified products and newly developed products to improve the radiation hardness, were carried out using the gamma ray irradiation cells in Takasaki Establishment, JAERI. As a result, the development of the radiation hard components which can be tolerable for high temperature and gamma radiation has been well progressed, and many components, such as AC servo motor with ceramics insulated wire, optical periscope and CCD camera, have been newly developed. (author)

  16. Experimental study on corrosion and precipitation in non-isothermal Pb-17Li system for development of liquid breeder blanket of fusion reactor (United States)

    Kondo, Masatoshi; Ishii, Masaomi; Norimatsu, Takayoshi; Muroga, Takeo


    The corrosion characteristics of RAFM steel JLF-1 in a non-isothermal Pb-17Li flowing system were investigated by means of the corrosion test using a non-isothermal mixing pot. The corrosion test was performed at 739K with a temperature gradient of 14K for 500 hours. The corrosion tests at a static and a flowing conditions in an isothermal Pb-17Li system were also performed at the same temperature for the same duration with the non-isothermal test. Then, the effect of mass transfer both by the flow and the temperature gradient on the corrosion behaviors was featured by the comparison of these results. The corrosion was caused by the dissolution of Fe and Cr from the steel surface into the flowing Pb-17Li. The specimen surface revealed a fine granular microstructure after the corrosion tests. A large number of pebbleshaped protrusions were observed on the specimen surface. This microstructure was different from the original martensite microstructure of the steel, and might be formed by the influence of the reaction with Li component in the alloy. The formation of the granular microstructure was accelerated by the flow and the temperature gradient. Some pebble-shaped protrusions had gaps at their bases. The removal of these pebble-shaped granules by the flowing Pb-17Li might cause a small-scale corrosion-erosion. The results of metallurgical analysis indicated that a large-scale corrosion-erosion was also caused by their destruction of the corroded layer on the surface. The non-isothermal mixing pot equipped a cold trap by a metal mesh in the low temperature region. The metal elements of Fe and Cr were recovered as they precipitated on the surface of the metal mesh. It was found that a Fe-Cr binary intermetallic compound was formed in the precipitation procedure. The overall mass transfer coefficient for the dissolution type corrosion in the non-isothermal system was much bigger than that in the isothermal system. This model evaluation indicated that the temperature

  17. Experimental Evaluation of a Water Shield for a Surface Power Reactor (United States)

    Pearson, J. Boise; Reid, Robert S.


    As part of the Vision for Space Exploration the end of the next decade will bring man back to the surface of the moon. One of the most critical issues for the establishment of human presence on the moon will be the availability of compact power sources. The establishment of man on the moon will require power from greater than 10's of kWt's in follow on years. Nuclear reactors are extremely we11 suited to meet the needs for power generation on the lunar or Martian surface. reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), Boron Carbide, and others. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to remove the potential for radiation streaming paths. The water shield concept relies on predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. MSFC has developed the experience and fac necessary to do this evaluation in the Early Flight Fission - Test Facility (EFF-TF).

  18. A reverse flow catalytic membrane reactor for the production of syngas: an experimental study

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; van Sint Annaland, M.; Kuipers, J.A.M.


    In this paper experimental results are presented for a demonstration unit of a recently proposed novel integrated reactor concept (Smit et. al., 2005) for the partial oxidation of natural gas to syngas (POM), namely a Reverse Flow Catalytic Membrane Reactor (RFCMR). Natural gas has great potential

  19. Experimental and simulated dosimetry of the university of Utah TRIGA reactor (United States)

    Marble, Benjamin James

    Simulated neutron and gamma transport enable the gamma dose to be estimated at the surface of the University of Utah TRIGA Reactor UUTR pool. These results are benchmarked against experimental results for model verification. This model is useful for future licensing and possible reactor power upgrades. MCNP5 was utilized for the UUTR simulation and comparison with thermoluminescent detectors TLDs.

  20. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Henley, D.R. (Argonne National Lab., IL (USA)); Manion, W.J.; Gordon, J.W. (Nuclear Energy Services, Inc., Danbury, CT (USA))


    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

  1. Catalytic membrane reactor for tritium extraction system from He purge

    Energy Technology Data Exchange (ETDEWEB)

    Santucci, Alessia, E-mail: [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Incelli, Marco [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy); DEIM, University of Tuscia, Via del Paradiso 47, 01100 Viterbo (Italy); Sansovini, Mirko; Tosti, Silvano [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy)


    Highlights: • In the HCBB blanket, the produced tritium is recovered by purging with helium; membrane technologies are able to separate tritium from helium. • The paper presents the results of two experimental campaigns. • In the first, a Pd–Ag diffuser for hydrogen separation is tested at several operating conditions. • In the second, the ability of a Pd–Ag membrane reactor for water decontamination is assessed by performing isotopic swamping and water gas shift reactions. - Abstract: In the Helium Cooled Pebble Bed (HCPB) blanket concept, the produced tritium is recovered purging the breeder with helium at low pressure, thus a tritium extraction system (TES) is foreseen to separate the produced tritium (which contains impurities like water) from the helium gas purge. Several R&D activities are running in parallel to experimentally identify most promising TES technologies: particularly, Pd-based membrane reactors (MR) are under investigation because of their large hydrogen selectivity, continuous operation capability, reliability and compactness. The construction and operation under DEMO relevant conditions (that presently foresee a He purge flow rate of about 10,000 Nm{sup 3}/h and a H{sub 2}/He ratio of 0.1%) of a medium scale MR is scheduled for next year, while presently preliminary experiments on a small scale reactor are performed to identify most suitable operative conditions and catalyst materials. This work presents the results of an experimental campaign carried out on a Pd-based membrane aimed at measuring the capability of this device in separating hydrogen from the helium. Many operative conditions have been investigated by considering different He/H{sub 2} feed flow ratios, several lumen pressures and reactor temperatures. Moreover, the performances of a membrane reactor (composed of a Pd–Ag tube having a wall thickness of about 113 μm, length 500 mm and diameter 10 mm) in processing the water contained in the purge gas have been

  2. Approaches to experimental validation of high-temperature gas-cooled reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Belov, S.E. [Joint Stock Company ' Afrikantov OKB Mechanical Engineering' , Burnakovsky Proezd, 15, Nizhny Novgorod 603074 (Russian Federation); Borovkov, M.N., E-mail: [Joint Stock Company ' Afrikantov OKB Mechanical Engineering' , Burnakovsky Proezd, 15, Nizhny Novgorod 603074 (Russian Federation); Golovko, V.F.; Dmitrieva, I.V.; Drumov, I.V.; Znamensky, D.S.; Kodochigov, N.G. [Joint Stock Company ' Afrikantov OKB Mechanical Engineering' , Burnakovsky Proezd, 15, Nizhny Novgorod 603074 (Russian Federation); Baxi, C.B.; Shenoy, A.; Telengator, A. [General Atomics, 3550 General Atomics Court, CA (United States); Razvi, J., E-mail: [General Atomics, 3550 General Atomics Court, CA (United States)


    Highlights: Black-Right-Pointing-Pointer Computational and experimental investigations of thermal and hydrodynamic characteristics for the equipment. Black-Right-Pointing-Pointer Vibroacoustic investigations. Black-Right-Pointing-Pointer Studies of the electromagnetic suspension system on GT-MHR turbo machine rotor models. Black-Right-Pointing-Pointer Experimental investigations of the catcher bearings design. - Abstract: The special feature of high-temperature gas-cooled reactors (HTGRs) is stressed operating conditions for equipment due to high temperature of the primary circuit helium, up to 950 Degree-Sign C, as well as acoustic and hydrodynamic loads upon the gas path elements. Therefore, great significance is given to reproduction of real operation conditions in tests. Experimental investigation of full-size nuclear power plant (NPP) primary circuit components is not practically feasible because costly test facilities will have to be developed for the power of up to hundreds of megawatts. Under such conditions, the only possible process to validate designs under development is representative tests of smaller scale models and fragmentary models. At the same time, in order to take in to validated account the effect of various physical factors, it is necessary to ensure reproduction of both individual processes and integrated tests incorporating needed integrated investigations. Presented are approaches to experimental validation of thermohydraulic and vibroacoustic characteristics for main equipment components and primary circuit path elements under standard loading conditions, which take account of their operation in the HTGR. Within the framework of the of modular helium reactor project, including a turbo machine in the primary circuit, a new and difficult problem is creation of multiple-bearing flexible vertical rotor. Presented are approaches to analytical and experimental validation of the rotor electromagnetic bearings, catcher bearings, flexible rotor


    Energy Technology Data Exchange (ETDEWEB)

    Paul C.K. Lam; Isaac K. Gamwo; Dimitri Gidaspow


    The objective of this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed and is appended in this report. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The details are presented in the attached paper titled ''CFD Simulation of Flow and Turbulence in a Slurry Bubble Column''. This phase of the work is in press in a referred journal (AIChE Journal, 2002) and was presented at the Fourth International Conference on Multiphase Flow (ICMF 2001) in New Orleans, May 27-June 1, 2001 (Paper No. 909). The computed time averaged particle velocities and concentrations agree with Particle Image Velocimetry (PIV) measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. To better understand turbulence we studied fluidization in a liquid-solid bed. This work was also presented at the Fourth International Conference on Multiphase Flow (ICMF 2001, Paper No. 910). To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV

  4. Mechanical systems development of integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Bae; Chang, M. H.; Kim, J. I.; Choi, S.; Kim, K. S.; Kim, T. W.; Jeong, K. H.; Kim, J. H.; Kim, Y. W.; Lee, G. M.


    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose applications such as small capacity power generation, co-generation and sea water desalination. This in mind, survey has been made on the worldwide small and medium integral reactors under development. Reviewed are their technical characteristics, development status, design features, application plans, etc. For the mechanical design scope of work, the structural concept compatible with the characteristics and requirements of integral reactor has been established. Types of major components were evaluated and selected. Functional and structural concept, equipment layout and supporting concept within the reactor pressure vessel have also been established. Preliminary mechanical design requirements were developed considering the reactor lifetime, operation conditions, and the expected loading combinations. To embody the concurrent design approach, recent CAD technology and team engineering concept were evaluated. (author). 31 refs.,16 tabs., 35 figs.


    Directory of Open Access Journals (Sweden)

    P.M. Udiyani


    Full Text Available Experimental power reactor (RDE which is planned to be constructed by BATAN is a kind of High Temperature Gas Cooled Reactor (HTGR with 10 MWth power. HTGR is a helium gas-cooled reactor with TRISO-coated fuel that is able to confine fission products remained in the core. Although the fission products released into the environment are very small, in order to comply the regulations the study about environmental radiation on normal or routine operation condition need to be performed. Estimation of radiology in the environment involves the source term released into the environment under routine operation condition. The purpose of this study is to estimate the source term released into the environment based on postulation of normal or routine operations of RDE. The research approach starts with an assumption that there are defects and impurities in the TRISO fuel because of limitation during the fabrication. Mechanism of fission products release from the fuel to the environment was created based on the safety features design of RDE. Radionuclides inventories in the reactor were calculated using ORIGEN-2 whose library has been modified for HTGR type, and the assumptions of defects of the TRISO fuel and release fraction for each compartment of RDE safety system used a reference parameter. The results showed that the important source terms of RDE are group of noble gases (Kr and Xe, halogen (I, Sr, Cs, H-3, and Ag. Activities of RDE source terms for routine operations have no significant difference with the HTGR source terms with the same power. Keywords: routine discharge, radionuclide, source term, RDE, HTGR

  6. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko


    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  7. Systems aspects of a space nuclear reactor power system (United States)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Bloomfield, H.; Heller, J.


    Various system aspects of a 300-kW nuclear reactor power system for spacecraft have been investigated. Special attention is given to the cases of a reusable OTV and a space-based radar. It is demonstrated that the stowed length of the power system is important to mission design, and that orbital storage for months to years may be needed for missions involving orbital assembly.

  8. High Performance Photocatalytic Oxidation Reactor System Project (United States)

    National Aeronautics and Space Administration — Pioneer Astronautics proposes a technology program for the development of an innovative photocatalytic oxidation reactor for the removal and mineralization of...

  9. Study of process of water disinfection it saw energy solar using an experimental reactor; Estudo do proceso de desinfeccao de agua via energia solar utilizando um reator experimental

    Energy Technology Data Exchange (ETDEWEB)

    Batista, C. H.; Prado, L. R.; Lima, A. S.; Egues, S. M. S.; Araujo, P. M. M.


    In this work, was conducted an experimental study of the efficiency of a solar reactor in the disinfection of drinking water using photolysis (UV) and heterogeneous photo catalysis (TiO{sub 2}/UV). The experiments were conducted in batch mode, evaluating the effects of reactor inclination and the presence of a solar concentrator. The results indicated that the employed system was capable to promote the complete disinfection in 150 min using only the photo thermic effect, and in 120 min with the addition of immobilized TiO{sub 2} and the solar concentrator. (Author)

  10. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Buitrago, Paula A.; Morrill, Mike; Lighty, JoAnn S.; Silcox, Geoffrey D.


    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and

  11. Experimental study of radiation dose rate at different strategic points of the BAEC TRIGA Research Reactor. (United States)

    Ajijul Hoq, M; Malek Soner, M A; Salam, M A; Haque, M M; Khanom, Salma; Fahad, S M


    The 3MW TRIGA Mark-II Research Reactor of Bangladesh Atomic Energy Commission (BAEC) has been under operation for about thirty years since its commissioning at 1986. In accordance with the demand of fundamental nuclear research works, the reactor has to operate at different power levels by utilizing a number of experimental facilities. Regarding the enquiry for safety of reactor operating personnel and radiation workers, it is necessary to know the radiation level at different strategic points of the reactor where they are often worked. In the present study, neutron, beta and gamma radiation dose rate at different strategic points of the reactor facility with reactor power level of 2.4MW was measured to estimate the rising level of radiation due to its operational activities. From the obtained results high radiation dose is observed at the measurement position of the piercing beam port which is caused by neutron leakage and accordingly, dose rate at the stated position with different reactor power levels was measured. This study also deals with the gamma dose rate measurements at a fixed position of the reactor pool top surface for different reactor power levels under both Natural Convection Cooling Mode (NCCM) and Forced Convection Cooling Mode (FCCM). Results show that, radiation dose rate is higher for NCCM in compared with FCCM and increasing with the increase of reactor power. Thus, concerning the radiological safety issues for working personnel and the general public, the radiation dose level monitoring and the experimental analysis performed within this paper is so much effective and the result of this work can be utilized for base line data and code verification of the nuclear reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Advanced automation concepts applied to Experimental Breeder Reactor-II startup

    Energy Technology Data Exchange (ETDEWEB)

    Berkan, R.C.; Upadhyaya, B.R.; Bywater, R.L. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering); Kisner, R.A. (Oak Ridge National Lab., TN (United States))


    The major objective of this work is to demonstrate through simulations that advanced liquid-metal reactor plants can be operated from low power by computer control. Development of an automatic control system with this objective will help resolve specific issues and provide proof through demonstration that automatic control for plant startup is feasible. This paper presents an advanced control system design for startup of the Experimental Breeder Reactor-2 (EBR-2) located at Idaho Falls, Idaho. The design incorporates recent methods in nonlinear control with advanced diagnostics techniques such as neural networks to form an integrated architecture. The preliminary evaluations are obtained in a simulated environment by a low-order, valid nonlinear model. Within the framework of phase 1 research, the design includes an inverse dynamics controller, a fuzzy controller, and an artificial neural network controller. These three nonlinear control modules are designed to follow the EBR-2 startup trajectories in a multi-input/output regime. They are coordinated by a supervisory routine to yield a fault-tolerant, parallel operation. The control system operates in three modes: manual, semiautomatic, and fully automatic control. The simulation results of the EBR-2 startup transients proved the effectiveness of the advanced concepts. The work presented in this paper is a preliminary feasibility analysis and does not constitute a final design of an automated startup control system for EBR-2. 14 refs., 43 figs.

  13. REACTOR - a Concept for establishing a System-of-Systems (United States)

    Haener, Rainer; Hammitzsch, Martin; Wächter, Joachim


    REACTOR is a working title for activities implementing reliable, emergent, adaptive, and concurrent collaboration on the basis of transactional object repositories. It aims at establishing federations of autonomous yet interoperable systems (Systems-of-Systems), which are able to expose emergent behaviour. Following the principles of event-driven service-oriented architectures (SOA 2.0), REACTOR enables adaptive re-organisation by dynamic delegation of responsibilities and novel yet coherent monitoring strategies by combining information from different domains. Thus it allows collaborative decision-processes across system, discipline, and administrative boundaries. Interoperability is based on two approaches that implement interconnection and communication between existing heterogeneous infrastructures and information systems: Coordinated (orchestration-based) communication and publish/subscribe (choreography-based) communication. Choreography-based communication ensures the autonomy of the participating systems to the highest possible degree but requires the implementation of adapters, which provide functional access to information (publishing/consuming events) via a Message Oriented Middleware (MOM). Any interconnection of the systems (composition of service and message cascades) is established on the basis of global conversations that are enacted by choreographies specifying the expected behaviour of the participating systems with respect to agreed Service Level Agreements (SLA) required by e.g. national authorities. The specification of conversations, maintained in commonly available repositories also enables the utilisation of systems for purposes (evolving) other than initially intended. Orchestration-based communication additionally requires a central component that controls the information transfer via service requests or event processing and also takes responsibility of managing business processes. Commonly available transactional object repositories are

  14. An analysis system for in-reactor behavior, FANTASI

    Energy Technology Data Exchange (ETDEWEB)

    Uto, Nariaki; Tsukimori, Kazuyuki; Negishi, Hitoshi; Enuma, Yasuhiro; Sugaya, Toshio; Sakai, Kimiaki [Japan Nucler Cycle Developmnet Inst., Tokai, Ibaraki (Japan)


    The Japan Nuclear Fuel Cycle Development Institute developed FANTASI (A Computational System For Analyzing Coupled Neutronic, Thermal-Hydraulic And Structural Behaviors In A Fast Breeder Reactor Core) to simulate a conditions where nuclear reaction, thermal-hydraulic behavior of coolant and deformation of core construction progress under mutual relation in reactor of a fast breeder reactor by cooperation of engineers in the fields of physics, thermal-hydraulics, structure, and information system on reactor. Here was described on system construction of FANTASI after describing progress of this development. And then, after introducing a case study using this system, applicability to transient phenomena in nuclear reactor was described. At last, with summarizing results of this development, its future development was also mentioned. (G.K.)

  15. ITHNA.SYS: An Integrated Thermal Hydraulic and Neutronic Analyzer SYStem for NUR research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mazidi, S., E-mail: [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Meftah, B., E-mail: [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Belgaid, M., E-mail: [Faculté de Physique, Université Houari Boumediene, USTHB, BP 31, Bab Ezzouar, Alger (Algeria); Letaim, F., E-mail: [Faculté des Sciences et Technologies, Université d’El-oued, PO Box 789, El-oued (Algeria); Halilou, A., E-mail: [Division Réacteur NUR, Centre de Recherche Nucléaire de Draria, BP 43 Sebala, Draria, Alger (Algeria)


    Highlights: • We develop a neutronic and thermal hydraulic MTR reactor analyzer. • The analyzer allows a rapid determination of the reactor core parameters. • Some NUR reactor parameters have been analyzed. - Abstract: This paper introduces the Integrated Thermal Hydraulic and Neutronic Analyzer SYStem (ITHNA.SYS) that has been developed for the Algerian research reactor NUR. It is used both as an operating aid tool and as a core physics engineering analysis tool. The system embeds three modules of the MTR-PC software package developed by INVAP SE: the cell calculation code WIMSD, the core calculation code CITVAP and the program TERMIC for thermal hydraulic analysis of a material testing reactor (MTR) core in forced convection. ITHNA.SYS operates both in on-line and off-line modes. In the on-line mode, the system is linked, via the computer parallel port, to the data acquisition console of the reactor control room and allows a real time monitoring of major physical and safety parameters of the NUR core. PC-based ITHNA.SYS provides a viable and convenient way of using an accumulated and often complex reactor physics stock of knowledge and frees the user from the intricacy of adequate reactor core modeling. This guaranties an accurate, though rapid, determination of a variety of neutronic and thermal hydraulic parameters of importance for the operation and safety analysis of the NUR research reactor. Instead of the several hours usually required, the processing time for the determination of such parameters is now reduced to few seconds. Validation of the system was performed with respect to experimental measurements and to calculations using reference codes. ITHNA.SYS can be easily adapted to accommodate other kinds of MTR reactors.

  16. The Jules Horowitz reactor (JHR), a European material testing reactor (MTR), with extended experimental capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ballagny, A.; Bergamaschi, Y.; Bouilloux, Y.; Bravo, X.; Guigon, B.; Rommens, M.; Tremodeux, P. [CEA Cadarache, Dir. de l' Energie Nucleaire DEN, 13 - Saint-Paul-lez-Durance (France)]|[CEA Saclay Dir. de l' Energie Nucleaire DEN, 91 - Gif sur Yvette (France)


    The Jules Horowitz Reactor (JHR) is the European MTR (Material Testing Reactor) designed to provide, after 2010, the necessary knowledge for keeping the existing power plants in operation and to design innovative reactors types with new objectives such as: minimizing the radioactive waste production, taking into account additional safety requirements, preventing risks of nuclear proliferation... To achieve such an ambitious objective. The JHR is designed with a high flexibility in order to satisfy the current demand from European industry, research and to be able to accommodate future requirements. The JHR will offer a wide range of performances and services in gathering, in a single site at Cadarache, all the necessary functionalities and facilities for an effective production of results: e.g. fuel fabrication laboratories, preparation of the instrumented devices, interpretation of the experiments, modelling. The JHR must rely on a top level scientific environment based on experts teams from CEA and EC and local universities. With a thermal flux of 7,4.10{sup 14} ncm{sup -2} s{sup -1} and a fast flux of 6,4.10{sup 14} ncm{sup -2}s{sup -1}, it is possible to carry out irradiation experiments on materials and fuels whatever the reactor type considered. It will also be possible to carry out locally, fast neutron irradiation to achieve damage effect up to 25 dpa/year. (dpa = displacement per atom.) The study of the fuels behavior under accidental conditions, from analytical experiments, on a limited amount of irradiated fuel, is a major objective of the project. These oriented safety tests are possible by taking into account specific requirements in the design of the facility such as the tightness level of the containment building, the addition of an alpha hot cell and a laboratory for on line fission products measurement. (authors)

  17. Experimental and numerical stability investigations on natural circulation boiling water reactors

    CERN Document Server

    Marcel, CP


    In the design of novel nuclear reactors active systems are replaced by passive ones in order to reduce the risk of failure. For that reason natural circulation is being considered as the primary cooling mechanism in next generation nuclear reactor designs



    Udiyani, P.M; Sri Kuntjoro


    Experimental power reactor (RDE) which is planned to be constructed by BATAN is a kind of High Temperature Gas Cooled Reactor (HTGR) with 10 MWth power. HTGR is a helium gas-cooled reactor with TRISO-coated fuel that is able to confine fission products remained in the core. Although the fission products released into the environment are very small, in order to comply the regulations the study about environmental radiation on normal or routine operation condition need to be performed. Estimati...

  19. Experimental Investigation of Biogas Reforming in Gliding Arc Plasma Reactors

    Directory of Open Access Journals (Sweden)

    P. Thanompongchart


    Full Text Available Biogas is an important renewable energy source. Its utilization is restricted to vicinity of farm areas, unless pipeline networks or compression facilities are established. Alternatively, biogas may be upgraded into synthetic gas via reforming reaction. In this work, plasma assisted reforming of biogas was investigated. A laboratory gliding arc plasma setup was developed. Effects of CH4/CO2 ratio (1, 2.33, 9, feed flow rate (16.67–83.33 cm3/s, power input (100–600 W, number of reactor, and air addition (0–60% v/v on process performances in terms of yield, selectivity, conversion, and energy consumption were investigated. High power inputs and long reaction time from low flow rates, or use of two cascade reactors were found to promote dry reforming of biogas. High H2 and CO yields can be obtained at low energy consumption. Presence of air enabled partial oxidation reforming that produced higher CH4 conversion, compared to purely dry CO2 reforming process.

  20. SP-100 Program: space reactor system and subsystem investigations

    Energy Technology Data Exchange (ETDEWEB)

    Harty, R.B.


    For a space reactor power system, a comprehensive safety program will be required to assure that no undue risk is present. This report summarizes the nuclear safety review/approval process that will be required for a space reactor system. The documentation requirements are presented along with a summary of the required contents of key documents. Finally, the aerospace safety program conducted for the SNAP-10A reactor system is summarized. The results of this program are presented to show the type of program that can be expected and to provide information that could be usable in future programs.

  1. A new VFA sensor technique for anaerobic reactor systems

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær


    to monitor VFA online in one of the most difficult media: animal slurry or manure. A novel in situ filtration technique has made it possible to perform microfiltration inside a reactor system. This filter enables sampling from closed reactor systems without large-scale pumping and filters. Furthermore, due...... to its small size it can be placed in lab-scale reactors without disturbing the process. Using this filtration technique together with commercially available membrane filters we have constructed a VFA sensor system that can perform automatic analysis of animal slurry at a frequency as high as every 15...... filtration technique are being presented is this article....

  2. Materials degradation in fission reactors: Lessons learned of relevance to fusion reactor systems (United States)

    Was, Gary S.


    The management of materials in power reactor systems has become a critically important activity in assuring the safe, reliable and economical operation of these facilities. Over the years, the commercial nuclear power reactor industry has faced numerous 'surprises' and unexpected occurrences in materials. Mitigation strategies have sometimes solved one problem at the expense of creating another. Other problems have been solved successfully and have motivated the development of techniques to foresee problems before they occur. This paper focuses on three aspects of fission reactor experience that may benefit future fusion systems. The first is identification of parameters and processes that have had a large impact on the behavior of materials in fission systems such as temperature, dose rate, surface condition, gradients, metallurgical variability and effects of the environment. The second is the development of materials performance and failure models to provide a basis for assuring component integrity. Last is the development of proactive materials management programs that identify and pre-empt degradation processes before they can become problems. These aspects of LWR experience along with the growing experience with materials in the more demanding advanced fission reactor systems form the basis for a set of 'lessons learned' to aid in the successful management of materials in fusion reactor systems.

  3. Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications


    Álvarez Criado, Yolanda; Huille, Alfred; Rougé, Sylvie; Abanades García, Juan Carlos


    The CaO/Ca(OH)2 hydration/dehydration chemical loop has long been recognized as a potential candidate for application in energy storage systems for concentrated solar plants. However, the technology still remains at a conceptual level because little information has been published on the performance of the key reactors in the system. In this work, we experimentally investigate the hydration and dehydration reactors in a 5.5 kWth batch fluidized bed reactor, in conditions relevant to larger sys...

  4. Experiments in the experimental fast reactor VENUS-F: The FREYA project; Experimentos en el reactor rapido experimental VENUS-F: El proyecto FREYA

    Energy Technology Data Exchange (ETDEWEB)

    Villamarin, D.; Becares, V.; Cano, D.; Gonzalez, E.


    Due to the high flexibility of operation of the reactor VENUS-E, FREYA project has two main objectives. The first is the end of the study monitoring techniques reactivity and serve as validation of simulation codes. The second objective is to provide experimental support for design and licensing MYRRHA / FASTEE and TRF in collaboration with CDTy LEADER projects of the 7th Framework Programme of the EU.

  5. Reactor Lithium Heat Pipes for HP-STMCs Space Reactor Power System (United States)

    Tournier, Jean-Michel; El-Genk, Mohamed S.


    Design and performance analysis of the nuclear reactor's lithium heat pipes for a 110-kWe Heat Pipes-Segmented Thermoelectric Module Converters (HP-STMCs) Space Reactor Power system (SRPS) are presented. The evaporator length of the heat pipes is the same as the active core height (0.45 m) and the C-C finned condenser is of the same length as the STMC panels (1.5 m). The C-C finned condenser section is radiatively coupled to the collector shoes of the STMCs placed on both sides. The lengths of the adiabatic section, the values of the power throughput and the evaporator wall temperature depend on the radial location of the heat pipe in the reactor core and the number and dimensions of the potassium heat pipes in the heat rejection radiator. The reactor heat pipes have a total length that varies from 7.57 to 7.73 m, and a 0.2 mm thick Mo-14%Re wick with an average pore radius of 12 μm. The wick is separated from the Mo-14%Re wall by a 0.5 mm annulus filled with liquid lithium, to raise the prevailing capillary limit. The nominal evaporator (or reactor) temperature varies from 1513 to 1591 K and the thermal power of the reactor is 1.6 MW, which averages 12.7 kW for each of the 126 reactor heat pipes. The power throughput per heat pipe increase to a nominal 15.24 kW at the location of the peak power in the core and to 20.31 kW when an adjacent heat pipe fails. The prevailing capillary limit of the reactor heat pipes is 28.3 kW, providing a design margin >= 28%.

  6. Experimental and computational investigation of flow of pebbles in a pebble bed nuclear reactor (United States)

    Khane, Vaibhav B.

    The Pebble Bed Reactor (PBR) is a 4th generation nuclear reactor which is conceptually similar to moving bed reactors used in the chemical and petrochemical industries. In a PBR core, nuclear fuel in the form of pebbles moves slowly under the influence of gravity. Due to the dynamic nature of the core, a thorough understanding about slow and dense granular flow of pebbles is required from both a reactor safety and performance evaluation point of view. In this dissertation, a new integrated experimental and computational study of granular flow in a PBR has been performed. Continuous pebble re-circulation experimental set-up, mimicking flow of pebbles in a PBR, is designed and developed. Experimental investigation of the flow of pebbles in a mimicked test reactor was carried out for the first time using non-invasive radioactive particle tracking (RPT) and residence time distribution (RTD) techniques to measure the pebble trajectory, velocity, overall/zonal residence times, flow patterns etc. The tracer trajectory length and overall/zonal residence time is found to increase with change in pebble's initial seeding position from the center towards the wall of the test reactor. Overall and zonal average velocities of pebbles are found to decrease from the center towards the wall. Discrete element method (DEM) based simulations of test reactor geometry were also carried out using commercial code EDEM(TM) and simulation results were validated using the obtained benchmark experimental data. In addition, EDEM(TM) based parametric sensitivity study of interaction properties was carried out which suggests that static friction characteristics play an important role from a packed/pebble beds structural characterization point of view. To make the RPT technique viable for practical applications and to enhance its accuracy, a novel and dynamic technique for RPT calibration was designed and developed. Preliminary feasibility results suggest that it can be implemented as a non

  7. Emergency heat removal system for a nuclear reactor (United States)

    Dunckel, Thomas L.


    A heat removal system for nuclear reactors serving as a supplement to an Emergency Core Cooling System (ECCS) during a Loss of Coolant Accident (LOCA) comprises a plurality of heat pipes having one end in heat transfer relationship with either the reactor pressure vessel, the core support grid structure or other in-core components and the opposite end located in heat transfer relationship with a heat exchanger having heat transfer fluid therein. The heat exchanger is located external to the pressure vessel whereby excessive core heat is transferred from the above reactor components and dissipated within the heat exchanger fluid.

  8. Experimental investigation of a pilot-scale jet bubbling reactor for wet flue gas desulphurisation

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Kiil, Søren; Johnsson, Jan Erik


    In the present work, an experimental parameter study was conducted in a pilot-scale jet bubbling reactor for wet flue gas desulphurisation (FGD). The pilot plant is downscaled from a limestone-based, gypsum producing full-scale wet FGD plant. Important process parameters, such as slurry pH, inlet...... flue gas concentration of SO2, reactor temperature, and slurry concentration of Cl- have been varied. The degree of desulphurisation, residual limestone content of the gypsum, liquid phase concentrations, and solids content of the slurry were measured during the experimental series. The SO2 removal...

  9. Selection of power plant elements for future reactor space electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Bennett, G.A.; Copper, K.


    Various types of reactor designs, electric power conversion equipment, and reject-heat systems to be used in nuclear reactor power plants for future space missions were studied. The designs included gas-cooled, liquid-cooled, and heat-pipe reactors. For the power converters, passive types such as thermoelectric and thermionic converters and dynamic types such as Brayton, potassium Rankine, and Stirling cycles were considered. For the radiators, heat pipes for transfer and radiating surface, pumped fluid for heat transfer with fins as the radiating surface, and pumped fluid for heat transfer with heat pipes as the radiating surface were considered. After careful consideration of weights, sizes, reliabilities, safety, and development cost and time, a heat-pipe reactor design, thermoelectric converters, and a heat-pipe radiator for an experimental program were selected.

  10. Experimental characterization of slurry bubble-column reactor hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Shollenberger, K.A.; Torczynski, J.R.; Jackson, N.B.; O`Hern, T.J.


    Sandia`s program to develop, implement, and apply diagnostics for hydrodynamic characterization of slurry bubble column reactors (SBCRs) at industrially relevant conditions is discussed. Gas liquid flow experiments are performed on an industrial scale. Gamma densitometry tomography (GDT) is applied to measure radial variations in gas holdup at one axial location. Differential pressure (DP) measurements are used to calculate volume averaged gas holdups along the axis of the vessel. The holdups obtained from DP show negligible axial variation for water but significant variations for oil, suggesting that the air water flow is fully developed (minimal flow variations in the axial direction) but that the air oil flow is still developing at the GDT measurement location. The GDT and DP gas holdup results are in good agreement for the air water flow but not for the air oil flow. Strong flow variations in the axial direction may be impacting the accuracy of one or both of these techniques. DP measurements are also acquired at high sampling frequencies (250 Hz) and are interpreted using statistical analyses to determine the physical mechanism producing each frequency component in the flow. This approach did not yield the information needed to determine the flow regime in these experiments. As a first step toward three phase material distribution measurements, electrical impedance tomography (EIT) and GDT are applied to a liquid solid flow to measure solids holdup. Good agreement is observed between both techniques and known values.

  11. Decay Power Calculation for Safety Analysis of Innovative Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shwageraus, E.; Fridman, E. [Department of Nuclear Engineering, Ben-Gurion University of the Negev Beer-Sheva 84105 (Israel)


    In this work, we verified the decay heat calculation capabilities of BGCore computer code system developed recently at Ben-Gurion University. Decay power was calculated for a typical UO{sub 2} fuel in Pressurized Water Reactor environment using BGCore code and using procedure prescribed by the ANS/ANSI-2005 standard. Very good agreement between the two methods was obtained. Once BGCore calculation capabilities were verified, we calculated decay power as a function of time after shutdown for various reactors with innovative fuels, for which no standard procedure is currently available. Notable differences were observed for decay power of the advanced reactors as compared with conventional UO{sub 2} LWR. The observed differences suggest that the design of new reactors safety systems must be based on corresponding decay power curves for each individual case in order to assure the desired performance of such systems. (authors)

  12. Autonomous Control of Space Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na


    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.

  13. A Design of Alarm System in a Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaekwan; Jang, Gwisook; Seo, Sangmun; Suh, Yongsuk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    The digital alarm system has become an indispensable design to process a large amount of alarms of power plants. Korean research reactor operated for decades maintains a hybrid alarm system with both an analog annunciator and a digital alarm display. In this design, several alarms are indicated on an analog panel and digital display, respectively, and it requires more attention and effort of the operators. As proven in power plants, a centralized alarm system design is necessary for a new research reactor. However, the number of alarms and operators in a research reactor is significantly lesser than power plants. Thus, simplification should be considered as an important factor for the operation efficiency. This paper introduces a simplified alarm system. As advances in information technology, fully digitalized alarm systems have been applied to power plants. In a new research reactor, it will be more useful than an analog or hybrid configuration installed in research reactors decades ago. However, the simplification feature should be considered as an important factor because the number of alarms and number of operators in a research reactor is significantly lesser than in power plants.

  14. Digital, remote control system for a 2-MW research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Battle, R.E.; Corbett, G.K.


    A fault-tolerant programmable logic controller (PLC) and operator workstations have been programmed to replace the hard-wired relay control system in the 2-MW Bulk Shielding Reactor (BSR) at Oak Ridge National Laboratory. In addition to the PLC and remote and local operator workstations, auxiliary systems for remote operation include a video system, an intercom system, and a fiber optic communication system. The remote control station, located at the High Flux Isotope Reactor 2.5 km from the BSR, has the capability of rector startup and power control. The system was designed with reliability and fail-safe features as important considerations. 4 refs., 3 figs.

  15. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire


    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  16. Testing of an advanced thermochemical conversion reactor system

    Energy Technology Data Exchange (ETDEWEB)


    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

  17. Deployment history and design considerations for space reactor power systems (United States)

    El-Genk, Mohamed S.


    The history of the deployment of nuclear reactors in Earth orbits is reviewed with emphases on lessons learned and the operation and safety experiences. The former Soviet Union's "BUK" power systems, with SiGe thermoelectric conversion and fast neutron energy spectrum reactors, powered a total of 31 Radar Ocean Reconnaissance Satellites (RORSATs) from 1970 to 1988 in 260 km orbit. Two of the former Soviet Union's TOPAZ reactors, with in-core thermionic conversion and epithermal neutron energy spectrum, powered two Cosmos missions launched in 1987 in ˜800 km orbit. The US' SNAP-10A system, with SiGe energy conversion and a thermal neutron energy spectrum reactor, was launched in 1965 in 1300 km orbit. The three reactor systems used liquid NaK-78 coolant, stainless steel structure and highly enriched uranium fuel (90-96 wt%) and operated at a reactor exit temperature of 833-973 K. The BUK reactors used U-Mo fuel rods, TOPAZ used UO 2 fuel rods and four ZrH moderator disks, and the SNAP-10A used moderated U-ZrH fuel rods. These low power space reactor systems were designed for short missions (˜0.5 kW e and ˜1 year for SNAP-10A, <3.0 kW e and <6 months for BUK, and ˜5.5 kW e and up to 1 year for TOPAZ). The deactivated BUK reactors at the end of mission, which varied in duration from a few hours to ˜4.5 months, were boosted into ˜800 km storage orbit with a decay life of more than 600 year. The ejection of the last 16 BUK reactor fuel cores caused significant contamination of Earth orbits with NaK droplets that varied in sizes from a few microns to 5 cm. Power systems to enhance or enable future interplanetary exploration, in-situ resources utilization on Mars and the Moon, and civilian missions in 1000-3000 km orbits would generate significantly more power of 10's to 100's kW e for 5-10 years, or even longer. A number of design options to enhance the operation reliability and safety of these high power space reactor power systems are presented and discussed.

  18. Antenna design for fast ion collective Thomson scattering diagnostic for the international thermonuclear experimental reactor

    DEFF Research Database (Denmark)

    Leipold, Frank; Furtula, Vedran; Salewski, Mirko


    Fast ion physics will play an important role for the international thermonuclear experimental reactor (ITER), where confined alpha particles will affect and be affected by plasma dynamics and thereby have impacts on the overall confinement. A fast ion collective Thomson scattering (CTS) diagnostic...

  19. Experimental estimation of moderator temperature coefficient of reactivity of the IPEN/MB-01 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rubens C. da; Bitelli, Ulysses D.; Mura, Luiz Ernesto C., E-mail:, E-mail:, E-mail: [Universidade de Sao Paulo (PNV/POLI/USP), SP (Brazil). Arquitetura Naval e Departamento de Engenharia Oceanica; Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)


    The aim of this article is to present the procedure for the experimental estimation of the Moderator Temperature Coefficient of Reactivity of the IPEN/MB-01 Research Reactor, a parameter that has an important role in the physics and the control operations of any reactor facility. At the experiment, the IPEN/MB-01 reactor went critical at the power of 1W (1% of its total power), and whose core configuration was 28 x 26 rectangular array of UO{sub 2} fuel rods, inside a light water (moderator) tank. In addition, there was a heavy water (D{sub 2}O) reflector installed in the West side of the core to obtain an adequate neutron reflection along the experiment. The moderator temperature was increased in steps of 4 °C, and the measurement of the mean moderator temperature was acquired using twelve calibrated thermocouples, placed around the reactor core. As a result, the mean value of -4.81 pcm/°C was obtained for such coefficient. The curves of ρ(T) (Reactivity x Temperature) and α{sup M}{sub T}(T)(Moderator Temperature Coefficient of Reactivity x Temperature) were developed using data from an experimental measurement of the integral reactivity curves through the Stable Period and Inverse Kinetics Methods, that was carried out at the reactor with the same core configuration. Such curves were compared and showed a very similar behavior between them. (author)

  20. New reactor technology: safety improvements in nuclear power systems. (United States)

    Corradini, M L


    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  1. Experimental study of the temperature distribution in the TRIGA IPR-R1 Brazilian research reactor; Investigacao experimental da distribuicao de temperaturas no reator nuclear de pesquisa TRIGA IPR-R1

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Amir Zacarias


    The TRIGA-IPR-R1 Research Nuclear Reactor has completed 44 years in operation in November 2004. Its initial nominal thermal power was 30 kW. In 1979 its power was increased to 100 kW by adding new fuel elements to the reactor. Recently some more fuel elements were added to the core increasing the power to 250 kW. The TRIGA-IPR-R1 is a pool type reactor with a natural circulation core cooling system. Although the large number of experiments had been carried out with this reactor, mainly on neutron activation analysis, there is not many data on its thermal-hydraulics processes, whether experimental or theoretical. So a number of experiments were carried out with the measurement of the temperature inside the fuel element, in the reactor core and along the reactor pool. During these experiments the reactor was set in many different power levels. These experiments are part of the CDTN/CNEN research program, and have the main objective of commissioning the TRIGA-IPR-R1 reactor for routine operation at 250 kW. This work presents the experimental and theoretical analyses to determine the temperature distribution in the reactor. A methodology for the calibration and monitoring the reactor thermal power was also developed. This methodology allowed adding others power measuring channels to the reactor by using thermal processes. The fuel thermal conductivity and the heat transfer coefficient from the cladding to the coolant were also experimentally valued. lt was also presented a correlation for the gap conductance between the fuel and the cladding. The experimental results were compared with theoretical calculations and with data obtained from technical literature. A data acquisition and processing system and a software were developed to help the investigation. This system allows on line monitoring and registration of the main reactor operational parameters. The experiments have given better comprehension of the reactor thermal-fluid dynamics and helped to develop numerical

  2. TREAT (Transient Reactor Test Facility) reactor control rod scram system simulations and testing

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, C.W.; Stevens, W.W.


    Air cylinders moving heavy components (100 to 300 lbs) at high speeds (above 300 in/sec) present a formidable end-cushion-shock problem. With no speed control, the moving components can reach over 600 in/sec if the air cylinder has a 5 ft stroke. This paper presents an overview of a successful upgrade modification to an existing reactor control rod drive design using a computer model to simulate the modified system performance for system design analysis. This design uses a high speed air cylinder to rapidly insert control rods (278 lb moved 5 ft in less than 300 msec) to scram an air-cooled test reactor. Included is information about the computer models developed to simulate high-speed air cylinder operation and a unique new speed control and end cushion design. A patent application is pending with the US Patent Trade Mark Office for this system (DOE case number S-68,622). The evolution of the design, from computer simulations thru operational testing in a test stand (simulating in-reactor operating conditions) to installation and use in the reactor, is also described. 6 figs.

  3. Determination of the optimal positions for installing gamma ray detection systems at Tehran Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sayyah, A. [Department of Radiation Application, Shahid Beheshti University (Iran, Islamic Republic of); Rahmani, F., E-mail: [K.N. Toosi University of Technology, Department of Physics (Iran, Islamic Republic of); Khalafi, H. [Nuclear Science and Technology Research Institute (NSTRI) (Iran, Islamic Republic of)


    Dosimetric instruments must constantly monitor radiation dose levels in different areas of nuclear reactor. Tehran Research Reactor (TRR) has seven beam tubes for different research purposes. All the beam tubes extend from the reactor core to Beam Port Floor (BPF) of the reactor facility. During the reactor operation, the gamma rays exiting from each beam tube outlet produce a specific gamma dose rate field in the space of the BPF. To effectively monitor the gamma dose rates on the BPF, gamma ray detection systems must be installed in optimal positions. The selection of optimal positions is a compromise between two requirements. First, the installation positions must possess largest gamma dose rates and second, gamma ray detectors must not be saturated in these positions. In this study, calculations and experimental measurements have been carried out to identify the optimal positions of the gamma ray detection systems. Eight three dimensional models of the reactor core and related facilities corresponding to eight scenarios have been simulated using MCNPX Monte Carlo code to calculate the gamma dose equivalent rate field in the space of the BPF. These facilities are beam tubes, thermal column, pool, BPF space filled with air, facilities such as neutron radiography facility, neutron powder diffraction facility embedded in the beam tubes as well as biological shields inserted into the unused beam tubes. According to the analysis results of the combined gamma dose rate field, three positions on the north side and two positions on the south side of the BPF have been recognized as optimal positions for installing the gamma ray detection systems. To ensure the consistency of the simulation data, experimental measurements were conducted using TLDs (600 and 700) pairs during the reactor operation at 4.5 MW.

  4. Modeling and simulation of CANDU reactor and its regulating system (United States)

    Javidnia, Hooman

    Analytical computer codes are indispensable tools in design, optimization, and control of nuclear power plants. Numerous codes have been developed to perform different types of analyses related to the nuclear power plants. A large number of these codes are designed to perform safety analyses. In the context of safety analyses, the control system is often neglected. Although there are good reasons for such a decision, that does not mean that the study of control systems in the nuclear power plants should be neglected altogether. In this thesis, a proof of concept code is developed as a tool that can be used in the design. optimization. and operation stages of the control system. The main objective in the design of this computer code is providing a tool that is easy to use by its target audience and is capable of producing high fidelity results that can be trusted to design the control system and optimize its performance. Since the overall plant control system covers a very wide range of processes, in this thesis the focus has been on one particular module of the the overall plant control system, namely, the reactor regulating system. The center of the reactor regulating system is the CANDU reactor. A nodal model for the reactor is used to represent the spatial neutronic kinetics of the core. The nodal model produces better results compared to the point kinetics model which is often used in the design and analysis of control system for nuclear reactors. The model can capture the spatial effects to some extent. although it is not as detailed as the finite difference methods. The criteria for choosing a nodal model of the core are: (1) the model should provide more detail than point kinetics and capture spatial effects, (2) it should not be too complex or overly detailed to slow down the simulation and provide details that are extraneous or unnecessary for a control engineer. Other than the reactor itself, there are auxiliary models that describe dynamics of different

  5. Tokamak experimental power reactor conceptual design. Volume II

    Energy Technology Data Exchange (ETDEWEB)


    Volume II contains the following appendices: (1) summary of EPR design parameters, (2) impurity control, (3) plasma computational models, (4) structural support system, (5) materials considerations for the primary energy conversion system, (6) magnetics, (7) neutronics penetration analysis, (8) first wall stress analysis, (9) enrichment of isotopes of hydrogen by cryogenic distillation, and (10) noncircular plasma considerations. (MOW)

  6. The manufacture of enriched uranium fuel slugs for the Experimental Breeder Reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Shuck, Author B.


    This report describes the specifications, materials and the sequence of operations used to found and fabricate 4 the first charge of enriched uranium fuel in the Experimental Breeder Reactor. The work was governed by the following principles: a. That the fuel be of correct composition, dimension and metallurgical condition for use in the reactor. b. That a maximum yield of finished fuel slugs from the quantity of uranium available for the program be achieved. c. That the residues be in a form which can be recovered by chemical or other means. d. That a detailed record be kept in such form that a complete history of each fuel slug be available.

  7. Management of waste from the International Thermonuclear Experimental Reactor and from future fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Broden, K. [Association EURATOM, Nykoeping (Sweden); Lindberg, M. [Association EURATOM, Nykoeping (Sweden); Nisan, S. [The NET Team, Garching (Germany); Rocco, P. [European Commission, Institute for Advanced Materials, Joint Research Centre, Ispra (Vatican City State, Holy See) (Italy); Zucchetti, M. [Energetics Department, Polytechnic of Turin, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Taylor, N. [Association EURATOM-UKAEA, UKAEA Fusion, Culham, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Forty, C. [Association EURATOM-UKAEA, UKAEA Fusion, Culham, Abingdon, Oxfordshire, OX14 3DB (United Kingdom)


    An important inherent advantage of fusion would be the total absence of high-level radioactive spent fuel as produced in fission reactors. Fusion will, however, produce activated material containing both activation products and tritium. Part of the material may also contain chemically toxic substances. This paper describes methods that could be used to manage these materials and also methods to reduce or entirely eliminate the waste quantities. The results are based on studies for the International Thermonuclear Experimental Reactor and also for future fusion power station designs currently under investigation within the European programme on the safety and environmental assessment of fusion power, long-term. (orig.)

  8. Design of virtual SCADA simulation system for pressurized water reactor (United States)

    Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman


    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  9. Design of virtual SCADA simulation system for pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijaksono, Umar, E-mail:; Abdullah, Ade Gafar; Hakim, Dadang Lukman [Electrical Power System Research Group, Department of Electrical Engineering Education, Jl. Dr. Setiabudi No. 207 Bandung, Indonesia 40154 (Indonesia)


    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  10. Simplified safety and containment systems for the iris reactor

    Energy Technology Data Exchange (ETDEWEB)

    Conway, L.E. [Westinghouse Electric Co., Pittsburgh, PA (United States); Lombardi, C.; Ricotti, M.; Oriani, L. [Polytechnic of Milan, Dept. of Nuclear Engineering, Milan (Italy)


    The IRIS (International Reactor Innovative and Secure) is a 100 - 300 MW modular type pressurized water reactor supported by the U.S. DOE NERI Program. IRIS features a long-life core to provide proliferation resistance and to reduce the volume of spent fuel, as well as reduce maintenance requirements. IRIS utilizes an integral reactor vessel that contains all major primary system components. This integral reactor vessel makes it possible to reduce containment size; making the IRIS more cost competitive. IRIS is being designed to enhance reactor safety, and therefore a key aspect of the IRIS program is the development of the safety and containment systems. These systems are being designed to maximize containment integrity, prevent core uncover following postulated accidents, minimize the probability and consequences of severe accidents, and provide a significant simplification over current safety system designs. The design of the IRIS containment and safety systems has been identified and preliminary analyses have been completed. The IRIS safety concept employs some unique features that minimize the consequences of postulated design basis events. This paper will provide a description of the containment design and safety systems, and will summarize the analysis results. (author)

  11. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.


    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  12. Fast reactor: an experimental study of thermohydraulic processes in different operating regimes (United States)

    Opanasenko, A. N.; Sorokin, A. P.; Zaryugin, D. G.; Trufanov, A. A.


    Results of integrated water model studies of temperature fields and a flow pattern of a nonisothermal primary coolant in the elements of the fast neutron reactor (hereinafter, fast reactor) primary circuit with primary sodium in different regimes, such as forced circulation (FC), transition to the reactor cooldown and emergency cooldown with natural coolant convection, are presented. It is shown that, under the influence of lift forces on the nonisothermal coolant flow in the upper chamber at the periphery of its bottom region over the side shields, a stable cold coolant isothermal zone is formed, whose dimensions increase with increase of total water flowrate. An essential and stable coolant temperature stratification is detected in the peripheral area of the upper (hot) chamber over the side shields, in the pressure and cold side chambers, in the elevator baffle, in the cooling system of the reactor vessel, and in the outlet of intermediate and autonomous heat exchangers in different operating regimes. Large gradients and temperature fluctuations are registered at the interface of stratified and recycling formations. In all of the studied cooldown versions, the coolant outlet temperature at the core fuel assembly is decreased and the coolant temperature in the peripheral zone of the upper chamber is increased compared to the FC. High performance of a passive emergency cooldown system of a fast reactor (BN-1200) with submersible autonomous heat exchangers (AHE) is confirmed. Thus, in a normal operation regime, even in case of malfunction of three submersible AHEs, the temperature of the equipment inside the reactor remains within acceptable limits and decay heat removal from the reactor does not exceed safe operation limits. The obtained results can be used both for computer code verification and for approximate estimate of the reactor plant parameters on the similarity criteria basis.

  13. Thermo-kinetic instabilities in model reactors. Examples in experimental tests (United States)

    Lavadera, Marco Lubrano; Sorrentino, Giancarlo; Sabia, Pino; de Joannon, Mara; Cavaliere, Antonio; Ragucci, Raffaele


    The use of advanced combustion technologies (such as MILD, LTC, etc.) is among the most promising methods to reduce emission of pollutants. For such technologies, working temperatures are enough low to boost the formation of several classes of pollutants, such as NOx and soot. To access this temperature range, a significant dilution as well as preheating of reactants is required. Such conditions are usually achieved by a strong recirculation of exhaust gases that simultaneously dilute and pre-heat the fresh reactants. These peculiar operative conditions also imply strong fuel flexibility, thus allowing the use of low calorific value (LCV) energy carriers with high efficiency. However, the intersection of low combustion temperatures and highly diluted mixtures with intense pre-heating alters the evolution of the combustion process with respect to traditional flames, leading to features such as the susceptibility to oscillations, which are undesirable during combustion. Therefore, an effective use of advanced combustion technologies requires a thorough analysis of the combustion kinetic characteristics in order to identify optimal operating conditions and control strategies with high efficiency and low pollutant emissions. The present work experimentally and numerically characterized the ignition and oxidation processes of methane and propane, highly diluted in nitrogen, at atmospheric pressure, in a Plug Flow Reactor and a Perfectly Stirred Reactor under a wide range of operating conditions involving temperatures, mixture compositions and dilution levels. The attention was focused particularly on the chemistry of oscillatory phenomena and multistage ignitions. The global behavior of these systems can be qualitatively and partially quantitatively modeled using the detailed kinetic models available in the literature. Results suggested that, for diluted conditions and lower adiabatic flame temperatures, the competition among several pathways, i.e. intermediate- and

  14. On the possibility of experimentally confirming the hypothesis of reactor antineutrino passage into a sterile state (United States)

    Serebrov, A. P.; Fomin, A. K.; Zinov'ev, V. G.; Loginov, Yu. E.; Onegin, M. S.; Gagarskiy, A. M.; Petrov, G. A.; Solovei, V. A.; Chernyi, A. V.; Zherebtsov, O. M.; Martem'yanov, V. P.; Tsinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Pavlov, S. V.; Svyatkin, M. N.; Izhutov, A. L.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Khramkov, N. S.; Rykalin, V. I.


    The "Neutrino-4" experiment for the 100-MW SM-3 reactor has been developed with the aim of testing the reactor antineutrino anomaly at Petersburg Nuclear Physics Institute. The advantages of this reactor for studying the antineutrino anomaly are (i) a low background level and (ii) small dimensions (35 × 42 × 42 cm) of the active zone. Operation of a position-sensitive antineutrino detector comprising five working sections and moving so as to cover a region of distances within 6-13 m from the active zone has been simulated by the Monte-Carlo method. The range of experimental sensitivity with respect to the oscillation parameters Δ m 2 and sin22θ is determined, which will make it possible to confirm the hypothesis of antineutrino oscillations into a sterile state.

  15. Software reliability and safety in nuclear reactor protection systems

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.D. [Lawrence Livermore National Lab., CA (United States)


    Planning the development, use and regulation of computer systems in nuclear reactor protection systems in such a way as to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Computer Safety and Reliability Group, Lawrence Livermore that investigates different aspects of computer software in reactor National Laboratory, that investigates different aspects of computer software in reactor protection systems. There are two central themes in the report, First, software considerations cannot be fully understood in isolation from computer hardware and application considerations. Second, the process of engineering reliability and safety into a computer system requires activities to be carried out throughout the software life cycle. The report discusses the many activities that can be carried out during the software life cycle to improve the safety and reliability of the resulting product. The viewpoint is primarily that of the assessor, or auditor.

  16. Material unaccounted for at the Southwest Experimental Fast Oxide Reactor: The SEFOR MUF

    Energy Technology Data Exchange (ETDEWEB)

    Higinbotham, W.A.


    The U.S. Atomic Energy Commission contracted with the General Electric Company to design, construct, and operate the Southwest Experimental Fast Oxide Reactor (SEFOR) to measure the Doppler effect for fast neutron breeder reactors. It contracted with Nuclear Fuel Services to fabricate the fuel rods for the reactor. When the reactor went critical in May, 1969, it appeared that some of the mixed uranium-plutonium oxide (MOX) fuel rods did not contain the specified quantity of plutonium. The SEFOR operators soon found several fuel rods which appeared to be low in plutonium. The safeguards group at Brookhaven was asked to look into the problem and, if possible, determine how much plutonium was missing from the unirradiated rods and from the larger number which had been slightly irradiated in the reactor. It was decided that the plutonium content of the unirradiated and irradiated rods could be measured relative to a reference rod using a high resolution gamma-ray detector and also by neutron measurements using an auto-correlation circuit recently developed at the Naval Research Laboratory (NRL). During the next two years, Brookhaven personnel and C.V. Strain of NRL made several trips to the SEFOR reactor. About 250 of the 775 rods were measured by two or more methods, using a sodium-iodide detector, a high-resolution germanium detector, a neutron detector, or the reactor (to measure reactivity). The research team concluded that 4.6 {+-} 0.46 kg of plutonium was missing out of the 433 kg that the rods should have contained. This report describes the SEFOR experiment and the procedures used to determine the material unaccounted for, or MUF.

  17. Small reactor power systems for manned planetary surface bases (United States)

    Bloomfield, Harvey S.


    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.


    Energy Technology Data Exchange (ETDEWEB)

    Paul Lam; Dimitri Gidaspow


    The objective if this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The computed time averaged particle velocities and concentrations agree with PIV measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. This phase of the work was presented at the Chemical Reaction Engineering VIII: Computational Fluid Dynamics, August 6-11, 2000 in Quebec City, Canada. To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV technique. The results together with simulations will be presented at the annual meeting of AIChE in November 2000.

  19. Cryogenic Cooling System for 5 kA, 200 μH Class HTS DC Reactor (United States)

    Park, Heecheol; Kim, Seokho; Kim, Kwangmin; Park, Minwon; Park, Taejun; Kim, A.-rong; Lee, Sangjin

    DC reactors, made by aluminum busbar, are used to stabilize the arc of an electric furnace. In the conventional arc furnace, the transport current is several tens of kilo-amperes and enormous resistive loss is generated. To reduce the resistive loss at the DC reactor, a HTS DC reactor can be considered. It can dramatically improve the electric efficiency as well as reduce the installation space. Similar with other superconducting devices, the HTS DC reactor requires current leads from a power source in room temperature to the HTS coil in cryogenic environment. The heat loss at the metal current leads can be minimized through optimization process considering the geometry and the transport current. However, the transport current of the HTS DC reactor for the arc furnace is much larger than most of HTS magnets and the enormous heat penetration through the current lead should be effectively removed to keep the temperature around 70∼77 K. Current leads are cooled down by circulation of liquid nitrogen from the cooling system with a stirling cryocooler. The operating temperature of HTS coil is 30∼40 K and circulation of gaseous helium is used to remove the heat generation at the HTS coil. Gaseous helium is transported through the cryogenic helium blower and a single stage GM cryocooler. This paper describes design and experimental results on the cooling system for current leads and the HTS coil of 5 kA, 200 μH class DC reactor as a prototype. The results are used to verify the design values of the cooling systems and it will be applied to the design of scale-up cooling system for 50 kA, 200 μH class DC reactor.

  20. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel


    ANSI-C program extending the TCL system is used for plan execution and a combination of MATLAB and a custom made Java GUI as user interface on the remote operator console. The choice of these standard software components is explained and the individual components demonstrated. Examples of how specific...

  1. Experimentation on the anaerobic filter reactor for biogas production using rural domestic wastewater (United States)

    Leju Celestino Ladu, John; Lü, Xi-wu; Zhong, Zhaoping


    The biogas production from anaerobic filter (AF) reactor was experimented in Taihu Lake Environmental Engineering Research Center of Southeast University, Wuxi, China. Two rounds of experimental operations were conducted in a laboratory scale at different Hydraulic retention time (HRT) and wastewater temperature. The biogas production rate during the experimentation was in the range of 4.63 to 11.78 L/d. In the first experimentation, the average gas production rate was 10.08 L/d, and in the second experimentation, the average gas production rate was 4.97 L/d. The experimentation observed the favorable Hydraulic Retention Time and wastewater temperature in AF was three days and 30.95°C which produced the gas concentration of 11.78 L/d. The HRT and wastewater temperature affected the efficiency of the AF process on the organic matter removal and nutrients removal as well. It can be deduced from the obtained results that HRT and wastewater temperature directly affects the efficiency of the AF reactor in biogas production. In conclusion, anaerobic filter treatment of organic matter substrates from the rural domestic wastewater increases the efficiency of the AF reactor on biogas production and gives a number of benefits for the management of organic wastes as well as reduction in water pollution. Hence, the operation of the AF reactor in rural domestic wastewater treatment can play an important element for corporate economy of the biogas plant, socio-economic aspects and in the development of effective and feasible concepts for wastewater management, especially for people in rural low-income areas.

  2. Building of Nuclear Ship Engineering Simulation System development of the simulator for the integral type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Teruo; Shimazaki, Junya; Yabuuchi, Noriaki; Fukuhara, Yosifumi; Kusunoki, Takeshi; Ochiai, Masaaki [Department of Nuclear Energy Systems, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Nakazawa, Toshio [Department of HTTR Project, Oarai Research Establishment, Japan Atomic Energy Research Institute, Oarai, Ibaraki (Japan)


    JAERI had carried out the design study of a light-weight and compact integral type reactor of power 100 MW{sub th} with passive safety as a power source for the future nuclear ships, and completed an engineering design. To confirm the design and operation performance and to utilize the study of automation of the operations of reactor, we developed a real-time simulator for the integral type reactor. This simulator is a part of Nuclear Ship Engineering Simulation System (NESSY) and on the same hardware as 'Mutsu' simulator which was developed to simulate the first Japanese nuclear ship Mutsu'. Simulation accuracy of 'Mutsu' simulator was verified by comparing the simulation results With data got in the experimental voyage of 'Mutsu'. The simulator for the integral type reactor uses the same programs which were used in 'Mutsu' simulator for the separate type PWR, and the simulated results are approximately consistent with the calculated values using RELAP5/MOD2 (The later points are reported separately). Therefore simulation accuracy of the simulator for the integral type reactor is also expected to be reasonable, though it is necessary to verify by comparing with the real plant data or experimental data in future. We can get the perspectives to use as a real-time engineering simulator and to achieve the above-mentioned aims. This is a report on development of the simulator for the integral type reactor mainly focused on the contents of the analytical programs expressed the structural features of reactor. (author)

  3. Reforming results of a novel radial reactor for a solid oxide fuel cell system with anode off-gas recirculation (United States)

    Bosch, Timo; Carré, Maxime; Heinzel, Angelika; Steffen, Michael; Lapicque, François


    A novel reactor of a natural gas (NG) fueled, 1 kW net power solid oxide fuel cell (SOFC) system with anode off-gas recirculation (AOGR) is experimentally investigated. The reactor operates as pre-reformer, is of the type radial reactor with centrifugal z-flow, has the shape of a hollow cylinder with a volume of approximately 1 L and is equipped with two different precious metal wire-mesh catalyst packages as well as with an internal electric heater. Reforming investigations of the reactor are done stand-alone but as if the reactor would operate within the total SOFC system with AOGR. For the tests presented here it is assumed that the SOFC system runs on pure CH4 instead of NG. The manuscript focuses on the various phases of reactor operation during the startup process of the SOFC system. Startup process reforming experiments cover reactor operation points at which it runs on an oxygen to carbon ratio at the reactor inlet (ϕRI) of 1.2 with air supplied, up to a ϕRI of 2.4 without air supplied. As confirmed by a Monte Carlo simulation, most of the measured outlet gas concentrations are in or close to equilibrium.

  4. System Study: Reactor Core Isolation Cooling 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.


    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the RCIC results.

  5. System Study: Reactor Core Isolation Cooling 1998–2012

    Energy Technology Data Exchange (ETDEWEB)

    T. E. Wierman


    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trend was identified in the HPCI results. Statistically significant decreasing trends were identified for RCIC start-only and 8-hour trends.

  6. System Study: Reactor Core Isolation Cooling 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.


    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the RCIC results.

  7. Westinghouse Small Modular Reactor nuclear steam supply system design

    Energy Technology Data Exchange (ETDEWEB)

    Memmott, M. J.; Harkness, A. W.; Van Wyk, J. [Westinghouse Electric Company LLC, 600 Cranberry Woods Drive, Cranberry Twp. PA 16066 (United States)


    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the first in a series of four papers which describe the design and functionality of the Westinghouse SMR. Also described in this series are the key drivers influencing the design of the Westinghouse SMR and the unique passive safety features of the Westinghouse SMR. Several critical motivators contributed to the development and integration of the Westinghouse SMR design. These design driving motivators dictated the final configuration of the Westinghouse SMR to varying degrees, depending on the specific features under consideration. These design drivers include safety, economics, AP1000{sup R} reactor expertise and experience, research and development requirements, functionality of systems and components, size of the systems and vessels, simplicity of design, and licensing requirements. The Westinghouse SMR NSSS consists of an integral reactor vessel within a compact containment vessel. The core is located in the bottom of the reactor vessel and is composed of 89 modified Westinghouse 17x17 Robust Fuel Assemblies (RFA). These modified fuel assemblies have an active core length of only 2.4 m (8 ft) long, and the entirety of the core is encompassed by a radial reflector. The Westinghouse SMR core operates on a 24 month fuel cycle. The reactor vessel is approximately 24.4 m (80 ft) long and 3.7 m (12 ft) in diameter in order to facilitate standard rail shipping to the site. The reactor vessel houses hot and cold leg channels to facilitate coolant flow, control rod drive mechanisms (CRDM), instrumentation and cabling, an intermediate flange to separate flow and instrumentation and facilitate simpler refueling, a pressurizer, a straight tube, recirculating steam

  8. Kinetics of vinyl acetate emulsion polymerization in a pulsed tubular reactor: comparison between experimental and simulation results


    Sayer C.; Palma M.; Giudici R.


    A new reactor, the pulsed sieve plate column (PSPC), was developed to perform continuous emulsion polymerization reactions. This reactor combines the enhanced flexibility of tubular reactors with the mixing behavior provided by sieved plates and by the introduction of pulses that is important to prevent emulsion destabilization. The main objective of this work is to study the kinetics of vinyl acetate (VA) emulsion polymerization reactions performed in this PSPC. Therefore, both experimental ...

  9. Strongly correlated systems experimental techniques

    CERN Document Server

    Mancini, Ferdinando


    The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...

  10. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin [Univ. of Wisconsin, Madison, WI (United Texas A & M Univ., College Station, TX (United States); Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.


    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  11. An experimental study of hypervapotron structure in external reactor vessel cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yufeng; Zhang, Ming [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Hou, Fangxin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Gao, Tianfang [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Chen, Peipei, E-mail: [State Power Investment Group Corporation, Beijing (China)


    Highlights: • Experiments are performed to study the application of hypervapotron in ERVC design. • CHF experiments on two surfaces are conducted under different flow conditions. • Hypervapotron improves CHF performance by 40–60% compared with smooth surface. • Visualization shows fin structure removes vapor mushroom for better liquid supply. - Abstract: In vessel retention (IVR) is one of the key strategies for many advanced LWR designs to mitigate postulated severe accidents. The success of IVR substantially relies on external reactor vessel cooling (ERVC) by which the decay heat is removed from the melt core in the reactor vessel lower head. The main challenge of IVR is to provide an adequate safety margin of ERVC against critical heat flux (CHF) of subcooled flow boiling in the reactor lower head flow channel. Due to uncertainties in corium melt pool configuration, large CHF margin of ERVC is usually required by regulatory authorities to demonstrate reliability of severe accident mitigation methods. Various CHF enhancement designs have been proposed and studied in literature. In this paper, an experimental study of hypervapotron structure as a novel design to improve CHF performance of ERVC is conducted. Hypervapotron is chosen as one of the potential engineering options for International Thermonuclear Experimental Reactor (ITER) program as a divertor structure to remove highly intense heat from fusion chamber. This study is to conduct CHF experiments at typical PWR ERVC working conditions. The CHF experiments are performed in a 30 mm by 61 mm rectangular flow channel with a 200 mm long heated surface along the flow direction. Both smooth and hypervapotron surface are tested at various inclination angles of the test section to simulate various positions of the reactor lower head. The hypervapotron is found to have a 40–60% CHF improvement compared with the smooth surface. The high speed visualization indicates that hypervapotron is able to

  12. Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation - Vandellos II Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Gauld, Ian C [ORNL


    This report is one of the several recent NUREG/CR reports documenting benchmark-quality radiochemical assay data and the use of the data to validate computer code predictions of isotopic composition for spent nuclear fuel, to establish the uncertainty and bias associated with code predictions. The experimental data analyzed in the current report were acquired from a high-burnup fuel program coordinated by Spanish organizations. The measurements included extensive actinide and fission product data of importance to spent fuel safety applications, including burnup credit, decay heat, and radiation source terms. Six unique spent fuel samples from three uranium oxide fuel rods were analyzed. The fuel rods had a 4.5 wt % {sup 235}U initial enrichment and were irradiated in the Vandellos II pressurized water reactor operated in Spain. The burnups of the fuel samples range from 42 to 78 GWd/MTU. The measurements were used to validate the two-dimensional depletion sequence TRITON in the SCALE computer code system.

  13. Fission product iodine release and retention in nuclear reactor accidents— experimental programme at PSI (United States)

    Bruchertseifer, H.; Cripps, R.; Guentay, S.; Jaeckel, B.


    Iodine radionuclides constitute one of the most important fission products of uranium and plutonium. If the volatile forms would be released into the environment during a severe accident, a potential health hazard would then ensue. Understanding its behaviour is an important prerequisite for planning appropriate mitigation measures. Improved and extensive knowledge of the main iodine species and their reactions important for the release and retention processes in the reactor containment is thus mandatory. The aim of PSI's radiolytical studies is to improve the current thermodynamic and kinetic databases and the models for iodine used in severe accident computer codes. Formation of sparingly soluble silver iodide (AgI) in a PWR containment sump can substantially reduce volatile iodine fraction in the containment atmosphere. However, the effectiveness is dependent on its radiation stability. The direct radiolytic decomposition of AgI and the effect of impurities on iodine volatilisation were experimentally determined at PSI using a remote-controlled and automated high activity 188W/Re generator (40 GBq/ml). Low molecular weight organic iodides are difficult to be retained in engineered safety systems. Investigation of radiolytic decomposition of methyl iodide in aqueous solutions, combined with an on-line analysis of iodine species is currently under investigation at PSI.

  14. Design study of toroidal magnets for tokamak experimental power reactors. [NbTi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Stekly, Z.J.J.; Lucas, E.J. (eds.)


    This report contains the results of a six-month study of superconducting toroidal field coils for a Tokamak Experimental Power Reactor to be built in the late 1980s. The designs are for 8 T and 12 T maximum magnetic field at the superconducting winding. At each field level two main concepts were generated; one in which each of the 16 coils comprising the system has an individual vacuum vessel and the other in which all the coils are contained in a single vacuum vessel. The coils have a D shape and have openings of 11.25 m x 7.5 m for the 8 T coils and 10.2 m x 6.8 m for the 12 T coils. All the designs utilize rectangular cabled conductor made from copper stabilized Niobium Titanium composite which operates at 4.2 K for the 8 T design and at 2.5 K for the 12 T design. Manufacturing procedures, processes and schedule estimates are also discussed.

  15. An experimental study on coolability through the external reactor vessel cooling according to RPV insulation design

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyoung Ho; Koo, Kil Mo; Park, Rae Joon; Cho, Young Ro; Kim, Sang Baik


    LAVA-ERVC experiments have been performed to investigate the effect of insulation design features on the water accessibility and coolability in case of the external reactor vessel cooling. Alumina iron thermite melt was used as corium stimulant. And the hemispherical test vessel is linearly scaled-down of RPV lower plenum. 4 tests have been performed varying the melt composition and the configuration of the insulation system. Due to the limited steam venting capacity through the insulation, steam binding occurred inside the annulus in the LAVA- ERVC-1, 2 tests which were performed for simulating the KSNP insulation design. This steam binding brought about incident heat up of the vessel outer surface at the upper part in the LAVA-ERVC-1, 2 tests. On the contrary, in the LAVA-ERVC-3, 4 tests which were performed for simulating the APR1400 insulation design, the temperatures of the vessel outer surface maintained near saturation temperature. Sufficient water ingression and steam venting through the insulation lead to effective cooldown of the vessel characterized by nucleate boiling in the LAVA-ERVC-3, 4 tests. From the LAVA-ERVC experimental results, it could be preliminarily concluded that if pertinent modification of the insulation design focused on the improvement of water ingression and steam venting should be preceded the possibility of in-vessel corium retention through the external vessel cooling could be considerably increased.

  16. A pragmatic approach towards designing a second shutdown system for Tehran research reactor

    Directory of Open Access Journals (Sweden)

    Boustani Ehsan


    Full Text Available One second shutdown system is proposed for the Tehran Research Reactor to achieve the goal of higher safety in compliance with current operational requirements and regulations and improve the overall reliability of the reactor shutdown system. The proposed second shutdown system is a diverse, independent shutdown system compared to the existing rod based one that intends to achieve and maintain sub-criticality condition with an enough shutdown margin in many of abnormal situations. It is designed as much as practical based on neutron absorber solution injection into the existing core while the changes and interferences with the existing core structure are kept to a minimum. Core neutronic calculations were performed using MCNPX 2.6.0 and MTR_PC package for the current operational core equipped with the second shutdown system, and one experiment was conducted in the Tehran Research Reactor to test the neutronic calculations. A good agreement was seen between theoretical results and experimental ones. In addition, capability of the second shutdown system in the case of occurrence of design basis accident in the Tehran Research Reactor is demonstrated using PARET program.

  17. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Experimental studies (United States)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. Continuous separation of product hydrogen from the reforming gas mixture is expected to increase the yield of hydrogen significantly as predicted by model simulations. In the laboratory-scale experimental studies reported here steam reforming of liquid hydrocarbon fuels, butane, methanol and Clearlite ® was conducted to produce pure hydrogen in a single step membrane reformer using commercially available Pd-Ag foil membranes and reforming/WGS catalysts. All of the experimental results demonstrated increase in hydrocarbon conversion due to hydrogen separation when compared with the hydrocarbon conversion without any hydrogen separation. Increase in hydrogen recovery was also shown to result in corresponding increase in hydrocarbon conversion in these studies demonstrating the basic concept. The experiments also provided insight into the effect of individual variables such as pressure, temperature, gas space velocity, and steam to carbon ratio. Steam reforming of butane was found to be limited by reaction kinetics for the experimental conditions used: catalysts used, average gas space velocity, and the reactor characteristics of surface area to volume ratio. Steam reforming of methanol in the presence of only WGS catalyst on the other hand indicated that the membrane reactor performance was limited by membrane permeation, especially at lower temperatures and lower feed pressures due to slower reconstitution of CO and H 2 into methane thus maintaining high hydrogen partial pressures in the reacting gas mixture. The limited amount of data collected with steam reforming of Clearlite ® indicated very good match between theoretical predictions and

  18. System and method for temperature control in an oxygen transport membrane based reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.


    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  19. Development of a membrane-assisted fluidized bed reactor - 2 - Experimental demonstration and modeling for the partial oxidation of methanol

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Laverman, J.A.; van Sint Annaland, M.; Kuipers, J.A.M.


    A small laboratory-scale membrane-assisted fluidized bed reactor (MAFBR) was constructed in order to experimentally demonstrate the reactor concept for the partial oxidation of methanol to formaldehyde. Methanol conversion and product selectivities were measured at various overall fluidization

  20. Experimental and Numerical Evaluation of the By-Pass Flow in a Catalytic Plate Reactor for Hydrogen Production

    DEFF Research Database (Denmark)

    Sigurdsson, Haftor Örn; Kær, Søren Knudsen


    Numerical and experimental study is performed to evaluate the reactant by-pass flow in a catalytic plate reactor with a coated wire mesh catalyst for steam reforming of methane for hydrogen generation. By-pass of unconverted methane is evaluated under different wire mesh catalyst width to reactor...

  1. Closed Brayton cycle power conversion systems for nuclear reactors :

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  2. Fault detection system for Argentine Research Reactor instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Polenta, H.P. (Argentine Navy, Comodoro Py 2055 Office 11-93, 1104 - Buenos Aires (Argentina)); Bernard, J.A. (Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany Street, Cambridge, Massachusetts 02139 (United States)); Ray, A. (205 Mechanical Engineering Department, Pennsylvania State University, University Park, Pennsylvania 16802 (United States))


    The design and implementation of a redundancy management scheme for the on-line detection and isolation of faulty sensors is presented. Such a device is potentially useful in reactor-powered spacecraft for enhancing the processing capabilities of the main computer. The fault detection device can be used as an integral part of intelligent instrumentation systems. The device has been built using an 8-bit microcontroller and commercially available electronic hardware. The software is completely portable. The operation of this device has been successfully demonstrated for real-time validation of sensor data on Argentina's RA-1 Research Reactor.

  3. Application of Hastelloy X in Gas-Cooled Reactor Systems

    DEFF Research Database (Denmark)

    Brinkman, C. R.; Rittenhouse, P. L.; Corwin, W.R.


    Hastelloy X, an Ni--Cr--Fe--Mo alloy, may be an important structural alloy for components of gas-cooled reactor systems. Expected applications of this alloy in the High-Temperature Gas-Cooled Reactor (HTGR) are discussed, and the development of interim mechanical properties and supporting data...... extensive amount of information has been generated on this material at Oak Ridge National Laboratory and elsewhere concerning behavior in air, which is reviewed. However, only limited data are available from tests conducted in helium. Comparisons of the fatigue and subcritical growth behavior in air between...

  4. Space-reactor electric systems: subsystem technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.V.; Bost, D.; Determan, W.R.


    This report documents the subsystem technology assessment. For the purpose of this report, five subsystems were defined for a space reactor electric system, and the report is organized around these subsystems: reactor; shielding; primary heat transport; power conversion and processing; and heat rejection. The purpose of the assessment was to determine the current technology status and the technology potentials for different types of the five subsystems. The cost and schedule needed to develop these potentials were estimated, and sets of development-compatible subsystems were identified.

  5. Experimental and numerical stability investigations on natural circulation boiling water reactors

    NARCIS (Netherlands)

    Marcel, C.P.


    The stability of natural circulation boiling water reactors is investigated with a strong emphasis on experiments. Two different facilities are used for such a task: the GENESIS facility (to which a void reactivity feedback system is artificially added) and the CIRCUS facility. In addition,

  6. Uncertainty analysis and flow measurements in an experimental mock-up of a molten salt reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Bogdan; Aszodi, Attila [Budapest University of Technology and Economics (Hungary). Inst. of Nuclear Techniques


    In the paper measurement results from the experimental modelling of a molten salt reactor concept will be presented along with detailed uncertainty analysis of the experimental system. Non-intrusive flow measurements are carried out on the scaled and segmented mock-up of a homogeneous, single region molten salt fast reactor concept. Uncertainty assessment of the particle image velocimetry (PIV) measurement system applied with the scaled and segmented model is presented in detail. The analysis covers the error sources of the measurement system (laser, recording camera, etc.) and the specific conditions (de-warping of measurement planes) originating in the geometry of the investigated domain. Effect of sample size in the ensemble averaged PIV measurements is discussed as well. An additional two-loop-operation mode is also presented and the analysis of the measurement results confirm that without enhancement nominal and other operation conditions will lead to strong unfavourable separation in the core flow. It implies that use of internal flow distribution structures will be necessary for the optimisation of the core coolant flow. Preliminary CFD calculations are presented to help the design of a perforated plate located above the inlet region. The purpose of the perforated plate is to reduce recirculation near the cylindrical wall and enhance the uniformity of the core flow distribution.

  7. Experimental Modeling of Dynamic Systems

    DEFF Research Database (Denmark)

    Knudsen, Morten Haack


    An engineering course, Simulation and Experimental Modeling, has been developed that is based on a method for direct estimation of physical parameters in dynamic systems. Compared with classical system identification, the method appears to be easier to understand, apply, and combine with physical...

  8. A Gas-Cooled Reactor Surface Power System

    Energy Technology Data Exchange (ETDEWEB)

    Harms, G.A.; Lenard, R.X.; Lipinski, R.J.; Wright, S.A.


    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life- cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitide clad in Nb 1 %Zr, which has been extensively tested under the SP-I 00 program The fiel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fbel and stabilizing the geometty against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality cannot occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  9. Transient Behaviour of Superconducting Magnet Systems of Fusion Reactor ITER during Safety Discharge

    Directory of Open Access Journals (Sweden)

    A. M. Miri


    Full Text Available To investigate the transient behaviour of the toroidal and poloidal field coils magnet systems of the International Thermonuclear Experimental Reactor during safety discharge, network models with lumped elements are established. Frequency-dependant values of the network elements, that is, inductances and resistances are calculated with the finite element method. That way, overvoltages can be determined. According to these overvoltages, the insulation coordination of coils has to be selected.

  10. Theoretical and Experimental Evaluation of the Temperature Distribution in a Dry Type Air Core Smoothing Reactor of HVDC Station

    Directory of Open Access Journals (Sweden)

    Yu Wang


    Full Text Available The outdoor ultra-high voltage (UHV dry-type air-core smoothing reactors (DASR of High Voltage Direct Current systems are equipped with a rain cover and an acoustic enclosure. To study the convective heat transfer between the DASR and the surrounding air, this paper presents a coupled model of the temperature and fluid field based on the structural features and cooling manner. The resistive losses of encapsulations calculated by finite element method (FEM were used as heat sources in the thermal analysis. The steady fluid and thermal field of the 3-D reactor model were solved by the finite volume method (FVM, and the temperature distribution characteristics of the reactor were obtained. Subsequently, the axial and radial temperature distributions of encapsulation were investigated separately. Finally, an optical fiber temperature measurement scheme was used for an UHV DASR under natural convection conditions. Comparative analysis showed that the simulation results are in good agreement with the experimental data, which verifies the rationality and accuracy of the numerical calculation. These results can serve as a reference for the optimal design and maintenance of UHV DASRs.

  11. Experimental and kinetic modeling study of 3-methylheptane in a jet-stirred reactor

    KAUST Repository

    Karsenty, Florent


    Improving the combustion of conventional and alternative fuels in practical applications requires the fundamental understanding of large hydrocarbon combustion chemistry. The focus of the present study is on a high-molecular-weight branched alkane, namely, 3-methylheptane, oxidized in a jet-stirred reactor. This fuel, along with 2-methylheptane, 2,5-dimethylhexane, and n-octane, are candidate surrogate components for conventional diesel fuels derived from petroleum, synthetic Fischer-Tropsch diesel and jet fuels derived from coal, natural gas, and/or biomass, and renewable diesel and jet fuels derived from the thermochemical treatment of bioderived fats and oils. This study presents new experimental results along with a low- and high-temperature chemical kinetic model for the oxidation of 3-methylheptane. The proposed model is validated against these new experimental data from a jet-stirred reactor operated at 10 atm, over the temperature range of 530-1220 K, and for equivalence ratios of 0.5, 1, and 2. Significant effort is placed on the understanding of the effects of methyl substitution on important combustion properties, such as fuel reactivity and species formation. It was found that 3-methylheptane reacts more slowly than 2-methylheptane at both low and high temperatures in the jet-stirred reactor. © 2012 American Chemical Society.

  12. Experimental measurement and CFD simulation on the hydrodynamics of an internal-loop airlift reactor

    Directory of Open Access Journals (Sweden)

    Liew Shi Yan


    Full Text Available This paper concerns with the experimental measurement and computational fluid dynamics simulation on local hydrodynamics of a gas-liquid internal-loop airlift reactor. The aim of this work is to study the sensitivity of the drag models and the significance of considering the lift force on the predictive accuracy of the simulation. The experimental analysis was carried out using laser Doppler anemometry at three different heights (i.e. Y = 0.20 m, 0.30 m and 0.38 m across the riser and downcomerat volumetric flow rate of 0.30 m3/h to provide validation for the simulation results. A transient three-dimensional gasliquid internal-loop airlift reactor was carried out using FLUENT 16.2 by implementing the two-fluid model approach. The Eulerian-Eulerian multiphase and standard κ-ε dispersed turbulence model wereemployed in this study. Results suggest that the spherical drag model performed poorly and that the drag model governed by Rayleigh-Taylor shows promising accuracy in the prediction of overall mean axial liquid velocity. On the other hand, the consideration of lift model shows slightly improvement in accuracy. These findings may serve as a guidance for future scale-up and design of airlift reactor studies

  13. Automated operator procedure prompting for startup of Experimental Breeder Reactor-2

    Energy Technology Data Exchange (ETDEWEB)

    Renshaw, A.W.; Ball, S.J.; Ford, C.E.


    This report describes the development of an operator procedure prompting aid for startup of a nuclear reactor. This operator aid is a preliminary design for a similar aid that eventually will be used with the Advanced Liquid Metal Reactor (ALMR) presently in the design stage. Two approaches were used to develop this operator procedure prompting aid. One method uses an expert system software shell, and the other method uses database software. The preliminary requirements strongly pointed toward features traditionally associated with both database and expert systems software. Database software usually provides data manipulation flexibility and user interface tools, and expert systems tools offer sophisticated data representation and reasoning capabilities. Both methods, including software and associated hardware, are described in this report. Proposals for future enhancements to improve the expert system approach to procedure prompting and for developing other operator aids are also offered. 25 refs., 14 figs.

  14. Treatment of fruit-juice industry wastewater in a two-stage anaerobic hybrid (AH) reactor system followed by a sequencing batch reactor (SBR). (United States)

    Tawfik, A; El-Kamah, H


    This study has been carried out to assess the performance of a combined system consisting of an anaerobic hybrid (AH) reactor followed by a sequencing batch reactor (SBR) for treatment of fruit-juice industry wastewater at a temperature of 26 degrees C. Three experimental runs were conducted in this investigation. In the first experiment, a single-stage AH reactor was operated at a hydraulic retention time (HRT) of 10.2 h and organic loading rate (OLR) of 11.8 kg COD m(-3) d(-1). The reactor achieved a removal efficiency of 42% for chemical oxygen demand (COD), 50.8% for biochemical oxygen demand (BOD5), 50.3% for volatile fatty acids (VFA) and 56.4% for total suspended solids (TSS). In the second experiment, two AH reactors connected in series achieved a higher removal efficiency for COD (67.4%), BOD5 (77%), and TSS (71.5%) at a total HRT of 20 h and an OLR of 5.9 kg COD m(-3) d(-1). For removal of the remaining portions of COD, BOD5 and TSS from the effluent of the two-stage AH system, a sequencing batch reactor (SBR) was investigated as a post-treatment unit. The reactor achieved a substantial reduction in total COD, resulting in an average effluent concentration of 50 mg L(-1) at an HRT of 11 h and OLR of 5.3 kg COD m(-3) d(-1). Almost complete removal of total BOD5 and oil and grease was achieved, i.e. 10 mg L(-1) and 1.2 mg L(-1), respectively, remained in the final effluent of the SBR.

  15. Saphyr: a code system from reactor design to reference calculations

    Energy Technology Data Exchange (ETDEWEB)

    Akherraz, B.; Baudron, A.M.; Buiron, L.; Coste-Delclaux, M.; Fedon-Magnaud, C.; Lautard, J.J.; Moreau, F.; Nicolas, A.; Sanchez, R.; Zmijarevic, I. [CEA Saclay, Direction de l' Energie Nucleaire, Departement de Modelisation des Systemes et Structures, Service d' Etudes des Reacteurs et de Modelisation Avancee (DENDMSS/SERMA), 91 - Gif sur Yvette (France); Bergeron, A.; Caruge, D.; Fillion, P.; Gallo, D.; Royer, E. [CEA Saclay, Direction de l' Energie Nucleaire, Departement de Modelisation des Systemes et Structures, Service Fluides numeriques, Modelisations et Etudes (DEN/DMSS/SFNME), 91 - Gif sur Yvette (France); Loubiere, S. [CEA Saclay, Direction de l' Energie Nucleaire, Direction de la Simulation et des Outils Experimentaux, 91- Gif sur Yvette (France)


    In this paper we briefly present the package SAPHYR (in French Advanced System for Reactor Physics) which is devoted to reactor calculations, safety analysis and design. This package is composed of three main codes: APOLLO2 for lattice calculations, CRONOS2 for whole core neutronic calculations and FLICA4 for thermohydraulics. Thanks to a continuous development effort, the SAPHYR system is an outstanding tool covering a large domain of applications, from sophisticated 'research and development' studies that need state-of-the-art methodology to routine industrial calculations for reactor and criticality analysis. SAPHYR is powerful enough to carry out calculations for all types of reactors and is invaluable to understand complex phenomena. SAPHYR components are in use in various nuclear companies such as 'Electricite de France', Framatome-ANP, Cogema, SGN, Transnucleaire and Technicatome. Waiting for the next generation tools (DESCARTES for neutronics and NEPTUNE for thermohydraulics) to be available for such a variety of use, with a better level of flexibility and at least equivalent validation and qualification level, the improvement of SAPHYR is going on, to acquire new functions constantly required by users and to improve current performance levels.

  16. Expert system for online surveillance of nuclear reactor coolant pumps

    Energy Technology Data Exchange (ETDEWEB)

    Gross, K.C.; Singer, R.M.; Humenik, K.E.


    This report describes an expert system for online surveillance of nuclear reactor coolant pumps. This system provides a means for early detection of pump or sensor degradation. Degradation is determined through the use of a statistical analysis technique, sequential probability ratio test, applied to information from several sensors which are responsive to differing physical parameters. The results of sequential testing of the data provide the operator with an early warning of possible sensor or pump failure.

  17. Microcomputer-based equipment-control and data-acquisition system for fission-reactor reactivity-worth measurements

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, W.P.; Bucher, R.G.


    Material reactivity-worth measurements are one of the major classes of experiments conducted on the Zero Power research reactors (ZPR) at Argonne National Laboratory. These measurements require the monitoring of the position of a servo control element as a sample material is positioned at various locations in a critical reactor configuration. In order to guarantee operational reliability and increase experimental flexibility for these measurements, the obsolete hardware-based control unit has been replaced with a microcomputer based equipment control and data acquisition system. This system is based on an S-100 bus, dual floppy disk computer with custom built cards to interface with the experimental system. To measure reactivity worths, the system accurately positions samples in the reactor core and acquires data on the position of the servo control element. The data are then analyzed to determine statistical adequacy. The paper covers both the hardware and software aspects of the design.

  18. Operation of staged membrane oxidation reactor systems (United States)

    Repasky, John Michael


    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  19. 77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors (United States)


    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors AGENCY: Nuclear...-1277, ``Initial Test Program of Emergency Core Cooling Systems for Boiling- Water Reactors.'' This... testing features of emergency core cooling systems (ECCSs) for boiling-water reactors (BWRs). DATES...

  20. Hydrocarbon pyrolysis reactor experimentation and modeling for the production of solar absorbing carbon nanoparticles (United States)

    Frederickson, Lee Thomas

    Much of combustion research focuses on reducing soot particulates in emissions. However, current research at San Diego State University (SDSU) Combustion and Solar Energy Laboratory (CSEL) is underway to develop a high temperature solar receiver which will utilize carbon nanoparticles as a solar absorption medium. To produce carbon nanoparticles for the small particle heat exchange receiver (SPHER), a lab-scale carbon particle generator (CPG) has been built and tested. The CPG is a heated ceramic tube reactor with a set point wall temperature of 1100-1300°C operating at 5-6 bar pressure. Natural gas and nitrogen are fed to the CPG where natural gas undergoes pyrolysis resulting in carbon particles. The gas-particle mixture is met downstream with dilution air and sent to the lab scale solar receiver. To predict soot yield and general trends in CPG performance, a model has been setup in Reaction Design CHEMKIN-PRO software. One of the primary goals of this research is to accurately measure particle properties. Mean particle diameter, size distribution, and index of refraction are calculated using Scanning Electron Microscopy (SEM) and a Diesel Particulate Scatterometer (DPS). Filter samples taken during experimentation are analyzed to obtain a particle size distribution with SEM images processed in ImageJ software. These results are compared with the DPS, which calculates the particle size distribution and the index of refraction from light scattering using Mie theory. For testing with the lab scale receiver, a particle diameter range of 200-500 nm is desired. Test conditions are varied to understand effects of operating parameters on particle size and the ability to obtain the size range. Analysis of particle loading is the other important metric for this research. Particle loading is measured downstream of the CPG outlet and dilution air mixing point. The air-particle mixture flows through an extinction tube where opacity of the mixture is measured with a 532 nm

  1. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed and Entrained-Flow Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Buitrago, Paula A. [Univ. of Utah, Salt Lake City, UT (United States); Morrill, Mike [Univ. of Utah, Salt Lake City, UT (United States); Lighty, JoAnn S. [Univ. of Utah, Salt Lake City, UT (United States); Silcox, Geoffrey D. [Univ. of Utah, Salt Lake City, UT (United States)


    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and

  2. Monitoring system for a liquid-cooled nuclear fission reactor (United States)

    DeVolpi, Alexander


    A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

  3. Development of fiber-delivered laser peening system to prevent stress corrosion cracking of reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Y.; Kimura, M.; Yoda, M.; Mukai, N.; Sato, K.; Uehara, T.; Ito, T.; Shimamura, M.; Sudo, A.; Suezono, N. [Toshiba Corp., Yokohama (Japan)


    The authors have developed a system to deliver water-penetrable intense laser pulses of frequency-doubled Nd:YAG laser through optical fiber. The system is capable of improving a residual stress on water immersed metal material remotely, which is effective to prevent the initiation of stress corrosion cracking (SCC) of reactor components. Experimental results showed that a compressive residual stress with enough amplitude and depth was built in the surface layer of type 304 stainless steel (SUS304) by irradiating laser pulses through optical fiber with diameter of 1 mm. A prototype peening head with miniaturized dimensions of 88 mm x 46 mm x 25 mm was assembled to con-firm the accessibility to the heat affected zone (HAZ) along weld lines of a reactor core shroud. The accessibility was significantly improved owing to the flexible optical fiber and the miniaturized peening head. The fiber delivered system opens up the possibility of new applications of laser peening. (author)

  4. Experimental conditions for determination of the neutrino mass hierarchy with reactor antineutrinos

    Directory of Open Access Journals (Sweden)

    Myoung Youl Pac


    Full Text Available This article reports the optimized experimental requirements to determine neutrino mass hierarchy using electron antineutrinos (ν¯e generated in a nuclear reactor. The features of the neutrino mass hierarchy can be extracted from the |Δm312| and |Δm322| oscillations by applying the Fourier sine and cosine transforms to the L/E spectrum. To determine the neutrino mass hierarchy above 90% probability, the requirements on the energy resolution as a function of the baseline are studied at sin2⁡2θ13=0.1. If the energy resolution of the neutrino detector is less than 0.04/Eν and the determination probability obtained from Bayes' theorem is above 90%, the detector needs to be located around 48–53 km from the reactor(s to measure the energy spectrum of ν¯e. These results will be helpful for setting up an experiment to determine the neutrino mass hierarchy, which is an important problem in neutrino physics.

  5. Material challenges for the next generation of fission reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Buckthorpe, Derek [AMEC, Knutsford, Cheshire (United Kingdom)


    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO{sub 2} emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  6. Generation of an activation map for decommissioning planning of the Berlin Experimental Reactor-II (United States)

    Lapins, Janis; Guilliard, Nicole; Bernnat, Wolfgang


    The BER-II is an experimental facility with 10 MW that was operated since 1974. Its planned operation will end in 2019. To support the decommissioning planning, a map with the overall distribution of relevant radionuclides has to be created according to the state of the art. In this paper, a procedure to create these 3-d maps using a combination of MCNP and deterministic methods is presented. With this approach, an activation analysis is performed for the whole reactor geometry including the most remote parts of the concrete shielding.

  7. Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors (United States)

    Kirk, Matthew F.; Roden, Eric E.; Crossey, Laura J.; Brealey, Adrian J.; Spilde, Michael N.


    Microbial SO 42- reduction limits accumulation of aqueous As in reducing aquifers where the sulfide that is produced forms minerals that sequester As. We examined the potential for As partitioning into As- and Fe-sulfide minerals in anaerobic, semi-continuous flow bioreactors inoculated with 0.5% (g mL -1) fine-grained alluvial aquifer sediment. A fluid residence time of three weeks was maintained over a ca. 300-d incubation period by replacing one-third of the aqueous phase volume of the reactors with fresh medium every seven days. The medium had a composition comparable to natural As-contaminated groundwater with slightly basic pH (7.3) and 7.5 μM aqueous As(V) and also contained 0.8 mM acetate to stimulate microbial activity. Medium was delivered to a reactor system with and without 10 mmol L -1 synthetic goethite (α-FeOOH). In both reactors, influent As(V) was almost completely reduced to As(III). Pure As-sulfide minerals did not form in the Fe-limited reactor. Realgar (As 4S 4) and As 2S 3(am) were undersaturated throughout the experiment. Orpiment (As 2S 3) was saturated while sulfide content was low (˜50 to 150 μM), but precipitation was likely limited by slow kinetics. Reaction-path modeling suggests that, even if these minerals had formed, the dissolved As content of the reactor would have remained at hazardous levels. Mackinawite (Fe 1 + xS; x ⩽ 0.07) formed readily in the Fe-bearing reactor and held dissolved sulfide at levels below saturation for orpiment and realgar. The mackinawite sequestered little As (<0.1 wt.%), however, and aqueous As accumulated to levels above the influent concentration as microbial Fe(III) reduction consumed goethite and mobilized adsorbed As. A relatively small amount of pyrite (FeS 2) and greigite (Fe 3S 4) formed in the Fe-bearing reactor when we injected a polysulfide solution (Na 2S 4) to a final concentration of 0.5 mM after 216, 230, 279, and 286 days. The pyrite, and to a lesser extent the greigite, that formed

  8. Systems and methods for dismantling a nuclear reactor (United States)

    Heim, Robert R; Adams, Scott Ryan; Cole, Matthew Denver; Kirby, William E; Linnebur, Paul Damon


    Systems and methods for dismantling a nuclear reactor are described. In one aspect the system includes a remotely controlled heavy manipulator ("manipulator") operatively coupled to a support structure, and a control station in a non-contaminated portion of a workspace. The support structure provides the manipulator with top down access into a bioshield of a nuclear reactor. At least one computing device in the control station provides remote control to perform operations including: (a) dismantling, using the manipulator, a graphite moderator, concrete walls, and a ceiling of the bioshield, the manipulator being provided with automated access to all internal portions of the bioshield; (b) loading, using the manipulator, contaminated graphite blocks from the graphite core and other components from the bioshield into one or more waste containers; and (c) dispersing, using the manipulator, dust suppression and contamination fixing spray to contaminated matter.

  9. A scaled experimental study of control blade insertion dynamics in Pebble-Bed Fluoride-Salt-Cooled High-Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Buster, Grant C., E-mail:; Laufer, Michael R.; Peterson, Per F.


    Highlights: • A granular dynamics scaling methodology is discussed. • Control blade insertion in a representative pebble-bed core is experimentally studied. • Control blade insertion forces and pebble displacements are experimentally measured. • X-ray tomography techniques are used to observe pebble displacement distributions. - Abstract: Direct control element insertion into a pebble-bed reactor core is proposed as a viable control system in molten-salt-cooled pebble-bed reactors. Unlike helium-cooled pebble-bed reactors, this reactor type uses spherical fuel elements with near-neutral buoyancy in the molten-salt coolant, thus reducing contact forces on the fuel elements. This study uses the X-ray Pebble Bed Recirculation Experiment facility to measure the force required to insert a control element directly into a scaled pebble-bed. The required control element insertion force, and therefore the contact force on fuel elements, is measured to be well below recommended limits. Additionally, X-ray tomography is used to observe how the direct insertion of a control element physically displaces spherical fuel elements. The tomography results further support the viability of direct control element insertion into molten-salt-cooled pebble-bed reactor cores.

  10. Development of fluid system design technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D. J.; Chang, M. H.; Kang, D. J. and others


    This study presents the technology development of the system design concepts of SMART, a multi-purposed integral reactor with enhanced safety and operability, for use in diverse usages and applications of the nuclear energy. This report contains the following; - Design characteristics - Performance and safety related design criteria - System description: Primary system, Secondary system, Residual heat removal system, Make-up system, Component cooling system, Safety system - Development of design computer code: Steam generator performance(ONCESG), Pressurizer performance(COLDPZR), Steam generator flow instability(SGINS) - Development of component module and modeling using MMS computer code - Design calculation: Steam generator thermal sizing, Analysis of feed-water temperature increase at a low flow rate, Evaluation of thermal efficiency in the secondary system, Inlet orifice throttling coefficient for the prevention of steam generator flow instability, Analysis of Nitrogen gas temperature in the pressurizer during heat-up process, evaluation of water chemistry and erosion etc. The results of this study can be utilized not only for the foundation technology of the next phase basic system design of the SMART but also for the basic model in optimizing the system concepts for future advanced reactors. (author)

  11. Designing visual displays and system models for safe reactor operations

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A.


    The material presented in this paper is based on two studies involving the design of visual displays and the user`s prospective model of a system. The studies involve a methodology known as Neuro-Linguistic Programming and its use in expanding design choices from the operator`s perspective image. The contents of this paper focuses on the studies and how they are applicable to the safety of operating reactors.

  12. Development of ROV System for FOSAR in Reactor Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Soo; Kim, Tae Won; Lee, Sung Uk; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Nam Kyun [Korea Plant Service and Engineering Co., Seongnam (Korea, Republic of)


    Foreign object in the reactor vessel is susceptible to damage the fuel. Prior to reloading fuel assemblies into the core, FOSAR(Foreign Object Search And Retrieval) activities were performed on and beneath the lower core plate with conventional equipment. However, the reactor vessel is limited to humans who are susceptible to radiation exposure, and conventional equipment is hard to access because of the complexity of the structure. To improve the convenience of use and retrieval ability in the under-core plate region, we are developing a FOSAR system carried by ROV (Remotely Operated Vehicle). In this paper, we describe a ROV system developed. The ROV system is composed of robot vehicle and remote control unit. The vehicle has 4 thrusters, tilt, camera, light and depth sensor, etc. Considering radiation damage, processors are not equipped on the vehicle. Control signals and sensing signals are transferred through umbilical cable. Remote control unit is composed of electric driving module and two computers which one is for the control and the other is for the detection of robot position. Control computer has a joystick user input and video/signal input, and transmit motor control signal and lens control signal via CAN/RS485 communication. And the other computers transmit information of vehicle position to the control computer via serial communication. Information of vehicle position is obtained through image processing algorithm. The acquiring camera of vehicle is on the flange of reactor vessel. Simulations on the detection of vehicle position are performed at the reactor vessel mockup which scaled down by 6 and verified to use in the control of robot by visual tracking. And functional test has been performed on the air condition. In the future, performance test will be carried out real sized mockup and underwater condition

  13. The SPES3 Experimental Facility Design for the IRIS Reactor Simulation

    Directory of Open Access Journals (Sweden)

    Mario Carelli


    Full Text Available IRIS is an advanced integral pressurized water reactor, developed by an international consortium led by Westinghouse. The licensing process requires the execution of integral and separate effect tests on a properly scaled reactor simulator for reactor concept, safety system verification, and code assessment. Within the framework of an Italian R&D program on Nuclear Fission, managed by ENEA and supported by the Ministry of Economic Development, the SPES3 facility is under design and will be built and operated at SIET laboratories. SPES3 simulates the primary, secondary, and containment systems of IRIS with 1 : 100 volume scale, full elevation, and prototypical thermal-hydraulic conditions. The simulation of the facility with the RELAP5 code and the execution of the tests will provide a reliable tool for data extrapolation and safety analyses of the final IRIS design. This paper summarises the main design steps of the SPES3 integral test facility, underlying choices and phases that lead to the final design.

  14. Overview of the TIBER 2 (Thermal Ignition/Burn Experimental Reactor) design (United States)

    Henning, C. D.; Logan, B. G.


    The TIBER 2 Tokamak Ignition/Burn Experimental Reactor design is the result of efforts by numerous people and institutions, including many fusion laboratories, universities, and industries. While subsystems will be covered extensively in other reports, this overview will attempt to place the work in perspective. Major features of the design are compact size, low cost, and steady-state operation. These are achieved through plasma shaping and innovative features such as radiation tolerant magnets and optimized shielding. While TIBER 2 can operate in a pulsed mode, steady-state is preferred for nuclear testing. Current drive is achieved by a combination of lower hybrid and neutral beams. In addition, 10 MW of ECR is added for disruption control and current drive profiling. The TIBER 2 design has been the US option in preparation for the International Thermonuclear Experimental Reactor (ITER). Other equivalent national designs are the NET in Europe, the FER in Japan and the OTR in the USSR. These designs will help set the basis for the new international design effort.

  15. Full reactor coolant system chemical decontamination qualification programs

    Energy Technology Data Exchange (ETDEWEB)

    Miller, P.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States)


    Corrosion and wear products are found throughout the reactor coolant system (RCS), or primary loop, of a PWR power plant. These products circulate with the primary coolant through the reactor where they may become activated. An oxide layer including these activated products forms on the surfaces of the RCS (including the fuel elements). The amount of radioactivity deposited on the different surface varies and depends primarily on the corrosion rate of the materials concerned, the amount of cobalt in the coolant and the chemistry of the coolant. The oxide layer, commonly called crud, on the surfaces of nuclear plant systems leads to personnel radiation exposure. The level of the radiation fields from the crud increases with time from initial plant startup and typically levels off after 4 to 6 cycles of plant operation. Thereafter, significant personnel radiation exposure may be incurred whenever major maintenance is performed. Personnel exposure is highest during refueling outages when routine maintenance on major plant components, such as steam generators and reactor coolant pumps, is performed. Administrative controls are established at nuclear plants to minimize the exposure incurred by an individual and the plant workers as a whole.

  16. Advanced High Temperature Reactor Systems and Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Peretz, Fred J [ORNL; Qualls, A L [ORNL


    The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience

  17. Modeling and experimental validation of hydrodynamics in an ultrasonic batch reactor. (United States)

    Ajmal, M; Rusli, S; Fieg, G


    Simulation of hydrodynamics in ultrasonic batch reactor containing immobilized enzymes as catalyst is done. A transducer with variable power and constant frequency (24 kHz) is taken as source of ultrasound (US). Simulation comprises two steps. In first step, acoustic pressure field is simulated and in second step effect of this field on particle trajectories is simulated. Simulation results are compared with experimentally determined particle trajectories using PIV Lab (particle image velocimetry). Effect of varying ultrasonic power, positioning and number of ultrasonic sources on particle trajectories is studied. It is observed that catalyst particles tend to orientate according to pattern of acoustic pressure field. An increase in ultrasonic power increases particle velocity and also brings more particles into motion. Simulation results are found to be in agreement with experimentally determined data. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Kinetics of vinyl acetate emulsion polymerization in a pulsed tubular reactor: comparison between experimental and simulation results

    Directory of Open Access Journals (Sweden)

    Sayer C.


    Full Text Available A new reactor, the pulsed sieve plate column (PSPC, was developed to perform continuous emulsion polymerization reactions. This reactor combines the enhanced flexibility of tubular reactors with the mixing behavior provided by sieved plates and by the introduction of pulses that is important to prevent emulsion destabilization. The main objective of this work is to study the kinetics of vinyl acetate (VA emulsion polymerization reactions performed in this PSPC. Therefore, both experimental studies and reaction simulations were performed. Results showed that it is possible to obtain high conversions with rather low residence times in the PSPC.

  19. Automated power control system for reactor TRIGA PUSPATI (United States)

    Ghazali, Anith Khairunnisa; Minhat, Mohd Sabri; Hassan, Mohd Khair


    Reactor TRIGA PUSPATI (RTP) Mark II type undergoes safe operation for more than 30 years and the only research reactor exists in Malaysia. The main safety feature of Instrumentation and Control (I&C) system design is such that any failure in the electronic, or its associated components, does not lead to an uncontrolled rate of reactivity. The existed controller using feedback approach to control the reactor power. This paper introduces proposed controllers such as Model Reference Adaptive Control (MRAC) and Proportional Integral Derivatives (PID) controller for the RTP simulation. In RTP, the most important considered parameter is the reactor power and act as nervous system. To design a controller for complex plant like RTP is quite difficult due to high cost and safety factors cause by the failure of the controller. Furthermore, to overcome these problems, a simulator can be used to replace functions the hardware and test could then be simulated using this simulator. In order to find the best controller, several controllers were proposed and the result will be analysed for study the performances of the controller. The output result will be used to find out the best RTP power controller using MATLAB/Simulink and gives result as close as the real RTP performances. Currently, the structures of RTP was design using MATLAB/Simulink tool that consist of fission chamber, controller, control rod position, height-to-worth of control rods and a RTP model. The controller will control the control rod position to make sure that the reactivity still under the limitation parameter. The results given from each controller will be analysed and validated through experiment data collected from RTP.

  20. Cooling performance of a water-cooling panel system for modular high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Shoji; Suzuki, Kunihiko; Inagaki, Yoshiyuki; Sudo, Yukio [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)


    Experiments on a water cooling panel system were performed to investigate its heat removal performance and the temperature distribution of components for a modular high-temperature gas-cooled reactor (MHTGR). The analytical code THANPACST2 was applied to analyze the experimental results to verify the validity of the analytical method and the model.

  1. CFD and experimental investigation of sloshing parameters for the safety assessment of HLM reactors

    Energy Technology Data Exchange (ETDEWEB)

    Myrillas, Konstantinos, E-mail: [von Karman Institute for Fluid Dynamics, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Planquart, Philippe, E-mail: [von Karman Institute for Fluid Dynamics, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Simonini, Alessia, E-mail: [von Karman Institute for Fluid Dynamics, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Buchlin, Jean-Marie, E-mail: [von Karman Institute for Fluid Dynamics, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Schyns, Marc, E-mail: mschyns@SCKCEN.BE [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)


    Highlights: • Comparison of sloshing behavior in cylindrical tank using mercury and water. • Flow visualization of liquid sloshing in resonance case. • CFD simulations of sloshing with OpenFOAM, using the VOF method. • Qualitative and quantitative comparison of experimental and numerical results. • Evaluation of sloshing forces on the tank walls from numerical simulations. - Abstract: For the safety assessment of Heavy Liquid Metal nuclear reactors under seismic excitation, sloshing phenomena can be of great concern. The earthquake motions are transferred to the liquid coolant which oscillates inside the vessel, exerting additional forces on the walls and internal structures. The present study examines the case of MYRRHA, a multi-purpose experimental reactor with LBE as coolant, developed by SCK·CEN. The sloshing behavior of liquid metals is studied through a comparison between mercury and water in a cylindrical tank. Experimental investigation of sloshing is carried out using optical techniques with the shaking table facility SHAKESPEARE at the von Karman Institute. Emphasis is given on the resonance case, where maximum forces occur on the tank walls. The experimental cases are reproduced numerically with the CFD software OpenFOAM, using the VOF method to track the liquid interface. The non-linear nature of sloshing is observed through visualization, where swirling is shown in the resonance case. The complex behavior is well reproduced by the CFD simulations, providing good qualitative validation of the numerical tools. A quantitative comparison of the maximum liquid elevation inside the tank shows higher values for the liquid metal than for water. Some discrepancies are revealed in CFD results and the differences are quantified. From simulations it is verified that the forces scale with the density ratio, following similar evolution in time. Overall, water is demonstrated to be a valid option as a working liquid in order to evaluate the sloshing

  2. Experimental study and modeling of a high-temperature solar chemical reactor for hydrogen production from methane cracking

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, Stephane; Flamant, Gilles [Processes, Materials, and Solar Energy Laboratory, CNRS (PROMES-CNRS, UPR 8521), 7 Rue du Four Solaire, 66120 Odeillo Font-Romeu (France)


    A high-temperature fluid-wall solar reactor was developed for the production of hydrogen from methane cracking. This laboratory-scale reactor features a graphite tubular cavity directly heated by concentrated solar energy, in which the reactive flowing gas dissociates to form hydrogen and carbon black. The solar reactor characterization was achieved with: (a) a thorough experimental study on the reactor performance versus operating conditions and (b) solar reactor modeling. The results showed that the conversion of CH{sub 4} and yield of H{sub 2} can exceed 97% and 90%, respectively, and these depend strongly on temperature and on fluid-wall heat transfer and reaction surface area. In addition to the experimental study, a 2D computational model coupling transport phenomena was developed to predict the mapping of reactor temperature and of species concentration, and the reaction extent at the outlet. The model was validated and kinetics of methane decomposition were identified from simulations and comparison to experimental results. (author)

  3. Screening of Gas-Cooled Reactor Thermal-Hydraulic and Safety Analysis Tools and Experimental Database

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Kim, Min Hwan; Lee, Seung Wook (and others)


    This report is a final report of I-NERI Project, 'Screening of Gas-cooled Reactor Thermal Hydraulic and Safety Analysis Tools and Experimental Database 'jointly carried out by KAERI, ANL and INL. In this study, we developed the basic technologies required to develop and validate the VHTR TH/safety analysis tools and evaluated the TH/safety database information. The research tasks consist of; 1) code qualification methodology (INL), 2) high-level PIRTs for major nucleus set of events (KAERI, ANL, INL), 3) initial scaling and scoping analysis (ANL, KAERI, INL), 4) filtering of TH/safety tools (KAERI, INL), 5) evaluation of TH/safety database information (KAERI, INL, ANL) and 6) key scoping analysis (KAERI). The code qualification methodology identifies the role of PIRTs in the R and D process and the bottom-up and top-down code validation methods. Since the design of VHTR is still evolving, we generated the high-level PIRTs referencing 600MWth block-type GT-MHR and 400MWth pebble-type PBMR. Nucleus set of events that represents the VHTR safety and operational transients consists of the enveloping scenarios of HPCC (high pressure conduction cooling: loss of primary flow), LPCC/Air-Ingress (low pressure conduction cooling: loss of coolant), LC (load changes: power maneuvering), ATWS (anticipated transients without scram: reactivity insertion), WS (water ingress: water-interfacing system break) and HU (hydrogen-side upset: loss of heat sink). The initial scaling analysis defines dimensionless parameters that need to be reflected in mixed convection modeling and the initial scoping analysis provided the reference system transients used in the PIRTs generation. For the PIRTs phenomena, we evaluated the modeling capability of the candidate TH/safety tools and derived a model improvement need. By surveying and evaluating the TH/safety database information, a tools V and V matrix has been developed. Through the key scoping analysis using available database, the

  4. Review of the Tri-Agency Space Nuclear Reactor Power System Technology Program (United States)

    Ambrus, J. H.; Wright, W. E.; Bunch, D. F.


    The Space Nuclear Reactor Power System Technology Program designated SP-100 was created in 1983 by NASA, the U.S. Department of Defense, and the Defense Advanced Research Projects Agency. Attention is presently given to the development history of SP-100 over the course of its first year, in which it has been engaged in program objectives' definition, the analysis of civil and military missions, nuclear power system functional requirements' definition, concept definition studies, the selection of primary concepts for technology feasibility validation, and the acquisition of initial experimental and analytical results.

  5. Effect of increasing nitrobenzene loading rates on the performance of anaerobic migrating blanket reactor and sequential anaerobic migrating blanket reactor/completely stirred tank reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Kuscu, Ozlem Selcuk [Department of Environmental Engineering, Faculty of Engineering and Architecture, Sueleyman Demirel University, 32360, Isparta (Turkey); Sponza, Delia Teresa, E-mail: [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eyluel University, Buca Kaynaklar Campus, 35160, Izmir (Turkey)


    A laboratory scale anaerobic migrating blanket reactor (AMBR) reactor was operated at nitrobenzene (NB) loading rates increasing from 3.33 to 66.67 g NB/m{sup 3} day and at a constant hydraulic retention time (HRT) of 6 days to observe the effects of increasing NB concentrations on chemical oxygen demand (COD), NB removal efficiencies, bicarbonate alkalinity, volatile fatty acid (VFA) accumulation and methane gas percentage. Moreover, the effect of an aerobic completely stirred tank reactor (CSTR) reactor, following the anaerobic reactor, on treatment efficiencies was also investigated. Approximately 91-94% COD removal efficiencies were observed up to a NB loading rate of 30.00 g/m{sup 3} day in the AMBR reactor. The COD removal efficiencies decreased from 91% to 85% at a NB loading rate of 66.67 g/m{sup 3} day. NB removal efficiencies were approximately 100% at all NB loading rates. The maximum total gas, methane gas productions and methane percentage were found to be 4.1, 2.6 l/day and 59%, respectively, at a NB loading rate of 30.00 g/m{sup 3} day. The optimum pH values were found to be between 7.2 and 8.4 for maximum methanogenesis. The total volatile fatty acid (TVFA) concentrations in the effluent were 110 and 70 mg/l in the first and second compartments at NB loading rates as high as 66.67 and 6.67 g/m{sup 3} day, respectively, while they were measured as zero in the effluent of the AMBR reactor. In this study, from 180 mg/l NB 66 mg/l aniline was produced in the anaerobic reactor while aniline was completely removed and transformed to 2 mg/l of cathechol in the aerobic CSTR reactor. Overall COD removal efficiencies were found to be 95% and 99% for NB loading rates of 3.33 and 66.67 g/m{sup 3} day in the sequential anaerobic AMBR/aerobic CSTR reactor system, respectively. The toxicity tests performed with Photobacterium phosphoreum (LCK 480, LUMIStox) and Daphnia magna showed that the toxicity decreased with anaerobic/aerobic sequential reactor system from

  6. Ongoing Development of a Series Bosch Reactor System (United States)

    Abney, Morgan; Mansell, Matt; DuMez, Sam; Thomas, John; Cooper, Charlie; Long, David


    Future manned missions to deep space or planetary surfaces will undoubtedly require highly robust, efficient, and regenerable life support systems that require minimal consumables. To meet this requirement, NASA continues to explore a Bosch-based carbon dioxide reduction system to recover oxygen from CO2. In order to improve the equivalent system mass of Bosch systems, we seek to design and test a "Series Bosch" system in which two reactors in series are optimized for the two steps of the reaction, as well as to explore the use of in situ materials as carbon deposition catalysts. Here we report recent developments in this effort including assembly and initial testing of a Reverse Water-Gas Shift reactor (RWGSr) and initial testing of two gas separation membranes. The RWGSr was sized to reduce CO2 produced by a crew of four to carbon monoxide as the first stage in a Series Bosch system. The gas separation membranes, necessary to recycle unreacted hydrogen and CO2, were similarly sized. Additionally, we report results of preliminary experiments designed to determine the catalytic properties of Martian and Lunar regolith simulant for the carbon deposition step.

  7. The detector system of the Daya Bay reactor neutrino experiment (United States)

    An, F. P.; Bai, J. Z.; Balantekin, A. B.; Band, H. R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Brown, R. L.; Butorov, I.; Cao, D.; Cao, G. F.; Cao, J.; Carr, R.; Cen, W. R.; Chan, W. T.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chasman, C.; Chen, H. Y.; Chen, H. S.; Chen, M. J.; Chen, Q. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, X. S.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chidzik, S.; Chow, K.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dong, L.; Dove, J.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fang, S. D.; Fu, J. Y.; Fu, Z. W.; Ge, L. Q.; Ghazikhanian, V.; Gill, R.; Goett, J.; Gonchar, M.; Gong, G. H.; Gong, H.; Gornushkin, Y. A.; Grassi, M.; Greenler, L. S.; Gu, W. Q.; Guan, M. Y.; Guo, R. P.; Guo, X. H.; Hackenburg, R. W.; Hahn, R. L.; Han, R.; Hans, S.; He, M.; He, Q.; He, W. S.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hinrichs, P.; Ho, T. H.; Hoff, M.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. Z.; Huang, H. X.; Huang, P. W.; Huang, X.; Huang, X. T.; Huber, P.; Hussain, G.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiang, H. J.; Jiang, W. Q.; Jiao, J. B.; Johnson, R. A.; Joseph, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, C. Y.; Lai, W. C.; Lai, W. H.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, M. K. P.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Lewis, C. A.; Li, B.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, J.; Li, N. Y.; Li, Q. J.; Li, S. F.; Li, S. C.; Li, W. D.; Li, X. B.; Li, X. N.; Li, X. Q.; Li, Y.; Li, Y. F.; Li, Z. B.; Liang, H.; Liang, J.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. X.; Lin, S. K.; Lin, Y. C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, B. J.; Liu, C.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S.; Liu, S. S.; Liu, X.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, A.; Luk, K. B.; Luo, T.; Luo, X. L.; Ma, L. H.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Mayes, B.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Mohapatra, D.; Monari Kebwaro, J.; Morgan, J. E.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Newsom, C.; Ngai, H. Y.; Ngai, W. K.; Nie, Y. B.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pagac, A.; Pan, H.-R.; Patton, S.; Pearson, C.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Sands, W. R.; Seilhan, B.; Shao, B. B.; Shih, K.; Song, W. Y.; Steiner, H.; Stoler, P.; Stuart, M.; Sun, G. X.; Sun, J. L.; Tagg, N.; Tam, Y. H.; Tanaka, H. K.; Tang, W.; Tang, X.; Taychenachev, D.; Themann, H.; Torun, Y.; Trentalange, S.; Tsai, O.; Tsang, K. V.; Tsang, R. H. M.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Virostek, S.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, L. Z.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, T.; Wang, W.; Wang, W. W.; Wang, X. T.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, H. Y.; Wei, Y. D.; Wen, L. J.; Wenman, D. L.; Whisnant, K.; White, C. G.; Whitehead, L.; Whitten, C. A.; Wilhelmi, J.; Wise, T.; Wong, H. C.; Wong, H. L. H.; Wong, J.; Wong, S. C. F.; Worcester, E.; Wu, F. F.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xiang, S. T.; Xiao, Q.; Xing, Z. Z.; Xu, G.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, W.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Yip, K.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, H. H.; Zhang, J. W.; Zhang, K.; Zhang, Q. X.; Zhang, Q. M.; Zhang, S. H.; Zhang, X. T.; Zhang, Y. C.; Zhang, Y. H.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhou, Z. Y.; Zhuang, H. L.; Zimmerman, S.; Zou, J. H.


    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of νbare oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin2 2θ13 and the effective mass splitting Δ mee2. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  8. Formulation and experimental evaluation of closed-form control laws for the rapid maneuvering of reactor neutronic power

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J.A. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Nuclear Reactor Lab.)


    This report describes both the theoretical development and the experimental evaluation of a novel, robust methodology for the time-optimal adjustment of a reactor's neutronic power under conditions of closed-loop digital control. Central to the approach are the MIT-SNL Period-Generated Minimum Time Control Laws' which determine the rate at which reactivity should be changed in order to cause a reactor's neutronic power to conform to a specified trajectory. Using these laws, reactor power can be safely raised by five to seven orders of magnitude in a few seconds. The MIT-SNL laws were developed to facilitate rapid increases of neutronic power on spacecraft reactors operating in an SDI environment. However, these laws are generic and have other applications including the rapid recovery of research and test reactors subsequent to an unanticipated shutdown, power increases following the achievement of criticality on commercial reactors, power adjustments on commercial reactors so as to minimize thermal stress, and automated startups. The work reported here was performed by the Massachusetts Institute of Technology under contract to the Sandia National Laboratories. Support was also provided by the US Department of Energy's Division of University and Industry Programs. The work described in this report is significant in that a novel solution to the problem of time-optimal control of neutronic power was identified, in that a rigorous description of a reactor's dynamics was derived in that the rate of change of reactivity was recognized as the proper control signal, and in that extensive experimental trials were conducted of these newly developed concepts on actual nuclear reactors. 43 refs., 118 figs., 11 tabs.

  9. Anaerobic sewage treatment in a one-stage UASB reactor and a combined UASB Digester system

    NARCIS (Netherlands)

    Mahmoud, N.A.; Zeeman, G.; Gijzen, H.J.; Lettinga, G.


    The treatment of sewage at 15°C was investigated in a one-stage upflow anaerobic sludge blanket (UASB) reactor and a UASB-Digester system. The latter consists of a UASB reactor complemented with a digester for mutual sewage treatment and sludge stabilisation. The UASB reactor was operated at a

  10. Ageing investigation and upgrading of components/systems of Kartini research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syarip; Widi Setiawan [Yogyakarta Nuclear Research Centre, Yogyakarta (Indonesia)


    Kartini research reactor has been operated in good condition and has demonstrated successful operation for the past 18 years, utilized for: reactor kinetic and control studies, instrumentation tests, neutronic and thermohydraulic studies, routine neutron activation analysis, reactor safety studies, training for research reactor operators and supervisors, and reactor physics experiments. Several components of Kartini reactor use components from the abandoned IRT-2000 Project at Serpong and from Bandung Reactor Centre such as: reactor tank, reactor core, heat exchanger, motor blower for ventilation system, fuel elements, etc. To maintain a good operating performance and also for aging investigation purposes, the component failure data collection has been done. The method used is based on the Manual on Reliability Data Collection For Research Reactor PSAs, IAEA TECDOC 636, and analyzed by using Data Entry System (DES) computer code. Analysis result shows that the components/systems failure rate of Kartini reactor is around 1,5.10{sup -4} up to 2,8.10{sup -4} per hour, these values are within the ranges of the values indicated in IAEA TECDOC 478. Whereas from the analysis of irradiation history shows that the neutron fluence of fuel element with highest burn-up (2,05 gram U-235 in average) is around 1.04.10{sup 16} n Cm{sup -2} and this value is still far below its limiting value. Some reactor components/systems have been replaced and upgraded such as heat exchanger, instrumentation and control system (ICS), etc. The new reactor ICS was installed in 1994 which is designed as a distributed structure by using microprocessor based systems and bus system technology. The characteristic and operating performance of the new reactor ICS, as well as the operation history and improvement of the Kartini research reactor is presented. (J.P.N.)

  11. Designing a SCADA system simulator for fast breeder reactor (United States)

    Nugraha, E.; Abdullah, A. G.; Hakim, D. L.


    SCADA (Supervisory Control and Data Acquisition) system simulator is a Human Machine Interface-based software that is able to visualize the process of a plant. This study describes the results of the process of designing a SCADA system simulator that aims to facilitate the operator in monitoring, controlling, handling the alarm, accessing historical data and historical trend in Nuclear Power Plant (NPP) type Fast Breeder Reactor (FBR). This research used simulation to simulate NPP type FBR Kalpakkam in India. This simulator was developed using Wonderware Intouch software 10 and is equipped with main menu, plant overview, area graphics, control display, set point display, alarm system, real-time trending, historical trending and security system. This simulator can properly simulate the principle of energy flow and energy conversion process on NPP type FBR. This SCADA system simulator can be used as training media for NPP type FBR prospective operators.

  12. Modeling of adsorber/desorber/catalytic reactor system for ethylene oxide removal

    Directory of Open Access Journals (Sweden)



    Full Text Available The removal of ethylene oxide (EtO in a combined system adsorber/desorber/catalytic reactor has been investigated. The combined system was a modified draft tube spouted bed reactor loaded with Pt/Al2O3 catalyst. The annular region was divided into two sectons, the “hot” section contained about 7 % of catalyst and it behaved as a desorber and catalytic incinerator, while the “cold” section, with the rest of the catalyst, behaved as a sorber. The catalyst particles were circulated between the two sections by use of a draft tube riser. The Computational Fluid Dynamics (CFD program package FLUENT was used for simulations of the operation of the combined system. In addition, a one-dimensional numerical model for the operation of the packed bed reactor was compared with the corresponding FLUENT calculations. The results of the FLUENT simulations are in very good agreement with the experimental observations, as well as with the results of the one-dimensional numerical simulations.

  13. Parametric systems analysis of the Modular Stellarator Reactor (MSR)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.


    The close coupling in the stellarator/torsatron/heliotron (S/T/H) between coil design (peak field, current density, forces), magnetics topology (transform, shear, well depth), and plasma performance (equilibrium, stability, transport, beta) complicates the reactor assessment more so than for most magnetic confinement systems. In order to provide an additional degree of resolution of this problem for the Modular Stellarator Reactor (MSR), a parametric systems model has been developed and applied. This model reduces key issues associted ith plasma performance, first-wall/blanket/shield (FW/B/S), and coil design to a simple relationship between beta, system geometry, and a number of indicators of overall plant performance. The results of this analysis can then be used to guide more detailed, multidimensional plasma, magnetics, and coil design efforts towards technically and economically viable operating regimes. In general, it is shown that beta values > 0.08 may be needed if the MSR approach is to be substantially competitive with other approaches to magnetic fusion in terms of system power density, mass utilization, and cost for total power output around 4.0 GWt; lower powers will require even higher betas.

  14. Control of Advanced Reactor-Coupled Heat Exchanger System: Incorporation of Reactor Dynamics in System Response to Load Disturbances

    Directory of Open Access Journals (Sweden)

    Isaac Skavdahl


    Full Text Available Alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX are presented in this paper. One scheme is designed to control the cold outlet temperature of the SHX (Tco and the hot outlet temperature of the intermediate heat exchanger (Tho2 by manipulating the hot-side flow rates of the heat exchangers (Fh/Fh2 responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the control of the cold outlet temperature of the SHX (Tco only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1 flow rate manipulation; (2 reactor power manipulation; or (3 a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The third option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.

  15. Monitoring system for an experimental facility using GMDH methodology

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Iraci Martinez; Moraes, Davi Almeida [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Bueno, Elaine Inacio, E-mail:, E-mail:, E-mail: [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), São Paulo, SP (Brazil)


    This work presents a Monitoring System developed based on the GMDH - Group Method of Data Handling methodology to be used in an Experimental Test Facility. GMDH is a combinatorial multi-layer algorithm in which a network of layers and nodes is generated using a number of inputs from the data stream being evaluated. The GMDH network topology has been traditionally determined using a layer by layer pruning process based on a pre-selected criterion of what constitutes the best nodes at each level. The traditional GMDH method is based on an underlying assumption that the data can be modeled by using an approximation of the Volterra Series or Kolmorgorov-Gabor polynomial. The Fault Test Experimental Facility was designed to simulate a PWR nuclear power plant and is composed by elements that correspond to the pressure vessel, steam generator, pumps of the primary and secondary reactor loops. The nuclear reactor core is represented by an electrical heater with different values of power. The experimental plant will be fully instrumented with sensors and actuators, and the data acquisition system will be constructed in order to enable the details of the temporal analysis of process variables. The Fault Test Experimental Facility can be operated to generate normal and fault data. These failures can be added initially with small magnitude, and their magnitude being increasing gradually in a controlled way. The database will interface with the plant supervisory system SCADA (Supervisory Control and Data Acquisition) that provides the data through standard interface. (author)

  16. Commissioning of the STAR test section for experimental simulation of loss of coolant accident using the EC-208 instrumented fuel assembly of the IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maprelian, Eduardo; Torres, Walmir M.; Prado, Adelk C.; Umbehaun, Pedro E.; Franca, Renato L.; Santos, Samuel C.; Macedo, Luiz A.; Sabundjian, Gaiane, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SO (Brazil)


    The three basic safety functions of Research Reactors (RR) are the safe shutdown of the reactor, the proper cooling of the decay heat of the fuel elements and the confinement of radioactive materials. Compared to Nuclear Power Reactors, RR power release is small, yet its three safety functions must be met to ensure the integrity of the reactor. During a loss of coolant accident (LOCA) in pool type RR, partial or complete loss of pool water may occur, with consequent partial or complete uncovering of the fuel assemblies. In such an accident, the decay heat removal safety function must not be compromised. The Test Section for Experimental Simulation of Loss of Coolant Accident (STAR) is in commissioning phase. This test section will provide experimental data on partial and total uncovering of the EC-208 instrumented fuel assembly (IFA) irradiated in the IEA-R1. Experimental results will be useful in validation of computer codes for RR safety analysis, particularly on heat removal efficiency aspects (safety function) in accident conditions. STAR comprises a base on which is installed the IFA, the cylindrical stainless steel hull, the compressed air system for the test section emptying and refilling, and the instrumentation for temperature and level measurements. The commissioning tests or pre-operational check, consist of several preliminary tests to verify experimental procedures, the difficulties during assembling of STAR in the pool, the difficulties in control the emptying and refilling velocities, as well as, the repeatability capacity, tests of equipment, valves and systems and tests of instrumentation and data acquisition system. Safety, accuracy and easiness of operation will be checked. (author)

  17. Performance Test for Neutron Detector and Associated System using Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seongwoo; Park, Sung Jae; Cho, Man Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Oh, Se Hyun [USERS, Daejeon (Korea, Republic of); Shin, Ho Cheol [KHNP CRI, Daejeon (Korea, Republic of)


    SPND (Self-Powered Neutron Detector) has been developed to extend its lifespan. ENFMS (Ex-Core Flux Monitoring System) of pressurized water reactor has been also improved. After the development and improvement, their performance must be verified under the neutron irradiation environment. We used a research reactor for the performance verification of neutron detector and associated system because the research reactor can meet the neutron flux level of commercial nuclear reactor. In this paper, we report the performance verification method and result for the SPND and ENFMS using the research reactor. The performance tests for the SPND and ENFMS were conducted using UCI TRIGA reactor. The test environment of commercial reactor’s neutron flux level must be required. However, it is difficult to perform the test in the commercial rector due to the constraint of time and space. The research reactor can be good alternative neutron source for the test of neutron detectors and associated system.

  18. A large scale fullerenes synthesis solar reactor modelling and first experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, T.; Flamand, G.; Robert, J.F.; Rivoire, B.; Olalde, G.; Alvarez, L. [Centre National de la Recherche Scientifique (CNRS-IMP), 66 - Font-Romeu (France); Laplaze, D. [Universite de Montpellier, GDPC, 34 (France)


    After the promising results obtained with a 2 kW solar furnace for fullerenes and nano-tubes synthesis, a large scale production project using the 1 MW Odeillo solar furnace started in 1997. This paper presents the first experimental results obtained with a concept-validation vessel and the comparison with a numerical simulation of the target thermal behavior. It is shown that a 6 mm i.d. graphite rod heated by a 500 W/cm{sup 2} incident solar flux density (I{sub s}) reaches a front temperature of 2800 K, in agreement with the thermal model. On this basis, accurate prediction of maximum working temperature of the 1 MW reactor is proposed: 3400 K for I{sub s} = 900 W/cm{sup 2}. (authors)

  19. Review of the International Thermonuclear Experimental Reactor (ITER) detailed design report

    Energy Technology Data Exchange (ETDEWEB)



    Dr. Martha Krebs, Director, Office of Energy Research at the US Department of Energy (DOE), wrote to the Fusion Energy Sciences Advisory Committee (FESAC), in letters dated September 23 and November 6, 1996, requesting that FESAC review the International Thermonuclear Experimental Reactor (ITER) Detailed Design Report (DDR) and provide its view of the adequacy of the DDR as part of the basis for the United States decision to enter negotiations with the other interested Parties regarding the terms and conditions for an agreement for the construction, operations, exploitation and decommissioning of ITER. The letter from Dr. Krebs, referred to as the Charge Letter, provided context for the review and a set of questions of specific interest.

  20. Development of system analysis code for thermal-hydraulic simulation of integral reactor, Rex-10

    Energy Technology Data Exchange (ETDEWEB)



    Rex-10 is an environment-friendly and economical small-scale nuclear reactor to provide the energy for district heating as well as the electric power in micro-grid. This integral reactor comprises several innovative concepts supported by advanced primary circuit components, low coolant parameters and natural circulation cooling. To evaluate the system performance and thermal-hydraulic behavior of the reactor, a system analysis code is being developed so that the new designs and technologies adopted in Rex-10 can be reflected. The research efforts are absorbed in programming the simple and fast-running thermal-hydraulic analysis software. The details of hydrodynamic governing equations component models and numerical solution scheme used in this code are presented in this paper. On the basis of one-dimensional momentum integral model, the models of point reactor neutron kinetics for thorium-fueled core, physical processes in the steam-gas pressurizer, and heat transfers in helically coiled steam generator are implemented to the system code. Implicit numerical scheme is employed to momentum and energy equations to assure the numerical stability. The accuracy of simulation is validated by applying the solution method to the Rex-10 test facility. Calculated natural circulation flow rate and coolant temperature at steady-state are compared to the experimental data. The validation is also carried out for the transients in which the sudden reduction in the core power or the feedwater flow takes place. The code's capability to predict the steady-state flow by natural convection and the qualitative behaviour of the primary system in the transients is confirmed. (Author)

  1. Improved reactor regulating system logical architecture using genetic algorithm

    Directory of Open Access Journals (Sweden)

    Hyo-Sub Shim


    Full Text Available An improved Reactor Regulating System (RRS logic architecture, which is combined with genetic algorithm (GA, is implemented in this work. It is devised to provide an optimal solution to the current RRS. The current system works desirably and has contributed to safe and stable nuclear power plant operation. However, during the ascent and descent section of the reactor power, the RRS output reveals a relatively high steady-state error, and the output also carries a considerable level of overshoot. In an attempt to consolidate conservatism and minimize the error, this work proposes to apply GA to RRS and suggests reconfiguring the system. Prior to the use of GA, reverse engineering is implemented to build a Simulink-based RRS model. Reengineering is followed to produce a newly configured RRS to generate an output that has a reduced steady-state error and diminished overshoot level. A full-scope APR1400 simulator is used to examine the dynamic behaviors of RRS and to build the RRS Simulink model.

  2. Modification of reference temperature program in reactor regulating system

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sung Sik; Lee, Byung Jin; Kim, Se Chang; Cheong, Jong Sik [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of); Kim, Ji In; Doo, Jin Yong [Korea Electric Power Cooperation, Yonggwang (Korea, Republic of)


    In Yonggwang nuclear units 3 and 4 currently under commercial operation, the cold temperature was very close to the technical specification limit of 298 deg C during initial startup testing, which was caused by the higher-than-expected reactor coolant system flow. Accordingly, the reference temperature (Tref) program needed to be revised to allow more flexibility for plant operations. In this study, the method of a specific test performed at Yonggwang nuclear unit 4 to revise the Tref program was described and the test results were discussed. In addition, the modified Tref program was evaluated on its potential impacts on system performance and safety. The methods of changing the Tref program and the associated pressurizer level setpoint program were also explained. Finally, for Ulchin nuclear unit 3 and 4 currently under initial startup testing, the effects of reactor coolant system flow rate on the coolant temperature were evaluated from the thermal hydraulic standpoint and an optimum Tref program was recommended. 6 refs., 4 figs., 2 tabs. (Author)

  3. Development of system integration technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kang, D. J.; Kim, K. K. and others


    The objective of this report is to integrate the conceptual design of an integral reactor, SMART producing thermal energy of 330 MW, which will be utilized to supply energy for seawater desalination and small-scale power generation. This project also aims to develop system integration technology for effective design of the reactor. For the conceptual design of SMART, preliminary design requirements including the top-tier requirements and design bases were evaluated and established. Furthermore, in the view of the application of codes and standards to the SMART design, existing laws, codes and standards were analyzed and evaluated with respect to its applicability. As a part of this evaluation, directions and guidelines were proposed for the development of new codes and standards which shall be applied to the SMART design. Regarding the integration of SMART conceptual designs, major design activities and interfaces between design departments were established and coordinated through the design process. For the effective management of all design schedules, a work performance evaluation system was developed and applied to the design process. As the results of this activity, an integrated output of SMART designs was produced. Two additional scopes performed in this project include the preliminary economic analysis on the SMART utilization for seawater desalination, and the planning of verification tests for technology implemented into SMART and establishing development plan of the computer codes to be used for SMART design in the next phase. The technical cooperation with foreign country and international organization for securing technologies for integral reactor design and its application was coordinated and managed through this project. (author)

  4. Development plan for the External Hazards Experimental Group. Light Water Reactor Sustainability Program

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States); Burns, Douglas Edward [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kammerer, Annie [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    This report describes the development plan for a new multi-partner External Hazards Experimental Group (EHEG) coordinated by Idaho National Laboratory (INL) within the Risk-Informed Safety Margin Characterization (RISMC) technical pathway of the Light Water Reactor Sustainability Program. Currently, there is limited data available for development and validation of the tools and methods being developed in the RISMC Toolkit. The EHEG is being developed to obtain high-quality, small- and large-scale experimental data validation of RISMC tools and methods in a timely and cost-effective way. The group of universities and national laboratories that will eventually form the EHEG (which is ultimately expected to include both the initial participants and other universities and national laboratories that have been identified) have the expertise and experimental capabilities needed to both obtain and compile existing data archives and perform additional seismic and flooding experiments. The data developed by EHEG will be stored in databases for use within RISMC. These databases will be used to validate the advanced external hazard tools and methods.

  5. Development of small and medium integral reactor. ctor Development of fluid system design for small and medium integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D. J.; Chang, M. H.; Kim, K. K.; Kim, J. P.; Yoon, J. H.; Lee, Y. J.; Park, C. T.; Bae, Y. Y.; Kang, D. J.; Lee, K. H.; Lee, J.; Kim, H. Y.; Cho, B. H.; Seo, J. K.; Kang, K. S.; Kang, H. O.


    The purpose of this study is to develop system design technology of integral reactor, as a new design concept of small and medium reactor having enhanced safety and economy, and to have a design assessment / verification technology through basic thermal hydraulic experiments. This report describes of the following: (1) basic requirement for the integral reactor system design (2) Conceptual design of primary and secondary circuits of NSSS, emergency core cooling system, passive residual heat removal system, severe accident mitigation cooling system, passive residual heat removal system, severe accident mitigation system and other auxiliary system (3) Requirements and test program for the basic thermal hydraulic experiments including, CHF test for hexagonal fuel assembly, flow instability for once-through steam generator, core flow distribution test and verification test for non-condensable gas model in RELAP-5 code. The results of this study can be utilized for using as the foundation technology of in the next basic design phase and design technology for future advanced reactors. (author). 30 refs.,24 tabs., 56 figs.

  6. Slaughterhouse wastewater treatment: evaluation of a new three-phase separation system in a UASB reactor. (United States)

    Caixeta, Cláudia E T; Cammarota, Magali C; Xavier, Alcina M F


    The anaerobic treatment of the wastewater from the meat processing industry was studied using a 7.2 1 UASB reactor. The reactor was equipped with an unconventional configuration of the three-phase separation system. The effluent was characterized in terms of pH (6.3-6.6), chemical oxygen demand (COD) (2,000-6,000 mg l(-1)), biochemical oxygen demand BOD5 (1,300-2,300 mg 1(-1)), fats (40-600 mg l(-1)) and total suspended solids (TSS) (850-6,300 mg l(-1)) The reactor operated continuously throughout 80 days with hydraulic retention time of 14, 18 and 22 h. The wastewater from Rezende Industrial was collected after it had gone through pretreatment (screening, flotation and equalization). COD, BOD and TSS reductions and the biogas production rate were the parameters considered in analyzing the efficiency of the process. The average production of biogas was 111 day(-1) (STP) for the three experimental runs. COD removal varied from 77% to 91% while BOD removal was 95%. The removal of total suspended solids varied from 81% to 86%. This fact supports optimal efficiency of the proposed three-phase separation system as well as the possibility of applying it to the treatment of industrial effluents.

  7. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobori, Hikaru [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hiwatari, Ryoji [Central Research Institute of Electric Power Industry, Tokyo (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)


    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO{sub 2} emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  8. Implementation of a management system for operating organizations of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo, E-mail: [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Aquino, Afonso Rodrigues de; Zouain, Desiree Moraes, E-mail: araquino@ipen.b, E-mail: dmzouain@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)


    This paper presents the requirements established by an IAEA draft technical document for the implementation of a management system for operating organisations of research reactors. The following aspects will be discussed: structure of IAEA draft technical document, management system requirements, processes common to all research reactors, aspects for the implementation of the management system, and a formula for grading the management system requirements. (author)

  9. Experimental study of hydrodynamic and operation start of a baffled anaerobic reactor treating sewage

    Directory of Open Access Journals (Sweden)

    Ana Carolina Silveira Perico


    Full Text Available It is important to provide individual sanitation systems for sewage peri-urban communities or rural areas to minimize impacts on the environment and human health caused by sewage discharge in natura into water resources. In this context, the anaerobic digestion of effluent has been one of the main considered technologies due to easy implementation, material minimization and reduction in waste production. The objective of this work was to study a Baffled Anaerobic Reactor (BAR including its hydrodynamic characteristics, percentile of inoculum to be applied and reactor operation start. It was concluded that the flow is dispersed with 3.84% of dead spaces and that 20% of the cow manure provided best results; however, due to the high fiber content of the manure, its use is not recommended as inoculum. The BAR system, composed of four chambers, presented good performance for sewage treatment of a rural community in terms of organic substance removal (COD, turbidity and solids meeting effluent disposal standards of these parameters considering the Federal and Minas Gerais State legislation, in Brazil, even in a transient phase of operation, at temperatures below 20°C. However, the effluents from the BAR can’t be released into water bodies without other parameters such as nitrogen, phosphorus, fecal coliforms, and others are investigated to be conforming to those standards.

  10. Reactor operation

    CERN Document Server

    Shaw, J


    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  11. High Flux Isotope Reactor system RELAP5 input model

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.G.; Wendel, M.W.


    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model.

  12. The MAUS nuclear space reactor with ion propulsion system (United States)

    Mainardi, Enrico


    MAUS (Moltiplicatore Avanzato Ultracompatto Spaziale) is a nuclear reactor concept design capable to ensure a reliable, long-lasting, low-mass, compact energy supply needed for advanced, future space missions. The exploration of the solar system and the space beyond requires the development of nuclear energy generators for supplying electricity to space-bases, spacecrafts, probes or satellites, as well as for propelling ships in long space missions. For propulsion, the MAUS nuclear reactor could be used to power electric ion drive engines. An ion engine is able to build up to very high velocities, far greater than chemical propulsion systems, but has high power and long service requirements. The MAUS concept is described, together with the ion propulsion engine and together with the reference thermoionic process used to convert the thermal power into electricity. The design work has been performed at the Nuclear Engineering and Energy Conversion Department of the University of Rome "La Sapienza" starting from 1992 on an issue submitted by the Italian Space Agency (ASI), in cooperation with the research laboratories of ENEA.

  13. Reactor Safety Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.


    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  14. Instrumentation and control system for the prototype fast breeder reactor 'MONJU' power station

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Hiroshi (Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)); Mae, Yoshinori; Ishida, Takayuki; Hashiura, Kazuhiko; Kasai, Shozo; Yamamoto, Hajime


    The fast breeder reactor 'Monju' power station is constructed as the nuclear power station of next generation in Tsuruga City, Fukui Prefecture. In order to realize high safety and operational reliability as the newest nuclear power station, the measurement and control system of Monju (electric power output 280 MW) has been designed and manufactured by reflecting the experiences of construction and operation of the experimental FBR 'Joyo' and the results of various research and development of sodium instrumentation and others, and by using the latest digital control technology and multiplexing system technology. In this paper, the results of development of the characteristic measurement and control technology as fast breeder reactors and the state of application to the measurement and control system which was designed and manufactured for Monju are described. Central monitoring panel, plant control system, sodium instrumentation, preheating control system and so on are reported. In the case of Monju, the heat capacity and thermal inertia of the primary and secondary cooling systems are large, and the system comprises three loops. (K.I.).

  15. Reactor/Brayton power systems for nuclear electric spacecraft (United States)

    Layton, J. P.


    Studies are currently underway to assess the technological feasibility of a nuclear-reactor-powered spacecraft propelled by electric thrusters. This vehicle would be capable of performing detailed exploration of the outer planets of the solar system during the remainder of this century. The purpose of this study was to provide comparative information on a closed cycle gas turbine power conversion system. The results have shown that the performance is very competitive and that a 400 kWe space power system is dimensionally compatible with a single Space Shuttle launch. Performance parameters of system mass and radiator area were determined for systems from 100 to 1000 kWe. A 400 kWe reference system received primary attention. The components of this system were defined and a conceptual layout was developed with encouraging results. The preliminary mass determination for the complete power system was very close to the desired goal of 20 kg/kWe. Use of more advanced technology (higher turbine inlet temperature) will substantially improve system performance characteristics.

  16. Research of lithium capillary-pore systems for fusion reactor plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Evtikhin, V.A. E-mail:; Vertkov, A.V.; Lyublinski, I.E.; Khripunov, B.I.; Petrov, V.B.; Mirnov, S.V


    To date there is no adequate solution for high heat load plasma facing components of the next step fusion reactor among solid material options. A lithium-filled capillary porous systems (CPS) was proposed as a plasma facing material and experimental work on this subject is now in progress. Steady-state experiments with CPS-based target and lithium supply systems have shown successful operation at heat fluxes of 1-10 MW/m{sup 2} during several hours. Experimental data is obtained on lithium CPS stability at heat flux up to 25-50 MW/m{sup 2}. The lithium CPS behaviour in contact with real tokamak plasma is considered for normal discharge condition at 10 MW/m{sup 2} and for plasma disruption at 15 MJ/m{sup 2}. Erosion mechanism of lithium under tokamak plasma impact was analysed. Stability of lithium CPS in tokamak conditions was shown.

  17. Robust reactor power control system design by genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Joon; Cho, Kyung Ho; Kim, Sin [Cheju National University, Cheju (Korea, Republic of)


    The H{sub {infinity}} robust controller for the reactor power control system is designed by use of the mixed weight sensitivity. The system is configured into the typical two-port model with which the weight functions are augmented. Since the solution depends on the weighting functions and the problem is of nonconvex, the genetic algorithm is used to determine the weighting functions. The cost function applied in the genetic algorithm permits the direct control of the power tracking performances. In addition, the actual operating constraints such as rod velocity and acceleration can be treated as design parameters. Compared with the conventional approach, the controller designed by the genetic algorithm results in the better performances with the realistic constraints. Also, it is found that the genetic algorithm could be used as an effective tool in the robust design. 4 refs., 6 figs. (Author)

  18. Reliability of digital reactor protection system based on extenics. (United States)

    Zhao, Jing; He, Ya-Nan; Gu, Peng-Fei; Chen, Wei-Hua; Gao, Feng


    After the Fukushima nuclear accident, safety of nuclear power plants (NPPs) is widespread concerned. The reliability of reactor protection system (RPS) is directly related to the safety of NPPs, however, it is difficult to accurately evaluate the reliability of digital RPS. The method is based on estimating probability has some uncertainties, which can not reflect the reliability status of RPS dynamically and support the maintenance and troubleshooting. In this paper, the reliability quantitative analysis method based on extenics is proposed for the digital RPS (safety-critical), by which the relationship between the reliability and response time of RPS is constructed. The reliability of the RPS for CPR1000 NPP is modeled and analyzed by the proposed method as an example. The results show that the proposed method is capable to estimate the RPS reliability effectively and provide support to maintenance and troubleshooting of digital RPS system.

  19. Attenuation capability of low activation-modified high manganese austenitic stainless steel for fusion reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Eissa, M.M. [Steel Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan (Egypt); El-kameesy, S.U.; El-Fiki, S.A. [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Ghali, S.N. [Steel Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan (Egypt); El Shazly, R.M. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt); Saeed, Aly, E-mail: [Nuclear Power station Department, Faculty of Engineering, Egyptian-Russian University, Cairo (Egypt)


    Highlights: • Improvement stainless steel alloys to be used in fusion reactors. • Structural, mechanical, attenuation properties of investigated alloys were studied. • Good agreement between experimental and calculated results has been achieved. • The developed alloys could be considered as candidate materials for fusion reactors. - Abstract: Low nickel-high manganese austenitic stainless steel alloys, SSMn9Ni and SSMn10Ni, were developed to use as a shielding material in fusion reactor system. A standard austenitic stainless steel SS316L was prepared and studied as a reference sample. The microstructure properties of the present stainless steel alloys were investigated using Schaeffler diagram, optical microscopy, and X-ray diffraction pattern. Mainly, an austenite phase was observed for the prepared stainless steel alloys. Additionally, a small ferrite phase was observed in SS316L and SSMn10Ni samples. The mechanical properties of the prepared alloys were studied using Vickers hardness and tensile tests at room temperature. The studied manganese stainless steel alloys showed higher hardness, yield strength, and ultimate tensile strength than SS316L. On the other hand, the manganese stainless steel elongation had relatively lower values than the standard SS316L. The removal cross section for both slow and total slow (primary and those slowed down in sample) neutrons were carried out using {sup 241}Am-Be neutron source. Gamma ray attenuation parameters were carried out for different gamma ray energy lines which emitted from {sup 60}Co and {sup 232}Th radioactive sources. The developed manganese stainless steel alloys had a higher total slow removal cross section than SS316L. While the slow neutron and gamma rays were nearly the same for all studied stainless steel alloys. From the obtained results, the developed manganese stainless steel alloys could be considered as candidate materials for fusion reactor system with low activation based on the short life

  20. N-reactor charge-discharge system analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tokarz, R.D.; Marr, G.D.; Nesbitt, J.F.


    This report documents an analysis of the existing systems in the N-Reactor fuel flow path. It recommends equipment improvements and changes in that path to allow the charge-discharge rates to be increased to 500 tubes per outage without increasing reactor outage time. The estimated program cost of $14 million is projected over an estimated 3-year period. It does not include costs detailed as part of the existing restoration program or any costs that are considered as normal maintenance. The recommendations contained in this report provide a direction and goal for every critical aspect of the fuel flow path. The way in which these recommendations are implemented may greatly affect the schedule and costs. Previous studies by UNC have shown that enhanced fuel element handling has the potential of increasing productivity by 33 days at a cost benefit estimated at $18 million per year. Enhanced fuel handling provides the greatest potential for productivity improvement of any of the areas considered in these studies.

  1. Computational and Experimental Investigations of the Coolant Flow in the Cassette Fissile Core of a KLT-40S Reactor (United States)

    Dmitriev, S. M.; Varentsov, A. V.; Dobrov, A. A.; Doronkov, D. V.; Pronin, A. N.; Sorokin, V. D.; Khrobostov, A. E.


    Results of experimental investigations of the local hydrodynamic and mass-exchange characteristics of a coolant flowing through the cells in the characteristic zones of a fuel assembly of a KLT-40S reactor plant downstream of a plate-type spacer grid by the method of diffusion of a gas tracer in the coolant flow with measurement of its velocity by a five-channel pneumometric probe are presented. An analysis of the concentration distribution of the tracer in the coolant flow downstream of a plate-type spacer grid in the fuel assembly of the KLT-40S reactor plant and its velocity field made it possible to obtain a detailed pattern of this flow and to determine its main mechanisms and features. Results of measurement of the hydraulic-resistance coefficient of a plate-type spacer grid depending on the Reynolds number are presented. On the basis of the experimental data obtained, recommendations for improvement of the method of calculating the flow rate of a coolant in the cells of the fissile core of a KLT-40S reactor were developed. The results of investigations of the local hydrodynamic and mass-exchange characteristics of the coolant flow in the fuel assembly of the KLT-40S reactor plant were accepted for estimating the thermal and technical reliability of the fissile cores of KLT-40S reactors and were included in the database for verification of computational hydrodynamics programs (CFD codes).

  2. Analysis of the optimal fuel composition for the Indonesian experimental power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liem, Peng Hong [Nippon Advanced Information Service (NAIS Co., Inc.), Ibaraki (Japan); Sembiring, Tagor Malem [National Nuclear Energy Agency of Indonesia, Banten (Indonesia). Center for Nuclear Reactor Technology and Safety; Arbie, Bakri; Subki, Iyos [PT MOTAB Technology, Jakarta Barat (Indonesia)


    The optimal fuel composition of the 10 MWth Experimental Power Reactor (RDE), to be built by the Indonesian National Nuclear Energy Agency (BATAN), is a very important design parameter since it will directly affect the fuel cost, new and spent fuel storage capacity, and other back-end environmental burden. The RDE is a very small sized pebble-bed high temperature gas-cooled reactor (HTGR) with low enriched uranium (LEU) UO{sub 2} TRISO fuel under multipass or once-through-then-out fueling scheme. A scoping study on fuel composition parameters, namely heavy metal (HM) loading per pebble and uranium enrichment is conducted. All burnup, criticality calculations and core equilibrium search are carried out by using BATAN-MPASS, a general in-core fuel management code for pebble bed HTGRs, featured with many automatic equilibrium searching options as well as thermal-hydraulic calculation capability. The RDE User Requirement Document issued by BATAN is used to derive the main core design parameters and constraints. The scoping study is conducted over uranium enrichment in the range of 10 to 20 w/o and HM loading in the range of 4 g to 10 g/pebble. Fissile loading per unit energy generated (kg/GWd) is taken as the objective function for the present scoping study. The analysis results show that the optimal HM loading is around 8 g/pebble. Under the constraint of 80 GWd/t fuel discharge burnup imposed by the technical specification, the uranium enrichment for the optimal HM loading is approximately 13 w/o.

  3. Basic experiments during loss of vacuum event (LOVE) in fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Masuro; Kunugi, Tomoaki; Seki, Yasushi (JAERI, Ibaraki (Japan))


    If a loss of vacuum event (LOVE) occurs due to damage of the vacuum vessel of a nuclear fusion experimental reactor, some chemical reactions such as a graphic oxidation and a buoyancy-driven exchange flow take place after equalization of the gas pressure between the inside and outside of the vacuum vessel. The graphite oxidation would generate inflammable carbon monoxide and release tritium retained in the graphite. The exchange flow through the breaches may transport the carbon monoxide and tritium out of the vacuum vessel. To add confidence to the safety evaluations and analyses, it is important to grasp the basic phenomena such as the exchange flow and the graphite oxidation. Experiments of the exchange flow and the graphite oxidation were carried out to obtain the exchange flow rate and the rate constant for the carbon monoxide combustion, respectively. These experimental results were compared with existing correlations. The authors plan a scaled-model test and a full-scale model test for the LOVE.

  4. Experimental and numerical thermal-hydraulics investigation of a molten salt reactor concept core

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Bogdan; Aszodi, Attila [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques


    In the paper measurement results of experimental modelling of a molten salt fast reactor concept will be presented and compared with three-dimensional computational fluid dynamics (CFD) simulation results. Purpose of this article is twofold, on one hand to introduce a geometry modification in order to avoid the disadvantages of the original geometry and discuss new measurement results. On the other hand to present an analysis in order to suggest a method of proper numerical modelling of the problem based on the comparison of calculation results and measurement data for the new, modified geometry. The investigated concept has a homogeneous cylindrical core without any internal structures. Previous measurements on the scaled and segmented plexiglas model of the concept core and simulation results have shown that this core geometry could be optimized for better thermal-hydraulics characteristics. In case of the original geometry strong undesired flow separation could develop, that could negatively affect the characteristics of the core from neutronics point of view as well. An internal flow distributor plate was designed and installed with the purpose of optimizing the flow field in the core by enhancing its uniformity. Particle image velocimetry (PIV) measurement results of the modified experimental model will be presented and compared to numerical simulation results with the purpose of CFD model validation.

  5. Experimental and numerical studies of microwave-plasma interaction in a MWPECVD reactor

    Directory of Open Access Journals (Sweden)

    A. Massaro


    Full Text Available This work deals with and proposes a simple and compact diagnostic method able to characterize the interaction between microwave and plasma without the necessity of using an external diagnostic tool. The interaction between 2.45 GHz microwave and plasma, in a typical ASTeX-type reactor, is investigated from experimental and numerical view points. The experiments are performed by considering plasmas of three different gas mixtures: H2, CH4-H2 and CH4-H2-N2. The two latter are used to deposit synthetic undoped and n-doped diamond films. The experimental setup equipped with a matching network enables the measurements of very low reflected power. The reflected powers show ripples due to the mismatching between wave and plasma impedance. Specifically, the three types of plasma exhibit reflected power values related to the variation of electron-neutral collision frequency among the species by changing the gas mixture. The different gas mixtures studied are also useful to test the sensitivity of the reflected power measurements to the change of plasma composition. By means of a numerical model, only the interaction of microwave and H2 plasma is examined allowing the estimation of plasma and matching network impedances and of reflected power that is found about eighteen times higher than that measured.

  6. Estudio del comportamiento de reactores discontinuos y semicontinuos: modelización y comprobación experimental


    Grau Vilalta, Ma. Dolors


    L'objectiu primordial d'aquest treball és la comparació entre el funcionament d'un reactor discontinu i un de semicontinu. Per això es porta a terme la modelització matemàtica d'ambdós, utilitzant programes propis emprant el llenguatge Fortran 77, a més del simulador ISIM i el software MATLAB. La validació dels models matemàtics s'efectua, en primer lloc, a partir de dades de la bibliografia. A partir d'aquí, es realitzen proves experimentals en una planta piloto amb un reactor encamisat de v...

  7. Experimental and Analytic Study on the Core Bypass Flow in a Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schultz


    Core bypass flow has been one of key issues in the very high temperature reactor (VHTR) design for securing core thermal margins and achieving target temperatures at the core exit. The bypass flow in a prismatic VHTR core occurs through the control element holes and the radial and axial gaps between the graphite blocks for manufacturing and refueling tolerances. These gaps vary with the core life cycles because of the irradiation swelling/shrinkage characteristic of the graphite blocks such as fuel and reflector blocks, which are main components of a core's structure. Thus, the core bypass flow occurs in a complicated multidimensional way. The accurate prediction of this bypass flow and counter-measures to minimize it are thus of major importance in assuring core thermal margins and securing higher core efficiency. Even with this importance, there has not been much effort in quantifying and accurately modeling the effect of the core bypass flow. The main objectives of this project were to generate experimental data for validating the software to be used to calculate the bypass flow in a prismatic VHTR core, validate thermofluid analysis tools and their model improvements, and identify and assess measures for reducing the bypass flow. To achieve these objectives, tasks were defined to (1) design and construct experiments to generate validation data for software analysis tools, (2) determine the experimental conditions and define the measurement requirements and techniques, (3) generate and analyze the experimental data, (4) validate and improve the thermofluid analysis tools, and (5) identify measures to control the bypass flow and assess its performance in the experiment.

  8. Supervisory Control System Architecture for Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M [ORNL; Cole, Daniel L [University of Pittsburgh; Fugate, David L [ORNL; Kisner, Roger A [ORNL; Melin, Alexander M [ORNL; Muhlheim, Michael David [ORNL; Rao, Nageswara S [ORNL; Wood, Richard Thomas [ORNL


    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

  9. Review of nuclear data improvement needs for nuclear radiation measurement techniques used at the CEA experimental reactor facilities

    Directory of Open Access Journals (Sweden)

    Destouches Christophe


    Full Text Available The constant improvement of the neutron and gamma calculation codes used in experimental nuclear reactors goes hand in hand with that of the associated nuclear data libraries. The validation of these calculation schemes always requires the confrontation with integral experiments performed in experimental reactors to be completed. Nuclear data of interest, straight as cross sections, or elaborated ones such as reactivity, are always derived from a reaction rate measurement which is the only measurable parameter in a nuclear sensor. So, in order to derive physical parameters from the electric signal of the sensor, one needs specific nuclear data libraries. This paper presents successively the main features of the measurement techniques used in the CEA experimental reactor facilities for the on-line and offline neutron/gamma flux characterizations: reactor dosimetry, neutron flux measurements with miniature fission chambers and Self Power Neutron Detector (SPND and gamma flux measurements with chamber ionization and TLD. For each technique, the nuclear data necessary for their interpretation will be presented, the main identified needs for improvement identified and an analysis of their impact on the quality of the measurement. Finally, a synthesis of the study will be done.

  10. Compatibility of refractory materials for nuclear reactor poison control systems (United States)

    Sinclair, J. H.


    Metal-clad poison rods have been considered for the control system of an advanced space power reactor concept studied at the NASA Lewis Research Center. Such control rods may be required to operate at temperatures of about 140O C. Selected poison materials (including boron carbide and the diborides of zirconium, hafnium, and tantalum) were subjected to 1000-hour screening tests in contact with candidate refractory metal cladding materials (including tungsten and alloys of tantalum, niobium, and molybdenum) to assess the compatibility of these materials combinations at the temperatures of interest. Zirconium and hafnium diborides were compatible with refractory metals at 1400 C, but boron carbide and tantalum diboride reacted with the refractory metals at this temperature. Zirconium diboride also showed promise as a reaction barrier between boron carbide and tungsten.

  11. Nuclear plant-aging research on reactor protection systems

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, L.C.


    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed.

  12. Numerical simulation of the power characteristics of twin-core pulse reactor-pumped laser system (United States)

    Gulevich, A. V.; Barzilov, A. P.; Dyachenko, P. P.; Zrodnikov, A. V.; Kukharchuk, O. F.; Kachanov, B. V.; Kolyada, S. G.; Pashin, E. A.


    Concept for high-power pulsed reactor-pumped laser system (RPLS) based on the new physical principles (direct nuclear-to-optical conversion) is discussed with reference to ICF feasibility problem. Theoretical problems for substantiation of the neutronic and physical characteristics of the RPLS power model are considered. Results of numerical studies of the expected power characteristics of reactor laser system are discussed.

  13. Systems and methods for enhancing isolation of high-temperature reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Per F.


    A high-temperature containment-isolation system for transferring heat from a nuclear reactor containment to a high-pressure heat exchanger is presented. The system uses a high-temperature, low-volatility liquid coolant such as a molten salt or a liquid metal, where the coolant flow path provides liquid free surfaces a short distance from the containment penetrations for the reactor hot-leg and the cold-leg, where these liquid free surfaces have a cover gas maintained at a nearly constant pressure and thus prevent high-pressures from being transmitted into the reactor containment, and where the reactor vessel is suspended within a reactor cavity with a plurality of refractory insulator blocks disposed between an actively cooled inner cavity liner and the reactor vessel.


    Directory of Open Access Journals (Sweden)

    S. M. Dmitriev


    Full Text Available The results of experimental studies of local hydrodynamics and mass exchange of coolant flow behind spacer and mixing grids of different structural versions that were developed for fuel assemblies of domestic and foreign nuclear reactors are presented in the article. In order to carry out the study the models of the following fuel assemblies have been fabricated: FA for VVER and VBER, FA-KVADRAT for PWR-reactor and FA for KLT-40C reactor. All the models have been fabricated with a full geometrical similarity with full-scale fuel assemblies. The study was carried out by simulating the flow of coolant in a core by air on an aerodynamic test rig. In order to measure local hydrodynamic characteristics of coolant flow five-channel Pitot probes were used that enable to measure the velocity vector in a point by its three components. The tracerpropane method was used for studying mass transfer processes. Flow hydrodynamics was studied by measuring cross-section velocities of coolant flow and coolant rates according to the model cells. The investigation of mass exchange processes consisted of a study of concentration distribution for tracer in experimental model, in determination of attenuation lengths of mass transfer processes behind mixing grids, in calculating of inter-cellar mass exchange coefficient. The database on coolant flow in fuel assemblies for different types of reactors had been accumulated that formed the basis of the engineering substantiation of reactor cores designs. The recommendations on choice of optimal versions of mixing grids have been taken into consideration by implementers of the JSC “OKBM Afrikantov” when creating commissioned fuel assemblies. The results of the study are used for verification of CFD-codes and CFD programs of detailed cell-by-cell calculation of reactor cores in order to decrease conservatism for substantiation of thermal-mechanical reliability.

  15. Experimental and statistical investigation of thermally induced failure in reactor fuel particles

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, J.L.; Imprescia, R.J.; Bowman, A.L.; Radosevich, C.E.


    An incomplete experimental study into the failure statistics of fuel particle for the high-temperature gas-cooled reactor (HTGR) is described. Fuel particles failure was induced by thermal ramping from room temperature to temperatures in the vicinity of 2273/sup 0/K to 2773/sup 0/K in 2 to 30 h and detected by the appearance of /sup 85/Kr in the helium carrier gas used to sweep the furnace. The concentration of krypton, a beta emitter, was detected by measuring the current that resulted when the helium sweep gas was passed through an ionization chamber. TRISO fuel particles gave a krypton concentration profile as a function of time that built up in several minutes and decayed in a fraction of an hour. This profile, which was temperature independent, was similar to the impulse response of the ionization chamber, suggesting that the TRISO particles failed instantaneously and completely. BISO fuel particles gave a krypton concentration profile as a function of time that built up in a fraction of an hour and decayed in a fraction of a day. This profile was strongly temperature dependent, suggesting that krypton release was diffusion controlled, i.e., that the krypton was diffusing through a sound coat, or that the BISO coating failed but that the krypton was unable to escape the kernel without diffusion, or that a combination of pre- and postfailure diffusion accompanied partial or complete failure.

  16. Calculation of fast neutron flux in reactor pressure tubes and experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, P.C. [Canadian General Electric (Canada)


    The computer program EPITHET was used to calculate the fast neutron flux (>1 MeV) in several reactor pressure tubes and experimental facilities in order to compare the fast neutron flux in the different cases and to provide a self-consistent set of flux values which may be used to relate creep strain to fast neutron flux . The facilities considered are shown below together with the calculated fast neutron flux (>1 MeV). Fast flux 10{sup 13} n/cm{sup 2}s: NPD 1.14, Douglas Point 2.66, Pickering 2.89, Gentilly 2.35, SGHWR 3.65, NRU U-1 and U-2 3.25'' pressure tube - 19 element fuel 3.05, NRU U-1 and U-2 4.07'' pressure tube - 28 element fuel 3.18, NRU U-1 and U-2 4.07'' pressure tube - 18 element fuel 2.90, NRX X-5 0.88, PRTR Mk I fuel 2.81, PRTR HPD fuel 3.52, WR-1 2.73, Mk IV creep machine (NRX) 0.85, Mk VI creep machine (NRU) 2.04, Biaxial creep insert (NRU U-49) 2.61.

  17. Bulk-bronzied graphites for plasma-facing components in ITER (International Thermonuclear Experimental Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, Y.; Conn, R.W.; Doerner, R.; Khandagle, M. (California Univ., Los Angeles, CA (USA). Inst. of Plasma and Fusion Research); Causey, R.; Wilson, K. (Sandia National Labs., Livermore, CA (USA)); Croessmann, D.; Whitley, J. (Sandia National Labs., Albuquerque, NM (USA)); Holland, D.; Smolik, G. (Idaho National Engineering Lab., Idaho Falls, ID (USA)); Matsuda, T.; Sogabe, T. (Toyo Tanso Co. Ltd., O


    Newly developed bulk-boronized graphites and boronized C-C composites with a total boron concentration ranging from 1 wt % to 30 wt % have been evaluated as plasma-facing component materials for the International Thermonuclear Experimental Reactor (ITER). Bulk-boronized graphites have been bombarded with high-flux deuterium plasmas at temperatures between 200 and 1600{degree}C. Plasma interaction induced erosion of bulk-boronized graphites is observed to be a factor of 2--3 smaller than that of pyrolytic graphite, in regimes of physical sputtering, chemical sputtering and radiation enhanced sublimation. Postbombardment thermal desorption spectroscopy indicates that bulk-boronized graphites enhance recombinative desorption of deuterium, which leads to a suppression of the formation of deuterocarbon due to chemical sputtering. The tritium inventory in graphite has been found to decrease by an order of magnitude due to 10 wt % bulk-boronization at temperatures above 1000{degree}C. The critical heat flux to induce cracking for bulk-boronized graphites has been found to be essentially the same as that for non-boronized graphites. Also, 10 wt % bulk-boronization of graphite hinders air oxidation nearly completely at 800{degree}C and reduces the steam oxidation rate by a factor of 2--3 at around 1100 and 1350{degree}C. 38 refs., 5 figs.

  18. Economic impacts on the United States of siting decisions for the international thermonuclear experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Peerenboom, J.P.; Hanson, M.E.; Huddleston, J.R. [and others


    This report presents the results of a study that examines and compares the probable short-term economic impacts of the International Thermonuclear Experimental Reactor (ITER) on the United States (U.S.) if (1) ITER were to be sited in the U.S., or (2) ITER were to be sited in one of the other countries that, along with the U.S., is currently participating in the ITER program. Life-cycle costs associated with ITER construction, operation, and decommissioning are analyzed to assess their economic impact. A number of possible U.S. host and U.S. non-host technology and cost-sharing arrangements with the other ITER Parties are examined, although cost-sharing arrangements and the process by which the Parties will select a host country and an ITER site remain open issues. Both national and local/regional economic impacts, as measured by gross domestic product, regional output, employment, net exports, and income, are considered. These impacts represent a portion of the complex, interrelated set of economic considerations that characterize U.S. host and U.S. non-host participation in ITER. A number of other potentially important economic and noneconomic considerations are discussed qualitatively.

  19. A statistical experimental design to remove sulfate by crystallization in a fluidized-bed reactor

    Directory of Open Access Journals (Sweden)

    Mark Daniel G. de Luna


    Full Text Available This study used crystallization in a fluidized-bed reactor as an alternative technology to the conventional chemical precipitation to remove sulfate. The Box-Behnken Design was used to study the effects and interactions of seed dosage of synthetic gypsum, initial sulfate concentration and molar ratio of calcium to sulfate on conversion and removal of sulfate. The optimum conditions of conversion and removal of sulfate were determined and used to treat the simulated acid mine drainage (AMD wastewater. The effect of inorganic ions CO32−, NH4+ and Al3+ on sulfate conversion was also investigated. Experimental results indicated that seed dosage, initial sulfate concentration and molar ratio of calcium to sulfate are all significant parameters in the sulfate removal by fluidized-bed crystallization. The optimal conditions of 4 g seed L−1, 119.7 mM of initial sulfate concentration and [Ca2+]/[SO42−] molar ratio of 1.48 resulted in sulfate conversion of 82% and sulfate removal of 67%. Conversion and removal of sulfate in the simulated AMD wastewater were 79 and 63%, respectively. When ammonium or aluminum was added to the synthetic sulfate wastewater, significant conversion of sulfate was achieved.

  20. Economic Impacts on the United States of Siting Decisions for the International Thermonuclear Experimental Reactor (United States)

    Peerenboom, J. P.; Hanson, M. E.; Huddleston, J. R.; Wolsko, T. D.


    This paper presents the results of a study that examines and compares the probable short-term economic impacts of the International Thermonuclear Experimental Reactor (ITER) on the United States (U.S.) if (1) ITER were to be sited in the U.S., or (2) ITER were to be sited in one of the other countries that, along with the U.S., is currently participating in the ITER program. Life-cycle costs associated with ITER construction, operation, and decommissioning are analyzed to assess their economic impact. A number of possible U.S. host and U.S. non-host technology and cost-sharing arrangements with the other ITER Parties are examined, although cost-sharing arrangements and the process by which the Parties will select a host country and an ITER site remain open issues. Both national and local/regional economic impacts, as measured by gross domestic product, regional output, employment, net exports, and income, are considered. These impacts represent a portion of the complex, interrelated set of economic considerations that characterize U.S. host and U.S. non-host participation in ITER. A number of other potentially important economic and noneconomic considerations are discussed qualitatively.

  1. Conceptual studies of toroidal field magnets for the tokamak (fusion) experimental power reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)


    This report presents the results of ''Conceptual Studies of Toroidal Field Magnets for the Tokamak Experimental Power Reactor'' performed for the Energy Research and Development Administration, Oak Ridge Operations. Two conceptual coil designs are developed. One design approach to produce a specified 8 Tesla maximum field uses a novel NbTi superconductor design cooled by pool-boiling liquid helium. For a highest practicable field design, a unique NbSn/sub 3/ conductor is used with forced-flow, single-phase liquid helium cooling to achieve a 12 Tesla peak field. Fabrication requirements are also developed for these approximately 7 meter horizontal bore by 11 meter vertical bore coils. Cryostat design approaches are analyzed and a hybrid cryostat approach selected. Structural analyses are performed for approaches to support in-plane and out-of-plane loads and a structural approach selected. In addition to the conceptual design studies, cost estimates and schedules are prepared for each of the design approaches, major uncertainties and recommendations for research and development identified, and test coil size for demonstration recommended.

  2. On feasibility of optimizing the neutronic parameters of a laser system pumped by a pulsed reactor


    A.V. Gulevich; O.F. Kukharchuk; A.I. Brezhnev; A.A. Suvorov


    The paper examines the calculated feasibility of improving the energy characteristics of power pulses in a system consisting of a reactor and a subcritical block. A BARS-type fast neutron reactor is used as a self-quenching pulsed reactor. The subcritical block is a cylindrical structure comprising laser-active elements, moderator components and two reflectors (internal and external). The internal reflector material is zirconium hydride, and the external reflector material is beryllium. Th...

  3. Transmission thermography for inspecting the busbar insulation layer in thermonuclear experimental reactor (United States)

    Chen, Dapeng; Zhang, Guang; Zhang, Xiaolong; Zeng, Zhi


    In Thermonuclear Experimental Reactor, Superconducting Busbar is used for current transmission between magnet coils and current leads. The work temperature of the Busbar is about 4K because of liquid helium via inside. The large temperature grad from 300K to 4K could lead to the defects and damages occur on the insulation layer, which is made of glass fiber and polyimide and has a big different thermal expansion coefficient compared with the metal inner cylinder. This paper aims at developing an infrared transmission non-destructive evaluation (NDE) method for inspecting the insulation layer of Superconducting Busbar; theoretical model of transient heat conduction under a continuous inner heat source for cylindrical structure is described in the paper; a Busbar specimen which is designed with three delamination defects of different depths is heated inside by pouring hot water and monitored by an infrared detector located outside. Results demonstrate excellent detection performance for delamination defects in the insulation layer by using transmission thermography, all of the three defects of different depths can be visualized clearly in the thermal images, and the deeper defect has a better signal contrast, which is also shown in the temperature difference between defects and sound area vs. time curves. The results of light pulse thermography is also shown as a comparison, and it is found that the thermal images obtained by the transmission thermography has a much better signal contrast than that of the pulse thermography. In order to verify the experiments, finite element method is applied to simulate the heat conduction in the Busbar under the continuous inside heating, and it is found that the simulated temperature vs. time and simulated temperature difference vs. time curves are basically coincident with the experimental results. In addition, the possibility of in-service inspection for Busbar insulation layer in ITER item is discussed.

  4. A novel reverse flow reactor coupling endothermic and exothermic reactions: an experimental study

    NARCIS (Netherlands)

    van Sint Annaland, M.; Nijssen, R.C.


    A new reactor concept is studied for highly endothermic heterogeneously catalysed gas phase reactions at high temperatures with rapid but reversible catalyst deactivation. The reactor concept aims to achieve an indirect coupling of energy necessary for endothermic reactions and energy released by

  5. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A


    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  6. Recent progress on the hydrogen storage properties of ZrCo-based alloys applied in International Thermonuclear Experimental Reactor (ITER

    Directory of Open Access Journals (Sweden)

    Feng Wang


    Full Text Available Under the development of International Thermonuclear Experimental Reactor (ITER system aimed at realizing the controllable fusion reaction to solve the energy crisis fundamentally, there is an urgent need to find an appropriate material for tritium handling. ZrCo alloy is considered to be a promising candidate for the storage and delivery of hydrogen isotopes due to the favorable characteristics such as low plateau pressure for absorption, high dissociation pressure at moderate temperature and better ability of trapping 3He. However, the hydrogen induced disproportionation and the slower recovery/deliverty rate of ZrCo-based alloys have limited their further application in ITER system. This review summarizes the efforts towards enhancing the hydrogen storage properties of ZrCo-based alloys including element substitution, surface modification, disproportionation mechanism investigation and the isotope effect study. Element substitution and surface modification play positive role to improve the anti-disproportionation ability and kinetic property of the alloys. However, the ZrCo-based alloys require to be further modified by more attempts such as new composition, novelty modification method or catalyst addition in order to better satisfy the application demands for tritium handling. Moreover, new insight for further understanding the inner disproportionation mechanisms of this material is needed by combining the advance characterization and theoretical analysis, which is in favor of addressing the disproportionation problem of the ZrCo-based alloys essentially.

  7. Reactor safeguards

    CERN Document Server

    Russell, Charles R


    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  8. Shielding considerations for advanced space nuclear reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Angelo, J.P. Jr.; Buden, D.


    To meet the anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100 kW/sub e/-class heat pipe nuclear reactor. The reactor uses uranium dioxide (UO/sub 2/) as its fuel, and is designed to operate around 1500 k. Heat pipes are used to remove thermal energy from the core without the use of pumps or compressors. The reactor heat pipes transfer mal energy to thermoelectric conversion elements that are advanced versions of the converters used on the enormously successful Voyager missions to the outer planets. Advanced versions of this heat pipe reactor could also be used to provide megawatt-level power plants. The paper reviews the status of this advanced heat pipe reactor and explores the radiation environments and shielding requirements for representative manned and unmanned applications.


    Directory of Open Access Journals (Sweden)



    Full Text Available In terms of safety and the efficient management of spent fuel storage, detecting failed fuel is one of the most important tasks in a CANada Deuterium Uranium (CANDU reactor operation. It has been successfully demonstrated that in a CANDU reactor, on-power failed fuel detection and location systems, along with alarm area gamma monitors, can detect and locate defective and suspect fuel bundles before discharging them from the reactor to the spent fuel storage bay. In the reception bay, however, only visual inspection has been used to identify suspect bundles. Gaseous fission product and delayed neutron monitoring systems cannot precisely distinguish failed fuel elements from each fuel bundle. This study reports the use of a sipping system in a CANDU reactor for the integrity assessment of spent fuel bundles. The integrity assessment of spent fuel bundles using this sipping system has shown promise as a nondestructive test for detecting a defective fuel bundle in a CANDU reactor.

  10. The fluidized bed reactor with a prepolymerization system and its influence on polymer physicochemical characteristics

    Directory of Open Access Journals (Sweden)

    Fernandes F.A.N.


    Full Text Available This work addresses the influence of a prepolymerization system on the behavior of the fluidized bed reactor used for polyethylene production. Its influence on the polymer's physicochemical characteristics and production was also studied. The results indicate that the use of prepolymerized catalyst particles results in milder temperatures in the fluidized bed reactor, thus avoiding the formation of hot spots, melting of the polymer particle and reactor shutdown. Productivity can be enhanced depending on the operational conditions used in the prepolymerization reactor.

  11. Chemical morphogenesis: turing patterns in an experimental chemical system. (United States)

    Dulos, E; Boissonade, J; Perraud, J J; Rudovics, B; De Kepper, P


    Patterns resulting from the sole interplay between reaction and diffusion are probably involved in certain stages of morphogenesis in biological systems, as initially proposed by Alan Turing. Self-organization phenomena of this type can only develop in nonlinear systems (i.e. involving positive and negative feedback loops) maintained far from equilibrium. We present Turing patterns experimentally observed in a chemical system. An oscillating chemical reaction, the CIMA reaction, is operated in an open spatial reactor designed in order to obtain a pure reaction-diffusion system. The two types of Turing patterns observed, hexagonal arrays of spots and parallel stripes, are characterized by an intrinsic wavelength. We identify the origin of the necessary diffusivity between activator and inhibitor. We also describe a pattern growth mechanism by spot splitting that recalls cell division.

  12. Digital System Reliability Test for the Evaluation of safety Critical Software of Digital Reactor Protection System

    Directory of Open Access Journals (Sweden)

    Hyun-Kook Shin


    Full Text Available A new Digital Reactor Protection System (DRPS based on VME bus Single Board Computer has been developed by KOPEC to prevent software Common Mode Failure(CMF inside digital system. The new DRPS has been proved to be an effective digital safety system to prevent CMF by Defense-in-Depth and Diversity (DID&D analysis. However, for practical use in Nuclear Power Plants, the performance test and the reliability test are essential for the digital system qualification. In this study, a single channel of DRPS prototype has been manufactured for the evaluation of DRPS capabilities. The integrated functional tests are performed and the system reliability is analyzed and tested. The results of reliability test show that the application software of DRPS has a very high reliability compared with the analog reactor protection systems.

  13. Design of a Rail Gun System for Mitigating Disruptions in Fusion Reactors (United States)

    Lay, Wei-Siang

    Magnetic fusion devices, such as the tokamak, that carry a large amount of current to generate the plasma confining magnetic fields have the potential to lose magnetic stability control. This can lead to a major plasma disruption, which can cause most of the stored plasma energy to be lost to localized regions on the walls, causing severe damage. This is the most important issue for the $20B ITER device (International Thermonuclear Experimental Reactor) that is under construction in France. By injecting radiative materials deep into the plasma, the plasma energy could be dispersed more evenly on the vessel surface thus mitigating the harmful consequences of a disruption. Methods currently planned for ITER rely on the slow expansion of gases to propel the radiative payloads, and they also need to be located far away from the reactor vessel, which further slows down the response time of the system. Rail guns are being developed for aerospace applications, such as for mass transfer from the surface of the moon and asteroids to low earth orbit. A miniatured version of this aerospace technology seems to be particularly well suited to meet the fast time response needs of an ITER disruption mitigation system. Mounting this device close to the reactor vessel is also possible, which substantially increases its performance because the stray magnetic fields near the vessel walls could be used to augment the rail gun generated magnetic fields. In this thesis, the potential viability on Rail Gun based DMS is studied to investigate its projected fast time response capability by design, fabrication, and experiment of an NSTX-U sized rail gun system. Material and geometry based tests are used to find the most suitable armature design for this system for which the desirable attributes are high specific stiffness and high electrical conductivity. With the best material in these studies being aluminum 7075, the experimental Electromagnetic Particle Injector (EPI) system has propelled

  14. BEACON TSM application system to the operation of PWR reactors; Aplicacion del Sistema BEACON TSM a la operacion de reactores PWR

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, J. A.; Mildrum, C.; Serrano, J. F.


    BEACON-TSM is an advanced core monitoring system for PWR reactor cores, and also offers the possibility to perform a wide range of predictive calculation in support of reactor operation. BEACON-TSM is presently installed and licensed in the 5 Spanish PWR reactors of standard Westinghouse design. the purpose of this paper is to describe the features of this software system and to show the advantages obtainable by a nuclear power plant from its use. To illustrate the capabilities and benefits of BEACON-TSM two real case reactor operating situations are presented. (Author)



    José Tavares de Sousa; Keliana Dantas Santos; Israel Nunes Henrique; Danielle Patrício Brasil; Eclésio Cavalcante Santos


    The environmental conditions in Brazil have been contributing to the development of anaerobic systems in the treatment of wastewaters, especially UASB - Upflow Anaerobic Sludge Blanket reactors. The classic biological process for removal of nutrients uses three reactors - Bardenpho System, therefore, this work intends an alternative system, where the anaerobic digestion and the denitrification happen in the same reactor reducing the number of reactors for two. The experimental system was con...

  16. Pressurized hydrogenotrophic denitrification reactor for small water systems. (United States)

    Epsztein, Razi; Beliavski, Michael; Tarre, Sheldon; Green, Michal


    The implementation of hydrogenotrophic denitrification is limited due to safety concerns, poor H2 utilization and low solubility of H2 gas with the resulting low transfer rate. The current paper presents the main research work conducted on a pressurized hydrogenotrophic reactor for denitrification that was recently developed. The reactor is based on a new concept suggesting that a gas-liquid equilibrium is achieved in the closed headspace of denitrifying reactor, further produced N2 gas is carried out by the effluent and gas purging is not required. The feasibility of the proposed reactor was shown for two effluent concentrations of 10 and 1 mg NO3--N/L. Hydrogen gas utilization efficiencies of 92.8% and 96.9% were measured for the two effluent concentrations, respectively. Reactor modeling predicted high denitrification rates above 4 g NO3--N/(Lreactor·d) at reasonable operational conditions. Hydrogen utilization efficiency was improved up to almost 100% by combining the pressurized reactor with a following open-to-atmosphere polishing unit. Also, the potential of the reactor to remove ClO4- was shown. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Discussion on polonium extraction systems for Pb-PI-cooled nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Buongiorno, J. [Idaho National Engineering and Environmental Lab., Nuclear Engineering Dept., Idaho Falls, ID (United States); Larson, C.L.; Czerwinski, K.R. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Nuclear Engineering


    A discussion is presented on a polonium extraction technology that would reduce the radioactivity of the lead-bismuth coolant for fast reactors. This technology is based on the formation of the polonium hydride from the reaction of hydrogen gas with polonium-activated LBE. The equilibrium chemistry of the reaction was experimentally investigated. As a result, a correlation was generated for the free-energy of formation of the polonium hydride as a function of temperature. This correlation was then used for preliminary modeling of a polonium extraction system consisting in a mass exchanger where fine LBE droplets fall in countercurrent flow with a stream of pure hydrogen. It was found that a relatively compact and efficient polonium extraction system could be in principle designed, although significant technological and safety issues remain that are associated with the use and processing of hydrogen gas contaminated with polonium. (author)

  18. 3-D Monte Carlo analyses of the shielding system in a tokamak fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gallina, M.; Petrizzi, L.; Rado, V. (ENEA, Frascati (Italy). Centro Ricerche Energia)


    As part of the ITER (International Tokamak Experimental Reactor) design program, 3D neutronics calculations have been carried out to assess the shielding system performance in the basic machine configuration by means of the Monte Carlo Neutron Photon (MCNP) transport code (3-B version). The main issue is the estimation of the nuclear heat and radiation loads on the toroidal field superconducting coils. ''Self generated weight windows'' and source biasing technique have been used to treat deep penetration through the bulk shield and streaming through the system gaps and openings. The main results are reported together with a discussion of the computing methods, especially of the variance reduction techniques adopted. (author).

  19. 3-D Monte Carlo analyses of shielding system in tokamak fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gallina, M.; Petrizzi, L.; Rado, V.


    Within the framework of the ITER (International Tokamak Experimental Reactor) design program, 3D neutronics calculations were carried out to assess system shielding performances in the basic machine configuration by means of the Monte Carlo Neutron Photon (MCNP) code (3-B version). The main issue concerns the estimation of the nuclear heat and radiation loads on the toroidal field superconducting coils. 'Self generated weight windows' (w.w.) and source biasing techniques were used to treat the deep penetration through the bulk shield and streaming through the system gaps and openings. The main results are reported together with a discussion of the computing methods, especially of the variance reduction techniques adopted.

  20. A small, 1400 deg Kelvin, reactor for Brayton space power systems (United States)

    Lantz, E.; Mayo, W.


    A preliminary cost estimate for a small reactor in Brayton space power systems with (u-233)n or (pu-239)n as the fuel in the T-111 fuel elements totaled to about four million dollars; considered is a 22.8 in. diameter reactor with 247 fuel elements.

  1. A pragmatic approach towards designing a second shutdown system for Tehran research reactor


    Boustani Ehsan; Khakshournia Samad; Khalafi Hossein


    One second shutdown system is proposed for the Tehran Research Reactor to achieve the goal of higher safety in compliance with current operational requirements and regulations and improve the overall reliability of the reactor shutdown system. The proposed second shutdown system is a diverse, independent shutdown system compared to the existing rod based one that intends to achieve and maintain sub-criticality condition with an enough shutdown margin in man...

  2. Parametric experimental tests of steam gasification of pine wood in a fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    L. Vecchione


    Full Text Available Among Renewable Energy Sources (RES, biomass represent one of the most common and suitable solution in order to contribute to the global energy supply and to reduce greenhouse gases (GHG emissions. The disposal of some residual biomass, as pruning from pine trees, represent a problem for agricultural and agro-industrial sectors. But if the residual biomass are used for energy production can become a resource. The most suitable energy conversion technology for the above-mentioned biomass is gasification process because the high C/N ratio and the low moisture content, obtained from the analysis. In this work a small-pilot bubbling-bed gasification plant has been designed, constructed and used in order to obtain, from the pine trees pruning, a syngas with low tar and char contents and high hydrogen content. The activities showed here are part of the activities carried out in the European 7FP UNIfHY project. In particular the aim of this work is to develop experimental test on a bench scale steam blown fluidized bed biomass gasifier. These tests will be utilized in future works for the simulations of a pilot scale steam fluidized bed gasifier (100 kWth fed with different biomass feedstock. The results of the tests include produced gas and tar composition as well gas, tar and char yield. Tests on a bench scale reactor (8 cm I.D. were carried out varying steam to biomass ratio from 0.5, 0.7 and 1 to 830°C.

  3. 78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors (United States)


    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors AGENCY... Cooling Systems for New Boiling-Water Reactors.'' This RG describes testing methods the NRC staff...)-1277, ``Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors.'' DG-1277...

  4. 78 FR 64029 - Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors (United States)


    ... COMMISSION Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors AGENCY... Systems for Light-Water-Cooled Nuclear Power Reactors,'' in which the NRC made editorial corrections and... analysis for liquid and gaseous radwaste system components for light water nuclear power reactors...

  5. Experimental evidences of95 mTc production in a nuclear reactor. (United States)

    Cohen, I M; Robles, A; Mendoza, P; Airas, R M; Montoya, E H


    95 m Tc has been identified as by-product in some solutions of 99 m Tc obtained by irradiation of molybdenum trioxide in a reactor neutron flux. The characterization was carried out using both measurements by gamma spectrometry and half-life determination. The possible ways that lead to the 95 m Tc production in a nuclear reactor are discussed. Copyright © 2018. Published by Elsevier Ltd.

  6. Experimental evaluation of gamma fluence-rate predictions from Argon-41 releases to the atmosphere over a nuclear research reactor site

    DEFF Research Database (Denmark)

    Rojas-Palma, C.; Aage, H.K.; Astrup, P.


    An experimental study of radionuclide dispersion in the atmosphere has been conducted at the BR1 research reactor in Mol, Belgium. Artificially generated aerosols ('white smoke') were mixed with the routine releases of Ar-41 in the reactor's 60-m tall venting stack. The detailed plume geometry...

  7. Analysis and Experimental Qualification of an Irradiation Capsule Design for Testing Pressurized Water Reactor Fuel Cladding in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    The Advanced Fuels Campaign within the Fuel Cycle Research and Development program of the Department of Energy Office of Nuclear Energy is currently investigating a number of advanced nuclear fuel cladding concepts to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are some of the leading candidates to replace traditional zirconium alloys due to their superior oxidation resistance, provided no prohibitive irradiation-induced embrittlement occurs. Oak Ridge National Laboratory has developed experimental designs to irradiate thin-walled cladding tubes with representative pressurized water reactor geometry in the High Flux Isotope Reactor (HFIR) under relevant temperatures. These designs allow for post-irradiation examination (PIE) of cladding that closely resembles expected commercially viable geometries and microstructures. The experiments were designed using relatively inexpensive rabbit capsules for the irradiation vehicle. The simplistic designs combined with the extremely high neutron flux in the HFIR allow for rapid testing of a large test matrix, thus reducing the time and cost needed to advanced cladding materials closer to commercialization. The designs are flexible in that they allow for testing FeCrAl alloys, stainless steels, Inconel alloys, and zirconium alloys (as a reference material) both with and without hydrides. This will allow a direct comparison of the irradiation performance of advanced cladding materials with traditional zirconium alloys. PIE will include studies of dimensional change, microstructure variation, mechanical performance, etc. This work describes the capsule design, neutronic and thermal analyses, and flow testing that were performed to support the qualification of this new irradiation vehicle.

  8. Analysis of N-16 concentration in primary cooling system of AP1000 power reactor (United States)

    Rohanda, Anis; Waris, Abdul


    Nitrogen-16 (N-16) is one of the radiation safety parameter on the primary reactor system. The activation product, N-16, is the predominant contributor to the activity in the reactor coolant system during reactor operation. N-16 is activation product derived from activation of O-16 with fast neutron based on 16O(n,p)16N reaction. Thus study is needed and it performs to determine N-16 concentration in reactor coolant (primary coolant) in supporting radiation safety. One of the way is using analytical methode based on activation and redecay princip to obtain N-16 concentration. The analysis was performed on the configuration basis and operational of Westinghouse AP1000 power reactor in several monitoring points at coolant reactor system. The results of the calculation of N-16 concentration at the core outlet, reactor vessel outlet, pressurizer line, inlet and outlet of steam generators, primary pumps, reactor vessels inlet and core inlet are: 281, 257, 255, 250, 145, 142, 129 and 112 µCi/gram respectively. The results of analysis compared with AP1000 design control document as standard values. The verification showed very high accuracy comparation between analytical results and standard values.

  9. Monitoring of dry anaerobic fermentation in experimental facility with use of biofilm reactor

    Directory of Open Access Journals (Sweden)

    Milan Šinkora


    Full Text Available Anaerobic fermentation is a process in which almost any organic mass may be transformed into an energetically rich biogas and a fermentation residue. Only strictly anaerobic microorganisms enter into the process; thus the process may take place only in a hermetically sealed environment. With regard to the world wide situation, where the increase in the proportion of energy from sustainable sources is in demand, anaerobic fermentation offers the possibility of transforming farm waste, farm products and municipality waste of biological character into electricity. This electricity may subsequently become an interesting source of income. The system may be proposed to agricultural companies as well as to municipality corporations. The process of fermentation may be carried out as dry fermentation or as liquid fermentation. Dry fermentation, working with materials where the percentage of dry matter exceeds 15 %, is the topic of this paper. This method has been frequently discussed as a method of processing organic material without waste water and thus the volume of material as well as the size of the biogas plant considerably decreases. To enable progress in the process, it is necessary to use a biologically active liquid solution containing the essential micro-organisms, often termed “percolate”. To activate a fresh substrate, fermented material adulterant containing cultivated microorganisms from previous processes is used; the ratio in which it is used is approximately one third to one fifth. “Percolate strategy” is another phrase used for sustaining the anaerobic fermentation; material is sprinkled on the percolate in the precisely defined cycles. In addition, the biologically active liquid solution contains organic substances washed out from the fermented material. With regard to its amount, this paper has become an impulse for the research in the amount of biogas which may be subsequently produced from the percolate in the so

  10. Digital computer study of nuclear reactor thermal transients during startup of 60-kWe Brayton power conversion system (United States)

    Jefferies, K. S.; Tew, R. C.


    A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.

  11. An analytical and experimental investigation of natural circulation transients in a model pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Massoud, M


    Natural Circulation phenomena in a simulated PWR was investigated experimentally and analytically. The experimental investigation included determination of system characteristics as well as system response to the imposed transient under symmetric and asymmetric operations. System characteristics were used to obtain correlation for heat transfer coefficient in heat exchangers, system flow resistance, and system buoyancy heat. Asymmetric transients were imposed to study flow oscillation and possible instability. The analytical investigation encompassed development of mathematical model for single-phase, steady-state and transient natural circulation as well as modification of existing model for two-phase flow analysis of phenomena such as small break LOCA, high pressure coolant injection and pump coast down. The developed mathematical model for single-phase analysis was computer coded to simulate the imposed transients. The computer program, entitled ''Symmetric and Asymmetric Analysis of Single-Phase Flow (SAS),'' were employed to simulate the imposed transients. It closely emulated the system behavior throughout the transient and subsequent steady-state. Modifications for two-phase flow analysis included addition of models for once-through steam generator and electric heater rods. Both programs are faster than real time. Off-line, they can be used for prediction and training applications while on-line they serve for simulation and signal validation. The programs can also be used to determine the sensitivity of natural circulation behavior to variation of inputs such as secondary distribution and power transients.

  12. Investigation of Anaerobic Fluidized Bed Reactor/ Aerobic Moving Bed Bio Reactor (AFBR/MMBR) System for Treatment of Currant Wastewater (United States)

    JAFARI, Jalil; MESDAGHINIA, Alireza; NABIZADEH, Ramin; FARROKHI, Mehrdad; MAHVI, Amir Hossein


    Background: Anaerobic treatment methods are more suitable for the treatment of concentrated wastewater streams, offer lower operating costs, the production of usable biogas product. The aim of this study was to investigate the performance of an Anaerobic Fluidized Bed Reactor (AFBR)-Aerobic Moving Bed Bio Reactor (MBBR) in series arrangement to treat Currant wastewater. Methods: The bed materials of AFBR were cylindrical particles made of PVC with a diameter of 2–2.3 mm, particle density of 1250 kg/m3. The volume of all bed materials was 1.7 liter which expanded to 2.46 liters in fluidized situation. In MBBR, support media was composed of 1.5 liters Bee-Cell 2000 having porosity of 87% and specific surface area of 650m2/m3. Results: When system operated at 35 ºC, chemical oxygen demand (COD) removal efficiencies were achieved to 98% and 81.6% for organic loading rates (OLR) of 9.4 and 24.2 g COD/l.d, and hydraulic retention times (HRT) of 48 and 18 h, in average COD concentration feeding of 18.4 g/l, respectively. Conclusion: The contribution of AFBR in total COD removal efficiency at an organic loading rate (OLR) of 9.4 g COD/l.d was 95%, and gradually decreased to 76.5% in OLR of 24.2 g COD/l.d. Also with increasing in organic loading rate the contribution of aerobic reactor in removing COD gradually decreased. In this system, the anaerobic reactor played the most important role in the removal of COD, and the aerobic MBBR was actually needed to polish the anaerobic treated wastewater. PMID:26056640

  13. The Fast-spectrum Transmutation Experimental Facility FASTEF: Main design achievements (part 2: Reactor building design and plant layout) within the FP7-CDT collaborative project of the European Commission

    Energy Technology Data Exchange (ETDEWEB)

    De Bruyn, D.; Engelen, J. [Belgian Nuclear Research Centre SCK CEN, Boeretang 200, 2400 Mol (Belgium); Ortega, A.; Aguado, M. P. [Empresarios Agrupados A.I.E., Magallanes 3, 28015 Madrid (Spain)


    MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) is the flexible experimental accelerator-driven system (ADS) in development at SCK-CEN in replacement of its material testing reactor BR2. SCK-CEN in association with 17 European partners from industry, research centres and academia, responded to the FP7 (Seventh Framework Programme) call from the European Commission to establish a Central Design Team (CDT) for the design of a Fast Spectrum Transmutation Experimental Facility (FASTEF) able to demonstrate efficient transmutation and associated technology through a system working in subcritical and/or critical mode. The project has started on April 01, 2009 for a period of three years. In this paper, we present the latest concept of the reactor building and the plant layout. The FASTEF facility has evolved quite a lot since the intermediate reporting done at the ICAPP'10 and ICAPP'11 conferences 1,2. Many iterations have been performed to take into account the safety requirements. The present configuration enables an easy operation and maintenance of the facility, including the possibility to change large components of the reactor. In a companion paper 3, we present the latest configuration of the reactor core and primary system. (authors)

  14. 14MeV neutron irradiation experiment on window materials for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Fuminobu; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iida, Toshiyuki


    Data on wavelength spectra of photons emitted from window material during neutron and gamma-ray irradiation has been required for design of next D-T burning fusion reactor such as ITER. Thus, a photon measurement system has been developed to analyze wavelength spectra of photons emitted from the optical window materials during 14MeV-neutron irradiation, and the system consisted of a sample holder, a radiation-resistant optical fiber, a photon counting analyzer and other electronic devices. The irradiation experiments for synthesized sapphire, high-purity silica glass and synthesized quartz were performed using a fusion neutron source FNS. As for all the sample, number of photon emission was proportional to the 14MeV-neutron flux in the range of 10{sup 6}-10{sup 11}n/cm{sup 2}/sec. The photon emission efficiency of F-center luminescence of the sapphire was 2200 {+-} 700photons/MeV, while the efficiency of F{sup +}-center luminescence was two order less than that of F-center. The wavelength spectra of the high-purity silica glass had a large peak around 450nm, which was concerned with decay of self-trapped excitons in oxygen vacancies. Its photon emission efficiency for 14MeV-neutrons has been found to be about 5 {+-} 3photons/MeV in visible range, while that for gamma-rays to be about 135 {+-} 50photons/MeV. The spectrum of photons emitted from the quartz had two large peaks around not only 450nm but also 650nm, and the photon emission efficiency in the wavelength range of 350-750nm was 14 {+-} 4photons/MeV. (author)

  15. New model systems for experimental evolution. (United States)

    Collins, Sinéad


    Microbial experimental evolution uses a few well-characterized model systems to answer fundamental questions about how evolution works. This special section highlights novel model systems for experimental evolution, with a focus on marine model systems that can be used to understand evolutionary responses to global change in the oceans. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  16. Design and installation of a hot water layer system at the Tehran research reactor

    Directory of Open Access Journals (Sweden)

    Mirmohammadi Sayedeh Leila


    Full Text Available A hot water layer system (HWLS is a novel system for reducing radioactivity under research reactor containment. This system is particularly useful in pool-type research reactors or other light water reactors with an open pool surface. The main purpose of a HWLS is to provide more protection for operators and reactor personnel against undesired doses due to the radio- activity of the primary loop. This radioactivity originates mainly from the induced radioactivity contained within the cooling water or probable minute leaks of fuel elements. More importantly, the bothersome radioactivity is progressively proportional to reactor power and, thus, the HWLS is a partial solution for mitigating such problems when power upgrading is planned. Following a series of tests and checks for different parameters, a HWLS has been built and put into operation at the Tehran research reactor in 2009. It underwent a series of comprehensive tests for a period of 6 months. Within this time-frame, it was realized that the HWLS could provide a better protection for reactor personnel against prevailing radiation under containment. The system is especially suitable in cases of abnormality, e. g. the spread of fission products due to fuel failure, because it prevents the mixing of pollutants developed deep in the pool with the upper layer and thus mitigates widespread leakage of radioactivity.

  17. Experimental and MCNP5 based evaluation of neutron and gamma flux in the irradiation ports of the University of Utah research reactor

    Directory of Open Access Journals (Sweden)

    Noble Brooklyn


    Full Text Available Neutron and gamma flux environment of various irradiation ports in the University of Utah training, research, isotope production, general atomics reactor were experimentally assessed and fully modeled using the MCNP5 code. The experimental measurements were based on the cadmium ratio in the irradiation ports of the reactor, flux profiling using nickel wire, and gamma dose measurements using thermo luminescence dosimeter. Full 3-D MCNP5 reactor model was developed to obtain the neutron flux distributions of the entire reactor core and to compare it with the measured flux focusing at the irradiation ports. Integration of all these analysis provided the updated comprehensive neutron-gamma flux maps of the existing irradiation facilities of the University of Utah TRIGA reactor.

  18. Application of neutron activation analysis system in Xi'an pulsed reactor

    CERN Document Server

    Zhang Wen Shou; Yu Qi


    Neutron Activation Analysis System in Xi'an Pulsed Reactor is consist of rabbit fast radiation system and experiment measurement system. The functions of neutron activation analysis are introduced. Based on the radiation system. A set of automatic data handling and experiment simulating system are built. The reliability of data handling and experiment simulating system had been verified by experiment

  19. Systems and methods for managing shared-path instrumentation and irradiation targets in a nuclear reactor (United States)

    Heinold, Mark R.; Berger, John F.; Loper, Milton H.; Runkle, Gary A.


    Systems and methods permit discriminate access to nuclear reactors. Systems provide penetration pathways to irradiation target loading and offloading systems, instrumentation systems, and other external systems at desired times, while limiting such access during undesired times. Systems use selection mechanisms that can be strategically positioned for space sharing to connect only desired systems to a reactor. Selection mechanisms include distinct paths, forks, diverters, turntables, and other types of selectors. Management methods with such systems permits use of the nuclear reactor and penetration pathways between different systems and functions, simultaneously and at only distinct desired times. Existing TIP drives and other known instrumentation and plant systems are useable with access management systems and methods, which can be used in any nuclear plant with access restrictions.

  20. Conceptual design of the integral test loop (I): Reactor coolant system and secondary system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chul Hwa; Lee, Seong Je; Kwon, Tae Soon; Moon, Sang Ki [Korea Atomic Energy Research Institute, Taejon (Korea)


    This report describes the conceptual design of the primary coolant system and the secondary system of the Integral Test Loop (ITL) which simulates overall thermal hydraulic phenomena of the primary system of a nuclear power plant during postulated accidents or transients. The design basis for the primary coolant system and secondary system is as follows ; Reference plant: Korean Standard Nuclear Plant (KSNP), Height ratio : 1/1, Volume ratio : 1/200, Power scale : Max. 15% of the scaled nominal power, Temperature, Pressure : Real plant conditions. The primary coolant system includes a reactor vessel, which contains a core simulator, a steam generator, a reactor coolant pump simulator, a pressurizer and piping, which consists of two hot legs, four cold legs and four intermediate legs. The secondary system consists of s steam discharge system, a feedwater supply system and a steam condensing system. This conceptual design report describes general configuration of the reference plant, and major function and operation of each system of the plant. Also described is the design philosophy of each component and system of the ITL, and specified are the design criteria and technical specifications of each component and system of the ITL in the report. 17 refs., 43 figs., 51 tabs. (Author)

  1. Modelling of Mass Transfer Phenomena in Chemical and Biochemical Reactor Systems using Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Larsson, Hilde Kristina

    the velocity and pressure distributions in a fluid. CFD also enables the modelling of several fluids simultaneously, e.g. gas bubbles in a liquid, as well as the presence of turbulence and dissolved chemicals in a fluid, and many other phenomena. This makes CFD an appreciated tool for studying flow structures......, mixing, and other mass transfer phenomena in chemical and biochemical reactor systems. In this project, four selected case studies are investigated in order to explore the capabilities of CFD. The selected cases are a 1 ml stirred microbioreactor, an 8 ml magnetically stirred reactor, a Rushton impeller...... stirred pilot plant reactor, and a rotating bed reactor filled with catalytic porous material. A selection of the simulated phenomena includes the velocities and turbulent quantities in the reactors, as well as the distribution of the gas and liquid phases in them. Mixing times, oxygen transfer rates...

  2. A method of reactor power decrease by 2DOF control system during BWR power oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Nobuyuki; Suzuki, Katsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    Occurrence of power oscillation events caused by void feedback effects in BWRs operated at low-flow and high-power condition has been reported. After thoroughly examining these events, BWRs have been equipped with the SRI (Selected Rod Insertion) system to avoid the power oscillation by decreasing the power under such reactor condition. This report presents a power control method for decreasing the reactor power stably by a two degree of freedom (2DOF) control. Performing a numerical simulation by utilizing a simple reactor dynamics model, it is found that the control system designed attains a satisfactory control performance of power decrease from a viewpoint of setting time and oscillation. (author)

  3. System modeling for the advanced thermionic initiative single cell thermionic space nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.H.; Lewis, B.R.; Klein, A.C. (Department of Nuclear Engineering, Oregon State University, Radiation Center, C116, Corvallis, Oregon 97331-5902 (United States)); Pawlowski, R.A. (Battelle Pacific Northwest Laboratories, Richland, Washington 99352 (United States))


    Incore thermionic space reactor design concepts which operate in a nominal power output range of 20 to 40 kWe are described. Details of the neutronics, thermionic, shielding, and heat rejection performance are presented. Two different designs, ATI-Driven and ATI-Driverless, are considered. Comparison of the core overall performance of these two configurations are described. The comparison of these two cores includes the overall conversion efficiency, reactor mass, shield mass, and heat rejection mass. An overall system design has been developed to model the advanced incore thermionic energy conversion based nuclear reactor systems for space applications in this power range.

  4. Evaluation of integral continuing experimental capability (CEC) concepts for light water reactor research: PWR scaling concepts

    Energy Technology Data Exchange (ETDEWEB)

    Condie, K G; Larson, T K; Davis, C B; McCreery, G E


    In this report reactor transients and thermal-hydraulic phenomena of importance (based on probabilistic risk assessment and the International Code Assessment Program) to reactor safety were examined and identified. Established scaling methodologies were used to develop potential concepts for integral thermal-hydraulic testing facilities. Advantages and disadvantages of each concept are evaluated. Analysis is conducted to examine the scaling of various phenomena in each of the selected concepts. Results generally suggest that a facility capable of operating at typical reactor operating conditions will scale most phenomena reasonably well. Although many phenomena in facilities using Freon or water at nontypical pressure will scale reasonably well, those phenomena that are heavily dependent on quality (heat transfer or critical flow for example) can be distorted. Furthermore, relation of data produced in facilities operating with nontypical fluids or at nontypical pressures to large plants will be a difficult and time consuming process.

  5. Verification and Validation of the PLTEMP/ANL Code for Thermal-Hydraulic Analysis of Experimental and Test Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kalimullah, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Olson, Arne P. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Hanan, N. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States)


    The document compiles in a single volume several verification and validation works done for the PLTEMP/ANL code during the years of its development and improvement. Some works that are available in the open literature are simply referenced at the outset, and are not included in the document. PLTEMP has been used in conversion safety analysis reports of several US and foreign research reactors that have been licensed and converted. A list of such reactors is given. Each chapter of the document deals with the verification or validation of a specific model. The model verification is usually done by comparing the code with hand calculation, Microsoft spreadsheet calculation, or Mathematica calculation. The model validation is done by comparing the code with experimental data or a more validated code like the RELAP5 code.

  6. High Efficiency Microchannel Sabatier Reactor System for In Situ Resource Utilization Project (United States)

    National Aeronautics and Space Administration — An innovative Microchannel Sabatier Reactor System (MSRS) is proposed for 100% recovery of oxygen (as water) and methane from carbon dioxide (CO2), a valuable in...

  7. Monte Carlo Analysis of the Accelerator-Driven System at Kyoto University Research Reactor Institute

    Directory of Open Access Journals (Sweden)

    Wonkyeong Kim


    Full Text Available An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan, a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft–Walton type accelerator, which generates the external neutron source by deuterium–tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  8. Modeling, simulation, and optimization of a front-end system for acetylene hydrogenation reactors

    Directory of Open Access Journals (Sweden)

    R. Gobbo


    Full Text Available The modeling, simulation, and dynamic optimization of an industrial reaction system for acetylene hydrogenation are discussed in the present work. The process consists of three adiabatic fixed-bed reactors, in series, with interstage cooling. These reactors are located after the compression and the caustic scrubbing sections of an ethylene plant, characterizing a front-end system; in contrast to the tail-end system where the reactors are placed after the de-ethanizer unit. The acetylene conversion and selectivity profiles for the reactors are optimized, taking into account catalyst deactivation and process constraints. A dynamic optimal temperature profile that maximizes ethylene production and meets product specifications is obtained by controlling the feed and intercoolers temperatures. An industrial acetylene hydrogenation system is used to provide the necessary data to adjust kinetics and transport parameters and to validate the approach.

  9. A pragmatic approach towards designing a second shutdown system for Tehran research reactor

    National Research Council Canada - National Science Library

    Boustani Ehsan; Khakshournia Samad; Khalafi Hossein


    One second shutdown system is proposed for the Tehran Research Reactor to achieve the goal of higher safety in compliance with current operational requirements and regulations and improve the overall...

  10. Progress in space nuclear reactor power systems technology development - The SP-100 program (United States)

    Davis, H. S.


    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  11. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors (United States)

    Galvez, Cristhian


    The Pebble Bed Advanced High Temperature Reactor (PB-AHTR) is a pebble fueled, liquid salt cooled, high temperature nuclear reactor design that can be used for electricity generation or other applications requiring the availability of heat at elevated temperatures. A stage in the design evolution of this plant requires the analysis of the plant during a variety of potential transients to understand the primary and safety cooling system response. This study focuses on the performance of the passive safety cooling system with a dual purpose, to assess the capacity to maintain the core at safe temperatures and to assist the design process of this system to achieve this objective. The analysis requires the use of complex computational tools for simulation and verification using analytical solutions and comparisons with experimental data. This investigation builds upon previous detailed design work for the PB-AHTR components, including the core, reactivity control mechanisms and the intermediate heat exchanger, developed in 2008. In addition the study of this reference plant design employs a wealth of auxiliary information including thermal-hydraulic physical phenomena correlations for multiple geometries and thermophysical properties for the constituents of the plant. Finally, the set of performance requirements and limitations imposed from physical constrains and safety considerations provide with a criteria and metrics for acceptability of the design. The passive safety cooling system concept is turned into a detailed design as a result from this study. A methodology for the design of air-cooled passive safety systems was developed and a transient analysis of the plant, evaluating a scrammed loss of forced cooling event was performed. Furthermore, a design optimization study of the passive safety system and an approach for the validation and verification of the analysis is presented. This study demonstrates that the resulting point design responds properly to the

  12. Experimental investigation into fast pyrolysis of biomass using an entrained flow reactor (United States)

    Bohn, M.; Benham, C.


    Pyrolysis experiments were performed with steam as a carrier gas and two different feedstocks - wheat straw and powdered material derived from municipal solid waste (ECO-II TM). Reactor wall temperature was varied from 7000 to 1400 C. Gas composition data from the ECO-II tests were comparable to previously reported data but ethylene yield appeared to vary with reactor wall temperature and residence time. The important conclusion from the wheat straw tests is that olefin yields are about one half that obtained from ECO-II. Evidence was found that high olefin yields from ECO-II are due to the presence of plastics in the feedstock.

  13. Evaluation of activation detectors for the SPHINX project at the LR-0 experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lahodova, Zdena; Viererbl, Ladislav [Research Center Rez Ltd (Czech Republic); Novak, Evzen; Svadlenkova, Marie; Rypar, Vojtech [Nuclear Power and Safety Division, Nuclear Research Institute Rez plc (Czech Republic)


    This article summarizes the measurements of neutron fluence distributions carried out at the LR-0 research reactor (Czech Republic) in the frame of the SPHINX project. The influence of fluoride-salts or graphite filling in the SR-0 modules on neutron spectrum was studied using activation detectors. The activation detectors (Mn, Ni, In and Au) were evaluated to determine the changes in neutron field. The In and Au detectors were also irradiated with a cadmium cover. Five different configurations of reactor core (EROS) were realized. (authors)

  14. Experimental evaluation of methane dry reforming process on a membrane reactor to hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fabiano S.A.; Benachour, Mohand; Abreu, Cesar A.M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. of Chemical Engineering], Email:


    In a fixed bed membrane reactor evaluations of methane-carbon dioxide reforming over a Ni/{gamma}- Al{sub 2}O{sub 3} catalyst were performed at 773 K, 823 K and 873 K. A to convert natural gas into syngas a fixed-bed reactor associate with a selective membrane was employed, where the operating procedures allowed to shift the chemical equilibrium of the reaction in the direction of the products of the process. Operations under hydrogen permeation, at 873 K, promoted the increase of methane conversion, circa 83%, and doubled the yield of hydrogen production, when compared with operations where no hydrogen permeation occurred. (author)

  15. Advanced High-Temperature Reactor Dynamic System Model Development: April 2012 Status

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A L; Cetiner, M S; Wilson, Jr, T L


    The Advanced High-Temperature Reactor (AHTR) is a large-output fluoride-salt-cooled high-temperature reactor (FHR). An early-phase preconceptual design of a 1500 MW(e) power plant was developed in 2011 [Refs. 1 and 2]. An updated version of this plant is shown as Fig. 1. FHRs feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR is designed to be a “walk away” reactor that requires no action to prevent large off-site releases following even severe reactor accidents. This report describes the development of dynamic system models used to further the AHTR design toward that goal. These models predict system response during warmup, startup, normal operation, and limited off-normal operating conditions. Severe accidents that include a loss-of-fluid inventory are not currently modeled. The scope of the models is limited to the plant power system, including the reactor, the primary and intermediate heat transport systems, the power conversion system, and safety-related or auxiliary heat removal systems. The primary coolant system, the intermediate heat transport system and the reactor building structure surrounding them are shown in Fig. 2. These systems are modeled in the most detail because the passive interaction of the primary system with the surrounding structure and heat removal systems, and ultimately the environment, protects the reactor fuel and the vessel from damage during severe reactor transients. The reactor silo also plays an important role during system warmup. The dynamic system modeling tools predict system performance and response. The goal is to accurately predict temperatures and pressures within the primary, intermediate, and power conversion systems and to study the impacts of design changes on those responses. The models are design tools and are not intended to be used in reactor qualification. The important details to capture in the primary

  16. The detector system of the Daya Bay reactor neutrino experiment


    An, F. P.; Carr, R.; McKeown, R.D.; Tsang, R. H. M.; Wu, F.F.


    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world׳s most precise measurement of sin^2 2θ_(13) and the effective mass splitting Δm^2_(ee). The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world׳s most prolific sources of electron antineutrinos. Multiple antineutrino detect...

  17. Tritium Formation and Mitigation in High-Temperature Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Carl Stoots; Hans A. Schmutz


    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  18. Determination of the Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation (PCO) Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part II: Experimental Results. (United States)

    Héquet, Valérie; Batault, Frédéric; Raillard, Cécile; Thévenet, Frédéric; Le Coq, Laurence; Dumont, Éric


    The performances of a laboratory PhotoCatalytic Oxidation (PCO) device were determined using a recirculation closed-loop pilot reactor. The closed-loop system was modeled by associating equations related to two ideal reactors: a perfectly mixed reservoir with a volume of VR = 0.42 m³ and a plug flow system corresponding to the PCO device with a volume of VP = 5.6 × 10-3 m³. The PCO device was composed of a pleated photocatalytic filter (1100 cm²) and two 18-W UVA fluorescent tubes. The Clean Air Delivery Rate (CADR) of the apparatus was measured under different operating conditions. The influence of three operating parameters was investigated: (i) light irradiance I from 0.10 to 2.0 mW·cm-2; (ii) air velocity v from 0.2 to 1.9 m·s-1; and (iii) initial toluene concentration C₀ (200, 600, 1000 and 4700 ppbv). The results showed that the conditions needed to apply a first-order decay model to the experimental data (described in Part I) were fulfilled. The CADR values, ranging from 0.35 to 3.95 m³·h-1, were mainly dependent on the light irradiance intensity. A square root influence of the light irradiance was observed. Although the CADR of the PCO device inserted in the closed-loop reactor did not theoretically depend on the flow rate (see Part I), the experimental results did not enable the confirmation of this prediction. The initial concentration was also a parameter influencing the CADR, as well as the toluene degradation rate. The maximum degradation rate rmax ranged from 342 to 4894 ppbv/h. Finally, this study evidenced that a recirculation closed-loop pilot could be used to develop a reliable standard test method to assess the effectiveness of PCO devices.

  19. Determination of the Clean Air Delivery Rate (CADR of Photocatalytic Oxidation (PCO Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part II: Experimental Results

    Directory of Open Access Journals (Sweden)

    Valérie Héquet


    Full Text Available The performances of a laboratory PhotoCatalytic Oxidation (PCO device were determined using a recirculation closed-loop pilot reactor. The closed-loop system was modeled by associating equations related to two ideal reactors: a perfectly mixed reservoir with a volume of VR = 0.42 m3 and a plug flow system corresponding to the PCO device with a volume of VP = 5.6 × 10−3 m3. The PCO device was composed of a pleated photocatalytic filter (1100 cm2 and two 18-W UVA fluorescent tubes. The Clean Air Delivery Rate (CADR of the apparatus was measured under different operating conditions. The influence of three operating parameters was investigated: (i light irradiance I from 0.10 to 2.0 mW·cm−2; (ii air velocity v from 0.2 to 1.9 m·s−1; and (iii initial toluene concentration C0 (200, 600, 1000 and 4700 ppbv. The results showed that the conditions needed to apply a first-order decay model to the experimental data (described in Part I were fulfilled. The CADR values, ranging from 0.35 to 3.95 m3·h−1, were mainly dependent on the light irradiance intensity. A square root influence of the light irradiance was observed. Although the CADR of the PCO device inserted in the closed-loop reactor did not theoretically depend on the flow rate (see Part I, the experimental results did not enable the confirmation of this prediction. The initial concentration was also a parameter influencing the CADR, as well as the toluene degradation rate. The maximum degradation rate rmax ranged from 342 to 4894 ppbv/h. Finally, this study evidenced that a recirculation closed-loop pilot could be used to develop a reliable standard test method to assess the effectiveness of PCO devices.

  20. Students' Assessment of Interactive Distance Experimentation in Nuclear Reactor Physics Laboratory Education (United States)

    Malkawi, Salaheddin; Al-Araidah, Omar


    Laboratory experiments develop students' skills in dealing with laboratory instruments and physical processes with the objective of reinforcing the understanding of the investigated subject. In nuclear engineering, where research reactors play a vital role in the practical education of students, the high cost and long construction time of research…

  1. Development of Operational Safety Monitoring System and Emergency Preparedness Advisory System for CANDU Reactors (I)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ma Woong; Shin, Hyeong Ki; Lee, Sang Kyu; Kim, Hyun Koon; Yoo, Kun Joong; Ryu, Yong Ho [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Son, Han Seong; Song, Deok Yong [ENESYS, Daejeon (Korea, Republic of)


    As increase of operating nuclear power plants, an accident monitoring system is essential to ensure the operational safety of nuclear power plant. Thus, KINS has developed the Computerized Advisory System for a Radiological Emergency (CARE) system to monitor the operating status of nuclear power plant continuously. However, during the accidents or/and incidents some parameters could not be provided from the process computer of nuclear power plant to the CARE system due to limitation of To enhance the CARE system more effective for CANDU reactors, there is a need to provide complement the feature of the CARE in such a way to providing the operating parameters using to using safety analysis tool such as CANDU Integrated Safety Analysis System (CISAS) for CANDU reactors. In this study, to enhance the safety monitoring measurement two computerized systems such as a CANDU Operational Safety Monitoring System (COSMOS) and prototype of CANDU Emergency Preparedness Advisory System (CEPAS) are developed. This study introduces the two integrated safety monitoring system using the R and D products of the national mid- and long-term R and D such as CISAS and ISSAC code.

  2. Experimental Study of a Thermoelectric Generation System

    DEFF Research Database (Denmark)

    Zhu, Junpeng; Gao, Junling; Chen, Min


    A flat wall-like thermoelectric generation system is developed for applications in exhaust heat of kilns. The design of the whole experimental setup is presented. The essential performance of the thermoelectric generation system is tested, including open-circuit voltage, output power, and system ...

  3. Regularities pertinent to formation of hydraulic nonuniformities at the outlet from the reactor plant header system (United States)

    Gabrianovich, B. N.; Del'nov, V. N.


    Maintaining the preset distribution of coolant mass flow rate at the outlet from the header system organized as a back turn with lateral admission of coolant to the header and central removal of coolant from it is one of the conditions essential for securing reliable and efficient operation of a reactor plant. In the header system, coolant passes through the annular lateral channel formed by the vessel and central barrel, after which it enters into the header, changes the motion direction in it, and goes out through the channels of the grid placed in the central barrel. The results obtained from experimental investigations of the hydrodynamics in the header system flow paths carried out on models with flat and cylindrical shapes are presented. A previously unknown regularity pertinent to formation of hydraulic irregularities at the header system outlet is revealed, and semi-empirical correlations for determining the coolant mass flow rate distribution at the header system outlet are obtained. The regularity connected with formation of hydrodynamic nonuniformities at the header system outlet lies in the fact that the position of the maximum coolant velocity at the grid outlet coincides with the position of the maximum velocity in the core of the incident jet attacking the grid, and that the maximal average coolant velocity in the grid holes is proportional to the average coolant velocity in the incident jet.

  4. Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

    Directory of Open Access Journals (Sweden)

    Matthew Bucknor


    Full Text Available Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general for the postulated transient event.

  5. Advanced reactor passive system reliability demonstration analysis for an external event

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; Grelle, Austin [Argonne National Laboratory, Argonne (United States)


    Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.


    Energy Technology Data Exchange (ETDEWEB)

    Isaac K. Gamwo; Dimitri Gidaspow


    Considerable progress has been achieved in understanding three-phase reactors from the point of view of kinetic theory. In a paper in press for publication in Chemical Engineering Science (Wu and Gidaspow, 1999) we have obtained a complete numerical solution of bubble column reactors. In view of the complexity of the simulation a better understanding of the processes using simplified analytical solutions is required. Such analytical solutions are presented in the attached paper, Large Scale Oscillations or Gravity Waves in Risers and Bubbling Beds. This paper presents analytical solutions for bubbling frequencies and standing wave flow patterns. The flow patterns in operating slurry bubble column reactors are not optimum. They involve upflow in the center and downflow at the walls. It may be possible to control flow patterns by proper redistribution of heat exchangers in slurry bubble column reactors. We also believe that the catalyst size in operating slurry bubble column reactors is not optimum. To obtain an optimum size we are following up on the observation of George Cody of Exxon who reported a maximum granular temperature (random particle kinetic energy) for a particle size of 90 microns. The attached paper, Turbulence of Particles in a CFB and Slurry Bubble Columns Using Kinetic Theory, supports George Cody's observations. However, our explanation for the existence of the maximum in granular temperature differs from that proposed by George Cody. Further computer simulations and experiments involving measurements of granular temperature are needed to obtain a sound theoretical explanation for the possible existence of an optimum catalyst size.

  7. Theoretical and experimental study of the dark signal in CMOS image sensors affected by neutron radiation from a nuclear reactor (United States)

    Xue, Yuanyuan; Wang, Zujun; He, Baoping; Yao, Zhibin; Liu, Minbo; Ma, Wuying; Sheng, Jiangkun; Dong, Guantao; Jin, Junshan


    The CMOS image sensors (CISs) are irradiated with neutron from a nuclear reactor. The dark signal in CISs affected by neutron radiation is studied theoretically and experimentally. The Primary knock-on atoms (PKA) energy spectra for 1 MeV incident neutrons are simulated by Geant4. And the theoretical models for the mean dark signal, dark signal non-uniformity (DSNU) and dark signal distribution versus neutron fluence are established. The results are found to be in good agreement with the experimental outputs. Finally, the dark signal in the CISs under the different neutron fluence conditions is estimated. This study provides the theoretical and experimental evidence for the displacement damage effects on the dark signal CISs.

  8. Experimental Tritium Cleanup System availability analysis from 1984 to 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Taylor, G.L. [Los Alamos National Lab., NM (United States)


    This report gives the availability percentage of the Experimental Tritium Cleanup System (ETC) at the Tritium Systems Test Assembly (TSTA), which is a fusion research and technology facility at the Los Alamos National Laboratory. The component failure reports, the numbers of components, and operating times or demands are all given in this report. Sample calculations of the failure rates obtained from these data are given in the appendices. While future fusion experiments might use different or more advanced means to detritiate room air, the analysis of this system gives a data point for an actual detritiation system. Such a data point can be extrapolated for comparison with fault tree results on system designs, or can be used in a Bayesian failure rate analysis for estimating reliability of a new type of system. The nine years of testing operations on TSTA`s ETC result in a reasonable average availability value of 92% for the maximal tritium release event. The failure rates for new systems are expected to be lower than for the TSTA ETC, since improvements will be made in the design of the room air detritiation system based on the TSTA system experiences. Nonetheless, these TSTA data should be useful for future fusion reactor design work and safety assessment tasks.

  9. High strength sewage treatment in a UASB reactor and an integrated UASB-digester system. (United States)

    Mahmoud, Nidal


    The treatment of high strength sewage was investigated in a one-stage upflow anaerobic sludge blanket (UASB) reactor and a UASB-digester system. The one-stage UASB reactor was operated in Palestine at a hydraulic retention time (HRT) of 10h and at ambient air temperature for a period of more than a year in order to asses the system response to the Mediterranean climatic seasonal temperature fluctuation. Afterwards, the one-stage UASB reactor was modified to a UASB-digester system by incorporating a digester operated at 35 degrees C. The achieved removal efficiencies in the one-stage UASB reactor for total, suspended, colloidal, dissolved and VFA COD were 54, 71, 34, 23%, and -7%, respectively during the first warm six months of the year, and achieved only 32% removal efficiency for COD total over the following cold six months of the year. The modification of the one-stage UASB reactor to a UASB-digester system had remarkably improved the UASB reactor performance as the UASB-digester achieved removal efficiencies for total, suspended, colloidal, dissolved and VFA COD of 72, 74, 74, 62 and 70%. Therefore, the anaerobic treatment of high strength sewage during the hot period in Palestine in a UASB-digester system is very promising.

  10. Activity report of working party on reactor physics of accelerator-driven system. July 1999 to March 2001

    Energy Technology Data Exchange (ETDEWEB)



    Under the Research Committee on Reactor Physics, the Working Party on Reactor Physics of Accelerator-Driven System (ADS-WP) was set in July 1999 to review and investigate special subjects related to reactor physics research for the Accelerator-Driven Subcritical System (ADS). The ADS-WP, at the first meeting, discussed a guideline of its activity for two years and decided to concentrate upon three subjects: (1) neutron transport calculations in high energy range, (2) static and kinetic (safety-related) characteristics of subcritical system, and (3) system design including ADS concepts and elemental technology developments required. The activity of ADS-WP continued from July 1999 to March 2001. In this duration, the members of ADS-WP met together four times and discussed the above subjects. In addition, the ADS-WP conducted a questionnaire on requests and proposals for the plan of Transmutation Physics Experimental Facility in the High-Intensity Proton Accelerator Project, which is a joint project between JAERI and KEK (High Energy Accelerator Research Organization). This report summarizes the results obtained by the above ADS-WP activity. (author)

  11. Method and apparatus for enhancing reactor air-cooling system performance (United States)

    Hunsbedt, A.


    An enhanced decay heat removal system is disclosed for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer. 6 figs.

  12. Presentation and comparison of experimental critical heat flux data at conditions prototypical of light water small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, M.S., E-mail:; Duarte, J.P.; Corradini, M.


    Highlights: • Low mass flux and moderate to high pressure CHF experimental results are presented. • Facility uses chopped-cosine heater profile in a 2 × 2 square bundle geometry. • The EPRI, CISE-GE, and W-3 CHF correlations provide reasonable average CHF prediction. • Neural network analysis predicts experimental data and demonstrates utility of method. - Abstract: The critical heat flux (CHF) is a two-phase flow phenomenon which rapidly decreases the efficiency of the heat transfer performance at a heated surface. This phenomenon is one of the limiting criteria in the design and operation of light water reactors. Deviations of operating parameters greatly alters the CHF condition and must be experimentally determined for any new parameters such as those proposed in small modular reactors (SMR) (e.g. moderate to high pressure and low mass fluxes). Current open literature provides too little data for functional use at the proposed conditions of prototypical SMRs. This paper presents a brief summary of CHF data acquired from an experimental facility at the University of Wisconsin-Madison designed and built to study CHF at high pressure and low mass flux ranges in a 2 × 2 chopped cosine rod bundle prototypical of conceptual SMR designs. The experimental CHF test inlet conditions range from pressures of 8–16 MPa, mass fluxes of 500–1600 kg/m2 s, and inlet water subcooling from 250 to 650 kJ/kg. The experimental data is also compared against several accepted prediction methods whose application ranges are most similar to the test conditions.

  13. DIissolution of low enriched uranium from the experimental breeder reactor-II fuel stored at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Almond, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    The Idaho National Laboratory (INL) is actively engaged in the development of electrochemical processing technology for the treatment of fast reactor fuels using irradiated fuel from the Experimental Breeder Reactor-II (EBR-II) as the primary test material. The research and development (R&D) activities generate a low enriched uranium (LEU) metal product from the electrorefining of the EBR-II fuel and the subsequent consolidation and removal of chloride salts by the cathode processor. The LEU metal ingots from past R&D activities are currently stored at INL awaiting disposition. One potential disposition pathway is the shipment of the ingots to the Savannah River Site (SRS) for dissolution in H-Canyon. Carbon steel cans containing the LEU metal would be loaded into reusable charging bundles in the H-Canyon Crane Maintenance Area and charged to the 6.4D or 6.1D dissolver. The LEU dissolution would be accomplished as the final charge in a dissolver batch (following the dissolution of multiple charges of spent nuclear fuel (SNF)). The solution would then be purified and the 235U enrichment downblended to allow use of the U in commercial reactor fuel. To support this potential disposition path, the Savannah River National Laboratory (SRNL) developed a dissolution flowsheet for the LEU using samples of the material received from INL.

  14. Experimental studies on catalytic hydrogen recombiners for light water reactors; Experimentelle Untersuchungen zu katalytischen Wasserstoffkombinatoren fuer Leichtwasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Drinovac, P.


    In the course of core melt accidents in nuclear power plants a large amount of hydrogen can be produced and form an explosive or even detonative gas mixture with aerial oxygen in the reactor building. In the containment atmosphere of pressurized water reactors hydrogen combines a phlogistically with the oxygen present to form water vapor even at room temperature. In the past, experimental work conducted at various facilities has contributed little or nothing to an understanding of the operating principles of catalytic recombiners. Hence, the purpose of the present study was to conduct detailed investigations on a section of a recombiner essentially in order to deepen the understanding of reaction kinetics and heat transport processes. The results of the experiments presented in this dissertation form a large data base of measurements which provides an insight into the processes taking place in recombiners. The reaction-kinetic interpretation of the measured data confirms and deepens the diffusion theory - proposed in an earlier study. Thus it is now possible to validate detailed numeric models representing the processes in recombiners. Consequently the present study serves to broaden and corroborate competence in this significant area of reactor technology. In addition, the empirical knowledge thus gained may be used for a critical reassessment of previous numeric model calculations. (orig.)

  15. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors. (United States)


    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Approvals § 50.46 Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide...

  16. An advanced extruder-feeder biomass liquefaction reactor system (United States)

    White, Don H.; Wolf, D.; Davenport, G.; Mathews, S.; Porter, M.; Zhao, Y.


    A unique method of pumping concentrated, viscous biomass slurries that are characteristic of biomass direct liquefaction systems was developed. A modified single-screw extruder was shown to be capable of pumping solid slurries as high as 60 weight percent wood flour in wood oil derived vacuum bottoms, as compared to only 10 to 20 weight percent wood flour in wood oil in conventional systems. During the period August, 1985 to April, 1987, a total of 18 experimental continuous biomass liquefaction runs were made using white birch feedstock. Good operability with feed rates up to 30 lb/hr covering a range of carbon monoxide, sodium carbonate catalyst, pressures from 800 to 3000 psi and temperatures from 350 C to 430 C was achieved. Crude wood oils containing 6 to 10 weight percent residual oxygen were obtained. Other wood oil characteristics are reported.

  17. Combined Reactor and Microelectrode Measurements in Laboratory Grown Biofilms

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul


    A combined biofilm reactor-/microelectrode experimental set-up has been constructed, allowing for simultaneous reactor mass balances and measurements of concentration profiles within the biofilm. The system consists of an annular biofilm reactor equipped with an oxygen microelectrode. Experiments...

  18. Numerical and experimental study in piping system dead legs

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, E.; Barcouda, M.; Rousset, J.L. [Electricite de France (EDF), 78 - Chatou (France). Lab. National d`Hydraulique; Mallez, C.


    This paper deals with an experimental and numerical study of the isothermal flow at the junction of a zero flow-rate pipe connected to high Reynolds number piping system. The motivation is to understand and model the hydraulic behaviour of various auxiliary lines connected to the primary circuit of Pressurised Water Reactors. Experimental data have been obtained on a hydraulic mock-up using flow visualisation method and particle image velocimetry (PIV). These qualitative results show an helicoidal flow extending along the auxiliary pipe. Numerical calculations performed with the 3D ESTET code are presented and contrast the performance of the k-epsilon eddy viscosity model and a second moment closure turbulence model. Fine (1 500 000) mesh were used. The numerical results obtained using the second moment closure turbulence model confirm the swirl flow structure into the dead leg observed on the mock-up. On the other hand the k-epsilon eddy viscosity model is not able to predict the vortex penetration along the auxiliary pipe. These results illustrate the necessity to use second moment closure turbulence model to simulate flows in piping system dead legs. Unfortunately the powerful of the vortex is very sensitive to geometric details of the junction and gives difficulties for quantitative comparisons of the numerical results with experimental data. (author)

  19. Fossil-fuel processing technical/professional services: comparison of Fischer-Tropsch reactor systems. Phase I, final report

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.J.; Riekena, M.L.; Vickers, A.G.


    The Fischer-Tropsch reaction was commercialized in Germany and used to produce military fuels in fixed bed reactors. It was recognized from the start that this reactor system had severe operating and yield limitations and alternative reactor systems were sought. In 1955 the Sasol I complex, using an entrained bed (Synthol) reactor system, was started up in South Africa. Although this reactor was a definite improvement and is still operating, the literature is filled with proponents of other reactor systems, each claiming its own advantages. This report provides a summary of the results of a study to compare the development potential of three of these reactor systems with the commercially operating Synthol-entrained bed reactor system. The commercial Synthol reactor is used as a benchmark against which the development potential of the other three reactors can be compared. Most of the information on which this study is based was supplied by the M.W. Kellogg Co. No information beyond that in the literature on the operation of the Synthol reactor system was available for consideration in preparing this study, nor were any details of the changes made to the original Synthol system to overcome the operating problems reported in the literature. Because of conflicting claims and results found in the literature, it was decided to concentrate a large part of this study on a kinetic analysis of the reactor systems, in order to provide a theoretical analysis of intrinsic strengths and weaknesses of the reactors unclouded by different catalysts, operating conditions and feed compositions. The remainder of the study considers the physical attributes of the four reactor systems and compares their respective investment costs, yields, catalyst requirements and thermal efficiencies from simplified conceptual designs.

  20. A system dynamics model for tritium cycle of pulsed fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zuolong; Nie, Baojie [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Chen, Dehong, E-mail: [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)


    As great challenges and uncertainty exist in achieving steady plasma burning, pulsed plasma burning may be a potential scenario for fusion engineering test reactor, even for fusion DEMOnstration reactor. In order to analyze dynamic tritium inventory and tritium self-sufficiency for pulsed fusion systems, a system dynamics model of tritium cycle was developed on the basis of earlier version of Tritium Analysis program for fusion System (TAS). The model was verified with TRIMO, which was developed by KIT in Germany. Tritium self-sufficiency and dynamic tritium inventory assessment were performed for a typical fusion engineering test reactor. The verification results show that the system dynamics model can be used for tritium cycle analysis of pulsed fusion reactor with sufficient reliability. The assessment results of tritium self-sufficiency indicate that the fusion reactor might only need several hundred gram tritium to startup if achieved high efficient tritium handling ability (Referred ITER: 1 h). And the initial tritium startup inventory in pulsed fusion reactor is determined by the combined influence of pulse length, burn availability, and tritium recycle time. Meanwhile, tritium self-sufficiency can be achieved under the defined condition.

  1. Experimental functional realization of attribute grammar system

    Directory of Open Access Journals (Sweden)

    I. Attali


    Full Text Available In this paper we present an experimental functional realization of attribute grammar(AG system for personal computers. For AG system functioning only Turbo Prolog compiler is required. The system functioning is based on a specially elaborated metalanguage for AG description, universal syntactic and semantic constructors. The AG system provides automatic generation of target compiler (syntax--oriented software using Turbo Prolog as object language.

  2. Development of a nuclear reactor control system simulator using virtual instruments

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Lameiras, Fernando Soares, E-mail: ajp@cdtn.b, E-mail: amir@cdtn.b, E-mail: fsl@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)


    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. This article describes a digital system being developed to simulate the behavior of the operating parameters using virtual instruments. The control objective is to bring the reactor power from its source level (mW) to a full power (kW). It is intended for education of basic reactor neutronic and thermohydraulic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron, control by rods, fuel and coolant temperatures, power, etc. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Centre - CDTN was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. The simulator system is being developed using the LabVIEW (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's) using electronic processor and visual interface in video monitor. The main purpose of the system is to provide training tools for instructors and students, allowing navigating by user-friendly operator interface and monitoring tendencies of the operational variables. It will be an interactive tool for training and teaching and could be used to predict the reactor behavior. Some scenarios are presented to demonstrate that it is possible to know the behavior of some variables from knowledge of input parameters. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility. (author)

  3. Challenges to deployment of twenty-first century nuclear reactor systems. (United States)

    Ion, Sue


    The science and engineering of materials have always been fundamental to the success of nuclear power to date. They are also the key to the successful deployment and operation of a new generation of nuclear reactor systems and their associated fuel cycles. This article reflects on some of the historical issues, the challenges still prevalent today and the requirement for significant ongoing materials R&D and discusses the potential role of small modular reactors.

  4. Challenges to deployment of twenty-first century nuclear reactor systems (United States)

    Ion, Sue


    The science and engineering of materials have always been fundamental to the success of nuclear power to date. They are also the key to the successful deployment and operation of a new generation of nuclear reactor systems and their associated fuel cycles. This article reflects on some of the historical issues, the challenges still prevalent today and the requirement for significant ongoing materials R&D and discusses the potential role of small modular reactors.

  5. Challenges to deployment of twenty-first century nuclear reactor systems (United States)


    The science and engineering of materials have always been fundamental to the success of nuclear power to date. They are also the key to the successful deployment and operation of a new generation of nuclear reactor systems and their associated fuel cycles. This article reflects on some of the historical issues, the challenges still prevalent today and the requirement for significant ongoing materials R&D and discusses the potential role of small modular reactors. PMID:28293142

  6. A statistical experimental design to remove sulfate by crystallization in a fluidized-bed reactor


    Mark Daniel G. de Luna; Rance, Diana Pearl M.; Luzvisminda M. Bellotindos; Lu, Ming-Chun


    This study used crystallization in a fluidized-bed reactor as an alternative technology to the conventional chemical precipitation to remove sulfate. The Box-Behnken Design was used to study the effects and interactions of seed dosage of synthetic gypsum, initial sulfate concentration and molar ratio of calcium to sulfate on conversion and removal of sulfate. The optimum conditions of conversion and removal of sulfate were determined and used to treat the simulated acid mine drainage (AMD) wa...

  7. Stress state dependence of in-reactor creep and swelling. Part 2: Experimental results (United States)

    Hall, M. M., Jr.; Flinn, J. E.


    Irradiation creep constitutive equations, which were developed in Part I, are used here to analyze in-reactor creep and swelling data obtained ca. 1977-1979 as part of the US breeder reactor program. The equations were developed according to the principles of incremental continuum plasticity for the purpose of analyzing data obtained from a novel irradiation experiment that was conducted, in part, using Type 304 stainless steel that had been previously irradiated to significant levels of void swelling. Analyses of these data support an earlier observation that all stress states, whether tensile, compressive, shear or mixed, can affect both void swelling and interactions between irradiation creep and swelling. The data were obtained using a set of five unique multiaxial creep-test specimens that were designed and used for the first time in this study. The data analyses demonstrate that the constitutive equations derived in Part I provide an excellent phenomenological representation of the interactive creep and swelling phenomena. These equations provide nuclear power reactor designers and analysts with a first-of-its-kind structural analysis tool for evaluating irradiation damage-dependent distortion of complex structural components having gradients in neutron damage rate, temperature and stress state.

  8. Experimental Study on Ash-Returned Reactor of CFB Atmospheric Air Gasifier (United States)

    Shihong, Zhang; Luning, Tian; Xianrong, Zhou; Hanping, Chen; Haiping, Yang; Xianhua, Wang

    In an attempt to improve the gasification efficiency and decrease the carbon content in fly ash of atmospheric air CFB gasifiers, an innovatory equipment by name ash-returned reactor is put forward by SKLCC. Ash-returned reactor is an ash-returned apparatus on line of ash circulation, typically like "U" type valve in CFB boilers, with additional function of some extent combustion of residual carbon and increase the furnace inlet temperature of returning ash, and hence the coal conversion of gasifiers is enhanced. As to its configuration compared to conventional "U" type valve, ash-returned rector has two distinguished features of several times of height scale of fluidizing transportation region to meet the combustion reaction time need and appropriate heat transfer tube bundles arranged in the region to moderate the local temperature so as to avoid slagging. And hence, corresponding to the structure renovation, the material transportation and regulation performance of ash-returned reactor is primarily investigated through a series of experiments in a cold lab-scale facility in this paper. The heat transfer characteristic of the tube bundles is then researched and its influential factors are further discussed. These works lay a foundation on the following study of hot state experiments and industrial applications.

  9. Experimental Studies on Assemblies 1 and 2 of the Fast Reactor FR-0. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Hellstrand, E.; Andersson, T.L.; Brunfelter, B.; Kockum, J.; Londen, S.O.; Tiren, L.I.


    In a first part of this report, published as AE-195, an account was given of critical mass determinations and measurements of flux distribution and reaction ratios in the first assemblies of the fast zero power reactor FR0. This second part of the report deals with various investigations involving the measurement of reactivity. Control rod calibrations have been made using the positive period, the inverse multiplication, the rod drop and the pulsed source techniques, and show satisfactory agreement between the various methods. The reactivity worths of samples of different materials and different sizes have been measured at the core centre. Comparisons with perturbation calculations show that the regular and adjoint fluxes are well predicted in the central region of the core. The variation in the prompt neutron life-time with reactivity has been studied by means of the pulsed source and the Rossi-{alpha} techniques. Comparison with one region calculations reveals large discrepancies, indicating that this simple model is inadequate. Some investigations of streaming effects in an empty channel in the reactor and of interaction effects between channels have been made and are compared with theoretical estimates. Measurements of the reactivity worth of an air gap between the reactor halves and of the temperature coefficient are also described in the report. The work has been performed as a joint effort by AB Atomenergi and the Research Institute of National Defence.

  10. Numerical simulation of Venturi ejector reactor in yellow phosphorus purification system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao-jing; Tang, Lei, E-mail:; Jiang, Zeng


    Highlights: • Venturi ejector reactor is used in yellow phosphorus purification system to obtain high purity phosphorus. • We study the changes of vacuum region and the performances of Venturi ejector reactor with different operating pressure. • The whole study is aim to investigate the operating conditions, rather than to find out the small details of the chemical reaction. - Abstract: A novel type of Venturi ejector reactor, which was used in a pilot plant test in a factory in Guizhou in China, was developed to overcome the insufficiency of chemical reaction in the stirred-tank reactor in yellow phosphorus purification system. The effects of different working medium, the changes of vacuum region, and the performances of the Venturi ejector reactor with different operating pressure were investigated by FLUENT. Results show that the absolute value of vacuum pressure of single-phase flow was smaller than two-phase flow at the same operating conditions, which meat two-phase flow has a higher suction capability. Reflow phenomena occurred near the exit of suction pipe and nozzle. The former reflow which leads to energy loss of vacuum region was undesirable, and the latter was beneficial to the dispersion of liquid yellow phosphorus. With a flow rate ratio below 0.45, the performance of the Venturi ejector reactor was effective. By adjusting the operating pressure, a proper flow rate ratio could be satisfied to meet the production needs in yellow phosphorus purification system.

  11. Graphic-object information system {open_quotes}research base for reactor materials science{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    Markina, N.V.; Lebedeva, E.E.; Arkhangel`skii, N.V.; Semenov, S.B.; Moiseev, A.L.


    An information system developed for reactor materials research is described. The information system incorporates an expert system, MATREKS, and a heirarchial data base. The data base contains information from 20 Russian research reactors. The information system structure, data base structure, search methods, system output modes, and technical facilities and software required are briefly discussed. 6 refs., 2 figs.

  12. Reference reactor module for NASA's lunar surface fission power system

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David I [Los Alamos National Laboratory; Kapernick, Richard J [Los Alamos National Laboratory; Dixon, David D [Los Alamos National Laboratory; Werner, James [INL; Qualls, Louis [ORNL; Radel, Ross [SNL


    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO{sub 2}-fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  13. Analysis of space reactor system components: Investigation through simulation and non-nuclear testing (United States)

    Bragg-Sitton, Shannon M.

    The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable ambitious space exploration missions. The natural space radiation environment provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Applying the approximate proton source in geosynchronous orbit during a solar particle event, investigation using MCNPX 2.5.b for proton transport through the SAFE-400 heat pipe cooled reactor indicates an incoming secondary neutron current of (1.16 +/- 0.03) x 107 n/s at the core-reflector interface. This neutron current may affect reactor operation during low power maneuvers (e.g., start-up) and may provide a sufficient reactor start-up source. It is important that a reactor control system be designed to automatically adjust to changes in reactor power levels, maintaining nominal operation without user intervention. A robust, autonomous control system is developed and analyzed for application during reactor start-up, accounting for fluctuations in the radiation environment that result from changes in vehicle location or to temporal variations in the radiation field. Development of a nuclear reactor for space applications requires a significant amount of testing prior to deployment of a flight unit. High confidence in fission system performance can be obtained through relatively inexpensive non-nuclear tests performed in relevant environments, with the heat from nuclear fission simulated using electric resistance heaters. A series of non-nuclear experiments was performed to characterize various aspects of reactor operation. This work includes measurement of reactor core deformation due to material thermal expansion and

  14. Experimental studies into the thermal-hydraulic performance of the VK-300 reactor based on a draft tube model

    Directory of Open Access Journals (Sweden)

    N.P. Serdun


    Full Text Available The paper presents an experimental study into the thermal-hydraulic performance of the VK-300 reactor based on a model of a single draft tube at a pressure of 3.4MPa, various flow rates and the model inlet relative enthalpies of –0.05 to 0.2. The experimental procedures include generation of a steam-water mixture circulation with a preset flow rate and a relative enthalpy through the test section at a pressure of 3.3 to 3.4MPa, and measurement of thermal-hydraulic parameters within the circuit's representative upflow and downflow lengths of practical interest. There have been confirmed the designs used to support the reactor facility serviceability and the assumptions concerning the thermal-hydraulic performance of a natural circulation circuit used in the analysis thereof. It has been shown that, across the analyzed range of the relative enthalpy values, the draft tube has an annular-dispersed or an annular flow of the steam-water mixture, both providing for the significant separation of the steam-water mixture (Ksep=0.4 at the draft tube edges and in the mixing chamber. The perforation in the upper part of the draft tubes allows the separation coefficient to be increased at the first stage and creates more favorable conditions for the second-stage separation. The measured values of the void fraction in the mixing chamber and in the draft tube are in a satisfactory agreement with calculations based on Z.L. Miropolskiy's method and the RELAP code and may be used to verify the VK-300 thermal-hydraulic codes. It has been shown that steam may enter the ring slit that simulates the annular space and reach the reactor core inlet. Further investigations need to be conducted to study this effect for its guaranteed exclusion and for the development of emergency response procedures.

  15. Multi-reactor power system configurations for multimegawatt nuclear electric propulsion (United States)

    George, Jeffrey A.


    A modular, multi-reactor power system and vehicle configuration for piloted nuclear electric propulsion (NEP) missions to Mars is presented. Such a design could provide enhanced system and mission reliability, allowing a comfortable safety margin for early manned flights, and would allow a range of piloted and cargo missions to be performed with a single power system design. Early use of common power modules for cargo missions would also provide progressive flight experience and validation of standardized systems for use in later piloted applications. System and mission analysis are presented to compare single and multi-reactor configurations for piloted Mars missions. A conceptual design for the Hydra modular multi-reactor NEP vehicle is presented.

  16. Safety of VVER-440 reactors

    CERN Document Server

    Slugen, Vladimir


    Safety of VVER-440 Reactors endeavours to promote an increase in the safety of VVER-440 nuclear reactors via the improvement of fission products limitation systems and the implementation of special non-destructive spectroscopic methods for materials testing. All theoretical and experimental studies performed the by author over the last 25 years have been undertaken with the aim of improving VVER-440 defence in depth, which is one of the most important principle for ensuring safety in nuclear power plants. Safety of VVER-440 Reactors is focused on the barrier system through which the safety pri

  17. Interfacing systems LOCA (loss-of-coolant accidents): Pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bozoki, G.; Kohut, P.; Fitzpatrick, R.


    This report summarizes a study performed by Brookhaven National Laboratory for the Office of Nuclear Regulatory Research, Reactor and Plant Safety Issues Branch, Division of Reactor and Plant Systems, US Nuclear Regulatory Commission. This study was requested by the NRC in order to provide a technical basis for the resolution of Generic Issue 105 ''Interfacing LOCA at LWRs.'' This report deals with pressurized water reactors (PWRs). A parallel report was also accomplished for boiling water reactors. This study focuses on three representative PWRs and extrapolates the plant-specific findings for their generic applicability. In addition, a generic analysis was performed to investigate the cost-benefit aspects of imposing a testing program that would require some minimum level of leak testing of the pressure isolation valves on plants that presently have no such requirements. 28 refs., 31 figs., 64 tabs.

  18. Toward a Cooperative Experimental System Development Approach

    DEFF Research Database (Denmark)


    This chapter represents a step towards the establishment of a new system development approach, called Cooperative Experimental System Development (CESD). CESD seeks to overcome a number of limitations in existing approaches: specification oriented methods usually assume that system design can...... be based solely on observation and detached reflection; prototyping methods often have a narrow focus on the technical construction of various kinds of prototypes; Participatory Design techniques—including the Scandinavian Cooperative Design (CD) approaches—seldom go beyond the early analysis...

  19. Feasibility Study of a Novel Membrane Reactor for Syngas Production. Part 1: Experimental Study of O2 Permeation through Perovskite Membranes under Reducing and Non-Reducing Atmospheres

    NARCIS (Netherlands)

    Zhang Wenxing, Z.W.; Zhang, Wenxing; Smit, J.; van Sint Annaland, M.; Kuipers, J.A.M.


    In this contribution, the feasibility of a novel membrane reactor for energy efficient syngas production is investigated by means of an experimental and a simulation study. In Part 1, a detailed experimental study is performed on the O2 permeation through a perovskite membrane with composition

  20. Development of advanced automatic control system for nuclear ship. 2. Perfect automatic operation after reactor scram events

    Energy Technology Data Exchange (ETDEWEB)

    Yabuuchi, Noriaki; Nakazawa, Toshio; Takahashi, Hiroki; Shimazaki, Junya; Hoshi, Tsutao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    An automatic operation system has been developed for the purpose of realizing a perfect automatic plant operation after reactor scram events. The goal of the automatic operation after a reactor scram event is to bring the reactor hot stand-by condition automatically. The basic functions of this system are as follows; to monitor actions of the equipments of safety actions after a reactor scram, to control necessary control equipments to bring a reactor to a hot stand-by condition automatically, and to energize a decay heat removal system. The performance evaluation on this system was carried out by comparing the results using to Nuclear Ship Engineering Simulation System (NESSY) and the those measured in the scram test of the nuclear ship `Mutsu`. As the result, it was showed that this system had the sufficient performance to bring a reactor to a hot syand-by condition quickly and safety. (author)

  1. Selective hydrogenation in trickle-bed reactor. Experimental and modelling including partial wetting.


    Dietz, Adrian; Julcour-Lebigue, Carine; Wilhelm, Anne-Marie; Delmas, Henri


    International audience; A steady state model of a trickle bed reactor is developed for the consecutive hydrogenation of 1,5,9-cyclododecatriene on a Pd/Al2O3 catalyst. Various experiments have shown that the selectivity of this reaction towards the product of interest is much lower in co-current down-flow (trickle-bed) than in up-flow. This is due to uneven liquid distribution and to partial wetting of the catalyst surface at low liquid flow rates. The non-isothermal heterogeneous model propo...

  2. Vibration test on KMRR reactor structure and primary cooling system piping

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Seung Hoh; Kim, Tae Ryong; Park, Jin Hoh; Park, Jin Suk; Ryoo, Jung Soo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    Most equipments, piping systems and reactor structures in nuclear power plants are subjected to flow induced vibration due to high temperature and high pressure coolant flowing inside or outside of the equipments, systems and structures. Because the flow induced vibration sometimes causes significant damage to reactor structures and piping systems, it is important and necessary to evaluate the vibration effect on them and to prove their structural integrity. Korea Multipurpose Research Reactor (KMRR) being constructed by KAERI is 30 MWt pool type research reactor. Since its main structures and piping systems were designed and manufactured in accordance with the standards and guidelines for commercial nuclear power plant, it was decided to evaluate their vibratory response in accordance with the standards and guidelines for commercial NPP. The objective of this vibration test is the assessment of vibration levels of KMRR reactor structure and primary cooling piping system for their structural integrity under the steady-state or transient operating condition. 38 figs, 14 tabs, 2 refs. (Author).

  3. Biodegradation of 2,4-Dinitrotoluene and 2,6-Dinitrotoluene in a Pilot-Scale Aerobic Slurry Reactor System (United States)


    consideration ............................................................................. 7 4 3.8.1 Design basis for a hypothetical full-scale bioslurry ...treatment system ......... 74 3.8.2 Cost elements associated with bioslurry reactor systems ............................. 78 3.8.3 Comparison with...hypothetical full-scale bioslurry treatment system The treatment cost of a slurry reactor system depends mainly on three process parameters: (1) solids

  4. Update on Small Modular Reactors Dynamic System Modeling Tool: Web Application

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Batteh, John J [Modelon Corporation (Sweden); Tiller, Michael M. [Xogeny Corporation (United States)


    Previous reports focused on the development of component and system models as well as end-to-end system models using Modelica and Dymola for two advanced reactor architectures: (1) Advanced Liquid Metal Reactor and (2) fluoride high-temperature reactor (FHR). The focus of this report is the release of the first beta version of the web-based application for model use and collaboration, as well as an update on the FHR model. The web-based application allows novice users to configure end-to-end system models from preconfigured choices to investigate the instrumentation and controls implications of these designs and allows for the collaborative development of individual component models that can be benchmarked against test systems for potential inclusion in the model library. A description of this application is provided along with examples of its use and a listing and discussion of all the models that currently exist in the library.

  5. TiO2 Solar Photocatalytic Reactor Systems: Selection of Reactor Design for Scale-up and Commercialization—Analytical Review

    Directory of Open Access Journals (Sweden)

    Yasmine Abdel-Maksoud


    Full Text Available For the last four decades, viability of photocatalytic degradation of organic compounds in water streams has been demonstrated. Different configurations for solar TiO2 photocatalytic reactors have been used, however pilot and demonstration plants are still countable. Degradation efficiency reported as a function of treatment time does not answer the question: which of these reactor configurations is the most suitable for photocatalytic process and optimum for scale-up and commercialization? Degradation efficiency expressed as a function of the reactor throughput and ease of catalyst removal from treated effluent are used for comparing performance of different reactor configurations to select the optimum for scale-up. Comparison included parabolic trough, flat plate, double skin sheet, shallow ponds, shallow tanks, thin-film fixed-bed, thin film cascade, step, compound parabolic concentrators, fountain, slurry bubble column, pebble bed and packed bed reactors. Degradation efficiency as a function of system throughput is a powerful indicator for comparing the performance of photocatalytic reactors of different types and geometries, at different development scales. Shallow ponds, shallow tanks and fountain reactors have the potential of meeting all the process requirements and a relatively high throughput are suitable for developing into continuous industrial-scale treatment units given that an efficient immobilized or supported photocatalyst is used.

  6. Experimental Development and Demonstration of Ultrasonic Measurement Diagnostics for Sodium Fast Reactor Thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Tokuhiro, Akira; Jones, Byron


    This research project will address some of the principal technology issues related to sodium-cooled fast reactors (SFR), primarily the development and demonstration of ultrasonic measurement diagnostics linked to effective thermal convective sensing under normatl and off-normal conditions. Sodium is well-suited as a heat transfer medium for the SFR. However, because it is chemically reactive and optically opaque, it presents engineering accessibility constraints relative to operations and maintenance (O&M) and in-service inspection (ISI) technologies that are currently used for light water reactors. Thus, there are limited sensing options for conducting thermohydraulic measurements under normal conditions and off-normal events (maintenance, unanticipated events). Acoustic methods, primarily ultrasonics, are a key measurement technology with applications in non-destructive testing, component imaging, thermometry, and velocimetry. THis project would have yielded a better quantitative and qualitative understanding of the thermohydraulic condition of solium under varied flow conditions. THe scope of work will evaluate and demonstrate ultrasonic technologies and define instrumentation options for the SFR.

  7. Theoretical and experimental study of the photocatalytic activity of ZnO coated tubular reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ríos-Valdovinos, E.; Amézaga-Madrid, P.; Antúnez-Flores, W.; Pola-Albores, F.; Pizá-Ruiz, P.; Miki-Yoshida, M., E-mail:


    Highlights: • High quality ZnO thin films were deposited on the internal surface of fused silica tubing. • Surface carrier concentration was calculated theoretically under external irradiation. • Influence of film thickness on photocatalytic activity was explained by this model. • An optimum thickness around 60–70 nm was determined to get highest activity. -- Abstract: ZnO thin films were deposited inside of fused silica tubing by aerosol assisted chemical vapor deposition technique. The films were transparent, uniform, highly adherent and non-light scattering. Photocatalytic activity of internally ZnO coated tubing was evaluated by discoloration of a methyl orange aqueous solution in a batch reactor. Tubing was externally irradiated with UV-A at room temperature. A one dimensional model was proposed to calculate the spatial distribution of the carrier density and the films’ surface charge carrier concentration. This model can explain the influence of the films thickness on the photocatalytic activity. Results showed that the photocatalytic activity largely depends on the film thickness. For external irradiation of the films the optimum thickness was around 60–70 nm, for which the photocatalytic activity was maximum. The photonic efficiency of internally ZnO coated tubular reactors was evaluated as a function of initial colorant concentration, irradiation time and intensity. Furthermore, due to the high activity of the ZnO films, the films were repeatedly exposed to UV-A irradiation cycles, followed by activity measurement.

  8. Nuclear reactor system study for NASA/JPL (United States)

    Palmer, R. G.; Lundberg, L. B.; Keddy, E. S.; Koenig, D. R.


    Reactor shielding, safety studies, and heat pipe development work are described. Monte Carlo calculations of gamma and neutron shield configurations show that substantial weight penalties are incurred if exposure at 25 m to neutrons and gammas must be limited to 10 to the 12th power nvt and 10 to the 6th power rad, instead of the 10 to the 13th power nvt and 10 to the 7th power rad values used earlier. For a 1.6 MW sub t reactor, the required shield weight increases from 400 to 815 kg. Water immersion critically calculations were extended to study the effect of water in fuel void spaces as well as in the core heat pipes. These show that the insertion into the core of eight blades of B4C with a mass totaling 2.5 kg will guarantee subcriticality. The design, fabrication procedure, and testing of a 4m long molybdenum/lithium heat pipe are described. It appears that an excess of oxygen in the wick prevented the attainment of expected performance capability.

  9. The development of ex-core neutron flux monitoring system for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. K.; Kwon, H. J.; Park, H. Y.; Koo, I. S


    Due to the arrangement of major components within the reactor vessel, the integral reactor has relatively long distance between the core support barrel and the reactor vessel when compared with the currently operating plants. So, a neutron flux leakage at the ex-vessel represents a relatively low flux level which may generate some difficulties in obtaining a wide range of neutron flux information including the source range one. This fact may have an impact upon the design and fabrication of an ex-core neutron flux detector. Therefore, it is required to study neutron flux detectors that are suitable for the installation location and characteristics of an integral reactor. The physical constraints of an integral reactor should be considered when one designs and develops the ex-core neutron flux monitoring detectors and their systems. As a possible installation location of the integral reactor ex-core neutron flux detector assembly, two candidate locations are considered, that is, one is between the core support barrel and the reactor vessel and the other is within the Internal Shielding Tank(IST). And, for these locations, some factors such as the environmental requirements and geometrical restrictions are investigated In the case of considering the inside of the IST as a ex-core neutron flux detector installation position, an electrical insulation problem and a low neutron flux measurement problem arose and when considering the inside of the reactor vessel, a detector's sensitivity variation problem, an electrical insulation problem, a detector's insertion and withdrawal problem, and a high neutron flux measurement problem were encountered. Through a survey of the detector installation of the currently operating plants and detector manufacturer's products, the proposed structure and specifications of an ex-core neutron flux detector are suggested. And, the joint ownership strategy for a proposed detector model is also depicted. At the end, by studying

  10. Development of Safety Analysis Codes and Experimental Validation for a Very High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H. Oh, PhD; Cliff Davis; Richard Moore


    The very high temperature gas-cooled reactors (VHTGRs) are those concepts that have average coolant temperatures above 900 degrees C or operational fuel temperatures above 1250 degrees C. These concepts provide the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation and nuclear hydrogen generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperatures to support process heat applications, such as desalination and cogeneration, the VHTGR's higher temperatures are suitable for particular applications such as thermochemical hydrogen production. However, the high temperature operation can be detrimental to safety following a loss-of-coolant accident (LOCA) initiated by pipe breaks caused by seismic or other events. Following the loss of coolant through the break and coolant depressurization, air from the containment will enter the core by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structures and fuel. The oxidation will release heat and accelerate the heatup of the reactor core. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. The Idaho National Engineering and Environmental Laboratory (INEEL) has investigated this event for the past three years for the HTGR. However, the computer codes used, and in fact none of the world's computer codes, have been sufficiently developed and validated to reliably predict this event. New code development, improvement of the existing codes, and experimental validation are imperative to narrow the uncertaninty in the predictions of this type of accident. The objectives of this Korean/United States collaboration are to develop advanced computational methods for VHTGR safety analysis codes and to validate these computer codes.

  11. Advanced Reactor PSA Methodologies for System Reliability Analysis and Source Term Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, D.; Brunett, A.; Passerini, S.; Grelle, A.; Bucknor, M.


    Beginning in 2015, a project was initiated to update and modernize the probabilistic safety assessment (PSA) of the GE-Hitachi PRISM sodium fast reactor. This project is a collaboration between GE-Hitachi and Argonne National Laboratory (Argonne), and funded in part by the U.S. Department of Energy. Specifically, the role of Argonne is to assess the reliability of passive safety systems, complete a mechanistic source term calculation, and provide component reliability estimates. The assessment of passive system reliability focused on the performance of the Reactor Vessel Auxiliary Cooling System (RVACS) and the inherent reactivity feedback mechanisms of the metal fuel core. The mechanistic source term assessment attempted to provide a sequence specific source term evaluation to quantify offsite consequences. Lastly, the reliability assessment focused on components specific to the sodium fast reactor, including electromagnetic pumps, intermediate heat exchangers, the steam generator, and sodium valves and piping.

  12. Experimental and numerical investigation of coolant mixing in a model of reactor pressure vessel down-comer and in cold leg inlets

    Directory of Open Access Journals (Sweden)

    Hutli Ezddin


    Full Text Available Thermal fatigue and pressurized thermal shock phenomena are the main problems for the reactor pressure vessel and the T-junctions both of them depend on the mixing of the coolant. The mixing process, flow and temperature distribution has been investigated experimentally using particle image velocimetry, laser induced fluorescence, and simulated by CFD tools. The obtained results showed that the ratio of flow rate between the main pipe and the branch pipe has a big influence on the mixing process. The particle image velocimetry/planar laser-induced fluorescence measurements technologies proved to be suitable for the investigation of turbulent mixing in the complicated flow system: both velocity and temperature distribution are important parameters in the determination of thermal fatigue and pressurized thermal shock. Results of the applied these techniques showed that both of them can be used as a good provider for data base and to validate CFD results.

  13. An add-on system including a micro-reactor for an atr-ir spectrometer

    DEFF Research Database (Denmark)


    The invention relates to an add-on system for an attenuated total reflectance infrared (ATR-IR) spectrometer, the add-on system allowing for time-resolved in situ IR measurements of heterogeneous mixtures. The add-on device comprises a micro-reactor (300A) forming a sample cavity (305) when...

  14. Utilizing a Russian space nuclear reactor for a US space mission: Systems integration issues (United States)

    Reynolds, E.; Schaefer, E.; Polansky, G.; Lacy, J.; Bocharov, A.


    The Nuclear Electric Propulsion Space Test Program (NEPSTP) has developed a cooperative relationship with several institutes of the former Soviet Union to evaluate Russian space hardware on a US spacecraft. One component is the Topaz 2 Nuclear Power System; a built and flight qualified nuclear reactor that has yet to be tested in space. The access to the Topaz 2 reactor provides the NEPSTP with a rare opportunity; to conduct an early flight demonstration of nuclear electric propulsion at a relatively low cost. This opportunity, however, is not without challenges. Topaz 2 was designed to be compatible with Russian spacecraft and launch vehicles. It was manufactured and flight qualified by Russian techniques and standards and conforms to safety requirements of the former Soviet Union, not the United States. As it is desired to make minimal modifications to the Topaz 2, integrating the reactor system with a United States spacecraft and launch vehicle presents an engineering challenge. This paper documents the lessons learned regarding the integration of reactor based spacecraft and also some insight about integrating Russian hardware. It examines the planned integration flow along with specific reactor requirements that affect the spacecraft integration including American-Russian space system compatibility.

  15. Utilizing a Russian Space Nuclear Reactor for a United States Space Mission: Systems Integration Issues (United States)

    Reynolds, Edward; Schaefer, Edward; Polansky, Gary; Lacy, Jeff; Bocharov, Anatoly


    The Nuclear Electric Propulsion Space Test Program (NEPSTP) has developed a cooperative relationship with several institutes of the former Soviet Union to evaluate Russian space hardware on a U.S. spacecraft. One component is the Topaz II Nuclear Power System; a built and flight qualified nuclear reactor that has yet to be tested in space. The access to the Topaz II reactor provides the NEPSTP with a rare opportunity; to conduct an early flight demonstration of nuclear electric propulsion at a relatively low cost. This opportunity, however, is not without challenges. Topaz II was designed to be compatible with Russian spacecraft and launch vehicles. It was manufactured and flight qualified by Russian techniques and standards and conforms to safety requirements of the former Soviet Union, not the United States. As it is desired to make minimal modifications to the Topaz II, integrating the reactor system with a United States spacecraft and launch vehicle presents an engineering challenge. This paper documents the lessons learned regarding the integration of reactor based spacecraft and also some insight about integrating Russian hardware. It examines the planned integration flow along with specific reactor requirements that affect the spacecraft integration including American-Russian space system compatibility.

  16. Design Improvement for the Reactor Trip Switchgear System for APR1400 Design Certification

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Gyu; Choi, Woong Seock; Sohn, Se Do [KEPCO Engineering and Construction Co., Deajeon (Korea, Republic of)


    The Reactor Trip Switchgear System (RTSS) performs the function to open the Reactor Trip Circuit Breaker (RTCB) when the RTSS receives trip signals from the Plant Protection System (PPS). The RTSS for Shin-Hanul Nuclear Power Plant Units 1 and 2 (SHN 1 and 2) receives the reactor trip signals from four independent PPS divisions and performs the function to interrupt power from the Motor Generator Set (MG Set) to the Digital Rod Control System (DRCS). The RTSS for SHN 1 and 2 consists of four Reactor Trip Switchgears (RTSGs) which form the selective 2-out-of-4 logic. The RTSS design for APR 1400 DC has been changed from selective 2-out-of-4 to full 2-out-of-4 logic by configuring two independent sets of RTSS for diversity. The RTSS with the full 2-out-of-4 logic decreases the chances of generating an inadvertent reactor trip by a failure during maintenance or testing. We expect this design change to contribute to enhancing the plant availability. After all, the quantitative reliability analysis will be necessary to visualize the degree of the plant availability enhancement from the design change described in this paper.

  17. Experimental investigation of the solar carbothermic reduction of ZnO using a two-cavity solar reactor

    Energy Technology Data Exchange (ETDEWEB)

    Frommherz, U.; Osinga, T.; Steinfeld, A.; Wieckert, C.


    Zinc production by solar carbothermic reduction of ZnO offers a CO{sub 2} emission reduction by a factor of 5 vis-a-vis the conventional fossil-fuel-based electrolytic or Imperial Smelting processes. Zinc can serve as a fuel in Zn-air fuel cells or can be further reacted with H{sub 2}O to form high-purity H{sub 2}. In either case, the product ZnO can be solar-recycled to Zn. We report on experimental results obtained with a 5 kW solar chemical reactor prototype that features two cavities in series, with the inner one functioning as the solar absorber and the outer one as the reaction chamber. Tests were conducted at PSI's Solar Furnace and ETH's High-Flux Solar Simulator to investigate the effect of process temperature (range 1350-1600 K) and reducing agent type (beech charcoal, activated charcoal, petcoke) on the reactor's performance and on the chemical conversion. In a typical 40-min solar experiment at 1500 K, 500 g of a 1:0.8 stoichiometric ZnO-C mixture were processed into Zn(g), CO, and CO{sub 2}. Thermal efficiencies of up to 20% were achieved. (author)

  18. Experimental Design for Evaluating Selected Nondestructive Measurement Technologies - Advanced Reactor Technology Milestone: M3AT-16PN2301043

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pitman, Stan G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dib, Gerges [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roy, Surajit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Good, Morris S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walker, Cody M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    The harsh environments in advanced reactors (AdvRx) increase the possibility of degradation of safety-critical passive components, and therefore pose a particular challenge for deployment and extended operation of these concepts. Nondestructive evaluation technologies are an essential element for obtaining information on passive component condition in AdvRx, with the development of sensor technologies for nondestructively inspecting AdvRx passive components identified as a key need. Given the challenges posed by AdvRx environments and the potential needs for reducing the burden posed by periodic in-service inspection of hard-to-access and hard-to-replace components, a viable solution may be provided by online condition monitoring of components. This report identifies the key challenges that will need to be overcome for sensor development in this context, and documents an experimental plan for sensor development, test, and evaluation. The focus of initial research and development is on sodium fast reactors, with the eventual goal of the research being developing the necessary sensor technology, quantifying sensor survivability and long-term measurement reliability for nondestructively inspecting critical components. Materials for sensor development that are likely to withstand the harsh environments are described, along with a status on the fabrication of reference specimens, and the planned approach for design and evaluation of the sensor and measurement technology.

  19. A composite reactor with wetted-wall column for mineral carbonation study in three-phase systems (United States)

    Zhu, Chen; Yao, Xizhi; Zhao, Liang; Teng, H. Henry


    Despite the availability of various reactors designed to study gas-liquid reactions, no appropriate devices are available to accurately investigate triple-phased mineral carbonation reactions involving CO2 gas, aqueous solutions (containing divalent cations), and carbonate minerals. This report presents a composite reactor that combines a modified conventional wetted-wall column, a pH control module, and an attachment to monitor precipitation reactions. Our test and calibration experiments show that the absorption column behaved largely in agreement with theoretical predictions and previous observations. Experimental confirmation of CO2 absorption in NaOH and ethanolamine supported the effectiveness of the column for gas-liquid interaction. A test run in the CO2-NH3-MgCl2 system carried out for real time investigation of the relevant carbonation reactions shows that the reactor's performance closely followed the expected reaction path reflected in pH change, the occurrence of precipitation, and the rate of NH3 addition, indicating the appropriateness of the composite device in studying triple-phase carbonation process.

  20. Novel, Integrated Reactor / Power Conversion System (LMR-AMTEC)

    Energy Technology Data Exchange (ETDEWEB)

    Pablo Rubiolo, Principal Investigator


    The main features of this project were the development of a long life (up to 10 years) Liquid Metal Reactor (LMR) and a static conversion subsystem comprising an Alkali Metal Thermal-to-Electric (AMTEC) topping cycle and a ThermoElectric (TE) Bottom cycle. Various coupling options of the LMR with the energy conversion subsystem were explored and, base in the performances found in this analysis, an Indirect Coupling (IC) between the LMR and the AMTEC/TE converters with Alkali Metal Boilers (AMB) was chosen as the reference design. The performance model of the fully integrated sodium-and potassium-AMTEC/TE converters shows that a combined conversion efficiency in excess of 30% could be achieved by the plant. (B204)

  1. Modeling, simulation, and analysis of a reactor system for the generation of white liquor of a pulp and paper industry

    Directory of Open Access Journals (Sweden)

    Ricardo Andreola


    Full Text Available An industrial system for the production of white liquor of a pulp and paper industry, Klabin Paraná Papéis, formed by ten reactors was modeled, simulated, and analyzed. The developed model considered possible water losses by the evaporation and reaction, in addition to variations in the volumetric flow of lime mud across the reactors due to the composition variations. The model predictions agreed well with the process measurements at the plant and the results showed that the slaking reaction was nearly complete at the third causticizing reactor, while causticizing ends by the seventh reactor. Water loss due to slaking reaction and evaporation occurred more pronouncedly in the slaker reactor than in the final causticizing reactors; nevertheless, the lime mud flow remained nearly constant across the reactors.

  2. Lunar in-core thermionic nuclear reactor power system conceptual design (United States)

    Mason, Lee S.; Schmitz, Paul C.; Gallup, Donald R.


    This paper presents a conceptual design of a lunar in-core thermionic reactor power system. The concept consists of a thermionic reactor located in a lunar excavation with surface mounted waste heat radiators. The system was integrated with a proposed lunar base concept representative of recent NASA Space Exploration Initiative studies. The reference mission is a permanently-inhabited lunar base requiring a 550 kWe, 7 year life central power station. Performance parameters and assumptions were based on the Thermionic Fuel Element (TFE) Verification Program. Five design cases were analyzed ranging from conservative to advanced. The cases were selected to provide sensitivity effects on the achievement of TFE program goals.

  3. Draft layout, containment and performance of the safety system of the European Supercritical Water-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Starflinger, J.; Schlagenhaufer, M.; Kohly, C.; Schulenberg, T. [Karlsruhe Inst. of Tech., Karlsruhe (Germany); Rothschmitt, S.; Bittermann, D. [AREVA NP GmbH, Erlangen (Germany)


    In Europe, the research on Supercritical Water-Cooled Reactors is integrated in a project called 'High Performance Light Water Reactor Phase 2' (HPLWR Phase 2), co-funded by the European Commission. Ten partners and three active supporters are working on critical scientific issues to determine the potential of this reactor concept in the electricity market. Close to the end of the project the technical results are translated into a draft layout of the HPLWR. The containment and safety system are being explained. Exemplarily, a depressurization event shows the capabilities of the safety system to sufficiently cool the reactor by means of a low pressure coolant injection system. (author)

  4. Combined numerical and experimental investigation into the coolant flow hydrodynamics and mass transfer behind the spacer grid in fuel assemblies of the floating power unit reactor

    Directory of Open Access Journals (Sweden)

    S.M. Dmitriev


    Full Text Available The results of experimental investigations into the local hydrodynamics and inter-cell mass transfer of the coolant flow in representative zones of the KLT-40C reactor FAs behind the plate-type spacer grid are presented. The investigations were conducted on an aerodynamic rig using the admixture diffusion method (the tracer-gas method. A study into the spatial dispersion of the absolute flow velocity projections and into the distribution of the tracer concentration allowed specify the coolant flow pattern behind the FA plate-type spacer grid of the KLT-40C reactor. The results of measuring the flow friction coefficient in the plate-type spacer grid, depending on the Reynolds number, are presented. Based on the obtained experimental data, recommendations have been provided for updating the procedures to calculate the coolant flow rates for the KLT-40C reactor core by-channel codes. The results of investigating the coolant flow local hydrodynamics and mass transfer in the KLT-40C reactor FAs have been adopted for practical use by Afrikantov OKBM for estimating the heat-engineering reliability of the KLT-40C reactor cores and have been data based for verification of CFD codes and detailed by-channel calculation of the KLT-40C reactor core.


    Energy Technology Data Exchange (ETDEWEB)

    M. Ishii; S. T. Revankar; T. Downar; Y. Xu, H. J. Yoon; D. Tinkler; U. S. Rohatgi


    OAK B204 The overall goal of this three-year research project was to develop a new scientific design of a compact modular 200 MWe and a full size 1200 MWe simplified boiling water reactors (SBWR). Specific objectives of this research were: (1) to perform scientific designs of the core neutronics and core thermal-hydraulics for a small capacity and full size simplified boiling water reactor, (2) to develop a passive safety system design, (3) improve and validate safety analysis code, (4) demonstrate experimentally and analytically all design functions of the safety systems for the design basis accidents (DBA) and (5) to develop the final scientific design of both SBWR systems, 200 MWe (SBWR-200) and 1200 MWe (SBWR-1200). The SBWR combines the advantages of design simplicity and completely passive safety systems. These advantages fit well within the objectives of NERI and the Department of Energy's focus on the development of Generation III and IV nuclear power. The 3-year research program was structured around seven tasks. Task 1 was to perform the preliminary thermal-hydraulic design. Task 2 was to perform the core neutronic design analysis. Task 3 was to perform a detailed scaling study and obtain corresponding PUMA conditions from an integral test. Task 4 was to perform integral tests and code evaluation for the DBA. Task 5 was to perform a safety analysis for the DBA. Task 6 was to perform a BWR stability analysis. Task 7 was to perform a final scientific design of the compact modular SBWR-200 and the full size SBWR-1200. A no cost extension for the third year was requested and the request was granted and all the project tasks were completed by April 2003. The design activities in tasks 1, 2, and 3 were completed as planned. The existing thermal-hydraulic information, core physics, and fuel lattice information was collected on the existing design of the simplified boiling water reactor. The thermal-hydraulic design were developed. Based on a detailed

  6. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine

    Energy Technology Data Exchange (ETDEWEB)

    Sponza, Delia Teresa, E-mail: [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eyluel University, Buca Kaynaklar Campus, Tinaztepe, 35160 Izmir (Turkey); Demirden, Pinar, E-mail: [Environmental Engineer, Koza Gold Company, Environmental Department, Ovacik, Bergama Izmir (Turkey)


    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  7. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle descriptions

    Energy Technology Data Exchange (ETDEWEB)


    The Nonproliferation Alternative Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates. Volume IX is divided into three sections: Chapter 1, Reactor Systems; Chapter 2, Fuel-Cycle Systems; and the Appendixes. Chapter 1 contains the characterizations of the following 12 reactor types: light-water reactor; heavy-water reactor; water-cooled breeder reactor; high-temperature gas-cooled reactor; gas-cooled fast reactor; liquid-metal fast breeder reactor; spectral-shift-controlled reactor; accelerator-driven reactor; molten-salt reactor; gaseous-core reactor; tokamak fusion-fisson hybrid reactor; and fast mixed-spectrum reactor. Chapter 2 contains similar information developed for fuel-cycle facilities in the following categories: mining and milling; conversion and enrichment; fuel fabrication; spent fuel reprocessing; waste handling and disposal; and transportation of nuclear materials.

  8. Self locking drive system for rotating plug of a nuclear reactor (United States)

    Brubaker, James E.


    This disclosure describes a self locking drive system for rotating the plugs on the head of a nuclear reactor which is able to restrain plug motion if a seismic event should occur during reactor refueling. A servomotor is engaged via a gear train and a bull gear to the plug. Connected to the gear train is a feedback control system which allows the motor to rotate the plug to predetermined locations for refueling of the reactor. The gear train contains a self locking double enveloping worm gear set. The worm gear set is utilized for its self locking nature to prevent unwanted rotation of the plugs as the result of an earthquake. The double enveloping type is used because its unique contour spreads the load across several teeth providing added strength and allowing the use of a conventional size worm.

  9. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources (United States)

    Kong, Peter C


    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  10. Design of conduction cooling system for a high current HTS DC reactor (United States)

    Dao, Van Quan; Kim, Taekue; Le Tat, Thang; Sung, Haejin; Choi, Jongho; Kim, Kwangmin; Hwang, Chul-Sang; Park, Minwon; Yu, In-Keun


    A DC reactor using a high temperature superconducting (HTS) magnet reduces the reactor’s size, weight, flux leakage, and electrical losses. An HTS magnet needs cryogenic cooling to achieve and maintain its superconducting state. There are two methods for doing this: one is pool boiling and the other is conduction cooling. The conduction cooling method is more effective than the pool boiling method in terms of smaller size and lighter weight. This paper discusses a design of conduction cooling system for a high current, high temperature superconducting DC reactor. Dimensions of the conduction cooling system parts including HTS magnets, bobbin structures, current leads, support bars, and thermal exchangers were calculated and drawn using a 3D CAD program. A finite element method model was built for determining the optimal design parameters and analyzing the thermo-mechanical characteristics. The operating current and inductance of the reactor magnet were 1,500 A, 400 mH, respectively. The thermal load of the HTS DC reactor was analyzed for determining the cooling capacity of the cryo-cooler. The study results can be effectively utilized for the design and fabrication of a commercial HTS DC reactor.

  11. Experimental Investigations of Physical and Chemical Properties for Microalgae HTL Bio-Crude Using a Large Batch Reactor

    Directory of Open Access Journals (Sweden)

    Farhad M. Hossain


    Full Text Available As a biofuel feedstock, microalgae has good scalability and potential to supply a significant proportion of world energy compared to most types of biofuel feedstock. Hydrothermal liquefaction (HTL is well-suited to wet biomass (such as microalgae as it greatly reduces the energy requirements associated with dewatering and drying. This article presents experimental analyses of chemical and physical properties of bio-crude oil produced via HTL using a high growth-rate microalga Scenedesmus sp. in a large batch reactor. The overarching goal was to investigate the suitability of microalgae HTL bio-crude produced in a large batch reactor for direct application in marine diesel engines. To this end we characterized the chemical and physical properties of the bio-crudes produced. HTL literature mostly reports work using very small batch reactors which are preferred by researchers, so there are few experimental and parametric measurements for bio-crude physical properties, such as viscosity and density. In the course of this study, a difference between traditionally calculated values and measured values was noted. In the parametric study, the bio-crude viscosity was significantly closer to regular diesel and biodiesel standards than transesterified (FAME microalgae biodiesel. Under optimised conditions, HTL bio-crude’s high density (0.97–1.04 kg·L−1 and its high viscosity (70.77–73.89 mm2·s−1 had enough similarity to marine heavy fuels. although the measured higher heating value, HHV, was lower (29.8 MJ·kg−1. The reaction temperature was explored in the range 280–350 °C and bio-crude oil yield and HHV reached their maxima at the highest temperature. Slurry concentration was explored between 15% and 30% at this temperature and the best HHV, O:C, and N:C were found to occur at 25%. Two solvents (dichloromethane and n-hexane were used to recover the bio-crude oil, affecting the yield and chemical composition of the bio-crude.

  12. Experimental investigation of pebble flow dynamics using radioactive particle tracking technique in a scaled-down Pebble Bed Modular Reactor (PBMR)

    Energy Technology Data Exchange (ETDEWEB)

    Khane, Vaibhav; Said, I.A.; Al-Dahhan, Muthanna H., E-mail:


    Highlights: • Pebble Flow fields at Pebble Bed Modular Reactor was investigated. • Radioactive Particle Tracking (RPT) technique has been used. • Plug flow type velocity profile is suggested at upper cylindrical region. - Abstract: The Pebble Bed Modular Reactor (PBMR) is a type of very-high-temperature reactor (VHTR) that is conceptually very similar to moving bed reactors used in the chemical and petrochemical industries. In a PBMR core, nuclear fuel is in the form of pebbles and moves slowly under the influence of gravity. In this work, an integrated experimental and computational study of granular flow in a scaled-down cold flow PBMR was performed. A continuous pebble re-circulation experimental set-up, mimicking the flow of pebbles in a PBMR was designed and developed. An experimental investigation of pebble flow dynamics in a scaled down test reactor was carried out using a non-invasive radioactive particle tracking (RPT) technique that used a cobalt-60 based tracer to mimic pebbles in terms of shape, size and density. A cross-correlation based position reconstruction algorithm and RPT calibration data were used to obtain results about Lagrangian trajectories, the velocity field, and residence time distributions. The RPT technique results a serve as a benchmark data for assessing contact force models used in the discrete element method (DEM) simulations.

  13. Nuclear reactor with makeup water assist from residual heat removal system (United States)

    Corletti, Michael M.; Schulz, Terry L.


    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  14. Oxygen transport membrane reactor based method and system for generating electric power (United States)

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan


    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  15. Criticality accident dosimetry systems: an international intercomparison at the SILENE reactor in 2002. (United States)

    Médioni, R; Asselineau, B; Verrey, B; Trompier, F; Itié, C; Texier, C; Muller, H; Pelcot, G; Clairand, I; Jacquet, X; Pochat, J L


    In criticality accident dosimetry and more generally for high dose measurements, special techniques are used to measure separately the gamma ray and neutron components of the dose. To improve these techniques and to check their dosimetry systems (physical and/or biological), a total of 60 laboratories from 29 countries (America, Europe, Asia) participated in an international intercomparaison, which took place in France from 9 to 21 June 2002, at the SILENE reactor in Valduc and at a pure gamma source in Fontenay-aux-Roses. This intercomparison was jointly organised by the IRSN and the CEA with the help of the NEA/OCDE and was partly supported by the European Communities. This paper describes the aim of this intercomparison, the techniques used by the participants and the two radiation sources and their characteristics. The experimental arrangements of the dosemeters for the irradiations in free air or on phantoms are given. Then the dosimetric quantities measured and reported by the participants are summarised, analysed and compared with the reference values. The present paper concerns only the physical dosimetry and essentially experiments performed on the SILENE facility. The results obtained with the biological dosimetry are published in two other papers of this issue.

  16. The thermal decomposition of the benzyl radical in a heated micro-reactor. I. Experimental findings (United States)

    Buckingham, Grant T.; Ormond, Thomas K.; Porterfield, Jessica P.; Hemberger, Patrick; Kostko, Oleg; Ahmed, Musahid; Robichaud, David J.; Nimlos, Mark R.; Daily, John W.; Ellison, G. Barney


    The pyrolysis of the benzyl radical has been studied in a set of heated micro-reactors. A combination of photoionization mass spectrometry (PIMS) and matrix isolation infrared (IR) spectroscopy has been used to identify the decomposition products. Both benzyl bromide and ethyl benzene have been used as precursors of the parent species, C6H5CH2, as well as a set of isotopically labeled radicals: C6H5CD2, C6D5CH2, and C6H513CH2. The combination of PIMS and IR spectroscopy has been used to identify the earliest pyrolysis products from benzyl radical as: C5H4=C=CH2, H atom, C5H4—C ≡ CH, C5H5, HCCCH2, and HC ≡ CH. Pyrolysis of the C6H5CD2, C6D5CH2, and C6H513CH2 benzyl radicals produces a set of methyl radicals, cyclopentadienyl radicals, and benzynes that are not predicted by a fulvenallene pathway. Explicit PIMS searches for the cycloheptatrienyl radical were unsuccessful, there is no evidence for the isomerization of benzyl and cycloheptatrienyl radicals: C6H5CH2⇋C7H7. These labeling studies suggest that there must be other thermal decomposition routes for the C6H5CH2 radical that differ from the fulvenallene pathway.

  17. Experimental studies and computational benchmark on heavy liquid metal natural circulation in a full height-scale test loop for small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yong-Hoon, E-mail: [Department of Energy Systems Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Jaehyun [Korea Atomic Energy Research Institute, 111 Daedeok-daero, 989 Beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Lee, Jueun; Ju, Heejae; Sohn, Sungjune; Kim, Yeji; Noh, Hyunyub; Hwang, Il Soon [Department of Energy Systems Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of)


    Highlights: • Experimental studies on natural circulation for lead-bismuth eutectic were conducted. • Adiabatic wall boundaries conditions were established by compensating heat loss. • Computational benchmark with a system thermal-hydraulics code was performed. • Numerical simulation and experiment showed good agreement in mass flow rate. • An empirical relation was formulated for mass flow rate with experimental data. - Abstract: In order to test the enhanced safety of small lead-cooled fast reactors, lead-bismuth eutectic (LBE) natural circulation characteristics have been studied. We present results of experiments with LBE non-isothermal natural circulation in a full-height scale test loop, HELIOS (heavy eutectic liquid metal loop for integral test of operability and safety of PEACER), and the validation of a system thermal-hydraulics code. The experimental studies on LBE were conducted under steady state as a function of core power conditions from 9.8 kW to 33.6 kW. Local surface heaters on the main loop were activated and finely tuned by trial-and-error approach to make adiabatic wall boundary conditions. A thermal-hydraulic system code MARS-LBE was validated by using the well-defined benchmark data. It was found that the predictions were mostly in good agreement with the experimental data in terms of mass flow rate and temperature difference that were both within 7%, respectively. With experiment results, an empirical relation predicting mass flow rate at a non-isothermal, adiabatic condition in HELIOS was derived.

  18. IAEA coordinated research program on `harmonization and validation of fast reactor thermomechanical and thermohydraulic codes using experimental data`. 1. Thermohydraulic benchmark analysis on high-cycle thermal fatigue events occurred at French fast breeder reactor Phenix

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Toshiharu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center


    A benchmark exercise on `Tee junction of Liquid Metal Fast Reactor (LMFR) secondary circuit` was proposed by France in the scope of the said Coordinated Research Program (CRP) via International Atomic Energy Agency (IAEA). The physical phenomenon chosen here deals with the mixture of two flows of different temperature. In a LMFR, several areas of the reactor are submitted to this problem. They are often difficult to design, because of the complexity of the phenomena involved. This is one of the major problems of the LMFRs. This problem has been encountered in the Phenix reactor on the secondary loop, where defects in a tee junction zone were detected during a campaign of inspections after an operation of 90,000 hours of the reactor. The present benchmark is based on an industrial problem and deal with thermal striping phenomena. Problems on pipes induced by thermal striping phenomena have been observed in some reactors and experimental facilities coolant circuits. This report presents numerical results on thermohydraulic characteristics of the benchmark problem, carried out using a direct numerical simulation code DINUS-3 and a boundary element code BEMSET. From the analysis with both the codes, it was confirmed that the hot sodium from the small pipe rise into the cold sodium of the main pipe with thermally instabilities. Furthermore, it was indicated that the coolant mixing region including the instabilities agrees approximately with the result by eye inspections. (author)

  19. Municipal waste stabilization in a reactor with an integrated active and passive aeration system. (United States)

    Kasinski, Slawomir; Slota, Monika; Markowski, Michal; Kaminska, Anna


    To test whether an integrated passive and active aeration system could be an effective solution for aerobic decomposition of municipal waste in technical conditions, a full-scale composting reactor was designed. The waste was actively aerated for 5d, passively aerated for 35 d, and then actively aerated for 5d, and the entire composting process was monitored. During the 45-day observation period, changes in the fractional, morphological and physico-chemical characteristics of the waste at the top of the reactor differed from those in the center of the reactor. The fractional and morphological analysis made during the entire process of stabilization, showed the total reduction of organic matter measured of 82 wt% and 86 wt% at the respective depths. The reduction of organic matter calculated using the results of Lost of Ignition (LOI) and Total Organic Carbon (TOC) showed, respectively, 40.51-46.62% organic matter loss at the top and 45.33-53.39% in the center of the reactor. At the end of the process, moisture content, LOI and TOC at the top were 3.29%, 6.10% and 4.13% higher, respectively, than in the center. The results showed that application of passive aeration in larger scale simultaneously allows the thermophilic levels to be maintained during municipal solid waste composting process while not inhibiting microbial activity in the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Sewage treatment in integrated system of UASB reactor and duckweed pond and reuse for aquaculture. (United States)

    Mohapatra, D P; Ghangrekar, M M; Mitra, A; Brar, S K


    The performance of a laboratory-scale upflow anaerobic sludge blanket (UASB) reactor and a duckweed pond containing Lemna gibba was investigated for suitability for treating effluent for use in aquaculture. While treating low-strength sewage having a chemical oxygen demand (COD) of typically less than 200 mg/L, with an increase in hydraulic retention time (HRT) from 10.04 to 33.49 h, COD removal efficiency of the UASB reactor decreased owing to a decrease in organic loading rate (OLR) causing poor mixing in the reactor. However, even at the lower OLR (0.475 kg COD/(m3 x d)), the UASB reactor gave a removal efficiency of 68% for COD and 74% for biochemical oxygen demand (BOD). The maximum COD, BOD, ammonia-nitrogen and phosphate removal efficiencies of the duckweed pond were 40.77%, 38.01%, 61.87% and 88.57%, respectively. Decreasing the OLR by increasing the HRT resulted in an increase in efficiency of the duckweed pond for removal of ammonia-nitrogen and phosphate. The OLR of 0.005 kg COD/(m2 x d) and HRT of 108 h in the duckweed pond satisfied aquaculture quality requirements. A specific growth rate of 0.23% was observed for tilapia fish fed with duckweed harvested from the duckweed pond. The economic analysis proved that it was beneficial to use the integrated system of a UASB reactor and a duckweed pond for treatment of sewage.

  1. Verification of HELIOS/MASTER Nuclear Analysis System for SMART Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Cho, Jin Young; Lee, Chung Chan; Zee, Sung Quun


    Nuclear design for the SMART reactor is performed by using the transport lattice code HELIOS and the core analysis code MASTER. HELIOS code developed by Studsvik Scandpower in Norway is a transport lattice code for the neutron and gamma behavior, and is used to generate few group constants. MASTER code is a nodal diffusion code developed by KAERI, and is used to analyze reactor physics. This nuclear design code package requires verification. Since the SMART reactor is unique, it is impossible to verify this code system through the comparison of the calculation results with the measured ones. Therefore, the uncertainties for the nuclear physics parameters calculated by HELIOS/MASTER have been evaluated indirectly. Since Monte Carlo calculation includes least approximations an assumptions to simulate a neutron behavior, HELIOS/MASTER has been verified by this one. Monte Carlo code has been verified by the Kurchatov critical experiments similar to SMART reactor, and HELIOS/MASTER code package has been verified by Monte Carlo calculations for the SMART research reactor.

  2. Verification of HELIOS/MASTER Nuclear Analysis System for SMART Research Reactor, Rev. 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hoon; Kim, Kang Seog; Cho, Jin Young; Lee, Chung Chan; Zee, Sung Quun


    Nuclear design for the SMART reactor is performed by using the transport lattice code HELIOS and the core analysis code MASTER. HELIOS code developed by Studsvik Scandpower in Norway is a transport lattice code for the neutron and gamma behavior, and is used to generate few group constants. MASTER code is a nodal diffusion code developed by KAERI, and is used to analyze reactor physics. This nuclear design code package requires verification. Since the SMART reactor is unique, it is impossible to verify this code system through the comparison of the calculation results with the measured ones. Therefore, the uncertainties for the nuclear physics parameters calculated by HELIOS/MASTER have been evaluated indirectly. Since Monte Carlo calculation includes least approximations an assumptions to simulate a neutron behavior, HELIOS/MASTER has been verified by this one. Monte Carlo code has been verified by the Kurchatov critical experiments similar to SMART reactor, and HELIOS/MASTER code package has been verified by Monte Carlo calculations for the SMART research reactor.

  3. Radiotracer investigation on the measurement of residence time distribution in an ethyl acetate reactor system with a large recycle ratio. (United States)

    Datta, Arghya; Kumar Gupta, Raj; Goswami, Sunil; Kumar Sharma, Vijay; Bhunia, Haripada; Singh, Damandeep; Jagat Pant, Harish


    A radiotracer investigation was carried out on the measurement of residence time distribution (RTD) of process fluid in an industrial-scale ethyl acetate reactor system, which consists of two independent reactors with recirculation and connected in series with each other. Bromine-82 as ammonium bromide was used as the radiotracer for the RTD experiments at different operating conditions. The individual reactors and the overall reactor system were modelled using physically representative phenomenological models comprising of continuously stirred tank reactors (CSTRs). The results showed that the recirculation rate considerably affected the flow mixing behaviour and mean residence time of the process fluid in the reactor system. The results also showed that there was bypassing of the fluid in the first reactor that ranged from 12% to 22% and 40% dead volume at different operating conditions, whereas the second reactor behaved closely as an ideal CSTR. The results of the investigation can be used to optimise the process parameters and design new improved reactor systems for the production of ethyl acetate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Study of DNA damage with a new system for irradiation of samples in a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gual, Maritza R., E-mail: mrgual@instec.c [Instituto Superior de Tecnologias y Ciencias Aplicadas, InSTEC, Avenida Salvador Allende y Luaces, Quinta de Los Molinos, Plaza de la Revolucion, Havana, AP 6163 (Cuba); Milian, Felix M. [Universidade Estadual de Santa Cruz, UESC (Brazil); Deppman, Airton [Instituto de Fisica, Universidad de Sao Paulo, IF-USP, Rua do Matao, Travessa R, no. 187, Ciudade Universitaria, Butanta, CEP 05508-900, Sao Paulo (Brazil); Coelho, Paulo R.P. [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP (Brazil)


    In this paper, we report results of a quantitative analysis of the effects of neutrons on DNA, and, specifically, the production of simple and double breaks of plasmid DNA in aqueous solutions with different concentrations of free-radical scavengers. The radiation damage to DNA was evaluated by electrophoresis through agarose gels. The neutron and gamma doses were measured separately with thermoluminescent detectors. In this work, we have also demonstrated usefulness of a new system for positioning and removing samples in channel BH3 of the IEA-R1 reactor at the Instituto de Pesquisas Energeticas e Nucleares (Brazil) without necessity of interrupting the reactor operation.

  5. Design and development of a low-temperature reactor system for biorefining waste oil


    Pedersen, Hans Olav


    The background for this master’s thesis is the focus on bioenergy and biofuels at NMBU. This has, among others, resulted in a prototype of a small-scale biorefinery, which uses methanol and waste cooking oil to produce biodiesel. The purpose of this thesis is to develop a reactor system that serves as a platform for reactors to operate on and a technological alternative for a periodically on-site clean of catalysts. The purpose of the catalysts wash is to extend their lifetime, in order to ma...

  6. Automation of the radiation protection monitoring system in the RP-10 reactor; Automatizacion del sistema de monitoraje de radioproteccion en el reactor RP-10

    Energy Technology Data Exchange (ETDEWEB)

    Anaya G, Olgger; Castillo Y, Walter; Ovalle S, Edgar [Instituto Peruano de Energia Nuclear, Lima (Peru)


    During the reactor operation, it is necessary to carry out the radiological control in the different places of the reactor, in periodic form and to take a registration of these values. For it the radioprotection official, makes every certain periods, settled down in the procedures, to verify and to carry out the registration of those values in manual form of each one of the radiation monitors. For this reason it was carried out the design and implementation of an automatic monitoring system of radioprotection in the reactor. In the development it has been considered the installation of a acquisition data system for 27 radiation gamma monitors of the type Geiger Mueller, installed inside the different places of the reactor and in the laboratories where they are manipulated radioactive material, using as hardware the FieldPoint for the possessing and digitalization of the signs which are correspondents using the communication protocol RS-232 to a PC in which has settled a program in graphic environment that has been developed using the tools of the programming software LabWindows/CVI. Then, these same signs are sent 'on line' to another PC that is in the Emergency Center of Coordination to 500 m of the reactor, by means of a system of radiofrequency communication. (author)

  7. Experimental Breeder Reactor II (EBR-II) Fuel-Performance Test Facility (FPTF)

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, J.A.; Brubaker, R.C.; Veith, D.J.; Giorgis, G.C.; Walker, D.E.; Seim, O.S.


    The Fuel-Performance Test Facility (FPTF) is the latest in a series of special EBR-II instrumented in-core test facilities. A flow control valve in the facility is programmed to vary the coolant flow, and thus the temperature, in an experimental-irradiation subassembly beneath it and coupled to it. In this way, thermal transients can be simulated in that subassembly without changing the temperatures in surrounding subassemblies. The FPTF also monitors sodium flow and temperature, and detects delayed neutrons in the sodium effluent from the experimental-irradiation subassembly beneath it. This facility also has an acoustical detector (high-temperature microphone) for detecting sodium boiling.

  8. Progress of thermal hydraulic evaluation methods and experimental studies on a sodium-cooled fast reactor and its safety in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kamide, Hideki, E-mail:; Ohshima, Hiroyuki, E-mail:; Sakai, Takaaki, E-mail:; Tanaka, Masaaki, E-mail:


    Highlights: • Thermal hydraulic issues for safety design criteria of sodium cooled fast reactors. • Measurement of velocity data in a subchannel surrounded by wire wrapped fuel-pins. • Statistical evaluation of core hot spot temperature during natural circulation. • Simulation of dynamics of molten fuel pool in a core disruptive accident. • V&V procedure of a multi-dimensional thermal hydraulic code on thermal striping. - Abstract: In the framework of the Generation-IV International Forum, the safety design criteria (SDC) incorporating safety-related R&D results on innovative technologies and lessons learned from Fukushima Dai-ichi nuclear power plants accident has been established to provide the set of general criteria for the safety designs of structures, systems and components of Generation-IV Sodium-cooled Fast Reactors (Gen-IV SFRs). A number of thermal-hydraulic evaluations are necessary to meet the concept of the criteria in the design studies of Gen-IV SFRs. This paper focuses on four kinds of thermal-hydraulic issues associated with the SDC, i.e., fuel subassembly thermal-hydraulics, natural circulation decay heat removal, core disruptive accidents, and thermal striping. Progress of evaluation methods on these issues is shown with activities on verification and validation (V&V) and experimental studies towards commercialization of SFR in Japan. These evaluation methods are planned to be eventually integrated into a comprehensive numerical simulation system that can be applied to all possible phenomena in SFR systems and that can be expected to become an effective tool for the development of human resource and the handing our knowledge and technologies down.

  9. Automated system for neutron activation analysis determination of short lived isotopes at The DOW Chemical Company's TRIGA research reactor (United States)

    Zieman, J. J.; Rigot, W. L.; Romick, J. D.; Quinn, T. J.; Kocher, C. W.


    An automated neutron activation analysis (NAA) system for the determination of short lived isotopes was constructed at The DOW Chemical Company's TRIGA Research Reactor in 1993. The NAA group of the Analytical Sciences Laboratory uses the reactor for thousands of analyses each year and therefore automation is important to achieve and maintain high throughput and precision (productivity). This project is complementary to automation of the long-lived counting facilities (see Romick et al., these Proceedings). Canberra/Nuclear Data Systems DEC-based software and electronics modules and an I/O mounting board are the basic commercial components. A Fortran program on a VAX computer controls I/O via ethernet to an Acquisition Interface Module (AIM). The AIM controls the γ spectrometer modules and is interfaced to a Remote Parallel Interface (RPI) module which controls the pneumatic transfer apparatus with TTL signals to the I/O mounting board. Near-infrared sensors are used to monitor key points in the transfer system. Spectra are acquired by a single HPGe detector mounted on a sliding rail to allow flexible and more reproducible counting geometries than with manual sample handling. The maximum sample size is 8 ml in a heat-sealed two dram vial. The sample vial is nested into a "rabbit" vial for irradiation which can be automatically removed prior to spectrum collection. The system was designed to be used by the reactor operator at the control console without the aid of an additional experimenter. Applications include the determination of selenium and silver in coal and water, fluorine in tetra-fluoro ethylene (TFE) coated membranes, aluminum and titanium in composite materials and trace fluorine in non-chlorinated cleaning solvents. Variable dead time software allows analysis for 77mSe despite high dead times from 16N encountered in samples.

  10. Overview of Progress on the EU DEMO Reactor Magnet System Design

    NARCIS (Netherlands)

    Zani, L.; Bayer, C.; biancolini, M.E.; Bonifetto, R.; Nijhuis, Arend; Yagotintsev, K.


    The DEMO reactor is expected to be the first application of fusion for electricity generation in the near future. To this aim, conceptual design activities are progressing in Europe (EU) under the lead of the EUROfusion Consortium in order to drive on the development of the major tokamak systems. In

  11. Evaluation of the dual digestion system 2: operation and performance of the pure oxygen aerobic reactor

    CSIR Research Space (South Africa)

    Messenger, JR


    Full Text Available In a comprehensive study of the performance of a full-scale (45 m3) pure oxygen autothermal thermophilic aerobic reactor of a sewage sludge dual digestion system, it was found that: Biological heat generation rate was directly proportional...

  12. Reactor-Capaсitor Device for Flexible Link Between Non-Synchronous Power Systems

    Directory of Open Access Journals (Sweden)

    Bosneaga V.


    Full Text Available In present flexible interconnections for transmission of required active power between different power systems is used, as a rule, so-called DC back-to-back link. The aim of this work is the investigation of proposed reactor-capacitor device for flexible connection of asynchronously alternating current power systems with the same nominal values of frequencies for parallel operation. The reactor-capacitor device was elaborated. The installation develops the idea of controlled reactor alternating current link, and provides reactive power balance in the unit and needed value of the output voltage module. The basic characteristics of reactor-capacitor device for controlled power transmission were investigated. Analytical expressions for device elements parameters were derived. These ensure necessary ratio of voltages modules of linked power systems and reactive power balance of the device at circular output voltage vector rotation for a given load admittance. Obtained parameters ensure constant active power flow between linked asynchronously power systems and device reactive power internal balance.

  13. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for FHRs (United States)

    Lu, Qiuping

    Direct Reactor Auxiliary Cooling System (DRACS) is a passive decay heat removal system proposed for the Fluoride-salt-cooled High-temperature Reactor (FHR) that combines coated particle fuel and a graphite moderator with a liquid fluoride salt as the coolant. The DRACS features three coupled natural circulation/convection loops, relying completely on buoyancy as the driving force. These loops are coupled through two heat exchangers, namely, the DRACS Heat Exchanger (DHX) and the Natural Draft Heat Exchanger (NDHX). In addition, a fluidic diode is employed to minimize the parasitic flow into the DRACS primary loop and correspondingly the heat loss to the DRACS during normal operation of the reactor, but to keep the DRACS ready for activation, if needed, during accidents. While the DRACS concept has been proposed, there are no actual prototypic DRACS systems for FHRs built or tested in the literature. The primary goal of the present research is to design, test, and model the DRACS for FHR applications. Previously, a detailed modular design of the DRACS for a 20-MWth FHR was developed. As a starting point, the DRACS was designed to remove 1% of the reactor nominal power, i.e., 200 kW decay power. In addition, a detailed scaling analysis has been performed to develop the key non-dimensional numbers that characterize the DRACS system. Based on the previous work on the prototypic DRACS design and scaling analysis, two scaled-down test facilities have been designed and constructed, namely, Low-temperature DRACS Test Facility (LTDF) and High-temperature DRACS Test Facility (HTDF). The LTDF has a nominal power capacity of 6 kW. It uses 1.0-MPa water as the primary coolant, 0.1-MPa water as the secondary coolant, and ambient air as the ultimate heat sink. The main purpose of the LTDF is to examine the couplings among the three natural circulation/convection loops in the DRACS, as well as to provide design and operation experience for the HTDF. An extensive test matrix has

  14. New approach to control the methanogenic reactor of a two-phase anaerobic digestion system

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, J. von; Meyer, U.; Rys, P.; Feitkenhauer, H. [ETH Zurich (Switzerland). Laboratorium fuer Technische Chemie


    A new control strategy for the methanogenic reactor of a two-phase anaerobic digestion system has been developed and successfully tested on the laboratory scale. The control strategy serves the purpose to detect inhibitory effects and to achieve good conversion. The concept is based on the idea that volatile fatty acids (VFA) can be measured in the influent of the methanogenic reactor by means of titration. Thus, information on the output (methane production) and input of the methanogenic reactor is available, and a (carbon) mass balance can be obtained. The control algorithm comprises a proportional/integral structure with the ratio of (a) the methane production rate measured online and (b) a maximum methane production rate expected (derived from the stoichiometry) as a control variable. The manipulated variable is the volumetric feed rate. Results are shown for an experiment with VFA (feed) concentration ramps and for experiments with sodium chloride as inhibitor. (author)

  15. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni


    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  16. The role of clusters in gas-solids reactors. An experimental study.

    NARCIS (Netherlands)

    Venderbosch, R.H.


    This PhD-work is meant to determine the contact efficiency experimentally for fluidization of fine particles over a wide range of superficial gas velocities (dp<200 mm and 0.1

  17. The thermal decomposition of the benzyl radical in a heated micro-reactor. I. Experimental findings

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, Grant T.; Ormond, Thomas K. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 (United States); National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401 (United States); Porterfield, Jessica P.; Ellison, G. Barney [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 (United States); Hemberger, Patrick [Molecular Dynamics Group, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Kostko, Oleg; Ahmed, Musahid [Chemical Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720 (United States); Robichaud, David J.; Nimlos, Mark R. [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401 (United States); Daily, John W. [Department of Mechanical Engineering, Center for Combustion and Environmental Research,University of Colorado, Boulder, Colorado 80309-0427 (United States)


    The pyrolysis of the benzyl radical has been studied in a set of heated micro-reactors. A combination of photoionization mass spectrometry (PIMS) and matrix isolation infrared (IR) spectroscopy has been used to identify the decomposition products. Both benzyl bromide and ethyl benzene have been used as precursors of the parent species, C{sub 6}H{sub 5}CH{sub 2}, as well as a set of isotopically labeled radicals: C{sub 6}H{sub 5}CD{sub 2}, C{sub 6}D{sub 5}CH{sub 2}, and C{sub 6}H{sub 5}{sup 13}CH{sub 2}. The combination of PIMS and IR spectroscopy has been used to identify the earliest pyrolysis products from benzyl radical as: C{sub 5}H{sub 4}=C=CH{sub 2}, H atom, C{sub 5}H{sub 4}—C ≡ CH, C{sub 5}H{sub 5}, HCCCH{sub 2}, and HC ≡ CH. Pyrolysis of the C{sub 6}H{sub 5}CD{sub 2}, C{sub 6}D{sub 5}CH{sub 2}, and C{sub 6}H{sub 5}{sup 13}CH{sub 2} benzyl radicals produces a set of methyl radicals, cyclopentadienyl radicals, and benzynes that are not predicted by a fulvenallene pathway. Explicit PIMS searches for the cycloheptatrienyl radical were unsuccessful, there is no evidence for the isomerization of benzyl and cycloheptatrienyl radicals: C{sub 6}H{sub 5}CH{sub 2}⇋C{sub 7}H{sub 7}. These labeling studies suggest that there must be other thermal decomposition routes for the C{sub 6}H{sub 5}CH{sub 2} radical that differ from the fulvenallene pathway.

  18. Innovative inspection system for reactor pressure vessels; Innovative Pruefsysteme fuer Reaktordruckbehaelter

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, K.; Trautmann, H.


    The versatile, compact and modern underwater systems described, the DELPHIN manipulators and MIDAS submarines, are innovative systems enabling RPV inspections at considerably reduced efforts and time, thus reducing the total time required for ISI of reactors. (orig./CB) [Deutsch] Die vorgestellten kleinen, flexiblen und modernen Schwimmsysteme (DELPHIN-Manipulatoren und MIDAS-U-Boote) sind innovative Systeme fuer die Reduzierung der Aufwaende und Zeit zur Pruefung des Reaktordruckbehaelters und damit zur Reduktion der Revisionszeiten der Reaktoranlagen. (orig.)

  19. Ion transport membrane reactor systems and methods for producing synthesis gas (United States)

    Repasky, John Michael


    Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.

  20. Lasers and power systems for inertial confinement fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stark, E.E. Jr.


    After discussing the role of lasers in ICF and the candidate lasers, several important areas of technology requirements are discussed. These include the beam transport system, the pulsed power system and the gas flow system. The system requirements, state of the art, as well as needs and prospects for new technology developments are given. Other technology issues and promising developments are described briefly.

  1. Biological mine water treatment operating a one stage reactor system

    CSIR Research Space (South Africa)

    Baloyi, MJ


    Full Text Available cuttings, the source of cellulose. The total experimental period was 113 days, which was divided over 4 periods resulting from the addition of fresh grass cuttings and the feed water flow rate. It was concluded from this study that the microorganisms from...

  2. Development of An Embedded FPGA-Based Data Acquisition System Dedicated to Zero Power Reactor Noise Experiments

    Directory of Open Access Journals (Sweden)

    Arkani Mohammad


    Full Text Available An embedded time interval data acquisition system (DAS is developed for zero power reactor (ZPR noise experiments. The system is capable of measuring the correlation or probability distribution of a random process. The design is totally implemented on a single Field Programmable Gate Array (FPGA. The architecture is tested on different FPGA platforms with different speed grades and hardware resources. Generic experimental values for time resolution and inter-event dead time of the system are 2.22 ns and 6.67 ns respectively. The DAS can record around 48-bit x 790 kS/s utilizing its built-in fast memory. The system can measure very long time intervals due to its 48-bit timing structure design. As the architecture can work on a typical FPGA, this is a low cost experimental tool and needs little time to be established. In addition, revisions are easily possible through its reprogramming capability. The performance of the system is checked and verified experimentally.

  3. Three-phase packed bed reactor with an evaporating solvent—I. Experimental: the hydrogenation of 2,4,6-trinitrotoluene in methanol

    NARCIS (Netherlands)

    van Gelder, K.B.; Damhof, J.K.; Kroijenga, P.J.; Westerterp, K.R.


    In this paper we present experimental data on the three-phase hydrogenation of 2,4,6-trinitrotoluene (TNT) to triaminotoluene. The experiments are performed in a cocurrent upflow packed bed reactor. Methanol is used as an evaporating solvent. The influence of the main operating parameters, the

  4. Experimental investigation of BWR Suppression Pool stratification during RCIC system operation

    Energy Technology Data Exchange (ETDEWEB)

    Solom, Matthew, E-mail: [Sandia National Laboratories, MS-0748, P.O. Box 5800, Albuquerque, NM 87185-0748 (United States); Vierow Kirkland, Karen [Department of Nuclear Engineering, Texas A& M University, MS 3133, College Station, TX 77843-3133 (United States)


    Highlights: • An experiment at Texas A&M University explored extended RCIC System operations. • Thermal stratification in Suppression Pools was found to develop and later disappear. • Greater containment pressure led to much greater vertical thermal stratification. - Abstract: In Boiling Water Reactor (BWR) nuclear power plants with the Mark I containment, the condition of the Suppression Pool can be a large influence on overall plant safety. When the Reactor Core Isolation Cooling (RCIC) System is operating, steam from the reactor drives the RCIC turbine and is then exhausted to the Suppression Pool. When subcooled, the pool can readily condense the steam, warming it up in the process. However, if hot spots or thermal stratification appear, this can limit the Suppression Pool’s ability to perform its safety functions, and can be a limiting factor for RCIC System operation. In order to better understand the RCIC system and its true limits of long-term operation, an experimental model of the system was constructed at the Laboratory for Nuclear Heat Transfer Systems at Texas A&M University (TAMU). These tests provide confirmation of thermal stratification in the Suppression Pool from RCIC System operations, and show a significant degree of dependence on pressure in the airspace above the pool. In the TAMU facility, vertical thermal stratification was limited to 21 °C when fully vented to atmospheric pressure, while pre-pressurization led to stratification well in excess of 60 °C.

  5. Design requirements of instrumentation and control systems for next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koo, In Soo; Lee, Byung Sun; Park, Kwang Hyun; Park, Heu Yoon; Lee, Dong Young; Kim, Jung Taek; Hwang, In Koo; Chung, Chul Hwan; Hur, Seop; Kim, Chang Hoi; Na, Nan Ju [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    In this report, the basic design requirements of Instrumentation and Control systems for next generation reactor are described, which are top-tier level, to support the advanced I and C systems. It contains the requirements in accordance with the plant reliability, the plant performance, the operator`s aid functions, the features for maintenance and testing, licensing issues for I and C systems. Advanced I and C systems are characterized such as the application of the digital and the human engineering technologies. To development of this requirements, the I and C systems for the foreign passive and the evolutionary types of reactor and the domestic conventional reators were reviewed and anlysed. At the detail design stage, these requirements will be used for top-tier requirements. To develop the detail design requirements in the future, more quantitive and qualitive analyses are need to be added. (Author) 44 refs.

  6. HEMERA: a 3D coupled core-plant system for accidental reactor transient simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bruna, G.B.; Fouquet, F.; Dubois, F. [Institut de Radioprotection et de Surete Nucleaire, 92 - Fontenay aux Roses (France); Le Pallec, J.C.; Richebois, E.; Hourcade, E.; Poinot-Salanon, C.; Royer, E. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN/DM2S), 91 - Gif sur Yvette (France)


    In the framework of their collaboration to develop a system to study reactor transients in safety-representative conditions, IRSN (Radioprotection and Nuclear Safety Institute) and Cea have launched the development of a fully coupled 3-dimensional computational chain, called HEMERA (Highly Evolutionary Methods for Extensive Reactor Analyses), based on the French SAPHYR code system, composed of APOLLO-2, CRONOS-2 and FLICA-4 codes, and the system code CATHARE. It includes cross sections generation, steady-state, depletion and transient computation capabilities in a consistent approach. Multi-level and multi-dimensional models are developed to account for neutronics, core thermal-hydraulics, fuel thermal analysis and system thermohydraulics. Currently Control Rod Ejection (RIA) and Main Steam Line Break (MSLB) accidents are investigated. The HEMERA system is presently applied to French PWR. The present paper outlines the main physical phenomena to be accounted for in such a coupled computational chain with significant time and space effects.

  7. Design of a digital system for operational parameters simulation of IPR-R1 TRIGA nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo M.F.; Mesquita, Amir Z.; Felippe, Adriano de A.M., E-mail:, E-mail:, E-mail: [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN /CNEN-MG), Belo Horizonte, MG (Brazil); Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)


    The instrumentation of nuclear reactors is designed based on the reliability, redundancy and diversification of control systems. The monitoring of the parameters is of crucial importance with regard to the operational efficiency and safety of the installation. Since the first criticality of a nuclear reactor, achieved by Fermi et al. in 1942, there has been concern about the reliable monitoring of the parameters involved in the chain reaction. This paper presents the current stage of the system of simulation, which is under development at the CDTN, which intends to simulate the operation of the TRIGA IPR-R1 nuclear reactor, involving the evolution of neutron flux and reactor power related events. The system will be developed using LabVIEW® software, using the modern concept of virtual instruments (VIs) that are visualized in a video monitor. For the implementation of this model, computational tools and systems analysis are necessary, which help and facilitate the implementation of the simulator. In this article we will show some of these techniques and the initial design of the model to be implemented. The design of a computational system is of great importance, since it guides in the implementation stages and generates the documentation for later maintenance and updating of the computational system. It is noteworthy that the innovations developed in research reactors are normally used in power reactors. The relatively low costs enable research reactors to be an excellent laboratory for developing techniques for future reactors. (author)

  8. An Experimental Investigation of Sewage Sludge Gasification in a Fluidized Bed Reactor (United States)

    Calvo, L. F.; García, A. I.; Otero, M.


    The gasification of sewage sludge was carried out in a simple atmospheric fluidized bed gasifier. Flow and fuel feed rate were adjusted for experimentally obtaining an air mass : fuel mass ratio (A/F) of 0.2 gasification. This allowed improving the process heat transfer and, therefore, gasification efficiency. The heating value of the produced gas was 8.4 MJ/Nm, attaining a hot gas efficiency of 70% and a cold gas efficiency of 57%. PMID:24453863

  9. Study of reactor Brayton power systems for nuclear electric spacecraft (United States)


    The feasibility of using Brayton power systems for nuclear electric spacecraft was investigated. The primary performance parameters of systems mass and radiator area were determined for systems from 100 to 1000 kW sub e. Mathematical models of all system components were used to determine masses and volumes. Two completely independent systems provide propulsion power so that no single-point failure can jeopardize a mission. The waste heat radiators utilize armored heat pipes to limit meteorite puncture. The armor thickness was statistically determined to achieve the required probability of survival. A 400 kW sub e reference system received primary attention as required by the contract. The components of this system were defined and a conceptual layout was developed with encouraging results. An arrangement with redundant Brayton power systems having a 1500 K (2240 F) turbine inlet temperature was shown to be compatible with the dimensions of the space shuttle orbiter payload bay.

  10. Technical report on implementation of reactor internal 3D modeling and visual database system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeun Seung; Eom, Young Sam; Lee, Suk Hee; Ryu, Seung Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    In this report was described a prototype of reactor internal 3D modeling and VDB system for NSSS design quality improvement. For improving NSSS design quality several cases of the nuclear developed nation`s integrated computer aided engineering system, such as Mitsubishi`s NUWINGS (Japan), AECL`s CANDID (Canada) and Duke Power`s PASCE (USA) were studied. On the basis of these studies the strategy for NSSS design improvement system was extracted and detail work scope was implemented as follows : 3D modelling of the reactor internals were implemented by using the parametric solid modeler, a prototype system of design document computerization and database was suggested, and walk-through simulation integrated with 3D modeling and VDB was accomplished. Major effects of NSSS design quality improvement system by using 3D modeling and VDB are the plant design optimization by simulation, improving the reliability through the single design database system and engineering cost reduction by improving productivity and efficiency. For applying the VDB to full scope of NSSS system design, 3D modelings of reactor coolant system and nuclear fuel assembly and fuel rod were attached as appendix. 2 tabs., 31 figs., 7 refs. (Author) .new.

  11. CFD Analysis of the Primary Cooling System for the Small Modular Natural Circulation Lead Cooled Fast Reactor SNRLFR-100


    Zhao, Pengcheng; Shi, Kangli; Li, Shuzhou; Feng, Jingchao; Chen, Hongli


    Small modular reactor (SMR) has drawn wide attention in the past decades, and Lead cooled fast reactor (LFR) is one of the most promising advanced reactors which are able to meet the safety economic goals of Gen-IV nuclear energy systems. A small modular natural circulation lead cooled fast reactor-100 MWth (SNRLFR-100) is being developed by University of Science and Technology of China (USTC). In the present work, a 3D CFD model, primary heat exchanger model, fuel pin model, and point kineti...

  12. Westinghouse Small Modular Reactor balance of plant and supporting systems design

    Energy Technology Data Exchange (ETDEWEB)

    Memmott, M. J.; Stansbury, C.; Taylor, C. [Westinghouse Electric Company LLC, 600 Cranberry Woods Drive, Cranberry Twp. PA 16066 (United States)


    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operation of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)

  13. The under-critical reactors physics for the hybrid systems; La physique des reacteurs sous-critiques des systemes hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Schapira, J.P. [Institut de Physique Nucleaire, IN2P3/CNRS 91 - Orsay (France); Vergnes, J. [Electricite de France, EDF, Direction des Etudes et Recherches, 75 - Paris (France); Zaetta, A. [CEA/Saclay, Direction des Reacteurs Nucleaires, DRN, 91 - Gif-sur-Yvette (France)] [and others


    This day, organized by the SFEN, took place at Paris the 12 march 1998. Nine papers were presented. They take stock on the hybrid systems and more specifically the under-critical reactors. One of the major current preoccupation of nuclear industry is the problems of the increase of radioactive wastes produced in the plants and the destruction of the present stocks. To solve these problems a solution is the utilisation of hybrid systems: the coupling of a particle acceleration to an under-critical reactor. Historical aspects, advantages and performances of such hybrid reactors are presented in general papers. More technical papers are devoted to the spallation, the MUSE and the TARC experiments. (A.L.B.)

  14. Scaleable, High Efficiency Microchannel Sabatier Reactor Project (United States)

    National Aeronautics and Space Administration — A Microchannel Sabatier Reactor System (MSRS) consisting of cross connected arrays of isothermal or graded temperature reactors is proposed. The reactor array...

  15. The Dynamic Anaerobic Reactor & Integrated Energy System (DARIES) model: model development, validation, and sensitivity analysis. (United States)

    Brouwer, A F; Grimberg, S J; Powers, S E


    The Dynamic Anaerobic Reactor & Integrated Energy System (DARIES) model has been developed as a biogas and electricity production model of a dairy farm anaerobic digester system. DARIES, which incorporates the Anaerobic Digester Model No. 1 (ADM1) and simulations of both combined heat and power (CHP) and digester heating systems, may be run in either completely mixed or plug flow reactor configurations. DARIES biogas predictions were shown to be statistically coincident with measured data from eighteen full-scale dairy operations in the northeastern United States. DARIES biogas predictions were more accurate than predictions made by the U.S. AgSTAR model FarmWare 3.4. DARIES electricity production predictions were verified against data collected by the NYSERDA DG/CHP Integrated Data System. Preliminary sensitivity analysis demonstrated that DARIES output was most sensitive to influent flow rate, chemical oxygen demand (COD), and biodegradability, and somewhat sensitive to hydraulic retention time and digester temperature.

  16. The Pressure Relief System Design for Industrial Reactors

    Directory of Open Access Journals (Sweden)

    Iztok Hace


    Full Text Available A quick and simple approach for reactor—emergency relief system design—for runaway chemical reactions is presented. A cookbook for system sizing with all main characteristic dimensions and parameters is shown on one realistic example from process industry. System design was done based on existing theories, standards, and correlations obtained from the literature, which were implemented for presented case. A simple and effective method for emergency relief system is shown, which may serve as an example for similar systems design. Obtained results may contribute to better understanding of blow down system frequently used in industrial plants, for increasing safety, decreasing explosion damage, and alleviating the ecological problems together with environmental pollution in case of industrial accidents.

  17. Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    OHara J. M.; Higgins, J.; DAgostino, A.


    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

  18. Development and Application of Subchannel Analysis Code Technology for Advanced Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hyun; Seo, K. W


    A study has been performed for the development and assessment of a subchannel analysis code which is purposed to be used for the analysis of advanced reactor conditions with various configurations of reactor core and several kinds of reactor coolant fluids. The subchannel analysis code was developed on the basis of MATRA code which is being developed at KAERI. A GUI (Graphic User Interface) system was adopted in order to reduce input error and to enhance user convenience. The subchannel code was complemented in the property calculation modules by including various fluids such as heavy liquid metal, gas, refrigerant,and supercritical water. The subchannel code was applied to calculate the local thermal hydraulic conditions inside the non-square test bundles which was employed for the analysis of CHF. The applicability of the subchannel code was evaluated for a high temperature gas cooled reactor condition and supercritical pressure conditions with water and Freon. A subchannel analysis has been conducted for European ADS(Accelerator-Driven subcritical System) with Pb-Bi coolant through the international cooperation work between KAERI and FZK, Germany. In addition, the prediction capability of the subchannel code was evaluated for the subchannel void distribution data by participating an international code benchmark program which was organized by OECD/NRC.

  19. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-beom [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Park, No-Cheol, E-mail: [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Lee, Sang-Jeong; Park, Young-Pil [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Choi, Youngin [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 34142 (Korea, Republic of)


    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.

  20. 3D Neutronic Analysis in MHD Calculations at ARIES-ST Fusion Reactors Systems (United States)

    Hançerliogulları, Aybaba; Cini, Mesut


    In this study, we developed new models for liquid wall (FW) state at ARIES-ST fusion reactor systems. ARIES-ST is a 1,000 MWe fusion reactor system based on a low aspect ratio ST plasma. In this article, we analyzed the characteristic properties of magnetohydrodynamics (MHD) and heat transfer conditions by using Monte-Carlo simulation methods (ARIES Team et al. in Fusion Eng Des 49-50:689-695, 2000; Tillack et al. in Fusion Eng Des 65:215-261, 2003) . In fusion applications, liquid metals are traditionally considered to be the best working fluids. The working liquid must be a lithium-containing medium in order to provide adequate tritium that the plasma is self-sustained and that the fusion is a renewable energy source. As for Flibe free surface flows, the MHD effects caused by interaction with the mean flow is negligible, while a fairly uniform flow of thick can be maintained throughout the reactor based on 3-D MHD calculations. In this study, neutronic parameters, that is to say, energy multiplication factor radiation, heat flux and fissile fuel breeding were researched for fusion reactor with various thorium and uranium molten salts. Sufficient tritium amount is needed for the reactor to work itself. In the tritium breeding ratio (TBR) >1.05 ARIES-ST fusion model TBR is >1.1 so that tritium self-sufficiency is maintained for DT fusion systems (Starke et al. in Fusion Energ Des 84:1794-1798, 2009; Najmabadi et al. in Fusion Energ Des 80:3-23, 2006).

  1. Structural assessments of plate type support system for APR1400 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Anh Tung; Namgung, Ihn, E-mail:


    Highlights: • This paper investigates plate-type support structure for the reactor vessel of the APR 1400. • The tall column supports of APR1400 reactor challenges in seismic and severe accident events. • A plate-type support of reactor vessel was proposed and evaluated based on ASME code. • The plate-type support was assessed to show its higher rigidity than column-type. - Abstract: This paper investigates an alternative form of support structure for the reactor vessel of the APR 1400. The current reactor vessel adopts a four-column support arrangement locating on the cold legs of the vessel. Although having been successfully designed, the tall column structure challenges in seismic events. In addition, for the mitigation of severe accident consequences, the columns inhibit ex-vessel coolant flow, hence the elimination of the support columns proposes extra safety advantages. A plate-type support was proposed and evaluated for the adequacy of meeting the structural stiffness by Finite Element Analysis (FEA) approach. ASME Boiler and Pressure Vessel Code was used to verify the design. The results, which cover thermal and static structural analysis, show stresses are within allowable limits in accordance with the design code. Even the heat conduction area is increased for the plate-type of support system, the results showed that the thermal stresses are within allowable limits. A comparison of natural frequencies and mode shapes for column support and plate-type support were presented as well which showed higher fundamental frequencies for the plate-type support system resulting in greater rigidity of the support system. From the outcome of this research, the plate-type support is proven to be an alternative to current APR column type support design.

  2. Validation of WIMS-SNAP code systems for calculations in TRIGA-MARK II type reactors; Validacion del sistema de codigos WIMS-SNAP para calculos en reactores nucleares tipo TRIGA-MARK II

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Valle, S.; Lopez Aldama, D. [Centro de Investigaciones Nucleares, Tecnologicas y Ambientales, La Habana (Cuba). E-mail:


    The following paper contributes to validate the Nuclear Engineering Department methods to carry out calculations in TRIGA reactors solving a Benchmark. The benchmark is analyzed with the WIMS-D/4-SNAP/3D code system and using the cross section library WIMS-TRIGA. A brief description of the DSN method is presented used in WIMS/d{sup 4} code and also the SNAP-3d code is shortly explained. The results are presented and compared with the experimental values. In other hand the possible error sources are analyzed. (author)

  3. Experimental study on fluid mixing in a fuel subassembly of a fast reactor. Temperature field around heated pin with cross flow

    Energy Technology Data Exchange (ETDEWEB)

    Miyakoshi, Hiroyuki; Kamide, Hideki; Tanaka, Masaaki; Yamamoto, Kazuhiro [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center


    High burnup of the core is one of means to reduce the cost of a fast reactor and fuel cycle system. However, it is not enough to investigate thermohydraulics in the core, in which fuel and wrapper tube are deformed due to irradiation under high burnup condition. In this study, sodium experiment was performed to investigate fluid mixing in a wire-wrapped 37-pin subassembly model, which had local blockage and cross flow around the blockage. Such cross flow is one of elements of thermohydraulics in a deformed subassembly. The experimental results is useful to develop numerical simulation method for the deformed subassembly. Seven pins, each had different relative position to the blockage, were heated individually in the experiments. Temperature field in the subassembly was measured. Influences of the flow rate and heater power were also examined. A horizontal cross flow occurred in upstream region toward the blockage. It was observed that the temperature field was influenced by this cross flow. The measured temperature field showed that there was a bypass flow around the blockage, which flowed toward the center of subassembly. The cross flow due to the bypass flow reached the 3rd row of pins from the blockage. The swirl flow, resulted from the spacer wire, also influenced the temperature field. The obtained experimental data will be used to develop and verify a numerical simulation method for a deformed fuel subassembly. (author)

  4. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne


    One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed......S rRNA gene confirmed that sequential aeration, even at elevated average O2 loads, stimulated the abundance of AnAOB and AOB and prevented the increase in NOB. Nitrous oxide (N2O) emissions were 100-fold lower compared to other anaerobic ammonium oxidation (Anammox)-nitritation systems. Hence...... a difficulty in reducing the abundance and activity of nitrite oxidizing bacteria (NOB), which drastically lowers process efficiency. Here we show how sequential aeration is an effective strategy to attain autotrophic N removal in MABRs: Two separate MABRs, which displayed limited or no N removal under...

  5. Application of the BEACON-TSM system to the operation of PWR reactors; Aplicacion del sistema Beacon TSM a la operacion de reactores PWR

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, J. A.; Mildrum, C.; Serrano, J. F.


    BEACON-TSM is an advanced system of the operation support of PWR reactors that combines the capabilities of an advanced nodal neutronic model and the measures of the instrumentation available in plant to determine, accurately and continuously, the distribution of power in the core and the available margins to the limits of the beak factors.

  6. Set membership experimental design for biological systems

    Directory of Open Access Journals (Sweden)

    Marvel Skylar W


    Full Text Available Abstract Background Experimental design approaches for biological systems are needed to help conserve the limited resources that are allocated for performing experiments. The assumptions used when assigning probability density functions to characterize uncertainty in biological systems are unwarranted when only a small number of measurements can be obtained. In these situations, the uncertainty in biological systems is more appropriately characterized in a bounded-error context. Additionally, effort must be made to improve the connection between modelers and experimentalists by relating design metrics to biologically relevant information. Bounded-error experimental design approaches that can assess the impact of additional measurements on model uncertainty are needed to identify the most appropriate balance between the collection of data and the availability of resources. Results In this work we develop a bounded-error experimental design framework for nonlinear continuous-time systems when few data measurements are available. This approach leverages many of the recent advances in bounded-error parameter and state estimation methods that use interval analysis to generate parameter sets and state bounds consistent with uncertain data measurements. We devise a novel approach using set-based uncertainty propagation to estimate measurement ranges at candidate time points. We then use these estimated measurements at the candidate time points to evaluate which candidate measurements furthest reduce model uncertainty. A method for quickly combining multiple candidate time points is presented and allows for determining the effect of adding multiple measurements. Biologically relevant metrics are developed and used to predict when new data measurements should be acquired, which system components should be measured and how many additional measurements should be obtained. Conclusions The practicability of our approach is illustrated with a case study. This

  7. Robotic dismantlement systems at the CP-5 reactor D&D project.

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, L. S.


    The Chicago Pile 5 (CP-5) Research Reactor Facility is currently undergoing decontamination and decommissioning (D&D) at the Argonne National Laboratory (ANL) Illinois site. CP-5 was the principle nuclear reactor used to produce neutrons for scientific research at Argonne from 1954 to 1979. The CP-5 reactor was a heavy-water cooled and moderated, enriched uranium-fueled reactor with a graphite reflector. The CP-5 D&D project includes the disassembly, segmentation and removal of all the radioactive components, equipment and structures associated with the CP-5 facility. The Department of Energy's Robotics Technology Development Program and the Federal Energy Technology Center, Morgantown Office provided teleoperated, remote systems for use in the dismantlement of the CP-5 reactor assembly for tasks requiring remote dismantlement as part of the EM-50 Large-Scale Demonstration Program (LSDP). The teleoperated systems provided were the Dual Arm Work Platform (DAWP), the Rosie Mobile Teleoperated Robot Work System (ROSIE), and a remotely-operated crane control system with installed swing-reduction control system. Another remotely operated apparatus, a Brokk BM250, was loaned to ANL by the Princeton Plasma Physics Laboratory (PPPL). This machine is not teleoperated and was not part of the LSDP, but deserves some mention in this discussion. The DAWP is a robotic dismantlement system that includes a pair of Schilling Robotic Systems Titan III hydraulic manipulator arms mounted to a specially designed support platform: a hydraulic power unit (HPU) and a remote operator console. The DAWP is designed to be crane-suspended for remote positioning. ROSIE, developed by RedZone Robotics, Inc. is a mobile, electro-hydraulic, omnidirectional platform with a heavy-duty telescoping boom mounted to the platform's deck. The work system includes the mobile platform (locomotor), a power distribution unit (PDU) and a remote operator console. ROSIE moves about the reactor building

  8. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices (United States)

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R


    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  9. Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning' Vidvuds; de Walle, Axel van; Wolverton, Christopher


    The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

  10. Analysis of radiological accident emissions of a lead-cooled experimental reactor. LEADER Project; Analisis radiologico de las emisiones en caso de accidente de un reactor experimental refrigerado por plomo. Proyecto LEADER

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Salcedo, F.; Cortes Martin, A.


    The LEADER project develops a conceptual level industrial size reactor cooled lead and a demonstration plant of this technology. The project objectives are to define the characteristics and design to installation scale reactor using available technologies and short-term components and assess safety aspects conducting a preliminary analysis of the impact of the facility.

  11. Overall System Description and Safety Characteristics of Prototype Gen IV Sodium Cooled Fast Reactor in Korea

    Directory of Open Access Journals (Sweden)

    Jaewoon Yoo


    Full Text Available The Prototype Gen IV sodium cooled fast reactor (PGSFR has been developed for the last 4 years, fulfilling the technology demonstration of the burning capability of transuranic elements included in light water reactor spent nuclear fuel. The PGSFR design has been focused on the robustness of safety systems by enhancing inherent safety characteristics of metal fuel and strengthening passive safety features using natural circulation and thermal expansion. The preliminary safety information document as a major outcome of the first design phase of PGSFR development was issued at the end of 2015. The project entered the second design phase at the beginning of 2016. This paper summarizes the overall structures, systems, and components of nuclear steam supply system and safety characteristics of the PGSFR. The research and development activities to demonstrate the safety performance are also briefly introduced in the paper.

  12. Application of fault detection and identification (FDI) techniques in power regulating systems of nuclear reactors (United States)

    Roy, K.; Banavar, R. N.; Thangasamy, S.


    Application of failure detection and identification (FDI) algorithms have essentially been limited to identification of a global fault in the system, and no further attempts have been made to locate subcomponent faults for root cause analysis. This paper presents Kalman filter-based methods for FDI in power regulating systems of nuclear reactors. The attempt here is to explain how the behavior of the states, residues, and covariances can be interpreted to identify subcomponent faults. An alternative to the Kalman filter-the risk-sensitive filter-is also introduced. Comparison of its performance with the Kalman filter-based FDI algorithms is studied. All simulation studies have been carried out on postulated faults in the power regulating system of heavy water moderated, low pressure vertical tank-type research reactors.

  13. A fancy eco-compatible wastewater treatment system: Green Bio-sorption Reactor. (United States)

    Zhao, Yaqian; Liu, Ranbin; Zhao, Jinhui; Xu, Lei; Sibille, Caroline


    A novel concept was proposed and preliminarily investigated by embedding alum sludge-based constructed wetland into conventional activated sludge system in terms of Green Bio-sorption Reactor (GBR). This novel GBR inherited the aesthetic value of constructed wetland and owned the robust phosphorus (P) adsorption along with the benefit of carriers' addition (dewatered alum sludge). The preliminary demonstration was conducted in a lab-scale sequencing batch reactor (SBR) system without biological phosphorus removal process. The novel process achieved averagely 96%, 99% and 90% for BOD, TP and TN removal with piggery wastewater as influent, demonstrating for the first time of its promising performance. Moreover, the coexistence of biofilm and suspended sludge also achieved 55-88% simultaneous nitrification and denitrification efficiency, higher than biofilm only. Overall, alum sludge-based GBR could achieve reliable pollutants removal and provides a novel and sustainable pathway to upgrade conventional activated sludge system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Startup thaw concept for the SP-100 space reactor power system (United States)

    Kirpich, A.; Das, A.; Choe, H.; Mcnamara, E.; Switick, D.; Bhandari, P.


    A thaw concept for a space reactor power system which employs lithium as a circulant for both the heat-transport and the heat-rejection fluid loops is presented. An exemplary thermal analysis for a 100-kWe (i.e., SP-100) system is performed. It is shown that the design of the thaw system requires a thorough knowledge of the various physical states of the circulant throughout the system, both spatially and temporally, and that the design has to provide adequate margins for the system to avoid a structural or thermally induced damage.


    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Laboratory; Zhang, Hongbin [Idaho National Laboratory; Zou, Ling [Idaho National Laboratory; Martineau, Richard Charles [Idaho National Laboratory


    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoid overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety

  16. Direct-Drive Gas-Cooled Reactor Power System: Concept and Preliminary Testing (United States)

    Wright, S. A.; Lipinski, R. J.; Godfroy, T. J.; Bragg-Sitton, S. M.; VanDyke, M. K.


    This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet- sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrically heated testing of simulated reactor components.

  17. Model Reduction Using Proper Orthogonal Decomposition and Predictive Control of Distributed Reactor System

    Directory of Open Access Journals (Sweden)

    Alejandro Marquez


    Full Text Available This paper studies the application of proper orthogonal decomposition (POD to reduce the order of distributed reactor models with axial and radial diffusion and the implementation of model predictive control (MPC based on discrete-time linear time invariant (LTI reduced-order models. In this paper, the control objective is to keep the operation of the reactor at a desired operating condition in spite of the disturbances in the feed flow. This operating condition is determined by means of an optimization algorithm that provides the optimal temperature and concentration profiles for the system. Around these optimal profiles, the nonlinear partial differential equations (PDEs, that model the reactor are linearized, and afterwards the linear PDEs are discretized in space giving as a result a high-order linear model. POD and Galerkin projection are used to derive the low-order linear model that captures the dominant dynamics of the PDEs, which are subsequently used for controller design. An MPC formulation is constructed on the basis of the low-order linear model. The proposed approach is tested through simulation, and it is shown that the results are good with regard to keep the operation of the reactor.

  18. Fluid flow separation in a reactor pressure vessel during an ECC injection. Single phase flow and two phase flow (air-water) experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Thierry Bichet; Alain Martin [EDF - Research and Development Division - Fluid Mechanics and Heat Transfert 6, quai Watier - B.P. 49 - 78401 Chatou CEDEX 01 (France); Frederic Beaud [EDF/ Industry - Basic Design Department., 12-14, Avenue Dutrievoz 69628 Villeurbanne CEDEX (France)


    Full text of publication follows: Within the framework of the nuclear power plant lifetime issue, the assessment of the French 900 MWe (3-loops) series reactor pressure vessel (RPV) integrity has been performed. A simplified analysis has shown that the most severe loading conditions are given by the small break loss of coolant accidents due to the pressurized injection of cold water (9 deg. C) into the cold leg and down comer of the RPV. During these transient scenarios, single or two-phase (uncovered cold leg) flows have been shown in the cold leg, depending on the crack size and RPV model (900 MWe or 1300 MWe). An experimental study has been carried out, on the one hand, to consolidate the numerical results obtained with CFD home code (Code-Saturne) which mainly showed the stratified flow in the cold leg and the fluid flow separation and its oscillations in the down comer during a single phase scenario. These physical phenomena are important for the thermal RPV loading assessment. On the other hand, the absence of experimental two-phase data necessitated to carry out an experimental study around the mixing area behavior (free surface, stratified flow) during an ECC injection with an uncovered cold leg. The new EDF R and D mock up, called HYBISCUS, is a facility which is made out of Plexiglas (atmosphere pressure) and represents a half scale CP0 geometry with one cold leg and part of the down comer. The mock up modularity allows us to insert representative ECC nozzles and a thermal shield. In reference to the reactor scenarios, the experimental operating conditions are derived from the conservation of the density effects (Froude number). For that, a heated salted water flow is used to represent the ECC injection whereas water represents the cold leg fluid. This mock up has been defined in order to represent single phase flow (cold leg and down comer full of water) or two-phase flow (uncovered cold leg) ECC scenarios. This paper reports experimental results

  19. Design and development of in-vessel viewing periscope for ITER (International Thermonuclear Experimental Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Kakudate, Satoshi; Ito, Akira; Shibanuma, Kiyoshi; Tada, Eisuke [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka , Ibaraki (Japan)


    An in-vessel viewing system is essential not only to detect and locate damage of components exposed to plasma, but also to monitor and assist in-vessel maintenance operation. In ITER, the in-vessel viewing system must be capable of operating at high temperature (200degC), under intense gamma radiation (30 kGy/h) and high vacuum or 1 bar inert gas. A periscope-type in-vessel viewing system has been chosen as a reference of the ITER in-vessel viewing system due to its wide viewing capability and durability for sever environments. According to the ITER research and development program, a full-scale radiation hard periscope with a length of 15 m has been successfully developed by the Japan Home Team. The performance tests have been shown sufficient capability at high temperature up to 250degC and radiation resistance over 100 MGy. This report describes the design and R and D results of the ITER in-vessel viewing periscope based on the development of 15-m-length radiation hard periscope. (author)

  20. Contribution to modeling of the reflooding of a severely damaged reactor core using PRELUDE experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Bachrata, A.; Fichot, F.; Repetto, G. [Institut de Radioprotection et de Surete Nucleaire IRSN, Cadarache (France); Quintard, M. [Universite de Toulouse, INPT, UPS, IMFT Institut de Mecanique des Fluides de Toulouse, Allee Camille Soula, F-31400 Toulouse (France); CNRS, IMFT, F-31400 Toulouse (France); Fleurot, J. [Institut de Radioprotection et de Surete Nucleaire IRSN, Cadarache (France)


    In case of accident at a nuclear power plant, water sources may not be available for a long period of time and the core heats up due to the residual power. The reflooding (injection of water into core) may be applied if the availability of safety injection is recovered during accident. If the injection becomes available only in the late phase of accident, water will enter a core configuration that will differ significantly from original rod-bundle geometry. Any attempt to inject water after significant core degradation can lead to further fragmentation of core material. The fragmentation of fuel rods may result in the formation of a 'debris bed'. The typical particle size in a debris bed might reach few millimeters (characteristic length-scale: 1 to 5 mm), i.e., a high permeability porous medium. The French 'Institut de Radioprotection et de Surete Nucleaire' is developing experimental programs (PEARL and PRELUDE) and simulation tools (ICARE-CATHARE and ASTEC) to study and optimize the severe accident management strategy and to assess the probabilities to stop the progress of in-vessel core degradation. It is shown that the quench front exhibits either a ID behaviour or a 2D one, depending on injection rate or bed characteristics. The PRELUDE experiment covers a rather large range of variation of parameters, for which the developed model appears to be quite predictive. (authors)

  1. Advances in high rate anaerobic treatment: staging of reactor systems.

    NARCIS (Netherlands)

    Lier, van J.B.; Zee, van der F.P.; Tan, N.C.G.; Rebac, S.; Kleerebezem, R.


    Anaerobic wastewater treatment (AnWT) is considered as the most cost-effective solution for organically polluted industrial waste streams. Particularly the development of high-rate systems, in which hydraulic retention times are uncoupled from solids retention times, has led to a world-wide

  2. Reactivity Monitoring of Accelerator-Driven Nuclear Reactor Systems

    NARCIS (Netherlands)

    Uyttenhove, W.


    This thesis provides a methodology and set-up of a reactivity monitoring tool for Accelerator-Driven Systems (ADS). The reactivity monitoring tool should guarantee the operation of an ADS at a safe margin from criticality. Robustness is assured in different aspects of the monitoring tool: the choice

  3. Modeling of secondary emission processes in the negative ion based electrostatic accelerator of the International Thermonuclear Experimental Reactor

    Directory of Open Access Journals (Sweden)

    G. Fubiani


    Full Text Available The negative ion electrostatic accelerator for the neutral beam injector of the International Thermonuclear Experimental Reactor (ITER is designed to deliver a negative deuterium current of 40 A at 1 MeV. Inside the accelerator there are several types of interactions that may create secondary particles. The dominating process originates from the single and double stripping of the accelerated negative ion by collision with the residual molecular deuterium gas (≃29% losses. The resulting secondary particles (positive ions, neutrals, and electrons are accelerated and deflected by the electric and magnetic fields inside the accelerator and may induce more secondaries after a likely impact with the accelerator grids. This chain of reactions is responsible for a non-negligible heat load on the grids and must be understood in detail. In this paper, we will provide a comprehensive summary of the physics involved in the process of secondary emission in a typical ITER-like negative ion electrostatic accelerator together with a precise description of the numerical method and approximations involved. As an example, the multiaperture-multigrid accelerator concept will be discussed.

  4. Analysis of quench-vent pressures for present design of ITER (International Thermonuclear Experimental Reactor) TF (toroidal field) coils

    Energy Technology Data Exchange (ETDEWEB)

    Slack, D.S.


    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Japan, the European Community, the Union of the Soviet Union, and the United States. This paper examines the effects of a quench within the toroidal field (TF) coils based on current ITER design. It is a preliminary, rough analysis. Its intent is to assist ITER designers while more accurate computer codes are being developed and to provide a check against these more rigorous solutions. Rigorous solutions to the quench problem are very complex involving three- dimensional heat transfer, extreme changes in heat capacities and copper resistivity, and varying flow dynamics within the conductors. This analysis addresses all these factors in an approximate way. The result is much less accurate than a rigorous analysis. Results here could be in error as much as 30 to 40 percent. However, it is believed that this paper can still be very useful to the coil designer. Coil pressures and temperatures vs time into a quench are presented. Rate of helium vent, energy deposition in the coil, and depletion of magnetic stored energy are also presented. Peak pressures are high (about 43 MPa). This is due to the very long vent path length (446 m), small hydraulic diameters, and high current densities associated with ITER's cable-in-conduit design. The effects of these pressures as well as the ability of the coil to be self protecting during a quench are discussed. 3 refs., 1 fig., 3 tabs.

  5. Development of Environmentally-Assisted Fatigue Monitoring System for Advanced Power Reactors (APR1400)

    Energy Technology Data Exchange (ETDEWEB)

    Park, June Soo; Kim, Yeon Jeong; Kang, Sun Yeh; Yoon, Ki Seok; Choi, Taek Sang [KEPCO-E and C, Daejeon (Korea, Republic of)


    This paper introduces an EAF monitoring system developed for Shin-Kori Nuclear Power Plant (NPP), Units 3 and 4 which are the first two reactors of the APR1400 model. The EAF monitoring system has been developed for Shin-Kori NPP, Units 3 and 4, and is ready for an application for the plant lifetime. It is expected that the plant fatigue management can be effectively fulfilled, and the structural integrity of the critical components assured by an implementation of the fatigue monitoring system from the beginning of the lifetime. When fatigue analyses including the effects of the Light-Water Reactor (LWR) environment are applicable, plant designers address the environmentally-assisted fatigue (EAF) for Class 1 reactor pressure boundary components. The environment factor (F{sub en}) method has been endorsed by the U. S. Nuclear Regulatory Commission for evaluating fatigue analyses to address the environmental effects, and this method considers four major variables in addition to the traditional air-fatigue analyses: Material temperature, dissolved oxygen content of coolant, sulfur (S) content of material, and strain rate at the material points of interest. APR1400 nuclear power plants are designed to the requirements of the enhanced plant safety, availability and performance criteria for a 60 year design life. To better manage the material degradation and structural integrity of the pressure boundary components, a fatigue monitoring system has been developed for APR1400 NPPs, which is capable to monitor the EAF damage during the plant lifetime.

  6. RSYST: an integrated modular system with a data basis, for automated calculation of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ruehle, Roland [Univ. of Stuttgart (Germany)


    The integrated modular system RSYST was developed to offer the engineer and physicist a simpler method for carrying out the layout calculations for nuclear reactors. The system consists of a data basis, a control section, a data basis monitoring system, as well as an unlimited number of modules. The data transfer between individual modules is done through the data basis monitoring program by way of the central data basis. Control words of the input permit the user to control the process of any desired modules. Each module can have flexible data input to it from the data basis. By use of special modules, logical branches and loops can be carried out. The system was implemented on a CDC 6600 and partly on an IBM 360/75. At this moment, it includes 45,000 FORTRAN statements and 120 control words. Project calculations have been successfully carried out with the aid of RSYST for over three years. At this time, in addition to the general modules there exists primarily modules for reactor statistics calculations, burn-up calculations, and shielding calculations, and for the production of group constants. A start has been made to include problems of heat conduction, thermal hydraulics, reactor safety, control technology, and loop dynamics. (auth)

  7. Pressure suppression containment system for boiling water reactor (United States)

    Gluntz, Douglas M.; Nesbitt, Loyd B.


    A system for suppressing the pressure inside the containment of a BWR following a postulated accident. A piping subsystem is provided which features a main process pipe that communicates the wetwell airspace to a connection point downstream of the guard charcoal bed in an offgas system and upstream of the main bank of delay charcoal beds which give extensive holdup to offgases. The main process pipe is fitted with both inboard and outboard containment isolation valves. Also incorporated in the main process pipe is a low-differential-pressure rupture disk which prevents any gas outflow in this piping whatsoever until or unless rupture occurs by virtue of pressure inside this main process pipe on the wetwell airspace side of the disk exceeding the design opening (rupture) pressure differential. The charcoal holds up the radioactive species in the noncondensable gas from the wetwell plenum by adsorption, allowing time for radioactive decay before the gas is vented to the environs.

  8. Progress in hardware development for the SAFE heatpipe reactor system (United States)

    Ring, P. J.; Sayre, E. D.; van Dyke, Melissa; Houts, Mike


    Advanced Methods & Materials Company (AMM) previously fabricated the stainless steel modules for the SAFE 30 system. These earlier modules consisting of five fuel pins surrounding a heat pipe, were brazed together using a tricusp insert in the gaps between tubes to ensure maximum braze coverage. It was decided that if possible the next generations of modules, both stainless steel and refractory alloy, would be diffusion bonded together using a Hot Issostatic Pressing (HIP) process. This process was very successfully used in producing the bonded rhenium Nb-lZr fuel cladding and the heat exchanger for the SP-100 Nuclear Space System Ref. 1 & 2. In addition AMM have since refined the technology enabling them to produce very high temperature rocket thrust chambers. Despite this background the complex geometry required for the SAFE module was quite challenging. It was necessary to develop a method which could be applied for both stainless steel and refractory alloy systems. In addition the interstices between tubes had to be completely filled with the tricusp insert to avoid causing distortion of the tube shape during HIPing and provide thermal conductivity from the fuel tubes to the heat pipes. Nevertheless it was considered worth the effort since Hot Isostatic Pressing, if successful, will produce an assembly with the heat pipe completely embedded within the module such that the diffusion bonded assembly has the thermal conduction and strength equivalent to a solid structure. .

  9. System for Coupling an IEC Reactor to Ion Thrusters (United States)

    Webber, Jason; Burton, Rodney; Momoto, Hiromu; Miley, George; Richardson, Nathan


    A conceptual design for an electric-thruster-driven space ship using a D-He3 fueled Inertial Electrostatic Confinement (IEC) fusion power unit was recently developed [1]. This propulsion system uses a bank of modified NSTAR-type krypton ion thrusters (specific impulse of 16,000 sec.) giving a total thrust of 1020 N. The thrust time for a typical outer planet mission ( e.g. Jupiter) with a delta-V of 50,000 m/s is then 200 days. A key component of this concept is a traveling wave direct energy converter that converts the kinetic energy of 14-MeV fusion reaction product protons to high voltage (about 1 MV) DC electrical output. A unique step-down transformer and rectifier system condition this output for use in the ion thrusters. Details of these components, the NSTAR-thruster modifications plus a magnetic hexa-pole collimator designed to guide the emitted protons into the traveling wave converter will be described. This advanced electric thruster design offers a very high power-to-weight ratio system that is crucial for deep space propulsion. [1] George H. Miley, Hiromu Momota, R. Burton, N.Richardson, M. Coventry, and Y. Shaban, IEC Based D-He3 Fusion for Space Propulsion, Trans Am. Nuclear Society, Annual Meeting, Hollywood, FL, June 2002.

  10. Reviewing real-time performance of nuclear reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Preckshot, G.G. [Lawrence Livermore National Lab., CA (United States)


    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems.

  11. Applying and adapting the Swedish regulatory system for decommissioning to nuclear power reactors - The regulator's perspective. (United States)

    Amft, Martin; Leisvik, Mathias; Carroll, Simon


    Half of the original 13 Swedish nuclear power reactors will be shut down by 2020. The decommissioning of these reactors is a challenge for all parties involved, including the licensees, the waste management system, the financing system, and the Swedish Radiation Safety Authority (SSM). This paper presents an overview of the Swedish regulations for decommissioning of nuclear facilities. It describes some of the experiences that SSM has gained from the application of these regulations. The focus of the present paper is on administrative aspects of decommissioning, such as SSM's guidelines, the definition of fundamental concepts in the regulatory framework, and a proposed revision of the licensing process according to the Environmental Act. These improvements will help to streamline the administration of the commercial nuclear power plant decommissioning projects that are anticipated to commence in Sweden in the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Urotensinergic system genes in experimental subarachnoid hemorrhage.