WorldWideScience

Sample records for reactor system aiming

  1. Reactor system

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Narabayashi, Naoshi.

    1990-01-01

    The represent invention concerns a reactor system with improved water injection means to a pressure vessel of a BWR type reactor. A steam pump is connected to a heat removing system pipeline, a high pressure water injection system pipeline and a low pressure water injection system pipeline for injecting water into the pressure vessel. A pump actuation pipeline is disposed being branched from a main steam pump or a steam relieaf pipeline system, through which steams are supplied to actuate the steam pump and supply cooling water into the pressure vessel thereby cooling the reactor core. The steam pump converts the heat energy into the kinetic energy and elevates the pressure of water to a level higher than the pressure of the steams supplied by way of a pressure-elevating diffuser. Cooling water can be supplied to the pressure vessel by the pressure elevation. This can surely inject cooling water into the pressure vessel upon loss of coolant accident or in a case if reactor scram is necessary, without using an additional power source. (I.N.)

  2. Reactor System Design

    International Nuclear Information System (INIS)

    Chi, S. K.; Kim, G. K.; Yeo, J. W.

    2006-08-01

    SMART NPP(Nuclear Power Plant) has been developed for duel purpose, electricity generation and energy supply for seawater desalination. The objective of this project IS to design the reactor system of SMART pilot plant(SMART-P) which will be built and operated for the integrated technology verification of SMART. SMART-P is an integral reactor in which primary components of reactor coolant system are enclosed in single pressure vessel without connecting pipes. The major components installed within a vessel includes a core, twelve steam generator cassettes, a low-temperature self pressurizer, twelve control rod drives, and two main coolant pumps. SMART-P reactor system design was categorized to the reactor coe design, fluid system design, reactor mechanical design, major component design and MMIS design. Reactor safety -analysis and performance analysis were performed for developed SMART=P reactor system. Also, the preparation of safety analysis report, and the technical support for licensing acquisition are performed

  3. Aiming for knowledge information processing systems

    Energy Technology Data Exchange (ETDEWEB)

    Fuchi, K

    1982-01-01

    The Fifth Generation Computer Project in Japan intends to develop a new generation of computers by extensive research in many areas. This paper discusses many research topics which the Japanese are hoping will lead to a radical new knowledge information processing system. Topics discussed include new computer architecture, programming styles, semantics of programming languages, relational databases, linguistics theory, artificial intelligence, functional images and interference systems.

  4. Nuclear reactor shutdown system

    International Nuclear Information System (INIS)

    Mangus, J.D.; Cooper, M.H.

    1982-01-01

    An improved nuclear reactor shutdown system is described comprising a temperature sensitive device connected to control the electric power supply to a magnetic latch holding a body of a neutron absorbing material. The temperature sensitive device is exposed to the reactor coolant so that when the reactor coolant temperature rises above a specific level, the temperature sensitive device will cause deenergization of the magnetic latch to allow the body of neutron absorbing material to enter the reactor core. (author)

  5. TRIGA reactor main systems

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2007-01-01

    This module describes the main systems of low power (<2 MW) and higher power (≥2 MW) TRIGA reactors. The most significant difference between the two is that forced reactor cooling and an emergency core cooling system are generally required for the higher power TRIGA reactors. However, those TRIGA reactors that are designed to be operated above 3 MW also use a TRIGA fuel that is specifically designed for those higher power outputs (3 to 14 MW). Typical values are given for the respective systems although each TRIGA facility will have unique characteristics that may only be determined by the experienced facility operators. Due to the inherent wide scope of these research reactor facilities construction and missions, this training module covers those systems found at most operating TRIGA reactor facilities but may also discuss non-standard equipment that was found to be operationally useful although not necessarily required. (author)

  6. Nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1980-01-01

    A safety system for shutting down a nuclear reactor under overload conditions is described. The system includes a series of parallel-connected computer memory type look-up tables each of which receives data on a particular reactor parameter and in each of which a precalculated functional value for that parameter is stored indicative of the percentage of maximum reactor load that the parameter contributes. The various functional values corresponding to the actual measured parameters are added together to provide a control signal used to shut down the reactor under overload conditions. (U.K.)

  7. Pressurized water reactor systems

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1975-01-01

    Design and mode of operation of the main PWR components are described: reactor core, pressure vessel and internals, cooling systems with pumps and steam generators, ancillary systems, and waste processing. (TK) [de

  8. Reactor Safety Assessment System

    International Nuclear Information System (INIS)

    Sebo, D.E.; Bray, M.A.; King, M.A.

    1987-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (USNRC). RSAS is designed for use at the USNRC Operations Center in the event of a serious incident at a licensed nuclear power plant. RSAS is a situation assessment expert system which uses plant parametric data to generate conclusions for use by the NRC Reactor Safety Team. RSAS uses multiple rule bases and plant specific setpoint files to be applicable to all licensed nuclear power plants in the United States. RSAS currently covers several generic reactor categories and multiple plants within each category

  9. Reactor safety assessment system

    International Nuclear Information System (INIS)

    Sebo, D.E.; Bray, M.A.; King, M.A.

    1987-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (USNRC). RSA is designed for use at the USNRC Operations Center in the event of a serious incident at a licensed nuclear power plant. RSAS is a situation assessment expert system which uses plant parametric data to generate conclusions for use by the NRC Reactor Safety Team. RSAS uses multiple rule bases and plant specific setpoint files to be applicable to all licensed nuclear power plants in the United States. RSAS currently covers several generic reactor categories and multiple plants within each category

  10. FFTF reactor assembly system technology

    International Nuclear Information System (INIS)

    Mangelsdorf, T.A.

    1975-01-01

    An overview is presented of the FFTF reactor and plant together with descriptions of core components, core internals, core system, primary and secondary control rod system, reactor instrumentation, reactor vessel and closure head, and supporting test programs

  11. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1983-01-01

    The invention provides a safety system for a nuclear reactor which uses a parallel combination of computer type look-up tables each of which receives data on a particular parameter (from transducers located in the reactor system) and each of which produces the functional counterpart of that particular parameter. The various functional counterparts are then added together to form a control signal for shutting down the reactor. The functional counterparts are developed by analysis of experimental thermal and hydraulic data, which are used to form expressions that define safe conditions

  12. Analysis of different alternatives for a reactor aimed to produce Co60. Neutronic part

    International Nuclear Information System (INIS)

    Relloso, J.M.

    1990-01-01

    Different alternatives are presented for a reactor aimed to produce radioisotopes with a low enrichment fuel element geometrically equal to those of low enrichment. Different alternatives are presented which essentially differ in the core's configuration, fuel management and 'meat' fuel material: U3O8, U3Si or U3Si2 in aluminium matrix. Fluxes at different irradiation positions and power full peak factors are described for each case. The main aspects to be taken into account for cobalt irradiation and the method to be followed to measure the reactor as a function of a required production are presented. (Author) [es

  13. Nuclear reactor monitoring system

    International Nuclear Information System (INIS)

    Drummond, C.N.; Bybee, R.T.; Mason, F.L.; Worsham, H.J.

    1976-01-01

    The invention pertains to an improved monitoring system for the neutron flux in a nuclear reactor. It is proposed to combine neutron flux detectors, a thermoelement, and a background radiation detector in one measuring unit. The spatial arrangement of these elements is fixed with great exactness; they are enclosed by an elastic cover and are brought into position in the reactor with the aid of a bent tube. The arrangement has a low failure rate and is easy to maintain. (HP) [de

  14. Reactor feedwater system

    International Nuclear Information System (INIS)

    Kagaya, Hiroyuki; Tominaga, Kenji.

    1993-01-01

    In a simplified water type reactor using a gravitationally dropping emergency core cooling system (ECCS), the present invention effectively prevents remaining high temperature water in feedwater pipelines from flowing into the reactor upon occurrence of abnormal events. That is, (1) upon LOCA, if a feedwater pipeline injection valve is closed, boiling under reduced pressure of the remaining high temperature water occurs in the feedwater pipelines, generated steams prevent the remaining high temperature water from flowing into the reactor. Accordingly, the reactor is depressurized rapidly. (2) The feedwater pipeline injection valve is closed and a bypassing valve is opened. Steams generated by boiling under reduced pressure of the remaining high temperature water in the feedwater pipelines are released to a condensator or a suppression pool passing through bypass pipelines. As a result, the remaining high temperature water is prevented from flowing into the reactor. Accordingly, the reactor is rapidly depressurized and cooled. It is possible to accelerate the depressurization of the reactor by the method described above. Further, load on the depressurization valve disposed to a main steam pipe can be reduced. (I.S.)

  15. Power reactor information system (PRIS)

    International Nuclear Information System (INIS)

    1989-06-01

    Since the very beginning of commercial operation of nuclear power plants, the nuclear power industry worldwide has accumulated more than 5000 reactor years of experience. The IAEA has been collecting Operating Experience data for Nuclear Power Plants since 1970 which were computerized in 1980. The Agency has undertaken to make Power Reactor Information System (PRIS) available on-line to its Member States. The aim of this publication is to provide the users of PRIS from their terminals with description of data base and communication systems and to show the methods of accessing the data

  16. Reactor control system. PWR

    International Nuclear Information System (INIS)

    2009-01-01

    At present, 23 units of PWR type reactors have been operated in Japan since the start of Mihama Unit 1 operation in 1970 and various improvements have been made to upgrade operability of power stations as well as reliability and safety of power plants. As the share of nuclear power increases, further improvements of operating performance such as load following capability will be requested for power stations with more reliable and safer operation. This article outlined the reactor control system of PWR type reactors and described the control performance of power plants realized with those systems. The PWR control system is characterized that the turbine power is automatic or manually controlled with request of the electric power system and then the nuclear power is followingly controlled with the change of core reactivity. The system mainly consists of reactor automatic control system (control rod control system), pressurizer pressure control system, pressurizer water level control system, steam generator water level control system and turbine bypass control system. (T. Tanaka)

  17. Reactor protection system

    International Nuclear Information System (INIS)

    Fairbrother, D.B.; Lesniak, L.M.; Orgera, E.G.

    1977-10-01

    The report describes the reactor protection system (RPS-II) designed for use on Babcock and Wilcox 145-, later 177-, and 205-fuel assembly pressurized water reactors. In this system, relays in the trip logic have been replaced by solid state devices. A calculating module for the low DNBR, pump status, and offset trip functions has replaced the overpower trip (based on flow and imbalance), the power/RC pump trip, and the variable low-pressure trip. Included is a description of the changes from the present Oconee-type reactor protection system (RPS-I), a functional and hardware description of the calculating module, a description of the software programmed in the calculating module, and a discussion of the qualification program conducted to ensure that the degree of protection provided by RPS-II is not less than that provided by previously licensed systems supplied by B and W

  18. The nuclear reactor systems

    International Nuclear Information System (INIS)

    Bacher, P.

    2008-01-01

    This paper describes the various nuclear reactor systems, starting with the Generation II, then the present development of the Generation III and the stakes and challenges of the future Generation IV. Some have found appropriate to oppose reactor systems or generations one to another, especially by minimizing the enhancements of generation III compared to generation II or by expecting the earth from generation IV (meaning that generation III is already obsolete). In the first part of the document (chapter 2), some keys are given to the reader to develop its proper opinion. Chapter 3 describes more precisely the various reactor systems and generations. Chapter 4 discusses the large industrial manoeuvres around the generation III, and the last chapter gives some economical references, taking into account, for the various means of power generation, the impediments linked to climate protection

  19. Fusion neutronics plan in the development of fusion reactor. With the aim of realizing electric power

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroo; Morimoto, Yuichi; Ochiai, Kentarou; Sugimoto, Masayoshi; Nishitani, Takeo; Takeuchi, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    On June 1992, Atomic Energy Commission in Japan has settled Third Phase Program of Fusion Research and Development to achieve self-ignition condition, to realize long pulse burning plasma and to establish basis of fusion engineering for demonstration reactor. This report describes research plan of Fusion Neutron Laboratory in JAERI toward a development of fusion reactor with an aim of realizing electric power. The fusion neutron laboratory has a fusion neutronics facility (FNS), intense fusion neutron source. The plan includes research items in the FNS; characteristics of shielding and breeding materials, nuclear characteristics of materials, fundamental irradiation process of insulator, diagnostics materials and structural materials, and development of in-vessel diagnostic technology. Upgrade of the FNS is also described. Also, the International Fusion Material Irradiation Facility (IFMIF) for intense neutron source to develop fusion materials is described. (author)

  20. Nuclear reactor refueling system

    International Nuclear Information System (INIS)

    Wade, E.E.

    1978-01-01

    A system for transferring fuel assemblies between a nuclear reactor core and a fuel storage area while the fuel assembies remain completely submerged in a continuous body of coolant is described. The system comprises an in-vessel fuel transfer machine located inside the reactor vessel and an ex-vessel fuel transfer machine located in a fuel storage tank. The in-vessel fuel transfer machine comprises two independently rotatable frames with a pivotable fuel transfer apparatus disposed on the lower rotatable frame. The ex-vessel fuel transfer machine comprises one frame with a pivotable fuel transfer apparatus disposed thereon. The pivotable apparatuses are capable of being aligned with each other to transfer a fuel assembly between the reactor vessel and fuel storage tank while the fuel assembly remains completely submerged in a continuous body of coolant. 9 claims, 7 figures

  1. Calculations of neutron source at the KYIV research reactor for the boron neutron capture therapy aims

    International Nuclear Information System (INIS)

    Gritzay, O.; Kalchenko, O.; Klimova, N.; Razbudey, V.; Sanzhur, A.

    2006-01-01

    Calculation results of an epithermal neutron source which can be created at the Kyiv Research Reactor (KRR) by means of placing of specially selected moderators, filters, collimators, and shielding into the 10-th horizontal experimental tube (so-called thermal column) are presented. The general Monte-Carlo radiation transport code MCNP4C [1], the Oak Ridge isotope generation code ORIGEN2 [2] and the NJOY99 [3] nuclear data processing system have been used for these calculations

  2. Aiming toward perfection with POBSYS, a new software system

    International Nuclear Information System (INIS)

    Osudar, J.; Parks, J.E.; Levitz, N.M.

    1985-01-01

    An integrated general-purpose software system, POBSYS, has been developed that provides the foundation and tools for building a highly interactive system for carrying out detailed operating procedures and performing conventional process control, data acquisition, and data management functions. Features of the present system, which may be of particular interest to the problem of the man-machine interface include: (a) a multi-level safety system for fail-safe operation; (b) hierarchical operational control; (c) documented responsibility; (d) equipment status tracking; and (e) quality assurance checks on operations. The system runs on commercially available microprocessors and is presently in use in the destructive analysis of irradiated fuel rods from the Light Water Breeder Reactor

  3. Nuclear reactor trip system

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    Each parameter of the processes of a nuclear reactor and components operatively associated with it is monitored by a set of four like sensors. A trip system normally operates on a ''two out four'' configuration; i.e., to trip the reactor it is necessary that at least two sensors of a set sense an off-normal parameter. This assumes that all sensors are in normal operating condition. However, when a sensor is in test or is subject to maintenance or is defective or disabled, the ''two out of four''configuration would be reduced to a ''one out of three'' configuration because the affected sensor is taken out of service. This would expose the system to the possibility that a single sensor failure, which may be spurious, will cause a trip of the reactor. To prevent this, it is necessary that the affected sensor be bypassed. If only one sensor is bypassed, the system operates on a ''two out of three'' configuration. With two sensors bypassed, the sensing of an off-normal parameter by a third sensor trips the reactor. The by-pass circuit also disables the circuit coupling the by-passed sensor to the trip circuit. (author)

  4. Measures aimed at enhancing safe operation of the Nigeria Research Reactor-1 (NIRR-1)

    International Nuclear Information System (INIS)

    Balogun, G.I.; Jonah, S.A.; Umar, I.M.

    2005-01-01

    Safety culture has been defined as 'that assembly of characteristics and attitudes in organizations and individuals which establishes that as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance'. This paper briefly highlights efforts being made at the Centre for Energy Research and Training (CERT) towards realizing this broad objective as far as possible. To this end CERT realizes the need for instituted safety measures to reflect significant, site-specific peculiar characteristics of any generic reactor types. Consequently, standard procedures for pre-startup, startup and shutdown of NIRR-1 (a miniature neutron source reactor - MNSR) have been reviewed to reflect our local conditions and peculiarities. The review has revealed the need to incorporate important steps that impact on overall safety of the facility. For instance an interlocking system is being considered between NIRR-1 startup on the one hand and mandatory pre-startup measures on the other. Also a procedure has been put in place that would facilitate rapid response in the event of a rod-stuck-at-full-withdrawal incident. Furthermore, a program of automation of important analysis and design calculations of MNSRs is going on. Emphases are also placed, and deliberate efforts are being made, to ensure that a working atmosphere prevails that would foster the correct attitudinal approach to matters of reactor safety. A regime of constant dialogue and discussions amongst operating personnel has been factored into the overall operational program. (author)

  5. Reactor system safety assurance

    International Nuclear Information System (INIS)

    Mattson, R.J.

    1984-01-01

    The philosophy of reactor safety is that design should follow established and conservative engineering practices, there should be safety margins in all modes of plant operation, special systems should be provided for accidents, and safety systems should have redundant components. This philosophy provides ''defense in depth.'' Additionally, the safety of nuclear power plants relies on ''safety systems'' to assure acceptable response to design basis events. Operating experience has shown the need to study plant response to more frequent upset conditions and to account for the influence of operators and non-safety systems on overall performance. Defense in depth is being supplemented by risk and reliability assessment

  6. BWR reactor management system

    International Nuclear Information System (INIS)

    Makino, Kakuji; Kawamura, Atsuo; Yoshioka, Ritsuo; Neda, Toshikatsu.

    1979-01-01

    It is necessary to grasp the delicate state of operation in reactor cores in view of the control of burn-up and power output at the time of the operation management of BWRs. Enormous labor has been required for the collection, processing and evaluation of the data. It is desirable to obtain the safer, more efficient and faster method of operation control by predicting the states in cores including the change of xenon and reflecting them to operation plans as well as by tracing with high accuracy the past burn-up history for a long period. At present, the on-line evaluation of the states in cores is carried out with the process computers attached to respective units, but the amount of data required for core operation management of high degree far exceeds their capacity. From such viewpoints, the research and development on the reactor management system were carried out. The data processing concerning core operation management is performed with newly installed computers utilizing the data from existing process computers, and the operation of reactor cores, the qualitative improvement of management works, labor saving, and fast, efficient operation control are feasible with it. This system was installed in an actual plant in October, 1977. The composition of the system, the prediction of the change in local output distribution accompanying control rod operation, the prediction of the change in the states in cores due to the flow rate of coolant, and the function of collecting plant data are explained. (Kako, I.)

  7. Nuclear reactor sealing system

    International Nuclear Information System (INIS)

    McEdwards, J.A.

    1983-01-01

    A liquid metal-cooled nuclear reactor sealing system is disclosed. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel

  8. Thermionic nuclear reactor systems

    International Nuclear Information System (INIS)

    Kennel, E.B.

    1986-01-01

    Thermionic nuclear reactors can be expected to be candidate space power supplies for power demands ranging from about ten kilowatts to several megawatts. The conventional ''ignited mode'' thermionic fuel element (TFE) is the basis for most reactor designs to date. Laboratory converters have been built and tested with efficiencies in the range of 7-12% for over 10,000 hours. Even longer lifetimes are projected. More advanced capabilities are potentially achievable in other modes of operation, such as the self-pulsed or unignited diode. Coupled with modest improvements in fuel and emitter material performance, the efficiency of an advanced thermionic conversion system can be extended to the 15-20% range. Advanced thermionic power systems are expected to be compatible with other advanced features such as: (1) Intrinsic subcritically under accident conditions, ensuring 100% safety upon launch abort; (2) Intrinsic low radiation levels during reactor shutdown, allowing manned servicing and/or rendezvous; (3) DC to DC power conditioning using lightweight power MOSFETS; and (4) AC output using pulsed converters

  9. Implementation of an Anesthesia Information Management System (AIMS).

    Science.gov (United States)

    Douglas, James R; Ritter, Melody J

    2011-01-01

    During the administration of anesthesia, the anesthesia provider has historically created a paper record, charted manually, that included extensive patient care-related data (vital signs, other parameters, etc) and commentaries. DocuSys, a proprietary anesthesia information management system (AIMS), creates an electronic version of the anesthesia record and provides additional information. It electronically captures data from clinical monitors and other sources, including scheduling applications and laboratory computers. The AIMS facilitates chart entries such as drug doses and case narratives. Benefits of an AIMS include improved legibility of the anesthesia record and greater efficiency in documentation efforts. Use of the AIMS assists the practitioner with decision support logic, such as the timing of antibiotic administration and the inclusion of legally required documentation. Upon case completion, the AIMS data are immediately available to other information systems, such as billing and medical records. Data can be made available from a single case or, more important, from thousands of cases to analyze variables such as efficiency of services, adherence to best practices, patient outcomes, and clinical research. The AIMS was deployed at the main campus of the Ochsner Health System on March 26, 2009. In this article, we discuss the issues involved in the AIMS implementation process: the successes, surprises, and continued challenges.

  10. Reconstituted AIM2 inflammasome in cell-free system.

    Science.gov (United States)

    Kaneko, Naoe; Ito, Yuki; Iwasaki, Tomoyuki; Takeda, Hiroyuki; Sawasaki, Tatsuya; Migita, Kiyoshi; Agematsu, Kazunaga; Kawakami, Atsushi; Morikawa, Shinnosuke; Mokuda, Sho; Kurata, Mie; Masumoto, Junya

    2015-11-01

    Absent in melanoma 2 (AIM2) is an intracellular pattern-recognition receptor, which is a member of the PYHIN protein family, consisting of a PYD domain and an IFN-inducible nuclear localization (HIN) domain. AIM2 is reported to oligomerize with adaptor protein ASC upon sensing bacterial and viral cytosolic DNA in order to form the AIM2 inflammasome, which activates caspase-1 leading to IL-1β secretion. Dysregulation of AIM2 inflammasome is supposed to result in autoinflammatory and autoimmune diseases. Thus, the development of new targeted drugs against AIM2 inflammasome would be important for the treatment of these diseases. However, since AIM2 inflammasome is an intracellular receptor, enforced internalization of both ligands and candidate molecules is necessary for the screening of AIM2-inflammasome-targeted molecules. We developed a reconstituted AIM2 inflammasome in a cell-free system with amplified luminescent proximity homogeneous assay (Alpha). Strong Alpha signal was detected upon incubation with poly-deoxyadenylic-deoxythymidylic acid, poly(dA:dT), whereas no Alpha signal was detected upon incubation with muramyl dipeptide, one of the NLR ligands of Nod2 ligand. The interaction between AIM2 and ASC was disrupted by an anti-human ASC monoclonal antibody, CRID3, a class of diarylsulfonylurea-containing compounds, and glycyrrhizin, a substance found in liquorice root. Thus, the reconstituted AIM2 inflammasome in a cell-free system is useful for screening AIM2-inflammasome-targeted therapeutic molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Reactor safety systems

    International Nuclear Information System (INIS)

    Kafka, P.

    1975-01-01

    The spectrum of possible accidents may become characterized by the 'maximum credible accident', which will/will not happen. Similary, the performance of safety systems in a multitude of situations is sometimes simplified to 'the emergency system will/will not work' or even 'reactors are/ are not safe'. In assessing safety, one must avoid this fallacy of reducing a complicated situation to the simple black-and-white picture of yes/no. Similarly, there is a natural tendency continually to improve the safety of a system to assure that it is 'safe enough'. Any system can be made safer and there is usually some additional cost. It is important to balance the increased safety against the increased costs. (orig.) [de

  12. Universal Authenticated Item Monitoring System (AIMS) second generation equipment

    International Nuclear Information System (INIS)

    Schoeneman, J.L.; Baumann, M.J.; Fox, L.J.; Jenkins, C.D.; Perlinsk, A.W.

    1992-01-01

    Sandia National Laboratories (SNL) is in the final stages of developing a Universal Authenticated Item Monitoring System (AIMS). When completed, AIMS will provide applicable agencies in the US government, and those in the International arena, with a secure and convenient method of monitoring the physical status of selected items. The benefit derived from this development activity will be the commercial availability of an item monitoring system with the capability for ''quick set-up'' monitoring, as well as long-term unattended monitoring. The AIMS includes a variety of sensors, a robust and authenticated radio frequency (RF) communication link, a Receiver Processing Unit (RPU), and an inspector-friendly personal computer (PC) interface for collecting, sorting, viewing and archiving pertinent event histories. The system will provide the capability to monitor selected items in a real-time mode, a remotely interrogated mode, and a stand-alone, unattended data collection mode. The sensor suite under development includes advanced motion sensors, interior volumetric intrusion sensors, Re-usable, In-situ Verifiable Authenticated (RIVA) fiber-optic seal sensors, generic utility sensors (to accommodate contact closure inputs), and radiation and environmental sensors. A new generation authentication algorithm recently has been developed that provides a high degree of system security 121. The AIMS has potential safeguards applications in the areas of arms control and treaty verification military asset control, International Atomic Energy Agency (IAEA) and Euratom safeguards verification activities, as well as domestic nuclear safeguard activities. Commercial applications could include high-value inventory control and security systems. This paper describes the second-generation AIMS along with its recently expanded sensor suite and enhanced data collection capabilities

  13. Reactor cooling system

    International Nuclear Information System (INIS)

    Kato, Etsuji.

    1979-01-01

    Purpose: To eliminate cleaning steps in the pipelines upon reactor shut-down by connecting a filtrating and desalting device to the cooling system to thereby always clean up the water in the pipelines. Constitution: A filtrating and desalting device is connected to the pipelines in the cooling system by way of drain valves and a check valve. Desalted water is taken out from the exit of the filtrating and desalting device and injected to one end of the cooling system pipelines by way of the drain valve and the check valve and then returned by way of another drain valve to the desalting device. Water in the pipelines is thus always desalted and the cleaning step in the pipelines is no more required in the shut-down. (Kawakami, Y.)

  14. Reactor system on barge

    International Nuclear Information System (INIS)

    Hayashi, Kingo; Yamada, Nobuyuki

    1987-01-01

    Floating electrical power plants or power plant barges add new dimensions to utility planners and agencies in the world. Intrinsically safe and economical reactors (ISER) employ steel reactor pressure vessels, which significantly reduce the weight as compared with PIUS, and provide siting versatility including barge-mounted plants. In this paper, the outline of power plant barges and barge-mounted ISERs is described. Besides their mobility, power plant barges have the salient advantages such as short delivery time and better quality control due to the outfitting in shipyards. These power plant barges may be temporarily moored or permanently grounded in shallow water at the centers of industrial complexes or the suitable areas adjacent to them, and satisfy the increasing needs for electric power. A cost-effective and technically perfect barge positioning system should be designed to meet the specific requirement for the location and its condition. Offshore siting away from coast may be applicable only to large plants of 1,000 MWe or more, and inshore siting and coastal or river siting are considered for an ISER-200 barge-mounted plant. The system of a barge-mounted ISER plant is discussed in the case of a floating type and the type on a seismic base isolator. (Kako, I.)

  15. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Sato, Takashi.

    1979-01-01

    Purpose: To allow sufficient removal of radioactive substance released in the reactor containment shell upon loss of coolants accidents thus to sufficiently decrease the exposure dose to human body. Constitution: A clean-up system is provided downstream of a heat exchanger and it is branched into a pipeway to be connected to a spray nozzle and further connected by way of a valve to a reactor container. After the end of sudden transient changes upon loss of coolants accidents, the pool water stored in the pressure suppression chamber is purified in the clean-up system and then sprayed in the dry-well by way of a spray nozzle. The sprayed water dissolves to remove water soluble radioactive substances floating in the dry-well and then returns to the pressure suppression chamber. Since radioactive substances in the dry-well can thus removed rapidly and effectively and the pool water can be reused, public hazard can also be decreased. (Horiuchi, T.)

  16. Action Information Management System (AIMS): a User's View

    Science.gov (United States)

    Wiskerchen, M.

    1984-01-01

    The initial approach used in establishing a user-defined information system to fulfill the needs of users at NASA Headquarters was unsuccessful in bringing this pilot endeaveor to full project status. The persistence of several users and the full involvement of the Ames Research Center were the ingredients needed to make the AIMS project a success. The lesson learned from this effort is that NASA should always work from its organizational strengths as a Headquarters-Center partnership.

  17. Gaseous fuel reactors for power systems

    International Nuclear Information System (INIS)

    Helmick, H.H.; Schwenk, F.C.

    1978-01-01

    The Los Alamos Scientific Laboratory is participating in a NASA-sponsored program to demonstrate the feasibility of a gaseous uranium fueled reactor. The work is aimed at acquiring experimental and theoretical information for the design of a prototype plasma core reactor which will test heat removal by optical radiation. The basic goal of this work is for space applications, however, other NASA-sponsored work suggests several attractive applications to help meet earth-bound energy needs. Such potential benefits are small critical mass, on-site fuel processing, high fuel burnup, low fission fragment inventory in reactor core, high temperature for process heat, optical radiation for photochemistry and space power transmission, and high temperature for advanced propulsion systems. Low power reactor experiments using uranium hexafluoride gas as fuel demonstrated performance in accordance with reactor physics predictions. The final phase of experimental activity now in progress is the fabrication and testing of a buffer gas vortex confinement system

  18. Reactor feedwater system

    International Nuclear Information System (INIS)

    Hikabe, Katsumi.

    1978-01-01

    Purpose: In order to prevent thermal stresses of a core of PWR type reactor, described has been a method for feeding heated recirculating water to the core in the case of the reactor start-up or shut-down. Constitution: A recirculating water is degassed, cleaned up and heated in the steam condensers, and then feeds the water to the reactor, characterized in that heaters are provided in the bypasses of the turbine, so that heated water is constantly supplied to the reactor. (Nakamura, S.)

  19. Monitor for reactor feedwater systems

    International Nuclear Information System (INIS)

    Takizawa, Yoji; Tomizawa, Teruaki

    1983-01-01

    Purpose: To improve the reliability of operator's procedures upon occurrence of the feedwater system abnormality in a BWR type reactor by presenting the operation with effective information to avoid such abnormality. Constitution: A feedwater temperature at the reactor inlet of a reactor feedwater system measured by a temperature detector and a predetermined value for the feedwater temperature at the reactor inlet determined depending on the reactor conditions are inputted to a start-up system. The start-up system outputs a start-up signal when the difference between the inputted values exceeds a predetermined value. Then, the start-up signal is inputted to a display device where information required for the operator is displayed in the device. Thus, the information required for the operator is rapidly provided upon abnormality of the feedwater system to thereby improve the reliability of the operator's procedures. (Moriyama, K.)

  20. Reactor safety protection system

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Yokoyama, Tsuguo.

    1989-01-01

    A plurality of neutron detectors are disposed around a reactor core and detection signals from optional two neutron detectors are inputted into a ratio calculation device. If the ratio between both of the neutron flux level signals exceeds a predetermined value, a reactor trip signal is generated from an alarm setting device. Further, detection signals from all of the neutron detection devices are inputted into an average calculation device and the reactor trip signal is generated also in a case where the average value exceeds a predetermined set value. That is, when the reactor core power is increased locally, the detection signal from the neutron detector nearer to the point of power increase is greater than the increase rate for the entire reactor core power, while the detection signal from the neutron detector remote from the point of power increase is smaller. Thus, the local power increase ratio in the FBR reactor core can be detected efficiently by calculating the ratio for the neutron flux level signals from two neutron detectors, thereby enabling to exactly recognize the local power increase rate in the reactor core. (N.H.)

  1. Reactor power control system

    International Nuclear Information System (INIS)

    Tomisawa, Teruaki.

    1981-01-01

    Purpose: To restore reactor-power condition in a minimum time after a termination of turbine bypass by reducing the throttling of the reactor power at the time of load-failure as low as possible. Constitution: The transient change of the internal pressure of condenser is continuously monitored. When a turbine is bypassed, a speed-control-command signal for a coolant recirculating pump is generated according as the internal pressure of the condenser. When the signal relating to the internal pressure of the condenser indicates insufficient power, a reactor-control-rod-drive signal is generated. (J.P.N.)

  2. Status and prospect of R and D aimed at application of nuclear reactors for seawater desalination in Russia

    International Nuclear Information System (INIS)

    Zverev, K.V.; Baranaev, Y.D.; Toshinsky, G.I.; Polunichev, V.I.; Romenkov, A.A.; Shamanin, V.G.; Podberezny, V.L.

    2004-01-01

    In the document 'Strategy of Nuclear Power Development in Russia for the First Half of XXI Century', approved by the Government of the RF, seawater desalination is considered as a prospective area of application of the small-sized nuclear power plants (SNPP). Taking into account vast water resources of Russia evenly distributed over the territory of the country, seawater desalination is not a vital domestic demand for this country. Therefore, the R and D activities of the RF MINATOM institutions on nuclear desalination are aimed mainly at the assessment of implementation of the SNPP based nuclear desalination system in the developing countries suffering from the lack of fresh water supply. Within these activities, analysis of engineering and economical problems related to optimisation of the use of different type nuclear reactors as a source of electricity and heat for seawater desalination plants has been performed. The objective of the work is to develop scientific and technological basis for comprehensive design studies required for practical implementation of the projects. An important factor stimulating the R and D on nuclear desalination is rather active involvement of the MINATOM's institutions in the various activities in this field organised and coordinated by the IAEA. Since 1998, SRC RF-IPPE, OKBM, ENTEK, MALAYA ENERGETIKA, JSC, and VNIPI PROMTECHNOLOGIYI etc. have been participants of the IAEA Coordinated Research Program (CRP) on 'Optimization of Coupling of Nuclear Reactor and Desalination System'. This work is being carried out within the framework of special Russian Project: 'Use of Small Size Russian Nuclear Reactors as Power Source for Nuclear Desalination Complexes: Optimization of Coupling Schemes, Design and Economical Characteristics'. The small nuclear reactors KLT-40C, NIKA and RUTA are considered in the study. In 2002, IAEA initiates new CRP 'Economic Research on, and Assessment of, selected Nuclear Desalination Projects and Case Studies

  3. BWR type reactor system

    International Nuclear Information System (INIS)

    Morooka, Shin-ichi.

    1980-01-01

    Purpose: To reduce the internal structure in a reactor by rapidly and efficiently transferring heat generated in a reactor core out of the reactor and eliminating the danger of radiation exposure. Constitution: Steam generated in a pressure vessel is introduced into heat pipe group by inserting the heat pipe group into the steam dome of the pressure vessel. The introduced steam is condensed in the heat pipes to transfer the heat of the steam to the heat pipe group. The transferred heat is transmitted to a heat exchanger provided out of a containment vessel to generate steam to operate a turbine. Thus, it is not necessary to introduce the steam including radioactive substance externally and can remove only the heat so as to carry out the desired purpose. (Kamimura, M.)

  4. Virtual system concept aiming at prevention of troubles and accidents

    International Nuclear Information System (INIS)

    Uchimoto, Tetsuya; Takagi, Toshiyuki

    2001-01-01

    A main impediment to optimization of the plant maintenance is the fact that we can not predict when and how troubles are introduced in a plant. Having regard to the point, the authors propose a 'virtual system' concept for prevention and prediction of accidents in plants. The virtual system is a system constructed in computers and it evaluates responses to various loads of the object system. The authors introduce the resistance to loads and the testing availability as key parameters characterizing object sub-systems and place their evaluation as the first step of construction of the virtual system. (author)

  5. Modular reactor head shielding system

    International Nuclear Information System (INIS)

    Jacobson, E. B.

    1985-01-01

    An improved modular reactor head shielding system is provided that includes a frame which is removably assembled on a reactor head such that no structural or mechanical alteration of the head is required. The shielding system also includes hanging assemblies to mount flexible shielding pads on trolleys which can be moved along the frame. The assemblies allow individual pivoting movement of the pads. The pivoting movement along with the movement allowed by the trolleys provides ease of access to any point on the reactor head. The assemblies also facilitate safe and efficient mounting of the pads directly to and from storage containers such that workers have additional shielding throughout virtually the entire installation and removal process. The flexible shielding pads are designed to interleave with one another when assembled around the reactor head for substantially improved containment of radiation leakage

  6. The aims of systems biology: between molecules and organisms.

    Science.gov (United States)

    Noble, D

    2011-05-01

    The systems approach to biology has a long history. Its recent rapid resurgence at the turn of the century reflects the problems encountered in interpreting the sequencing of the genome and the failure of that immense achievement to provide rapid and direct solutions to major multi-factorial diseases. This paper argues that systems biology is necessarily multilevel and that there is no privileged level of causality in biological systems. It is an approach rather than a separate discipline. Functionality arises from biological networks that interact with the genome, the environment and the phenotype. This view of biology is very different from the gene-centred views of neo-Darwinism and molecular biology. In neuroscience, the systems approach leads naturally to 2 important conclusions: first, that the idea of 'programs' in the brain is confusing, and second, that the self is better interpreted as a process than as an object. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Safety system for reactor container

    International Nuclear Information System (INIS)

    Shimizu, Miwako; Seki, Osamu; Mano, Takio.

    1995-01-01

    A slanted structure is formed below a reactor core where there is a possibility that molten reactor core materials are dropped, and above a water level of a pool which is formed by coolants flown from a reactor recycling system and accumulated on the inner bottom of the reactor container, to prevent molten fuels from dropping at once in the form of a large amount of lump. The molten materials are provisionally received on the structure, gradually formed into small pieces and then dropped. Further, the molten materials are dropped and received provisionally on a group of coolant-flowing pipelines below the structure, to lower the temperature of the molten materials, and then the reactor core molten materials are gradually formed into small pieces and dropped into the pool water. Since they are not dropped directly into the pool water but dropped gradually into the pool water as small droplets, occurrence of steam explosion can be reduced. The occurrence of steam explosion due to dropped molten reactor core material and pool water is suppressed, and the molten materials are kept in the pool water, thereby enabling to maintain the integrity of the reactor container more effectively. (N.H.)

  8. Fuel handling system of nuclear reactor plants

    International Nuclear Information System (INIS)

    Faulstich, D.L.

    1991-01-01

    This patent describes a fuel handing system for nuclear reactor plants comprising a reactor vessel having an openable top and removable cover for refueling and containing therein, submerged in coolant water substantially filling the reactor vessel, a fuel core including a multiplicity of fuel bundles formed of groups of sealed tube elements enclosing fissionable fuel assembled into units. It comprises a fuel bundle handing platform moveable over the open top of the reactor vessel; a fuel bundle handing mast extendable downward from the platform with a lower end projecting into the open top reactor vessel to the fuel core submerged in water; a grapple head mounted on the lower end of the mast provided with grappling hook means for attaching to and transporting fuel bundles into and out from the fuel core; and a camera with a prismatic viewing head surrounded by a radioactive resisting quartz cylinder and enclosed within the grapple head which is provided with at least three windows with at least two windows provided with an angled surface for aiming the camera prismatic viewing head in different directions and thereby viewing the fuel bundles of the fuel core from different perspectives, and having a cable connecting the camera with a viewing monitor located above the reactor vessel for observing the fuel bundles of the fuel core and for enabling aiming of the camera prismatic viewing head through the windows by an operator

  9. Main activities in Kazakhstan aimed to substantiate ITER and demo reactors safety

    International Nuclear Information System (INIS)

    Shestakov, V.; Chikhray, Y.; Tazhibayeva, I.; Kenzhin, Ye.; Dzhakishev, M.; Goryaev, G.; Gagarin, A.; Shakhvorostov, Yr.; Savchuk, V.

    2004-01-01

    The first stage of such activity is examinations of physicochemical properties of compact beryllium. This work is carrying out Ulba Plant - worl known beryllium producer. Quality control of compact beryllium products includes step-by-step operational control and attestation control of final products for compliancy with customer's requirements. Step-by-step control is carried out along the whole production process and includes the control of the following: temperature, pressure, duration of the process and other process parameter, listed in the in-plant documentation; quality of intermediate semi products (chemical, physical and mechanical properties, defects, appearance, dimension, etc). The process control is carried out by personnel and by an independent inspection service. The attestation control of final products is carried out for compliancy of products with requirement of consumers and includes the following: chemical analysis, mechanical testing, radiographic testing, ultrasonic testing, appearance inspection, dimension inspection, density testing, and metallographic inspection. The attestation control is carried out by a special service independent of technologists. This is the service that makes a final report on the compliancy of the product with requirements of customers and gives permission for shipping the products. The process and attestation control is carried out with the use of equipment, apparatuses and devices, which are checked regularly by special instrumentation service. If they do not meet the requirements in precision, reliability and stability they are removed from service and not approved for measurements. Methods of control of specific values and characteristics, the apparatuses used and allowed classes of accuracy are specified in state standards, tensile specifications of products and in-plant standards or in agreements between a producer and a customer. The next stage will be manufacturing of mock-ups of reactor's first wall elements

  10. Aiming for a fully integrated computerized procedure system

    International Nuclear Information System (INIS)

    Marron, J. E.

    2006-01-01

    A fully integrated Computerized Procedure System must provide, at a minimum, a) Specification: access to design basis procedures, b) Monitoring: incorporation of real-time plant status, c) Advise: highlighting likely decision paths, and d) Reporting: logging conditions and actions taken. The CPS plays a critical role in overcoming the human factors that lead to accidents. At the same time it can be an essential tool in providing the information and automation to augment what humans do best, identify patterns and make associative leaps in the presence of ambiguous data. Timeliner and TaskGuide are examples of CPS that have evolved from projects in the aerospace industry. They illustrate certain common characteristics of a CPS, namely the knowledge base, user interface, and traceability features. The complexity and number of procedures for a current nuclear project has led to the development of two tools, the Power Generation Control System (PGCS) and the Online Procedure System (OLPS). Together, these systems address the knowledge-base and user interface aspects of a CPS and go a long way in addressing other areas. PGCS and OLPS contain full configuration management capabilities for procedures and the operating recipe. They include administrative functions for online and offline management of documents and data. Some lessons learned from this pair of programs developed by Invensys is the need for more integrated recording mechanisms. The future of CPS is likely to see higher integration of the document access, system status, decision support and logging capabilities. The CPS may evolve into the standard operational interface. Internet technologies that are common-place today have made the possibility of the Active Document a reality. The OPC Foundation is pursuing standards that may accelerate such developments. (authors)

  11. Reactor protection system. Revision 1

    International Nuclear Information System (INIS)

    Fairbrother, D.B.; Vincent, D.R.; Lesniak, L.M.

    1975-04-01

    The reactor protection system-II (RPS-II) designed for use on Babcock and Wilcox 145- and 205-fuel assembly pressurized water reactors is described. In this system, relays in the trip logic have been replaced by solid state devices. A calculating module for the low DNBR, pump status, and offset trip functions has replaced the overpower trip (based on flow and imbalance), the power/RC pump trip, and the variable low pressure trip. Included is a description of the changes from the present Oconee-type reactor protection system (RPS-I), a functional and hardware description of the calculating module, and a discussion of the qualification program conducted to ensure that the degree of protection provided by RPS-II is not less than that provided by previously licensed systems supplied by B and W. (U.S.)

  12. Reactor fueling system

    International Nuclear Information System (INIS)

    Hattori, Noriaki; Hirano, Haruyoshi.

    1983-01-01

    Purpose: To optimally position a fuel catcher by mounting a television camera to a fuel catching portion and judging video images by the use of a computer or the like. Constitution: A television camera is mounted to the lower end of a fuel catching mechanism for handling nuclear fuels and a fuel assembly disposed within a reactor core or a fuel storage pool is observed directly from above to judge the position for the fuel assembly by means of video signals. Then, the relative deviation between the actual position of the fuel catcher and that set in a memory device is determined and the positional correction is carried out automatically so as to reduce the determined deviation to zero. This enables to catch the fuel assembly without failure and improves the efficiency for the fuel exchange operation. (Moriyama, K.)

  13. Solvent refined coal reactor quench system

    Science.gov (United States)

    Thorogood, Robert M.

    1983-01-01

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

  14. Reactor helium system, design specification, operation and handling

    International Nuclear Information System (INIS)

    Badrljica, R.

    1984-06-01

    Apart from detailed design specification of the helium cover gas system of the Ra reactor, this document includes description of the operating regime, instructions for manipulations in the system with the aim of achieving and maintaining stationary gas circulation [sr

  15. Advanced emission control system: CO2 sequestration using algae integrated management system (AIMS)

    International Nuclear Information System (INIS)

    Syed Isa Syed Alwi; Mohd Norsham Che Yahya; Ruzanna Abdul Rahman

    2010-01-01

    One of the companies under Algae tech, Sasaran Bio fuel Sdn. Bhd. provides project management, technology transfer and technical expertise to develop a solution to minimize and mitigate Carbon Dioxide (CO 2 ) emissions through the diversion of the CO 2 to open algal ponds and enclosed photo-bioreactors as algal propagation technologies to consume CO 2 waste stream. The company is presently consulting a listed company from Indonesia to address the technology know-how and implementation of microalgae development from the flue gas of the Groups power plants. Nowadays, one of the aspects that contribute to the air pollution is the emission of flue gases from the factories. So, we provide a system that can reduce the emission of flue gas to the atmosphere and at the same time, cultivate certain strain of algae. With the technology, Algae Integrated Management System (AIMS), it will be for sure a new beginning for way to reduce air pollution. The utilization of power plant resources for growing selected microalgae at a low energy cost for valuable products and bio-fuels while providing CO 2 sequestering. In the same time, it also a low cost algae agriculture. By doing so, it provides all year algae production which can be an income. This residual energy used CO 2 produced from power stations and industrial plants to feed the process (CO 2 recycling and bio-fixation) in cultivation of algae. This will be a low cost flue gas (CO 2 ) to the developer. In a nutshell, CO 2 Sequestration by algae reactors is a potential to reduce greenhouse gas emission by using the CO 2 in the stack gases to produce algae. (author)

  16. Power Reactor Information System (PRIS)

    International Nuclear Information System (INIS)

    Spiegelberg, R.

    1992-01-01

    The IAEA has been collecting Operating Experience data for Nuclear Power Plants of the IAEA Member States since 1970. In order to facilitate an analysis of nuclear power plant performance as well as to produce relevant publications, all previously collected data supplied from the questionnaires were computerized in 1980 and the Power Reactor Information System was implemented. PRIS currently contains production records for the years up to and including 1990 and about 98% of the reactors-years operating experience in the world is contained in PRIS. (orig.)

  17. Tokamak reactor systems studies

    International Nuclear Information System (INIS)

    1992-01-01

    A summary of work completed on the ARIES project during this report period is given. The main areas of effort were: neutronics, shield optimization and design, safety, systems, startup and shutdown, and ripple loss

  18. Reactor limit control system

    International Nuclear Information System (INIS)

    Rubbel, F.E.

    1982-01-01

    The very extensive use of limitations in the operational field between protection system and closed-loop controls is an important feature of German understanding of operational safety. The design of limitations is based on very large activities in the computational field but mostly on the high level of the plant-wide own commissioning experience of a turnkey contractor. Limitations combine intelligence features of closed-loop controls with the high availability of protection systems. (orig.)

  19. Nuclear reactor engineering: Reactor systems engineering. Fourth edition, Volume Two

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in the design and operation of nuclear power plants. Extensively updated, the fourth edition includes new materials on reactor safety and risk analysis, regulation, fuel management, waste management and operational aspects of nuclear power. This volume contains the following: the systems concept, design decisions, and information tools; energy transport; reactor fuel management and energy cost considerations; environmental effects of nuclear power and waste management; nuclear reactor safety and regulation; power reactor systems; plant operations; and advanced plants and the future

  20. Core cooling system for reactor

    International Nuclear Information System (INIS)

    Kondo, Ryoichi; Amada, Tatsuo.

    1976-01-01

    Purpose: To improve the function of residual heat dissipation from the reactor core in case of emergency by providing a secondary cooling system flow channel, through which fluid having been subjected to heat exchange with the fluid flowing in a primary cooling system flow channel flows, with a core residual heat removal system in parallel with a main cooling system provided with a steam generator. Constitution: Heat generated in the core during normal reactor operation is transferred from a primary cooling system flow channel to a secondary cooling system flow channel through a main heat exchanger and then transferred through a steam generator to a water-steam system flow channel. In the event if removal of heat from the core by the main cooling system becomes impossible due to such cause as breakage of the duct line of the primary cooling system flow channel or a trouble in a primary cooling system pump, a flow control valve is opened, and steam generator inlet and outlet valves are closed, thus increasing the flow rate in the core residual heat removal system. Thereafter, a blower is started to cause dissipation of the core residual heat from the flow channel of a system for heat dissipation to atmosphere. (Seki, T.)

  1. Reactor protection and shut-down system

    International Nuclear Information System (INIS)

    Klar

    1980-01-01

    The reactor protection system being a part of the reactor safety system. The requirements on the reactor protection system are: high safety with regard to signal processing, high availability, self-reporting of faults etc. The functional sections of the reactor protection system are the analog section, the logic section and the generating of output signals. Description of the operation characteristics and of the extension of function. (orig.)

  2. Nuclear reactor power supply system

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    The redundant signals from the sensor assemblies measuring the process parameters of a nuclear reactor power supply are transmitted each in its turn to a protection system which operates to actuate the protection apparatus for signals indicating off-process conditions. Each sensor assembly includes a number of like sensors measuring the same parameters. The sets of process signals derived from the sensor assemblies are each in its turn transmitted from the protection system to the control system which impresses control signals on the reactor or its components to counteract the tendency for conditions to drift off-normal status requiring operation of the protection system. A parameter signal selector prevents a parameter signal which differs from the other parameter signals of the set by more than twice the allowable variation from passing to the control system. Test signals are periodically impressed by a test unit on a selected pair of a selection unit and control channels. This arrangement eliminates the possibility that a single component failure which may be spurious will cause an inadvertent trip of the reactor during test. (author)

  3. Reactor protection systems for the Replacement Research Reactor, ANSTO

    International Nuclear Information System (INIS)

    Morris, C.R.

    2003-01-01

    The 20-MW Replacement Research Reactor Project which is currently under construction at ANSTO will have a combination of a state of the art triplicated computer based reactor protection system, and a fully independent, and diverse, triplicated analogue reactor protection system, that has been in use in the nuclear industry, for many decades. The First Reactor Protection System (FRPS) consists of a Triconex triplicated modular redundant system that has recently been approved by the USNRC for use in the USA?s power reactor program. The Second Reactor Protection System is a hardwired analogue system supplied by Foxboro, the Spec 200 system, which is also Class1E qualified. The FRPS is used to drop the control rods when its safety parameter setpoints have been reached. The SRPS is used to drain the reflector tank and since this operation would result in a reactor poison out due to the time it would take to refill the tank the FRPS trip setpoints are more limiting. The FRPS and SRPS have limited hardwired indications on the control panels in the main control room (MCR) and emergency control centre (ECC), however all FRPS and SRPS parameters are capable of being displayed on the reactor control and monitoring system (RCMS) video display units. The RCMS is a Foxboro Series I/A control system which is used for plant control and monitoring and as a protection system for the cold neutron source. This paper will provide technical information on both systems, their trip logics, their interconnections with each other, and their integration into the reactor control and monitoring system and control panels. (author)

  4. Nuclear reactor system for ABWR

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Kitagawa, Koji

    1997-01-01

    Various tests and measurements were performed during the pre-operational test run of Unit No. 6 of The Tokyo Electric Power Co., Inc.'s Kashiwazaki-Kariwa Nuclear Power Station, the first advanced boiling water reactor (ABWR) unit in the world, and the design and performance adequacy of the ABWR were confirmed. The realization of the ABWR in Japan took about 20 years. It was decided that technologies for the reactor internal pump (RIP) and the fine-motion control rod drive (FMCRD), which had been applied in Europe, would be incorporated in the ABWR aiming at simplification of its structure and operation. These main components were evaluated, modified and verified in consideration of the unique Japanese environment, such as seismic conditions, through a joint study program with Japanese utilities as well as an improvement and standardization program in cooperation with the government. In addition to incorporating RIP and FMCRD technologies, the ABWR also has improved features in terms of the design of the reactor pressure vessel and internals, as well as automated servicing equipment for the RIP, FMCRD, and primary containment vessel. (author)

  5. Dosimetry system of the RB reactor

    International Nuclear Information System (INIS)

    Lolic, B.; Vukadin, D.

    1962-01-01

    Although RB reactor is operated at very low power levels, safety and dosimetry systems have high importance. This paper shows detailed dosimetry system with fundamental typical components. Estimated radiation doses dependent on reactor power are given at some characteristic points in the rooms nearby reactor

  6. Nuclear reactor vessel decontamination systems

    International Nuclear Information System (INIS)

    McGuire, P. J.

    1985-01-01

    There is disclosed in the present application, a decontamination system for reactor vessels. The system is operatable without entry by personnel into the contaminated vessel before the decontamination operation is carried out and comprises an assembly which is introduced into the vertical cylindrical vessel of the typical boiling water reactor through the open top. The assembly includes a circular track which is centered by guideways permanently installed in the reactor vessel and the track guides opposed pairs of nozzles through which water under very high pressure is directed at the wall for progressively cutting and sweeping a tenacious radioactive coating as the nozzles are driven around the track in close proximity to the vessel wall. The whole assembly is hoisted to a level above the top of the vessel by a crane, outboard slides on the assembly brought into engagement with the permanent guideways and the assembly progressively lowered in the vessel as the decontamination operation progresses. The assembly also includes a low pressure nozzle which forms a spray umbrella above the high pressure nozzles to contain radioactive particles dislodged during the decontamination

  7. Reactor technology: power conversion systems and reactor operation and maintenance

    International Nuclear Information System (INIS)

    Powell, J.R.

    1977-01-01

    The use of advanced fuels permits the use of coolants (organic, high pressure helium) that result in power conversion systems with good thermal efficiency and relatively low cost. Water coolant would significantly reduce thermal efficiency, while lithium and salt coolants, which have been proposed for DT reactors, will have comparable power conversion efficiencies, but will probably be significantly more expensive. Helium cooled blankets with direct gas turbine power conversion cycles can also be used with DT reactors, but activation problems will be more severe, and the portion of blanket power in the metallic structure will probably not be available for the direct cycle, because of temperature limitations. A very important potential advantage of advanced fuel reactors over DT fusion reactors is the possibility of easier blanket maintenance and reduced down time for replacement. If unexpected leaks occur, in most cases the leaking circuit can be shut off and a redundant cooling curcuit will take over the thermal load. With the D-He 3 reactor, it appears practical to do this while the reactor is operating, as long as the leak is small enough not to shut down the reactor. Redundancy for Cat-D reactors has not been explored in detail, but appears feasible in principle. The idea of mobile units operating in the reactor chamber for service and maintenance of radioactive elements is explored

  8. Emergency system for nuclear reactors

    International Nuclear Information System (INIS)

    1976-01-01

    The invention concerns a circuit called 'of emergency help' intended to remove, in a safe and quick manner, the residual thermal power on the safety vessel of a fast neutron reactor cooled by a liquid metal flow, in the event of a failure occurring inside the main reactor vessel or on it. This system includes a network of spray nozzle tubes, distributed around and near the external surface of the safety vessel, to project on to the surface of the vessel a mist of a liquid having high latent vaporisation heat. The steam produced on contact with the safety vessel is collected in the space provided between the safety vessel and the external protection vessel by at least one collector pipe for dischaging this steam outside the vessel. Under a preferred design mode of the invention the liquid is water the use of which turns out to be particularly advantageous in practice owing to its favourable physical properties and its low cost [fr

  9. The Optimization of power reactor control system

    International Nuclear Information System (INIS)

    Danupoyo, S.D.

    1997-01-01

    A power reactor is an important part in nuclear powered electrical plant systems. Success in controlling the power reactor will establish safety of the whole power plant systems. Until now, the power reactor has been controlled by a classical control system that was designed based on output feedback method. To meet the safety requirements that are now more restricted, the recently used power reactor control system should be modified. this paper describes a power reactor control system that is designed based on a state feedback method optimized with LQG (Linear-quadrature-gaussian) method and equipped with a state estimator. A pressurized-water type reactor has been used as the model. by using a point kinetics method with one group delayed neutrons. the result of simulation testing shows that the optimized control system can control the power reactor more effective and efficient than the classical control system

  10. Pneumatic transport systems for TRIGA reactors

    International Nuclear Information System (INIS)

    Bolton, John A.

    1970-01-01

    Main parameters and advantages of pneumatically operated systems, primarily those operated by gas pressure are discussed. The special irradiation ends for the TRIGA reactor are described. To give some idea of the complexity of some modern systems, the author presents the large system currently operating at the National Bureau of Standards in Washington. In this system, 13 stations are located throughout the radiochemistry laboratories and three irradiation ends are located in the reactor, which is a 14-megawatt unit. The system incorporates practically every fail-safe device possible, including ball valves located on all capsule lines entering the reactor area, designed to close automatically in the event of a reactor scram, and at that time capsules within the reactor would be diverted by means of switches located on the inside of the reactor wall. The whole system is under final control of a permission control panel located in the reactor control room. Many other safety accessories of the system are described

  11. Digital control system of advanced reactor

    International Nuclear Information System (INIS)

    Peng Huaqing; Zhang Rui; Liu Lixin

    2001-01-01

    This article produced the Digital Control System For Advanced Reactor made by NPIC. This system uses Siemens SIMATIC PCS 7 process control system and includes five control system: reactor power control system, pressurizer level control system, pressurizer pressure control system, steam generator water level control system and dump control system. This system uses three automatic station to realize the function of five control system. Because the safety requisition of reactor is very strict, the system is redundant. The system configuration uses CFC and SCL. the human-machine interface is configured by Wincc. Finally the system passed the test of simulation by using RETRAN 02 to simulate the control object. The research solved the key technology of digital control system of reactor and will be very helpful for the nationalization of digital reactor control system

  12. Propose Reactor Control and Monitoring System for RTP

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Izhar Abu Hussin; Mohd Idris Taib; Mohd Khairulezwan Abdul Manan; Nurfarhana Ayuni Joha

    2011-01-01

    Reactor control and monitoring system is a one of the important features used in reactor. The control and monitoring must come together to provide safety, excellent performance and reliable in nuclear reactor technology application. Objectives of this technical paper are to design and propose reactor control system and reactor monitoring system in Research Reactor (RTP) for Reactor Upgrading Project. (author)

  13. Recirculation system for nuclear reactors

    International Nuclear Information System (INIS)

    Braun, H. E.; Dollard, W. J.; Tower, S. N.

    1980-01-01

    A recirculation system for use in pressurized water nuclear reactors to increase the output temperature of the reactor coolant, thereby achieving a significant improvement in plant efficiency without exceeding current core design limits. A portion of the hot outlet coolant is recirculated to the inlets of the peripheral fuel assemblies which operate at relatively low power levels. The outlet temperature from these peripheral fuel assemblies is increased to a temperature above that of the average core outlet. The recirculation system uses external pumps and introduces the hot recirculation coolant to the free space between the core barrel and the core baffle, where it flows downward and inward to the inlets of the peripheral fuel assemblies. In the unlikely event of a loss of coolant accident, the recirculation system flow path through the free space and to the inlets of the fuel assemblies is utilized for the injection of emergency coolant to the lower vessel and core. During emergency coolant injection, the emergency coolant is prevented from bypassing the core through the recirculation system by check valves inserted into the recirculation system piping

  14. Computerized reactor pressure vessel materials information system

    International Nuclear Information System (INIS)

    Strosnider, J.; Monserrate, C.; Kenworthy, L.D.; Tether, C.D.

    1980-10-01

    A computerized information system for storage and retrieval of reactor pressure vessel materials data was established, as part of Task Action Plan A-11, Reactor Vessel Materials Toughness. Data stored in the system are necessary for evaluating the resistance of reactor pressure vessels to flaw-induced fracture. This report includes (1) a description of the information system; (2) guidance on accessing the system; and (3) a user's manual for the system

  15. Breeding description for fast reactors and symbiotic reactor systems

    International Nuclear Information System (INIS)

    Hanan, N.A.

    1979-01-01

    A mathematical model was developed to provide a breeding description for fast reactors and symbiotic reactor systems by means of figures of merit type quantities. The model was used to investigate the effect of several parameters and different fuel usage strategies on the figures of merit which provide the breeding description. The integrated fuel cycle model for a single-reactor is reviewed. The excess discharge is automatically used to fuel identical reactors. The resulting model describes the accumulation of fuel in a system of identical reactors. Finite burnup and out-of-pile delays and losses are treated in the model. The model is then extended from fast breeder park to symbiotic reactor systems. The asymptotic behavior of the fuel accumulation is analyzed. The asymptotic growth rate appears as the largest eigenvalue in the solution of the characteristic equations of the time dependent differential balance equations for the system. The eigenvector corresponding to the growth rate is the core equilibrium composition. The analogy of the long-term fuel cycle equations, in the framework of this model, and the neutron balance equations is explored. An eigenvalue problem adjoint to the one generated by the characteristic equations of the system is defined. The eigenvector corresponding to the largest eigenvalue, i.e. to the growth rate, represents the ''isotopic breeding worths.'' Analogously to the neutron adjoint flux it is shown that the isotopic breeding worths represent the importance of an isotope for breeding, i.e. for the growth rate of a system

  16. Power control system in BWR type reactors

    International Nuclear Information System (INIS)

    Nishizawa, Yasuo.

    1980-01-01

    Purpose: To control the reactor power so that the power distribution can satisfy the limiting conditions, by regulating the reactor core flow rate while monitoring the power distribution in the reactor core of a BWR type reactor. Constitution: A power distribution monitor determines the power distribution for the entire reactor core based on the data for neutron flux, reactor core thermal power, reactor core flow rate and control rod pattern from the reactor and calculates the linear power density distribution. A power up ratio computing device computes the current linear power density increase ratio. An aimed power up ratio is determined by converting the electrical power up ratio transferred from a load demand input device into the reactor core thermal power up ratio. The present reactor core thermal power up ratio is subtracted from the limiting power up ratio and the difference is sent to an operation amount indicator and the reactor core flow rate is changed in a reactor core flow rate regulator, by which the reactor power is controlled. (Moriyama, K.)

  17. Functional systems of a pressurized water reactor

    International Nuclear Information System (INIS)

    Heinzel, V.

    1982-01-01

    The main topics, discussed in the present paper, are: - Principle design of the reactor coolant system - reactor pressure vessel with internals - containment design - residual heat removal and emergency cooling systems - nuclear component cooling systems - emergency feed water systems - plant electric power supply system. (orig./RW)

  18. Nuclear reactor coolant and cover gas system

    International Nuclear Information System (INIS)

    George, J.A.; Redding, A.H.; Tower, S.N.

    1976-01-01

    A core cooling system is disclosed for a nuclear reactor of the type utilizing a liquid coolant with a cover gas above free surfaces of the coolant. The disclosed system provides for a large inventory of reactor coolant and a balanced low pressure cover gas arrangement. A flow restricting device disposed within a reactor vessel achieves a pressure of the cover gas in the reactor vessel lower than the pressure of the reactor coolant in the vessel. The low gas pressure is maintained over all free surfaces of the coolant in the cooling system including a coolant reservoir tank. Reactor coolant stored in the reservoir tank allows for the large reactor coolant inventory provided by the invention

  19. Particle Swarm Optimization applied to combinatorial problem aiming the fuel recharge problem solution in a nuclear reactor

    International Nuclear Information System (INIS)

    Meneses, Anderson Alvarenga de Moura; Schirru, Roberto

    2005-01-01

    This work focuses on the usage the Artificial Intelligence technique Particle Swarm Optimization (PSO) to optimize the fuel recharge at a nuclear reactor. This is a combinatorial problem, in which the search of the best feasible solution is done by minimizing a specific objective function. However, in this first moment it is possible to compare the fuel recharge problem with the Traveling Salesman Problem (TSP), since both of them are combinatorial, with one advantage: the evaluation of the TSP objective function is much more simple. Thus, the proposed methods have been applied to two TSPs: Oliver 30 and Rykel 48. In 1995, KENNEDY and EBERHART presented the PSO technique to optimize non-linear continued functions. Recently some PSO models for discrete search spaces have been developed for combinatorial optimization. Although all of them having different formulation from the ones presented here. In this paper, we use the PSO theory associated with to the Random Keys (RK)model, used in some optimizations with Genetic Algorithms. The Particle Swarm Optimization with Random Keys (PSORK) results from this association, which combines PSO and RK. The adaptations and changings in the PSO aim to allow the usage of the PSO at the nuclear fuel recharge. This work shows the PSORK being applied to the proposed combinatorial problem and the obtained results. (author)

  20. Primary cooling system for BWR type reactor

    International Nuclear Information System (INIS)

    Ibe, Eishi; Takahashi, Masanori; Aoki, Yasuko

    1993-01-01

    The present invention effectively uses information from a plurality of sensors in order to suppress corrosion circumstance of a nuclear reactor. That is, a predetermined general water quality factor at a predetermined position is determined as a standard index. A concentration of a water quality improver is controlled such that the index is within an aimed range. For this purpose, the entire sensor groups disposed in a primary coolant system of a nuclear reactor are divided into a plural systems of sensor groups each disposed on every different positions. Then, a predetermined sensor group (standard sensor group) is connected to a computing device and a data base so that it is always monitored for calculating and estimating the standard index. Only oxidative ingredient in water at the measuring point is noted, and a concentration distribution which agrees with an actually measured value of oxidative ingredients is extracted from data base and used as a correct concentration distribution. With such procedures, reactor water quality can be estimated accurately while compensating erroneous factors of individual sensors. Even when a new sensor is used, it is not necessary to greatly change control logic. (I.S.)

  1. Feedwater control system in BWR type reactor

    International Nuclear Information System (INIS)

    Tanji, Jun-ichi; Oomori, Takashi.

    1980-01-01

    Purpose: To improve the water level control performance in BWR type reactor by regulating the water level set to the reactor depending on the rate of change in the recycling amount of coolant to thereby control the fluctuations in the water level resulted in the reactor within an aimed range even upon significant fluctuations in the recycling flow rate. Constitution: The recycling flow rate of coolant in the reactor is detected and the rate of its change with time is computed to form a rate of change signal. The rate of change signal is inputted to a reactor level setter to amend the actual reactor water level demand signal and regulate the water level set to the reactor water depending on the rate of change in the recycling flow rate. Such a regulation method for the set water level enables to control the water level fluctuation resulted in the reactor within the aimed range even upon the significant fluctuation in the recycling flow rate and improve the water level control performance of the reactor, whereby the operationability for the reactor is improved to enhance the operation rate. (Moriyama, K.)

  2. Tandem Mirror Reactor Systems Code (Version I)

    International Nuclear Information System (INIS)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost

  3. Safety analysis of reactor's cooling system

    International Nuclear Information System (INIS)

    1999-01-01

    Results of the analysis of reactor's RBMK-1500 coolant system during normal operation mode, hydrodynamic testing and in the case of earthquake are presented. Analysis was performed using RELAP5 code. Calculations showed the most vulnerable place in the reactor's coolant system. It was found that in the case of earthquake the horizontal support system of drum separator could be damaged

  4. Decision aid systems for nuclear reactors

    International Nuclear Information System (INIS)

    Evrard, J.M.; Martinez, J.M.

    1992-01-01

    The development of new techniques, especially in the field of artificial intelligence, makes it possible to design more powerful computerized systems, supporting tasks related to the design and operation of nuclear power plants. The potential contribution and perspectives for the integration of such systems depend upon whether the improvement of existing plants, the design of next generation reactors or future projects are concerned. We present four systems which show the state-of-the-art as regards knowledge-based systems. The first system is related to the automatic generation of procedures dealing with loss of electrical sources. The second one aims at assisting the power plant utility in following the technical specifications during maintenance operations. Finally, the last two are designed to help an emergency team evaluate and forecast the evolution of an accidental situation in a nuclear reactor. Perspectives for on-line operator assistance are then discussed, as well as the main technical themes which will make it possible to design such systems. We conclude with the difficulties which are encountered upon the integration of these tools: their validation and task sharing between man and machine

  5. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these ......Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  6. RSAS: a Reactor Safety Assessment System

    International Nuclear Information System (INIS)

    Sebo, D.E.; Dixon, B.W.; Bray, M.A.

    1985-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (NRC). RSAS is being developed for use at the NRC's Operations Center in the event of a serious incident at a licensed nuclear power plant. The system generates situation assessments for the NRC Reactor Safety Team based on a limited number of plant parameters, known operator actions, and plant status data. The RSAS rule base currently covers one reactor type. The extension of the rule base to other reactor types is also discussed

  7. Nuclear reactor auxiliary heat removal system

    International Nuclear Information System (INIS)

    Thompson, R.E.; Pierce, B.L.

    1977-01-01

    An auxiliary heat removal system to remove residual heat from gas-cooled nuclear reactors is described. The reactor coolant is expanded through a turbine, cooled in a heat exchanger and compressed by a compressor before reentering the reactor coolant. The turbine powers both the compressor and the pump which pumps a second fluid through the heat exchanger to cool the reactor coolant. A pneumatic starter is utilized to start the turbine, thereby making the auxiliary heat removal system independent of external power sources

  8. Expert system for fast reactor diagnostic

    International Nuclear Information System (INIS)

    Parcy, J.P.

    1982-09-01

    A general description of expert systems is given. The operation of a fast reactor is reviewed. The expert system to the diagnosis of breakdowns limited to the reactor core. The structure of the system is described: specification of the diagnostics; structure of the data bank and evaluation of the rules; specification of the prediagnostics and evaluation; explanation of the diagnostics; time evolution of the system; comparison with other expert systems. Applications to some cases of faults are finally presented [fr

  9. Reactor inventory monitoring system for Angra-1 reactor

    International Nuclear Information System (INIS)

    S Neto, Joaquim A.; Silva, Marcos C.; Pinheiro, Ronaldo F.M.; Soares, Milton; Martinez, Aquilino; Comerlato, Cesar A.; Oliveira, Eugenio A.

    1996-01-01

    This work describes the project of Reactor Inventory Monitoring System, which will be installed in Angra I Nuclear Power Plant. The inventory information is important to the operators take corrective actions in case of an incident that may cause a failure in the core cooling. (author)

  10. Innovative inspection system for reactor pressure vessels

    International Nuclear Information System (INIS)

    Mertens, K.; Trautmann, H.

    1999-01-01

    The versatile, compact and modern underwater systems described, the DELPHIN manipulators and MIDAS submarines, are innovative systems enabling RPV inspections at considerably reduced efforts and time, thus reducing the total time required for ISI of reactors. (orig./CB) [de

  11. Proceedings of workshop on reactor shutdown system

    International Nuclear Information System (INIS)

    1997-03-01

    India has gained considerable experience in design, development, construction and operation of research and power reactors during the last four decades. Reactor shutdown system (RSS) is the most important engineered safety system of any reactor. A lot of technological developments have taken place to improve the reactor shutdown systems, particularly with advancement in reliability analysis and instrumentation and control. If the reactor is not shutdown, the fuel may melt, releasing radioactivity and possibly reactivity addition as in the case of Fast Breeder Reactor (FBR). Apart from radiological safety consequences, large investment has to be written off. The function of the RSS is to stop fission chain reaction and prevent breach of fuel. The design of RSS is multidisciplinary. It requires reactor physics analysis, design of absorber rods, drive mechanisms, safety logic to order shutdown and instrumentation to detect unsafe conditions. High reliability is essential and this requires two independent shutdown systems. This book contains the proceedings of the workshop on reactor shutdown system and papers relevant to INIS are indexed separately

  12. TREAT Reactor Control and Protection System

    International Nuclear Information System (INIS)

    Lipinski, W.C.; Brookshier, W.K.; Burrows, D.R.; Lenkszus, F.R.; McDowell, W.P.

    1985-01-01

    The main control algorithm of the Transient Reactor Test Facility (TREAT) Automatic Reactor Control System (ARCS) resides in Read Only Memory (ROM) and only experiment specific parameters are input via keyboard entry. Prior to executing an experiment, the software and hardware of the control computer is tested by a closed loop real-time simulation. Two computers with parallel processing are used for the reactor simulation and another computer is used for simulation of the control rod system. A monitor computer, used as a redundant diverse reactor protection channel, uses more conservative setpoints and reduces challenges to the Reactor Trip System (RTS). The RTS consists of triplicated hardwired channels with one out of three logic. The RTS is automatically tested by a digital Dedicated Microprocessor Tester (DMT) prior to the execution of an experiment. 6 refs., 5 figs., 1 tab

  13. Reactor core design aiding system

    International Nuclear Information System (INIS)

    Kanazawa, Nobuhiro; Hamaguchi, Yukio; Nakao, Takashi; Kondo, Yasuhide

    1995-01-01

    A two-dimensional radial power distribution and an axial one-dimensional power distribution are determined based on a distribution of a three-dimensional infinite multiplication factor, to obtain estimated power distribution estimation values. The estimation values are synthesized to obtain estimated three-dimensional power distribution values. In addition, the distribution of a two-dimensional radial multiplication factor and the distribution of an one-dimensional axial multiplication factor are determined based on the three-dimensional power distribution, to obtain estimated values for the multiplication factor distribution. The estimated values are synthesized to form estimated values for the three-dimensional multiplication factor distribution. Further, estimated fuel loading pattern value is determined based on the three-dimensional power distribution or the two-dimensional radial power distribution. Since the processes for determining the estimated values comprise only additive and multiplying operations, processing time can be remarkably saved compared with calculation based on a detailed physical models. Since the estimation is performed on every fuel assemblies, a nervous circuit network not depending on the reactor core system can be constituted. (N.H.)

  14. Additional reactor protection system of RBMK-1500

    International Nuclear Information System (INIS)

    1999-01-01

    Analysis of anticipated transients without scram of RBMK-1500 reactor showed that additional reactor protection system is required. Data of accident analysis in the case of loose of external electric power and loose of vacuum in condensers of turbines are provided

  15. New technology for reactor protection system of CAREM reactor

    International Nuclear Information System (INIS)

    Dezzutti, J.C.; Verrastro, C.; Estryk, D.

    2009-01-01

    The use of FPGA in safety functions in a nuclear power plant, increase the reliability of software based systems, without loose any of the function required by the supervision and control systems. In this work the architecture of a Reactor Protection System is described, it use four independent measurement channels in 2 oo 4 configuration, each channel is based on diverse approach in 1 oo 2 configuration, the reliability of this system is near the same than the hardwired logic, with full performance like software based system. (author)

  16. Recommendations to designers aimed at minimizing radiation dose incurred in operation, maintenance, inspection and repair of light-water reactors

    International Nuclear Information System (INIS)

    1978-01-01

    In the framework of the exchange of experience between nuclear power plant operators organized by the services of the Commission of the European Communities an ad-hoc working party elaborated recommendations particularly directed to those concerned with design of light water reactor plants. The necessary design measures which should be followed to minimize radiation dose incurred in operation, maintenance, inspection and repair of such reactors are listed. The recommendations are based on recent views expressed by operating utilities within the Community. It is intended to revise these recommendations at suitable intervals in order to make use of the most recent experience and to keep the report up to date with the actual state of art in nuclear technology

  17. Distributed expert systems for nuclear reactor control

    International Nuclear Information System (INIS)

    Otaduy, P.J.

    1992-01-01

    A network of distributed expert systems is the heart of a prototype supervisory control architecture developed at the Oak Ridge National Laboratory (ORNL) for an advanced multimodular reactor. Eight expert systems encode knowledge on signal acquisition, diagnostics, safeguards, and control strategies in a hybrid rule-based, multiprocessing and object-oriented distributed computing environment. An interactive simulation of a power block consisting of three reactors and one turbine provides a realistic, testbed for performance analysis of the integrated control system in real-time. Implementation details and representative reactor transients are discussed

  18. REACTOR - a Concept for establishing a System-of-Systems

    Science.gov (United States)

    Haener, Rainer; Hammitzsch, Martin; Wächter, Joachim

    2014-05-01

    REACTOR is a working title for activities implementing reliable, emergent, adaptive, and concurrent collaboration on the basis of transactional object repositories. It aims at establishing federations of autonomous yet interoperable systems (Systems-of-Systems), which are able to expose emergent behaviour. Following the principles of event-driven service-oriented architectures (SOA 2.0), REACTOR enables adaptive re-organisation by dynamic delegation of responsibilities and novel yet coherent monitoring strategies by combining information from different domains. Thus it allows collaborative decision-processes across system, discipline, and administrative boundaries. Interoperability is based on two approaches that implement interconnection and communication between existing heterogeneous infrastructures and information systems: Coordinated (orchestration-based) communication and publish/subscribe (choreography-based) communication. Choreography-based communication ensures the autonomy of the participating systems to the highest possible degree but requires the implementation of adapters, which provide functional access to information (publishing/consuming events) via a Message Oriented Middleware (MOM). Any interconnection of the systems (composition of service and message cascades) is established on the basis of global conversations that are enacted by choreographies specifying the expected behaviour of the participating systems with respect to agreed Service Level Agreements (SLA) required by e.g. national authorities. The specification of conversations, maintained in commonly available repositories also enables the utilisation of systems for purposes (evolving) other than initially intended. Orchestration-based communication additionally requires a central component that controls the information transfer via service requests or event processing and also takes responsibility of managing business processes. Commonly available transactional object repositories are

  19. Seismic attenuation system for a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liszkai, Tamas; Cadell, Seth

    2018-01-30

    A system for attenuating seismic forces includes a reactor pressure vessel containing nuclear fuel and a containment vessel that houses the reactor pressure vessel. Both the reactor pressure vessel and the containment vessel include a bottom head. Additionally, the system includes a base support to contact a support surface on which the containment vessel is positioned in a substantially vertical orientation. An attenuation device is located between the bottom head of the reactor pressure vessel and the bottom head of the containment vessel. Seismic forces that travel from the base support to the reactor pressure vessel via the containment vessel are attenuated by the attenuation device in a direction that is substantially lateral to the vertical orientation of the containment vessel.

  20. Stack Monitoring System At PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Zamrul Faizad Omar; Mohd Sabri Minhat; Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Khairulezwan Abdul Manan; Nurfarhana Ayuni Joha; Izhar Abu Hussin

    2014-01-01

    This paper describes the current Stack Monitoring System at PUSPATI TRIGA Reactor (RTP) building. A stack monitoring system is a continuous air monitor placed at the reactor top for monitoring the presence of radioactive gaseous in the effluent air from the RTP building. The system consists of four detectors that provide the reading for background, particulate, Iodine and Noble gas. There is a plan to replace the current system due to frequent fault of the system, thus thorough understanding of the current system is required. Overview of the whole system will be explained in this paper. Some current results would be displayed and moving forward brief plan would be mentioned. (author)

  1. Aiming at super long term application of nuclear energy. Scope and subjects on the water cooled breeder reactor, the 'reduced moderation water reactor'

    International Nuclear Information System (INIS)

    Sato, Osamu; Tatematsu, Kenji; Tanaka, Yoji

    2001-01-01

    In order to make possible on nuclear energy application for super long term, development of sodium cooling type fast breeder reactor (FBR) has been carried out before today. However, as it was found that its commercialization was technically and economically difficult beyond expectation, a number of nations withdrew from its development. And, as Japan has continued its development, scope of its actual application is not found yet. Now, a research and development on a water cooling type breeder reactor, the reduced moderation water reactor (RMWR)' using LWR technology has now been progressed under a center of JAERI. This RMWR is a reactor intending a jumping upgrade of conversion ratio by densely arranging fuel bars to shift neutron spectrum to faster region. The RMWR has a potential realizable on full-dress plutonium application at earlier timing through its high conversion ratio, high combustion degree, plutonium multi-recycling, and so on. And, it has also feasibility to solve uranium resource problem by realization of conversion ratio with more than 1.0, to contribute to super long term application of nuclear energy. Here was investigated on an effect of reactor core on RMWR, especially of its conversion ratio and plutonium loading on introduction effect as well as on how RMWR could be contributed to reduction of uranium resource consumption, by drawing some scenario on development of power generation reactor and fuel cycle in Japan under scope of super long term with more than 100 years in future. And, trial calculation on power generation cost of the RMWR was carried out to investigate some subjects at a viewpoint of upgrading on economy. (G.K.)

  2. Sampling system for a boiling reactor NPP

    International Nuclear Information System (INIS)

    Zabelin, A.I.; Yakovleva, E.D.; Solov'ev, Yu.A.

    1976-01-01

    Investigations and pilot running of the nuclear power plant with a VK-50 boiling reactor reveal the necessity of normalizing the design system of water sampling and of mandatory replacement of the needle-type throttle device by a helical one. A method for designing a helical throttle device has been worked out. The quantitative characteristics of depositions of corrosion products along the line of reactor water sampling are presented. Recommendations are given on the organizaton of the sampling system of a nuclear power plant with BWR type reactors

  3. Proposal for a radiation shielding study aiming the implantation of neutrons beam shutter in the J-9 radiation channel of the Argonauta reactor of the Nuclear Engineering Institute

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, Larissa R.P.; Cardoso, Domingos D’Oliveira, E-mail: larissa.xavier@cnen.gov.br, E-mail: domingosoliveiralvr71@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Ferreira, Francisco José de Oliveira; Voi, Dante Luiz, E-mail: fferreira@ien.gov.br, E-mail: dante@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Argonauta, the only nuclear research reactor situated in Rio de Janeiro, located at the Institute of Nuclear Engineering (IEN), regularly serves a network of users focused on research and development, and also provides its infrastructure for experimental classes and completion work course. Due to increasing demand for non-destructive thermal neutron assays and production of radioisotopes, there is a search for new procedures and/or devices that optimize users' exposure to neutrons. The implementation of mechanisms that allow access to the irradiation channels without the reactor being turned off and with a shielding configuration that limits the occupational doses at this location is very useful for the operation of the reactor. In order to achieve this, the present work proposes the establishment of a neutron beam shutter of the J-9 irradiation channel of the IEN's Argonauta reactor. In a first step, experimental measurements were made in the irradiation channel of the reactor using a BF3 detector, which is coupled to a spectrometer. In this phase, the neutron beam was aligned to the spectrometer, and different materials were used as shields, aiming the attenuation of the beam. To validate and/or change the configuration of the barrier that best meets the material irradiation needs, a second planned phase is involving the neutron flux simulation of the reactor and the various shields with different boundary conditions using the particle transport code, Monte Carlo N-Particle Extended (MCNP- X). (author)

  4. Proposal for a radiation shielding study aiming the implantation of neutrons beam shutter in the J-9 radiation channel of the Argonauta reactor of the Nuclear Engineering Institute

    International Nuclear Information System (INIS)

    Xavier, Larissa R.P.; Cardoso, Domingos D’Oliveira; Ferreira, Francisco José de Oliveira; Voi, Dante Luiz

    2017-01-01

    Argonauta, the only nuclear research reactor situated in Rio de Janeiro, located at the Institute of Nuclear Engineering (IEN), regularly serves a network of users focused on research and development, and also provides its infrastructure for experimental classes and completion work course. Due to increasing demand for non-destructive thermal neutron assays and production of radioisotopes, there is a search for new procedures and/or devices that optimize users' exposure to neutrons. The implementation of mechanisms that allow access to the irradiation channels without the reactor being turned off and with a shielding configuration that limits the occupational doses at this location is very useful for the operation of the reactor. In order to achieve this, the present work proposes the establishment of a neutron beam shutter of the J-9 irradiation channel of the IEN's Argonauta reactor. In a first step, experimental measurements were made in the irradiation channel of the reactor using a BF3 detector, which is coupled to a spectrometer. In this phase, the neutron beam was aligned to the spectrometer, and different materials were used as shields, aiming the attenuation of the beam. To validate and/or change the configuration of the barrier that best meets the material irradiation needs, a second planned phase is involving the neutron flux simulation of the reactor and the various shields with different boundary conditions using the particle transport code, Monte Carlo N-Particle Extended (MCNP- X). (author)

  5. Development on multifunctional phased-array fault inspection technology. Aiming at integrity on internals in nuclear power plant reactors

    International Nuclear Information System (INIS)

    Komura, Ichiro; Hirasawa, Taiji; Nagai, Satoshi; Naruse, Katsuhiko

    2002-01-01

    On nuclear power plants sharing an important role in Japanese energy policy, their higher safety and reliability than the other plants are required, and their non-destructive inspection occupies important position for information means to judge their integrity. And, for a part of responses to recent rationalization of the plant operation and increase of aged plants, requirements and positioning onto the non-destructive inspection technology also change. As a result, not only concept on allowable fault sizes is adopted, but also inspection on reactor internals without conventional regulation is obliged to require for size evaluation (sizing) with higher precision to use for secure detection and integrity evaluation of the faults than sizes determined for every internals. For requirement with such higher levels for fault detection and sizing, and for requirement for effective inspection, phased-array supersonic wave fault inspection method is one of the methods with high potential power. Here were introduced on principles and characteristics of the phased-array supersonic wave fault inspection method, and on various fault inspection methods and functions mainly developed for reactor internals inspection. (G.K.)

  6. ANALYTICAL SYNTHESIS OF CHEMICAL REACTOR CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Alexander Labutin

    2017-02-01

    Full Text Available The problem of the analytical synthesis of the synergetic control system of chemical reactor for the realization of a complex series-parallel exothermal reaction has been solved. The synthesis of control principles is performed using the analytical design method of aggregated regulators. Synthesized nonlinear control system solves the problem of stabilization of the concentration of target component at the exit of reactor and also enables one to automatically transfer to new production using the equipment.

  7. Scanning tunneling microscope assembly, reactor, and system

    Science.gov (United States)

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  8. Reactor protection systems of 500 MWe PHWRs

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, G; Kelkar, M G; Apte, Ravindra [C and I Group, Nuclear Power Corporation, Mumbai (India)

    1997-03-01

    The 500 MWe PHWR has two totally independent, diverse, fast acting shutdown system called Shutdown System 1 (SDS 1) and Shutdown System 2 (SDS 2). The trip generation circuitry of SDS 1 and SDS 2 are known as Reactor Protection System 1 (RPS 1) and Reactor Protection System 2 (RPS 2) respectively. Some of the features specific to 500 MWe reactors are Core Over Power Protection System (COPPS) based upon in core Self Powered Neutron Detector (SPND) signals, use of local two out of three coincidence logic and adoption of overlap testing for RPS 2, use of Fine Impulse Testing (FIT) in RPS 2, testing of the final control elements namely electro-magnetic clutch of individual Shutoff Rods (SRs) of SDS 1 and all the fast acting valves of SDS 2, etc. The two shutdown systems have totally separate sets of sensors and associated signal processing circuitry as well as physical arrangements. A separate computerised test and monitoring unit is used for each of the two shutdown systems. Use of Programmable Digital Comparator (PDC) unit exclusively for reactor protection systems, has been adopted. The capability of PDC unit is enhanced and communication links are provided for its integration in over all system. The paper describes the design features of reactor protection systems. (author). 3 refs., 7 figs., 3 tabs.

  9. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  10. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    International Nuclear Information System (INIS)

    Neil Todreas; Pavel Hejzlar

    2008-01-01

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores treated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcome the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better thermal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor

  11. Development of an automatic reactor inspection system

    International Nuclear Information System (INIS)

    Kim, Jae Hee; Eom, Heung Seop; Lee, Jae Cheol; Choi, Yoo Raek; Moon, Soon Seung

    2002-02-01

    Using recent technologies on a mobile robot computer science, we developed an automatic inspection system for weld lines of the reactor vessel. The ultrasonic inspection of the reactor pressure vessel is currently performed by commercialized robot manipulators. Since, however, the conventional fixed type robot manipulator is very huge, heavy and expensive, it needs long inspection time and is hard to handle and maintain. In order to resolve these problems, we developed a new automatic inspection system using a small mobile robot crawling on the vertical wall of the reactor vessel. According to our conceptual design, we developed the reactor inspection system including an underwater inspection robot, a laser position control subsystem, an ultrasonic data acquisition/analysis subsystem and a main control subsystem. We successfully carried out underwater experiments on the reactor vessel mockup, and real reactor ready for Ulchine nuclear power plant unit 6 at Dusan Heavy Industry in Korea. After this project, we have a plan to commercialize our inspection system. Using this system, we can expect much reduction of the inspection time, performance enhancement, automatic management of inspection history, etc. In the economic point of view, we can also expect import substitution more than 4 million dollars. The established essential technologies for intelligent control and automation are expected to be synthetically applied to the automation of similar systems in nuclear power plants

  12. REACTOR CONTROL ROD OPERATING SYSTEM

    Science.gov (United States)

    Miller, G.

    1961-12-12

    A nuclear reactor control rod mechanism is designed which mechanically moves the control rods into and out of the core under normal conditions but rapidly forces the control rods into the core by catapultic action in the event of an emergency. (AEC)

  13. Reactor core operation management system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tomomi.

    1992-05-28

    Among operations of periodical inspection for a nuclear power plant, sequence, time and safety rule, as well as necessary equipments and the number thereof required for each of the operation are determined previously for given operation plannings, relevant to the reactor core operations. Operation items relative to each of coordinates of the reactor core are retrieved and arranged based on specified conditions, to use the operation equipments effectively. Further, a combination of operations, relative to the reactor core coordinates with no physical interference and shortest in accordance with safety rules is judged, and the order and the step of the operation relevant to the entire reactor core operations are planned. After the start of the operation, the necessity for changing the operation sequence is judged depending on the judgement as to whether it is conducted according to the safety rule and the deviation between the plan and the result, based on the information for the progress of each of the operations. Alternatively, the operation sequence and the step to be changed are planned again in accordance with the requirement for the change of the operation planning. Then, the shortest operation time can be planned depending on the simultaneous operation impossible condition and the condition for the operation time zone determined by labor conditions. (N.H.).

  14. Reactor core operation management system

    International Nuclear Information System (INIS)

    Sato, Tomomi.

    1992-01-01

    Among operations of periodical inspection for a nuclear power plant, sequence, time and safety rule, as well as necessary equipments and the number thereof required for each of the operation are determined previously for given operation plannings, relevant to the reactor core operations. Operation items relative to each of coordinates of the reactor core are retrieved and arranged based on specified conditions, to use the operation equipments effectively. Further, a combination of operations, relative to the reactor core coordinates with no physical interference and shortest in accordance with safety rules is judged, and the order and the step of the operation relevant to the entire reactor core operations are planned. After the start of the operation, the necessity for changing the operation sequence is judged depending on the judgement as to whether it is conducted according to the safety rule and the deviation between the plan and the result, based on the information for the progress of each of the operations. Alternatively, the operation sequence and the step to be changed are planned again in accordance with the requirement for the change of the operation planning. Then, the shortest operation time can be planned depending on the simultaneous operation impossible condition and the condition for the operation time zone determined by labor conditions. (N.H.)

  15. Cooling system upon reactor isolation

    International Nuclear Information System (INIS)

    Yamamoto, Kohei; Oda, Shingo; Miura, Satoshi

    1992-01-01

    A water level indicator for detecting the upper limit value for a range of using a suppression pool and a thermometer for detecting the temperature of water at the cooling water inlet of an auxiliary device are disposed. When a detection signal is intaken and the water level in the suppression pool reach the upper limit value for the range of use, a secondary flow rate control value is opened and a primary flow rate control valve is closed. When the temperature of the water at the cooling water inlet of the auxiliary device reaches the upper limit value, the primary and the secondary flow rate control valves are opened. During a stand-by state, the first flow rate control valve is set open and the secondary flow rate control valve is set closed respectively. After reactor isolation, if a reactor water low level signal is received, an RCIC pump is actuated and cooling water is sent automatically under pressure from a condensate storage tank to the reactor and the auxiliary device requiring coolants by way of the primary flow rate control valve. Rated flow rate is ensured in the reactor and cooling water of an appropriate temperature can be supplied to the auxiliary device. (N.H.)

  16. EMERIS: an advanced information system for a materials testing reactor

    International Nuclear Information System (INIS)

    Adorjan, F.; Buerger, L.; Lux, I.; Mesko, L.; Szabo, K.; Vegh, J.; Ivanov, V.V.; Mozhaev, A.A.; Yakovlev, V.V.

    1990-06-01

    The basic features of the Materials Testing Reactor of IAE, Moscow (MR) Information System (EMERIS) are outlined. The purpose of the system is to support reactor and experimental test loop operators by a flexible, fully computerized and user-friendly tool for the aquisition, analysis, archivation and presentation of data obtained during operation of the experimental facility. High availability of EMERIS services is ensured by redundant hardware and software components, and by automatic configuration procedure. A novel software feature of the system is the automatic Disturbance Analysis package, which is aimed to discover primary causes of irregularities occurred in the technology. (author) 2 refs.; 2 figs

  17. Design of virtual SCADA simulation system for pressurized water reactor

    International Nuclear Information System (INIS)

    Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-01-01

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor

  18. Design of virtual SCADA simulation system for pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijaksono, Umar, E-mail: umar.wijaksono@student.upi.edu; Abdullah, Ade Gafar; Hakim, Dadang Lukman [Electrical Power System Research Group, Department of Electrical Engineering Education, Jl. Dr. Setiabudi No. 207 Bandung, Indonesia 40154 (Indonesia)

    2016-02-08

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  19. Cooling system for auxiliary reactor component

    International Nuclear Information System (INIS)

    Fujihira, Tomoko.

    1991-01-01

    A cooling system for auxiliary reactor components comprises three systems, that is, two systems of reactor component cooling water systems (RCCW systems) and a high pressure component cooling water system (HPCCW system). Connecting pipelines having partition valves are intervened each in a cooling water supply pipeline to an emmergency component of each of the RCCW systems, a cooling water return pipeline from the emmergency component of each of the RCCW systems, a cooling water supply pipeline to each of the emmergency components of one of the RCCW system and the HPCCW system and a cooling water return pipeline from each of the emmergency components of one of the RCCW system and the HPCCW system. With such constitution, cooling water can be supplied also to the emmergency components in the stand-by system upon periodical inspection or ISI, thereby enabling to improve the backup performance of the emmergency cooling system. (I.N.)

  20. Theoretical studies aiming at the IEA-R1 reactor core conversion from high U-235 enrichment to low U-235 enrichment

    International Nuclear Information System (INIS)

    Frajndlich, R.

    1982-01-01

    The research reactors, of which the fuel elements are of MTR type, functions presently, almost in their majority with high U-235 enrichment. The fear that those fuel elements might generate a considerabLe proliferation of nuclear weapons rendered almost mandatory the conversion of highly enriched fuel elements to a low U-235 enrichment. As the IEA-R1 reactor of IPEN is operating with highly enriched fuel elements a study aiming at this conversion was done. The problems related to the conversion and the results obtained, demonstrated the technical viabilty for its realization. (E.G.) [pt

  1. Savannah River Plant's Accountability Inventory Management System (AIMS) (Nuclear materials inventory control)

    International Nuclear Information System (INIS)

    Croom, R.G.

    1976-06-01

    The Accountability Inventory Management System (AIMS) is a new computer inventory control system for nuclear materials at the Savannah River Plant, Aiken, South Carolina. The system has two major components, inventory files and system parameter files. AIMS, part of the overall safeguards program, maintains an up-to-date record of nuclear material by location, produces reports required by ERDA in addition to onplant reports, and is capable of a wide range of response to changing input/output requirements through use of user-prepared parameter cards, as opposed to basic system reprogramming

  2. Where are we now? The strengthened safeguards system: Origins, aims, features, issues and prospects

    International Nuclear Information System (INIS)

    Schriefer, D.

    1998-01-01

    The present status of the strengthened safeguards system includes the origins, aims, features, issues and future prospects. The areas of emphasis concerning the strengthened safeguards system are: access to information (environmental sampling and improved information analysis), access to sites, rational use of resources (cost analysis of present safeguards, increased cooperation with state systems, cost savings in traditional safeguards activities)

  3. Recycling systems for BWR type reactors

    International Nuclear Information System (INIS)

    Takagi, Akio; Yamamoto, Fumiaki; Fukumoto, Ryuji.

    1986-01-01

    Purpose: To stabilize the coolant flowing characteristics and reactor core reactivity. Constitution: The recycling system in a BWR type reactor comprises a recycling pump disposed to the outside of a reactor pressure vessel, a ring header connected to the recycling pump through main pipe ways, and a plurality of pipes branched from and connected with the ring header and connected to a plurality of jet pumps within the pressure vessel. Then, by making the diameter for the pipeways of each of the branched pipes different from each other, the effective cross-sectional area is varied to thereby average the coolant flow rate supplied to each of the jet pumps. (Seki, T.)

  4. Loose parts monitoring in light water reactor cooling systems

    International Nuclear Information System (INIS)

    Santos, A.; Alma, B.J.

    1982-01-01

    The work related to loose monitoring system for light water reactor, developed at GRS - Munique, are described. The basic problems due to the exact localization and detection of the loose part as well the research activities and development necessary aiming to obtain the best techniques in this field. (E.G.) [pt

  5. Gaseous fuel reactors for power systems

    Science.gov (United States)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  6. Nuclear reactor machine refuelling system

    International Nuclear Information System (INIS)

    Cashen, W.S.; Erwin, D.

    1977-01-01

    Part of an on-line fuelling machine for a CANDU pressure-tube reactor is described. The present invention provides a refuelling machine wherein the fuelling components, including the fuel carrier and the closure adapter, are positively positioned and retained within the machine magazine or positively secured to the machine charge tube head, and cannot be accidentally disengaged as in former practice. The positive positioning devices include an arcuate keeper plate. Simplified hooked fingers are used. (NDH)

  7. Reactor vessel stud closure system

    International Nuclear Information System (INIS)

    Spiegelman, S.R.; Salton, R.B.; Beer, R.W.; Malandra, L.J.; Cognevich, M.L.

    1982-01-01

    A quick-acting stud tensioner apparatus for enabling the loosening or tightening of a stud nut on a reactor vessel stud. The apparatus is adapted to engage the vessel stud by closing a gripper around an upper end of the vessel stud when the apparatus is seated on the stud. Upon lifting the apparatus, the gripper releases the vessel stud so that the apparatus can be removed

  8. Breeder reactor fuel fabrication system development

    International Nuclear Information System (INIS)

    Bennett, D.W.; Fritz, R.L.; McLemore, D.R.; Yatabe, J.M.

    1981-01-01

    Significant progress has been made in the design and development of remotely operated breeder reactor fuel fabrication and support systems (e.g., analytical chemistry). These activities are focused by the Secure Automated Fabrication (SAF) Program sponsored by the Department of Energy to provide: a reliable supply of fuel pins to support US liquid metal cooled breeder reactors and at the same time demonstrate the fabrication of mixed uranium/plutonium fuel by remotely operated and automated methods

  9. Renewal of reactor cooling system of JMTR. Reactor building site

    International Nuclear Information System (INIS)

    Onoue, Ryuji; Kawamata, Takanori; Otsuka, Kaoru; Sekine, Katsunori; Koike, Sumio; Gorai, Shigeru; Nishiyama, Yutaka; Fukasaku, Akitomi

    2012-03-01

    The Japan Materials Testing Reactor (JMTR) is a light water moderated and cooled tank-type reactor, and its thermal power is 50 MW. The JMTR is categorized as high flux testing reactors in the world. The JMTR has been utilized for irradiation experiments of nuclear fuels and materials, as well as for radioisotope productions since the first criticality in March 1968 until August 2006. JAEA is decided to refurbish the JMTR as an important fundamental infrastructure to promote the nuclear research and development. And The JMTR refurbishment work is carried out for 4 years from 2007. Before refurbishment work, from August 2006 to March 2007, all concerned renewal facilities were selected from evaluation on their damage and wear in terms of aging. Facilities which replacement parts are no longer manufactured or not likely to be manufactured continuously in near future, are selected as renewal ones. Replace priority was decided with special attention to safety concerns. A monitoring of aging condition by the regular maintenance activity is an important factor in selection of continuous using after the restart. In this report, renewal of the cooling system within refurbishment facilities in the JMTR is summarized. (author)

  10. Light water reactor safeguards system evaluation

    International Nuclear Information System (INIS)

    Varnado, G.B.; Ericson, D.M. Jr.; Bennett, H.A.; Hulme, B.L.; Daniel, S.L.

    1978-01-01

    A methodology for assessing the effectiveness of safeguards systems was developed in this study and was applied to a typical light water reactor plant. The relative importance of detection systems, barriers, response forces and other safeguards system components was examined in extensive parameter variation studies. (author)

  11. Choice of thermal reactor systems: a report

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    This is a report by the UK National Nuclear Corporation published by the UK Secretary of State for Energy (Mr. Benn) on 29th July 1977. It is concerned with the advantages and disadvantages of three thermal reactor systems -the AGR (advanced gas cooled reactor), the PWR (pressurised water reactor), and the SGHWR (steam generating heavy water reactor). The object was to help in the future choice of a thermal system for the UK to cover the next 25 years. The matter of export potential is also considered. A programme of four stations of 1100 to 1300 MW each over six years starting from 1979 was assumed. It is emphasised that a decision must be taken now both about reactor systems and actual orders. Headings are as follows: Extract from conclusions reached; Summary of main features of assessment; General conclusions regarding the following - safety, security of the investment, operational characteristics, development and launching requirements, effect on industry, and capital and generation costs. It is stated that in order to make an overall judgement on reactor choice the technical, commercial and social issues involved must be weighed in conjunction with cost differentials.

  12. Reactor Shutdown Mechanism by Top-mounted Hydraulic System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Haun; Cho, Yeong Garp; Choi, Myoung Hwan; Lee, Jin Haeng; Huh, Hyung; Kim, Jong In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    There are two types of reactor shutdown mechanisms in HANARO. One is the mechanism driven by a hydraulic system, and the other is driven by a stepping motor. In HANARO, there are four Control Rod Drive Mechanisms (CRDMs) with an individual step motor and four Shutoff (SO) Units with an individual hydraulic system located at the top of reactor pool. The absorber rods in SO units are poised at the top of the core by the hydraulic force during normal operation. The rods of SO units drop by gravity as the first reactor showdown mechanism when a trip is commended by the reactor protection system (RPS). The rods in CRDMs also drop by gravity together as a redundant shutdown mechanism. When a trip is commended by the reactor regulating system (RRS), the absorber rods of CRDM only drop; while the absorber rods of SO units stay at the top of the core by the hydraulic system. The reactivity control mechanisms of in JRTR, one of the new research reactor with plate type fuels, consist of four CRDMs driven by an individual step motor and two second shutdown drive mechanisms (SSDMs) driven by an individual hydraulic system as shown in Fig. 1. The CRDMs act as the first reactor shutdown mechanism and reactor regulating as well. The top-mounted SSDM driven by the hydraulic system for the JRTR is under design in KAERI. The SSDM provides an alternate and independent means of reactor shutdown. The second shutdown rods (SSRs) of the SSDM are poised at the top of the core by the hydraulic system during the normal operation and drop by gravity for the reactor trip. Based on the proven technology of the design, operation and maintenance for HANARO, the SSDM for the JRTR has been optimized by the design improvement from the experience and test. This paper aims for the introduction of the SSDM in the process of the basic design. The major differences of the shutdown mechanisms by the hydraulic system are compared between HANARO and JRTR, and the design features, system, structure and

  13. Neutron flux measuring system for nuclear reactor

    International Nuclear Information System (INIS)

    Aoki, Kazuo.

    1977-01-01

    Purpose: To avoid the generation of an undesired scram signal due to abrupt changes in the neutron level given to the detectors disposed near the boundary between the moderator and the atmosphere. Constitution: In a nuclear reactor adapted to conduct power control by the change of the level in the moderator such as heavy water, the outputs from the neutron detectors disposed vertically are averaged and the nuclear reactor is scramed corresponding to the averaged value. In this system, moderator level detectors are additionally provided to the nuclear reactor and their outputs, moderator level signal, are sent to a power averaging device where the output signals of the neutron detectors are judged if they are delivered from neutrons in the moderator or not depending on the magnitude of the level signal and the outputs of the detectors out of the moderator are substantially excluded. The reactor interlock signal from the device is utilized as a scram signal. (Seki, T.)

  14. Modelling aerosol behavior in reactor cooling systems

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1990-01-01

    This paper presents an overview of some of the areas of concern in using computer codes to model fission-product aerosol behavior in the reactor cooling system (RCS) of a water-cooled nuclear reactor during a loss-of-coolant accident. The basic physical processes that require modelling include: fission product release and aerosol formation in the reactor core, aerosol transport and deposition in the reactor core and throughout the rest of the RCS, and the interaction between aerosol transport processes and the thermalhydraulics. In addition to these basic physical processes, chemical reactions can have a large influence on the nature of the aerosol and its behavior in the RCS. The focus is on the physics and the implications of numerical methods used in the computer codes to model aerosol behavior in the RCS

  15. Safety Analysis for Power Reactor Protection System

    International Nuclear Information System (INIS)

    Eisawy, E.A.; Sallam, H.

    2012-01-01

    The main function of a Reactor Protection System (RPS) is to safely shutdown the reactor and prevents the release of radioactive materials. The purpose of this paper is to present a technique and its application for used in the analysis of safety system of the Nuclear Power Plant (NPP). A more advanced technique has been presented to accurately study such problems as the plant availability assessments and Technical Specifications evaluations that are becoming increasingly important. The paper provides the Markov model for the Reactor Protection System of the NPP and presents results of model evaluations for two testing policies in technical specifications. The quantification of the Markov model provides the probability values that the system will occupy each of the possible states as a function of time.

  16. Considerations on nuclear reactor passive safety systems

    International Nuclear Information System (INIS)

    2016-01-01

    After having indicated some passive safety systems present in electronuclear reactors (control bars, safety injection system accumulators, reactor cooling after stoppage, hydrogen recombination systems), this report recalls the main characteristics of passive safety systems, and discusses the main issues associated with the assessment of new passive systems (notably to face a sustained loss of electric supply systems or of cold water source) and research axis to be developed in this respect. More precisely, the report comments the classification of safety passive systems as it is proposed by the IAEA, outlines and comments specific aspects of these systems regarding their operation and performance. The next part discusses the safety approach, the control of performance of safety passive systems, issues related to their reliability, and the expected contribution of R and D (for example: understanding of physical phenomena which have an influence of these systems, capacities of simulation of these phenomena, needs of experimentations to validate simulation codes)

  17. Transients in reactors for power systems compensation

    Science.gov (United States)

    Abdul Hamid, Haziah

    This thesis describes new models and investigations into switching transient phenomena related to the shunt reactors and the Mechanically Switched Capacitor with Damping Network (MSCDN) operations used for reactive power control in the transmission system. Shunt reactors and MSCDN are similar in that they have reactors. A shunt reactor is connected parallel to the compensated lines to absorb the leading current, whereas the MSCDN is a version of a capacitor bank designed as a C-type filter for use in the harmonic-rich environment. In this work, models have been developed and transient overvoltages due to shunt reactor deenergisation were estimated analytically using MathCad, a mathematical program. Computer simulations used the ATP/EMTP program to reproduce both single-phase and three-phase shunt reactor switching at 275 kV operational substations. The effect of the reactor switching on the circuit breaker grading capacitor was also examined by considering various switching conditions.. The main original achievement of this thesis is the clarification of failure mechanisms occurring in the air-core filter reactor due to MSCDN switching operations. The simulation of the MSCDN energisation was conducted using the ATP/EMTP program in the presence of surge arresters. The outcome of this simulation shows that extremely fast transients were established across the air-core filter reactor. This identified transient event has led to the development of a detailed air-core reactor model, which accounts for the inter-turn RLC parameters as well as the stray capacitances-to-ground. These parameters are incorporated into the transient simulation circuit, from which the current and voltage distribution across the winding were derived using electric field and equivalent circuit modelling. Analysis of the results has revealed that there are substantial dielectric stresses imposed on the winding insulation that can be attributed to a combination of three factors. (i) First, the

  18. SRAC: JAERI thermal reactor standard code system for reactor design and analysis

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro; Takano, Hideki; Horikami, Kunihiko; Ishiguro, Yukio; Kaneko, Kunio; Hara, Toshiharu.

    1983-01-01

    The SRAC (Standard Reactor Analysis Code) is a code system for nuclear reactor analysis and design. It is composed of neutron cross section libraries and auxiliary processing codes, neutron spectrum routines, a variety of transport, 1-, 2- and 3-D diffusion routines, dynamic parameters and cell burn-up routines. By making the best use of the individual code function in the SRAC system, the user can select either the exact method for an accurate estimate of reactor characteristics or the economical method aiming at a shorter computer time, depending on the purpose of study. The user can select cell or core calculation; fixed source or eigenvalue problem; transport (collision probability or Sn) theory or diffusion theory. Moreover, smearing and collapsing of macroscopic cross sections are separately done by the user's selection. And a special attention is paid for double heterogeneity. Various techniques are employed to access the data storage and to optimize the internal data transfer. Benchmark calculations using the SRAC system have been made extensively for the Keff values of various types of critical assemblies (light water, heavy water and graphite moderated systems, and fast reactor systems). The calculated results show good prediction for the experimental Keff values. (author)

  19. Coolant monitoring systems for PWR reactors

    International Nuclear Information System (INIS)

    Luzhnov, A.M.; Morozov, V.V.; Tsypin, S.G.

    1987-01-01

    The ways of improving information capacity of existing monitoring systems and the necessity of designing new ones for coolant monitoring are reviewed. A wide research program on development of coolant monitoring systems in PWR reactors is analyzed. The possible applications of in-core and out-of-core detectors for coolant monitoring are demonstrated

  20. State system experience with safeguarding power reactors

    International Nuclear Information System (INIS)

    Roehnsch, W.

    1982-01-01

    This session describes the development and operation of the State System of Accountancy and Control in the German Democratic Republic, and summarizes operating experience with safeguards at power reactor facilities. Overall organization and responsibilities, containment and surveillance measures, materials accounting, and inspection procedures will be outlined. Cooperation between the IAEA, State system, facility, and supplier authorities will also be addressed

  1. Laser fusion power reactor system (LFPRS)

    International Nuclear Information System (INIS)

    Kovacik, W.P.

    1977-01-01

    This report gives detailed information for each of the following areas: (1) reference concept description, (2) nuclear design, (3) structural design, (4) thermal and fluid systems design, (5) materials design and analysis, (6) reactor support systems and balance of plant, (7) instrumentation and control, (8) environment and safety, (9) economics assessment, and (10) development requirements

  2. Management system requirements for small reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.A., E-mail: kenneth.jones@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2013-07-01

    This abstract identifies the management system requirements for the life cycle of small reactors from initial conception through completion of decommissioning. For small reactors, the requirements for management systems remain the same as those for 'large' reactors regardless of the licensee' business model and objectives. The CSA N-Series of standards provides an interlinked set of requirements for the management of nuclear facilities. CSA N286 provides overall direction to management to develop and implement sound management practices and controls, while other CSA nuclear standards provide technical requirements and guidance that support the management system. CSA N286 is based on a set of principles. The principles are then supported by generic requirements that are applicable to the life cycle of nuclear facilities. CNSC regulatory documents provide further technical requirements and guidance. (author)

  3. The computerized reactor period measurement system for China fast burst reactor-II

    International Nuclear Information System (INIS)

    Zhao Wuwen; Jiang Zhiguo

    1996-01-01

    The article simply introduces the hardware, principle, and software of the computerized reactor period measurement system for China Fast Burst Reactor-II (CFBR-II). It also gives the relation between fission yield and pre-reactivity of CFBR-II reactor system of bared reactor with decoupled-component and system of bared reactor with multiple light-material. The computerized measurement system makes the reactor period measurement into automatical and intelligent and also improves the speed and precision of period data on-line process

  4. Computer measurement system of reactor period for China fast burst reactor-II

    International Nuclear Information System (INIS)

    Zhao Wuwen; Jiang Zhiguo

    1997-01-01

    The author simply introduces the hardware, principle, and software of the reactor period computer measure system for China Fast Burst Reactor-II (CFBR-II). It also gives the relation between Fission yield and Pre-reactivity of CFBR-II reactor system of bared reactor with decoupled-component and system of bared reactor with multiple light-material. The computer measure system makes the reactor period measurement into automation and intellectualization and also improves the speed and precision of period data process on-line

  5. Power conditioning system for a nuclear reactor

    International Nuclear Information System (INIS)

    Higashigawa, Yuichi; Joge, Toshio.

    1981-01-01

    Purpose: To provide a power conditioning system for a BWR type reactor which has a function to be automatically operated within a range that the relationship between the heat power of the reactor and the electric power of an electric generator does not lose the safety of fuel by eliminating the unnecessary fluctuation of the power of the reactor. Constitution: A load request error signal fed from a conventional turbine control system to recirculation flow regulator is eliminated, and a reactor power conditioning system is newly provided, to which an electric generator power signal, a reactor average power area monitor signal and a load request signal are inputted. Thus, the load request signal is compared directly with the electric power of the electric generator, the recirculation flow rate is controlled by the compared result, and whether the correlation between the heat power of the reqctor and the electric power of the generator satisfies the correlation determined to prove the safety of fuel or not is checked. If this correlation is satisfied, the recirculation flow rate is merely automatically controlled. (Yoshino, Y.)

  6. Digital instrumentation system for nuclear research reactors

    International Nuclear Information System (INIS)

    Aghina, Mauricio A.C.; Carvalho, Paulo Vitor R.

    2002-01-01

    This work describes a proposal for a system of nuclear instrumentation and safety totally digital for the Argonauta Reactor. The system divides in the subsystems: channel of pulses, channel of current, conventional instrumentation and safety system. The connection of the subsystems is made through redundant double local net, using the protocol modbus/rtu. So much the channel of pulses, the current channel and safety's system use modules operating in triple redundancy. (author)

  7. The IAEA power reactor information system - PRIS

    International Nuclear Information System (INIS)

    Laue, H.J.; Qureshi, A.; Skjoeldebrand, R.; White, D.

    1983-01-01

    The IAEA Power Reactor Information System, PRIS, is based on a collection of basic design data and operating experience data which the IAEA started in 1970. PRIS is used for annual publications on 'Power Reactors in Member States', 'Operating Experience with Nuclear Power Stations in Member States', which gives annual operating information for individual plants, and a 'Performance Analysis Report' summarizing each year's and earlier experience. Since 1973 information has been collected in a systematic manner on significant plant outages (= more than 10 full power hours). There is now information on more than 10,000 outages in the system which permits some conclusions to be drawn both in regard to individual plants and to categories of plants on the significance of different outage reasons and different types of equipment failures. PRIS has not been intended to be a component reliability information system as an international data collection must stop short of the level of detail which would be needed for that purpose. The objectives of PRIS have been to provide a factual background for assumptions on parameters which are essential for economic evaluations and for systems operation planning (load factor and availability). The outage information does, however, lend itself to conclusions about generic problems in different categories of plants and it can be used by an individual operator to find other plants where information about particular problems can be obtained. It would also now be possible to use PRIS for setting availability goals based on experience and not only on theoretical design considerations. The paper demonstrates the conclusions which can be drawn from 662 reactor years of operation of light and heavy water pressurized reactors and 390 reactor years of boiling water reactors and, in particular, the role that the main heat removal system and its components have played in the equipment failure category

  8. Aiming of Kirkpatrick-Baez microscope based on auxiliary optical system

    International Nuclear Information System (INIS)

    Huang Shengling; Mu Baozhong; Yi Shengzhen; Wang Xin; Wang Zhanshan; Ding Yongkun; Miao Wenyong; Dong Jianjun

    2009-01-01

    An auxiliary optical system has been designed, which can provide precise positioning for aiming Kirkpatrick-Baez (KB) microscope object location. An 8 keV X-ray imaging system by KB microscope with periodic multilayer films has been designed. The field of view and depth of field in the resolution of 5 μm are got, and then the corresponding point and depth of field in diagnostic experiments are calculated. Based on the object-image relations and precision of the KB microscope, an auxiliary visible light imaging system is designed and X-ray imaging experiments are performed, which can achieve equivalent aiming between the visible imaging system and the KB microscope. The results show that ±20 μm vertical axis plane and ±300 μm axial accuracy are achieved through the auxiliary optical path, which can meet the object point positioning requirements of the KB microscope. (authors)

  9. Level controlling system in BWR type reactors

    International Nuclear Information System (INIS)

    Joge, Toshio; Higashigawa, Yuichi; Oomori, Takashi.

    1981-01-01

    Purpose: To reasonably attain fully automatic water level control in the core of BWR type nuclear power plants. Constitution: A feedwater flow regulation valve for reactor operation and a feedwater flow regulation valve for starting are provided at the outlet of a motor-driven feedwater pump in a feedwater system, and these valves are controlled by a feedwater flow rate controller. While on the other hand, a damp valve for reactor clean up system is controlled either in ''computer'' mode or in ''manual'' mode selected by a master switch, that is, controlled from a computer or the ON-OFF switch of the master switch by way of a valve control analog memory and a turn-over switch. In this way, the water level in the nuclear reactor can be controlled in a fully automatic manner reasonably at the starting up and shutdown of the plant to thereby provide man power saving. (Seki, T.)

  10. Reactor coolant pressure boundary leakage detection system

    International Nuclear Information System (INIS)

    Dissing, E.; Svansson, L.

    1980-01-01

    This study deals with a system for monitoring the leakage of reactor coolant. This system is based primarily on the detection of the 13 N content in the containment atmosphere. 13 N is produced from the oxygen of the reactor water via the recoil proton nuclear process Hl+016/yields/ 13 N+ 4 He. The generation is therefore independent of fuel element leakage and of the corrosion product content in the water. It is solely related to the neutron flux level in the reactor core. Typical figures for the equilibrium 13 N concentration in the containment atmosphere following a 4 kg/minute coolant leakage are 5 kBq m/sup -3/ and 7 kBq m/sup -3/ for BWR and PWR respectively. These levels are readily measured with a 10 liter Ge(Li) flow detector assembly operated at elevated pressure. 8 refs

  11. Reactor coolant pressure boundary leakage detection system

    International Nuclear Information System (INIS)

    Dissing, E.; Svansson, L.

    1980-01-01

    This study deals with a system for monitoring the leakage of reactor coolant. This system is based primarily on the detection of the N13 content in the containment atmosphere. N13 is produced from the oxygen of the reactor water via the recoil proton nuclear process Hl+016/yields/Nl3+He4. The generation is therefore independent of fuel element leakage and of the corrosion product content in the water. It is solely related to the neutron flux level in the reactor core. Typical figures for the equilibrium N13 concentration in the containment atmosphere following a 4 kg/minute coolant leakage are 5 kBq m/sup -3/ and 7 kBq m/sup -3/ for BWR and PWR respectively. These levels are readily measured with a 10 liter Ge(Li) flow detector assembly operated at elevated pressure. 8 refs

  12. Reactor coolant pressure boundary leakage detection system

    International Nuclear Information System (INIS)

    Dissing, E.; Svansson, L.

    1979-08-01

    The present paper deals with a system for monitoring the leakage of reactor coolant. This system is based primarily on the detection of the N13 content in the containment atmosphere. N13 is produced from the oxygen of the reactor water via the recoil proton nuclear process H1+016 → N13+He4. The generation is therefore independent of fuel element leakage and of the corrosion product content in the water. It is solely related to the neutron flux level in the reactor core. Typical figures for the equilibrium N13 concentration in the containment atmosphere following a 4 kg/minute coolant leakage are 5 kBq m -3 and 7 kBq m -3 for BWR and PWR respectively. These levels are readily measured with a 10 liter Ge (Li) flow detector assembly operated at elevated pressure. (Auth.)

  13. Clinical trial aims to study immunotherapy for central nervous system tumors | Center for Cancer Research

    Science.gov (United States)

    A new clinical trial aims to determine whether nivolumab, an immune checkpoint inhibitor, can improve control of cancer for patients with several types of tumors of the central nervous system (CNS). The CNS is composed of the brain and spinal cord and the cause of most CNS tumors in adults is unknown. Learn more...

  14. Coolant clean up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tajima, Fumio; Iwami, Hiroshi.

    1981-01-01

    Purpose: To decrease the amount of main steams and improve the plant heat efficiency by the use of condensated water as coolants for not-regenerative heat exchangers in a coolant clean up system of a nuclear reactor. Constitution: In a coolant clean up system of a nuclear reactor, a portion of condensates is transferred to the shell of a non-regenerative heat exchanger by way of a condensate pump for non-regenerative heat exchanger through a branched pipeway provided to the outlet of a condensate desalter for using the condensates as the coolants for the shell of the heat exchanger and the condensates are then returned to the inlet of a feedwater heater after the heat exchange. The branched flow rate of the condensates is controlled by the flow rate control valve mounted in the pipeway. Condensates passed through the heat exchanger and the condensates not passed through the heat exchanger are mixed and heated in a heater and then fed to the nuclear reactor. In a case where no feedwater is necessary to the nuclear reactor such as upon shutdown of the reactor, the condensates are returned by way of feedwater bypass pipeway to the condensator. By the use of the condensates as the coolants for the heat exchanger, the main steam loss can be decreased and the thermal load for the auxiliary coolant facility can be reduced. (Kawakami, Y.)

  15. Heating control system for nuclear reactor

    International Nuclear Information System (INIS)

    Shinohara, Kaoru.

    1981-01-01

    Purpose: To automatically control reactor heating while keeping the condition of temperature rising rate by determining the deviations based on the reactor water temperature, the aimed temperature and the aimed temperature rising rate and operating control rods. Constitution: Actual temperature in the reactor is measured by a temperature detector and compared with a value from a setter to determine the temperature deviation. While on the other hand, the rising rate for the measured temperature is calculated in a differentiator and compared with a value from a setter to determine the deviation, which is passed through an integrator to calculate the deviation for the temperature rising rate. The signals for the temperature deviation and the temperature rising rate deviation are selected in a lower value preference circuit and the operation amount for the control rod is judged in a control rod operation judging section depending on the deviation amount. The control rod to be operated is determined in a sequence control section for the selection of control rod. The control rod selected and the direction of the operation are displayed on a display and the selected control rod is automatically driven by a control rod drives to thereby carry our reactor heating. (Furukawa, Y.)

  16. Review of Operation and Maintenance Support Systems for Research Reactors

    International Nuclear Information System (INIS)

    Jin, Kyungho; Heo, Gyunyoung; Park, Jaekwan

    2014-01-01

    Operation support systems do not directly control the plant but it can aid decision making itself by obtaining and analyzing large amounts of data. Recently, the demand of research reactor is growing and the need for operation support systems is increasing, but it has not been applied for research reactors. This study analyzes operation and maintenance support systems of NPPs and suggests appropriate systems for research reactors based on analysis. In this paper, operation support systems for research reactors are suggested by comparing with those of power reactors. Currently, research reactors do not cover special systems in order to improve safety and operability in comparison with power reactors. Therefore we expect to improve worth to use by introducing appropriate systems for research reactors. In further research, we will develop an appropriate system such as applications or tools that can be applied to the research reactor

  17. CRNL research reactor retrofit Emergency Filtration System

    International Nuclear Information System (INIS)

    Philippi, H.M.

    1990-01-01

    This paper presents a brief history of NRX and NRU research reactor effluent air treatment systems before describing the selection and design of an appropriate retrofit Emergency Filtration System (EFS) to serve these reactors and the future MX-10 isotope production reactor. The conceptual design of the EFS began in 1984. A standby concrete shielding filter-adsorber system, sized to serve the reactor with the largest exhaust flow, was selected. The standby system, bypassed under normal operating conditions, is equipped with normal exhaust stream shutoff and diversion valves to be activated manually when an emergency is anticipated, or automatically when emergency levels of gamma radiation are detected in the exhaust stream. The first phase of the EFS installation, that is the construction of the EFS and the connection of NRU to the system, was completed in 1987. The second phase of construction, which includes the connection of NRX and provisions for the future connection of MX-10, is to be completed in 1990

  18. Reactor shutdown system of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Govindarajan, S.; Singh, Om Pal; Kasinathan, N.; Paramasivan Pillai, C.; Arul, A.J.; Chetal, S.C.

    2002-01-01

    Full text: The shutdown system of PFBR is designed to assure a very high reliability by employing well known principles of redundancy, diversity and independence. The failure probability of the shutdown system limited to -6 / ry. Salient features of the shutdown system are: Two independent shutdown systems, each of them able to accommodate an additional single failure and made up of a trip system and an associated absorber rod group. Diversity between trip systems, rods and mechanisms. Initiation of SCRAM by two diverse physical parameters of the two shutdown systems for design events leading potentially to unacceptable conditions is the core. The first group of nine rods called control and safety rods (CSR) is used for both shutdown as well as power regulation. The second group consisting of three rods known as diverse safety rods (DSR) is used only for shutdown. Diversity between the two groups is ensured by varying the operating conditions of the electromagnets and the configurations of the mobile parts. The reactivity worth of the absorber rods have been chosen such that each group of rods would ensure cold shutdown on SCRAM even when the most reactive rod of the group fails to drop. Together the two groups ensure a shutdown margin of 5000 pcm. The speed and individual rod worth of the CSR is chosen from operational and safety considerations during reactor start up and raising of power. Required drop time of rods during SCRAM depends on the incident considered. For a severe reactivity incident of 3 $/s this has to be limited to 1s and is ensured by limiting electromagnet response time and facilitating drop by gravity. Design safety limits for core components have been determined and SCRAM parameters have been identified by plant dynamic analysis to restrict the temperatures of core components within the limits. The SCRAM parameters are distributed between the two systems appropriately. Fault tree analysis of the system has been carried out to determine the

  19. Advanced reactor systems: safety and regulatory aspects

    International Nuclear Information System (INIS)

    Gopalakrishnan, A.

    1994-01-01

    Safety features which are desirable in futuristic reactor systems have been the subject of several studies over the past decade by different expert groups. When one discusses this subject, therefore, in a somewhat non-specific and qualitative manner, it is best to make use of the already available collective wisdom and literature on the matter. (author). 3 refs

  20. Coolant cleanup system for a nuclear reactor

    International Nuclear Information System (INIS)

    Shiina, Atsushi; Usui, Naoshi; Yamamoto, Michiyoshi; Osumi, Katsumi.

    1983-01-01

    Purpose: To maintain the electric conductivity of reactor water lower and to minimize the heat loss in the cleanup system by providing a low temperature cleanup system and a high temperature cleanup system together. Constitution: A low temperature cleanup system using ion exchange resins as filter aids and a high temperature cleanup system using inorganic ion exchange materials as filter aids are provided in combination. A part of the reactor water in a reactor pressure vessel is passed through a conductivity meter, one portion of which flows into the high temperature cleanup system having no heat exchanger and filled with inorganic ion exchange materials by way of a first flow rate control valve and the other portion of which flows into the low temperature cleanup system having heat exchangers and filled with the ion exchange materials by way of a second control valve. The first control valve is adjusted so as to flow, for example, about more than 15% of the feedwater flow rate to the high temperature cleanup system and the second control valve is adjusted with its valve opening degree depending on the indication of the conductivity meter so as to flow about 2 - 7 % of the feedwater flow rate into the low temperature cleanup system, to thereby control the electric conductivity to between 0.055 - 0.3 μS/cm. (Moriyama, K.)

  1. Nuclear reactor plants and control systems therefor

    International Nuclear Information System (INIS)

    de Boer, G.A.; de Hex, M.

    1976-01-01

    A nuclear reactor plant is described comprising at least two hydraulically separated but thermally interconnected heat conveying circuits, of which one is the reactor circuit filled with a non-water medium and the other one is the water-steam-circuit equipped with a steam generator, a feed water conduit controlled by a valve and a steam turbine, and a control system mainly influenced by the pressure drop caused in said feed water conduit and its control valve and having a value of at least 10 bars at full load

  2. Rodded shutdown system for a nuclear reactor

    International Nuclear Information System (INIS)

    Golden, M.P.; Govi, A.R.

    1978-01-01

    A top mounted nuclear reactor diverse rodded shutdown system utilizing gas fed into a pressure bearing bellows region sealed at the upper extremity to an armature is described. The armature is attached to a neutron absorber assembly by a series of shafts and connecting means. The armature is held in an uppermost position by an electromagnet assembly or by pressurized gas in a second embodiment. Deenergizing the electromagnet assembly, or venting the pressurized gas, causes the armature to fall by the force of gravity, thereby lowering the attached absorber assembly into the reactor core

  3. Method of controlling ECCS system in reactors

    International Nuclear Information System (INIS)

    Oohashi, Hideaki; Ikehara, Morihiko.

    1982-01-01

    Purpose: To eliminate the risk of misoperation and thereby improve the reliability of ECCS system upon accident. Method: ECCS system for nuclear reactor is automatically started by either of signals from a water level detector in a pressure vessel or from a pressure detector in a reactor container. Further, the ECCS system is started or stopped by the manual operation irrespective of the signals, and the signals from the pressure detector are isolated from the ECCS-starting signal by the contacts which actuate interlocked with the stopping operation of the manual operation switch. Then, after stopping the ECCS system by the manual operation, the ECCS system is started by the signals from the water level detector irrespective of the signals from the pressure detector. (Seki, T.)

  4. Naval application of battery optimized reactor integral system

    International Nuclear Information System (INIS)

    Kim, N. H.; Kim, T. W.; Son, H. M.; Suh, K. Y.

    2007-01-01

    Past civilian N.S. Savanna (80 MW t h), Otto-Hahn (38 MW t h) and Mutsu (36 MW t h) experienced stable operations under various sea conditions to prove that the reactors were stable and suitable for ship power source. Russian nuclear icebreakers such as Lenin (90 MW t h x2), Arukuchika (150 MW t h x2) showed stable operations under severe conditions during navigation on the Arctic Sea. These reactor systems, however, should be made even more efficient, compact, safe and long life, because adding support from the land may not be available on the sea. In order to meet these requirements, a compact, simple, safe and innovative integral system named Naval Application Vessel Integral System (NAVIS) is being designed with such novel concepts as a primary liquid metal coolant, a secondary supercritical carbon dioxide (SCO 2 ) coolant, emergency reactor cooling system, safety containment and so on. NAVIS is powered by Battery Optimized Reactor Integral System (BORIS). An ultra-small, ultra-long-life, versatile-purpose, fast-spectrum reactor named BORIS is being developed for a multi-purpose application such as naval power source, electric power generation in remote areas, seawater desalination, and district heating. NAVIS aims to satisfy special environment on the sea with BORIS using the lead (Pb) coolant in the primary system. NAVIS improves the economical efficiency resorting to the SCO 2 Brayton cycle for the secondary system. BORIS is operated by natural circulation of Pb without needing pumps. The reactor power is autonomously controlled by load-following operation without an active reactivity control system, whereas B 4 C based shutdown control rod is equipped for an emergency condition. SCO 2 promises a high power conversion efficiency of the recompression Brayton cycle due to its excellent compressibility reducing the compression work at the bottom of the cycle and to a higher density than helium or steam decreasing the component size. Therefore, the SCO 2 Brayton

  5. Reactor alarm system development and application issues

    Energy Technology Data Exchange (ETDEWEB)

    Drexler, J E; Oicese, G O [INVAP S.E. (Argentina)

    1997-09-01

    The new hardware and software technologies, and the need in research reactors for assistance systems in operation and maintenance, have given an appropriate background to develop a computer based system named ``Reactor Alarm System`` (RAS). RAS is a software package, user oriented, with emphasis on production, experiments and maintenance goals. It is designed to run on distributed systems conformed with microcomputers under QNX operating system. RAS main features are: (a) Alarm Panel Display; (b) Alarm Page; (c) Alarm Masking and Inhibition; (d) Alarms Color and Attributes; (e) Condition Classification; and (f) Arrangement Presentation. RAS design allows it to be installed as a part of a computer based Supervision and Control System in new installations or retrofit existing reactor instrumentation systems. The analysis of human factors during development stage and successive user feedback from different applications, brought out several RAS improvements: (a) Multiple-copy alarm summaries; (b) Improved alarm handling; (c) Extended dictionary; and (d) Enhanced hardware availability. It has proved successful in providing new capabilities for operators, and also has shown the continuous increase of user-demands, reflecting the expectations placed today on computer-based systems. (author). 6 figs, 1 tabs.

  6. Reactor alarm system development and application issues

    International Nuclear Information System (INIS)

    Drexler, J.E.; Oicese, G.O.

    1997-01-01

    The new hardware and software technologies, and the need in research reactors for assistance systems in operation and maintenance, have given an appropriate background to develop a computer based system named ''Reactor Alarm System'' (RAS). RAS is a software package, user oriented, with emphasis on production, experiments and maintenance goals. It is designed to run on distributed systems conformed with microcomputers under QNX operating system. RAS main features are: a) Alarm Panel Display; b) Alarm Page; c) Alarm Masking and Inhibition; d) Alarms Color and Attributes; e) Condition Classification; and f) Arrangement Presentation. RAS design allows it to be installed as a part of a computer based Supervision and Control System in new installations or retrofit existing reactor instrumentation systems. The analysis of human factors during development stage and successive user feedback from different applications, brought out several RAS improvements: a) Multiple-copy alarm summaries; b) Improved alarm handling; c) Extended dictionary; and d) Enhanced hardware availability. It has proved successful in providing new capabilities for operators, and also has shown the continuous increase of user-demands, reflecting the expectations placed today on computer-based systems. (author). 6 figs, 1 tabs

  7. Reactor power system deployment and startup

    International Nuclear Information System (INIS)

    Wetch, J.R.; Nelin, C.J.; Britt, E.J.; Klein, G.; Rasor Associates, Inc., Sunnyvale, CA; California Institute of Technology, Pasadena)

    1985-01-01

    This paper addresses issues that should receive further examination in the near-term as concept selection for development of a U.S. space reactor power system is approached. The issues include: the economics, practicality and system reliability associated with transfer of nuclear spacecraft from low earth shuttle orbits to operational orbits, via chemical propulsion versus nuclear electric propulsion; possible astronaut supervised reactor and nuclear electric propulsion startup in low altitude Shuttle orbit; potential deployment methods for nuclear powered spacecraft from Shuttle; the general public safety of low altitude startup and nuclear safe and disposal orbits; the question of preferred reactor power level; and the question of frozen versus molten alkali metal coolant during launch and deployment. These issues must be considered now because they impact the SP-100 concept selection, power level selection, weight and size limits, use of deployable radiators, reliability requirements, and economics, as well as the degree of need for and the urgency of developing space reactor power systems. 5 references

  8. Fault-tolerant reactor protection system

    International Nuclear Information System (INIS)

    Gaubatz, D.C.

    1997-01-01

    A reactor protection system is disclosed having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Each division performs independently of the others (asynchronous operation). All communications between the divisions are asynchronous. Each chassis substitutes its own spare sensor reading in the 2/3 vote if a sensor reading from one of the other chassis is faulty or missing. Therefore the presence of at least two valid sensor readings in excess of a set point is required before terminating the output to the hardware logic of a scram inhibition signal even when one of the four sensors is faulty or when one of the divisions is out of service. 16 figs

  9. Fuel transfer system for a nuclear reactor

    International Nuclear Information System (INIS)

    Katz, L.R.; Marshall, J.R.; Desmarchais, W.E.

    1977-01-01

    Disclosed is a fuel transfer system for moving nuclear reactor fuel assemblies from a new fuel storage pit to a containment area containing the nuclear reactor, and for transferring spent fuel assemblies under water from the reactor to a spent fuel storage area. The system includes an underwater track which extends through a wall dividing the fuel building from the reactor containment and a car on the track serves as the vehicle for moving fuel assemblies between these two areas. The car is driven by a motor and linkage extending from an operating deck to a chain belt drive on the car. A housing pivotally mounted at its center on the car is hydraulically actuated to vertically receive a fuel assembly which then is rotated to a horizontal position to permit movement through the wall between the containment and fuel building areas. Return to the vertical position provides for fuel assembly removal and the reverse process is repeated when transferring an assembly in the opposite direction. Limit switches used in controlling operation of the system are designed to be replaced from the operating deck when necessary by tools designed for this purpose. 5 claims, 8 figures

  10. Steam generating system in LMFBR type reactors

    International Nuclear Information System (INIS)

    Kurosawa, Katsutoshi.

    1984-01-01

    Purpose: To suppress the thermal shock loads to the structures of reactor system and secondary coolant system, for instance, upon plant trip accompanying turbine trip in the steam generation system of LMFBR type reactors. Constitution: Additional feedwater heater is disposed to the pipeway at the inlet of a steam generator in a steam generation system equipped with a closed loop extended from a steam generator by way of a gas-liquid separator, a turbine and a condensator to the steam generator. The separated water at high temperature and high pressure from a gas-liquid separator is heat exchanged with coolants flowing through the closed loop of the steam generation system in non-contact manner and, thereafter, introduced to a water reservoir tank. This can avoid the water to be fed at low temperature as it is to the steam generator, whereby the thermal shock loads to the structures of the reactor system and the secondary coolant system can be suppressed. (Moriyama, K.)

  11. Design and validation of a GNC system for missions to asteroids: the AIM scenario

    Science.gov (United States)

    Pellacani, A.; Kicman, P.; Suatoni, M.; Casasco, M.; Gil, J.; Carnelli, I.

    2017-12-01

    Deep space missions, and in particular missions to asteroids, impose a certain level of autonomy that depends on the mission objectives. If the mission requires the spacecraft to perform close approaches to the target body (the extreme case being a landing scenario), the autonomy level must be increased to guarantee the fast and reactive response which is required in both nominal and contingency operations. The GNC system must be designed in accordance with the required level of autonomy. The GNC system designed and tested in the frame of ESA's Asteroid Impact Mission (AIM) system studies (Phase A/B1 and Consolidation Phase) is an example of an autonomous GNC system that meets the challenging objectives of AIM. The paper reports the design of such GNC system and its validation through a DDVV plan that includes Model-in-the-Loop and Hardware-in-the-Loop testing. Main focus is the translational navigation, which is able to provide online the relative state estimation with respect to the target body using exclusively cameras as relative navigation sensors. The relative navigation outputs are meant to be used for nominal spacecraft trajectory corrections as well as to estimate the collision risk with the asteroid and, if needed, to command the execution of a collision avoidance manoeuvre to guarantee spacecraft safety

  12. Distributed computer control system for reactor optimization

    International Nuclear Information System (INIS)

    Williams, A.H.

    1983-01-01

    At the Oldbury power station a prototype distributed computer control system has been installed. This system is designed to support research and development into improved reactor temperature control methods. This work will lead to the development and demonstration of new optimal control systems for improvement of plant efficiency and increase of generated output. The system can collect plant data from special test instrumentation connected to dedicated scanners and from the station's existing data processing system. The system can also, via distributed microprocessor-based interface units, make adjustments to the desired reactor channel gas exit temperatures. The existing control equipment will then adjust the height of control rods to maintain operation at these temperatures. The design of the distributed system is based on extensive experience with distributed systems for direct digital control, operator display and plant monitoring. The paper describes various aspects of this system, with particular emphasis on: (1) the hierarchal system structure; (2) the modular construction of the system to facilitate installation, commissioning and testing, and to reduce maintenance to module replacement; (3) the integration of the system into the station's existing data processing system; (4) distributed microprocessor-based interfaces to the reactor controls, with extensive security facilities implemented by hardware and software; (5) data transfer using point-to-point and bussed data links; (6) man-machine communication based on VDUs with computer input push-buttons and touch-sensitive screens; and (7) the use of a software system supporting a high-level engineer-orientated programming language, at all levels in the system, together with comprehensive data link management

  13. Development of Reactor Protection System (RPS) in Reactor Digital Instrumentation and Control System (ReDICS)

    International Nuclear Information System (INIS)

    Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat; Ridzuan Abdul Mutalib

    2013-01-01

    RTP Research Reactor are in the process upgraded from analogue control console system to a digital control console system . Upgrade process requires a statistical study to improve safety during reactor operation. RPS was developed to meet the needs of operational safety and at the same time comply with the guidelines set by the IAEA. RPS is in analog and hardware with industry standard interfaced with digital DAC (Data Acquisition and Control) and OWS (Operator Work Station). (author)

  14. COMPRESS - a computerized reactor safety system

    International Nuclear Information System (INIS)

    Vegh, E.

    1986-01-01

    The computerized reactor safety system, called COMPRESS, provides the following services: scram initiation; safety interlockings; event recording. The paper describes the architecture of the system and deals with reliability problems. A self-testing unit checks permanently the correct operation of the independent decision units. Moreover the decision units are tested by short pulses whether they can initiate a scram. The self-testing is described in detail

  15. Advanced liquid metal reactor plant control system

    International Nuclear Information System (INIS)

    Dayal, Y.; Wagner, W.; Zizzo, D.; Carroll, D.

    1993-01-01

    The modular Advanced Liquid Metal Reactor (ALMR) power plant is controlled by an advanced state-of-the-art control system designed to facilitate plant operation, optimize availability, and protect plant investment. The control system features a high degree of automatic control and extensive amount of on-line diagnostics and operator aids. It can be built with today's control technology, and has the flexibility of adding new features that benefit plant operation and reduce O ampersand M costs as the technology matures

  16. Dust removal system for fusion experimental reactors

    International Nuclear Information System (INIS)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y.; Seki, Y.; Ueda, S.; Aoki, I.

    1995-01-01

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors

  17. Dust removal system for fusion experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y. [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Seki, Y.; Ueda, S.; Aoki, I. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)

    1995-12-31

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors.

  18. Reactor shutdown back-up system

    International Nuclear Information System (INIS)

    Hirao, Seizo; Sakashita, Motoaki.

    1982-01-01

    Purpose: To prevent back flow of poison upon injection to a moderator recycling pipeway. Constitution: In a nuclear reactor comprising a moderator recycling system for recycling and cooling moderator through a control rod guide pipe and a rapid poison injection system for rapidly injecting a poison solution at high density into the moderator by way of the same control rod guide pipe as a reactor shutdown back-up system, a mechanism is provided for preventing the back flow of a poison solution at high density into the moderator recycling system upon rapid injection of poison. An orifice provided in the joining pipeway to the control rod guide pipe on the side of the moderator recycling system is utilized as the back flow preventing device for the poison solution and the diameter for the orifice is determined so as to provide a constant ratio between the pressure loss in the control rod guide pipe and the pressure loss in the moderator recycling system pipe line upon usual reactor operation. (Kawakami, Y.)

  19. Morphological evolution of copper nanoparticles: Microemulsion reactor system versus batch reactor system

    Science.gov (United States)

    Xia, Ming; Tang, Zengmin; Kim, Woo-Sik; Yu, Taekyung; Park, Bum Jun

    2017-07-01

    In the synthesis of nanoparticles, the reaction rate is important to determine the morphology of nanoparticles. We investigated morphology evolution of Cu nanoparticles in this two different reactors, microemulsion reactor and batch reactor. In comparison with the batch reactor system, the enhanced mass and heat transfers in the emulsion system likely led to the relatively short nucleation time and the highly homogeneous environment in the reaction mixture, resulting in suppressing one or two dimensional growth of the nanoparticles. We believe that this work can offer a good model system to quantitatively understand the crystal growth mechanism that depends strongly on the local monomer concentration, the efficiency of heat transfer, and the relative contribution of the counter ions (Br- and Cl-) as capping agents.

  20. System of nuclear power reactor protection using dynamic logic

    International Nuclear Information System (INIS)

    Carvalho, P.V.R. de; Silva, L.C.R.P. da

    1990-01-01

    The aim of this work is the design of a Reactor Protection System (RPS) using dynamic logic as basic circuitry principle. This concept was developed to permit the electronic and eletromagnetic components employment in 'fail-safe' mode applied to automatic shutdown systems. 'Fail-safe' here means that a fail always yields a constant state that leads to a plant shutdown condition. So the normal condition of operation corresponds to an oscillating state response and the fail or abnormal condition to a static one. At present, almost all modern nuclear plant reactor protection systems use dynamic logic, just differing in the kind of technology employed in the construction of the system. In this work we define what technology best fits our necessities, setting out to design a RPS based on this philosophy. (author) [pt

  1. Molten-salt reactor information system

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Cardwell, D.W.; Engel, J.R.

    1975-06-01

    The Molten-Salt Reactor Information System (MSRIS) is a computer-based file of abstracts of documents dealing with the technology of molten-salt reactors. The file is stored in the IBM-360 system at ORNL, and may be searched through the use of established interactive computer programs from remote terminals connected to the computer via telephone lines. The system currently contains 373 entries and is subject to updating and expansion as additional information is developed. The nature and general content of the data file, a general approach for obtaining information from it, and the manner in which material is added to the file are described. Appendixes provide the list of keywords currently in use, the subject categories under which information is filed, and simplified procedures for searching the file from remote terminals. (U.S.)

  2. Development of a Minimum Data Set (MDS) for C-Section Anesthesia Information Management System (AIMS).

    Science.gov (United States)

    Sheykhotayefeh, Mostafa; Safdari, Reza; Ghazisaeedi, Marjan; Khademi, Seyed Hossein; Seyed Farajolah, Seyedeh Sedigheh; Maserat, Elham; Jebraeily, Mohamad; Torabi, Vahid

    2017-04-01

    Caesarean section, also known as C-section, is a very common procedure in the world. Minimum data set (MDS) is defined as a set of data elements holding information regarding a series of target entities to provide a basis for planning, management, and performance evaluation. MDS has found a great use in health care information systems. Also, it can be considered as a basis for medical information management and has shown a great potential for contributing to the provision of high quality care and disease control measures. The principal aim of this research was to determine MDS and required capabilities for Anesthesia information management system (AIMS) in C-section in Iran. Data items collected from several selected AIMS were studied to establish an initial set of data. The population of this study composed of 115 anesthesiologists was asked to review the proposed data elements and score them in order of importance by using a five-point Likert scale. The items scored as important or highly important by at least 75% of the experts were included in the final list of minimum data set. Overall 8 classes of data (consisted of 81 key data elements) were determined as final set. Also, the most important required capabilities were related to airway management and hypertension and hypotension management. In the development of information system (IS) based on MDS and identification, because of the broad involvement of users, IS capabilities must focus on the users' needs to form a successful system. Therefore, it is essential to assess MDS watchfully by considering the planned uses of data. Also, IS should have essential capabilities to meet the needs of its users.

  3. Reliability analysis of reactor protection systems

    International Nuclear Information System (INIS)

    Alsan, S.

    1976-07-01

    A theoretical mathematical study of reliability is presented and the concepts subsequently defined applied to the study of nuclear reactor safety systems. The theory is applied to investigations of the operational reliability of the Siloe reactor from the point of view of rod drop. A statistical study conducted between 1964 and 1971 demonstrated that most rod drop incidents arose from circumstances associated with experimental equipment (new set-ups). The reliability of the most suitable safety system for some recently developed experimental equipment is discussed. Calculations indicate that if all experimental equipment were equipped with these new systems, only 1.75 rod drop accidents would be expected to occur per year on average. It is suggested that all experimental equipment should be equipped with these new safety systems and tested every 21 days. The reliability of the new safety system currently being studied for the Siloe reactor was also investigated. The following results were obtained: definite failures must be detected immediately as a result of the disturbances produced; the repair time must not exceed a few hours; the equipment must be tested every week. Under such conditions, the rate of accidental rod drops is about 0.013 on average per year. The level of nondefinite failures is less than 10 -6 per hour and the level of nonprotection 1 hour per year. (author)

  4. Reactor Design for Bioelectrochemical Systems

    KAUST Repository

    Mohanakrishna, G.

    2017-12-01

    Bioelectrochemical systems (BES) are novel hybrid systems which are designed to generate renewable energy from the low cost substrate in a sustainable way. Microbial fuel cells (MFCs) are the well studied application of BES systems that generate electricity from the wide variety of organic components and wastewaters. MFC mechanism deals with the microbial oxidation of organic molecules for the production of electrons and protons. The MFC design helps to build the electrochemical gradient on anode and cathode which leads for the bioelectricity generation. As whole reactions of MFCs happen at mild environmental and operating conditions and using waste organics as the substrate, it is defined as the sustainable and alternative option for global energy needs and attracted worldwide researchers into this research area. Apart from MFC, BES has other applications such as microbial electrolysis cells (MECs) for biohydrogen production, microbial desalinations cells (MDCs) for water desalination, and microbial electrosynthesis cells (MEC) for value added products formation. All these applications are designed to perform efficiently under mild operational conditions. Specific strains of bacteria or specifically enriched microbial consortia are acting as the biocatalyst for the oxidation and reduction of BES. Detailed function of the biocatalyst has been discussed in the other chapters of this book.

  5. Reactor Design for Bioelectrochemical Systems

    KAUST Repository

    Mohanakrishna, G.; Kalathil, Shafeer; Pant, Deepak

    2017-01-01

    Bioelectrochemical systems (BES) are novel hybrid systems which are designed to generate renewable energy from the low cost substrate in a sustainable way. Microbial fuel cells (MFCs) are the well studied application of BES systems that generate electricity from the wide variety of organic components and wastewaters. MFC mechanism deals with the microbial oxidation of organic molecules for the production of electrons and protons. The MFC design helps to build the electrochemical gradient on anode and cathode which leads for the bioelectricity generation. As whole reactions of MFCs happen at mild environmental and operating conditions and using waste organics as the substrate, it is defined as the sustainable and alternative option for global energy needs and attracted worldwide researchers into this research area. Apart from MFC, BES has other applications such as microbial electrolysis cells (MECs) for biohydrogen production, microbial desalinations cells (MDCs) for water desalination, and microbial electrosynthesis cells (MEC) for value added products formation. All these applications are designed to perform efficiently under mild operational conditions. Specific strains of bacteria or specifically enriched microbial consortia are acting as the biocatalyst for the oxidation and reduction of BES. Detailed function of the biocatalyst has been discussed in the other chapters of this book.

  6. Design and construction of reactor containment systems of the prototype fast breeder reactor MONJU

    International Nuclear Information System (INIS)

    Ikeda, Makinori; Kawata, Koji; Sato, Masaki; Ito, Masashi; Hayashi, Kazutoshi; Kunishima, Shigeru.

    1991-01-01

    The MONJU reactor containment systems consist of a reactor containment vessel, reactor cavity walls and cell liners. The reactor containment vessel is strengthened by ring stiffeners for earthquake stresses. To verify its earthquake-resistant strength, vibration and buckling tests were carried out by using 1/19 scale models. The reactor cavity walls, which form biological shield and support the reactor vessel, are constructed of steel plate frames filled with concrete. The cell liner consists of liner plates and thermal insulation to moderate the effects of sodium spills, and forms a gastight cell to maintain a nitrogen atmosphere. (author)

  7. power system reliability in supplying nuclear reactors

    International Nuclear Information System (INIS)

    Gad, M.M.M.

    2007-01-01

    this thesis presents a simple technique for deducing minimal cut set (MCS) from the defined minimal path set (MPS) of generic distribution system and this technique have been used to evaluate the basic reliability indices of Egypt's second research reactor (ETRR-2) electrical distribution network. the alternative system configurations are then studied to evaluate their impact on service reliability. the proposed MCS approach considers both sustained and temporary outage. the temporary outage constitutes an important parameter in characterizing the system reliability indices for critical load point in distribution system. it is also consider the power quality impact on the reliability indices

  8. Emergency cooling system for the PHENIX reactor

    International Nuclear Information System (INIS)

    Megy, J.M.; Giudicelli, A.G.; Robert, E.A.; Crette, J.P.

    Among various engineered safeguards of the reactor plant, the authors describe the protective system designed to remove the decay heat in emergency, in case of complete loss of all normal decay heat removal systems. First the normal decay heat rejection systems are presented. Incidents leading to the loss of these normal means are then analyzed. The protective system and its constructive characteristics designed for emergency cooling and based on two independent and highly reliable circuits entirely installed outside the primary containment vessel are described

  9. Integral reactor system and method for fuel cells

    Science.gov (United States)

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  10. REACTOR: an expert system for diagnosis and treatment of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Nelson, W.R.

    1982-01-01

    REACTOR is an expert system under development at EG and G Idaho, Inc., that will assist operators in the diagnosis and treatment of nuclear reactor accidents. This paper covers the background of the nuclear industry and why expert system technology may prove valuable in the reactor control room. Some of the basic features of the REACTOR system are discussed, and future plans for validation and evaluation of REACTOR are presented. The concept of using both event-oriented and function-oriented strategies for accident diagnosis is discussed. The response tree concept for representing expert knowledge is also introduced

  11. Reactor core flow rate control system

    International Nuclear Information System (INIS)

    Sakuma, Hitoshi; Tanikawa, Naoshi; Takahashi, Toshiyuki; Miyakawa, Tetsuya.

    1996-01-01

    When an internal pump is started by a variable frequency power source device, if magnetic fields of an AC generator are introduced after the rated speed is reached, neutron flux high scram occurs by abrupt increase of a reactor core flow rate. Then, in the present invention, magnetic fields for the AC generator are introduced at a speed previously set at which the fluctuation range of the reactor core flow rate (neutron flux) by the start up of the internal pump is within an allowable value. Since increase of the speed of the internal pump upon its start up is suppressed to determine the change of the reactor core flow rate within an allowable range, increase of neutron fluxes is suppressed to enable stable start up. Then, since transition boiling of fuels caused by abrupt decrease of the reactor core flow rate upon occurrence of abnormality in an external electric power system is prevented, and the magnetic fields for the AC generator are introduced in such a manner to put the speed increase fluctuation range of the internal pump upon start up within an allowable value, neutron flux high scram is not caused to enable stable start-up. (N.H.)

  12. RIMACS, Reactor Inspection Main Control System

    International Nuclear Information System (INIS)

    2008-01-01

    1 - Description of program or function: RIMACS prepares for automatic inspection files on each inspection item for the reactor. These automatic inspection files provide the data to move RIROB (Reactor Inspection Robot) with laser by interpreting the coordinates of LASPO (Laser Positioner) and the laser detecting device of RIROB in three dimensional space. In addition, when RIROB arrives at the inspecting location, the files provide all values of the manipulator's motions to acquire the ultrasonic data. RIMACS provides various modules in order to perform these complex functions, and the functions are programmed on graphic user interface for the convenience of the user. RIMACS provides various functions, such as insertion of reactor production data, selection of the reactor for inspection, the creation of automatic inspection file, the selection of the inspection item, inspection simulation, and automatic inspection procedures. It also provides all other functions, which are necessary for the inspection, such as operating program download and manual control of LASPO and RIROB, the inspection simulation and the inspection status display by means of the graphic screen, and SODAS (ultra-Sonic Data Acquisition System) drive verification. 2 - Methods: Moving path and operation procedures for inspection robot are generated automatically with Kinematics algorithm. 3 - Restrictions on the complexity of the problem: A graphics display with MS-Window capability is required

  13. Overheating preventive system for reactor core fuels

    International Nuclear Information System (INIS)

    Ito, Daiju

    1981-01-01

    Purpose: To ensure the cooling function of reactor water in a cooling system in case of erroneous indication or misoperation by reliable temperature measurement for fuels and actuating relays through the conversion output obtained therefrom. Constitution: Thermometers are disposed laterally and vertically in a reactor core in contact with core fuels so as to correspond to the change of status in the reactor core. When there is a high temperature signal issued from one of the thermometers or one of conversion circuits, the function of relay contacts does not provide the closed state as a whole. When high temperature signals are issued from two or more thermometers of conversion circuits from independent OR circuits, the function of the relay contacts provides the closure state as a whole. Consequently, in the use of 2-out of 3-circuits, the entire closure state, that is, the misoperation of the relay contacts for the thermometer or the conversion circuits can be avoided. In this way, by the application of the output from the conversion circuits to the logic circuit and, in turn, application of the output therefrom to the relay groups in 2-out of 3-constitution, the reactor safety can be improved. (Horiuchi, T.)

  14. Validation of reactor core protection system

    International Nuclear Information System (INIS)

    Lee, Sang-Hoon; Bae, Jong-Sik; Baeg, Seung-Yeob; Cho, Chang-Ho; Kim, Chang-Ho; Kim, Sung-Ho; Kim, Hang-Bae; In, Wang-Kee; Park, Young-Ho

    2008-01-01

    Reactor COre Protection System (RCOPS), an advanced core protection calculator system, is a digitized one which provides core protection function based on two reactor core operation parameters, Departure from Nucleate Boiling Ratio (DNBR) and Local Power Density (LPD). It generates a reactor trip signal when the core condition exceeds the DNBR or LPD design limit. It consists of four independent channels adapted a two-out-of-four trip logic. System configuration, hardware platform and an improved algorithm of the newly designed core protection calculator system are described in this paper. One channel of RCOPS was implemented as a single channel facility for this R and D project where we performed final integration software testing. To implement custom function blocks, pSET is used. Software test is performed by two methods. The first method is a 'Software Module Test' and the second method is a 'Software Unit Test'. New features include improvement of core thermal margin through a revised on-line DNBR algorithm, resolution of the latching problem of control element assembly signal and addition of the pre-trip alarm generation. The change of the on-line DNBR calculation algorithm is considered to improve the DNBR net margin by 2.5%-3.3%. (author)

  15. Microchannel Reactor System for Catalytic Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  16. Staged membrane oxidation reactor system

    Science.gov (United States)

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  17. Cost benefit analysis of reactor safety systems

    International Nuclear Information System (INIS)

    Maurer, H.A.

    1984-01-01

    Cost/benefit analysis of reactor safety systems is a possibility appropriate to deal with reactor safety. The Commission of the European Communities supported a study on the cost-benefit or cost effectiveness of safety systems installed in modern PWR nuclear power plants. The following systems and their cooperation in emergency cases were in particular investigated in this study: the containment system (double containment), the leakage exhaust and control system, the annulus release exhaust system and the containment spray system. The benefit of a safety system is defined according to its contribution to the reduction of the radiological consequences for the environment after a LOCA. The analysis is so far performed in two different steps: the emergency core cooling system is considered to function properly, failure of the emergency core cooling system is assumed (with the possible consequence of core melt-down) and the results may demonstrate the evidence that striving for cost-effectiveness can produce a safer end result than the philosophy of safety at any cost. (orig.)

  18. Laser fusion hybrid reactor systems study

    International Nuclear Information System (INIS)

    1976-07-01

    The work was performed in three phases. The first phase included a review of the many possible laser-reactor-blanket combinations and resulted in the selection of a ''demonstration size'' 500 MWe plant for further study. A number of fast fission blankets using uranium metal, uranium-molybdenum alloy, and uranium carbide as fuel were investigated. The second phase included design of the reactor vessel and internals, heat transfer system, tritium processing system, and the balance of plant, excluding the laser building and equipment. A fuel management scheme was developed, safety considerations were reviewed, and capital and operating costs were estimated. Costs developed during the second phase were unexpectedly high, and a thorough review indicated considerable unit cost savings could be obtained by scaling the plant to a larger size. Accordingly, a third phase was added to the original scope, encompassing the redesign and scaling of the plant from 500 MWe to 1200 MWe

  19. Sensitivity Analysis of Reactor Regulating System for SMART

    International Nuclear Information System (INIS)

    Jeon, Yu Lim; Kang, Han Ok; Lee, Seong Wook; Park, Cheon Tae

    2009-01-01

    The integral reactor technology is one of the Small and Medium sized Reactor (SMR) which has recently come into a spotlight due to its suitability for various fields. SMART (System integrated Modular Advanced ReacTor), a small sized integral type PWR with a rated thermal power of 330MWt is one of the advanced SMR. SMART developed by the Korea Atomic Energy Research Institute (KAERI), has a capacity to provide 40,000 m3 per day of potable water and 90 MW of electricity (Chang et al., 2000). Figure 1 shows the SMART which adopts a sensible mixture of new innovative design features and proven technologies aimed at achieving highly enhanced safety and improved economics. Design features contributing to a safety enhancement are basically inherent safety improving features and passive safety features. Fundamental thermal-hydraulic experiments were carried out during the design concepts development to assure the fundamental behavior of major concepts of the SMART systems. A TASS/SMR is a suitable code for accident and performance analyses of SMART. In this paper, we proposed a new power control logic for stable operating outputs of Reactor Regulating System (RRS) of SMART. We analyzed the sensitivity of operating parameter for various operating conditions

  20. Power conditioning for space nuclear reactor systems

    Science.gov (United States)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  1. Space reactor electric systems: system integration studies, Phase 1 report

    International Nuclear Information System (INIS)

    Anderson, R.V.; Bost, D.; Determan, W.R.; Harty, R.B.; Katz, B.; Keshishian, V.; Lillie, A.F.; Thomson, W.B.

    1983-01-01

    This report presents the results of preliminary space reactor electric system integration studies performed by Rockwell International's Energy Systems Group (ESG). The preliminary studies investigated a broad range of reactor electric system concepts for powers of 25 and 100 KWe. The purpose of the studies was to provide timely system information of suitable accuracy to support ongoing mission planning activities. The preliminary system studies were performed by assembling the five different subsystems that are used in a system: the reactor, the shielding, the primary heat transport, the power conversion-processing, and the heat rejection subsystems. The subsystem data in this report were largely based on Rockwell's recently prepared Subsystem Technology Assessment Report. Nine generic types of reactor subsystems were used in these system studies. Several levels of technology were used for each type of reactor subsystem. Seven generic types of power conversion-processing subsystems were used, and several levels of technology were again used for each type. In addition, various types and levels of technology were used for the shielding, primary heat transport, and heat rejection subsystems. A total of 60 systems were studied

  2. Development of intellectual reactor design system IRDS

    International Nuclear Information System (INIS)

    Kugo, T.; Tsuchihashi, K.; Nakagawa, M.; Mori, T.

    1993-01-01

    An intellectual reactor design system IRDS has been developed to support feasibility study and conceptual design of new type reactors in the fields of reactor core design including neutronics, thermal-hydraulics and fuel design. IRDS is an integrated software system in which a variety of computer codes in the different fields are installed. An integration of simulation modules are performed by the information transfer between modules through design model in which the design information of the current design work is stored. An object oriented architecture is realized in frame representation of core configuration in a design data base. The knowledge relating to design tasks to be performed are encapsulated, to support the conceptual design work. The system is constructed on an engineering workstation, and supports efficiently design work through man-machine interface adopting the advanced information processing technologies. Optimization methods for design parameters with use of the artificial intelligence technique are now under study, to reduce the parametric study work. A function to search design window in which design is feasible is realized in the fuel pin design. (orig.)

  3. Reactor component inventory system at FFTF

    International Nuclear Information System (INIS)

    Ordonez, C.R.; Redekopp, R.D.; Reed, E.A.

    1985-02-01

    A reliable inventory control system was developed at the Fast Flux Test Facility (FFTF) to keep track of the occupancy of 900 refueling facility locations, to compile historical data on the movement of each reactor assembly, and to simulate assembly moves. The simulate capability is valuable because it allows verification of documents before they are issued for use in the plant, and eliminates the possibility of planning illegal or impossible moves. The system is installed on a UNIVAC 1100 computer and is maintained using a data base management system by Sperry Univac called MAPPER

  4. An opto-electronic joint detection system based on DSP aiming at early cervical cancer screening

    Science.gov (United States)

    Wang, Weiya; Jia, Mengyu; Gao, Feng; Yang, Lihong; Qu, Pengpeng; Zou, Changping; Liu, Pengxi; Zhao, Huijuan

    2015-02-01

    The cervical cancer screening at a pre-cancer stage is beneficial to reduce the mortality of women. An opto-electronic joint detection system based on DSP aiming at early cervical cancer screening is introduced in this paper. In this system, three electrodes alternately discharge to the cervical tissue and three light emitting diodes in different wavelengths alternately irradiate the cervical tissue. Then the relative optical reflectance and electrical voltage attenuation curve are obtained by optical and electrical detection, respectively. The system is based on DSP to attain the portable and cheap instrument. By adopting the relative reflectance and the voltage attenuation constant, the classification algorithm based on Support Vector Machine (SVM) discriminates abnormal cervical tissue from normal. We use particle swarm optimization to optimize the two key parameters of SVM, i.e. nuclear factor and cost factor. The clinical data were collected on 313 patients to build a clinical database of tissue responses under optical and electrical stimulations with the histopathologic examination as the gold standard. The classification result shows that the opto-electronic joint detection has higher total coincidence rate than separate optical detection or separate electrical detection. The sensitivity, specificity, and total coincidence rate increase with the increasing of sample numbers in the training set. The average total coincidence rate of the system can reach 85.1% compared with the histopathologic examination.

  5. Data acquisition system for nuclear reactor environment

    International Nuclear Information System (INIS)

    Tiwari, Akash; Tiwari, Railesha; Tiwari, S.S.; Panday, Lokesh; Suri, Nitin; Chouksey, Abhsek; Singh, Sarvesh Kumar; Dwivedi, Tarun; Agrawal, Ashish; Pandey, Pranav Kumar; Sharma, Brijnandan; Bhatia, Chirag

    2004-01-01

    We have designed an online real time data acquisition system for nuclear reactor environment monitoring. Data acquisition system has eight channels of analog signals and one channel of pulsed input signal from detectors like GM Tube, or any other similar input. Connectivity between the data acquisition system and environmental parameters monitoring computer is made through a wireless data communication link of 151 MHz/100 mW RF power and 10 km maximum communication range for remote data telemetry. Sensors used are gamma ionizing radiation sensor made from CsI:Tl scintillator, atmospheric pressure sensor with +/-0.1 mbar precision, temperature sensor with +/-l milli degree Celsius precision, relative humidity with +/-0.1RH precision, pulse counts with +/-1 count in 0-10000 Hz count rate measurement precision and +/-1 count is accumulated count measurement precision. The entire data acquisition system and wireless telemetry system is 9 V battery powered and the device is to be fitted on a wireless controlled mobile robot for scanning the nuclear reactor zone from remote. Wireless video camera has been planned for integration into the existing system on a later date for moving the robotics environmental data acquisition system beyond human vision reach. System development cost is Rs.25 Lacs and has been developed for Department of Atomic Energy, Government of India and Indian Defense use. (author)

  6. Thermal hydraulic tests for reactor safety system -Research on the improvement of nuclear safety-

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Park, Chun Kyeong; Yang, Seon Kyu; Chung, Chang Hwan; Chun, Shee Yeong; Song, Cheol Hwa; Chun, Hyeong Gil; Chang, Seok Kyu; Chung, Heung Joon; Won, Soon Yeon; Cho, Yeong Ro; Kim, Bok Deuk; Min, Kyeong Ho

    1994-07-01

    The present research aims at the development of the thermal hydraulic verification test technology for the reactor safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. (Author)

  7. Basic concept of common reactor physics code systems. Final report of working party on common reactor physics code systems (CCS)

    International Nuclear Information System (INIS)

    2004-03-01

    A working party was organized for two years (2001-2002) on common reactor physics code systems under the Research Committee on Reactor Physics of JAERI. This final report is compilation of activity of the working party on common reactor physics code systems during two years. Objectives of the working party is to clarify basic concept of common reactor physics code systems to improve convenience of reactor physics code systems for reactor physics researchers in Japan on their various field of research and development activities. We have held four meetings during 2 years, investigated status of reactor physics code systems and innovative software technologies, and discussed basic concept of common reactor physics code systems. (author)

  8. Dosimetry system of the RB reactor; Dozimetarski sistem reaktora RB

    Energy Technology Data Exchange (ETDEWEB)

    Lolic, B; Vukadin, D [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1962-07-01

    Although RB reactor is operated at very low power levels, safety and dosimetry systems have high importance. This paper shows detailed dosimetry system with fundamental typical components. Estimated radiation doses dependent on reactor power are given at some characteristic points in the rooms nearby reactor.

  9. Heat exchangers in heavy water reactor systems

    International Nuclear Information System (INIS)

    Mehta, S.K.

    1988-01-01

    Important features of some major heat exchange components of pressurized heavy water reactors and DHRUVA research reactor are presented. Design considerations and nuclear service classifications are discussed

  10. Balanced Design of Safety Systems of CAREM Advanced Reactor

    International Nuclear Information System (INIS)

    Grinblat, Pablo; Gimenez, Marcelo; Schlamp, Miguel

    2003-01-01

    Nuclear Power Plants must meet the performance that the market and the population demand in order to be part of the electricity supply industry.It is related mainly with the results of reactor's economy and safety.New advances in the methodology developed for reactor economic optimization analyzing its safety at an early engineering stage, aiming at balancing these important features of the design, are presented in this work.In particular, the coupling that appears when dimensioning the Emergency Injection System, the Residual Heat Removal System and the containment height of CAREM reactor is described.The new models appended to the computer code that embodies the methodology to balance de designs are shown.Finally the results obtained with the optimizations when applying it are presented.Furthermore, a criterion to establish the maximal diameter for acceptable breaks in RPV's penetrations arises from this work.The application of the methodology and the computer code developed turns out to prove the advantages they provide to reactor design so that the plants are properly balanced and optimized

  11. Monitoring system in reactor dry well

    International Nuclear Information System (INIS)

    Horie, Akira; Suzuki, Shun-ichi; Yamamoto, Shinji; Kubokawa, Toshihiko; Takagi, Sakae; Yokosawa, Makoto.

    1991-01-01

    A failed portion of a dry well in a BWR type reactor is monitored and identified from a remote place by a simple structure. That is, laser beams are irradiated under scanning to a portion to be monitored. Then, the reflection light is monitored by a light receiving and monitoring system, and abnormalities such as defects or leaks of monitored portion are optically detected by a remote viewing equipment. With such a constitution, the portion to be monitored in poor operation circumstances of the reactor dry well can always be monitored efficiently from a remote place. The device of the present invention does not undergo the effect of radiation noises, etc. and it is excellent in heat resistance and radiation resistance. (I.S.)

  12. A stereoscopic television system for reactor inspection

    International Nuclear Information System (INIS)

    Friend, D.B.; Jones, A.

    1980-03-01

    A stereoscopic television system suitable for reactor inspection has been developed. Right and left eye views, obtained from two conventional black and white cameras, are displayed by the anaglyph technique and observers wear appropriately coloured viewing spectacles. All camera functions, such as zoom, focus and toe-in are remotely controlled. A laboratory experiment is described which demonstrates the increase in spatial awareness afforded by the use of stereo television and illustrates its potential in the supervision of remote handling tasks. Typical depth resolutions of 3mm at 1m and 10mm at 2m have been achieved with the reactor instrument. Trials undertaken during routine inspection at Oldbury Power Station in June 1978 are described. They demonstrate that stereoscopic television can indeed improve the convenience of remote handling and that the added display realism is beneficial in visual inspection. (author)

  13. Nuclear reactor insulation and preheat system

    International Nuclear Information System (INIS)

    Wampole, N.C.

    1978-01-01

    An insulation and preheat system is disclosed for preselected components of a fluid cooled nuclear reactor. A gas tight barrier or compartment of thermal insulation surrounds the selected components and includes devices to heat the internal atmosphere of the ocmpartment. An external surface of the compartment of enclosure is cooled, such as by a circulating fluid. The heating devices provide for preheating of the components, as well as maintenance of a temperature sufficient to ensure that the reactor coolant fluid will not solidify during shutdown. The external cooling limits the heat transferred to other plant structures, such as supporting concrete and steel. The barrier is spaced far enough from the surrounded components so as to allow access for remote or manual inspection, maintenance, and repair

  14. Refueling system for a nuclear reactor

    International Nuclear Information System (INIS)

    Koschkin, J.N.; Ordynskij, G.V.; Schchijan, C.G.; Schapkin, A.F.; Fadeev, A.I.; Laptev, F.V.; Batjukov, V.I.; Korolkov, K.I.; Borodin, I.V.; Tschernomordik, E.N.

    1979-01-01

    With the refueling system fuel elements are transferred from the intermediate distributing chamber within the fast breeder reactor vessel to the storage tanks for new and irradiated fuel elements outside of the reactor vessel and vice versa. It consists of a hermetic chamber, filled with inert gas, within which the refueling machine, having got a vertical swing pipe, is placed. On the swing pipe there is mounted by means of a bracket a hanging support tube for a tube manipulator that can be moved over the openings to the fuel elements. At the end of the tube manipulator there is a gripping device whose drive mechanism is arranged within the support tube. The swing pipe is moved by means of a drive mechanism outside of the chamber. (DG) [de

  15. Passive systems for light water reactors

    International Nuclear Information System (INIS)

    Adinolfi, R.; Noviello, L.

    1990-01-01

    The paper reviews the most original concepts that have been considered in Italy for the back-fitting of the nuclear power plants in order to reduce the probability and the importance of the release to the environment in case of a core melt. With reference either to BWR or PWR, passive concepts have been considered for back-fitting in the following areas: pump seals damage prevention and ECCS passive operation; reactor passive depressurization; molten reactor core passive cooling; metal containment passive water cooling through a water tank located at high level; containment isolation improvement through a sealing system; containment leaks control and limitation of environmental release. In addition some considerations will be made on the protection against external events introduced from the beginning on the PUN design either on building and equipment lay-out either on structure design. (author). 5 figs

  16. The Liquid Annular Reactor System (LARS) propulsion

    International Nuclear Information System (INIS)

    Powell, J.; Ludewig, H.; Horn, F.; Lenard, R.

    1990-01-01

    A concept for very high specific impulse (greater than 2000 seconds) direct nuclear propulsion is described. The concept, termed the liquid annular reactor system (LARS), uses liquid nuclear fuel elements to heat hydrogen propellant to very high temperatures (approximately 6000 K). Operating pressure is moderate (approximately 10 atm), with the result that the outlet hydrogen is virtually 100 percent dissociated to monatomic H. The molten fuel is contained in a solid container of its own material, which is rotated to stabilize the liquid layer by centripetal force. LARS reactor designs are described, together with neutronic and thermal-hydraulic analyses. Power levels are on the order of 200 megawatts. Typically, LARS designs use seven rotating fuel elements, are beryllium moderated, and have critical radii of approximately 100 cm (core L/D approximately equal to 1.5)

  17. Reactor coolant system and containment aqueous chemistry

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    1986-01-01

    Fission products released from fuel during reactor accidents can be subject to a variety of environments that will affect their ultimate behavior. In the reactor coolant system (RCS), for example, neutral or reducing steam conditions, radiation, and surfaces could all have an effect on fission product retention and chemistry. Furthermore, if water is encountered in the RCS, the high temperature aqueous chemistry of fission products must be assessed to determine the quantity and chemical form of fission products released to the containment building. In the containment building, aqueous chemistry will determine the longer-term release of volatile fission products to the containment atmosphere. Over the past few years, the principles of physical chemistry have been rigorously applied to the various chemical conditions described above. This paper reviews the current state of knowledge and discusses the future directions of chemistry research relating to the behavior of fission products in the RCS and containment

  18. Reactor coolant pump monitoring and diagnostic system

    International Nuclear Information System (INIS)

    Singer, R.M.; Gross, K.C.; Walsh, M.; Humenik, K.E.

    1990-01-01

    In order to reliably and safely operate a nuclear power plant, it is necessary to continuously monitor the performance of numerous subsystems to confirm that the plant state is within its prescribed limits. An important function of a properly designed monitoring system is the detection of incipient faults in all subsystems (with the avoidance of false alarms) coupled with an information system that provides the operators with fault diagnosis, prognosis of fault progression and recommended (either automatic or prescriptive) corrective action. In this paper, such a system is described that has been applied to reactor coolant pumps. This system includes a sensitive pattern-recognition technique based upon the sequential probability ratio test (SPRT) that detects incipient faults from validated signals, an expert system embodying knowledge bases on pump and sensor performance, extensive hypertext files containing operating and emergency procedures as well as pump and sensor information and a graphical interface providing the operator with easily perceived information on the location and character of the fault as well as recommended corrective action. This system is in the prototype stage and is currently being validated utilizing data from a liquid-metal cooled fast reactor (EBR-II). 3 refs., 4 figs

  19. Systems analysis of the CANDU 3 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wolfgong, J.R.; Linn, M.A.; Wright, A.L.; Olszewski, M.; Fontana, M.H. [Oak Ridge National Lab., TN (United States)

    1993-07-01

    This report presents the results of a systems failure analysis study of the CANDU 3 reactor design; the study was performed for the US Nuclear Regulatory Commission. As part of the study a review of the CANDU 3 design documentation was performed, a plant assessment methodology was developed, representative plant initiating events were identified for detailed analysis, and a plant assessment was performed. The results of the plant assessment included classification of the CANDU 3 event sequences that were analyzed, determination of CANDU 3 systems that are ``significant to safety,`` and identification of key operator actions for the analyzed events.

  20. Passive cooling systems in power reactors

    International Nuclear Information System (INIS)

    Aharon, J.; Harrari, R.; Weiss, Y.; Barnea, Y.; Katz, M.; Szanto, M.

    1996-01-01

    This paper reviews several R and D activities associated with the subject of passive cooling systems, conducted by the N.R.C.Negev thermohydraulic group. A short introduction considering different types of thermosyphons and their applications is followed by a detailed description of the experimental work, its results and conclusions. An ongoing research project is focused on the evaluation of the external dry air passive containment cooling system (PCCS) in the AP-600 (Westinghouse advanced pressurized water reactor). In this context some preliminary theoretical results and planned experimental research are for the fature described

  1. Computation system for nuclear reactor core analysis

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.; Petrie, L.M.

    1977-04-01

    This report documents a system which contains computer codes as modules developed to evaluate nuclear reactor core performance. The diffusion theory approximation to neutron transport may be applied with the VENTURE code treating up to three dimensions. The effect of exposure may be determined with the BURNER code, allowing depletion calculations to be made. The features and requirements of the system are discussed and aspects common to the computational modules, but the latter are documented elsewhere. User input data requirements, data file management, control, and the modules which perform general functions are described. Continuing development and implementation effort is enhancing the analysis capability available locally and to other installations from remote terminals

  2. Introduction to nuclear power reactors and their health physics systems

    International Nuclear Information System (INIS)

    Brtis, J.S.

    1982-01-01

    This paper provides an introduction to: (1) the major systems of Boiling Water Reactors (BWR's) and Pressurized Water Reactors (PWR's), (2) the production and distribution of radiation sources in BWR's and PWR's, (3) the regulatory and functional requirements for nuclear power reactor design from a health physics standpoint, (4) the health physics systems provided to meet such requirements, and (5) a bibliography of documents germane to power reactor health physics design

  3. The promises and challenges of future reactor system developments

    International Nuclear Information System (INIS)

    Kim, S. H.; Chang, M. H.; Kim, H. J.

    2007-01-01

    improved economy when compared to currently the existing plants. The APR 1400 has been developed since 1991 and it is expected that its first commercial operation will be in 2012. In the short term by 2011, the APR-1400 design will be improved from the viewpoints of safety, economics and performance. We are also developing a small integral reactor SMART, which is a promising advanced small and medium-size power category of nuclear reactors. It is an integral type reactor with a sensible mixture of new innovative design features and proven technologies aimed at achieving a highly enhanced safety and improved economics. SMART is purposed for dual applications such as for seawater desalination and electricity generation. Since the SMART technology is technically sound and has sufficient economics, the SMART desalination plant has good prospects of being deployed as a nuclear desalination plant. We are also actively participating in the GEN IV collaboration (GIF: GEN IV International Forum) for a VHTR and a SFR technology development. Through close collaboration with GIF, a proliferation-resistant SFR technology will be developed based on KALIMAER for an effective uranium utilization and waste minimization. Also a high temperature reactor is currently under development to demonstrate a nuclear based hydrogen production technology. Korea is really looking ahead by developing new generation of advanced nuclear reactor systems for a sustainable development, economical benefits, a clean environment and public confidence. In this paper, Korean nuclear reactor technology development program is described together with lessons learned from self-reliance in nuclear reactor technology. In addition, this paper presents the status of the next generation reactor system development program and the future reactor system development program for addressing these challenges

  4. Research Networking Systems: The State of Adoption at Institutions Aiming to Augment Translational Research Infrastructure.

    Science.gov (United States)

    Obeid, Jihad S; Johnson, Layne M; Stallings, Sarah; Eichmann, David

    Fostering collaborations across multiple disciplines within and across institutional boundaries is becoming increasingly important with the growing emphasis on translational research. As a result, Research Networking Systems that facilitate discovery of potential collaborators have received significant attention by institutions aiming to augment their research infrastructure. We have conducted a survey to assess the state of adoption of these new tools at the Clinical and Translational Science Award (CTSA) funded institutions. Survey results demonstrate that most CTSA funded institutions have either already adopted or were planning to adopt one of several available research networking systems. Moreover a good number of these institutions have exposed or plan to expose the data on research expertise using linked open data, an established approach to semantic web services. Preliminary exploration of these publically-available data shows promising utility in assessing cross-institutional collaborations. Further adoption of these technologies and analysis of the data are needed, however, before their impact on cross-institutional collaboration in research can be appreciated and measured.

  5. The unique safety challenges of space reactor systems

    International Nuclear Information System (INIS)

    Lanes, S.J.; Marshall, A.C.

    1991-01-01

    Compact reactor systems can provide high levels of power for extended periods in space environments. Their relatively low mass and their ability to operate independently of their proximity to the sun make reactor power systems high desirable for many civilian and military space missions. The US Department of Energy is developing reactor system technologies to provide electrical power for space applications. In addition, reactors are now being considered to provide thermal power to a hydrogen propellant for nuclear thermal rocketry. Space reactor safety issues differ from commercial reactor issues, in some areas, because of very different operating requirements and environments. Accidents similar to those postulated for commercial reactors must be considered for space reactors during their operational phase. Safety strategies will need to be established that account for the consequences of the loss of essential power

  6. Development of a system model for advanced small modular reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandias concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  7. Passive safety systems for integral reactors

    International Nuclear Information System (INIS)

    Kuul, V.S.; Samoilov, O.B.

    1996-01-01

    In this paper, a wide range of passive safety systems intended for use on integral reactors is considered. The operation of these systems relies on natural processes and does not require external power supplies. Using these systems, there is the possibility of preventing serious consequences for all classes of accidents including reactivity, loss-of-coolant and loss of heat sink as well as severe accidents. Enhancement of safety system reliability has been achieved through the use of self-actuating devices, capable of providing passive initiation of protective and isolation systems, which respond immediately to variations in the physical parameters of the fluid in the reactor or in a guard vessel. For beyond design base accidents accompanied by complete loss of heat removal capability, autonomous self-actuated ERHR trains have been proposed. These trains are completely independent of the secondary loops and need no action to isolate them from the steam turbine plant. Passive safety principles have been consistently implemented in AST-500, ATETS-200 and VPBER 600 which are new generation NPPs developed by OKBM. Their main characteristic is enhanced stability over a wide range of internal and external emergency initiators. (author). 10 figs

  8. Passive safety systems for integral reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuul, V S; Samoilov, O B [OKB Mechanical Engineering (Russian Federation)

    1996-12-01

    In this paper, a wide range of passive safety systems intended for use on integral reactors is considered. The operation of these systems relies on natural processes and does not require external power supplies. Using these systems, there is the possibility of preventing serious consequences for all classes of accidents including reactivity, loss-of-coolant and loss of heat sink as well as severe accidents. Enhancement of safety system reliability has been achieved through the use of self-actuating devices, capable of providing passive initiation of protective and isolation systems, which respond immediately to variations in the physical parameters of the fluid in the reactor or in a guard vessel. For beyond design base accidents accompanied by complete loss of heat removal capability, autonomous self-actuated ERHR trains have been proposed. These trains are completely independent of the secondary loops and need no action to isolate them from the steam turbine plant. Passive safety principles have been consistently implemented in AST-500, ATETS-200 and VPBER 600 which are new generation NPPs developed by OKBM. Their main characteristic is enhanced stability over a wide range of internal and external emergency initiators. (author). 10 figs.

  9. ADAPTIVE CONTROL SYSTEM OF INDUSTRIAL REACTORS

    Directory of Open Access Journals (Sweden)

    Vyacheslav K. Mayevski

    2014-01-01

    Full Text Available This paper describes a mathematical model of an industrial chemical reactor for production of synthetic rubber. During reactor operation the model parameters vary considerably. To create a control algorithm performed transformation of mathematical model of the reactor in order to obtain a dependency that can be used to determine the model parameters are changing during reactor operation.

  10. Advanced thermionic reactor systems design code

    International Nuclear Information System (INIS)

    Lewis, B.R.; Pawlowski, R.A.; Greek, K.J.; Klein, A.C.

    1991-01-01

    An overall systems design code is under development to model an advanced in-core thermionic nuclear reactor system for space applications at power levels of 10 to 50 kWe. The design code is written in an object-oriented programming environment that allows the use of a series of design modules, each of which is responsible for the determination of specific system parameters. The code modules include a neutronics and core criticality module, a core thermal hydraulics module, a thermionic fuel element performance module, a radiation shielding module, a module for waste heat transfer and rejection, and modules for power conditioning and control. The neutronics and core criticality module determines critical core size, core lifetime, and shutdown margins using the criticality calculation capability of the Monte Carlo Neutron and Photon Transport Code System (MCNP). The remaining modules utilize results of the MCNP analysis along with FORTRAN programming to predict the overall system performance

  11. Nuclear power reactors and hydrogen storage systems

    International Nuclear Information System (INIS)

    Ibrahim Aly Mahmoud El Osery.

    1980-01-01

    Among conclusions and results come by, a nuclear-electric-hydrogen integrated power system was suggested as a way to prevent the energy crisis. It was shown that the hydrogen power system using nuclear power as a leading energy resource would hold an advantage in the current international situation as well as for the long-term future. Results reported provide designers of integrated nuclear-electric-hydrogen systems with computation models and routines which will allow them to explore the optimal solution in coupling power reactors to hydrogen producing systems, taking into account the specific characters of hydrogen storage systems. The models were meant for average computers of a type easily available in developing countries. (author)

  12. Nuclear reactor cavity floor passive heat removal system

    Science.gov (United States)

    Edwards, Tyler A.; Neeley, Gary W.; Inman, James B.

    2018-03-06

    A nuclear reactor includes a reactor core disposed in a reactor pressure vessel. A radiological containment contains the nuclear reactor and includes a concrete floor located underneath the nuclear reactor. An ex vessel corium retention system includes flow channels embedded in the concrete floor located underneath the nuclear reactor, an inlet in fluid communication with first ends of the flow channels, and an outlet in fluid communication with second ends of the flow channels. In some embodiments the inlet is in fluid communication with the interior of the radiological containment at a first elevation and the outlet is in fluid communication with the interior of the radiological containment at a second elevation higher than the first elevation. The radiological containment may include a reactor cavity containing a lower portion of the pressure vessel, wherein the concrete floor located underneath the nuclear reactor is the reactor cavity floor.

  13. Nuclear Reactor RA Safety Report, Vol. 8, Auxiliary system

    International Nuclear Information System (INIS)

    1986-11-01

    This volume describes RA reactor auxiliary systems, as follows: special ventilation system, special drainage system, hot cells, systems for internal transport. Ventilation system is considered as part of the reactor safety and protection system. Its role is eliminate possible radioactive particles dispersion in the environment. Special drainage system includes pipes and reservoirs with the safety role, meaning absorption or storage of possible radioactive waste water from the reactor building. Hot cells existing in the RA reactor building are designed for production of sealed radioactive sources, including packaging and transport [sr

  14. Development of Vibration Diagnostic System in Research Reactors

    International Nuclear Information System (INIS)

    EL-Kafas, A. A.

    1999-01-01

    Early failure detection and diagnosis system are an important group with increasing interest with the operating support system. Already existing system to monitor integrity of primary system components are vibration and acoustic monitoring system (2,3). The development of vibration diagnostic system for MARIA reactor (30 MW)-the second research reactor in Poland -was made. The new system is applied for the Egypt research reactor (ETRR-1). This paper represents the result obtained during the operation of this activity that carried out at MARIA and ETRR-1 reactors

  15. Cable handling system for use in a nuclear reactor

    International Nuclear Information System (INIS)

    Crosgrove, R.O.; Larson, E.M.; Moody, E.

    1982-01-01

    A cable handling system for use in an installation such as a nuclear reactor is disclosed herein along with relevant portions of the reactor which, in a preferred embodiment, is a liquid metal fast breeder reactor. The cable handling system provides a specific way of interconnecting certain internal reactor components with certain external components, through an assembly of rotatable plugs. Moreover, this is done without having to disconnect these components from one another during rotation of the plugs and yet without interfering with other reactor components in the vicinity of the rotating plugs and cable handling system

  16. Radiolytic production of chemical fuels in fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J D

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered.

  17. Radiolytic production of chemical fuels in fusion reactor systems

    International Nuclear Information System (INIS)

    Fish, J.D.

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered

  18. Coolant cleanup system for BWR type reactor

    International Nuclear Information System (INIS)

    Kinoshita, Shoichiro; Araki, Hidefumi.

    1993-01-01

    The cleanup system of the present invention removes impurity ions and floating materials accumulated in a reactor during evaporation of coolants in the nuclear reactor. That is, coolants pass pipelines from a pressure vessel using pressure difference between a high pressure in the pressure vessel and a low pressure at the upstream of a condensate filtration/desalting device of a condensate/feed water system as a driving source, during which cations and floating materials are removed in a high temperature filtration/desalting device and coolants flow into the condensate/feedwater system. Impurities containing anions are removed here by the condensates filtration/desalting device. Then, they return to the pressure vessel while pressurized and heated by a condensate pump, a feed water pump and a feed water heater. At least pumps, a heat exchanger for heating, a filtration/desalting device for removing anions and pipelines connecting them used exclusively for the coolant cleanup system are no more necessary. (I.S.)

  19. Computational analysis of battery optimized reactor integral system

    International Nuclear Information System (INIS)

    Hwang, J. S.; Son, H. M.; Jeong, W. S.; Kim, T. W.; Suh, K. Y.

    2007-01-01

    Battery Optimized Reactor Integral System (BORIS) is being developed as a multi-purpose fast spectrum reactor cooled by lead (Pb). BORIS is an integral optimized reactor with an ultra-long life core. BORIS aims to satisfy various energy demands maintaining inherent safety with the primary coolant Pb, and improving economics. BORIS is being designed to generate 23 MW t h with 10 MW e for at least twenty consecutive years without refueling and to meet the Generation IV Nuclear Energy System goals of sustainability, safety, reliability, and economics. BORIS is conceptualized to be used as the main power and heat source for remote areas and barren lands, and also considered to be deployed for desalinisation purpose. BORIS, based on modular components to be viable for rapid construction and easy maintenance, adopts an integrated heat exchanger system operated by natural circulation of Pb without pumps to realize a small sized reactor. The BORIS primary system is designed through an optimization study. Thermal hydraulic characteristics during a reactor steady state with heat source and sink by core and heat exchanger, respectively, have been carried out by utilizing a computational fluid dynamics code and hand calculations based on first principles. This paper analyzes a transient condition of the BORIS primary system. The Pb coolant was selected for its lower chemical activity with air or water than sodium (Na) and good thermal characteristics. The reactor transient conditions such as core blockage, heat exchanger failure, and loss of heat sink, were selected for this study. Blockage in the core or its inlet structure causes localized flow starvation in one or several fuel assemblies. The coolant loop blockages cause a more or less uniform flow reduction across the core, which may trigger coolant temperature transient. General conservation equations were applied to model the primary system transients. Numerical approaches were adopted to discretized the governing

  20. Parametric systems analysis for ICF hybrid reactors

    International Nuclear Information System (INIS)

    Berwald, D.H.; Maniscalco, J.A.; Chapin, D.L.

    1981-01-01

    Parametric design and systems analysis for inertial confinement fusion-fission hybrids are presented. These results were generated as part of the Electric Power Research Institute (EPRI) sponsored Feasibility Assessment of Fusion-Fission Hybrids, using an Inertial Confinement Fusion (ICF) hybrid power plant design code developed in conjunction with the feasibility assessment. The SYMECON systems analysis code, developed by Westinghouse, was used to generate economic results for symbiotic electricity generation systems consisting of the hybrid and its client Light Water Reactors (LWRs). These results explore the entire fusion parameter space for uranium fast fission blanket hybrids, thorium fast fission blanket hybrids, and thorium suppressed fission blanket types are discussed, and system sensitivities to design uncertainties are explored

  1. Integrated systems analysis of the PIUS reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fullwood, F.; Kroeger, P.; Higgins, J. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1993-11-01

    Results are presented of a systems failure analysis of the PIUS plant systems that are used during normal reactor operation and postulated accidents. This study was performed to provide the NRC with an understanding of the behavior of the plant. The study applied two diverse failure identification methods, Failure Modes Effects & Criticality Analysis (FMECA) and Hazards & Operability (HAZOP) to the plant systems, supported by several deterministic analyses. Conventional PRA methods were also used along with a scheme for classifying events by initiator frequency and combinations of failures. Principal results of this study are: (a) an extensive listing of potential event sequences, grouped in categories that can be used by the NRC, (b) identification of support systems that are important to safety, and (c) identification of key operator actions.

  2. Integrated systems analysis of the PIUS reactor

    International Nuclear Information System (INIS)

    Fullwood, F.; Kroeger, P.; Higgins, J.

    1993-11-01

    Results are presented of a systems failure analysis of the PIUS plant systems that are used during normal reactor operation and postulated accidents. This study was performed to provide the NRC with an understanding of the behavior of the plant. The study applied two diverse failure identification methods, Failure Modes Effects ampersand Criticality Analysis (FMECA) and Hazards ampersand Operability (HAZOP) to the plant systems, supported by several deterministic analyses. Conventional PRA methods were also used along with a scheme for classifying events by initiator frequency and combinations of failures. Principal results of this study are: (a) an extensive listing of potential event sequences, grouped in categories that can be used by the NRC, (b) identification of support systems that are important to safety, and (c) identification of key operator actions

  3. Reactor accident diagnostic expert system: DISKET

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Yokobayashi, Masao

    1989-11-01

    A reactor accident diagnostic system DISKET has been developed to identify the cause and the type of an abnormal transient of a nuclear power plant. The system is based on the knowledge engineering and consists of an inference engine IERIAS and a knowledge base. The main features of DISKET are the following: Time-varying characteristics of transient can be treated and knowledge base can be divided into several knowledge units to handle a lot of rules effectively. This report has been provided for the convenience of DISKET's users and consists of three parts. The first part is the description of the whole system, the details of the knowledge base of DISKET are described in the second part, and how to use the DISKET system is explained in the third part. (author)

  4. Operator Support System for Pressurized Water Reactor

    International Nuclear Information System (INIS)

    Wei Renjie; Shen Shifei

    1996-01-01

    Operator Support System for Pressurized Water Reactor (OSSPWR) has been developed under the sponsorship of IAEA from August 1994. The project is being carried out by the Department of Engineering Physics, Tsinghua University, Beijing, China. The Design concepts of the operator support functions have been established. The prototype systems of OSSPWR has been developed as well. The primary goal of the project is to create an advanced operator support system by applying new technologies such as artificial intelligence (AI) techniques, advanced communication technologies, etc. Recently, the advanced man-machine interface for nuclear power plant operators has been developed. It is connected to the modern computer systems and utilizes new high performance graphic displays. (author). 6 refs, 4 figs

  5. Principle of human system interface (HSI) design for new reactor console of PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Idris Taib; Mohd Khairulezwan Abdul Manan; Nurfarhana Ayuni Joha; Mohd Sabri Minhat; Izhar Abu Hussin

    2013-01-01

    Full-text: This paper will describe the principle of human system interface design for new reactor console in control room at TRIGA reactor facility. In order to support these human system interface challenges in digital reactor console. Software-based instrumentation and control (I and C) system for new reactor console could lead to new human machine integration. The proposed of Human System Interface (HSI) which included the large display panels which shows reactor status, compact and computer-based workstations for monitoring, control and protection function. The proposed Human System Interface (HIS) has been evaluated using various human factor engineering. It can be concluded that the Human System Interface (HIS) is designed as to address the safety related computer controlled system. (author)

  6. Advanced robotic remote handling system for reactor dismantlement

    International Nuclear Information System (INIS)

    Shinohara, Yoshikuni; Usui, Hozumi; Fujii, Yoshio

    1991-01-01

    An advanced robotic remote handling system equipped with a multi-functional amphibious manipulator has been developed and used to dismantle a portion of radioactive reactor internals of an experimental boiling water reactor in the program of reactor decommissioning technology development carried out by the Japan Atomic Energy Research Institute. (author)

  7. NEPTUNE: a modular system for light-water reactor calculation

    International Nuclear Information System (INIS)

    Bouchard, J.; Kanevoky, A.; Reuss, P.

    1975-01-01

    A complete modular system of light water reactor calculations has been designed. It includes basic nuclear data processing, the APOLLO phase: transport calculations for cells, multicells, fuel assemblies or reactors, the NEPTUNE phase: reactor calculations. A fuel management module, devoted to the automatic determination of the best shuffling strategy is included in NEPTUNE [fr

  8. Scaling laws for modeling nuclear reactor systems

    International Nuclear Information System (INIS)

    Nahavandi, A.N.; Castellana, F.S.; Moradkhanian, E.N.

    1979-01-01

    Scale models are used to predict the behavior of nuclear reactor systems during normal and abnormal operation as well as under accident conditions. Three types of scaling procedures are considered: time-reducing, time-preserving volumetric, and time-preserving idealized model/prototype. The necessary relations between the model and the full-scale unit are developed for each scaling type. Based on these relationships, it is shown that scaling procedures can lead to distortion in certain areas that are discussed. It is advised that, depending on the specific unit to be scaled, a suitable procedure be chosen to minimize model-prototype distortion

  9. Calorimetric and reactor coolant system flow uncertainty

    International Nuclear Information System (INIS)

    Bates, L.; McLean, T.

    1991-01-01

    This paper describes a methodology for the quantification of errors associated with the determination of a feedwater flow, secondary power, and Reactor Coolant System (RCS) flow used at the Trojan Nuclear Plant to ensure compliance with regulatory requirements. The sources of error in Plant indications and process measurement are identified and tracked, using examples, through the mathematical processes necessary to calculate the uncertainty in the RCS flow measurement. An error of approximately 1.4 percent is calculated for secondary power. This error results, along with the consideration of other errors, in an uncertainty of approximately 3 percent in the RCS flow determination

  10. Nuclear reactor fuel rod attachment system

    International Nuclear Information System (INIS)

    Christiansen, D.W.

    1983-01-01

    The invention involves a technique to quickly, inexpensively and rigidly attach a nuclear reactor fuel rod to a support member. The invention also allows for the repeated non-destructive removal and replacement of the fuel rod. The proposed fuel rod and support member attachment and removal system consists of a locking cap fastened to the fuel rod and a locking strip fastened to the support member or vice versa. The locking cap has two or more opposing fingers shaped to form a socket. The fingers spring back when moved apart and released. The locking strip has an extension shaped to rigidly attach to the socket's body portion

  11. Pressure suppression system for a nuclear reactor

    International Nuclear Information System (INIS)

    Jost, N.

    1977-01-01

    The invention pertains to a pressure suppression system for PWR reactors where the parts enclosing the primary coolant are contained in two pressure-tight separate chambers. According to the invention, these chambers are partly filled with water and are connected with each other below the water surface. This way, gases cannot escape from the containment, not even if a valve and a line are damaged at the same time, as the vapours released condensate in the water of at least one of the other chambers. (HP) [de

  12. Reactor protection system refurbishment at Paks

    International Nuclear Information System (INIS)

    Hetzmann, A.; Turi, T.

    1997-01-01

    The history and the milestones of the reactor protection system refurbishment are outlined. During the preparation phase of the refurbishment project, detailed requirements have been set up and specific technical solutions developed. The structure of the project documents prepared during these activities is shown in a figure. The life cycle of the project was divided into four phases: the preparatory phase; the design and manufacturing phase; the installation and commissioning phase; and the operation phase. For all four Paks units a time schedule for implementation was set up. The licensing process is dealt with; the principal license was issued in June 1996. (A.K.)

  13. Core test reactor shield cooling system analysis

    International Nuclear Information System (INIS)

    Larson, E.M.; Elliott, R.D.

    1971-01-01

    System requirements for cooling the shield within the vacuum vessel for the core test reactor are analyzed. The total heat to be removed by the coolant system is less than 22,700 Btu/hr, with an additional 4600 Btu/hr to be removed by the 2-inch thick steel plate below the shield. The maximum temperature of the concrete in the shield can be kept below 200 0 F if the shield plug walls are kept below 160 0 F. The walls of the two ''donut'' shaped shield segments, which are cooled by the water from the shield and vessel cooling system, should operate below 95 0 F. The walls of the center plug, which are cooled with nitrogen, should operate below 100 0 F. (U.S.)

  14. SP-100 space reactor power system readiness

    International Nuclear Information System (INIS)

    Josloff, A.T.; Matteo, D.N.; Bailey, H.S.

    1992-01-01

    This paper discusses the SP-100 Space Reactor Power System which is being developed by GE, under contract to the U.S. Department of Energy, to provide electrical power in the range of 10's to 100's of kW. The system represents an enabling technology for a wide variety of earth orbital and interplanetary science missions, nuclear electric propulsion (NEP) stages, and lunar/Mars surface power for the Space Exploration Initiative (SEI). The technology and design is now at a state of readiness to support the definition of early flight demonstration missions. Of particular importance is that SP-100 meets the demanding U.S. safety performance, reliability and life requirements. The system is scalable and flexible and can be configured to provide 10's to 100's of kWe without repeating development work and can meet DoD goals for an early, low-power demonstration flight in the 1996-1997 time frame

  15. Nuclear reactors transients identification and classification system

    International Nuclear Information System (INIS)

    Bianchi, Paulo Henrique

    2008-01-01

    This work describes the study and test of a system capable to identify and classify transients in thermo-hydraulic systems, using a neural network technique of the self-organizing maps (SOM) type, with the objective of implanting it on the new generations of nuclear reactors. The technique developed in this work consists on the use of multiple networks to do the classification and identification of the transient states, being each network a specialist at one respective transient of the system, that compete with each other using the quantization error, that is a measure given by this type of neural network. This technique showed very promising characteristics that allow the development of new functionalities in future projects. One of these characteristics consists on the potential of each network, besides responding what transient is in course, could give additional information about that transient. (author)

  16. Event tree analysis for the system of hybrid reactor

    International Nuclear Information System (INIS)

    Yang Yongwei; Qiu Lijian

    1993-01-01

    The application of probabilistic risk assessment for fusion-fission hybrid reactor is introduced. A hybrid reactor system has been analysed using event trees. According to the character of the conceptual design of Hefei Fusion-fission Experimental Hybrid Breeding Reactor, the probabilities of the event tree series induced by 4 typical initiating events were calculated. The results showed that the conceptual design is safe and reasonable. through this paper, the safety character of hybrid reactor system has been understood more deeply. Some suggestions valuable to safety design for hybrid reactor have been proposed

  17. Computer System Analysis for Decommissioning Management of Nuclear Reactor

    International Nuclear Information System (INIS)

    Nurokhim; Sumarbagiono

    2008-01-01

    Nuclear reactor decommissioning is a complex activity that should be planed and implemented carefully. A system based on computer need to be developed to support nuclear reactor decommissioning. Some computer systems have been studied for management of nuclear power reactor. Software system COSMARD and DEXUS that have been developed in Japan and IDMT in Italy used as models for analysis and discussion. Its can be concluded that a computer system for nuclear reactor decommissioning management is quite complex that involved some computer code for radioactive inventory database calculation, calculation module on the stages of decommissioning phase, and spatial data system development for virtual reality. (author)

  18. Device for detecting failure of reactor system

    International Nuclear Information System (INIS)

    Miyazawa, Tatsuo.

    1979-01-01

    Purpose: To make it possible to rapidly detect any failure in a reactor system prior to the leakage of coolants. Constitution: The dose of beta line is computed from the difference between the power of a detector for reacting with both beta and gamma lines and a detector for reacting only with gamma line to detect the failure of a reactor system, thereby to raise the detection speed and improve the detection accuracy. More specifically, a radiation detector A detects gamma and beta lines by means of piezoelectric elements. A radiation detector B caused the opening of the detector A to be covered with a metal, and detects only gamma line. The detected values of detectors A and B are amplified by an amplifier and applied to a rate meter and a counter, the values being converted into DC and introduced into a comparison circuit, where the outputs of the rate meter are compared with each other. When the difference is more than the predetermined range, it is supplied as output to an alarm circuit where an alarm signal is produced. (Nakamura, S.)

  19. Fully integrated analysis of reactor kinetics, thermalhydraulics and the reactor control system in the MAPLE-X10 research reactor

    International Nuclear Information System (INIS)

    Shim, S.Y.; Carlson, P.A.; Baxter, D.K.

    1992-01-01

    A prototype research reactor, designated MAPLE-X10 (Multipurpose Applied Physics Lattice Experimental - X 10MW), is currently being built at AECL's Chalk River Laboratories. The CATHENA (Canadian Algorithm for Thermalhydraulic Network Analysis) two-fluid code was used in the safety analysis of the reactor to determine the adequacy of core cooling during postulated reactivity and loss-of-forced-flow transients. The system responses to a postulated transient are predicted including the feedback between reactor kinetics, thermalhydrauilcs and the reactor control systems. This paper describes the MAPLE-X10 reactor and the modelling methodology used. Sample simulations of postulated loss-of-heat-sink and loss-of-regulation transients are presented. (author)

  20. JAERI thermal reactor standard code system for reactor design and analysis SRAC

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro

    1985-01-01

    SRAC, JAERI thermal reactor standard code system for reactor design and analysis, developed in Japan Atomic Energy Research Institute, is for all types of thermal neutron nuclear design and analysis. The code system has undergone extensive verifications to confirm its functions, and has been used in core modification of the research reactor, detailed design of the multi-purpose high temperature gas reactor and analysis of the experiment with a critical assembly. In nuclear calculation with the code system, multi-group lattice calculation is first made with the libraries. Then, with the resultant homogeneous equivalent group constants, reactor core calculation is made. Described are the following: purpose and development of the code system, functions of the SRAC system, bench mark tests and usage state and future development. (Mori, K.)

  1. Systems aspects of a space nuclear reactor power system

    Science.gov (United States)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    Various system aspects of a 300-kW nuclear reactor power system for spacecraft have been investigated. Special attention is given to the cases of a reusable OTV and a space-based radar. It is demonstrated that the stowed length of the power system is important to mission design, and that orbital storage for months to years may be needed for missions involving orbital assembly.

  2. Auxiliary reactor for a hydrocarbon reforming system

    Science.gov (United States)

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  3. The failure diagnoses of nuclear reactor systems

    International Nuclear Information System (INIS)

    Sheng Huanxing.

    1986-01-01

    The earlier period failure diagnoses can raise the safety and efficiency of nuclear reactors. This paper first describes the process abnormality monitoring of core barrel vibration in PWR, inherent noise sources in BWR, sodium boiling in LMFBR and nuclear reactor stability. And then, describes the plant failure diagnoses of primary coolant pumps, loose parts in nuclear reactors, coolant leakage and relief valve location

  4. The digital reactor protection system for the instrumentation and control of reactor TRIGA PUSPATI (RTP)

    International Nuclear Information System (INIS)

    Nurfarhana Ayuni Joha; Izhar Abu Hussin; Mohd Idris Taib; Zareen Khan Abdul Jalil Khan

    2010-01-01

    Reactor Protection System (RPS) is important for Reactor Instrumentation and Control System. The RPS comprises all redundant electrical devices and circuitry involved in the generation of those initiating signals associated to the trip protective function. The instrumentation system for the RPS provides automatic protection signals against unsafe and improper reactor operation. The physical separation is provided for all of the redundant instrumentation systems to preserve redundancy. The safety protection systems using circuits composed of analog instruments and relays with relay contacts is difficult to realize from various reasons. Therefore, an application of digital technology can be said a logical conclusion also in the light of its functional superiority. (author)

  5. Dynamic simulation platform to verify the performance of the reactor regulating system for a research reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    Digital instrumentation and controls system technique is being introduced in new constructed research reactor or life extension of older research reactor. Digital systems are easy to change and optimize but the validated process for them is required. Also, to reduce project risk or cost, we have to make it sure that configuration and control functions is right before the commissioning phase on research reactor. For this purpose, simulators have been widely used in developing control systems in automotive and aerospace industries. In these literatures, however, very few of these can be found regarding test on the control system of research reactor with simulator. Therefore, this paper proposes a simulation platform to verify the performance of RRS (Reactor Regulating System) for research reactor. This simulation platform consists of the reactor simulation model and the interface module. This simulation platform is applied to I and C upgrade project of TRIGA reactor, and many problems of RRS configuration were found and solved. And it proved that the dynamic performance testing based on simulator enables significant time saving and improves economics and quality for RRS in the system test phase. (authors)

  6. The reliability of manual reporting of clinical events in an anesthesia information management system (AIMS).

    Science.gov (United States)

    Simpao, Allan F; Pruitt, Eric Y; Cook-Sather, Scott D; Gurnaney, Harshad G; Rehman, Mohamed A

    2012-12-01

    Manual incident reports significantly under-report adverse clinical events when compared with automated recordings of intraoperative data. Our goal was to determine the reliability of AIMS and CQI reports of adverse clinical events that had been witnessed and recorded by research assistants. The AIMS and CQI records of 995 patients aged 2-12 years were analyzed to determine if anesthesia providers had properly documented the emesis events that were observed and recorded by research assistants who were present in the operating room at the time of induction. Research assistants recorded eight cases of emesis during induction that were confirmed with the attending anesthesiologist at the time of induction. AIMS yielded a sensitivity of 38 % (95 % confidence interval [CI] 8.5-75.5 %), while the sensitivity of CQI reporting was 13 % (95 % CI 0.3-52.7 %). The low sensitivities of the AIMS and CQI reports suggest that user-reported AIMS and CQI data do not reliably include significant clinical events.

  7. Study on modeling technology in digital reactor system

    International Nuclear Information System (INIS)

    Liu Xiaoping; Luo Yuetong; Tong Lili

    2004-01-01

    Modeling is the kernel part of a digital reactor system. As an extensible platform for reactor conceptual design, it is very important to study modeling technology and develop some kind of tools to speed up preparation of all classical computing models. This paper introduces the background of the project and basic conception of digital reactor. MCAM is taken as an example for modeling and its related technologies used are given. It is an interface program for MCNP geometry model developed by FDS team (ASIPP and HUT), and designed to run on windows system. MCAM aims at utilizing CAD technology to facilitate creation of MCNP geometry model. There have been two ways for MCAM to utilize CAD technology: (1) Making use of user interface technology in aid of generation of MCNP geometry model; (2) Making use of existing 3D CAD model to accelerate creation of MCNP geometry model. This paper gives an overview of MCAM's major function. At last, several examples are given to demonstrate MCAM's various capabilities. (authors)

  8. The feasibility study on commercialized fast reactor cycle system

    International Nuclear Information System (INIS)

    Noda, Hiroshi

    2002-01-01

    The feasibility study on commercialized Fast Reactor cycle system (FS) has been carried out by a joint team with the participation of all parties concerned in Japan since July, 1999. It aims to clarify various perspectives for commercialized fast reactor cycle system and also suggest development strategies to diverse social needs in the 21 st century. The FS consists of several phases. The phase 1 has progressed as planned and the highly feasible candidate concepts with innovative technologies have been screened out among a wide variety of concepts. During the phase 2, approximately five years after the phase 1, the in-depth design studies and engineering scale tests of key technologies are being conducted to verify and validate the feasibility of screened candidate concepts. At the end of the phase 2, a few promising concepts will be selected with their R and D tasks. The paper describes the results of the phase 1, the activities of the phase 2 and the new concept related to the fast reactor fuel cycle focusing on the reduction in environmental burden, which is one of key factors to sustain the nuclear power generation in the 21 st century

  9. Implementation of an FPGA based system survey and diagnostic reader with the aim to increase system dependability

    CERN Document Server

    Alsdorf, M; Kwiatkowski, M; Vigano, W; Zamantzas, C

    2012-01-01

    The operation and machine protection of accelerators practically rely on their underlying instrumentation systems and a failure of any of those systems could pose a significant impact on the overall reliability and availability. In order to improve the detection and in some cases the prevention of failures, a survey mechanism could be integrated to the system that collects crucial information about the current system status through a number of acquisition modules. The implementation and integration of such a method is presented with the aim to standardize the implementation, where the acquisition modules share a common build and are connected through a standardized interface to a survey reader. The reader collects regularly data and controls the readout intervals. The information collected from these modules is used locally in the FPGA device to identify critical system failures and results in an immediate failsafe reaction with the data also transmitted and stored in external databases for offline analysis.

  10. Proposal of a system for fuel elements inspection of CDTN TRIGA nuclear reactor

    International Nuclear Information System (INIS)

    Rodrigues, Rogerio Rivail; Mesquita, Amir Zacarias

    2013-01-01

    The CDTN has in its facilities a TRIGA-type nuclear reactor. The reactor's cooling water must be treated and managed with the goal of keeping its low conductivity to minimize corrosion of the reactor components, mainly of fuel elements (FE), and reduce the level of radioactivity. The aim of this paper is to present a proposal for the development of a system for verification of some possible leaks in FE nuclear research reactors, based on the sipping test. This type of testing is a way to check for leaks of fission products from fuel element of nuclear research reactor. In the future, when the test will do, it will have a correlation between the components found in the reactor cooling water pool and integrity of nuclear fuel elements. The device development and its application will be presented here, covering results that were not previously investigated yet, giving originality to this project. (author)

  11. Safety system upgrades to a research reactor: A regulatory perspective

    International Nuclear Information System (INIS)

    Lamarre, G.B.; Martin, W.G.

    2003-01-01

    The NRU (National Research Universal) reactor, located at the Chalk River Laboratories of Atomic Energy of Canada Limited (AECL), first achieved criticality November 3, 1957. AECL continues to operate NRU for research to support safety and reliability studies for CANDU reactors and as a major supplier of medical radioisotopes. Following a detailed systematic review and assessment of NRU's design and the condition of its primary systems, AECL formally notified the Canadian Nuclear Safety Commission's (CNSC) predecessor - the Atomic Energy Control Board - in 1992 of its intention to upgrade NRU's safety systems. AECL proposed seven major upgrades to provide improvements in shutdown capability, heat removal, confinement, and reactor monitoring, particularly during and after a seismic event. From a CNSC perspective, these upgrades were necessary to meet modern safety standards. From the start of the upgrades project, the CNSC provided regulatory oversight aimed at ensuring that AECL maintained a structured approach to the upgrades. The elements of the approach include, but are not limited to, the determination of project milestones and target dates; the formalization of the design process and project quality assurance requirements; the requirements for updated documentation, including safety reports, safety notes and commissioning reports; and the approval and authorization process. This paper details, from a regulatory perspective, the structured approach used in approving the design, construction, commissioning and subsequent operation of safety system upgrades for an existing and operating research reactor, including the many challenges faced when attempting to balance the requirements of the upgrades project with AECL's need to keep NRU operating to meet its important research and production objectives. (author)

  12. Fuel assembly transfer and storage system for nuclear reactors

    International Nuclear Information System (INIS)

    Allain, Albert; Thomas, Claude.

    1981-01-01

    Transfer and storage system on a site comprising several reactors and at least one building housing the installations common to all these reactors. The system includes: transfer and storage modules for the fuel assemblies comprising a containment capable of containing several assemblies carried on a transport vehicle, a set of tracks for the modules between the reactors and the common installations, handling facilities associated with each reactor for moving the irradiated assemblies from the reactor to a transfer module placed in loading position on a track serving the reactor and conversely to move the new assemblies from the transfer module to the reactor, and at least one handling facility located in the common installation building for loading the modules with new assemblies [fr

  13. Two-particle correlations in reactor systems

    International Nuclear Information System (INIS)

    Mika, J.

    1975-01-01

    A study is made of the relationship between the general transport equation and the correlation matrix equation, in reactor systems. How some of the results obtained so far for the generalized transport equation can be simply translated to the correlation matrix equation is indicated. In particular, the semigroup formalism developed for the generalized transport equation is used to prove the existence and uniqueness of solution to the correlation matrix equation. The generalized transport equation is rigorously formulated in a Hilbert space of square integrable functions. The semigroup formalism for that equation is introduced and the solution expressed in terms of the semigroup. The correlation matrix equation is then formulated. It is shown how the semigroup formalism developed for the generalized transport equation can be applied to the correlation matrix equation and used to prove the existence theorem. Some applications of the semigroup formalism are then indicated. Firstly, the simple one point model obtained from the general equations is introduced. Secondly, the well known phenomenon of the linear increase with time of the components of the correlation matrix in a critical reactor is analyzed. Finally, it is shown how the singular perturbation method developed recently for the generalized transport equation can be applied to the correlation matrix equation. (U.K.)

  14. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  15. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  16. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  17. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  18. Reactor structure and superconducting magnet system of ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Yoshida, Kiyoshi; Shibanuma, Kiyoshi; Okuno, Kiyoshi; Tsuji, Hiroshi; Shimamoto, Susumu

    1993-01-01

    Fusion Experimental Reactors are one of the major steps toward realization of the fusion energy and the key objective are to demonstrate the scientific and technological feasibility prior to the Demo Fusion Reactor. ITER (International Thermonuclear Experimental Reactor) is one of experimental reactors and the conceptual design has been completed by the united efforts of USA, USSR, EC and Japan. In parallel with the conceptual design, key technology development in various areas has being conducted. This paper describes the overall design concepts and the latest technological achievements of the ITER reactor structure and superconducting magnet system. (author)

  19. Development Principles of the Pedagogical System Aimed at Bachelor Training Based on Modern Information Technology

    Science.gov (United States)

    Kurymbayev, Sayat G.; Samashova, Gulfarida E.; Alshynbayeva, Zhuldyz E.; Mukhametzhanova, Aigul O.; Sharazdin, Adilzada M.; Kalybekova, Kalamkas S.; Kosybaeva, Umitzhan A.

    2016-01-01

    Modern education is aimed at training competent specialists, which requires modernizing the training process by implementing innovative technologies, especially information technologies. Information technologies allow quickly accessing necessary data, which speeds up the training process. This paper deals with issues related to training bachelors…

  20. Reactor power reduction system and method

    International Nuclear Information System (INIS)

    Bruno, S.J.; Dunn, S.A.; Raber, M.

    1978-01-01

    A method of operating a nuclear power reactor is disclosed which enables an accelerated power reduction of the reactor without completely shutting the reactor down. The method includes monitoring the incidents which, upon their occurrence, would require an accelerated power reduction in order to maintain the reactor in a safe operation mode; calculating the power reduction required on the occurrence of such an incident; determining a control rod insertion sequence for the normal operation of the reactor, said sequence being chosen to optimize reactor power capability; selecting the number of control rods necessary to respond to the accelerated power reduction demand, said selection being made according to a priority determined by said control rod insertion sequence; and inserting said selected control rods into the reactor core. 11 claims, 13 figures

  1. Reactor protection system including engineered features actuation system

    International Nuclear Information System (INIS)

    Palmaers, W.

    1982-01-01

    The safety concept requires to ensure that - the reactor protection system - the active engineered safeguard - and the necessary auxiliary systems are so designed and interfaced in respect of design and mode of action that, in the event of single component failure reliable control of the consequences of accidents remains ensured at all times and that the availability of the power plant is not limited unnecessarily. In order to satisfy these requirements due, importance was attached to a consistent spacial separation of the mutually redundant subsystems of the active safety equipment. The design and layout of the reactor protection system, of the power supply (emergency power supply), and of the auxiliary systems important from the safety engineering point of view, are such that their subsystems also largely satisfy the requirements of independence and spacial separation. (orig./RW)

  2. Development of telerobotic systems for reactor decommissioning, (3)

    International Nuclear Information System (INIS)

    Usui, Hozumi; Fujii, Yoshio; Shinohara, Yoshikuni

    1991-01-01

    This paper describes the telerobotic system for reactor decommissioning in the scope of engineering demonstration of dismantling radioactive reactor internals of an experimental boiling water power reactor JPDR. The total system consists of a telerobotic manipulator system equipped with a multi-functional amphibious slave manipulator with a load capacity of 25 daN, a chain-driven transport system, and a computer-assisted monitoring and control system. Preceding to the application of the telerobotic system to actual dismantling operation, a mockup test was performed of dismantling the simulated reactor internals of actual-size by the method of underwater plasma arc cutting in order to study the performance of the telerobotic system in a realistic environment. The system was then successfully applied to dismantling the actual reactor internals according to the JPDR decommissioning program. (author)

  3. Micro processor based research reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Hyde, W.K.

    1987-01-01

    The system consists of a Control System Computer (CSC) incorporated into a Reactor Control Console (RCC) and a Data Acquisition and Control Unit (DAC) adjacent to the reactor. The CSC has a high resolution color graphics CRT monitor which provides real-time graphic simulation of the reactor and a number of bar graphs displaying strategic parameters of the reactor system. In addition, abnormal or dangerous conditions are displayed. The CSC is equipped with two printers eliminating manual logging of reactor data. The reactor display and pulse mode display may also be printed. Historical data is saved in the system's large capacity memory and may be replayed and/or printed. Because of the CSC's inherent high speed math capability, raw reactor data will be quickly converted and displayed in real-time. Data can be presented in meaningful engineering units. The DAC provides a high speed data acquisition and control capability adjacent to the reactor. It continuously collects data from the reactor system, concentrates the data into a database and transmits it to the CSC when requested. Data transmission is over one of two data trunks to the CSC. The secondary trunk is used if the primary trunk fails. The data trunks drastically reduce the wiring requirements between the reactor and the Control Console. During steady-state operation of the reactor, operator commands to adjust the rod positions is transmitted from the CSC to the DAC which re-issues the commands to the drive mechanisms. In the automatic mode, the DAC will control the position of the rods via a PID algorithm. The system is independently monitored by two or more safety computers. Their function is to monitor the power level, the rate of change of power and fuel temperature of the reactor and to independently shut the reactor down in the event of a potentially dangerous (scram) condition. (author)

  4. Systemic model for the aid for operating of the reactor Siloe

    International Nuclear Information System (INIS)

    Royer, J.C.; Moulin, V.; Monge, F.

    1995-01-01

    The Service of the Reactor Siloe (CEA/DRN/DRE/SRS), fully aware of the abilities and knowledge of his teams in the field of research reactor operating, has undertaken a project of knowledge engineering in this domain. The following aims have been defined: knowledge capitalization for the installation in order to insure its perenniality and valorization, elaboration of a project for the aid of the reactor operators. This article deals with the different actions by the SRS to reach the aims: realization of a technical model for the operation of the Siloe reactor, development of a knowledge-based system for the aid for operating. These actions based on a knowledge engineering methodology, SAGACE, and using industrial tools will lead to an amelioration of the security and the operating of the Siloe reactor. (authors). 13 refs., 7 figs

  5. Reactivity requirements and safety systems for heavy water reactors

    International Nuclear Information System (INIS)

    Kati, S.L.; Rustagi, R.S.

    1977-01-01

    The natural uranium fuelled pressurised heavy water reactors are currently being installed in India. In the design of nuclear reactors, adequate attention has to be given to the safety systems. In recent years, several design modifications having bearing on safety, in the reactor processes, protective and containment systems have been made. These have resulted either from new trends in safety and reliability standards or as a result of feed-back from operating reactors of this type. The significant areas of modifications that have been introduced in the design of Indian PHWR's are: sophisticated theoretical modelling of reactor accidents, reactivity control, two independent fast acting systems, full double containment and improved post-accident depressurisation and building clean-up. This paper brings out the evolution of design of safety systems for heavy water reactors. A short review of safety systems which have been used in different heavy water reactors, of varying sizes, has been made. In particular, the safety systems selected for the latest 235 MWe twin reactor unit station in Narora, in Northern India, have been discussed in detail. Research and Development efforts made in this connection are discussed. The experience of design and operation of the systems in Rajasthan and Kalpakkam reactors has also been outlined

  6. RHEIN, Modular System for Reactor Design Calculation

    International Nuclear Information System (INIS)

    Reiche, Christian; Barz, Hansulrich; Kunzmann, Bernd; Seifert, Eberhard; Wand, Hartmut

    1990-01-01

    1 - Description of program or function: RHEIN is a modular reactor code system for neutron physics calculations. It consists of a small number of system codes for execution control, data management, and handling support, as well as of the physical calculation routines. The execution is controlled by input data containing mathematical and physical parameters and simple commands for routine calls and data manipulations. The calculation routines are in tune with one another and the system takes care of the data transfer between them. Cross-section libraries with self shielding parameters are added to the system. 2 - Method of solution: The calculation routines can be used for solving the following physics problems: - Calculation of cross-section sets for infinite mediums, taking into account chord length. - Zero-dimensional spectrum calculation in diffusion, P1, or B1 approximation. - One-dimensional calculation in diffusion, P1, or collision probability approximation. - Two-dimensional diffusion calculation. - Cell calculation by THERMOS. - Zone-wise homogenized group collapsing within zero, one, or two-dimensional models. - Normalization, summarizing, etc. - Output of cross-section sets to off systems Sn and Monte-Carlo calculations

  7. Extensions and renovations of reactor protection systems

    International Nuclear Information System (INIS)

    Hellmerichs, K.

    1985-01-01

    Increase of requirements by the authorities as to the design of reactor protection systems affected in the last years not only plans being under construction, but also resulted in partly spacious extensions and renovations. While working on the extensions and renovations a lot of problems arose: far-reaching performance of newest guidelines and rules in spite of old plant concepts; partly higher degree of redundancy requirements of the new systems in contrast to the present systems; use of present safeguard systems for new accident countermeasures; designation of priorities between present and new functions, especially in view of fault behaviour of present systems; adaptation of the new I and C equipment to the present signalisation-, operation- and information-arrangements under consideration of the present operational philosophy; spatial incorporation of new equipments; construction as to time without expanding of the planned refuelling phases. Because the KWU has planned and constructed such alterations in nearly 10 plants a lot of experience has been gathered. (author)

  8. Primary coolant system of BWR type reactor

    International Nuclear Information System (INIS)

    Ibe, Hidefumi; Takahashi, Masanori; Aoki, Yasuko

    1997-01-01

    The present invention provides a water quality control system for preventing corrosion and for extending working life of structural materials of a BWR-type reactor. Namely, a sensor group 1 and a sensor group 2 are disposed at different positions such as in a feedwater system, a recycling system, main steam pipes, and a pressure vessel, respectively. Each sensor group can record and generate alarms independently. The sensor group 1 for usual monitoring is connected to a calculation device by way of a switch to confirm that the monitored values are within a proper range by the injection of a water quality moderating agent. The sensor group 2 is caused to stand alone or connected with the calculation device by way of a switch optionally. When abnormality should occur in the sensor group 1, the sensor group 2 determines the limit for the increase/decrease of controlling amount of the moderating agent at a portion where the conditions are changed to the most severe direction by using data base. The moderating agent is injected and controlled based on the controlling amount. The system of the present invention can optionally cope with a new sensor and determination for new water quality standards. Then the evaluation/control accuracy of the entire system can be improved while covering up the errors of each sensor. (I.S.)

  9. High pressure sealing systems for nuclear reactors

    International Nuclear Information System (INIS)

    Garam, E. de

    1993-01-01

    TIA is the FRAMATOME Division in charge of design, manufacture maintenance and improvement of reactor core instrumentation. In the course of its activities, TIA was rapidly confronted with problems of leakage occurring in PWR in-core instrumentation, both in the neutron flux measurement system (flux thimbles and thimble guide tubes) and in the equipment used for core temperature sensing. TIA has likewise placed emphasis, in setting objectives for its operations, on improving instrumentation reliability, reducing maintenance costs and limiting the radiation doses sustained during maintenance. The very satisfactory results achieved by TIA in all of these areas have led us to look to the future with confidence. The purpose of this presentation is to describe the various improvements devised by TIA over the years and to take inventory of the experience gained by the Division with instrumentation for all types of nuclear power plants. (author)

  10. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  11. Laser Range Profiling for Active Protection System Target Classification and Aim-Point Selection

    National Research Council Canada - National Science Library

    Jones, Michael

    2004-01-01

    ...) is currently developing the Close-In Active Protection System (CIAPS). The distinguishing capability of CIAPS is its ability to provide self-protection against missiles and projectiles launched at close range...

  12. Autonomous docking control of visual-servo type underwater vehicle system aiming at underwater automatic charging

    International Nuclear Information System (INIS)

    Yanou, Akira; Ohnishi, Shota; Ishiyama, Shintaro; Minami, Mamoru

    2015-01-01

    A visual-servo type remotely operated vehicle (ROV) system with binocular wide-angle lens was developed to survey submarine resources, decontaminate radiation from mud in dam lake and so on. This paper explores the experiments on regulator performance and underwater docking of the robot system utilizing Genetic Algorithm (GA) for real-time recognition of the robot's relative position and posture through 3D marker. The visual servoing performances have been verified as follows; (1) The stability performances of the proposed regulator system have been evaluated by exerting abrupt distrubane force while the ROV is controlled by visual servoing. (2) The proposed system can track time-variant desired target position in x-axis (front-back direction of the robot). (3) The underwater docking can be completed by switching visual servoing and docking modes based on the error threshold, and by giving time-varying desired target position and orientation to the controller as a desired pose. (author)

  13. The Mental Health System in North-Eastern Nigeria: A WHO-AIMS ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... The definition of a detailed description of the mental health system of the north-eastern region ... for regional mental health Gap action Plan (mhGAP) policy formulation and implementation.

  14. Study of human factors, and its basic aspects focusing the IEA-R1 research reactor operators, aiming at the prevention of accidents caused by human failures

    International Nuclear Information System (INIS)

    Martins, Maria da Penha Sanches

    2008-01-01

    This work presents a study of human factors and possible human failure reasons that can cause incidents, accidents and workers exposition, associated to risks intrinsic to the profession. The objective is to contribute with the operators of IEA-R1 reactor located at IPEN CNEN/S P. Accidents in the technological field, including the nuclear, have shown that the causes are much more connected to human failure than to system and equipment failures, what has led the regulatory bodies to consider studies on human failure. The research proposed in this work is quantitative/qualitative and also descriptive. Two questionnaires were used to collect data. The first of them was elaborated from the safety culture attributes which are described by the International Atomic Energy Agency - IAEA. The second considered individual and situational factors composing categories that could affect people in the work area. A carefully selected transcription of the theoretical basis according to the study of human factors was used. The methodology demonstrated a good reliability degree. Results lead to mediate factors which need direct actions concerning the needs of the group and of the individual. This research shows that it is necessary to have a really effective unit of planning and organization, not only to the physical and psychological health issues but also to the safety in the work. (author)

  15. A simulation Model of the Reactor Hall Ventilation and air Conditioning Systems of ETRR-2

    International Nuclear Information System (INIS)

    Abd El-Rahman, M.F.

    2004-01-01

    Although the conceptual design for any system differs from one designer to another. each of them aims to achieve the function of the system required. the ventilation and air conditioning system of reactors hall is one of those systems that really differs but always dose its function for which it is designed. thus, ventilation and air conditioning in some reactor hall constitute only one system whereas in some other ones, they are separate systems. the Egypt Research Reactor-2 (ETRR-2)represents the second type. most studies conducted on ventilation and air conditioning simulation models either in traditional building or for research rectors show that those models were not designed similarly to the model of the hall of ETRR-2 in which ventilation and air conditioning constitute two separate systems.besides, those studies experimented on ventilation and air conditioning simulation models of reactor building predict the temperature and humidity inside these buildings at certain outside condition and it is difficult to predict when the outside conditions are changed . also those studies do not discuss the influences of reactor power changes. therefore, the present work deals with a computational study backed by infield experimental measurements of the performance of the ventilation and air conditioning systems of reactor hall during normal operation at different outside conditions as well as at different levels of reactor power

  16. System assessment of helical reactors in comparison with tokamaks

    International Nuclear Information System (INIS)

    Yamazaki, K.; Imagawa, S.; Muroga, T.; Sagara, A.; Okamura, S.

    2002-10-01

    A comparative assessment of tokamak and helical reactors has been performed using equivalent physics/engineering model and common costing model. Higher-temperature plasma operation is required in tokamak reactors to increase bootstrap current fraction and to reduce current-drive (CD) power. In helical systems, lower-temperature operation is feasible and desirable to reduce helical ripple transport. The capital cost of helical reactor is rather high, however, the cost of electricity (COE) is almost same as that of tokamak reactor because of smaller re-circulation power (no CD power) and less-frequent blanket replacement (lower neutron wall loading). The standard LHD-type helical reactor with 5% beta value is economically equivalent to the standard tokamak with 3% beta. The COE of lower-aspect ratio helical reactor is on the same level of high-β N tokamak reactors. (author)

  17. Systemization of Design and Analysis Technology for Advanced Reactor

    International Nuclear Information System (INIS)

    Kim, Keung Koo; Lee, J.; Zee, S. K.

    2009-01-01

    The present study is performed to establish the base for the license application of the original technology by systemization and enhancement of the technology that is indispensable for the design and analysis of the advanced reactors including integral reactors. Technical reports and topical reports are prepared for this purpose on some important design/analysis methodology; design and analysis computer programs, structural integrity evaluation of main components and structures, digital I and C systems and man-machine interface design. PPS design concept is complemented reflecting typical safety analysis results. And test plans and requirements are developed for the verification of the advanced reactor technology. Moreover, studies are performed to draw up plans to apply to current or advanced power reactors the original technologies or base technologies such as patents, computer programs, test results, design concepts of the systems and components of the advanced reactors. Finally, pending issues are studied of the advanced reactors to improve the economics and technology realization

  18. Cryogenic system design for a compact tokamak reactor

    International Nuclear Information System (INIS)

    Slack, D.S.; Kerns, J.A.; Miller, J.R.

    1988-01-01

    The International Tokamak Engineering Reactor (ITER) is a program presently underway to design a next-generation tokamak reactor. The cryogenic system for this reactor must meet unusual and new requirements. Unusually high heat loads (100 kW at 4.5 K) must be handled because neutron shielding has been limited to save space in the reactor core. Also, large variations in the cryogenics loads occur over short periods of time because of the pulsed nature of some of the operating scenarios. This paper describes a workable cryogenic system design for a compact tokamak reactor such as ITER. A design analysis is presented dealing with a system that handles transient loads, coil quenches, reactor cool-down and the effect of variations in helium-supply temperatures on the cryogenic stability of the coils. 5 refs., 4 figs., 1 tab

  19. Diversity in computerized reactor protection systems

    International Nuclear Information System (INIS)

    Fischer, H.D.; Piel, L.

    1999-01-01

    Based on engineering judgement, the most important measures to increase the independency of redundant trains of a computerized safety instrumentation and control system (I and C) in a nuclear power plant are evaluated with respect to practical applications. This paper will contribute to an objective discussion on the necessary and justifiable arrangement of diversity in a computerized safety I and C system. Important conclusions are: - (i) diverse equipment may be used to control dependent failures only if measures necessary for designing, licensing, and operating a computerized safety I and C system homogeneous in equipment are neither technically nor economically feasible; - (ii) the considerable large operating experience in France with a non-diverse equipment digital reactor protection system does not call for equipment diversity. Although there are no generally accepted methods, the licensing authority is still required to take into account dependent failures in a probabilistic safety analysis; - (ii) the frequency of postulated initiating events implies which I and C functionality should be implemented on diverse equipment. Using non-safety I and C equipment in addition to safety I and C equipment is attractive because its necessary unavailability to control an initiating event in teamwork with the safety I and C equipment is estimated to range from 0.01 to 0.1. This can be achieved by operational experience

  20. Mechanical systems development of integral reactor

    International Nuclear Information System (INIS)

    Park, Keun Bae; Chang, M. H.; Kim, J. I.; Choi, S.; Kim, K. S.; Kim, T. W.; Jeong, K. H.; Kim, J. H.; Kim, Y. W.; Lee, G. M.

    1997-07-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose applications such as small capacity power generation, co-generation and sea water desalination. This in mind, survey has been made on the worldwide small and medium integral reactors under development. Reviewed are their technical characteristics, development status, design features, application plans, etc. For the mechanical design scope of work, the structural concept compatible with the characteristics and requirements of integral reactor has been established. Types of major components were evaluated and selected. Functional and structural concept, equipment layout and supporting concept within the reactor pressure vessel have also been established. Preliminary mechanical design requirements were developed considering the reactor lifetime, operation conditions, and the expected loading combinations. To embody the concurrent design approach, recent CAD technology and team engineering concept were evaluated. (author). 31 refs.,16 tabs., 35 figs

  1. Study of reactor parameters of on critical systems, Phase I: Safety report for RB zero power reactor

    International Nuclear Information System (INIS)

    Raisic, N.

    1962-09-01

    In addition to the safety analysis for the zero power RB reactor, this report contains a general description of the reactor, reactor components, auxiliary equipment and the reactor building. Reactor Rb has been reconstructed during 1961-1962 and supplied with new safety-control system as well as with a complete dosimetry instrumentation. Since RB reactor was constructed without shielding special attention is devoted to safety and protection of the staff performing experiments. Due to changed circumstances in the Institute ( start-up of the RA 7 MW power reactor) the role of the RB reactor was redefined

  2. Investigation/evaluation of water cooled fast reactor in the feasibility study on commercialized fast reactor cycle systems. Intermediate evaluation of phase-II study

    International Nuclear Information System (INIS)

    Kotake, Syoji; Nishikawa, Akira

    2005-01-01

    Feasibility study on commercialized fast reactor cycle systems aims at investigation and evaluation of FBR design requirement's attainability, operation and maintenance, and technical feasibility of the candidate system. Development targets are 1) ensuring safety, 2) economic competitiveness, 3) efficient utilization of resources, 4) reduction of environmental load and 5) enhancement of nuclear non-proliferation. Based on the selection of the promising concepts in the first phase, conceptual design for the plant system has proceeded with the following plant system: a) sodium cooled reactors at large size and medium size module reactors, b) a lead-bismuth cooled medium size reactor, c) a helium gas cooled large size reactor and d) a BWR type large size FBR. Technical development and feasibility has been assessed and the study considers the need of respective key technology development for the confirmation of the feasibility study. (T. Tanaka)

  3. Building reactor operator sustain expert system with C language integrated production system

    International Nuclear Information System (INIS)

    Ouyang Qin; Hu Shouyin; Wang Ruipian

    2002-01-01

    The development of the reactor operator sustain expert system is introduced, the capability of building reactor operator sustain expert system is discussed with C Language Integrated Production System (Clips), and a simple antitype of expert system is illustrated. The limitation of building reactor operator sustain expert system with Clips is also discussed

  4. RELAP/SCDAPSIM Reactor System Simulator Development and Training for University and Reactor Applications

    International Nuclear Information System (INIS)

    Hohorst, J.K.; Allison, C.M.

    2010-01-01

    The RELAP/SCDAPSIM code, designed to predict the behaviour of reactor systems during normal and accident conditions, is being developed as part of an international nuclear technology development program called SDTP (SCDAP Development and Training Program). SDTP involves more than 60 organizations in 28 countries. One of the important applications of the code is for simulator training of university faculty and students, reactor analysts, and reactor operations and technical support staff. Examples of RELAP/SCDAPSIM-based system thermal hydraulic and severe accident simulator packages include the SAFSIM simulator developed by NECSA for the SAFARI research reactor in South Africa, university-developed simulators at the University of Mexico and Shanghai Jiao Tong University in China, and commercial VISA and RELSIM packages used for analyst and reactor operations staff training. This paper will briefly describe the different packages/facilities. (authors)

  5. RELAP/SCDAPSIM Reactor System Simulator Development and Training for University and Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hohorst, J.K.; Allison, C.M. [Innovative Systems Software, 1242 South Woodruff Avenue, Idaho Falls, Idaho 83404 (United States)

    2010-07-01

    The RELAP/SCDAPSIM code, designed to predict the behaviour of reactor systems during normal and accident conditions, is being developed as part of an international nuclear technology development program called SDTP (SCDAP Development and Training Program). SDTP involves more than 60 organizations in 28 countries. One of the important applications of the code is for simulator training of university faculty and students, reactor analysts, and reactor operations and technical support staff. Examples of RELAP/SCDAPSIM-based system thermal hydraulic and severe accident simulator packages include the SAFSIM simulator developed by NECSA for the SAFARI research reactor in South Africa, university-developed simulators at the University of Mexico and Shanghai Jiao Tong University in China, and commercial VISA and RELSIM packages used for analyst and reactor operations staff training. This paper will briefly describe the different packages/facilities. (authors)

  6. Management Systems for Organic EggProduction - Aiming to Improve AnimalHealth and Welfare

    DEFF Research Database (Denmark)

    Hegelund, Lene

    one production period. In the second part of the project a generic HACCP system was developed, using an expert panel analysis. The two management tools have very different approaches to improving animal health and welfare, and subsequently different methods, cost and advantages. This makes them...

  7. Managing the water chemistry of a CANDU reactor with an expert system

    International Nuclear Information System (INIS)

    Lamirande, S.; Roberge, P.R.

    1990-01-01

    The aim of this project was to capture the expertise of Ontario Hydro in the water chemistry of the heat transport system (HTS) of the CANDU nuclear reactor and transform it into an Expert System prototype. The end product is an Expert System which can realistically diagnose situations and recommend proper courses of action based on the user's water chemistry analysis

  8. BEACON TSM application system to the operation of PWR reactors

    International Nuclear Information System (INIS)

    Lozano, J. A.; Mildrum, C.; Serrano, J. F.

    2012-01-01

    BEACON-TSM is an advanced core monitoring system for PWR reactor cores, and also offers the possibility to perform a wide range of predictive calculation in support of reactor operation. BEACON-TSM is presently installed and licensed in the 5 Spanish PWR reactors of standard Westinghouse design. the purpose of this paper is to describe the features of this software system and to show the advantages obtainable by a nuclear power plant from its use. To illustrate the capabilities and benefits of BEACON-TSM two real case reactor operating situations are presented. (Author)

  9. Reactor noise analysis applications in NPP I and C systems

    Energy Technology Data Exchange (ETDEWEB)

    Gloeckler, O. [International Atomic Energy Agency, Wagramer Strosse 5, A-1400 Vienna, Austria Ontario Power Generation, 230 Westney Road South, Ajax, Ont. L1S 7R3 (Canada)

    2006-07-01

    Reactor noise analysis techniques are used in many NPPs on a routine basis as 'inspection tools' to get information on the dynamics of reactor processes and their instrumentation in a passive, non-intrusive way. The paper discusses some of the tasks and requirements an NPP has to take to implement and to use the full advantages of reactor noise analysis techniques. Typical signal noise analysis applications developed for the monitoring of the reactor shutdown system and control system instrumentation of the Candu units of Ontario Power Generation and Bruce Power are also presented. (authors)

  10. Prism reactor system design and analysis of postulated unscrammed events

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Slovik, G.C.

    1991-08-01

    Key safety characteristics of the PRISM reactor system include the passive reactor shutdown characteristic and the passive shutdown heat removal system, RVACS. While these characteristics are simple in principle, the physical processes are fairly complex, particularly for the passive reactor shutdown. It has been possible to adapt independent safety analysis codes originally developed for the Clinch River Breeder Reactor review, although some limitations remain. In this paper, the analyses of postulated unscrammed events are discussed, along with limitations in the predictive capabilities and plans to correct the limitations in the near future. 6 refs., 4 figs

  11. PRISM reactor system design and analysis of postulated unscrammed events

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Slovik, G.C.

    1991-01-01

    Key safety characteristics of the PRISM reactor system include the passive reactor shutdown characteristic and the passive shutdown heat removal system, RVACS. While these characteristics are simple in principle, the physical processes are fairly complex, particularly for the passive reactor shutdown. It has been possible to adapt independent safety analysis codes originally developed for the Clinch River Breeder Reactor review, although some limitations remain. In this paper, the analyses of postulated unscrammed events are discussed, along with limitations in the predictive capabilities and plans to correct the limitations in the near future. (author)

  12. PRISM reactor system design and analysis of postulated unscrammed events

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Slovik, G.C.; Rosztoczy, Z.; Lane, J.

    1991-01-01

    Key safety characteristics of the PRISM reactor system include the passive reactor shutdown characteristics and the passive shutdown heat removal system, RVACS. While these characteristics are simple in principle, the physical processes are fairly complex, particularly for the passive reactor shutdown. It has been possible to adapt independent safety analysis codes originally developed for the Clinch River Breeder Reactor review, although some limitations remain. In this paper, the analyses of postulated unscrammed events are discussed, along with limitations in the predictive capabilities and plans to correct the limitations in the near future. 6 refs., 4 figs

  13. Model Based Cyber Security Analysis for Research Reactor Protection System

    International Nuclear Information System (INIS)

    Sho, Jinsoo; Rahman, Khalil Ur; Heo, Gyunyoung; Son, Hanseong

    2013-01-01

    The study on the qualitative risk due to cyber-attacks into research reactors was performed using bayesian Network (BN). This was motivated to solve the issues of cyber security raised due to digitalization of instrumentation and control (I and C) system. As a demonstrative example, we chose the reactor protection system (RPS) of research reactors. Two scenarios of cyber-attacks on RPS were analyzed to develop mitigation measures against vulnerabilities. The one is the 'insertion of reactor trip' and the other is the 'scram halt'. The six mitigation measures are developed for five vulnerability for these scenarios by getting the risk information from BN

  14. Colliding beam fusion reactor space propulsion system

    International Nuclear Information System (INIS)

    Wessel, Frank J.; Binderbauer, Michl W.; Rostoker, Norman; Rahman, Hafiz Ur; O'Toole, Joseph

    2000-01-01

    We describe a space propulsion system based on the Colliding Beam Fusion Reactor (CBFR). The CBFR is a high-beta, field-reversed, magnetic configuration with ion energies in the range of hundreds of keV. Repetitively-pulsed ion beams sustain the plasma distribution and provide current drive. The confinement physics is based on the Vlasov-Maxwell equation, including a Fokker Planck collision operator and all sources and sinks for energy and particle flow. The mean azimuthal velocities and temperatures of the fuel ion species are equal and the plasma current is unneutralized by the electrons. The resulting distribution functions are thermal in a moving frame of reference. The ion gyro-orbit radius is comparable to the dimensions of the confinement system, hence classical transport of the particles and energy is expected and the device is scaleable. We have analyzed the design over a range of 10 6 -10 9 Watts of output power (0.15-150 Newtons thrust) with a specific impulse of, I sp ∼10 6 sec. A 50 MW propulsion system might involve the following parameters: 4-meters diameterx10-meters length, magnetic field ∼7 Tesla, ion beam current ∼10 A, and fuels of either D-He 3 ,P-B 11 ,P-Li 6 ,D-Li 6 , etc

  15. Containment atmosphere cooling system for experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Sasaki, Mikio; Hoshi, Akio; Sato, Morihiko; Takeuchi, Kaoru

    1979-01-01

    The experimental fast reactor ''JOYO'', the first sodium-cooled fast reactor in Japan, achieved the initially licensed full power operation (50 MW) in July 1978 and is now under steady operation. Toshiba has participated in the construction of this reactor as a leading manufacturer and supplied various systems. This article outlines the design philosophy, system concepts and the operating experience of the containment atmosphere cooling system which has many design interfaces throughout the whole plant and requires especially high reliability. The successful performance of this system during the reactor full-power operation owes to the spot cooling design philosophy and to the preoperational adjustment of heat load during the preheating period of reactor cooling system peculiar to FBR. (author)

  16. Biological groundwater denitrification systems: Lab-scale trials aimed at nitrous oxide production and emission assessment.

    Science.gov (United States)

    Capodici, Marco; Avona, Alessia; Laudicina, Vito Armando; Viviani, Gaspare

    2018-07-15

    Bio-trenches are a sustainable option for treating nitrate contamination in groundwater. However, a possible side effect of this technology is the production of nitrous oxide, a greenhouse gas that can be found both dissolved in the liquid effluent as well as emitted as off gas. The aim of this study was to analyze NO 3 - removal and N 2 O production in lab-scale column trials. The column contained olive nut as organic carbon media. The experimental study was divided into three phases (I, II and III) each characterized by different inlet NO 3 - concentrations (30, 50, 75mgNO 3 -NL -1 respectively). Sampling ports deployed along the length of the column allowed to observe the denitrification process as well as the formation and consumption of intermediate products, such as nitrite (NO 2 - ) and nitrous oxide (N 2 O). In particular, it was observed that N 2 O production represent only a small fraction of removed NO 3 - during Phase I and II, both for dissolved (0.007%) and emitted (0.003%) phase, and it was recorded a high denitrification efficiency, over 99%. Nevertheless, significantly higher values were recorded for Phase 3 concerning emitted phase (0.018%). This fact is due to increased inlet concentration which resulted in a carbon limitation and in a consequent decrease in denitrification efficiency (76%). Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Light and heavy water replacing system in reactor container

    International Nuclear Information System (INIS)

    Miyamoto, Keiji.

    1979-01-01

    Purpose: To enable to determine the strength of a reactor container while neglecting the outer atmospheric pressure upon evacuation, by evacuating the gap between the reactor container and a biological thermal shield, as well as the container simultaneously upon light water - heavy water replacement. Method: Upon replacing light water with heavy water by vacuum evaporation system in a nuclear reactor having a biological thermal shield surrounding the reactor container incorporating therein a reactor core by way of a heat expansion absorbing gap, the reactor container and the havy water recycling system, as well as the inside of heat expansion absorbing gap are evacuated simultaneously. This enables to neglect the outer atmospheric outer pressure upon evacuation in the determination of the container strength, and the thickness of the container can be decreased by so much as the external pressure neglected. (Moriyama, K.)

  18. Applications of plasma core reactors to terrestrial energy systems

    International Nuclear Information System (INIS)

    Lantham, T.S.; Biancardi, F.R.; Rodgers, R.J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrail applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times

  19. New measuring and protection system at VR-1 training reactor

    International Nuclear Information System (INIS)

    Kropik, M.; Jurickova, M.

    2006-01-01

    The contribution describes the new measuring and protection system of the VR-1 training reactor. The measuring and protection system upgrade is an integral part of the reactor I and C upgrade. The new measuring and protection system of the VR-1 reactor consists of the operational power measuring and the independent power protection systems. Both systems measure the reactor power and power rate, initiate safety action if safety limits are exceeded and send data (power, power rate, status, etc.) to the reactor control system. The operational power measuring system is a full power range system that receives signal from a fission chamber. The signal is evaluated according to the reactor power either in the pulse or current mode. The current mode utilizes the DC current and Campbell techniques. The new independent power protection system operates in the two highest reactor power decades. It receives signals from a boron chamber and evaluates it in the pulse mode. Both systems are computer based. The operational power measuring and independent power protection systems are diverse - different types and location of chambers, completely different hardware, software algorithms for the power and power rate calculations, software development tools and teems for the software manufacturing. (author)

  20. Development of multi-functional telerobotic systems for reactor dismantlement

    International Nuclear Information System (INIS)

    Fujii, Yoshio; Usui, Hozumi; Shinohara, Yoshikuni

    1992-01-01

    This report summarizes technological features of advanced telerobotic systems for reactor dismantling application developed at the Japan Atomic Energy Research Institute. Taking into consideration the special environmental conditions in reactor dismantling, major effort was made to develop multifunctional telerobotic system of high reliability which can be used to perform various complex tasks in an unstructured environment and operated in an easy and flexible manner. The system development was carried out through constructing three systems in seccession; a light-duty and a heavy-duty system as a prototype system for engineering test in cold environment, and a demonstration system for practical on-site application to dismantling highly radioactive reactor internals of an experimental boiling water reactor JPDR (Japan Power Demonstration Reactor). Each system was equipped with one or two amphibious manipulators which can be operated in either a push-button manual, a bilateral master-slave, a teach-and-playback or a programmed control mode. Different scheme was adopted in each system at designing the manipulator, transporter and man-machine interface so as to compare their advantages and disadvantages. According to the JPDR decommissioning program, the demonstration system was successfully operated to dismantle a portion of the radioactive reactor internals of the JPDR, which used underwater plasma arc cutting method and proved the usefulness of the multi-functional telerobotic system for reducing the occupational hazards and enhancing the work efficiency in the course of dismantling highly radioactive reactor components. (author)

  1. One model to fit all? The pursuit of integrated earth system models in GAIM and AIMES

    OpenAIRE

    Uhrqvist, Ola

    2015-01-01

    Images of Earth from space popularized the view of our planet as a single, fragile entity against the vastness and darkness of space. In the 1980s, the International Geosphere-Biosphere Program (IGBP) was set up to produce a predictive understanding of this fragile entity as the ‘Earth System.’ In order to do so, the program sought to create a common research framework for the different disciplines involved. It suggested that integrated numerical models could provide such a framework. The pap...

  2. Fundamentals of boiling water reactor systems

    International Nuclear Information System (INIS)

    Mattern, J.

    1976-01-01

    The reactor assembly consists of the reactor vessel, its internal components of the core, shroud, steam separator, dryer assemblies, feedwater spargers, internal recirculation pumps and control rod drive housings. Connected to the steam lines are the pressure relief valves which protect the pressure boundary from damage due to overpressure. (orig./TK) [de

  3. Nuclear reactor internals construction and failed fuel rod detection system

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    A system is provided for determining during operation of a nuclear reactor having fluid pressure operated control rod mechanisms the exact location of a fuel assembly with a defective fuel rod. The construction of the reactor internals is simplified in a manner to facilitate the testing for defective fuel rods and the reduce the cost of producing the upper internals of the reactor. 13 claims, 10 drawing figures

  4. Antiviral Information Management System (AIMS): a prototype for operational innovation in drug development.

    Science.gov (United States)

    Jadhav, Pravin R; Neal, Lauren; Florian, Jeff; Chen, Ying; Naeger, Lisa; Robertson, Sarah; Soon, Guoxing; Birnkrant, Debra

    2010-09-01

    This article presents a prototype for an operational innovation in knowledge management (KM). These operational innovations are geared toward managing knowledge efficiently and accessing all available information by embracing advances in bioinformatics and allied fields. The specific components of the proposed KM system are (1) a database to archive hepatitis C virus (HCV) treatment data in a structured format and retrieve information in a query-capable manner and (2) an automated analysis tool to inform trial design elements for HCV drug development. The proposed framework is intended to benefit drug development by increasing efficiency of dose selection and improving the consistency of advice from US Food and Drug Administration (FDA). It is also hoped that the framework will encourage collaboration among FDA, industry, and academic scientists to guide the HCV drug development process using model-based quantitative analysis techniques.

  5. Reactor containment and reactor safety in the United States

    International Nuclear Information System (INIS)

    Kouts, H.

    1986-01-01

    The reactor safety systems of two reactors are studied aiming at the reactor containment integrity. The first is a BWR type reactor and is called Peachbottom 2, and the second is a PWR type reactor, and is called surry. (E.G.) [pt

  6. Annexes to the lecture on reactor protection system including engineered features actuation system

    International Nuclear Information System (INIS)

    Palmaers, W.

    1982-01-01

    The present paper deals with the fundamentals for a reactor protection system and discusses the following topics: - System lay-out - Analog measured data acquisition - Analog measured data processing - Limit value generation and logical gating - Procesing of the reactor protection actuation signals - Decoupling of the reactor protection system - Mechanical lay-out - Monitoring system and - Emergency control station. (orig./RW)

  7. System for chemical decontamination of nuclear reactor primary systems

    International Nuclear Information System (INIS)

    Schlonski, J.S.; McGiure, M.F.; Corpora, G.J.

    1992-01-01

    This patent describes a method of chemically decontaminating a nuclear reactor primary system, having a residual heat removal system with one or more residual heat removal heat exchangers, each having an upstream and a downstream side, at or above ambient pressure. It comprises: injecting decontamination chemicals using an injection means; circulating the injected decontamination chemicals throughout the primary system; directing the circulated decontamination chemicals and process fluids to a means for removing suspended solids and dissolved materials after the circulated chemicals and process fluids have passed through the residual heat removal heat exchanger; decontaminating the process fluids; and feeding the decontaminated process fluids to the injection means. This patent also describes a chemical decontamination system for use at, or above, ambient pressure in a nuclear reactor primary system having a residual heat removal system. It comprises: means for injecting decontamination chemicals into the primary system; means for removing dissolved and suspended materials and decontamination chemicals from the primary system; one or more residual heat removal pumps; means located downstream of one of the residual heat removal heat exchangers; and a return line connecting the means

  8. Code system for fast reactor neutronics analysis

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Abe, Junji; Sato, Wakaei.

    1983-04-01

    A code system for analysis of fast reactor neutronics has been developed for the purpose of handy use and error reduction. The JOINT code produces the input data file to be used in the neutronics calculation code and also prepares the cross section library file with an assigned format. The effective cross sections are saved in the PDS file with an unified format. At the present stage, this code system includes the following codes; SLAROM, ESELEM5, EXPANDA-G for the production of effective cross sections and CITATION-FBR, ANISN-JR, TWOTRAN2, PHENIX, 3DB, MORSE, CIPER and SNPERT. In the course of the development, some utility programs and service programs have been additionaly developed. These are used for access of PDS file, edit of the cross sections and graphic display. Included in this report are a description of input data format of the JOINT and other programs, and of the function of each subroutine and utility programs. The usage of PDS file is also explained. In Appendix A, the input formats are described for the revised version of the CIPER code. (author)

  9. Repairing method for reactor primary system pipeline

    International Nuclear Information System (INIS)

    Hosokawa, Hideyuki; Uetake, Naoto; Hara, Teruo.

    1997-01-01

    Pipelines after decontamination of radioactive nuclides deposited on the pipelines in a nuclear power plant during operation or pipelines to replace pipelines deposited with radioactive nuclide are connected to each system of the nuclear power plant. They are heated in a gas phase containing oxygen to form an oxide film on the surface of the pipelines. The thickness of the oxide film formed in the gas phase is 1nm or greater, preferably 100nm. The concentration of oxygen in the gas phase containing oxygen must be 0.1% or greater. The heating is conducted by circulating a heated gas to the inside of the pipelines or disposing a movable heater such as a high frequency induction heater inside of the pipelines to form the oxide film. Then, redeposition of radioactive nuclide can be suppressed and since the oxide film is formed in the gas phase, a large scaled facilities are not necessary, thereby enabling to repair pipelines of reactor primary system at low cost. (N.H.)

  10. Creation of reactor's reliable system of emergency energy supply

    International Nuclear Information System (INIS)

    Batyrbekov, G.A.; Brovkin, A.Yu.; Petukhov, V.K.; Chekushin, A.I.; Chernyaev, V.P.; Yagotinets, N.A.

    1998-01-01

    System of reliable power supply of the WWR-K reactor complex is described, which completely provides safety operation of reactor equipment in the case of total voltage loss from external power transmission lines as well as under destruction of accumulation batteries by earthquake more than 6 balls. Switching on in operation of diesel-generators and system of constant current supply from accumulator batteries is occurred automatically under cessation of voltage supply from centralized power system. Reliable reactor dampening in case it work on capacity has been ensured. Reactor cooling under its emergency shutdown during both the partial or the total loss of coolant in first counter has been carried out. Under full coolant loss the system of emergency reactor cooling has been switched on in operation

  11. A cerebral arteriovenous malformation grading system for gamma knife radiosurgery with the aim of early obliteration

    International Nuclear Information System (INIS)

    Negishi, Masatoshi; Inoue, Hiroshi K.; Hirato, Masafumi; Yokoe, Takao; Iino, Yuichi; Ohye, Chihiro; Shibazaki, Tohru

    1998-01-01

    Bleeding in the latency period before obliteration considerably worsens the prognosis of cerebral arteriovenous malformations (AVMs). Bleeding risk should be considered and total obliteration should performed as early as possible. In this study we investigated factors related to early obliteration following Gamma Knife radiosurgery and proposed a grading system for AVMs. Forty-six patients with cerebral AVMs followed angiographically within twelve months after Gamma Knife radiosurgery were analyzed. Four factors, volume, type (categorized by our own method), location, and marginal dose were found to be correlated with early obliteration rate. We scored these factors, and categorized the scores into a grade O to 6 Gamma Knife Score (GKS), and evaluated the obliteration rate of each grade. The total obliteration rate in twelve months according to grade was: grades 0 and 1, 61.9%; grades 2 and 3, 36.0%, grades 4 and 5, 16.7%. AVMs with a low GKS (grades 0 and 1) had a high early obliteration rate and seemed suitable for Gamma Knife radiosurgery. Since early obliteration is difficult to obtain in the high grade group, endovascular surgery should be considered to reduce the GKS before Gamma Knife radiosurgery. (author)

  12. Zein Nanoparticles as Eco-Friendly Carrier Systems for Botanical Repellents Aiming Sustainable Agriculture.

    Science.gov (United States)

    Oliveira, Jhones L de; Campos, Estefânia V R; Pereira, Anderson E S; Pasquoto, Tatiane; Lima, Renata; Grillo, Renato; Andrade, Daniel Junior de; Santos, Fabiano Aparecido Dos; Fraceto, Leonardo Fernandes

    2018-02-14

    Botanical repellents represent one of the main ways of reducing the use of synthetic pesticides and the contamination of soil and hydric resources. However, the poor stability and rapid degradation of these compounds in the environment hinder their effective application in the field. Zein nanoparticles can be used as eco-friendly carrier systems to protect these substances against premature degradation, provide desirable release characteristics, and reduce toxicity in the environment and to humans. In this study, we describe the preparation and characterization of zein nanoparticles loaded with the main constituents of the essential oil of citronella (geraniol and R-citronellal). The phytotoxicity, cytotoxicity, and insect activity of the nanoparticles toward target and nontarget organisms were also evaluated. The botanical formulations showed high encapsulation efficiency (>90%) in the nanoparticles, good physicochemical stability, and effective protection of the repellents against UV degradation. Cytotoxicity and phytotoxicity assays showed that encapsulation of the botanical repellents decreased their toxicity. Repellent activity tests showed that nanoparticles containing the botanical repellents were highly repellent against the Tetranychus urticae Koch mite. This nanotechnological formulation offers a new option for the effective use of botanical repellents in agriculture, reducing toxicity, protecting against premature degradation, and providing effective pest control.

  13. Is the aim of the English health care system to maximize QALYs?

    Science.gov (United States)

    Shah, Koonal; Praet, Cecile; Devlin, Nancy; Sussex, Jonathan; Appleby, John; Parkin, David

    2012-07-01

    To compare the types of benefit considered relevant by the English Department of Health with those included by the National Institute for Health and Clinical Excellence (NICE) when conducting economic evaluations of options for spending limited health care resources. We analysed all policy Impact Assessments (IAs) carried out by the Department of Health (DH) in 2008 and 2009. The stated benefits of each policy were extracted and thematic analysis was used to categorise these. 51 Impact Assessments were analysed, eight of which mentioned quality-adjusted life year (QALY) gains as a benefit. 18 benefits other than QALY gains were identified. Apart from improving health outcomes, commonly referred to benefits included: reducing costs, improving quality of care, and enhancing patient experience. Many of the policies reviewed were implemented on the basis of benefits unrelated to health outcome. The methods being used to apply a monetary valuation to QALY gains (in cost-benefit calculations) are not consistent across Impact Assessments or with NICE's stated threshold range. The Department of Health and NICE approach resource allocation decisions in different ways, based upon overlapping but not congruent considerations and underlying principles. Given that all these decisions affect the allocation of the same fixed health care budget, there is a case for establishing a uniform framework for option appraisal and priority setting so as to avoid allocative inefficiency. The same applies to any other national health care system.

  14. Scaling in nuclear reactor system thermal-hydraulics

    International Nuclear Information System (INIS)

    D'Auria, F.; Galassi, G.M.

    2010-01-01

    Scaling is a reference 'key-word' in engineering and in physics. The relevance of scaling in the water cooled nuclear reactor technology constitutes the motivation for the present paper. The origin of the scaling-issue, i.e. the impossibility to get access to measured data in case of accident in nuclear reactors, is discussed at first. The so-called 'scaling-controversy' constitutes an outcome. Then, a critical survey (or 'scaling state-of-art';) is given of the attempts and of the approaches to provide a solution to the scaling-issue in the area of Nuclear Reactor System Thermal-Hydraulics (NRSTH): dimensionless design factors for Integral Test Facilities (ITF) are distinguished from scaling factors. The last part of the paper has a two-fold nature: (a) classifying the information about achievements in the area of thermal-hydraulics which are relevant to scaling: the concepts of 'scaling-pyramid' and the related 'scaling bridges' are introduced; (b) establishing a logical path across the scaling achievements (represented as a 'scaling puzzle'). In this context, the 'roadmap for scaling' is proposed: the objective is addressing the scaling issue when demonstrating the applicability of system codes in the licensing process of nuclear power plants. The code itself is referred hereafter as the 'key-to-scaling'. The database from the operation of properly scaled ITF and the availability of qualified system codes are identified as main achievements in NRSTH connected with scaling. The 'roadmap to scaling' constitutes a unified approach to scaling which aims at solving the 'scaling puzzle' created by researches performed during a half-a-century period.

  15. Scaling in nuclear reactor system thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    D' Auria, F., E-mail: dauria@ing.unipi.i [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy); Galassi, G.M. [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy)

    2010-10-15

    Scaling is a reference 'key-word' in engineering and in physics. The relevance of scaling in the water cooled nuclear reactor technology constitutes the motivation for the present paper. The origin of the scaling-issue, i.e. the impossibility to get access to measured data in case of accident in nuclear reactors, is discussed at first. The so-called 'scaling-controversy' constitutes an outcome. Then, a critical survey (or 'scaling state-of-art';) is given of the attempts and of the approaches to provide a solution to the scaling-issue in the area of Nuclear Reactor System Thermal-Hydraulics (NRSTH): dimensionless design factors for Integral Test Facilities (ITF) are distinguished from scaling factors. The last part of the paper has a two-fold nature: (a) classifying the information about achievements in the area of thermal-hydraulics which are relevant to scaling: the concepts of 'scaling-pyramid' and the related 'scaling bridges' are introduced; (b) establishing a logical path across the scaling achievements (represented as a 'scaling puzzle'). In this context, the 'roadmap for scaling' is proposed: the objective is addressing the scaling issue when demonstrating the applicability of system codes in the licensing process of nuclear power plants. The code itself is referred hereafter as the 'key-to-scaling'. The database from the operation of properly scaled ITF and the availability of qualified system codes are identified as main achievements in NRSTH connected with scaling. The 'roadmap to scaling' constitutes a unified approach to scaling which aims at solving the 'scaling puzzle' created by researches performed during a half-a-century period.

  16. Reactor trip on turbine trip inhibit control system for nuclear power generating system

    International Nuclear Information System (INIS)

    Torres, J.M.; Musick, C.R.

    1976-01-01

    A reactor trip on turbine trip inhibit control system for a nuclear power generating system which utilizes steam bypass valves is described. The control system inhibits a normally automatic reactor trip on turbine trip when the bypass valves have the capability of bypassing enough steam to prevent reactor trip limits from being reached and/or to prevent opening of the secondary safety pressure valves. The control system generates a bypass valve capability signal which is continuously compared with the reactor power. If the capability is greater than the reactor power, then an inhibit signal is generated which prevents a turbine trip signal from tripping the nuclear reactor. 10 claims, 4 figures

  17. Emergency reactor cooling systems for the experimental VHTR

    International Nuclear Information System (INIS)

    Mitake, Susumu; Suzuki, Katsuo; Miyamoto, Yoshiaki; Tamura, Kazuo; Ezaki, Masahiro.

    1983-03-01

    Performances and design of the panel cooling system which has been proposed to be equipped as an emergency reactor cooling system for the experimental multi purpose very high temperature gas-cooled reactor are explained. Effects of natural circulation flow which would develop in the core and temperature transients of the panel in starting have been precisely investigated. Conditions and procedures for settling accidents with the proposed panel cooling system have been also studied. Based on these studies, it has been shown that the panel cooling system is effective and useful for the emergency reactor cooling of the experimental VHTR. (author)

  18. Development of a core follow calculational system for research reactors

    International Nuclear Information System (INIS)

    Muller, E.Z.; Ball, G.; Joubert, W.R.; Schutte, H.C.; Stoker, C.C.; Reitsma, F.

    1994-01-01

    Over the last few years a comprehensive Pressurized Water Reactor and Materials Testing Reactor core analysis code system based on modern reactor physics methods has been under development by the Atomic Energy Corporation of South Africa. This system, known as OSCAR-3, will incorporate a customized graphical user interface and data management system to ensure user-friendliness and good quality control. The system has now reached the stage of development where it can be used for practical MTR core analyses. This paper describes the current capabilities of the components of the OSCAR-3 package, their integration within the package, and outlines future developments. 10 refs., 1 tab., 1 fig

  19. High-Temperature Gas-cooled Reactor steam-cycle/cogeneration lead plant reactor vessel: system design description

    International Nuclear Information System (INIS)

    1983-01-01

    The Reactor Vessel System contains the primary coolant inventory within a gas-tight pressure boundary, and provides the necessary flow paths and overpressure protection for this pressure boundary. The Reactor Vessel System also houses the components of the Reactor System, the Heat Transport System, and the Auxiliary Heat Removal System. The scope of the Reactor Vessel System includes the prestressed concrete reactor vessel (PCRV) structure with its reinforcing steel and prestressing components; liners, penetrations, closures, and cooling water tubes attached to the concrete side of the liner; the thermal barrier (insulation) on the primary coolant side of the liner; instrumentation for structural monitoring; and a pressure relief system. Specifications are presented

  20. Application study of EPICS-based redundant method for reactor control system

    International Nuclear Information System (INIS)

    Zhang Ning; Han Lifeng; Chen Yongzhong; Guo Bing; Yin Congcong

    2013-01-01

    In the reactor control system prototype development of TMSR (Thorium Molten Salt Reactor system, CAS) project, EPICS (Experimental Physics and Industrial Control System) is adopted as Instrument and Control software platform. For the aim of IOC (Input/Output Controller) redundancy and data synchronization of the system, the EPICS-based RMT (Redundancy Monitor Task ) software package and its data-synchronization component CCE (Continuous Control Executive) were introduced. By the development of related IOC driver, redundant switch-over control of server IOC was implemented. The method of redundancy implementation using RMT in server and redundancy performance test for power control system are discussed in this paper. (authors)

  1. Limit regulation system for pressurized water nuclear reactors

    International Nuclear Information System (INIS)

    Aleite, W.; Bock, H.W.

    1976-01-01

    Described is a limit regulation system for a pressurized water nuclear reactor in combination with a steam generating system connected to a turbine, the nuclear reactor having control rods as well as an operational regulation system and a protective system, which includes reactor power limiting means operatively associated with the control rods for positioning the same and having response values between operating ranges of the operational regulation system, on the one hand, and response values of the protective system, on the other hand, and a live steam-minimal pressure regulation system cooperating with the reactor power limiting means and operatively connected to a steam inlet valve to the turbine for controlling the same

  2. Review of the treat upgrade reactor scram system reliability analysis

    International Nuclear Information System (INIS)

    Montague, D.F.; Fussell, J.B.; Krois, P.A.; Morelock, T.C.; Knee, H.E.; Manning, J.J.; Haas, P.M.; West, K.W.

    1984-10-01

    In order to resolve some key LMFBR safety issues, ANL personnel are modifying the TREAT reactor to handle much larger experiments. As a result of these modifications, the upgraded Treat reactor will not always operate in a self-limited mode. During certain experiments in the upgraded TREAT reactor, it is possible that the fuel could be damaged by overheating if, once the computer systems fail, the reactor scram system (RSS) fails on demand. To help ensure that the upgraded TREAT reactor is shut down when required, ANL personnel have designed a triply redundant RSS for the facility. The RSS is designed to meet three reliability goals: (1) a loss of capability failure probability of 10 -9 /demand (independent failures only); (2) an inadvertent shutdown probability of 10 -3 /experiment; and (3) protection agaist any known potential common cause failures. According to ANL's reliability analysis of the RSS, this system substantially meets these goals

  3. Contained fission explosion breeder reactor system

    International Nuclear Information System (INIS)

    Juhl, N.H.; Marwick, E.F.

    1983-01-01

    A reactor system for producing useful thermal energy and valuable isotopes, such as plutonium-239, uranium-233, and/or tritium, in which a pair of sub-critical masses of fissile and fertile actinide slugs are propelled into an ellipsoidal pressure vessel. The propelled slugs intercept near the center of the chamber where the concurring slugs become a more than prompt configuration thereby producing a fission explosion. Re-useable accelerating mechanisms are provided external of the vessel for propelling the slugs at predetermined time intervals into the vessel. A working fluid of lean molten metal slurry is injected into the chamber prior to each explosion for the attenuation of the explosion's effects, for the protection of the chamber's walls, and for the absorbtion of thermal energy and debris from the explosion. The working fluid is injected into the chamber in a pattern so as not to interfere with the flight paths of the slugs and to maximize the concentration of working fluid near the chamber's center. The heated working fluid is drained from the vessel and is used to perform useful work. Most of the debris from the explosion is collected as precipitate and is used for the manufacture of new slugs

  4. Natural circulation in reactor coolant system

    International Nuclear Information System (INIS)

    Han, J.T.

    1987-01-01

    Reactor coolant system (RCS) natural circulation in a PWR is the buoyancy-driven coolant circulation between the core and the upper-plenum region (in-vessel circulation) with or without a countercurrent flow in the hot leg piping between the vessel and steam generators (ex-vessel circulation). This kind of multidimensional bouyancy-driven flow circulation serves as a means of transferring the heat from the core to the structures in the upper plenum, hot legs, and possibly steam generators. As a result, the RCS piping and other pressure boundaries may be heated to high temperatures at which the structural integrity is challenged. RCS natural circulation is likely to occur during the core uncovery period of the TMLB' accident in a PWR when the vessel upper plenum and hot leg are already drained and filled with steam and possibly other gaseous species. RCS natural circulation is being studied for the Surry plant during the TMLB' accident in which station blackout coincides with the loss of auxiliary feedwater and no operator actions. The effects of the multidimensional RCS natural circulation during the TMLB' accident are discussed

  5. Proposed Reactor Operating Experience Feedback System Development

    International Nuclear Information System (INIS)

    Ahn, Seung Hoon; Kim, Min Chul; Huh, Chang Wook; Lee, Durk Hun; Bae, Koo Hyun

    2006-01-01

    Most events occurring in nuclear power plants are not individually significant, and prevented from progressing to accident conditions by a series of barriers against core damage and radioactive releases. Significant events, if occur, are almost always a breach of these multiple barriers. As illustrated in the 'Swiss cheese' model, the individual layers of defense or 'cheese slices' have weakness or 'holes.' These weaknesses are inconstant, i.e., the holes are open or close at random. When by chance all the holes are aligned, a hazard causes the significant event of concern. Elements of low significant events, inattention to detail, time or economic pressure, uncorrected poor practices/habits, marginal maintenance and equipment care, etc., make holes in the layers of defense; some elements may make more holes in different layers, incurring more chances to be aligned. An effective reduction of the holes, therefore, is gained through better knowledge or awareness of increasing trends of the event elements, followed by appropriate actions. According to the Swiss cheese metaphor, attention to the Operating Experience (OE) feedback system, as opposed to the individual and to randomness, is drawn from a viewpoint of reactor safety

  6. A systems analysis of the ARIES tokamak reactors

    International Nuclear Information System (INIS)

    Bathke, C.G.

    1992-01-01

    The multi-institutional ARIES study has completed a series of cost-of-electricity optimized conceptual designs of commercial tokamak fusion reactors that vary the assumed advances in technology and physics. A comparison of these designs indicates the cost benefit of various design options. A parametric systems analysis suggests a possible means to obtain a marginally competitive fusion reactor

  7. Improving 200 MW NDHR reactor protection system with GAL devices

    International Nuclear Information System (INIS)

    Shi Mingde; Li Duo; Xie Zhengguo

    1999-01-01

    The emergence of General Array Logic (GAL), a fairly new type of logic devices with the characteristics of user-definable logic functions, have led to a revolutionary change in the design of logical circuits. The improvements of the reactor protection system for the 200 MW nuclear district heating reactor (NDHR) using GAL are covered

  8. Simulation of the TREAT-Upgrade Automatic Reactor Control System

    International Nuclear Information System (INIS)

    Lipinski, W.C.; Kirsch, L.W.; Valente, A.D.

    1984-01-01

    This paper describes the design of the Automatic Reactor Control System (ARCS) for the Transient Reactor Test Facility (TREAT) Upgrade. A simulation was used to facilitate the ARCS design and to completely test and verify its operation before installation at the TREAT facility

  9. Reactor coolant and associated systems in nuclear power plants

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Guide outlines the design requirements for the reactor coolant and associated systems (RCAS) and the features required in order to achieve their safety functions. It covers design considerations for various reactor types and encompasses the safety aspects of the functions of the RCAS both during normal operation and following postulated initiating events, and to some extent also for decommissioning

  10. Auxiliary control system of the safety parameters for IPR-R1 reactor

    International Nuclear Information System (INIS)

    Coura, J.G.

    1986-01-01

    This paper deals with the description for the control of three cooling water parameters (conductivity, temperature and the maximum and minimum water levels) as well as the percent power fraction of the nuclear research reactor IPR-R1. In order to keep the reactor in good operation conditions, one permanent and accurate control of the cooling water is needed. The double monitoring of a fourth parameter, part of the original design, the percent power fraction, is obtained through the control of the uncompensated ion chamber current and aims to avoid the operation of the reactor without running the cooling system. (Author) [pt

  11. Monitoring circuit for reactor safety systems

    Science.gov (United States)

    Keefe, Donald J.

    1976-01-01

    The ratio between the output signals of a pair of reactor safety channels is monitored. When ratio falls outside of a predetermined range, it indicates that one or more of the safety channels has malfunctioned.

  12. Monitoring circuit for reactor safety systems

    International Nuclear Information System (INIS)

    Keefe, D.J.

    1976-01-01

    The ratio between the output signals of a pair of reactor safety channels is monitored. When ratio falls outside of a predetermined range, it indicates that one or more of the safety channels has malfunctioned. 3 claims, 2 figures

  13. Reactors

    DEFF Research Database (Denmark)

    Shah, Vivek; Vaz Salles, Marcos António

    2018-01-01

    The requirements for OLTP database systems are becoming ever more demanding. Domains such as finance and computer games increasingly mandate that developers be able to encode complex application logic and control transaction latencies in in-memory databases. At the same time, infrastructure...... engineers in these domains need to experiment with and deploy OLTP database architectures that ensure application scalability and maximize resource utilization in modern machines. In this paper, we propose a relational actor programming model for in-memory databases as a novel, holistic approach towards......-level function calls. In contrast to classic transactional models, however, reactors allow developers to take advantage of intra-transaction parallelism and state encapsulation in their applications to reduce latency and improve locality. Moreover, reactors enable a new degree of flexibility in database...

  14. Study on secondary shutdown systems in Tehran research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, H.R.; Fadaei, A.H., E-mail: Fadaei_amir@aut.ac.ir; Gharib, M.

    2015-09-15

    Highlights: • A study was undertaken to summarize the techniques for secondary shutdown systems (SSS). • Neutronic calculation performed for proposed systems as SSS. • Dumping the heavy water stored in the reflector vessel is capable to shut down reactor. • Neutronic and transient calculation was done for validating the selected SSS. • All calculation shown that this system has advantages in safety and neutron economy. - Abstract: One important safety aspect of any research reactor is the ability to shut down the reactor. Usually, research reactors, currently in operation, have a single shutdown system based on the simultaneous insertion of the all control rods into the reactor core through gravity. Nevertheless, the International Atomic Energy Agency currently recommends use of two shutdown systems which are fully independent from each other to guarantee secure shutdown when one of them fails. This work presents an investigative study into secondary shutdown systems, which will be an important safety component in the research reactor and will provide another alternative way to shut down the reactor emergently. As part of this project, a study was undertaken to summarize the techniques that are currently used at world-wide research reactors for recognizing available techniques to consider in research reactors. Removal of the reflector, removal of the fuels, change in critical shape of reactor core and insertion of neutron absorber between the core and reflector are selected as possible techniques in mentioned function. In the next step, a comparison is performed for these methods from neutronic aspects. Then, chosen method is studied from the transient behavior point of view. Tehran research reactor which is a 5 MW open-pool reactor selected as a case study and all calculations are carried out for it. It has 5 control rods which serve the purpose of both reactivity control and shutdown of reactor under abnormal condition. Results indicated that heavy

  15. Development of system integration technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kang, D. J.; Kim, K. K. and others

    1999-03-01

    The objective of this report is to integrate the conceptual design of an integral reactor, SMART producing thermal energy of 330 MW, which will be utilized to supply energy for seawater desalination and small-scale power generation. This project also aims to develop system integration technology for effective design of the reactor. For the conceptual design of SMART, preliminary design requirements including the top-tier requirements and design bases were evaluated and established. Furthermore, in the view of the application of codes and standards to the SMART design, existing laws, codes and standards were analyzed and evaluated with respect to its applicability. As a part of this evaluation, directions and guidelines were proposed for the development of new codes and standards which shall be applied to the SMART design. Regarding the integration of SMART conceptual designs, major design activities and interfaces between design departments were established and coordinated through the design process. For the effective management of all design schedules, a work performance evaluation system was developed and applied to the design process. As the results of this activity, an integrated output of SMART designs was produced. Two additional scopes performed in this project include the preliminary economic analysis on the SMART utilization for seawater desalination, and the planning of verification tests for technology implemented into SMART and establishing development plan of the computer codes to be used for SMART design in the next phase. The technical cooperation with foreign country and international organization for securing technologies for integral reactor design and its application was coordinated and managed through this project. (author)

  16. Emergency cooling system for nuclear reactors

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    Upon the occasion of loss of coolant in a nuclear reactor as when a coolant supply or return line breaks, or both lines break, borated liquid coolant from an emergency source is supplied in an amount to absorb heat being generated in the reactor even after the control rods have been inserted. The liquid coolant flows from pressurized storage vessels outside the reactor to an internal manifold from which it is distributed to unused control rod guide thimbles in the reactor fuel assemblies. Since the guide thimbles are mounted at predetermined positions relative to heat generating fuel elements in the fuel assemblies, holes bored at selected locations in the guide thimble walls, sprays the coolant against the reactor fuel elements which continue to dissipate heat but at a reduced level. The cooling water evaporates upon contacting the fuel rods thereby removing the maximum amount of heat (970 BTU per pound of water) and after heat absorption will leave the reactor in the form of steam through the break which is the cause of the accident to help assure immediate core cooldown

  17. Fuel management of mixed reactor type power plant systems

    International Nuclear Information System (INIS)

    Csom, Gyula

    1988-01-01

    In equilibrium symbiotic power plant system containing both thermal reactors and fast breeders, excess plutonium produced by the fast breeders is used to enrich the fuel of the thermal reactors. In plutonium deficient symbiotic power plant system plutonium is supplied both by thermal plants and fast breeders. Mathematical models were constructed and different equations solved to characterize the fuel utilization of both systems if they contain only a single thermal type and a single fast type reactor. The more plutonium is produced in the system, the higher output ratio of thermal to fast reactors is achieved in equilibrium symbiotic power plant system. Mathematical equations were derived to calculate the doubling time and the breeding gain of the equilibrium symbiotic system. (V.N.) 2 figs.; 2 tabs

  18. Systems aspects of a space nuclear reactor power system

    International Nuclear Information System (INIS)

    Jaffe, L.; Fujita, T.; Beatty, R.

    1988-01-01

    Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: Power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, attitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly

  19. Catalytic membrane reactor for tritium extraction system from He purge

    International Nuclear Information System (INIS)

    Santucci, Alessia; Incelli, Marco; Sansovini, Mirko; Tosti, Silvano

    2016-01-01

    Highlights: • In the HCBB blanket, the produced tritium is recovered by purging with helium; membrane technologies are able to separate tritium from helium. • The paper presents the results of two experimental campaigns. • In the first, a Pd–Ag diffuser for hydrogen separation is tested at several operating conditions. • In the second, the ability of a Pd–Ag membrane reactor for water decontamination is assessed by performing isotopic swamping and water gas shift reactions. - Abstract: In the Helium Cooled Pebble Bed (HCPB) blanket concept, the produced tritium is recovered purging the breeder with helium at low pressure, thus a tritium extraction system (TES) is foreseen to separate the produced tritium (which contains impurities like water) from the helium gas purge. Several R&D activities are running in parallel to experimentally identify most promising TES technologies: particularly, Pd-based membrane reactors (MR) are under investigation because of their large hydrogen selectivity, continuous operation capability, reliability and compactness. The construction and operation under DEMO relevant conditions (that presently foresee a He purge flow rate of about 10,000 Nm 3 /h and a H 2 /He ratio of 0.1%) of a medium scale MR is scheduled for next year, while presently preliminary experiments on a small scale reactor are performed to identify most suitable operative conditions and catalyst materials. This work presents the results of an experimental campaign carried out on a Pd-based membrane aimed at measuring the capability of this device in separating hydrogen from the helium. Many operative conditions have been investigated by considering different He/H 2 feed flow ratios, several lumen pressures and reactor temperatures. Moreover, the performances of a membrane reactor (composed of a Pd–Ag tube having a wall thickness of about 113 μm, length 500 mm and diameter 10 mm) in processing the water contained in the purge gas have been measured by using

  20. Catalytic membrane reactor for tritium extraction system from He purge

    Energy Technology Data Exchange (ETDEWEB)

    Santucci, Alessia, E-mail: alessia.santucci@enea.it [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Incelli, Marco [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy); DEIM, University of Tuscia, Via del Paradiso 47, 01100 Viterbo (Italy); Sansovini, Mirko; Tosti, Silvano [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy)

    2016-11-01

    Highlights: • In the HCBB blanket, the produced tritium is recovered by purging with helium; membrane technologies are able to separate tritium from helium. • The paper presents the results of two experimental campaigns. • In the first, a Pd–Ag diffuser for hydrogen separation is tested at several operating conditions. • In the second, the ability of a Pd–Ag membrane reactor for water decontamination is assessed by performing isotopic swamping and water gas shift reactions. - Abstract: In the Helium Cooled Pebble Bed (HCPB) blanket concept, the produced tritium is recovered purging the breeder with helium at low pressure, thus a tritium extraction system (TES) is foreseen to separate the produced tritium (which contains impurities like water) from the helium gas purge. Several R&D activities are running in parallel to experimentally identify most promising TES technologies: particularly, Pd-based membrane reactors (MR) are under investigation because of their large hydrogen selectivity, continuous operation capability, reliability and compactness. The construction and operation under DEMO relevant conditions (that presently foresee a He purge flow rate of about 10,000 Nm{sup 3}/h and a H{sub 2}/He ratio of 0.1%) of a medium scale MR is scheduled for next year, while presently preliminary experiments on a small scale reactor are performed to identify most suitable operative conditions and catalyst materials. This work presents the results of an experimental campaign carried out on a Pd-based membrane aimed at measuring the capability of this device in separating hydrogen from the helium. Many operative conditions have been investigated by considering different He/H{sub 2} feed flow ratios, several lumen pressures and reactor temperatures. Moreover, the performances of a membrane reactor (composed of a Pd–Ag tube having a wall thickness of about 113 μm, length 500 mm and diameter 10 mm) in processing the water contained in the purge gas have been

  1. Reactor protection system design using micro-computers

    International Nuclear Information System (INIS)

    Fairbrother, D.B.

    1976-01-01

    Reactor protection systems for nuclear power plants have traditionally been built using analog hardware. This hardware works quite well for single parameter trip functions; however, optimum protection against DNBR and KW/ft limits requires more complex trip functions than can easily be handled with analog hardware. For this reason, Babcock and Wilcox has introduced a Reactor Protection System, called the RPS-II, that utilizes a micro-computer to handle the more complex trip functions. The paper describes the design of the RPS-II and the operation of the micro-computer within the Reactor Protection System

  2. Reactor protection system design using micro-computers

    International Nuclear Information System (INIS)

    Fairbrother, D.B.

    1977-01-01

    Reactor Protection Systems for Nuclear Power Plants have traditionally been built using analog hardware. This hardware works quite well for single parameter trip functions; however, optimum protection against DNBR and KW/ft limits requires more complex trip functions than can easily be handled with analog hardware. For this reason, Babcock and Wilcox has introduced a Reactor Protection System, called the RPS-II, that utilizes a micro-computer to handle the more complex trip functions. This paper describes the design of the RPS-II and the operation of the micro-computer within the Reactor Protection System

  3. Virtual maintenance technology for reactor system based on PPR technology

    International Nuclear Information System (INIS)

    Wu Yaxiang; Ma Baiyong

    2009-01-01

    Based on the Product, Process and Resources (PPR) technology, the establishing technology of virtual maintenance environment for the reactor system and the process structure tree for virtual maintenance is studied, and the flow for the maintainability design and simulation for reactor system is put forward. Based on the subsection simulation of maintenance process and layered design of maintenance actions, the leveled structure of the reactor system virtual maintenance task is studied. The relation for the data of product, process and resource is described by Plan Evaluation and Review Technology (PERT) diagram to define the maintenance operation. (authors)

  4. SP-100 Program: space reactor system and subsystem investigations

    International Nuclear Information System (INIS)

    Harty, R.B.

    1983-01-01

    For a space reactor power system, a comprehensive safety program will be required to assure that no undue risk is present. This report summarizes the nuclear safety review/approval process that will be required for a space reactor system. The documentation requirements are presented along with a summary of the required contents of key documents. Finally, the aerospace safety program conducted for the SNAP-10A reactor system is summarized. The results of this program are presented to show the type of program that can be expected and to provide information that could be usable in future programs

  5. Gas-cooled reactor for space power systems

    International Nuclear Information System (INIS)

    Walter, C.E.; Pearson, J.S.

    1987-05-01

    Reactor characteristics based on extensive development work on the 500-MWt reactor for the Pluto nuclear ramjet are described for space power systems useful in the range of 2 to 20 MWe for operating times of 1 y. The modest pressure drop through the prismatic ceramic core is supported at the outlet end by a ceramic dome which also serves as a neutron reflector. Three core materials are considered which are useful at temperatures up to about 2000 K. Most of the calculations are based on a beryllium oxide with uranium dioxide core. Reactor control is accomplished by use of a burnable poison, a variable-leakage reflector, and internal control rods. Reactivity swings of 20% are obtained with a dozen internal boron-10 rods for the size cores studied. Criticality calculations were performed using the ALICE Monte Carlo code. The inherent high-temperature capability of the reactor design removes the reactor as a limiting condition on system performance. The low fuel inventories required, particularly for beryllium oxide reactors, make space power systems based on gas-cooled near-thermal reactors a lesser safeguard risk than those based on fast reactors

  6. The nuclear instrumentation system of the French 1400 MWe reactors

    International Nuclear Information System (INIS)

    Bourgerette, A.; Mauduit, J.P.

    1993-01-01

    The nuclear instrumentation systems in power reactors in France have made considerable advances thanks to technological progress. The appearance of an integrated digital protection system (SPIN) and the extension of digital techniques have considerably improved performance and operating flexibility. Working on the basis of technology developed jointly with the Nuclear Electronics and Instrumentation Department at the French Atomic Energy Commission (CEA), Framatome and Merlin Gerin have designed the new nuclear instrumentation system for 1400 MW reactors. (authors). 4 figs

  7. A customized digital monitoring and display system for nonpower reactors

    International Nuclear Information System (INIS)

    Ficaro, E.P.; Wehe, D.K.

    1989-01-01

    A digital data acquisition system for monitoring plant variables has been designed and implemented at the University of Michigan's Ford Nuclear Reactor (FNR), a 2-MW open-pool research reactor. The digital data provided by this system will be useful for: improved operator training, real-time experimental calculations, noise analysis, closed-loop control, and expert system applications. This paper describes the analog-to-digital (A/D) transitions and the associated applications and benefits experienced

  8. Safety Evaluation of Kartini Reactor Based on Instrumentation System Design

    International Nuclear Information System (INIS)

    Tjipta Suhaemi; Djen Djen Dj; Itjeu K; Johnny S; Setyono

    2003-01-01

    The safety of Kartini reactor has been evaluated based on instrumentation system aspect. The Kartini reactor is designed by BATAN. Design power of the reactor is 250 kW, but it is currently operated at 100 kW. Instrumentation and control system function is to monitor and control the reactor operation. Instrumentation and control system consists of safety system, start-up and automatic power control, and process information system. The linear power channel and logarithmic power channel are used for measuring power. There are 3 types of control rod for controlling the power, i.e. safety rod, shim rod, and regulating rod. The trip and interlock system are used for safety. There are instrumentation equipment used for measuring radiation exposure, flow rate, temperature and conductivity of fluid The system of Kartini reactor has been developed by introducing a process information system, start-up system, and automatic power control. It is concluded that the instrumentation of Kartini reactor has followed the requirement and standard of IAEA. (author)

  9. Studies on a Stellarator reactor of the Helias type: The modular coil system

    International Nuclear Information System (INIS)

    Harmeyer, E.; Kisslinger, J.; Rau, F.; Wobig, H.

    1993-02-01

    Helias Stellarator Reactors (HSR) are considered, focussing on the superconducting modular coil system which generates the magnetic field, aiming to clarify critical issues of such systems. The development of the coil system is presented and the properties of the vacuum magnetic field are discussed. Electromagnetic forces and the resulting mechanical stresses and strains inside the coils and the surrounding structure are calculated. Parameter studies are made varying the major radius R 0 between 18 m and 24 m in order to investigate the engineering parameters for the superconducting coil system. The total mass and the fusion power output of HSR are compared with values evaluated for tokamak reactors. (orig.). 36 figs

  10. Power Trip Set-points of Reactor Protection System for New Research Reactor

    International Nuclear Information System (INIS)

    Lee, Byeonghee; Yang, Soohyung

    2013-01-01

    This paper deals with the trip set-point related to the reactor power considering the reactivity induced accident (RIA) of new research reactor. The possible scenarios of reactivity induced accidents were simulated and the effects of trip set-point on the critical heat flux ratio (CHFR) were calculated. The proper trip set-points which meet the acceptance criterion and guarantee sufficient margins from normal operation were then determined. The three different trip set-points related to the reactor power are determined based on the RIA of new research reactor during FP condition, over 0.1%FP and under 0.1%FP. Under various reactivity insertion rates, the CHFR are calculated and checked whether they meet the acceptance criterion. For RIA at FP condition, the acceptance criterion can be satisfied even if high power set-point is only used for reactor trip. Since the design of the reactor is still progressing and need a safety margin for possible design changes, 18 MW is recommended as a high power set-point. For RIA at 0.1%FP, high power setpoint of 18 MW and high log rate of 10%pp/s works well and acceptance criterion is satisfied. For under 0.1% FP operations, the application of high log rate is necessary for satisfying the acceptance criterion. Considering possible decrease of CHFR margin due to design changes, the high log rate is suggested to be 8%pp/s. Suggested trip set-points have been identified based on preliminary design data for new research reactor; therefore, these trip set-points will be re-established by considering design progress of the reactor. The reactor protection system (RPS) of new research reactor is designed for safe shutdown of the reactor and preventing the release of radioactive material to environment. The trip set point of RPS is essential for reactor safety, therefore should be determined to mitigate the consequences from accidents. At the same time, the trip set-point should secure margins from normal operational condition to avoid

  11. Reactor coolant purification system circulation pumps (CUW pumps)

    International Nuclear Information System (INIS)

    Tsutsui, Toshiaki

    1979-01-01

    Coolant purification equipments for BWRs have been improved, and the high pressure purifying system has become the main type. The quantity of purifying treatment also changed to 2% of the flow rate of reactor feed water. As for the circulation pumps, canned motor pumps are adopted recently, and the improvements of reliability and safety are attempted. The impurities carried in by reactor feed water and the corrosion products generated in reactors and auxiliary equipments are activated by neutron irradiation or affect heat transfer adversely, adhering to fuel claddings are core structures. Therefore, a part of reactor coolant is led to the purification equipments, and returned to reactors after the impurities are eliminated perfectly. At the time of starting and stopping reactors, excess reactor water and the contaminated water from reactors are transferred to main condenser hot wells or waste treatment systems. Thus the prescribed water quality is maintained. The operational modes of and the requirements for the CUW pumps, the construction and the features of the canned motor type CUW pumps are explained. Recently, a pump operated for 11 months without any maintenance has been disassembled and inspected, but the wear of bearings has not been observed, and the high reliability of the pump has been proved. (Kako, I.)

  12. Passive safe small reactor for distributed energy supply system sited in water filled pit at seaside

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Imayoshi, Shou

    2003-01-01

    Japan Atomic Energy Research Institute has developed a Passive Safe Small Reactor for Distributed Energy Supply System (PSRD) concept. The PSRD is an integrated-type PWR with reactor thermal power of 100 to 300 MW aimed at supplying electricity, district heating, etc. In design of the PSRD, high priority is laid on enhancement of safety as well as improvement of economy. Safety is enhanced by the following means: i) Extreme reduction of pipes penetrating the reactor vessel, by limiting to only those of the steam, the feed water and the safety valves, ii) Adoption of the water filled containment and the passive safety systems with fluid driven by natural circulation force, and iii) Adoption of the in-vessel type control rod drive mechanism, accompanying a passive reactor shut-down device. For improvement of economy, simplification of the reactor system and long operation of the core over five years without refueling with low enriched UO 2 fuel rods are achieved. To avoid releasing the radioactive materials to the circumstance even if a hypothetical accident, the containment is submerged in a pit filled with seawater at a seaside. Refueling or maintenance of the reactor can be conducted using an exclusive barge instead of the reactor building. (author)

  13. Core access system for nuclear reactor

    International Nuclear Information System (INIS)

    Andrea, C.

    1977-01-01

    Disclosed is an improved nuclear reactor arrangement to facilitate both through-the-head instrumentation and insertion and removal of assemblies from the nuclear core. The arrangement is of the type including a reactor vessel head comprising a large rotatable cover having a plurality of circular openings therethrough, a plurality of upwardly extending nozzles mounted on the upper surface of a large cover, and a plurality of upwardly extending skirts mounted on a large cover about the periphery or boundary of the circular openings; a plurality of small plugs for each of the openings in the large cover, the plugs also having nozzles mounted on the upper surface thereof, and drive mechanisms mounted on top of some of the nozzles and having means extending therethrough into the reactor vessel, the drive mechanisms and nozzles extending above the elevation of the upwardly extending skirts

  14. IAEA data base system for nuclear research reactors (RRDB)

    International Nuclear Information System (INIS)

    Lipscher, P.

    1986-01-01

    The IAEA Data Base System for Nuclear Research Reactors (RRDB) User's Guide is intended for the user who wishes to understand the concepts and operation of the RRDB system. The RRDB is a computerized system recording administrative, operational and technical data on all the nuclear research reactors currently operating, under construction, planned or shut down in IAEA Member States. The data is received by the IAEA from reactor centres on magnetic tapes or as responses to questionnaires. All the data on research, training, test and radioactive isotope production reactors and critical assemblies is stored on the RRDB system. A full set of RRDB programs (in NATURAL) are contained at the back of this Guide

  15. Microprocessor tester for the treat upgrade reactor trip system

    International Nuclear Information System (INIS)

    Lenkszus, F.R.; Bucher, R.G.

    1984-01-01

    The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations

  16. Thermophotovoltaic Energy Conversion in Space Nuclear Reactor Power Systems

    National Research Council Canada - National Science Library

    Presby, Andrew L

    2004-01-01

    .... This has potential benefits for space nuclear reactor power systems currently in development. The primary obstacle to space operation of thermophotovoltaic devices appears to be the low heat rejection temperatures which necessitate large radiator areas...

  17. Metrology/viewing system for next generation fusion reactors

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.

    1997-01-01

    Next generation fusion reactors require accurate measuring systems to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system is being integrated with a remotely operated deployment system to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of the harsh environment. The deployment mechanism is a telescopic-mast positioning system. This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision ranging and surface mapping system

  18. Boiling water reactor liquid radioactive waste processing system

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The standard sets forth minimum design, construction and performance requirements with due consideration for operation of the liquid radioactive waste processing system for boiling water reactor plants for routine operation including design basis fuel leakage and design basis occurrences. For the purpose of this standard, the liquid radioactive waste processing system begins at the interfaces with the reactor coolant pressure boundary, at the interface valve(s) in lines from other systems and at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material. The system terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system and at the point of recycle back to storage for reuse. The standard does not include the reactor coolant clean-up system, fuel pool clean-up system, sanitary waste system, any nonaqueous liquid system or controlled area storm drains

  19. Materials degradation in fission reactors: Lessons learned of relevance to fusion reactor systems

    International Nuclear Information System (INIS)

    Was, Gary S.

    2007-01-01

    The management of materials in power reactor systems has become a critically important activity in assuring the safe, reliable and economical operation of these facilities. Over the years, the commercial nuclear power reactor industry has faced numerous 'surprises' and unexpected occurrences in materials. Mitigation strategies have sometimes solved one problem at the expense of creating another. Other problems have been solved successfully and have motivated the development of techniques to foresee problems before they occur. This paper focuses on three aspects of fission reactor experience that may benefit future fusion systems. The first is identification of parameters and processes that have had a large impact on the behavior of materials in fission systems such as temperature, dose rate, surface condition, gradients, metallurgical variability and effects of the environment. The second is the development of materials performance and failure models to provide a basis for assuring component integrity. Last is the development of proactive materials management programs that identify and pre-empt degradation processes before they can become problems. These aspects of LWR experience along with the growing experience with materials in the more demanding advanced fission reactor systems form the basis for a set of 'lessons learned' to aid in the successful management of materials in fusion reactor systems

  20. FISS: a computer program for reactor systems studies

    International Nuclear Information System (INIS)

    Tamm, H.; Sherman, G.R.; Wright, J.H.; Nieman, R.E.

    1979-08-01

    ΣFISSΣ is a computer code for use in investigating alternative fuel cycle strategies for Canadian and world nuclear programs. The code performs a system simulation accounting for dynamic effects of growing nuclear systems. Facilities in the model include storage for irradiated fuel, mines, plants for enrichment, fuel fabrication, fuel reprocessing and heavy water, and reactors. FISS is particularly useful for comparing various reactor strategies and studying sensitivities of resource consumption, capital investment and energy costs with changes in fuel cycle parameters, reactor parameters and financial variables. (author)

  1. Passive Decay Heat Removal System for Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; Lee, Jeong Ik; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    Dry cooling system is applied as waste heat removal system therefore it is able to consider wide construction site. Schematic figure of the reactor is shown in Fig. 1. In safety features, the reactor has double containment and passive decay heat removal (PDHR) system. The double containment prevents leakage from reactor coolant system to be emitted into environment. The passive decay heat removal system copes with design basis accidents (DBAs). Micros Modular Reactor (MMR) which has been being developed in KAIST is S-CO{sub 2} gas cooled reactor and shows many advantages. The S-CO{sub 2} power cycle reduces size of compressor, and it makes small size of power plant enough to be transported by trailer.The passive residual heat removal system is designed and thermal hydraulic (TH) analysis on coolant system is accomplished. In this research, the design process and TH analysis results are presented. PDHR system is designed for MMR and coolant system with the PDHR system is analyzed by MARS-KS code. Conservative assumptions are applied and the results show that PDHR system keeps coolant system under the design limitation.

  2. Experimental evaluation of an expert system for nuclear reactor operators

    International Nuclear Information System (INIS)

    Nelson, W.R.

    1984-10-01

    The United States Nuclear Regulatory Commission (USNRC) is supporting a program for the experimental evaluation of an expert system for nuclear reactor operators. A prototype expert system, called the Response Tree System, has been developed and implemented at INEL. The Response Tree System is designed to assess the status of a reactor system following an accident and recommend corrective actions to reactor operators. The system is implemented using color graphic displays and is driven by a computer simulation of the reactor system. Control of the system is accomplished using a transparent touch panel. Controlled experiments are being conducted to measure performance differences between operators using the Response Tree System and those not using it to respond to simulated accident situations. This paper summarizes the methodology and results of the evaluation of the Response Tree System, including the quantitative results obtained in the experiments thus far. Design features of the Response Tree System are discussed, and general conclusions regarding the applicability of expert systems in reactor control rooms are presented

  3. Radioactivity Monitoring System for TRIGA 2000 Reactor Water Tank with On-Line Gamma Spectrometer

    International Nuclear Information System (INIS)

    Prasetyo Basuki; Sudjatmi KA

    2009-01-01

    One of the requirements in radiological safety in the operating condition of research reactor are the absence of radionuclide from fission product released to reactor cooling water and environment. Early detection of fission product that released from fuel element can be done by monitoring radioactivity level on primary cooling water.Reactor cooling water can be used as an important indicator in detecting radioactivity level of material fission product, when the leakage occurs. Therefore, it needs to build a monitoring system for measuring radioactivity level of cooling water directly and simple. The idea of this system is counting radioactivity water flow from reactor tank to the marinelli cube that attached to the HPGe detector on gamma spectrometer. Cooling water from tank aimed on plastic pipe to the marinelli cube. Water flows in gravitational driven to the marinelli cube, with volume flow rate 5.1 liters/minute in the inlet and 2.2 liters/minute in output. (author)

  4. Contraction of information and its inverse problem in reactor system identification and stochastic diagnosis

    International Nuclear Information System (INIS)

    Kishida, K.

    1996-01-01

    Research concerning power reactor noise analysis makes rapid progress in the areas of the system identification, prediction and diagnosis. Keywords in these studies are artificial intelligence, neural network, fuzzy, and chaos. Nonlinear, nonstationary, or non-Gaussian processes as well as linear and steady processes are also studied in fluctuation analysis. However, we have not enough time to study a fundamental theory, since we are urged to obtain results or applications in power reactor fluctuations. Furthermore, we have no systematic approach to handle observed time series data in the linear process, since power reactor noise phenomena are complicated. Hence, it is important to study it from the fundamental viewpoint. It is a main aim of the present review paper to describe a unified formalism for reactor system identification and stochastic diagnosis

  5. Design of fuel failure detection system for multipurpose reactor GA. Siwabessy

    International Nuclear Information System (INIS)

    Sujalmo Saiful; Kuntoro Iman; Sato, Mitsugu; Isshiki, Masahiko.

    1992-01-01

    A fuel failure detection system (FFDS) has been designed for the Reactor GA. Siwabessy. The FFDS is aimed to detect fuel failure by observing delayed neutron released by fission products such as N-17, I-137, Br-87 and Br-88 in the primary cooling system. The delayed neutrons will be detected by using four neutron detectors, type BF-3, which are located inside a Sampling Tank. The detector location has been determined and the location is associated with the transit time from the reactor core outlet to the Sampling Tank, which is approximately 60 seconds. The neutron detection efficiency was calculated by using a computer code named MORSE. The FFDS has the capability to detect as quickly as possible, even a small failure of a fuel element occurring in the reactor core. Therefore the presence of FFDS in a reactor must be considered, in order to prevent further progress if the fuel failure occurs. (author)

  6. Automatic control system in the reactor peggy

    International Nuclear Information System (INIS)

    Bertrand, J.; Mourchon, R.; Da Costa, D.; Desandre-Navarre, Ch.

    1967-01-01

    The equipment makes it possible for the reactor to attain a given power automatically and for the power to be maintained around this level. The principle of its operation consists in the changing from one power to another, at constant period, by means of a programmer transforming a power-step request into a voltage variation which is linear with time and which represents the logarithm of the required power. The real power is compared continuously with the required power. Stabilization occurs automatically as soon as the difference between the reactor power and the required power diminishes to a few per cent. (authors) [fr

  7. Tritium problems in fusion reactor systems

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1975-01-01

    A brief introduction is given to the role tritium will play in the development of fusion power. The biological and worldwide environmental behavior of tritium is reviewed. The tritium problems expected in fusion power reactors are outlined. A few thoughts on tritium permeation and recent results for tritium cleanup and CT 4 accumulation are presented. Problems involving the recovery of tritium from the breeding blanket in fusion power reactors are also considered, including the possible effect of impurities in lithium blankets and the use of lithium as a regenerable getter pump. (auth)

  8. MAPLE-X10 reactor digital control system

    International Nuclear Information System (INIS)

    Deverno, M.T.; Hinds, H.W.

    1991-10-01

    The MAPLE-X10 reactor, currently under construction at the Chalk River Laboratories of Atomic Energy of Canada Limited, is a 10 MW t , pool-type, light-water reactor. It will be used for radioisotope production and silicon neutron transmutation doping. The reactor is controlled by a Digital Control System (DCS) and protected against abnormal process events by two independent safety systems. The DCS is an integrated control system used to regulate the reactor power and process systems. The safety philosophy for the control system is to minimize unsafe events arising from system failures and operational errors. this is achieved through redundancy, fail-safe design, automatic fault detection, and the selection of highly reliable components. The DCS provides both computer-controlled reactor regulation from the shutdown state to full power and automated reactor shutdown if safe limits are exceeded or critical sensors malfunction. The use of commercially available hardware with enhanced quality assurance makes the system cost effective while providing a high degree of reliability

  9. Plasma driving system requirements for commercial tokamak fusion reactors

    International Nuclear Information System (INIS)

    Brooks, J.N.; Kustom, R.C.; Stacey, W.M. Jr.

    1978-01-01

    The plasma driving system for a tokamak reactor is composed of an ohmic heating (OH) coil, equilibrium field (EF) coil, and their respective power supplies. Conceptual designs of an Experimental Power Reactor (EPR) and scoping studies of a Demonstration Power Reactor have shown that the driving system constitutes a significant part of the overall reactor cost. The capabilities of the driving system also set or help set important parameters of the burn cycle, such as the startup time, and the net power output. Previous detailed studies on driving system dynamics have helped to define the required characteristics for fast-pulsed superconducting magnets, homopolar generators, and very high power (GVA) power supplies for an EPR. This paper summarizes results for a single reactor configuration together with several design concepts for the driving system. Both the reactor configuration and the driving system concepts are natural extensions from the EPR. Thus, the new results presented in this paper can be compared with the previous EPR results to obtain a consistent picture of how the driving system requirements will evolve--for one particular design configuration

  10. Plasma driving system requirements for commercial tokamak fusion reactors

    International Nuclear Information System (INIS)

    Brooks, J.N.; Kustom, R.C.; Stacey, W.M. Jr.

    1977-01-01

    The plasma driving system for a tokamak reactor is composed of an ohmic heating (OH) coil, equilibrium field (EF) coil, and their respective power supplies. Conceptual designs of an Experimental Power Reactor (EPR) and scoping studies of a Demonstration Power Reactor have shown that the driving system constitutes a significant part of the overall reactor cost. The capabilities of the driving system also set or help set important parameters of the burn cycle, such as the startup time, and the net power output. Previous detailed studies on driving system dynamics have helped to define the required characteristics for fast-pulsed superconducting magnets, homopolar generators, and very high power (GVA) power supplies for an EPR. This paper summarizes results for a single reactor configuration together with several design concepts for the driving system. Both the reactor configuration and the driving system concepts are natural extensions from the EPR. Thus, the new results can be compared with the previous EPR results to obtain a consistent picture of how the driving system requirements will evolve--for one particular design configuration

  11. An expert system for pressurized water reactor load maneuvers

    International Nuclear Information System (INIS)

    Chaung Lin; Jungping Chen; Yihjiunn Lin; Lianshin Lin

    1993-01-01

    Restartup after reactor shutdown and load-follow operations are the important tasks in operating pressurized water reactors. Generally, the most efficient method is to apply constant axial offset control (CAOC) strategy during load maneuvers. An expert system using CAOC strategy, fuzzy reasoning, a two-node core model, and operational constraints has been developed. The computation time is so short that this system, which leads to an approximate closed-loop control, could be useful for on-site calculation

  12. Synthesis of relay control systems for nuclear reactors

    International Nuclear Information System (INIS)

    Postnikov, N.S.

    1996-01-01

    The problem on stabilizing an oscillatory-unstable reactor by a single-link relay system, the characteristics whereof have a dead zone and hysteresis loop, is considered. The methodology of synthesis of feedback law, providing for stochastic steady-state mode of reactor operation with the minimum frequency of control impact introduction is proposed. This methodology is applicable to general-type relay systems with arbitrary oscillatory-unstable objects. 6 refs., 5 figs

  13. Structural materials for fusion reactor blanket systems

    International Nuclear Information System (INIS)

    Bloom, E.E.; Smith, D.L.

    1984-01-01

    Consideration of the required functions of the blanket and the general chemical, mechanical, and physical properties of candidate tritium breeding materials, coolants, structural materials, etc., leads to acceptable or compatible combinations of materials. The presently favored candidate structural materials are the austenitic stainless steels, martensitic steels, and vanadium alloys. The characteristics of these alloy systems which limit their application and potential performance as well as approaches to alloy development aimed at improving performance (temperature capability and lifetime) will be described. Progress towards understanding and improving the performance of structural materials has been substantial. It is possible to develop materials with acceptable properties for fusion applications

  14. Fast reactor knowledge preservation system: Taxonomy and basic requirements

    International Nuclear Information System (INIS)

    2008-01-01

    The IAEA has taken the initiative to coordinate efforts of Member States in the preservation of knowledge in the area of fast reactors. In the framework of this initiative, the IAEA intends to create an international database compiling information from different Member States on fast reactors through a web portal. Other activities related to this initiative are being designed to accumulate and exchange information on the fast reactor area, to facilitate access to this information by users in different countries and to assist Member States in preserving the experience gained in their countries. The purpose of this publication is to develop a taxonomy of the Fast Reactor Knowledge Preservation System (FRKPS) that will facilitate the preservation of the world's fast reactor knowledge base, to identify basic requirements of this taxonomy on the basis of the experience gained in the fast reactor area, as well as results of previous IAEA activities on fast reactor knowledge preservation. The need for such taxonomy arises from the fact that during the past 15 years there has been stagnation in the development of fast reactors in the industrialized countries that were involved, earlier, in intensive development of this area. All studies on fast reactors have been stopped in countries such as Germany, Italy, the United Kingdom and the United States of America and the only work being carried out is related to the decommissioning of fast reactors. Many specialists who were involved in the studies and development work in this area in these countries have already retired or are close to retirement. In countries such as France, Japan and the Russian Federation that are still actively pursuing the evolution of fast reactor technology, the situation is aggravated by the lack of young scientists and engineers moving into this branch of nuclear power

  15. Reactor-core isolation cooling system with dedicated generator

    International Nuclear Information System (INIS)

    Nazareno, E.V.; Dillmann, C.W.

    1992-01-01

    This patent describes a nuclear reactor complex. It comprises a dual-phase nuclear reactor; a main turbine for converting phase-conversion energy stored by vapor into mechanical energy for driving a generator; a main generator for converting the mechanical energy into electricity; a fluid reservoir external to the reactor; a reactor core isolation cooling system with several components at least some of which require electrical power. It also comprises an auxiliary pump for pumping fluid from the reservoir into the reactor pressure vessel; an auxiliary turbine for driving the pump; control means for regulating the rotation rate of the auxiliary turbine; cooling means for cooling the control means; and an auxiliary generator coupled to the auxiliary turbine for providing at least a portion of the electrical power required by the components during a blackout condition

  16. A computer control system for a research reactor

    International Nuclear Information System (INIS)

    Crawford, K.C.; Sandquist, G.M.

    1987-01-01

    Most reactor applications until now, have not required computer control of core output. Commercial reactors are generally operated at a constant power output to provide baseline power. However, if commercial reactor cores are to become load following over a wide range, then centralized digital computer control is required to make the entire facility respond as a single unit to continual changes in power demand. Navy and research reactors are much smaller and simpler and are operated at constant power levels as required, without concern for the number of operators required to operate the facility. For navy reactors, centralized digital computer control may provide space savings and reduced personnel requirements. Computer control offers research reactors versatility to efficiently change a system to develop new ideas. The operation of any reactor facility would be enhanced by a controller that does not panic and is continually monitoring all facility parameters. Eventually very sophisticated computer control systems may be developed which will sense operational problems, diagnose the problem, and depending on the severity of the problem, immediately activate safety systems or consult with operators before taking action

  17. NEURO-SYSTEM OF AIMING AND STABILIZING WITH A REGULATOR ON THE BASIS OF STANDARD MODEL MODEL REFERENCE CONTROLLER

    Directory of Open Access Journals (Sweden)

    B.I. Kuznetsov

    2015-08-01

    Full Text Available The aim of this work is the synthesis of neural network aiming and stabilization system for the special equipment of moving objects with neuro-controller on the basis of standard model and performance comparison of the neural network system with the neural network predictive control. Build a block diagram of the neural network aiming and stabilization system, based on the subject control principle with PD-regulator in the position loop and with neuro-controller on the basis of standard model in the in the velocity loop. The neuro-controller on the basis of standard model Model Reference Controller is synthesized in the MATLAB Neural Network Toolbox and system simulation is performed. The studies show that the transient state variables of the system are oscillatory. Therefore, the neuro-controller with the prediction NN Predictive Controller should be used for aiming and stabilizing system to provide high dynamic characteristics achieved at the cost of higher complexity and computational cost.

  18. Coolant clean-up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tsuburaya, Hirobumi; Akita, Minoru; Shiraishi, Tadashi; Kinoshita, Shoichiro; Okura, Minoru; Tsuji, Akio.

    1987-01-01

    Purpose: To ensure a sufficient urging pressure at the inlet of a coolant clean-up system pump in a nuclear reactor and eliminate radioactive contaminations to the pump. Constitution: Coolant clean-up system (CUW) pump in a nuclear reactor is disposed to the downstream of a filtration desalter and, for compensating the insufficiency of the urging pressure at the pump inlet, the reactor water intake port to the clean-up system is disposed to the downstream of the after-heat removing pump and the heat exchanger. By compensating the net positive suction head (NPSH) of the clean-up system from the residual heat removing system, the problems of insufficient NPSH for the CUW pump upon reactor shut-down can be dissolved and, accordingly, the reactor clean-up system can be arranged in the order of the heat exchanger, clean-up device and pump. Thus, the CUW pump acts on reactor water after cleaned-up in the clean-up device to reduce the radioactivity contamination to the pump. (Kawakami, Y.)

  19. Digital, remote control system for a 2-MW research reactor

    International Nuclear Information System (INIS)

    Battle, R.E.; Corbett, G.K.

    1988-01-01

    A fault-tolerant programmable logic controller (PLC) and operator workstations have been programmed to replace the hard-wired relay control system in the 2-MW Bulk Shielding Reactor (BSR) at Oak Ridge National Laboratory. In addition to the PLC and remote and local operator workstations, auxiliary systems for remote operation include a video system, an intercom system, and a fiber optic communication system. The remote control station, located at the High Flux Isotope Reactor 2.5 km from the BSR, has the capability of rector startup and power control. The system was designed with reliability and fail-safe features as important considerations. 4 refs., 3 figs

  20. Fuel management of mixed reactor type power plant systems

    International Nuclear Information System (INIS)

    Csom, Gyula

    1988-01-01

    Breeding gain in symbiotic nuclear power plant system consisting of both thermal and fast breeder reactors depends on the characteristics and the ratio of thermal and fast reactors. The composition of the symbiotic power plant systems was determined for equilibrium and plutonium deficient systems. According to natural uranium utilization, symbiotic power plant systems are not less efficient than the systems containing only fast breeders. Depleted uranium can be applied in both types of systems. Reprocessing demands of the symbiotic power plant sytems were determined. (V.N.) 23 figs.; 1 tab

  1. Approach to developing reliable space reactor power systems

    International Nuclear Information System (INIS)

    Mondt, J.F.; Shinbrot, C.H.

    1991-01-01

    The Space Reactor Power System Project is in the engineering development phase of a three-phase program. During Phase II, the Engineering Development Phase, the SP-100 Project has defined and is pursuing a new approach to developing reliable power systems. The approach to developing such a system during the early technology phase is described in this paper along with some preliminary examples to help explain the approach. Developing reliable components to meet space reactor power system requirements is based on a top down systems approach which includes a point design based on a detailed technical specification of a 100 kW power system

  2. Autonomous Control of Space Reactor Systems

    International Nuclear Information System (INIS)

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-01-01

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are available to perform intelligent control functions that are necessary for both normal and abnormal operational conditions

  3. Reactor systems modeling for ICF hybrids

    International Nuclear Information System (INIS)

    Berwald, D.H.; Meier, W.R.

    1980-10-01

    The computational models of ICF reactor subsystems developed by LLNL and TRW are described and a computer program was incorporated for use in the EPRI-sponsored Feasibility Assessment of Fusion-Fission Hybrids. Representative parametric variations have been examined. Many of the ICF subsystem models are very preliminary and more quantitative models need to be developed and included in the code

  4. Autonomous Control of Space Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-11-30

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.

  5. Evolution of Framatome pressurized water reactor systems

    International Nuclear Information System (INIS)

    Leroy, C.; Bitsch, D.; Millot, J.P.

    1985-10-01

    FRAMATOME's PWR experience covers a total of 63 units, 36 of which are operating by end of 1984. More than 10 units were operated in load follow mode. Progress features, resulting from the feedback of construction and operating experience, and from the returns of a vast research and development program, were incorporated in their design through subsequent series of standard units. The last four loop standard, the N4 model, integrates in a rational way all those progress features, together with a significant design effort. The core design is based on the new Advanced Fuel Assemblies. The reactor control implements the ''Reactor Maximum Flexibility Package'' (R-MAX) which provides a high level of automatic reactor control. The steam generator incorporates an axial-mixed flow economizer design. The triangular-pitch tube bundle, together with modular steam/water separators and a rearrangement of the dryers resulted in a compact design. The reactor coolant pump benefits of higher performances over that of previous models due to an optimal hydraulic design, and of mechanical features which increase margins and facilitate the maintenance work. Following the N4 project, design work on advanced concepts is pursued by FRAMATOME. A main way of research is focused on the optimal use of fissile materials. These concepts are based on tight pitch fuel arrays, associated with a mechanical spectral shift device

  6. Performance of the prism reactor's passive decay heat removal system

    International Nuclear Information System (INIS)

    Magee, P.M.; Hunsbedt, A.

    1989-01-01

    The PRISM modular reactor concept has a totally passive safety-grade decay heat removal system referred to as the Reactor Vessel Auxiliary Cooling System (RVACS) that rejects heat from the reactor by radiation and natural convection of air. The system is inherently reliable and is not subject to the failure modes commonly associated with active cooling systems. The thermal performance of RVACS exceeds requirements and significant thermal margins exist. RVACS has been shown to perform its function under many postulated accident conditions. The PRISM power plant is equipped with three methods for shutdown: condenser cooling in conjunction with intermediate sodium and steam generator systems, and auxiliary cooling system (ACS) which removes heat from the steam generator by natural convection of air and transport of heat from the core by natural convection in the primary and intermediate systems, and a safety- grade reactor vessel auxiliary cooling system (RVACS) which removes heat passively from the reactor containment vessel by natural convection of air. The combination of one active and two passive systems provides a highly reliable and economical shutdown heat removal system. This paper provides a summary of the RVACS thermal performance for expected operating conditions and postulated accident events. The supporting experimental work, which substantiates the performance predictions, is also summarized

  7. Decay Power Calculation for Safety Analysis of Innovative Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shwageraus, E.; Fridman, E. [Department of Nuclear Engineering, Ben-Gurion University of the Negev Beer-Sheva 84105 (Israel)

    2008-07-01

    In this work, we verified the decay heat calculation capabilities of BGCore computer code system developed recently at Ben-Gurion University. Decay power was calculated for a typical UO{sub 2} fuel in Pressurized Water Reactor environment using BGCore code and using procedure prescribed by the ANS/ANSI-2005 standard. Very good agreement between the two methods was obtained. Once BGCore calculation capabilities were verified, we calculated decay power as a function of time after shutdown for various reactors with innovative fuels, for which no standard procedure is currently available. Notable differences were observed for decay power of the advanced reactors as compared with conventional UO{sub 2} LWR. The observed differences suggest that the design of new reactors safety systems must be based on corresponding decay power curves for each individual case in order to assure the desired performance of such systems. (authors)

  8. Decay Power Calculation for Safety Analysis of Innovative Reactor Systems

    International Nuclear Information System (INIS)

    Shwageraus, E.; Fridman, E.

    2008-01-01

    In this work, we verified the decay heat calculation capabilities of BGCore computer code system developed recently at Ben-Gurion University. Decay power was calculated for a typical UO 2 fuel in Pressurized Water Reactor environment using BGCore code and using procedure prescribed by the ANS/ANSI-2005 standard. Very good agreement between the two methods was obtained. Once BGCore calculation capabilities were verified, we calculated decay power as a function of time after shutdown for various reactors with innovative fuels, for which no standard procedure is currently available. Notable differences were observed for decay power of the advanced reactors as compared with conventional UO 2 LWR. The observed differences suggest that the design of new reactors safety systems must be based on corresponding decay power curves for each individual case in order to assure the desired performance of such systems. (authors)

  9. Natural circulating passive cooling system for nuclear reactor containment structure

    Science.gov (United States)

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  10. Passive cooling system for nuclear reactor containment structure

    Science.gov (United States)

    Gou, Perng-Fei; Wade, Gentry E.

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  11. Study, design and evaluation of nuclear reactor computer control system

    International Nuclear Information System (INIS)

    Menacer, S.

    1988-01-01

    Nuclear reactor control is a complex process that varies with each reactor and there is no universal agreement as to the best type of control system. After the use of conventional systems for a long time, attention turned towards digital techniques in the reactor control system. This interest emerged because of the difficulties faced in the data manipulation, mainly for post-incident analysis. However, it is not sufficient to insert a computer in a system to solve all the data-handling problems and also the insertion of a computer in a real-time system is not without any effect on the overall system. The scope of this thesis is to show the important parameters that have to be taken into account when choosing and evaluate the performances of the selected system

  12. Analysis for RSG-GAS operational characteristics of reactor cooling system

    International Nuclear Information System (INIS)

    Nurhappy, T.

    1998-01-01

    Analysis of operational characteristics of reactor cooling systems (JE01 and PA) is aimed at determining the effects of operation and maintenance patterns to the operational characteristic of the system. Analysis is carried out by virtue of the operating and maintenance data from 1987 to 1997, comprising the operating hours (duration) and data on operating failures of the systems. Results of study show that, either separately or jointly, the operating and maintenance patterns will qualitatively affect the operational characteristic of the systems

  13. Nuclear reactor power control system based on flexibility model

    International Nuclear Information System (INIS)

    Li Gang; Zhao Fuyu; Li Chong; Tai Yun

    2011-01-01

    Design the nuclear reactor power control system in this paper to cater to a nonlinear nuclear reactor. First, calculate linear power models at five power levels of the reactor as five local models and design controllers of the local models as local controllers. Every local controller consists of an optimal controller contrived by the toolbox of Optimal Controller Designer (OCD) and a proportion-integration-differentiation (PID) controller devised via Genetic Algorithm (GA) to set parameters of the PID controller. According to the local models and controllers, apply the principle of flexibility model developed in the paper to obtain the flexibility model and the flexibility controller at every power level. Second, the flexibility model and the flexibility controller at a level structure the power control system of this level. The set of the whole power control systems corresponding to global power levels is to approximately carry out the power control of the reactor. Finally, the nuclear reactor power control system is simulated. The simulation result shows that the idea of flexibility model is feasible and the nuclear reactor power control system is effective. (author)

  14. A Design of Alarm System in a Research Reactor Facility

    International Nuclear Information System (INIS)

    Park, Jaekwan; Jang, Gwisook; Seo, Sangmun; Suh, Yongsuk

    2013-01-01

    The digital alarm system has become an indispensable design to process a large amount of alarms of power plants. Korean research reactor operated for decades maintains a hybrid alarm system with both an analog annunciator and a digital alarm display. In this design, several alarms are indicated on an analog panel and digital display, respectively, and it requires more attention and effort of the operators. As proven in power plants, a centralized alarm system design is necessary for a new research reactor. However, the number of alarms and operators in a research reactor is significantly lesser than power plants. Thus, simplification should be considered as an important factor for the operation efficiency. This paper introduces a simplified alarm system. As advances in information technology, fully digitalized alarm systems have been applied to power plants. In a new research reactor, it will be more useful than an analog or hybrid configuration installed in research reactors decades ago. However, the simplification feature should be considered as an important factor because the number of alarms and number of operators in a research reactor is significantly lesser than in power plants

  15. Investigation of nonplanar modular coil systems for stellarator fusion reactors

    International Nuclear Information System (INIS)

    Harmeyer, E.

    1988-12-01

    Steady-state stellarators constitute an important option for a future fusion reactor. The helical magnetic field required for plasma confinement can be produced by means of a set of modular nonplanar coils. In order to achieve optimum power density of the plasma, the magnetic flux density inside the torus is made as high as possible. State-of-the-art estimates allow values of the magnetic flux density on axis of B 0 = 4-7 T. The present report is concerned with investigations on modular nonplanar stellarator coil systems. Coil systems with poloidal periodicity l=2 and a coil system of the W VII-AS type with superposed l=0, 1, 2, 3 terms are treated. Furthermore, the parameters are simultaneously varied while keeping constant the ratios of certain magnitudes. In the parameter space of the geometric values and coil number the following quantities are evaluated: maximum magnetic flux density in the coil domain, stored magnetic energy of the coil system, magnetic force density distribution or magnetic forces, and mechanical stress distribution in the coils. Numerical methods are applied in the programme systems used for these calculations. The aim of the study is to determine an optimum regime for the above parameters. The numerical results are compared with those of analytical approximation solutions. (orig.)

  16. In-service inspections of the reactor cooling system of pressurized water reactors

    International Nuclear Information System (INIS)

    Fuerste, W.; Hohnerlein, G.; Werden, B.

    1982-01-01

    In order to guarantee constant safety of the components of the reactor cooling system, regular in-service inspections are carried out after commissioning of the nuclear power plant. This contribution is concerned with the components of the reactor cooling system, referring to the legal requirements, safety-related purposes and scope of the in-service inspections during the entire period of operation of a nuclear power plant. Reports are made with respect to type, examination intervals, examination technique, results and future development. The functional tests which are carried out within the scope of the in-service inspections are not part of this contribution. (orig.) [de

  17. System for unattended surveillance of nuclear reactor behavior

    International Nuclear Information System (INIS)

    Gonzalez, R.C.; Howington, L.C.

    1977-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis is presented. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, updating, and dimensionality reduction capabilities. System design emphasizes control of the false-alarm rate. Its abilities to learn normal patterns and to recognize deviations from these patterns were evaluated by experiments at the ORNL High-Flux Isotope Reactor. Power perturbations of less than 0.1% of the mean value in selected frequency ranges were readily detected by the pattern recognition system

  18. Establishment of computer code system for nuclear reactor design - analysis

    International Nuclear Information System (INIS)

    Subki, I.R.; Santoso, B.; Syaukat, A.; Lee, S.M.

    1996-01-01

    Establishment of computer code system for nuclear reactor design analysis is given in this paper. This establishment is an effort to provide the capability in running various codes from nuclear data to reactor design and promote the capability for nuclear reactor design analysis particularly from neutronics and safety points. This establishment is also an effort to enhance the coordination of nuclear codes application and development existing in various research centre in Indonesia. Very prospective results have been obtained with the help of IAEA technical assistance. (author). 6 refs, 1 fig., 1 tab

  19. Small space reactor power systems for unmanned solar system exploration missions

    International Nuclear Information System (INIS)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model

  20. Design Requirements of an Advanced HANARO Reactor Core Cooling System

    International Nuclear Information System (INIS)

    Park, Yong Chul; Ryu, Jeong Soo

    2007-12-01

    An advanced HANARO Reactor (AHR) is an open-tank-type and generates thermal power of 20 MW and is under conceptual design phase for developing it. The thermal power is including a core fission heat, a temporary stored fuel heat in the pool, a pump heat and a neutron reflecting heat in the reflector vessel of the reactor. In order to remove the heat load, the reactor core cooling system is composed of a primary cooling system, a primary cooling water purification system and a reflector cooling system. The primary cooling system must remove the heat load including the core fission heat, the temporary stored fuel heat in the pool and the pump heat. The purification system must maintain the quality of the primary cooling water. And the reflector cooling system must remove the neutron reflecting heat in the reflector vessel of the reactor and maintain the quality of the reflector. In this study, the design requirement of each system has been carried out using a design methodology of the HANARO within a permissible range of safety. And those requirements are written by english intend to use design data for exporting the research reactor

  1. New reactor technology: safety improvements in nuclear power systems.

    Science.gov (United States)

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  2. New Mexico Look for the STARS--AIM HIGH: QRS Profile. The Child Care Quality Rating System (QRS) Assessment

    Science.gov (United States)

    Child Trends, 2010

    2010-01-01

    This paper presents a profile of New Mexico's Look for the STARS--AIM HIGH prepared as part of the Child Care Quality Rating System (QRS) Assessment Study. The profile consists of several sections and their corresponding descriptions including: (1) Program Information; (2) Rating Details; (3) Quality Indicators for Center-Based Programs; (4)…

  3. Electrical system regulations of the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Mello, Jose Roberto de; Madi Filho, Tufic

    2013-01-01

    The IEA-R1 reactor of the Nuclear and Energy Research Institute (IPEN-CNEN/SP), is a research reactor open pool type, designed and built by the U.S. firm Babcock and Wilcox, having, as coolant and moderator, deionized light water and beryllium and graphite, as reflectors. Until about 1988, the reactor safety systems received power from only one source of energy. As an example, it may be cited the control desk that was powered only by the vital electrical system 220V, which, in case the electricity fails, is powered by the generator group: no-break 220V. In the years 1989 and 1990, a reform of the electrical system upgrading to increase the reactor power and, also, to meet the technical standards of the ABNT (Associacao Brasileira de Normas Tecnicas) was carried out. This work has the objective of showing the relationship between the electric power system and the IEA-R1 reactor security. Also, it demonstrates that, should some electrical power interruption occur, during the reactor operation, this occurrence would not start an accident event. (author)

  4. Multivariate statistical pattern recognition system for reactor noise analysis

    International Nuclear Information System (INIS)

    Gonzalez, R.C.; Howington, L.C.; Sides, W.H. Jr.; Kryter, R.C.

    1976-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis was developed. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, and updating capabilities. System design emphasizes control of the false-alarm rate. The ability of the system to learn normal patterns of reactor behavior and to recognize deviations from these patterns was evaluated by experiments at the ORNL High-Flux Isotope Reactor (HFIR). Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the system

  5. Multivariate statistical pattern recognition system for reactor noise analysis

    International Nuclear Information System (INIS)

    Gonzalez, R.C.; Howington, L.C.; Sides, W.H. Jr.; Kryter, R.C.

    1975-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis was developed. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, and updating capabilities. System design emphasizes control of the false-alarm rate. The ability of the system to learn normal patterns of reactor behavior and to recognize deviations from these patterns was evaluated by experiments at the ORNL High-Flux Isotope Reactor (HFIR). Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the system. 19 references

  6. Reliability analysis of the reactor protection system with fault diagnosis

    International Nuclear Information System (INIS)

    Lee, D.Y.; Han, J.B.; Lyou, J.

    2004-01-01

    The main function of a reactor protection system (RPS) is to maintain the reactor core integrity and reactor coolant system pressure boundary. The RPS consists of the 2-out-of-m redundant architecture to assure a reliable operation. The system reliability of the RPS is a very important factor for the probability safety assessment (PSA) evaluation in the nuclear field. To evaluate the system failure rate of the k-out-of-m redundant system is not so easy with the deterministic method. In this paper, the reliability analysis method using the binomial process is suggested to calculate the failure rate of the RPS system with a fault diagnosis function. The suggested method is compared with the result of the Markov process to verify the validation of the suggested method, and applied to the several kinds of RPS architectures for a comparative evaluation of the reliability. (orig.)

  7. Overview of Progress on the EU DEMO Reactor Magnet System Design

    NARCIS (Netherlands)

    Zani, L.; Bayer, C.; biancolini, M.E.; Bonifetto, R.; Nijhuis, Arend; Yagotintsev, K.

    2016-01-01

    The DEMO reactor is expected to be the first application of fusion for electricity generation in the near future. To this aim, conceptual design activities are progressing in Europe (EU) under the lead of the EUROfusion Consortium in order to drive on the development of the major tokamak systems. In

  8. Feedwater recycling system in BWR type reactor

    International Nuclear Information System (INIS)

    Shimamoto, Yoshiharu.

    1980-01-01

    Purpose: To improve the reactor safety by preventing thermal stresses and cracks generated in structural materials due to the fluctuations in the temperature for high temperature water - low temperature water mixture near the feedwater nozzle. Method: Feedwater pipes are connected to a pressure vessel not directly but by way of a flow control valve. While the recycled water is circulated from an inlet nozzle to an outlet nozzle through a recycle pump, flow control valve and recycling pipeways, feedwater is fed from the feedwater pipes to the recycling pipeways by way of the flow control valve. More specifically, since the high temperature recycle water and the low temperature recycle water are mixed within the pipeways, the temperature fluctuations resulted from the temperature difference between the recycle water and the feedwater is reduced to prevent thermal fatigue and generation of cracks thereby securing the reactor safety. (Furukawa, Y.)

  9. Light Water Reactor-Pressure Vessel Surveillance project computer system

    International Nuclear Information System (INIS)

    Merriman, S.H.

    1980-10-01

    A dedicated process control computer has been implemented for regulating the metallurgical Pressure Vessel Wall Benchmark Facility (PSF) at the Oak Ridge Research Reactor. The purpose of the PSF is to provide reliable standards and methods by which to judge the radiation damage to reactor pressure vessel specimens. Benchmark data gathered from the PSF will be used to improve and standardize procedures for assessing the remaining safe operating lifetime of aging reactors. The computer system controls the pressure vessel specimen environment in the presence of gamma heating so that in-vessel conditions are simulated. Instrumented irradiation capsules, in which the specimens are housed, contain temperature sensors and electrical heaters. The computer system regulates the amount of power delivered to the electrical heaters based on the temperature distribution within the capsules. Time-temperature profiles are recorded along with reactor conditions for later correlation with specimen metallurgical changes

  10. Nonlinear dynamic analysis of nuclear reactor primary coolant systems

    International Nuclear Information System (INIS)

    Saffell, B.F. Jr.; Macek, R.W.; Thompson, T.R.; Lippert, R.F.

    1979-01-01

    The ADINA computer code is utilized to perform mechanical response analysis of pressurized reactor primary coolant systems subjected to postulated loss-of-coolant accident (LOCA) loadings. Specifically, three plant analyses are performed utilizing the geometric and material nonlinear analysis capabilities of ADINA. Each reactor system finite element model represents the reactor vessel and internals, piping, major components, and component supports in a single coupled model. Material and geometric nonlinear capabilities of the beam and truss elements are employed in the formulation of each finite element model. Loadings applied to each plant for LOCA dynamic analysis include steady-state pressure, dead weight, strain energy release, transient piping hydraulic forces, and reactor vessel cavity pressurization. Representative results are presented with some suggestions for consideration in future ADINA code development

  11. Preliminary design concepts for the advanced neutron source reactor systems

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1988-01-01

    This paper describes the initial design work to develop the reactor systems hardware concepts for the advanced neutron source (ANS) reactor. This project has not yet entered the conceptual design phase; thus, design efforts are quite preliminary. This paper presents the collective work of members of the Oak Ridge National Laboratory, Martin Marietta Energy Systems, Inc., Engineering Division, and other participating organizations. The primary purpose of this effort is to show that the ANS reactor concept is realistic from a hardware standpoint and to show that project objectives can be met. It also serves to generate physical models for use in neutronic and thermal-hydraulic core design efforts and defines the constraints and objectives for the design. Finally, this effort will develop the criteria for use in the conceptual design of the reactor

  12. Model Based Cyber Security Analysis for Research Reactor Protection System

    Energy Technology Data Exchange (ETDEWEB)

    Sho, Jinsoo; Rahman, Khalil Ur; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Son, Hanseong [Joongbu Univ., Geumsan (Korea, Republic of)

    2013-07-01

    The study on the qualitative risk due to cyber-attacks into research reactors was performed using bayesian Network (BN). This was motivated to solve the issues of cyber security raised due to digitalization of instrumentation and control (I and C) system. As a demonstrative example, we chose the reactor protection system (RPS) of research reactors. Two scenarios of cyber-attacks on RPS were analyzed to develop mitigation measures against vulnerabilities. The one is the 'insertion of reactor trip' and the other is the 'scram halt'. The six mitigation measures are developed for five vulnerability for these scenarios by getting the risk information from BN.

  13. A program for dynamic noise investigations of reactor systems

    International Nuclear Information System (INIS)

    Antonov, N.A.; Yaneva, N.B.

    1980-01-01

    A stochastic process analysis in nuclear reactors is used for the state diagnosis and dynamic characteristic investigation of the reactor system. A program DENSITY adapted and tested on an IBM 360 ES type computer is developed. The program is adjusted for fast processing of long series exploiting a relatively small memory. The testing procedure is discussed and the method of the periodic sequences corresponding to characteristic reactivity perturbations of the reactor systems is considered. The program is written for calculating the auto-power spectral density and the cross-power spectral density, as well as the coherence function of stationary statistical time series using the advantages of the fast Fourier transformation. In particular, it is shown that the multi-frequency binary sequences are very useful with respect to the signal-to-noise ratio and the frequency distribution in view of the frequency reactor test

  14. Operational report, basics of the preliminary project for reconstruction of the RA reactor ventilation system

    International Nuclear Information System (INIS)

    Martinc, R.

    1982-01-01

    This report presents the summary of results needed for designing the reconstruction of the RA reactor ventilation system. The final complete report will published later, including results of possible additional analyses according to the needs of main detailed project. Due to the size of the facility the need of filters for particulates is expected in systems V-1 and V-2, as well as revision of the system V-4. Adsorption filters are not needed in case of operation under regular working conditions. It would be favorable, but not indispensable to construct an adsorption filter that could be used occasionally at the input of V-2 system under the upper water shielding. This filter would be switched on when dehermetization of the reactor is planned and increased radioactivity is indicated in the gas system or experimental space of the RA reactor as well as in case of fuel elements failure. The aim of applying filters is shortening the time these elements would spend in the hermetized reactor i.e. their fast removal from the reactor. It is indispensable to build-in 'emergency' highly efficient adsorption filters in the V-2 system which would be switched on in case of accidents that would cause fuel elements meltdown (with simultaneous accident dehermetization of the heavy water system) [sr

  15. Policy-induced market introduction of Generation IV reactor systems

    International Nuclear Information System (INIS)

    Heek, Aliki Irina van; Roelofs, Ferry

    2011-01-01

    Almost 10 years ago the U.S. Department of Energy (DOE) started the Generation IV Initiative (GenIV) with 9 other national governments with a positive ground attitude towards nuclear energy. Some of these Generation IV systems, like the fast reactors, are nearing the demonstration stage. The question on how their market introduction will be implemented becomes increasingly urgent. One main topic for future reactor technologies is the treatment of radioactive waste products. Technological solutions to this issue are being developed. One possible process is the transformation of long-living radioactive nuclides into short living ones; a process known as transmutation, which can be done in a nuclear reactor only. Various Generation IV reactor concepts are suitable for this process, and of these systems most experience has been gained with the sodium-cooled fast reactor (SFR). However, both these first generation SFR plants and their Generation IV successors are designed as electricity generating plants, and therefore supposed to be commercially viable in the electricity markets. Various studies indicate that the generation costs of a combined LWR-(S)FR nuclear generating park (LWR: light water reactor) will be higher than that of an LWR-only park. To investigate the effects of the deployment of the different reactors and fuel cycles on the waste produced, resources used and costs incurred as a function of time, a dynamic fuel cycle assessment is performed. This study will focus on the waste impact of the introduction of a fraction of fast reactors in the European nuclear reactor park with a cost increase as described in the previous paragraph. The nuclear fuel cycle scenario code DANESS is used for this, as well as the nuclear park model of the EU-27 used for the previous study. (orig.)

  16. Reference reactor module for NASA's lunar surface fission power system

    International Nuclear Information System (INIS)

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Werner, James; Qualls, Louis; Radel, Ross

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO 2 -fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  17. Coupled fast-thermal system at the 'RB' nuclear reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    1987-04-01

    The results of the analyses of the possibility of the coupled fast-thermal system (CFTS) design at the 'RB' nuclear reactor are shown. As the proof of the theoretical analyses the first stage CFTS-1 has been designed, realized, and tested. The excellent agreement between the results of the CFTS-1 studies and the theoretical predictions opens a straight way to the second, the final stage - realization of the designed CFST at the 'RB' nuclear reactor. (author)

  18. Criteria for the CAREM reactor's expert system design conduction

    International Nuclear Information System (INIS)

    Furman, A.; Delgado, R.

    1990-01-01

    The present work describes the analysis made to start with the development of an Expert System for the CAREM (SE) reactor's conduction. The following tasks are presented: a) purpose of the Expert System; b) Decision Making structure; c) Architecture of the Expert System; d) Description of Subsystems and e) Licensing. (Author) [es

  19. A remote maintenance robot system for a pulsed nuclear reactor

    International Nuclear Information System (INIS)

    Thunborg, S.

    1987-01-01

    This paper presents a remote maintenance robot system for use in a hazardous environment. The system consists of turntable, robot and hoist subsystems which operate under the control of a supervisory computer to perform coordinated programmed maintenance operations on a pulsed nuclear reactor. The system is operational

  20. Architectural conceptual definition of the CAREM-25 reactor's control system

    International Nuclear Information System (INIS)

    Perez, J.C.; Santome, D.; Drexler, J.; Escudero, S.

    1990-01-01

    This work presents the conceptual definition of the CAREM 25 reactor's digital and monitoring control system structure. The requirements of the system are analyzed and different implementation alternatives are studied where possible basic architectures of the system and its topology are considered and evaluated. (Author) [es

  1. Gas-cooled reactor power systems for space

    International Nuclear Information System (INIS)

    Walter, C.E.

    1987-01-01

    Efficiency and mass characteristics for four gas-cooled reactor power system configurations in the 2- to 20-MWe power range are modeled. The configurations use direct and indirect Brayton cycles with and without regeneration in the power conversion loop. The prismatic ceramic core of the reactor consists of several thousand pencil-shaped tubes made from a homogeneous mixture of moderator and fuel. The heat rejection system is found to be the major contributor to system mass, particularly at high power levels. A direct, regenerated Brayton cycle with helium working fluid permits high efficiency and low specific mass for a 10-MWe system

  2. Safety systems and features of boiling and pressurized water reactors

    International Nuclear Information System (INIS)

    Khair, H. O. M.

    2012-06-01

    The safe operation of nuclear power plants (NPP) requires a deep understanding of the functioning of physical processes and systems involved. This study was carried out to present an overview of the features of safety systems of boiling and pressurized water reactors that are available commercially. Brief description of purposes and functions of the various safety systems that are employed in these reactors was discussed and a brief comparison between the safety systems of BWRs and PWRs was made in an effort to emphasize of safety in NPPs.(Author)

  3. Reliability modeling of Clinch River breeder reactor electrical shutdown systems

    International Nuclear Information System (INIS)

    Schatz, R.A.; Duetsch, K.L.

    1974-01-01

    The initial simulation of the probabilistic properties of the Clinch River Breeder Reactor Plant (CRBRP) electrical shutdown systems is described. A model of the reliability (and availability) of the systems is presented utilizing Success State and continuous-time, discrete state Markov modeling techniques as significant elements of an overall reliability assessment process capable of demonstrating the achievement of program goals. This model is examined for its sensitivity to safe/unsafe failure rates, sybsystem redundant configurations, test and repair intervals, monitoring by reactor operators; and the control exercised over system reliability by design modifications and the selection of system operating characteristics. (U.S.)

  4. Automated ultrasonic examination of light water reactor systems

    International Nuclear Information System (INIS)

    Walter, J.H.

    1975-01-01

    An automated ultrasonic examination system has been developed to meet the pre- and inservice inspection requirements of light water reactors. This system features remotely-controlled travelling instrument carriers, computerized collection and storage or inspection data in a manner providing real time comparison against code standards, and computer control over the positioning of the instrument carriers to provide precise location data. The system is currently being utilized in the field for a variety of reactor inspections. The principal features of the system and the recent inspection experience are discussed. (author)

  5. Safety regulations concerning instrumentation and control systems for research reactors

    International Nuclear Information System (INIS)

    El-Shanshoury, A.I.

    2009-01-01

    A brief study on the safety and reliability issues related to instrumentation and control systems in nuclear reactor plants is performed. In response, technical and strategic issues are used to accomplish instrumentation and control systems safety. For technical issues there are ; systems aspects of digital I and C technology, software quality assurance, common-mode software, failure potential, safety and reliability assessment methods, and human factors and human machine interfaces. The strategic issues are the case-by-case licensing process and the adequacy of the technical infrastructure. The purpose of this work was to review the reliability of the safety systems related to these technical issues for research reactors

  6. Modeling and simulation of CANDU reactor and its regulating system

    Science.gov (United States)

    Javidnia, Hooman

    Analytical computer codes are indispensable tools in design, optimization, and control of nuclear power plants. Numerous codes have been developed to perform different types of analyses related to the nuclear power plants. A large number of these codes are designed to perform safety analyses. In the context of safety analyses, the control system is often neglected. Although there are good reasons for such a decision, that does not mean that the study of control systems in the nuclear power plants should be neglected altogether. In this thesis, a proof of concept code is developed as a tool that can be used in the design. optimization. and operation stages of the control system. The main objective in the design of this computer code is providing a tool that is easy to use by its target audience and is capable of producing high fidelity results that can be trusted to design the control system and optimize its performance. Since the overall plant control system covers a very wide range of processes, in this thesis the focus has been on one particular module of the the overall plant control system, namely, the reactor regulating system. The center of the reactor regulating system is the CANDU reactor. A nodal model for the reactor is used to represent the spatial neutronic kinetics of the core. The nodal model produces better results compared to the point kinetics model which is often used in the design and analysis of control system for nuclear reactors. The model can capture the spatial effects to some extent. although it is not as detailed as the finite difference methods. The criteria for choosing a nodal model of the core are: (1) the model should provide more detail than point kinetics and capture spatial effects, (2) it should not be too complex or overly detailed to slow down the simulation and provide details that are extraneous or unnecessary for a control engineer. Other than the reactor itself, there are auxiliary models that describe dynamics of different

  7. Ventilation system in the RA reactor building - design specifications

    International Nuclear Information System (INIS)

    Badrljica, R.

    1984-09-01

    Protective role of the ventilation system of nuclear facilities involve construction of ventilation barriers which prevent release of radioactive particulates or gases, elimination od radioactive particulates and gases from the air which is released from contaminated zones into the reactor environment. Ventilation barriers are created by dividing the building into a number of ventilation zones with different sub pressure compared to the atmospheric pressure. The RA reactor building is divided into four ventilation zones. First zone is the zone of highest risk. It includes reactor core with horizontal experimental channels, underground rooms of the primary coolant system (D 2 O), helium system, hot cells and the space above the the reactor core. Second zone is the reactor hall and the room for irradiated fuel storage. The third zone includes corridors in the basement, ground floor and first floor where the probability of contamination is small. The fourth zone includes the annex where the contamination risk is low. There is no have natural air circulation in the reactor building. Ventilators for air input and outlet maintain the sub pressure in the building (pressure lower than the atmospheric pressure). This prevents release of radioactivity into the atmosphere [sr

  8. Survey of thorium utilization in power reactor systems

    International Nuclear Information System (INIS)

    Schwartz, M.H.; Schleifer, P.; Dahlberg, R.C.

    1976-01-01

    It is clear that thorium-fueled thermal power reactor systems based on current technology can play a vital role in serving present and long-term energy needs. Advanced thorium converters and thermal breeders can provide an expanded resource base from which the world's growing energy demands can be met. Utilization of a symbiotic system of fast breeders and thorium-fueled thermal reactors can be particularly effective in providing low cost power while conserving uranium resources. Breeder reactors are characterized by high capital costs and very low fuel costs since they produce more fuel than they consume. This excess fuel can be used to fuel thermal converter reactors whose capital costs are low. This symbiosis is optimized when 233 U is bred in the fast breeders and then used to fuel high-conversion-ratio thermal converter reactors operating on the thorium-uranium fuel cycle. The thorium-cycle HTGR, after undergoing more than fifteen years of development in both the United States and Europe, provides for the optimum utilization of our limited uranium resources. Other thermal reactor systems, previously operating on the uranium cycle, also show potential in their capability to utilize the thorium cycle effectively

  9. Emergency core cooling system in BWR type reactors

    International Nuclear Information System (INIS)

    Takizawa, Yoji

    1981-01-01

    Purpose: To rapidly recover the water level in the reactor upon occurrence of slight leakages in the reactor coolant pressure boundary, by promoting the depressurization in the reactor to thereby rapidly increase the high pressure core spray flow rate. Constitution: Upon occurrence of reactor water level reduction, a reactor isolation cooling system and a high pressure core spray system are actuated to start the injection of coolants into a reactor pressure vessel. In this case, if the isolation cooling system is failed to decrease the flow rate in a return pipeway, flow rate indicators show a lower value as compared with a predetermined value. The control device detects it and further confirms the rotation of a high pressure spray pump to open a valve. By the above operation, coolants pumped by the high pressure spray pump is flown by way of a communication pipeway to the return pipeway and sprayed from the top of the pressure vessel. This allows the vapors on the water surface in the pressure vessel to be cooled rapidly and increases the depressurization effects. (Horiuchi, T.)

  10. Reliabitity study of the accumulator system for Angra-1 reactor

    International Nuclear Information System (INIS)

    Santos Maciel, C.C.R.

    1980-01-01

    The realibility of the Accumulator System of Angra 1 reactor is studied. The fault tree techniques is use for identification and evaluation of the probability of occurrence of the possible failure modes of the system. The study has as a guide the report WASH 1400 in which the analysis of the reliability of a Tipical PWR reactor of USA. Comparisons between results obtained for Accumulator System of Angra 1 and that published in the report WASH 1400 for the Accumulator System of the Typical Reactor are done. Critiques to the methodology used in the reportd WASH 1400 and an analysis of the sensitivity of the system in relation with its components are also done. (author) [pt

  11. Research Reactor Power Control System Design by MATLAB/SIMULINK

    International Nuclear Information System (INIS)

    Baang, Dane; Suh, Yong Suk; Kim, Young Ki; Im, Ki Hong

    2013-01-01

    In this study it is presented that MATLAB/SIMULINK can be efficiently used for modeling and power control system design for research reactors. The presented power control system deals with various functions including reactivity control, signals processing, reactivity calculation, alarm request generation, etc., thus it is required to test all the software logic using proper model for reactor, control rods, and field instruments. In MATLAB/SIMULINK tool, point kinetics, thermal model, control absorber rod model, and other instrument models were developed based on reactor parameters and known properties of each component or system. The software for power control system was invented and linked to the model to test each function. From the simulation result it is shown that the power control performance and other functions of the system can be easily tested and analyzed in the proposed simulation structure

  12. Validation of the VTT's reactor physics code system

    International Nuclear Information System (INIS)

    Tanskanen, A.

    1998-01-01

    At VTT Energy several international reactor physics codes and nuclear data libraries are used in a variety of applications. The codes and libraries are under constant development and every now and then new updated versions are released, which are taken in use as soon as they have been validated at VTT Energy. The primary aim of the validation is to ensure that the code works properly, and that it can be used correctly. Moreover, the applicability of the codes and libraries are studied in order to establish their advantages and weak points. The capability of generating program-specific nuclear data for different reactor physics codes starting from the same evaluated data is sometimes of great benefit. VTT Energy has acquired a nuclear data processing system based on the NJOY-94.105 and TRANSX-2.15 processing codes. The validity of the processing system has been demonstrated by generating pointwise (MCNP) and groupwise (ANISN) temperature-dependent cross section sets for the benchmark calculations of the Doppler coefficient of reactivity. At VTT Energy the KENO-VI three-dimensional Monte Carlo code is used in criticality safety analyses. The KENO-VI code and the 44GROUPNDF5 data library have been validated at VTT Energy against the ZR-6 and LR-0 critical experiments. Burnup Credit refers to the reduction in reactivity of burned nuclear fuel due to the change in composition during irradiation. VTT Energy has participated in the calculational VVER-440 burnup credit benchmark in order to validate criticality safety calculation tools. (orig.)

  13. Numerical simulation of Venturi ejector reactor in yellow phosphorus purification system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao-jing; Tang, Lei, E-mail: alanleyfly@gmail.com; Jiang, Zeng

    2014-03-15

    Highlights: • Venturi ejector reactor is used in yellow phosphorus purification system to obtain high purity phosphorus. • We study the changes of vacuum region and the performances of Venturi ejector reactor with different operating pressure. • The whole study is aim to investigate the operating conditions, rather than to find out the small details of the chemical reaction. - Abstract: A novel type of Venturi ejector reactor, which was used in a pilot plant test in a factory in Guizhou in China, was developed to overcome the insufficiency of chemical reaction in the stirred-tank reactor in yellow phosphorus purification system. The effects of different working medium, the changes of vacuum region, and the performances of the Venturi ejector reactor with different operating pressure were investigated by FLUENT. Results show that the absolute value of vacuum pressure of single-phase flow was smaller than two-phase flow at the same operating conditions, which meat two-phase flow has a higher suction capability. Reflow phenomena occurred near the exit of suction pipe and nozzle. The former reflow which leads to energy loss of vacuum region was undesirable, and the latter was beneficial to the dispersion of liquid yellow phosphorus. With a flow rate ratio below 0.45, the performance of the Venturi ejector reactor was effective. By adjusting the operating pressure, a proper flow rate ratio could be satisfied to meet the production needs in yellow phosphorus purification system.

  14. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  15. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    International Nuclear Information System (INIS)

    Shropshire, D.E.

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program's understanding of the cost drivers that will determine nuclear power's cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-irradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  16. The combined hybrid system: A symbiotic thermal reactor/fast reactor system for power generation and radioactive waste toxicity reduction

    International Nuclear Information System (INIS)

    Hollaway, W.R.

    1991-08-01

    If there is to be a next generation of nuclear power in the United States, then the four fundamental obstacles confronting nuclear power technology must be overcome: safety, cost, waste management, and proliferation resistance. The Combined Hybrid System (CHS) is proposed as a possible solution to the problems preventing a vigorous resurgence of nuclear power. The CHS combines Thermal Reactors (for operability, safety, and cost) and Integral Fast Reactors (for waste treatment and actinide burning) in a symbiotic large scale system. The CHS addresses the safety and cost issues through the use of advanced reactor designs, the waste management issue through the use of actinide burning, and the proliferation resistance issue through the use of an integral fuel cycle with co-located components. There are nine major components in the Combined Hybrid System linked by nineteen nuclear material mass flow streams. A computer code, CHASM, is used to analyze the mass flow rates CHS, and the reactor support ratio (the ratio of thermal/fast reactors), IFR of the system. The primary advantages of the CHS are its essentially actinide-free high-level radioactive waste, plus improved reactor safety, uranium utilization, and widening of the option base. The primary disadvantages of the CHS are the large capacity of IFRs required (approximately one MW e IFR capacity for every three MW e Thermal Reactor) and the novel radioactive waste streams produced by the CHS. The capability of the IFR to burn pure transuranic fuel, a primary assumption of this study, has yet to be proven. The Combined Hybrid System represents an attractive option for future nuclear power development; that disposal of the essentially actinide-free radioactive waste produced by the CHS provides an excellent alternative to the disposal of intact actinide-bearing Light Water Reactor spent fuel (reducing the toxicity based lifetime of the waste from roughly 360,000 years to about 510 years)

  17. Simplified safety and containment systems for the iris reactor

    International Nuclear Information System (INIS)

    Conway, L.E.; Lombardi, C.; Ricotti, M.; Oriani, L.

    2001-01-01

    The IRIS (International Reactor Innovative and Secure) is a 100 - 300 MW modular type pressurized water reactor supported by the U.S. DOE NERI Program. IRIS features a long-life core to provide proliferation resistance and to reduce the volume of spent fuel, as well as reduce maintenance requirements. IRIS utilizes an integral reactor vessel that contains all major primary system components. This integral reactor vessel makes it possible to reduce containment size; making the IRIS more cost competitive. IRIS is being designed to enhance reactor safety, and therefore a key aspect of the IRIS program is the development of the safety and containment systems. These systems are being designed to maximize containment integrity, prevent core uncover following postulated accidents, minimize the probability and consequences of severe accidents, and provide a significant simplification over current safety system designs. The design of the IRIS containment and safety systems has been identified and preliminary analyses have been completed. The IRIS safety concept employs some unique features that minimize the consequences of postulated design basis events. This paper will provide a description of the containment design and safety systems, and will summarize the analysis results. (author)

  18. Successive pretreatment and enzymatic saccharification of sugarcane bagasse in a packed bed flow-through column reactor aiming to support biorefineries.

    Science.gov (United States)

    Terán-Hilares, R; Reséndiz, A L; Martínez, R T; Silva, S S; Santos, J C

    2016-03-01

    A packed bed flow-through column reactor (PBFTCR) was used for pretreatment and subsequent enzymatic hydrolysis of sugarcane bagasse (SCB). Alkaline pretreatment was performed at 70 °C for 4h with fresh 0.3M NaOH solution or with liquor recycled from a previous pretreatment batch. Scheffersomyces stipitis NRRL-Y7124 was used for fermentation of sugars released after enzymatic hydrolysis (20 FPU g(-1) of dry SCB). The highest results for lignin removal were 61% and 52%, respectively, observed when using fresh NaOH or the first reuse of the liquor. About 50% of cellulosic and 57% of hemicellulosic fractions of pretreated SCBs were enzymatically hydrolyzed and the maximum ethanol production was 23.4 g L(-1) (ethanol yield of 0.4 gp gs(-1)), with near complete consumption of both pentoses and hexoses present in the hydrolysate during the fermentation. PBFTCR as a new alternative for SCB-biorefineries is presented, mainly considering its simple configuration and efficiency for operating with a high solid:liquid ratio. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. System modeling and reactor design studies of the Advanced Thermionic Initiative space nuclear reactor

    International Nuclear Information System (INIS)

    Lee, H.H.; Abdul-Hamid, S.; Klein, A.C.

    1996-01-01

    In-core thermionic space reactor design concepts that operate at a nominal power output range of 20 to 50 kW(electric) are described. Details of the neutronic, thermionic, thermal hydraulics, and shielding performance are presented. Because of the strong absorption of thermal neutrons by natural tungsten and the large amount of natural tungsten within the reactor core, two designs are considered. An overall system design code has been developed at Oregon State University to model advanced in-core thermionic energy conversion-based nuclear reactor systems for space applications. The results show that the driverless single-cell Advanced Thermionic Initiative (ATI) configuration, which does not have driver fuel rods, proved to be more efficient than the driven core, which has driver rods. The results also show that the inclusion of the true axial and radial power distribution decrease the overall conversion efficiency. The flattening of the radial power distribution by three different methods would lead to a higher efficiency. The results show that only one TFE works at the optimum emitter temperature; all other TFEs are off the optimum performance and result in a 40% decrease of the efficiency of the overall system. The true axial profile is significantly different as there is a considerable amount of neutron leakage out of the top and bottom of the reactor. The analysis reveals that the axial power profile actually has a chopped cosine shape. For this axial profile, the reactor core overall efficiency for the driverless ATI reactor version is found to be 5.84% with a total electrical power of 21.92 kW(electric). By considering the true axial power profile instead of the uniform power profile, each TFE loses ∼80 W(electric)

  20. Development of the supporting system of the Monju advanced reactor simulator (MARS)

    International Nuclear Information System (INIS)

    Koyagoshi, Naoki; Sasaki, Kazuichi; Sawada, Makoto

    2002-10-01

    The MARS has been operating for operator training and operation procedure's verification of the prototype fast breeder reactor 'Monju' since April 1991. In order to carry out the above results more effectively, the MARS supporting system which consists of several computer system has being developed. This report covers the following three supporting systems developed from 1994 to 2001 and study on evaluation method of Monju operator training data. Expanded Monju visual animation system. The Monju visual animation system was developed to visualize the inner structure of equipments and the parameters without measuring points. This system is used for training form 1993. And then, the training limits of the system has been extended. Development of the Monju min simulator for reactor core analysis. Development of the Monju min simulator which analyzes thermo-hydraulic behavior in the Monju reactor in detail is proceeding with the aims; of upgrading Monju operator training effect. The obtained results will be reflected to remodeling of MARS's reactor core analysis mode. Development of the severe accident CAI (Computer Assisted Instruction) system. The prototype system which supports study on accident management was developed. This system will be converted when the severe accident procedure of Monju is fixed, and it will be used for training. Study on evaluation method of Monju operate training data. In order to reconstruct the operator training system, the evaluation method of training data was considered. The availability has been checked as a result of evaluating crew communication using this method. (author)

  1. Conceptual study of a complementary scram system for liquid metal cooled nuclear reactors

    International Nuclear Information System (INIS)

    Vanmaercke, S.; Van den Eynde, G.; Tijskens, E.; Bartosiewicz, Y.

    2009-01-01

    GEN-IV reactors promise higher safety and reliability as one of the major improvements over previous generations of reactors. To achieve that, all GEN-IV reactor concepts require two completely independent shutdown systems that rely on different operating principles. For liquid metal cooled reactors the first system is an absorber-rod based solution. The second system that by requirement should rely on another principle, is however quite a challenge to design. The second system used in current PWR reactors is to dissolve a neutron absorber, boric acid, into the primary coolant. This method cannot be used in liquid metal cooled reactors because of the high cost of cleaning the coolant. In this paper an overview of the existing literature on scram systems is given, each with their advantages and limitations. A promising new concept is also presented. This concept leads to a totally passive self activating device using small absorbing particles that flow into a dedicated channel to shutdown the reactor. The system consists of tubes filled with particles of an absorber material. During normal operation, these particles are kept above the active core by means of a metallic seal. In case of an accident, the system is activated by the temperature increase in the coolant. This leads to melting of the metal seal. The ongoing work conducted at SCK·CEN and UCL/TERM aims at assessing the reliability of this new concept both experimentally and numerically. This study is multidisciplinary as neutronic and thermal hydraulics issues are tackled. Most challenging is however the thermal hydraulics related to understanding and predicting the liberation and flow of the absorber particles during a shutdown. Simple experiments are envisaged to compare to numerical simulations using the Discrete Element Method for simulating the particles. In a later stage this will be coupled with Smoothed Particles Hydrodynamics for simulating the melting of the seal. Some preliminary experimental and

  2. Fuel Behavior Modeling Issues Associated with Future Fast Reactor Systems

    International Nuclear Information System (INIS)

    Yacout, A.M.; Hofman, G.L.; Lambert, J.D.B.; Kim, Y.S.

    2007-01-01

    Major issues of concern related to advanced fast reactor fuel behavior are discussed here with focus on phenomena that are encountered during irradiation of metallic fuel elements. Identification of those issues is part of an advanced fuel simulation effort that aims at improving fuel design and reducing reliance on conventional approach of design by experiment which is both time and resource consuming. (authors)

  3. In core system mapping reactor power distribution

    International Nuclear Information System (INIS)

    Yoriyaz, H.; Moreira, J.M.L.

    1989-01-01

    Based on the signals of SPND'S (Self Powered Neutron Detectors) distributed inside of a core, the spatial power distribution is obtained using the MAP program, developed in this work. The methodology applied in MAP program uses a least mean square technique to calculate expansion coefficients that depend on the SPND'S signals. The final power or neutron flux distribution is obtained by a combination of certains functions or expansion modes that are provided from diffusion calculation with the CITATION code. The MAP program is written in PASCAL language and will be used in IEA-R1 reactor for assisting its operation. (author) [pt

  4. [From data entry to data presentation at a clinical workstation--experiences with Anesthesia Information Management Systems (AIMS)].

    Science.gov (United States)

    Benson, M; Junger, A; Quinzio, L; Michel, A; Sciuk, G; Fuchs, C; Marquardt, K; Hempelmannn, G

    2000-09-01

    Anesthesia Information Management Systems (AIMS) are required to supply large amounts of data for various purposes such as performance recording, quality assurance, training, operating room management and research. It was our objective to establish an AIMS that enables every member of the department to independently access queries at his/her work station and at the same time allows the presentation of data in a suitable manner in order to increase the transfer of different information to the clinical workstation. Apple Macintosh Clients (Apple Computer, Inc. Cupertino, California) and the file- and database servers were installed into the already partially existing hospital network. The most important components installed on each computer are the anesthesia documenting software NarkoData (ProLogic GmbH, Erkrath), HIS client software and a HTML browser. More than 250 queries for easy evaluation were formulated with the software Voyant (Brossco Systems, Espoo, Finland). Together with the documentation they are the evaluation module of the AIMS. Today, more than 20,000 anesthesia procedures are recorded each year at 112 decentralised workstations with the AIMS. In 1998, 90.8% of the 20,383 performed anesthetic procedures were recorded online and 9.2% entered postopeatively into the system. With a corresponding user access it is possible to receive all available patient data at each single anesthesiological workstation via HIS (diagnoses, laboratory results) anytime. The available information includes previous anesthesia records, statistics and all data available from the hospitals intranet. This additional information is of great advantage in comparison to previous working conditions. The implementation of an AIMS allowed to greatly enhance the quota but also the quality of documentation and an increased flow of information at the anesthesia workstation. The circuit between data entry and the presentation and evaluation of data, statistics and results directly

  5. Fast reactor system factors affecting reprocessing plant design

    International Nuclear Information System (INIS)

    Allardice, R.H.; Pugh, O.

    1982-01-01

    The introduction of a commercial fast reactor electricity generating system is very dependent on the availability of an efficient nuclear fuel cycle. Selection of fuel element constructional materials, the fuel element design approach and the reactor operation have a significant influence on the technical feasibility and efficiency of the reprocessing and waste management plants. Therefore the fast reactor processing plant requires liaison between many design teams -reactor, fuel design, reprocessing and waste management -often with different disciplines and conflicting objectives if taken in isolation and an optimised approach to determining several key parameters. A number of these parameters are identified and the design approach discussed in the context of the reprocessing plant. Radiological safety and its impact on design is also briefly discussed. (author)

  6. Software reliability and safety in nuclear reactor protection systems

    International Nuclear Information System (INIS)

    Lawrence, J.D.

    1993-11-01

    Planning the development, use and regulation of computer systems in nuclear reactor protection systems in such a way as to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Computer Safety and Reliability Group, Lawrence Livermore that investigates different aspects of computer software in reactor National Laboratory, that investigates different aspects of computer software in reactor protection systems. There are two central themes in the report, First, software considerations cannot be fully understood in isolation from computer hardware and application considerations. Second, the process of engineering reliability and safety into a computer system requires activities to be carried out throughout the software life cycle. The report discusses the many activities that can be carried out during the software life cycle to improve the safety and reliability of the resulting product. The viewpoint is primarily that of the assessor, or auditor

  7. Software reliability and safety in nuclear reactor protection systems

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.D. [Lawrence Livermore National Lab., CA (United States)

    1993-11-01

    Planning the development, use and regulation of computer systems in nuclear reactor protection systems in such a way as to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Computer Safety and Reliability Group, Lawrence Livermore that investigates different aspects of computer software in reactor National Laboratory, that investigates different aspects of computer software in reactor protection systems. There are two central themes in the report, First, software considerations cannot be fully understood in isolation from computer hardware and application considerations. Second, the process of engineering reliability and safety into a computer system requires activities to be carried out throughout the software life cycle. The report discusses the many activities that can be carried out during the software life cycle to improve the safety and reliability of the resulting product. The viewpoint is primarily that of the assessor, or auditor.

  8. User's manual for the reactor burnup system, REBUS

    International Nuclear Information System (INIS)

    Olson, A.P.; Regis, J.P.; Meneley, D.A.; Hoover, L.J.

    1972-01-01

    A user's manual for the REBUS System (REactor BUrnup System) is presented. Its primary purpose is to provide sufficient information about the REBUS capability to the user to ensure its efficient utilization. The current REBUS System either solves for the infinite time (equilibrium) operating conditions of a recycle system under fixed conditions, or solves for operating conditions during a single time step (non-equilibrium). The capability of studying various in-reactor fuel management and ex-reactor fuel management schemes has been included. REBUS has been operated with one- and two-dimensional diffusion theory neutronics solutions up to the present time. The model was specifically designed for extension to other neutronics models such as three-dimensional diffusion or transport theory and direct or synthesis solutions

  9. Data acquisition and processing system for reactor noise analysis

    International Nuclear Information System (INIS)

    Costa Oliveira, J.; Morais Da Veiga, C.; Forjaz Trigueiros, D.; Pombo Duarte, J.

    1975-01-01

    A data acquisition and processing system for reactor noise analysis by time correlation methods is described, consisting in one to four data feeding channels (transducer, associated electronics and V/f converter), a sampling unit, a landline transmission system and a PDP 15 computer. This system is being applied to study the kinetic parameters of the 'Reactor Portugues de Investigacao', a swimming-pool 1MW reactor. The main features that make such a data acquisition and processing system a useful tool to perform noise analysis are: the improved characteristics of analog-to-digital converters employed to quantize the signals; the use of an on-line computer which allows a great accumulation and a rapid treatment of data together with an easy check of the correctness of the experiments; and the adoption of the time cross-correlation technique using two-detectors which by-pass the limitation of low efficiency detectors. (author)

  10. An intelligent safety system concept for future CANDU reactors

    International Nuclear Information System (INIS)

    Hinds, H.W.

    1980-01-01

    A review of the current Regional Over-power Trip (ROPT) system employed on the Bruce NGS-A reactors confirmed the belief that future reactors should have an improved ROPT system. We are developing such an 'intelligent' safety system. It uses more of the available information on reactor status and employs modern computer technology. Fast triplicated safety computers compute maps of fuel channel power, based on readings from prompt-responding flux detectors. The coefficients for this calculation are downloaded periodically from a fourth supervisor computer. These coefficients are based on a detailed 3-D flux shape derived from physics data and other plant information. A demonstration of one of three safety channels of such a system is planned. (auth)

  11. Reactor technology assessment and selection utilizing systems engineering approach

    Science.gov (United States)

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In

    2014-02-01

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  12. Needs for development in nondestructive testing for advanced reactor systems

    International Nuclear Information System (INIS)

    McClung, R.W.

    1978-01-01

    The needs for development of nondestructive testing (NDT) techniques and equipment were surveyed and analyzed relative to problem areas for the Liquid-Metal Fast Breeder Reactor, the Molten-Salt Breeder Reactor, and the Advanced Gas-Cooled Reactor. The paper first discusses the developmental needs that are broad-based requirements in nondestrutive testing, and the respective methods applicable, in general, to all components and reactor systems. Next, the requirements of generic materials and components that are common to all advanced reactor systems are examined. Generally, nondestructive techniques should be improved to provide better reliability and quantitativeness, improved flaw characterization, and more efficient data processing. Specific recommendations relative to such methods as ultrasonics, eddy currents, acoustic emission, radiography, etc., are made. NDT needs common to all reactors include those related to materials properties and degradation, welds, fuels, piping, steam generators, etc. The scope of applicability ranges from initial design and material development stages through process control and manufacturing inspection to in-service examination

  13. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

    2011-04-06

    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  14. Integrated Management System, Configuration and Document Control for Research Reactors

    International Nuclear Information System (INIS)

    Steynberg, B.J.; Bruyn, J.F. du

    2017-01-01

    An integrated management system is a single management framework establishing all the processes necessary for the organisation to address all its goals and objectives. Very often only quality, environment and health & safety goals are included when referred to an integrated management system. However, within the research reactor environment such system should include goals pertinent to economic, environmental, health, operational, quality, safeguards, safety, security, and social considerations. One of the important objectives of an integrated management is to create the environment for a healthy safety culture. Configuration management is a disciplined process that involves both management and technical direction to establish and document the design requirements and the physical configuration of the research reactor and to ensure that they remain consistent with each other and the documentation. Configuration is the combination of the physical, functional, and operational characteristics of the structures, systems, and components (SSCs) or parts of the research reactor, operation, or activity. The basic objectives and general principles of configuration management are the same for all research reactors. The objectives of configuration management are to: a) Establish consistency among design requirements, physical configuration, and documentation (including analyses, drawings, and procedures) for the research reactor; b) Maintain this consistency throughout the life of the research reactor, particularly as changes are being made; and c) Retain confidence in the safety of the research reactor. The key elements needed to manage the configuration of research reactors are design requirements, work control, change control, document control, and configuration management assessments. The objective of document control is to ensure that only the most recently approved versions of documents are used in the process of operating, maintaining, and modifying the research reactor

  15. Survey of nuclear parameters from the TRIGA Mark I IPR R1 Brazilian reactor with concentric configuration aiming the application of K0 neutron activation technique

    International Nuclear Information System (INIS)

    Franco, Milton Batista

    2006-01-01

    This research intended to determine the nuclear parameters a, f, spectral index and neutron temperature in several irradiations positions of the TRIGA Mark 1 IPR-R1 reactor, for use on the parametric method K 0 in the CDTN. K 0 is a monostandard method of neutron activation analysis. It is, on the whole, experimentally simple, flexible and an important tool for accurate and convenient standardization in instrumental multi-element analysis. At the time the parameters were determined at the rotatory rack, lower layer and in the central thimble: alpha was calculated applying the three bare monitor method using 197 Au, 94 Zr and 96 Zr; f determination was done according to the bare bi-isotopic method; neutron temperature was calculated through the direct method using 176 Lu, 94 Zr, 96 Zr and 197 Au and the Westcott's g(Tn) function for the 176 Lu was calculated and the result was interpolated in the Grintakis and Kim (1975) Table, determining the neutron temperature. The procedure to check the parameters consisted in using standard solutions of Au (metal foil, NBS), Lu (LuO 2 , Johnson Mattey Company - JMC) and Zr (ZrO 2 and metal foil, Johnson Mattey Company 99,99% and Zry - 4: 98,14% of Zr, National Bureau of Standard- NBS). Several certified reference materials and two samples of intercomparisons (samples of sediment of the IAEA/ARCAL XXVI project) have been analysed by means of k 0 - INAA in order to verify the efficiency of the method and the quality of the parameters. The certified reference materials were: GXR-2, GXR-5 and GXR-6 of the United States Geological Survey (USGS) and Soil-5, Soil-7 and SL-1 of the International Atomic Energy Agency (IAEA). (author)

  16. Modeling delayed neutron monitoring systems for fast breeder reactors

    International Nuclear Information System (INIS)

    Bunch, W.L.; Tang, E.L.

    1983-10-01

    The purpose of the present work was to develop a general expression relating the count rate of a delayed neutron monitoring system to the introduction rate of fission fragments into the sodium coolant of a fast breeder reactor. Most fast breeder reactors include a system for detecting the presence of breached fuel that permits contact between the sodium coolant and the mixed oxide fuel. These systems monitor for the presence of fission fragments in the sodium that emit delayed neutrons. For operational reasons, the goal is to relate the count rate of the delayed neutron monitor to the condition of the breach in order that appropriate action might be taken

  17. Backfitting in Rossendorf research reactor control and instrumentation system

    International Nuclear Information System (INIS)

    Klebau, J.; Seidler, S.

    1985-01-01

    The paper generally describes a decentralized Hierarchical Information System (HIS) which has been developed for backfitting in Rossendorf Research Reactor (RFR) control and instrumentation system. The RFR was put into operation in 1957 and reconstructed from 2 MW up to a thermal power of 10 MW at the end of the sixties. Backfitting is planned by use of an advanced computerized control system for the next years. Main tasks of HIS are: Processmonitoring, online-disturbance analysis, technical diagnosis, direct digital control and use of a special industrial robot for discharging of irradiated materials out of the reactor. Experiences obtained by HIS during a testperiod will be presented. (author)

  18. Boiler systems for nuclear powered reactors

    International Nuclear Information System (INIS)

    Cook, R.K.; George, B.V.

    1979-01-01

    A power generating plant which comprises a heat source, at least one main steam turbine and at least one main boiler heated by heat from the heat source and providing the steam to drive the turbine, comprises additionally at least one further steam turbine, smaller than the main turbine, and at least one further boiler, of lower capacity than the main boiler, and heated from the same heat source and providing steam for the further turbine. Particularly advantageous in nuclear power stations, where the heat source is a nuclear reactor, the invention enables peak loads, above the normal continuous rating of the main generators driven by the main turbines, to be met by the further turbine(s) and one or more further generators driven thereby. This enables the main turbines to be freed from the thermal stresses of rapid load changes, which stresses are more easily accommodated by the smaller and thus more tolerant further turbine(s). Thus auxiliary diesel-driven or other independent power plant may be made partly or wholly unnecessary. Further, low-load running which would be inefficient if achieved by means of the main turbine(s), can be more efficiently effected by shutting them down and using the smaller further turbine(s) instead. These latter may also be used to provide independent power for servicing the generating plant during normal operation or during emergency or other shutdown, and in this latter case may also serve as a heat sink for the shutdown reactor

  19. Development of the next generation reactor analysis code system, MARBLE

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hazama, Taira; Nagaya, Yasunobu; Chiba, Go; Kugo, Teruhiko; Ishikawa, Makoto; Tatsumi, Masahiro; Hirai, Yasushi; Hyoudou, Hideaki; Numata, Kazuyuki; Iwai, Takehiko; Jin, Tomoyuki

    2011-03-01

    A next generation reactor analysis code system, MARBLE, has been developed. MARBLE is a successor of the fast reactor neutronics analysis code systems, JOINT-FR and SAGEP-FR (conventional systems), which were developed for so-called JUPITER standard analysis methods. MARBLE has the equivalent analysis capability to the conventional system because MARBLE can utilize sub-codes included in the conventional system without any change. On the other hand, burnup analysis functionality for power reactors is improved compared with the conventional system by introducing models on fuel exchange treatment and control rod operation and so on. In addition, MARBLE has newly developed solvers and some new features of burnup calculation by the Krylov sub-space method and nuclear design accuracy evaluation by the extended bias factor method. In the development of MARBLE, the object oriented technology was adopted from the view-point of improvement of the software quality such as flexibility, expansibility, facilitation of the verification by the modularization and assistance of co-development. And, software structure called the two-layer system consisting of scripting language and system development language was applied. As a result, MARBLE is not an independent analysis code system which simply receives input and returns output, but an assembly of components for building an analysis code system (i.e. framework). Furthermore, MARBLE provides some pre-built analysis code systems such as the fast reactor neutronics analysis code system. SCHEME, which corresponds to the conventional code and the fast reactor burnup analysis code system, ORPHEUS. (author)

  20. Nuclear-reactor remote-monitoring systems - concepts and implementations

    International Nuclear Information System (INIS)

    Rudolf, A.

    1987-01-01

    The paper presents general concepts and some examples of implemented nuclear-reactor remote-monitoring (RM) systems. Some functions and tasks of RM systems are demonstrated and three concepts are described in detail and assessed globally. Three examples of implemented RM systems are discussed using the Baden-Wurttemberg RM system for a description in greater detail. A brief prognosis of the future development of RM systems is made. (orig./DG) [de

  1. TREAT [Transient Reactor Test Facility] reactor control rod scram system simulations and testing

    International Nuclear Information System (INIS)

    Solbrig, C.W.; Stevens, W.W.

    1990-01-01

    Air cylinders moving heavy components (100 to 300 lbs) at high speeds (above 300 in/sec) present a formidable end-cushion-shock problem. With no speed control, the moving components can reach over 600 in/sec if the air cylinder has a 5 ft stroke. This paper presents an overview of a successful upgrade modification to an existing reactor control rod drive design using a computer model to simulate the modified system performance for system design analysis. This design uses a high speed air cylinder to rapidly insert control rods (278 lb moved 5 ft in less than 300 msec) to scram an air-cooled test reactor. Included is information about the computer models developed to simulate high-speed air cylinder operation and a unique new speed control and end cushion design. A patent application is pending with the US Patent ampersand Trade Mark Office for this system (DOE case number S-68,622). The evolution of the design, from computer simulations thru operational testing in a test stand (simulating in-reactor operating conditions) to installation and use in the reactor, is also described. 6 figs

  2. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  3. Small reactor power systems for manned planetary surface bases

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  4. Design of Kartini reactor radiation monitor system using lab view

    International Nuclear Information System (INIS)

    Adi Abimanyu; Jumari; Achmad Fahrul Aji; Muhammad Khoiri

    2014-01-01

    Kartini Reactor operation will result in radiation exposure. Gamma radiation exposure rate at the Kartini Reactor monitored by several radiation monitors (Ludlum) that integrate with the computer, so that the rate of radiation exposure is always monitored. Current monitoring system combines six radiation monitor in one computer monitor radiation, and monitoring performed by operators and supervisors to see how the radiation exposure rate measured in the area around the reactor core in a periodic time manually. This research will develop a system to monitor radiation exposure in Kartini reactor based ATMega8 micro controller for interface between radiation monitor and computer and also Graphical User Interface (GUI) develop using Lab view software that makes monitoring is easier and documented regularly. This system is testing by simulation, it is done by replacing the function of the radiation monitoring devices (Ludlum) in Kartini Reactor with computers that send serial data with the same format with a format that is sent by Ludlum. The results show that the interface system has the ability to operate in a range of baud rate 1,200 bps, 2,400 bps, 4,800 bps, 9,600 bps, 14,400 bps, 19,200 bps and 38,400 bps, with the ability to provide realtime information every 6 seconds and able to document the rate of exposure to radiation in the form of logbook. (author)

  5. Reactor protection system with automatic self-testing and diagnostic

    International Nuclear Information System (INIS)

    Gaubatz, D.C.

    1996-01-01

    A reactor protection system is disclosed having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically ''identical'' values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic. 16 figs

  6. Application of stable adaptive schemes to nuclear reactor systems, (2)

    International Nuclear Information System (INIS)

    Kukuda, Toshio

    1979-01-01

    The parameter identification and adaptive control schemes applied in a previous study to a nonlinear point reactor are extended to the case of a loosely-coupled-core reactor with internal feedbacks, constituting a nonlinear overall system. Both schemes are shown to be stable, with the system newly represented on the pattern of the Model Reference Adaptive System (MRAS) with use made of the Lyapunov's method. For either parameter identification or adaptive control of a loosely-coupled-core reactor, there exists no canonical form of multiple input-multiple output system which can be directly applied for deriving the MRAS with the matrix version of the Kalman-Yakubovich lemma as it was in the case of the point reactor. This difficulty is circumvented by the practical assumption that the neutron density can be directly measured on each core as reactivity change is applied as input into the coupled core as a whole. For parameter identification, the model parameters are adaptively adjusted to those of each core, while for the adaptive control, plant parameters of each core can be adaptively compensated, again through control inputs, to asymptotically reduce the output error between the model and the plant. The point reactor is shown to correspond to a special case. (author)

  7. Small reactor power systems for manned planetary surface bases

    International Nuclear Information System (INIS)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options

  8. The use of process computers in reactor protection systems

    International Nuclear Information System (INIS)

    1973-04-01

    The report contains the papers presented at the LRA information meeting in spring 1972, concerning the use of process computers in reactor protection systems. The main interest was directed at a system conception as proposed from AEG for future BWR-plants. (orig.) [de

  9. Specimen rotation system of the WSU TRIGA-fueled reactor

    International Nuclear Information System (INIS)

    Lovas, Thomas A.

    1976-01-01

    The specimen rotation system presently in use at the WSU reactor has been designed to provide maximum utilization of the irradiation capabilities achieved through use of TRIGA-type fuel. This paper describes the system with particular emphasis on characteristics which are advantageous to experimenters. (author)

  10. Comparative analysis of nuclear reactor control system designs

    International Nuclear Information System (INIS)

    Russcher, G.E.

    1975-01-01

    Control systems are vital to the safe operation of nuclear reactors. Their seismic design requirements are some of the most important criteria governing reactor system design evaluation. Consequently, the seismic analysis for nuclear reactors is directed to include not only the mechanical and structural seismic capabilities of a reactor, but the control system functional requirements as well. In the study described an alternate conceptual design of a safety rod system was compared with a prototypic system design to assess their relative functional reliabilities under design seismic conditions. The comparative methods utilized standard success tree and decision tree techniques to determine the relative figures of merit. The study showed: (1) The methodology utilized can provide both qualitative and quantitative bases for design decisions regarding seismic functional capabilities of two systems under comparison, (2) the process emphasizes the visibility of particular design features that are subject to common mode failure while under seismic loading, and (3) minimal improvement was shown to be available in overall system seismic performance of an independent conceptual design, however, it also showed the system would be subject to a new set of operational uncertainties which would have to be resolved by extensive development programs

  11. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  12. Online monitoring and diagnostic system on RA-6 nuclear reactor

    International Nuclear Information System (INIS)

    Garcia Peyrano, O. A.; Marticorena, M.; Koch, R. G.; Martinez, J. S; Berruti, G. E.; Nunez, W. M.; Gonzales, L. A.; Tarquini, L. D.; Sotelo, J. P

    2009-01-01

    This paper presents the Online Automatic Monitoring and Diagnostic System for mechanical components, installed on RA-6 Nuclear Reactor (San Carlos de Bariloche, Argentina). This system has been designed, installed and set-up by the Vibrations and Mechatronics Laboratory (Centro Atomico Bariloche, Comision Nacional de Energia Atomica) and Sitrack.com Argentina SA. This system provides an online mechanical diagnostic of the main reactor components, allowing incipient failures to be early detected and identified, avoiding unscheduled shut-downs and reducing maintenance times. The diagnostic is accomplished by an online analysis of the vibratory signature of the mechanical components, obtained by vibrations sensors on the main pump and the decay tank. The mechanical diagnostic and the main operational parameters are displayed on the reactor control room and published on the internet. [es

  13. Analysis of reactor trips originating in balance of plant systems

    International Nuclear Information System (INIS)

    Stetson, F.T.; Gallagher, D.W.; Le, P.T.; Ebert, M.W.

    1990-09-01

    This report documents the results of an analysis of balance-of-plant (BOP) related reactor trips at commercial US nuclear power plants of a 5-year period, from January 1, 1984, through December 31, 1988. The study was performed for the Plant Systems Branch, Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission. The objectives of the study were: to improve the level of understanding of BOP-related challenges to safety systems by identifying and categorizing such events; to prepare a computerized data base of BOP-related reactor trip events and use the data base to identify trends and patterns in the population of these events; to investigate the risk implications of BOP events that challenge safety systems; and to provide recommendations on how to address BOP-related concerns in regulatory context. 18 refs., 2 figs., 27 tabs

  14. Balancing passive and active systems for evolutionary water cooled reactors

    International Nuclear Information System (INIS)

    Fil, N.S.; Allen, P.J.; Kirmse, R.E.; Kurihara, M.; Oh, S.J.; Sinha, R.K.

    1999-01-01

    Advanced concepts of the water-cooled reactors are intended to improve safety, economics and public perception of nuclear power. The potential inclusion of new passive means in addition or instead of traditional active systems is being considered by nuclear plant designers to reach these goals. With respect to plant safety, application of the passive means is mainly intended to simplify the safety systems and to improve their reliability, to mitigate the effect of human errors and equipment malfunction. However, some clear drawbacks and the limited experience and testing of passive systems may raise additional questions that have to be addressed in the design process for each advanced reactor. Therefore the plant designer should find a reasonable balance of active and passive means to effectively use their advantages and compensate their drawbacks. Some considerations that have to be taken into account when balancing active/passive means in advanced water-cooled reactors are discussed in this paper. (author)

  15. CLASSIFICATION OF SYSTEMS FOR PASSIVE AFTERHEAT REMOVAL FROM REACTOR CONTAINMENT OF NUCLEAR POWER PLANT WITH WATER-COOLED POWER REACTOR

    Directory of Open Access Journals (Sweden)

    N. Khaled

    2014-01-01

    Full Text Available A classification on systems for passive afterheat removal from reactor containment has been developed in the paper.  The classification permits to make a detailed analysis of various concepts pertaining to systems for passive afterheat removal from reactor containment of new generation. The paper considers main classification features of the given systems.

  16. AIM for Allostery: Using the Ising Model to Understand Information Processing and Transmission in Allosteric Biomolecular Systems.

    Science.gov (United States)

    LeVine, Michael V; Weinstein, Harel

    2015-05-01

    In performing their biological functions, molecular machines must process and transmit information with high fidelity. Information transmission requires dynamic coupling between the conformations of discrete structural components within the protein positioned far from one another on the molecular scale. This type of biomolecular "action at a distance" is termed allostery . Although allostery is ubiquitous in biological regulation and signal transduction, its treatment in theoretical models has mostly eschewed quantitative descriptions involving the system's underlying structural components and their interactions. Here, we show how Ising models can be used to formulate an approach to allostery in a structural context of interactions between the constitutive components by building simple allosteric constructs we termed Allosteric Ising Models (AIMs). We introduce the use of AIMs in analytical and numerical calculations that relate thermodynamic descriptions of allostery to the structural context, and then show that many fundamental properties of allostery, such as the multiplicative property of parallel allosteric channels, are revealed from the analysis of such models. The power of exploring mechanistic structural models of allosteric function in more complex systems by using AIMs is demonstrated by building a model of allosteric signaling for an experimentally well-characterized asymmetric homodimer of the dopamine D2 receptor.

  17. Trip setpoint analysis for the reactor protection system of an advanced integral reactor

    International Nuclear Information System (INIS)

    Yang, Soo Hyung; Kim, Soo Hyung; Chung, Young Jong; Zee, Sung Quun

    2007-01-01

    The trip setpoints for the reactor protection system of a 65-MWt advanced integral reactor have been analyzed through sensitivity evaluations by using the Transients and Setpoint Simulation/System-integrated Modular Reactor code. In the analysis, an inadvertent control rod withdrawal event has been considered as an initiating event because this event results in the worst consequences from the viewpoint of the minimum critical heat flux ratio and its consequences are considerably affected by the trip setpoints. Sensitivity evaluations have been performed by changing the trip setpoints for the ceiling of a variable overpower trip (VOPT) function and the pressure of a high pressurizer pressure trip function. Analysis results show that a VOPT function is an effective means to satisfy the acceptance criteria as the control rod rapidly withdraws: on the other hand, a high pressurizer pressure trip function is an essential measure to preserve the safety margin in the case of a slow withdrawal of the control rod because a reactor trip by a VOPT function does not occur in this case. It is also shown that the adoptions of 122.2% of the rated core power and 16.25 MPa as the trip setpoint for the ceiling of a VOPT function and the pressure of a high pressurizer pressure trip function are good selections to satisfy the acceptance criteria

  18. Development of Multipurpose PLC trainer for the simulator of reactor safety system

    International Nuclear Information System (INIS)

    Syaiful Bakhri; Deswandri; Ahmad Abtokhi

    2014-01-01

    PLC becomes one of the essential components for the current type of reactor which based on digital instrumentation and control. Several studies have demonstrated the promising results including the implementation of PLC's for RSG-GAS research reactor. However, research for the safety and reliability analysis can not be carried out freely in the existing systems.Therefore, this research aims to develop a PLC trainer employing micro PLC OMRON CP1MA which can be useful for simulator of various topics in reactor safety. Two experimental tests were carried out to show the PLC’s performances. The first experimental testing implementing reactor protection system of research reactor RSG-GAS shows the capacity of PLC system to identify the initiator of the SCRAM logic as well as giving a promptly response. Secondly, the application of PLC to controls the water level in dual reservoir system simulation, demonstrates the simplicity of the operation and design while maintaining the best performances. (author)

  19. Behavior of 241Am in fast reactor systems - a safeguards perspective

    International Nuclear Information System (INIS)

    Beddingfield, David H.; Lafleur, Adrienne M.

    2009-01-01

    Advanced fuel-cycle developments around the world currently under development are exploring the possibility of disposing of 241 Am from spent fuel recycle processes by burning this material in fast reactors. For safeguards practitioners, this approach could potentially complicate both fresh- and spent-fuel safeguards measurements. The increased (α,n) production in oxide fuels from the 241 Am increases the uncertainty in coincidence assay of Pu in MOX assemblies and will require additional information to make use of totals-based neutron assay of these assemblies. We have studied the behavior of 241 Am-bearing MOX fuel in the fast reactor system and the effect on neutron and gamma-ray source-terms for safeguards measurements. In this paper, we will present the results of simulations of the behavior of 241 Am in a fast breeder reactor system. Because of the increased use of MOX fuel in thermal reactors and advances in fuel-cycle designs aimed at americium disposal in fast reactors, we have undertaken a brief study of the behavior of americium in these systems to better understand the safeguards impacts of these new approaches. In this paper we will examine the behavior of 241 Am in a variety of nuclear systems to provide insight into the safeguards implications of proposed Am disposition schemes.

  20. Scram and nonlinear reactor system seismic analysis for a liquid metal fast reactor

    International Nuclear Information System (INIS)

    Morrone, A.; Brussalis, W.G.

    1975-01-01

    The paper presents the analysis and results for a LMFBR system which was analyzed for both scram times and seismic responses such as bending moments, accelerations and forces. The reactor system was represented with a one-dimensional nonlinear mathematical model with two degrees of freedom per node (translational and rotational). The model was developed to incorporate as many reactor components as possible without exceeding computer limitations. It consists of 12 reactor components with a total of 71 nodes, 69 beam and pin-jointed elements and 27 gap elements. The gap elements were defined by their clearances, impact spring constants and impact damping constants based on a 50% coefficient of restitution. The horizontal excitation input to the model was the response of the containment building at the location of the reactor vessel supports. It consists of a ten seconds Safe Shutdown Earthquake acceleration-time history at 0.005 seconds intervals and with a maximum acceleration of 0.408 g. The analysis was performed with two Westinghouse special purpose computer programs. The first program calculated the reactor system seismic responses and stored the impact forces on tape. The impact forces on the control rod driveline were converted into vertical frictional forces by multiplying them by a coefficient of friction, and then used by the second program for the scram time determination. The results give time history plots of various seismic responses, and plots of scram times as a function of control rod travel distance for the most critical scram initiation times. The total scram time considering the effects of the earthquake was still acceptable but about 4 times longer than that calculated without the earthquake. The bending moment and shear force responses were used as input for the structural analysis (stresses, deflections, fatigue) of the various components, in combination with the other applicable loading conditions. (orig./HP) [de