WorldWideScience

Sample records for reactor study mars

  1. Mirror Advanced Reactor Study (MARS)

    International Nuclear Information System (INIS)

    Logan, B.G.

    1983-01-01

    Progress in a two year study of a 1200 MWe commercial tandem mirror reactor (MARS - Mirror Advanced Reactor Study) has reached the point where major reactor system technologies are identified. New design features of the magnets, blankets, plug heating systems and direct converter are described. With the innovation of radial drift pumping to maintain low plug density, reactor recirculating power fraction is reduced to 20%. Dominance of radial ion and impurity losses into the halo permits gridless, circular direct converters to be dramatically reduced in size. Comparisons of MARS with the Starfire tokamak design are made

  2. MARS: Mirror Advanced Reactor Study

    International Nuclear Information System (INIS)

    Logan, B.G.

    1984-01-01

    A recently completed two-year study of a commercial tandem mirror reactor design [Mirror Advanced Reactor Study (MARS)] is briefly reviewed. The end plugs are designed for trapped particle stability, MHD ballooning, balanced geodesic curvature, and small radial electric fields in the central cell. New technologies such as lithium-lead blankets, 24T hybrid coils, gridless direct converters and plasma halo vacuum pumps are highlighted

  3. Mirror advanced reactor study (MARS)

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Carlson, G.A.

    1982-01-01

    The agenda for the meeting is as follows: (1) basic Tandem Mirror approach, (2) baseline design, (3) transition and Yin-Yang coils, (4) drift pump physics, (5) drift pump coil, (6) Fokker-Planck analysis, (7) ignition-alpha pumping, (8) neutral beam status, (9) axicell layout, (10) axicell radiation levels, (11) ICRH system, (12) central cell cost optimization, (13) central cell coil design, (14) gridless direct converter, (15) direct converter directions, (16) end cell structure, (17) corrosion-double wall HX, (18) central cell maintenance, (19) radioactivity, (20) PbLi blanket design, and (21) MARS schedule

  4. Mirror Advanced Reactor Study (MARS) final report summary

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Carlson, G.A.

    1983-01-01

    The Mirror Advanced Reactor Study (MARS) has resulted in an overview of a first-generation tandem mirror reactor. The central cell fusion plasma is self-sustained by alpha heating (ignition), while electron-cyclotron resonance heating and negative ion beams maintain the electrostatic confining potentials in the end plugs. Plug injection power is reduced by the use of high-field choke coils and thermal barriers, concepts to be tested in the Tandem Mirror Experiment-Upgrade (TMX-U) and Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory

  5. Mirror Advanced Reactor Study (MARS): executive summary and overview

    International Nuclear Information System (INIS)

    Logan, B.G.; Perkins, L.J.; Gordon, J.D.

    1984-07-01

    Two self-consistent MARS configurations are discussed - a 1200-MWe commercial electricity-generating plant and a synguels-generating plant that produces hydrogen with an energy equivalent to 26,000 barrels of oil per day. The MARS machine emphasizes the attractive features of the tandem mirror concept, including steady-state operation, a small-diameter high-beta plasma, a linear central cell with simple low-maintenance blankets, low first-wall heat fluxes ( 2 ), no driven plasma currents or associated disruptions, natural halo impurity diversion, and direct conversion of end-loss charged-particle power. The MARS electric plant produces 2600 MW of fusion power in a 130-m-long central cell. Advanced tandem-mirror plasma-engineering concepts, a high-efficiency liquid lithium-lead (Li 17 Pb 83 ) blanket, and efficient direct electrical conversion of end loss power combine to produce a high net plant efficiency of 36%. With a total capital cost of $2.9 billion (constant 1983 dollars), the MARS electric plant produces busbar electricity at approx. 7 cents/kW-hour. The MARS synfuels plant produces 3500 MW of fusion power in a 150-m-long central cell. A helium-gas-cooled silicon carbide pebble-bed blanket provides high-temperature (1000 0 C) heat to a thermochemical water-splitting cycle and the resulting hydrogen is catalytically converted to methanol for distribution. With a total capital cost of $3.6 billion (constant 1983 dollars), the synfuels plant produces methanol fuel at about $1.7/gal. The major features of the MARS reactor include sloshing-ion thermal barrier plugs for efficient plasma confinement, a high efficiency blanket, high-field (24-T) choke cells, drift pumping for trapped plasma species, quasi-optical electron-cyclotron resonant heating (ECRH) systems, and a component gridless direct converter

  6. Preliminary Sensitivity Study on Gas-Cooled Reactor for NHDD System Using MARS-GCR

    International Nuclear Information System (INIS)

    Lee, Seung Wook; Jeong, Jae Jun; Lee, Won Jae

    2005-01-01

    A Gas-Cooled Reactor (GCR) is considered as one of the most outstanding tools for a massive hydrogen production without CO 2 emission. Till now, two types of GCR are regarded as a viable nuclear reactor for a hydrogen production: Prismatic Modular Reactor (PMR), Pebble Bed Reactor (PBR). In this paper, a preliminary sensitivity study on two types of GCR is carried out by using MARS-GCR to find out the effect on the peak fuel and reactor pressure vessel (RPV) temperature, with varying the condition of a reactor inlet, outlet temperature, and system pressure for both PMR and PBR

  7. A solid-breeder blanket and power conversion system for the Mirror Advanced Reactor Study (MARS)

    International Nuclear Information System (INIS)

    Bullis, R.; Clarkson, I.

    1983-01-01

    A solid-breeder blanket has been designed for a commercial fusion power reactor based on the tandem mirror concept (MARS). The design utilizes lithium oxide, cooled by helium which powers a conventional steam electric generating cycle. Maintenance and fabricability considerations led to a modular configuration 6 meters long which incorporates two magnets, shield, blanket and first wall. The modules are arranged to form the 150 meter long reactor central cell. Ferritic steel is used for the module primary structure. The lithium oxide is contained in thin-walled vanadium alloy tubes. A tritium breeding ratio of 1.25 and energy multiplication of 1.1 is predicted. The blanket design appears feasible with only a modest advance in current technology

  8. Mirror Advanced Reactor Study (MARS). Final report. Volume 2. Commercial fusion synfuels plant

    International Nuclear Information System (INIS)

    Donohue, M.L.; Price, M.E.

    1984-07-01

    Volume 2 contains the following chapters: (1) synfuels; (2) physics base and parameters for TMR; (3) high-temperature two-temperature-zone blanket system for synfuel application; (4) thermochemical hydrogen processes; (5) interfacing the sulfur-iodine cycle; (6) interfacing the reactor with the thermochemical process; (7) tritium control in the blanket system; (8) the sulfur trioxide fluidized-bed composer; (9) preliminary cost estimates; and (10) fuels beyond hydrogen

  9. Evidence for a Large Natural Nuclear Reactor in Mars Past

    Science.gov (United States)

    Brandenburg, J. E.

    2006-05-01

    It has long been known that The isotopic ratios 129 Xe/132Xe and 40Ar/36Ar are very high in Mars atmosphere relative to Earth or meteoritic backgrounds. This fact has allowed the SNC meteorites to be identified as Martian based on their trapped gases (1). However, while the isotopic anomalies explained one mystery, the origin of the SNC meteorites, they created a new mystery: the rock samples from Mars show no evidence of the large amounts of Iodine or Potassium that would give naturally give rise to the Xenon and Argon isotopic anomalies (2). In fact, the Martian meteorites are depleted in Potassium relative to earth rocks. This is added to the fact that for other isotopic systems such as 80Kr, Mars rock samples must be irradiated by neutrons at fluences of 1015 /cm2 to explain observed abundances (1) . Compounding the mystery is the fact that Mars surface layer has elevated levels of Uranium and Thorium relative to Earth and even its own rocks, as determined from SNCs (3). These anomalies can be explained if some large nuclear energy release, such as by natural nuclear reactors known to have operated on Earth (4) in in some concentrated ore body, occurred with perhaps a large volcano like explosion that spread residues over the planets surface. Based on gamma ray observations from orbit (3), and the correlations of normally uncorrelated Th and K deposits , the approximate location of this event would appear to have been in the north of Mars in a region in Acidalia Planitia centered at 45N Latitude and 15W Longitude (5). The possibility of such a large radiological event in Mars past adds impetus to Mars exploration efforts and particularly to a human mission to Mars to learn more about this possible occurrence. (1) Swindle, T. D. , Caffee, M. W., and Hohenberg, C. M., (1986) "Xenon and other Noble Gases in Shergottites" Geochimica et Cosmochimica Acta, 50, pp 1001-1015. (2) Banin, A., Clark, B.C., and Wanke, H. "Surface Chemistry and Mineralogy" (1992) in "Mars

  10. Mars exploration study workshop 2

    Science.gov (United States)

    Duke, Michael B.; Budden, Nancy Ann

    1993-11-01

    A year-long NASA-wide study effort has led to the development of an innovative strategy for the human exploration of Mars. The latest Mars Exploration Study Workshop 2 advanced a design reference mission (DRM) that significantly reduces the perceived high costs, complex infrastructure, and long schedules associated with previous Mars scenarios. This surface-oriented philosophy emphasizes the development of high-leveraging surface technologies in lieu of concentrating exclusively on space transportation technologies and development strategies. As a result of the DRM's balanced approach to mission and crew risk, element commonality, and technology development, human missions to Mars can be accomplished without the need for complex assembly operations in low-Earth orbit. This report, which summarizes the Mars Exploration Study Workshop held at the Ames Research Center on May 24-25, 1993, provides an overview of the status of the Mars Exploration Study, material presented at the workshop, and discussions of open items being addressed by the study team. The workshop assembled three teams of experts to discuss cost, dual-use technology, and international involvement, and to generate a working group white paper addressing these issues. The three position papers which were generated are included in section three of this publication.

  11. Development of the supporting system of the Monju advanced reactor simulator (MARS)

    International Nuclear Information System (INIS)

    Koyagoshi, Naoki; Sasaki, Kazuichi; Sawada, Makoto

    2002-10-01

    The MARS has been operating for operator training and operation procedure's verification of the prototype fast breeder reactor 'Monju' since April 1991. In order to carry out the above results more effectively, the MARS supporting system which consists of several computer system has being developed. This report covers the following three supporting systems developed from 1994 to 2001 and study on evaluation method of Monju operator training data. Expanded Monju visual animation system. The Monju visual animation system was developed to visualize the inner structure of equipments and the parameters without measuring points. This system is used for training form 1993. And then, the training limits of the system has been extended. Development of the Monju min simulator for reactor core analysis. Development of the Monju min simulator which analyzes thermo-hydraulic behavior in the Monju reactor in detail is proceeding with the aims; of upgrading Monju operator training effect. The obtained results will be reflected to remodeling of MARS's reactor core analysis mode. Development of the severe accident CAI (Computer Assisted Instruction) system. The prototype system which supports study on accident management was developed. This system will be converted when the severe accident procedure of Monju is fixed, and it will be used for training. Study on evaluation method of Monju operate training data. In order to reconstruct the operator training system, the evaluation method of training data was considered. The availability has been checked as a result of evaluating crew communication using this method. (author)

  12. Conceptual studies on the integration of a nuclear reactor system to a manned rover for Mars missions. Final Report, Feb. 1989 - Nov. 1990

    International Nuclear Information System (INIS)

    El-genk, M.S.; Morley, N.J.

    1991-07-01

    Multiyear civilian manned missions to explore the surface of Mars are thought by NASA to be possible early in the next century. Expeditions to Mars, as well as permanent bases, are envisioned to require enhanced piloted vehicles to conduct science and exploration activities. Piloted rovers, with 30 kWe user net power (for drilling, sampling and sample analysis, onboard computer and computer instrumentation, vehicle thermal management, and astronaut life support systems) in addition to mobility are being considered. The rover design, for this study, included a four car train type vehicle complete with a hybrid solar photovoltaic/regenerative fuel cell auxiliary power system (APS). This system was designed to power the primary control vehicle. The APS supplies life support power for four astronauts and a limited degree of mobility allowing the primary control vehicle to limp back to either a permanent base or an accent vehicle. The results showed that the APS described above, with a mass of 667 kg, was sufficient to provide live support power and a top speed of five km/h for 6 hours per day. It was also seen that the factors that had the largest effect on the APS mass were the life support power, the number of astronauts, and the PV cell efficiency. The topics covered include: (1) power system options; (2) rover layout and design; (3) parametric analysis of total mass and power requirements for a manned Mars rover; (4) radiation shield design; and (5) energy conversion systems

  13. Tokamak reactor studies

    International Nuclear Information System (INIS)

    Baker, C.C.

    1981-01-01

    This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features

  14. 100 kWe lunar/Mars surface power utilizing the SP-100 reactor with dynamic conversion

    International Nuclear Information System (INIS)

    Harty, R.B.; Mason, L.S.

    1992-01-01

    This paper reports on an integration study which was performed coupling an SP-100 reactor with either a Brayton of Stirling power conversion subsystem. a power level of 100 kWe was selected for the study. The power system was to be compatible with both the lunar and Mars surface environment and require no site preparation. In addition, the reactor was to have integral shielding and be completely self-contained, including its own auxiliary power for start-up. Initial reliability studies were performed to determine power conversion redundancy and engine module size. For the lunar environment, the reactor and primary coolant loop would be contained in a guard vessel to protect from a loss of primary loop containment. For the Mars environment, all refractory components including the reactor, primary coolant, and power conversion components would be contained in a vacuum vessel for protection against the CO 2 environment

  15. What have fusion reactor studies done for you today?

    International Nuclear Information System (INIS)

    Kulchinski, G.L.

    1985-01-01

    The University of Wisconsin examines the fusion program and puts into perspective what return is being made on investments in fusion reactor studies. Illustations show financial support for fusion research from the four major programs, FY'82 expenditures on fusion research, and the total expenditures on fusion research since 1951. Topics discussed include the estimated number of scientists conducting fusion research, the conceptual design study of a fusion reactor, scoping study of a reactor, the chronology of fusion reactor design studies, published fusion reactor studies 1967-1983, conceptual fusion reactor design studies, STARFIRE reference design, MARS central cell, HYLIFE reaction chamber, and selected contributions of reactor design studies to base programs

  16. Mars

    CERN Document Server

    Payment, Simone

    2017-01-01

    This curriculum-based, fun, and approachable book offers everything young readers need to know to begin their study of the Red Planet. They will learn about the fundamental aspects of the Mars, including its size, mass, surface features, interior, orbit, and spin. Further, they will learn about the history of the missions to Mars, including the Viking spacecraft and the Curiosity and MAVEN rovers. Finally, readers will learn about why scientists think there's a chance that Mars is or was suitable for life. With stunning imagery from NASA itself, readers will have a front seat-view of the missi

  17. MARS - a multidetector array for reaction studies

    International Nuclear Information System (INIS)

    Ball, G.C.; Davies, W.G.; Forster, J.S.

    1988-03-01

    The proposal for MARS, a Multidetector Array for Reaction Studies is presented. MARS consists of a large, high-vacuum vessel enclosing an array of 128 scintillation detectors for use in studies of heavy-ion collisions at TASCC. The instrument will be funded and owned jointly by AECL and NSERC

  18. Mirror hybrid reactor studies

    International Nuclear Information System (INIS)

    Bender, D.J.

    1978-01-01

    The hybrid reactor studies are reviewed. The optimization of the point design and work on a reference design are described. The status of the nuclear analysis of fast spectrum blankets, systems studies for fissile fuel producing hybrid reactor, and the mechanical design of the machine are reviewed

  19. Mars Sample Return Architecture Assessment Study

    Science.gov (United States)

    Centuori, S.; Hermosín, P.; Martín, J.; De Zaiacomo, G.; Colin, S.; Godfrey, A.; Myles, J.; Johnson, H.; Sachdev, T.; Ahmed, R.

    2018-04-01

    Current paper presents the results of ESA funded activity "Mars Sample Return Architecture Assessment Study" carried-out by DEIMOS Space, Lockheed Martin UK Ampthill, and MDA Corporation, where more than 500 mission design options have been studied.

  20. Mirror reactor surface study

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. L.; Damm, C. C.; Futch, A. H.; Hiskes, J. R.; Meisenheimer, R. G.; Moir, R. W.; Simonen, T. C.; Stallard, B. W.; Taylor, C. E.

    1976-09-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included.

  1. Mirror reactor surface study

    International Nuclear Information System (INIS)

    Hunt, A.L.; Damm, C.C.; Futch, A.H.; Hiskes, J.R.; Meisenheimer, R.G.; Moir, R.W.; Simonen, T.C.; Stallard, B.W.; Taylor, C.E.

    1976-01-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included

  2. Mirror reactor studies

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1977-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80%. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59% and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high re-circulating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)]. By contrast, the fusion-fission reactor design is not penalized by re-circulating power and uses relatively near-term fusion technology being developed for the fusion power program. New results are presented on the Th- 233 U and the U- 239 Pu fuel cycles. The purpose of this hybrid is fuel production, with projected costs at $55/g of Pu or $127/g of 233 U. Blanket and cooling system designs, including an emergency cooling system, by General Atomic Company, lead us to the opinion that the reactor can meet expected safety standards for licensing. The smallest mirror reactor having only a shield between the plasma and the coil is the 4.2-m long fusion engineering research facility (FERF) designed for material irradiation. The smallest mirror reactor having both a blanket and shield is the 7.5-m long experimental power reactor (EPR), which has both a fusion and a fusion-fission version. (author)

  3. Mars power system concept definition study. Volume 1: Study results

    Science.gov (United States)

    Littman, Franklin D.

    1994-01-01

    A preliminary top level study was completed to define power system concepts applicable to Mars surface applications. This effort included definition of power system requirements and selection of power systems with the potential for high commonality. These power systems included dynamic isotope, Proton Exchange Membrane (PEM) regenerative fuel cell, sodium sulfur battery, photovoltaic, and reactor concepts. Design influencing factors were identified. Characterization studies were then done for each concept to determine system performance, size/volume, and mass. Operations studies were done to determine emplacement/deployment maintenance/servicing, and startup/shutdown requirements. Technology development roadmaps were written for each candidate power system (included in Volume 2). Example power system architectures were defined and compared on a mass basis. The dynamic isotope power system and nuclear reactor power system architectures had significantly lower total masses than the photovoltaic system architectures. Integrated development and deployment time phasing plans were completed for an example DIPS and reactor architecture option to determine the development strategies required to meet the mission scenario requirements.

  4. ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    Steiner, D.; Embrechts, M.

    1990-07-01

    This is a status report on technical progress relative to the tasks identified for the fifth year of Grant No. FG02-85-ER52118. The ARIES tokamak reactor study is a multi-institutional effort to develop several visions of the tokamak as an attractive fusion reactor with enhanced economic, safety, and environmental features. The ARIES study is being coordinated by UCLA and involves a number of institutions, including RPI. The RPI group has been pursuing the following areas of research in the context of the ARIES-I design effort: MHD equilibrium and stability analyses; plasma-edge modeling and blanket materials issues. Progress in these areas is summarized herein

  5. Mirror reactor studies

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1976-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80 percent. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59 percent and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high recirculating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)

  6. Validation Calculations for the Application of MARS Code to the Safety Analysis of Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol; Kim, H.; Chae, H. T.; Lim, I. C

    2006-10-15

    In order to investigate the applicability of MARS code to the accident analysis of the HANARO and other RRs, the following test data were simulated. Test data of the HANARO design and operation, Test data of flow instability and void fraction from published documents, IAEA RR transient data in TECDOC-643, Brazilian IEA-R1 experimental data. For the simulation of the HANARO data with finned rod type fuels at low pressure and low temperature conditions, MARS code, developed for the transient analysis of power reactors, was modified. Its prediction capability was assessed against the experimental data for the HANARO. From the assessment results, it can be said that the modified MARS code could be used for analyzing the thermal hydraulic transient of the HANARO. Some other simulations such as flow instability test and reactor transients were also done for the application of MARS code to RRs with plate type fuels. In the simulation for these cases, no modification was made. The results of simulated cases show that the MARS code can be used to the transient analysis of RRs with careful considerations. In particular, it seems that an improvement on a void model may be necessary for dealing with the phenomena in high void conditions.

  7. Validation Calculations for the Application of MARS Code to the Safety Analysis of Research Reactors

    International Nuclear Information System (INIS)

    Park, Cheol; Kim, H.; Chae, H. T.; Lim, I. C.

    2006-10-01

    In order to investigate the applicability of MARS code to the accident analysis of the HANARO and other RRs, the following test data were simulated. Test data of the HANARO design and operation, Test data of flow instability and void fraction from published documents, IAEA RR transient data in TECDOC-643, Brazilian IEA-R1 experimental data. For the simulation of the HANARO data with finned rod type fuels at low pressure and low temperature conditions, MARS code, developed for the transient analysis of power reactors, was modified. Its prediction capability was assessed against the experimental data for the HANARO. From the assessment results, it can be said that the modified MARS code could be used for analyzing the thermal hydraulic transient of the HANARO. Some other simulations such as flow instability test and reactor transients were also done for the application of MARS code to RRs with plate type fuels. In the simulation for these cases, no modification was made. The results of simulated cases show that the MARS code can be used to the transient analysis of RRs with careful considerations. In particular, it seems that an improvement on a void model may be necessary for dealing with the phenomena in high void conditions

  8. Mirror Advanced Reactor Study interim design report

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  9. Mirror Advanced Reactor Study interim design report

    International Nuclear Information System (INIS)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design

  10. Studies on reactor physics

    International Nuclear Information System (INIS)

    1960-01-01

    Most of the peaceful applications of atomic energy are inherently dependent on advances in the science and technology of nuclear reactors, and aspects of this development are part of a major programme of the International Atomic Energy Agency. The most useful role that the Agency can play is as a co-ordinating body or central forum where the trends can be reviewed and the results assessed. Some of the basic studies are carried out by members of the Agency's own scientific staff. The Agency also convenes groups of experts from different countries to examine a particular problem in detail and make any necessary recommendations. Some of the important subjects are discussed at international scientific meetings held by the Agency. One of the subjects covered by such studies is the physics of nuclear reactors and a specific topic recently discussed was Codes for Reactor Computations, on which a seminar was held in Vienna in April this year. Another The members of the Panel described the development of heavy water reactors, the equipment and methods of research currently used, and plans for further development in their respective countries meeting of Panel of Experts on Heavy Water Lattices was held in Vienna in August 1959

  11. A 50-100 kWe gas-cooled reactor for use on Mars.

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Curtis D. (.)

    2006-04-01

    In the space exploration field there is a general consensus that nuclear reactor powered systems will be extremely desirable for future missions to the outer solar system. Solar systems suffer from the decreasing intensity of solar radiation and relatively low power density. Radioisotope Thermoelectric Generators are limited to generating a few kilowatts electric (kWe). Chemical systems are short-lived due to prodigious fuel use. A well designed 50-100 kWe nuclear reactor power system would provide sufficient power for a variety of long term missions. This thesis will present basic work done on a 50-100 kWe reactor power system that has a reasonable lifespan and would function in an extraterrestrial environment. The system will use a Gas-Cooled Reactor that is directly coupled to a Closed Brayton Cycle (GCR-CBC) power system. Also included will be some variations on the primary design and their effects on the characteristics of the primary design. This thesis also presents a variety of neutronics related calculations, an examination of the reactor's thermal characteristics, feasibility for use in an extraterrestrial environment, and the reactor's safety characteristics in several accident scenarios. While there has been past work for space reactors, the challenges introduced by thin atmospheres like those on Mars have rarely been considered.

  12. Mars

    CERN Document Server

    Day, Trevor

    2006-01-01

    Discusses the fundamental facts concerning this mysterious planet, including its mass, size, and atmosphere, as well as the various missions that helped planetary scientists document the geological history of Mars. This volume also describes Mars'' seasons with their surface effects on the planet and how they have changed over time.

  13. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  14. TMRBAR: a code to calculate plasma parameters for tandem-mirror reactors operating in the MARS mode

    International Nuclear Information System (INIS)

    Campbell, R.B.

    1983-01-01

    The purpose of this report is to document the plasma power balance model currently used by LLNL to calculate steady state operating points for tandem mirror reactors. The code developed from this model, TMRBAR, has been used to predict the performance and define supplementary heating requirements for drivers used in the Mirror Advanced Reactor Study (MARS) and for the Fusion Power Demonstration (FPD) study. The equations solved included particle and energy balance for central cell and end cell species, quasineutrality at several cardinal points in the end cell region, as well as calculations of volumes, densities and average energies based on given constraints of beta profiles and fusion power output. Alpha particle ash is treated self-consistently, but no other impurity species is treated

  15. Australian research reactor studies

    International Nuclear Information System (INIS)

    McCulloch, D.B.

    1978-01-01

    The Australian AEC has two research reactors at the Lucas Heights Research Establishment, a 10 HW DIDO class materials testing reactor, HIFAR, and a smaller 100kW reactor MOATA, which was recently upgraded from 10kW power level. Because of the HIFAR being some 20 years old, major renewal and repair programmes are necessary to keep it operational. To enable meeting projected increases in demand for radioisotopes, plans for a new reactor to replace the HIFAR have been made and the design criteria are described in the paper. (author)

  16. Estimates of power requirements for a Manned Mars Rover powered by a nuclear reactor

    Science.gov (United States)

    Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey

    1991-01-01

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are meet using an SP-100 type reactor. The primary electric power needs, which include 30-kW(e) net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle using He/Xe as the working fluid. The specific mass of the nuclear reactor power system, including a man-rated radiation shield, ranged from 150-kg/kW(e) to 190-kg/KW(e) and the total mass of the Rover vehicle varied depend upon the cruising speed.

  17. Benefits of Mars ISRU Regolith Water Processing: A Case Study for the NASA Evolvable Mars Campaign

    Science.gov (United States)

    Kleinhenz, Julie; Paz, Aaron; Mueller, Robert

    2016-01-01

    ISRU of Mars resources was baselined in 2009 Design Reference Architecture (DRA) 5.0, but only for Oxygen production using atmospheric CO2. The Methane (LCH4) needed for ascent propulsion of the Mars Ascent Vehicle (MAV) would need to be brought from Earth. However: Extracting water from the Martian Regolith enables the production of both Oxygen and Methane from Mars resources: Water resources could also be used for other applications including: Life support, radiation shielding, plant growth, etc. Water extraction was not baselined in DRA5.0 due to perceived difficulties and complexity in processing regolith. The NASA Evolvable Mars Campaign (EMC) requested studies to look at the quantitative benefits and trades of using Mars water ISRUPhase 1: Examined architecture scenarios for regolith water retrieval. Completed October 2015. Phase 2: Deep dive of one architecture concept to look at end-to-end system size, mass, power of a LCH4/LO2 ISRU production system

  18. Chernobyl reactor transient simulation study

    International Nuclear Information System (INIS)

    Gaber, F.A.; El Messiry, A.M.

    1988-01-01

    This paper deals with the Chernobyl nuclear power station transient simulation study. The Chernobyl (RBMK) reactor is a graphite moderated pressure tube type reactor. It is cooled by circulating light water that boils in the upper parts of vertical pressure tubes to produce steam. At equilibrium fuel irradiation, the RBMK reactor has a positive void reactivity coefficient. However, the fuel temperature coefficient is negative and the net effect of a power change depends upon the power level. Under normal operating conditions the net effect (power coefficient) is negative at full power and becomes positive under certain transient conditions. A series of dynamic performance transient analysis for RBMK reactor, pressurized water reactor (PWR) and fast breeder reactor (FBR) have been performed using digital simulator codes, the purpose of this transient study is to show that an accident of Chernobyl's severity does not occur in PWR or FBR nuclear power reactors. This appears from the study of the inherent, stability of RBMK, PWR and FBR under certain transient conditions. This inherent stability is related to the effect of the feed back reactivity. The power distribution stability in the graphite RBMK reactor is difficult to maintain throughout its entire life, so the reactor has an inherent instability. PWR has larger negative temperature coefficient of reactivity, therefore, the PWR by itself has a large amount of natural stability, so PWR is inherently safe. FBR has positive sodium expansion coefficient, therefore it has insufficient stability it has been concluded that PWR has safe operation than FBR and RBMK reactors

  19. Fast Breeder Reactor studies

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  20. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  1. Unlimited cooling capacity of the passive-type emergency core cooling system of the MARS reactor

    International Nuclear Information System (INIS)

    Bandini, G.; Caira, M.; Naviglio, A.; Sorabella, L.

    1995-01-01

    The MARS nuclear plant is equipped with a 600 MWth PWR type nuclear steam supply system, with completely innovative engineered core safeguards. The most relevant innovative safety system of this plant is its Emergency Core Cooling System, which is completely passive (with only one non static component). The Emergency Core Cooling System (ECCS) of the MARS reactor is natural-circulation, passive-type, and its intervention follows a core flow decrease, whatever was the cause. The operation of the system is based on a cascade of three fluid systems, functionally interfacing through heat exchangers; the first fluid system is connected to the reactor vessel and the last one includes an atmospheric-pressure condenser, cooled by external air. The infinite thermal capacity of the final heat sink provides the system an unlimited autonomy. The capability and operability of the system are based on its integrity and on the integrity of the primary coolant boundary (both of them are permanently enclosed in a pressurized containment; 100% redundancy is also foreseen) and on the operation of only one non static component (a check valve), with 400% redundancy. In the paper, all main thermal hydraulic transients occurring as a consequence of postulated accidents are analysed, to verify the capability of the passive-type ECCS to intervene always in time, without causing undue conditions of reduced coolability of the core (DNB, etc.), and to verify its capability to guarantee a long-term (indefinite) coolability of the core without the need of any external intervention. (author)

  2. Preliminary Development of the MARS/FREK Spatial Kinetics Coupled System Code for Square Fueled Fast Reactor Applications

    International Nuclear Information System (INIS)

    Bae, Moo Hoon; Joo, Han Gyu

    2009-01-01

    Incorporation of a three-dimensional (3-D) reactor kinetics model into a system thermal-hydraulic (T/H) code enhances the capability to perform realistic analyses of the core neutronic behavior and the plant system dynamics which are coupled each other. For this advantage, several coupled system T/H and spatial kinetics codes, such as RELAP/PARCS, RELAP5/ PANBOX, and MARS/MASTER have been developed. These codes, however, so far limited to LWR applications. The objective of this work is to develop such a coupled code for fast reactor applications. Particularly, applications to lead-bismuth eutectic (LBE) cooled fast reactor are of interest which employ open square lattices. A fast reactor kinetics code applicable to square fueled cores called FREK is coupled the LBE version of the MARS code. The MARS/MASTER coupled code is used as the reference for the integration. The coupled code MARS/FREK is examined for a conceptual reactor called P-DEMO which is being developed by NUTRECK. In order to check the validity of the coupled code, however, the OECD MSLB benchmark exercise III calculation is solved first

  3. Study of future reactors

    International Nuclear Information System (INIS)

    Bouchard, J.

    1992-01-01

    Today, more than 420 large reactors with a gross output of close to 350 GWe supply 20 percent of world electricity needs, accounting for less than 5 percent of primary energy consumption. These figures are not expected to change in the near future, due to suspended reactor construction in many countries. Nevertheless, world energy needs continue to grow: the planet's population already exceeds five billion and is forecast to reach ten billion by the middle of the next century. Most less developed countries have a very low rate of energy consumption and, even though some savings can be made in industrialized countries, it will become increasingly difficult to satisfy needs using fossil fuels only. Furthermore, there has been no recent breakthrough in the energy landscape. The physical feasibility of the other great hope of nuclear energy, fusion, has yet to be proved; once this has been done, it will be necessary to solve technological problems and to assess economic viability. Although it is more ever necessary to pursue fusion programs, there is little likelihood of industrial applications being achieved in the coming decades. Coal and fission are the only ways to produce massive amounts of energy for the next century. Coal must overcome the pollution problems inherent in its use; fission nuclear power has to gain better public acceptance, which is obviously colored by safety and waste concerns. Most existing reactors were commissioned in the 1970s; reactor lifetime is a parameter that has not been clearly established. It will certainly be possible to refurbish some to extend their operation beyond the initial target of 30 or 40 years. But normal advances in technology and safety requirements will make the operation of the oldest reactors increasingly difficult. It becomes necessary to develop new generations of nuclear reactors, both to replace older ones and to revive plant construction in their countries that are not yet equipped or that have halted their

  4. Transient Model of a 10 MW Supercritical CO{sub 2} Brayton Cycle for Light Water Reactors by using MARS Code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo-Hyun; Park, Hyun Sun; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of); Bae, Sung Won; Cha, Jae-Eun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, recuperation cycle was chosen as a reference loop design and the MARS code was chosen as the transient cycle analysis code. Cycle design condition is focus on operation point of the light-water reactor. Development of a transient model was performed for 10MW-electron SCO{sub 2} coupled with light water reactors. In order to perform transient analysis, cycle transient model was developed and steady-state run was performed and presented in the paper. In this study, the transient model of SCO{sub 2} recuperation Brayton cycle was developed and implemented in MARS to study the steady-state simulation. We performed nodalization of the transient model using MARS code and obtained steady-state results. This study is shown that the supercritical CO{sub 2} Brayton cycle can be used as a power conversion system for light water reactors. Future work will include transient analysis such as partial road operation, power swing, start-up, and shutdown. Cycle control strategy will be considered for various control method.

  5. Development of Off-take Model, Subcooled Boiling Model, and Radiation Heat Transfer Input Model into the MARS Code for a Regulatory Auditing of CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, C.; Rhee, B. W.; Chung, B. D. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, S. H.; Kim, M. W. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2009-05-15

    Korea currently has four operating units of the CANDU-6 type reactor in Wolsong. However, the safety assessment system for CANDU reactors has not been fully established due to a lack of self-reliance technology. Although the CATHENA code had been introduced from AECL, it is undesirable to use a vendor's code for a regulatory auditing analysis. In Korea, the MARS code has been developed for decades and is being considered by KINS as a thermal hydraulic regulatory auditing tool for nuclear power plants. Before this decision, KINS (Korea Institute of Nuclear Safety) had developed the RELAP5/MOD3/CANDU code for CANDU safety analyses by modifying the model of the existing PWR auditing tool, RELAP5/MOD3. The main purpose of this study is to transplant the CANDU models of the RELAP5/MOD3/CANDU code to the MARS code including a quality assurance of the developed models.

  6. Development of Off-take Model, Subcooled Boiling Model, and Radiation Heat Transfer Input Model into the MARS Code for a Regulatory Auditing of CANDU Reactors

    International Nuclear Information System (INIS)

    Yoon, C.; Rhee, B. W.; Chung, B. D.; Ahn, S. H.; Kim, M. W.

    2009-01-01

    Korea currently has four operating units of the CANDU-6 type reactor in Wolsong. However, the safety assessment system for CANDU reactors has not been fully established due to a lack of self-reliance technology. Although the CATHENA code had been introduced from AECL, it is undesirable to use a vendor's code for a regulatory auditing analysis. In Korea, the MARS code has been developed for decades and is being considered by KINS as a thermal hydraulic regulatory auditing tool for nuclear power plants. Before this decision, KINS (Korea Institute of Nuclear Safety) had developed the RELAP5/MOD3/CANDU code for CANDU safety analyses by modifying the model of the existing PWR auditing tool, RELAP5/MOD3. The main purpose of this study is to transplant the CANDU models of the RELAP5/MOD3/CANDU code to the MARS code including a quality assurance of the developed models

  7. Review of fusion DEMO reactor study

    International Nuclear Information System (INIS)

    Seki, Yasushi

    1996-01-01

    Fusion DEMO Reactor is defined and the Steady State Tokamak Reactor (SSTR) concept is introduced as a typical example of a DEMO reactor. Recent DEMO reactor studies in Japan and abroad are introduced. The DREAM Reactor concept is introduced as an ultimate target of fusion research. (author)

  8. Overview of the US stellarator reactor study

    International Nuclear Information System (INIS)

    Lyon, J.F.; Gulec, K.; Miller, R.L.; El-Guebaly, L.

    1993-01-01

    This study, which uses a cost-minimization code that incorporates the ARIES costing and reactor component models with a I-D energy transport calculation, shows that a torsatron reactor could be competitive with a tokamak reactor

  9. Study of space reactors for exploration missions

    Energy Technology Data Exchange (ETDEWEB)

    Cliquet, Elisa; Ruault, Jean-Marc; Masson, Frederic, E-mail: elisa.cliquet@cnes.fr, E-mail: frederic.masson@cnes.fr [Centre National d' Etudes Spatiales (CNES), Paris (France); Roux, Jean-Pierre; Paris, Nicolas; Cazale, Brice; Manifacier, Laurent, E-mail: jean-pierre.roux@areva.com [AREVA TA, Aix en Provence, (France); Poinot-Salanon, Christine, E-mail: christine.poinot@cea.fr [Comissariado a l' Energie Atomique et Aux Energies alternatives (CEA), Paris (France)

    2013-07-01

    Nuclear propulsion has been studied for many decades. The power density of nuclear fission is much higher than chemical process, and for missions to outer solar system requiring several hundred of kilowatts, or for flexible manned missions to Mars requiring several megawatts, nuclear electric propulsion might be the only option offering a reasonable mass in low earth orbit. Despite the existence of low power experiences - SNAP10 in the 60's or Buk/Topaz in the 60-80's - no high power reactor has been developed: investment cost, long term time frame, high technological challenges and radioactive hazards are the main challenges we must overtake. However, it seems reasonable to look at the technical challenges that have to be overcome for a next generation of nuclear electric systems for space exploration. This paper will present some recent studies going on in France, on space reactors for exploration. Three classes of power have been considered: 10kWe, 100kWe, and several megawatts. Available data from previous studies and developments performed in Russia, USA], and Europe, have been collected and gave us a large overview of potential technical solutions. This was the starting point of a trade-off analysis aiming at the selection of the best options, with regards to the technological readiness level in France and Europe. The resulting preliminary designs will be presented and critical technologies needing maturation activities will be highlighted. (author)

  10. Study of space reactors for exploration missions

    International Nuclear Information System (INIS)

    Cliquet, Elisa; Ruault, Jean-Marc; Masson, Frederic; Roux, Jean-Pierre; Paris, Nicolas; Cazale, Brice; Manifacier, Laurent; Poinot-Salanon, Christine

    2013-01-01

    Nuclear propulsion has been studied for many decades. The power density of nuclear fission is much higher than chemical process, and for missions to outer solar system requiring several hundred of kilowatts, or for flexible manned missions to Mars requiring several megawatts, nuclear electric propulsion might be the only option offering a reasonable mass in low earth orbit. Despite the existence of low power experiences - SNAP10 in the 60's or Buk/Topaz in the 60-80's - no high power reactor has been developed: investment cost, long term time frame, high technological challenges and radioactive hazards are the main challenges we must overtake. However, it seems reasonable to look at the technical challenges that have to be overcome for a next generation of nuclear electric systems for space exploration. This paper will present some recent studies going on in France, on space reactors for exploration. Three classes of power have been considered: 10kWe, 100kWe, and several megawatts. Available data from previous studies and developments performed in Russia, USA], and Europe, have been collected and gave us a large overview of potential technical solutions. This was the starting point of a trade-off analysis aiming at the selection of the best options, with regards to the technological readiness level in France and Europe. The resulting preliminary designs will be presented and critical technologies needing maturation activities will be highlighted. (author)

  11. Nordic studies in reactor safety

    International Nuclear Information System (INIS)

    Pershagen, N.

    1993-01-01

    The Nordic Nuclear Safety Research Programme SIK programme in reactor safety is part of a major joint Nordic research effort in nuclear safety. The report summarizes the achievements of the SIK programme, which was carried out during 1990-1993 in collaboration between Nordic nuclear utilities, safety authorities, and research institutes. Three main projects were successfully completed dealing with: 1) development and application of a living PSA concept for monitoring the risk of core damage, and of safety indicators for early warning of possible safety problems; 2) review and intercomparison of severe accident codes, case studies of potential core melt accidents in nordic reactors, development of chemical models for the MAAP code, and outline of a system for computerized accident management support; 3) compilation of information about design and safety features of neighbouring reactors in Germany, Lithuania and Russia, and for naval reactors and nuclear submarines. The report reviews the state-of-the-art in each subject matter as an introduction to the individual project summaries. The main findings of each project are highlighted. The report also contains an overview of reactor safety research in the Nordic countries and a summary of fundamental reactor safety principles. (au) (69 refs.)

  12. Nordic study on reactor waste

    International Nuclear Information System (INIS)

    1981-08-01

    In 1981, 14 nuclear power reactors are in operation and 2 under construction in the Nordic countries. So far, the reactor waste originating from day-to-day operation of these plants has been stored in solidified form at the reactor sites. Within a few years a satisfactory disposal procedure needs to be established. While the main R and D effects in the waste field have earlier been devoted to the question of irradiated fuel and waste from reprocessing, there is therefore now an increased interest in reactor waste with its much lower radioactivity but somewhat larger volumes. Since 1977, efforts have been made in a joint Nordic study to examine which facts need to be known in order to perform a comprehensive safety assessment of a reactor waste management system. In the present study a Reference system related to the waste generated over 30 years from six 500 MW-reactors is examined. The dominating radionuclides during storage and transportation accident scenarios are Cs-134, Cs-137 and Co-60. For most of the release scenarios from repositories Cs-137 and Sr-90 are dominating. Some scenarios are, however, dominated by the very longlived nuclides I-129 and C-14. A closer examination of the concentration in the waste of these nuclides and of their leaching properties indicates that their small - but significant - influence, as calculated, is probably grossly overestimated. The mechanical stability obtained in routine solidification processes of reactor waste products in conjunction with the outer container (steel drum, transport container, etc.) turns out to be sufficient. Difficulties were encountered in applying ICRP methodology and available dose calculation methods to calculation of population doses due to small activity releases, and effects extending into the far future. (EG)

  13. Incorporation of a Helical Tube Heat Transfer Model in the MARS Thermal Hydraulic Systems Analysis Code for the T/H Analyses of the SMART Reactor

    International Nuclear Information System (INIS)

    Young Jin Lee; Bub Dong Chung; Jong Chull Jo; Hho Jung Kim; Un Chul Lee

    2004-01-01

    SMART is a medium sized integral type advanced pressurized water reactor currently under development at KAERI. The steam generators of SMART are designed with helically coiled tubes and these are designed to produce superheated steam. The helical shape of the tubes can induce strong centrifugal effect on the secondary coolant as it flows inside the tubes. The presence of centrifugal effect is expected to enhance the formation of cross-sectional circulation flows within the tubes that will increase the overall heat transfer. Furthermore, the centrifugal effect is expected to enhance the moisture separation and thus make it easier to produce superheated steam. MARS is a best-estimate thermal-hydraulic systems analysis code with multi-phase, multi-dimensional analysis capability. The MARS code was produced by restructuring and merging the RELAP5 and the COBRA-TF codes. However, MARS as well as most other best-estimate systems analysis codes in current use lack the detailed models needed to describe the thermal hydraulics of helically coiled tubes. In this study, the heat transfer characteristics and relevant correlations for both the tube and shell sides of helical tubes have been investigated, and the appropriate models have been incorporated into the MARS code. The newly incorporated helical tube heat transfer package is available to the MARS users via selection of the appropriate option in the input. A performance analysis on the steam generator of SMART under full power operation was carried out using the modified MARS code. The results of the analysis indicate that there is a significant improvement in the code predictability. (authors)

  14. Mars, the Moon, and the Ends of the Earth: Autonomy for Small Reactor Power Systems

    International Nuclear Information System (INIS)

    Wood, Richard Thomas

    2008-01-01

    In recent years, the National Aeronautics and Space Administration (NASA) has been considering deep space missions that utilize a small-reactor power system (SRPS) to provide energy for propulsion and spacecraft power. Additionally, application of SRPS modules as a planetary power source is being investigated to enable a continuous human presence for nonpolar lunar sites and on Mars. A SRPS can supply high-sustained power for space and surface applications that is both reliable and mass efficient. The use of small nuclear reactors for deep space or planetary missions presents some unique challenges regarding the operations and control of the power system. Current-generation terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a SRPS employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. While surface power systems for planetary outposts face less extreme delays and periods of isolation and may benefit from limited maintenance capabilities, considerations such as human safety, resource limitations and usage priorities, and economics favor minimizing direct, continuous human interaction with the SRPS for online, dedicated power system management. Thus, a SRPS control system for space or planetary missions must provide capabilities for operational autonomy. For terrestrial reactors, large-scale power plants remain the preferred near-term option for nuclear power generation. However, the desire to reduce reliance on carbon-emitting power sources in developing countries may lead to increased consideration of SRPS modules for local power generation in remote regions that are characterized by emerging, less established infrastructures

  15. Fusion reactor systems studies

    International Nuclear Information System (INIS)

    1993-01-01

    Fusion Technology Institute personnel actively participated in the ARIES/PULSAR project during the present contract period. Numerous presentations were made at PULSAR project meetings, major contributions were written for the ARIES-II/IV Final Report presentations and papers were given at technical conferences contributions were written for the ARIES Lessons Learned report and a very large number of electronic-mail and regular-mail communications were sent. The remaining sections of this progress report win summarize the work accomplished and in progress for the PULSAR project during the contract period. The main areas of effort are: PULSAR Research; ARIES-II/IV Report Contributions; ARIES Lessons Learned Report Contributions; and Stellarator Study

  16. Mars - The relationship of robotic and human elements in the IAA International Exploration of Mars study

    Science.gov (United States)

    Marov, Mikhail YA.; Duke, Michael B.

    1993-01-01

    The roles of human and robotic missions in Mars exploration are defined in the context of the short- and long-term Mars programs. In particular, it is noted that the currently implemented and planned missions to Mars can be regarded as robotic precursor missions to human exploration. Attention is given to factors that must be considered in formulating the rationale for human flights to Mars and future human Mars settlements and justifying costly projects.

  17. Comparison of 'system thermal-hydraulics-3 dimensional reactor kinetics' coupled calculations using the MARS 1D and 3D modules and the MASTER code

    International Nuclear Information System (INIS)

    Jung, J. J.; Joo, H. K.; Lee, W. J.; Ji, S. K.; Jung, B. D.

    2002-01-01

    KAERI has developed the coupled 'system thermal-hydraulics - 3 dimensional reactor kinetics' code, MARS/MASTER since 1998. However, there is a limitation in the existing MARS/MASTER code; that is, to perform the coupled calculations using MARS/MASTER, we have to utilize the hydrodynamic model and the heat structure model of the MARS '3D module'. In some transients, reactor kinetics behavior is strongly multi-dimensional, but core thermal-hydraulic behavior remains in one-dimensional manner. For efficient analysis of such transients, we coupled the MARS 1D module with MASTER. The new feature has been assessed by the 'OECD NEA Main Steam Line Break (MSLB) benchmark exercise III' simulations

  18. The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D 3 He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions

  19. Hints of Habitable Environments on Mars Challenge Our Studies of Mars-Analog Sites on Earth

    Science.gov (United States)

    desMarais, David J

    2009-01-01

    environments persisted in the near-subsurface for hundreds of millions of years and might exist even today. Studies of Mars-analog environments must better understand subsurface nonphotosynthetic ecosystems and their biosignatures in mafic and ultramafic terranes. Studies must determine minimum needs for water activity and energy and also establish survival limits when conditions that support active metabolism and propagation become progressively less frequent over time.

  20. Emotions and Habitability study in Moon Mars Analogue.

    Science.gov (United States)

    Mertens, Alexandre; Lia Schlacht, Irene

    Euro Moon Mars mission have been conducted by students and field researchers in the Mars Desert Research Station (MDRS) a habitat installed by the Mars Society (MS) in the Utah desert. The campaign was supported by ILEWG International Lunar Exploration Working Group, ESTEC, NASA Ames, and partners. It investigated human aspects of isolation in a Mars analogue base. The project is in line with the ILEWG which coordinates several MDRS missions, and contributes to the preparation of future Mars sample return missions. The objective is to study and improve the habitat dynamics in a closed and small environment. Investigation cover different fields as emotional, sociological and psychological aspects and a food study but also habitability aspects. The study has been conducted by asking to the crew members to perform task and fill in questionnaires before, during and after the simulation. Video recovering, pictures and heart rate counting will also be used. One of the main study subject, conducted by Bernard Rimé, concerns the sharing of emotions in an isolated environ-e ment. Another is "Mars Habitability Experiment", which responsible is Irene Schlacht, will try to determine whether humans need variability of stimuli such as it happens in the natural environment -e.g. seasonal changing -to gain efficiency, reliability and well-being. This study have been conducted from February 19 to April 19 on two crews presenting different aspects that could lead to various behaviours. The first crew is made of people from different countries that don't know each other very well. On the opposite, the second crew members have the same cultural background -they come from the same country, university -and they know each other for at least six months. This allow studying how the extreme conditions of the isolation affect the crew efficiency, creativity and sanity according to its homogeneity. Report on the science and technical results, and implications for Earth-Mars comparative stud-ies

  1. Thermophysical Properties of the Phoenix Mars Landing Site Study Regions

    Science.gov (United States)

    Putzig, N. E.; Mellon, M. T.; Golombek, M. P.; Arvidson, R. E.

    2006-03-01

    Analysis of Phoenix Mars study regions places 4 of 5 in a previously-identified duricrust-dominated thermophysical unit which also contains the Viking and Spirit landing sites. Extrapolation of lander-observed properties to the study regions may be complicated by surface heterogeneity.

  2. Reliability studies in research reactors

    International Nuclear Information System (INIS)

    Albuquerque, Tob Rodrigues de

    2013-01-01

    Fault trees and event trees are widely used in industry to model and to evaluate the reliability of safety systems. Detailed analyzes in nuclear installations require the combination of these two techniques. This study uses the methods of FT (Fault Tree) and ET (Event Tree) to accomplish the PSA (Probabilistic Safety Assessment) in research reactors. According to IAEA (lnternational Atomic Energy Agency), the PSA is divided into Level 1, Level 2 and Level 3. At the Level 1, conceptually, the security systems perform to prevent the occurrence of accidents, At the Level 2, once accidents happened, this Level seeks to minimize consequences, known as stage management of accident, and at Level 3 accident impacts are determined. This study focuses on analyzing the Level 1, and searching through the acquisition of knowledge, the consolidation of methodologies for future reliability studies. The Greek Research Reactor, GRR-1, is a case example. The LOCA (Loss of Coolant Accident) was chosen as the initiating event and from it, using ET, possible accidental sequences were developed, which could lead damage to the core. Moreover, for each of affected systems, probabilities of each event top of FT were developed and evaluated in possible accidental sequences. Also, the estimates of importance measures for basic events are presented in this work. The studies of this research were conducted using a commercial computational tool SAPHIRE. Additionally, achieved results thus were considered satisfactory for the performance or the failure of analyzed systems. (author)

  3. Implementation of Wolsong Pump Model, Pressure Tube Deformation Model and Off-take Model into MARS Code for Regulatory Auditing of CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, C.; Rhee, B. W.; Chung, B. D. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Y. J.; Kim, M. W. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2008-05-15

    Korea currently has four operating units of the CANDU-6 type reactor in Wolsong. However, the safety assessment system for CANDU reactors has not been fully established due to lack of self-reliance technology. Although the CATHENA code had been introduced from AECL, it is undesirable to use vendor's code for regulatory auditing analysis. In Korea, the MARS code has been developed for decades and is being considered by KINS as a thermal hydraulic regulatory auditing tool for nuclear power plants. Before this decision, KINS (Korea Institute of Nuclear Safety) had developed RELAP5/MOD3/CANDU code for CANDU safety analyses by modifying the model of existing PWR auditing tool, RELAP5/MOD3. The main purpose of this study is to transplant the CANDU models of RELAP5/MOD3/CANDU code to MARS code including quality assurance of the developed models. This first part of the research series presents the implementation and verification of the Wolsong pump model, the pressure tube deformation model, and the off-take model for arbitrary-angled branch pipes.

  4. Implementation of Wolsong Pump Model, Pressure Tube Deformation Model and Off-take Model into MARS Code for Regulatory Auditing of CANDU Reactors

    International Nuclear Information System (INIS)

    Yoon, C.; Rhee, B. W.; Chung, B. D.; Cho, Y. J.; Kim, M. W.

    2008-01-01

    Korea currently has four operating units of the CANDU-6 type reactor in Wolsong. However, the safety assessment system for CANDU reactors has not been fully established due to lack of self-reliance technology. Although the CATHENA code had been introduced from AECL, it is undesirable to use vendor's code for regulatory auditing analysis. In Korea, the MARS code has been developed for decades and is being considered by KINS as a thermal hydraulic regulatory auditing tool for nuclear power plants. Before this decision, KINS (Korea Institute of Nuclear Safety) had developed RELAP5/MOD3/CANDU code for CANDU safety analyses by modifying the model of existing PWR auditing tool, RELAP5/MOD3. The main purpose of this study is to transplant the CANDU models of RELAP5/MOD3/CANDU code to MARS code including quality assurance of the developed models. This first part of the research series presents the implementation and verification of the Wolsong pump model, the pressure tube deformation model, and the off-take model for arbitrary-angled branch pipes

  5. Mirror hybrid reactor optimization studies

    International Nuclear Information System (INIS)

    Bender, D.J.

    1976-01-01

    A system model of the mirror hybrid reactor has been developed. The major components of the model include (1) the reactor description, (2) a capital cost analysis, (3) various fuel management schemes, and (4) an economic analysis that includes the hybrid plus its associated fission burner reactors. The results presented describe the optimization of the mirror hybrid reactor, the objective being to minimize the cost of electricity from the hybrid fission-burner reactor complex. We have examined hybrid reactors with two types of blankets, one containing natural uranium, the other thorium. The major difference between the two optimized reactors is that the uranium hybrid is a significant net electrical power producer, whereas the thorium hybrid just about breaks even on electrical power. Our projected costs for fissile fuel production are approximately 50 $/g for 239 Pu and approximately 125 $/g for 233 U

  6. A design assessment of tritium removal systems for the mirror advanced reactor study

    International Nuclear Information System (INIS)

    Sood, S.K.; Kveton, O.K.

    1983-01-01

    This study investigates the available processes for removing tritium from light water, and selects the most appropriate process for recovering tritium from the various tritiated water streams identified in the Mirror Advanced Reactor Study (MARS). A simplified flowsheet is shown for the process and the main process parameters are identified. Previous experience is utilized to predict direct capital costs and power requirement for the Tritiated Water Removal Unit (TWRU). A number of possibilities are discussed for lowering the cost of the TWRU. An estimate is made of the direct capital cost for the Air Detritiation System that has already been selected as the reference design by MARS personnel. The leakage from the MARS coolant loop is estimated, based on the experience obtained with Ontario Hydro's coolant systems. Design targets are identified for tritium levels in the reactor hall atmosphere and in water and air emissions. Tritium levels are predicted for these and are assessed against the previously identified targets

  7. Calibration OGSEs for multichannel radiometers for Mars atmosphere studies

    Science.gov (United States)

    Jiménez, J. J.; J Álvarez, F.; Gonzalez-Guerrero, M.; Apéstigue, V.; Martín, I.; Fernández, J. M.; Fernán, A. A.; Arruego, I.

    2018-06-01

    This work describes several Optical Ground Support Equipment (OGSEs) developed by INTA (Spanish Institute of Aerospace Technology—Instituto Nacional de Técnica Aeroespacial) for the calibration and characterization of their self-manufactured multichannel radiometers (solar irradiance sensors—SIS) developed for working on the surface of Mars and studying the atmosphere of that planet. Nowadays, INTA is developing two SIS for the ESA ExoMars 2020 and for the JPL/NASA Mars 2020 missions. These calibration OGSEs have been improved since the first model in 2011 developed for Mars MetNet Precursor mission. This work describes the currently used OGSE. Calibration tests provide an objective evidence of the SIS performance, allowing the conversion of the electrical sensor output into accurate physical measurements (irradiance) with uncertainty bounds. Calibration results of the SIS on board of the Dust characterisation, Risk assessment, and Environment Analyzer on the Martian Surface (DREAMS) on board the ExoMars 2016 Schiaparelli module (EDM—entry and descent module) are also presented, as well as their error propagation. Theoretical precision and accuracy of the instrument are determined by these results. Two types of OGSE are used as a function of the pursued aim: calibration OGSEs and Optical Fast Verification (OFV) GSE. Calibration OGSEs consist of three setups which characterize with the highest possible accuracy, the responsivity, the angular response and the thermal behavior; OFV OGSE verify that the performance of the sensor is close to nominal after every environmental and qualification test. Results show that the accuracy of the calibrated sensors is a function of the accuracy of the optical detectors and of the light conditions. For normal direct incidence and diffuse light, the accuracy is in the same order of uncertainty as that of the reference cell used for fixing the irradiance, which is about 1%.

  8. Calibration OGSEs for multichannel radiometers for Mars atmosphere studies

    Science.gov (United States)

    Jiménez, J. J.; J Álvarez, F.; Gonzalez-Guerrero, M.; Apéstigue, V.; Martín, I.; Fernández, J. M.; Fernán, A. A.; Arruego, I.

    2018-02-01

    This work describes several Optical Ground Support Equipment (OGSEs) developed by INTA (Spanish Institute of Aerospace Technology—Instituto Nacional de Técnica Aeroespacial) for the calibration and characterization of their self-manufactured multichannel radiometers (solar irradiance sensors—SIS) developed for working on the surface of Mars and studying the atmosphere of that planet. Nowadays, INTA is developing two SIS for the ESA ExoMars 2020 and for the JPL/NASA Mars 2020 missions. These calibration OGSEs have been improved since the first model in 2011 developed for Mars MetNet Precursor mission. This work describes the currently used OGSE. Calibration tests provide an objective evidence of the SIS performance, allowing the conversion of the electrical sensor output into accurate physical measurements (irradiance) with uncertainty bounds. Calibration results of the SIS on board of the Dust characterisation, Risk assessment, and Environment Analyzer on the Martian Surface (DREAMS) on board the ExoMars 2016 Schiaparelli module (EDM—entry and descent module) are also presented, as well as their error propagation. Theoretical precision and accuracy of the instrument are determined by these results. Two types of OGSE are used as a function of the pursued aim: calibration OGSEs and Optical Fast Verification (OFV) GSE. Calibration OGSEs consist of three setups which characterize with the highest possible accuracy, the responsivity, the angular response and the thermal behavior; OFV OGSE verify that the performance of the sensor is close to nominal after every environmental and qualification test. Results show that the accuracy of the calibrated sensors is a function of the accuracy of the optical detectors and of the light conditions. For normal direct incidence and diffuse light, the accuracy is in the same order of uncertainty as that of the reference cell used for fixing the irradiance, which is about 1%.

  9. ITER [International Thermonuclear Experimental Reactor] reactor building design study

    International Nuclear Information System (INIS)

    Thomson, S.L.; Blevins, J.D.; Delisle, M.W.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is at the midpoint of a two-year conceptual design. The ITER reactor building is a reinforced concrete structure that houses the tokamak and associated equipment and systems and forms a barrier between the tokamak and the external environment. It provides radiation shielding and controls the release of radioactive materials to the environment during both routine operations and accidents. The building protects the tokamak from external events, such as earthquakes or aircraft strikes. The reactor building requirements have been developed from the component designs and the preliminary safety analysis. The equipment requirements, tritium confinement, and biological shielding have been studied. The building design in progress requires continuous iteraction with the component and system designs and with the safety analysis. 8 figs

  10. Human Mars Entry, Descent, and Landing Architecture Study Overview

    Science.gov (United States)

    Cianciolo, Alicia D.; Polsgrove, Tara T.

    2016-01-01

    The Entry, Descent, and Landing (EDL) Architecture Study is a multi-NASA center activity to analyze candidate EDL systems as they apply to human Mars landing in the context of the Evolvable Mars Campaign. The study, led by the Space Technology Mission Directorate (STMD), is performed in conjunction with the NASA's Science Mission Directorate and the Human Architecture Team, sponsored by NASA's Human Exploration and Operations Mission Directorate. The primary objective is to prioritize future STMD EDL technology investments by (1) generating Phase A-level designs for selected concepts to deliver 20 t human class payloads, (2) developing a parameterized mass model for each concept capable of examining payloads between 5 and 40 t, and (3) evaluating integrated system performance using trajectory simulations. This paper summarizes the initial study results.

  11. The German reactor safety study

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1980-01-01

    The most important results of the German risk study of a nuclear power plant equipped with a pressurized water reactor were published in August 1979. The main volume of the study with the approach used and the results elaborated has been available for reference since late 1979. Eight technical volumes contain detailed descriptions and documentations of the investigations carried out. The reference facility used as a basis for the technical plant studies was unit B of the Biblis Nuclear Power Station, a KWU PWR of 3750 MW thermal power. This contribution provides more detailed explanations of the methods and the results of the risk study illustrated by examples. The description refers to accident categories and categories of radioactivity releases, probabilities of specific sequences of accident events, and the damage associated with core meltdown accidents as a function of various types of failure. For purposes of evaluation and application of the results the limits in the basic assumptions of the study are referred to. (orig./HP) [de

  12. Safety studies concerning nuclear power reactors

    International Nuclear Information System (INIS)

    Bailly, Jean; Pelce, Jacques

    1980-01-01

    The safety of nuclear installations poses different technical problems, whether concerning pressurized water reactors or fast reactors. But investigating methods are closely related and concern, on the one hand, the behavior of shields placed between fuel and outside and, on the other, analysis of accidents. The article is therefore in two parts based on the same plan. Concerning light water reactors, the programme of studies undertaken in France accounts for the research carried out in countries where collaboration agreements exist. Concerning fast reactors, France has the initiative of their studies owing to her technical advance, which explains the great importance of the programmes under way [fr

  13. Extrap conceptual fusion reactor design study

    International Nuclear Information System (INIS)

    Eninger, J.E; Lehnert, B.

    1987-12-01

    A study has recently been initiated to asses the fusion reactor potential of the Extrap concept. A reactor model is defined that fulfills certain economic and environmental criteria. This model is applied to Extrap and a reference reactor is outlined. The design is optimized by varying parameters subject to both physics and engineering constraints. Several design options are examined and key engineering issues are identified and addressed. Some preliminary results and conclusions of this work are summarized. (authors)

  14. Studies of conceptual spheromak fusion reactors

    International Nuclear Information System (INIS)

    Katsurai, M.; Yamada, M.

    1982-01-01

    Preliminary design studies are carried out for a spheromak fusion reactor. Simplified circuit theory is applied to obtain the characteristic relations among various parameters of the spheromak configuration for an aspect ratio of A >or approx. 1.6. These relations are used to calculate the parameters for the conceptual designs of three types of fusion reactor: (1) the DT reactor with two-component-type operation, (2) the ignited DT reactor, and (3) the ignited catalysed-type DD reactor. With a total wall loading of approx. 4 MW.m -2 , it is found that edge magnetic fields of only approx. 4 T (DT) and approx. 9 T (Cat. DD) are required for ignited reactors of 1 m plasma (minor) radius with output powers in the gigawatt range. An assessment of various schemes of generation, compression and translation of spheromak plasmas is presented. (author)

  15. OKLO: Fossil nuclear reactors. Physical study

    International Nuclear Information System (INIS)

    Naudet, R.

    1991-04-01

    This book presents a study of Oklo reactors, based essentially on physics and particularly neutronics but reviewing also all what is known on this topic, regrouping observations, measurement results and interpretative calculations. A remarkable characteristic of the study is the use of sophisticated reactor calculation methods for analysis of what happened two billion years ago in a uranium deposit. 200 refs [fr

  16. Parametric studies of tandem mirror reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Boghosian, B.M.; Fink, J.H.; Myall, J.O.; Neef, W.S. Jr.

    1979-01-01

    This report, along with its companion, An Improved Tandem Mirror Reactor, discusses the recent progress and present status of our tandem mirror reactor studies. This report presents the detailed results of parametric studies up to, but not including, the very new ideas involving thermal barriers

  17. Mars Magnetoshell Decelerator EDL-SA study

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent NIAC phase I study (Kirtley et. al.) demonstrated experimentally a subscale magnetoshell with a 1000:1 increase in aerodynamic drag for a 1.6 meter argon...

  18. Descriptive epidemiology of the Multicenter ACL Revision Study (MARS) cohort.

    Science.gov (United States)

    Wright, Rick W; Huston, Laura J; Spindler, Kurt P; Dunn, Warren R; Haas, Amanda K; Allen, Christina R; Cooper, Daniel E; DeBerardino, Thomas M; Lantz, Brett Brick A; Mann, Barton J; Stuart, Michael J

    2010-10-01

    Revision anterior cruciate ligament (ACL) reconstruction has worse outcomes than primary reconstructions. Predictors for these worse outcomes are not known. The Multicenter ACL Revision Study (MARS) Group was developed to perform a multisurgeon, multicenter prospective longitudinal study to obtain sufficient subjects to allow multivariable analysis to determine predictors of clinical outcome. To describe the formation of MARS and provide descriptive analysis of patient demographics and clinical features for the initial 460 enrolled patients to date in this prospective cohort. Cross-sectional study; Level of evidence, 2. After training and institutional review board approval, surgeons began enrolling patients undergoing revision ACL reconstruction, recording patient demographics, previous ACL reconstruction methods, intra-articular injuries, and current revision techniques. Enrolled subjects completed a questionnaire consisting of validated patient-based outcome measures. As of April 1, 2009, 87 surgeons have enrolled a total of 460 patients (57% men; median age, 26 years). For 89%, the reconstruction was the first revision. Mode of failure as deemed by the revising surgeon was traumatic (32%), technical (24%), biologic (7%), combination (37%), infection (MARS Group has been able to quickly accumulate the largest revision ACL reconstruction cohort reported to date. Traumatic reinjury is deemed by surgeons to be the most common single mode of failure, but a combination of factors represents the most common mode of failure. Allograft graft choice is more common in the revision setting than autograft. Concomitant knee injury is extremely common in this population.

  19. UCLA program in reactor studies: The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on ''modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D- 3 He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs

  20. CARNSORE: Hypothetical reactor accident study

    International Nuclear Information System (INIS)

    Walmod-Larsen, O.; Jensen, N.O.; Kristensen, L.; Meide, A.; Nedergaard, K.L.; Nielsen, F.; Lundtang Petersen, E.; Petersen, T.; Thykier-Nielsen, S.

    1984-06-01

    Two types of design-basis accident and a series of hypothetical core-melt accidents to a 600 MWe reactor are described and their consequences assessed. The PLUCON 2 model was used to calculate the consequences which are presented in terms of individual and collective doses, as well as early and late health consequences. The site proposed for the nucelar power station is Carnsore Point, County Wexford, south-east Ireland. The release fractions for the accidents described are those given in WASH-1400. The analyses are based on the resident population as given in the 1979 census and on 20 years of data from the meteorological stations at Rosslare Harbour, 8.5 km north of the site. The consequences of one of the hypothetical core-melt accidents are described in detail in a meteorological parametric study. Likewise the consequences of the worst conceivable combination of situations are described. Finally, the release fraction in one accident is varied and the consequences of a proposed, more probable ''Class 9 accident'' are presented. (author)

  1. Mars power system concept definition study. Volume 2: Appendices

    Science.gov (United States)

    Littman, Franklin D.

    1994-01-01

    This report documents the work performed by Rockwell International's Rocketdyne Division on NASA Contract No. NAS3-25808 (Task Order No. 16) entitled 'Mars Power System Definition Study'. This work was performed for NASA's Lewis Research Center (LeRC). The report is divided into two volumes as follows: Volume 1 - Study Results; and Volume 2 - Appendices. The results of the power system characterization studies, operations studies, and technology evaluations are summarized in Volume 1. The appendices include complete, standalone technology development plans for each candidate power system that was investigated.

  2. A Study of Soil and Duricrust Models for Mars

    Science.gov (United States)

    Bishop, J. L.

    2001-03-01

    Analysis of soil and duricrust formation mechanisms on Mars. Soil analog mixtures have been prepared, characterized and tested through wet/dry cycling experiments; results are compared with Mars Pathfinder soil data (spectral, chemical and magnetic).

  3. Innovative Approaches for Seismic Studies of Mars (Invited)

    Science.gov (United States)

    Banerdt, B.

    2010-12-01

    In addition to its intrinsic interest, Mars is particularly well-suited for studying the full range of processes and phenomena related to early terrestrial planet evolution, from initial differentiation to the start of plate tectonics. It is large and complex enough to have undergone most of the processes that affected early Earth but, unlike the Earth, has apparently not undergone extensive plate tectonics or other major reworking that erased the imprint of early events (as evidenced by the presence of cratered surfaces older than 4 Ga). The martian mantle should have Earth-like polymorphic phase transitions and may even support a perovskite layer near the core (depending on the actual core radius), a characteristic that would have major implications for core cooling and mantle convection. Thus even the most basic measurements of planetary structure, such as crustal thickness, core radius and state (solid/liquid), and gross mantle velocity structure would provide invaluable constraints on models of early planetary evolution. Despite this strong scientific motivation (and several failed attempts), Mars remains terra incognita from a seismic standpoint. This is due to an unfortunate convergence of circumstances, prominent among which are our uncertainty in the level of seismic activity and the relatively high cost of landing multiple long-lived spacecraft on Mars to comprise a seismic network for body-wave travel-time analysis; typically four to ten stations are considered necessary for this type of experiment. In this presentation I will address both of these issues. In order to overcome the concern about a possible lack of marsquakes with which to work, it is useful to identify alternative methods for using seismic techniques to probe the interior. Seismology without quakes can be accomplished in a number of ways. “Unconventional” sources of seismic energy include meteorites (which strike the surface of Mars at a relatively high rate), artificial projectiles

  4. Status of the US stellarator reactor study

    International Nuclear Information System (INIS)

    Lyon, J.F.; Gulec, K.; Miller, R.L.; El-Guebaly, L.

    1994-01-01

    Stellarators have significant operational advantages over tokamaks as ignited steady-state reactors. This scoping study, which uses an integrated cost-minimization code that incorporates costing and reactor component models self-consistently with a 1-D energy transport calculation, shows that a torsatron reactor could also be competitive with a tokamak reactor. The projected cost of electricity (COE) estimated using the ARIES costing algorithms is 62.5 mill/kW(e)h in constant 1992 dollars for a 1-GW(e) Compact Torsatron reactor reference case. The COE is relatively insensitive (< 10% variation) over a wide range of assumptions including variations in the maximum field allowed on the coils, the coil elongation, the shape of the density profile, the beta limit, the confinement multiplier, and the presence of a large loss region for alpha particles. The largest variations in the COE occur for variations in the electrical power output demanded and the plasma-coil separation ratio

  5. Neutronics Study of the KANUTER Space Propulsion Reactor

    International Nuclear Information System (INIS)

    Venneri, Paolo; Nam, Seung Hyun; Kim, Yonghee

    2014-01-01

    The Korea Advanced Nuclear Thermal Engine Rocket (KANUTER) has been developed at the Korea Advanced Institute of Science and Technology (KAIST). This space propulsion system is unique in that it implements a HEU fuel with a thermal spectrum system. This allows the system to be designed with a minimal amount of fissile material and an incredibly small and light system. This then allows the implementation of the system in a cluster format which enables redundancy and easy scalability for different mission requirements. This combination of low fissile content, compact size, and thermalized spectrum contribute to an interesting and novel behavior of the reactor system. The two codes were both used for the burn up calculations in order to verify their validity while the static calculations and characterization of the core were done principally with MCNPX. The KANUTER space propulsion reactor is in the process of being characterized and improved. Its basic neutronic characteristics have been studied, and its behavior over time has been identified. It has been shown that this reactor will have difficulty operating as hoped in a bimodal configuration where it is able to provide both propulsion and power throughout mission to Mars. The reason for this has been identified as Xe 135 , and it is believed that a possible solution to this issue does exist, either in the form of an appropriately designed neutron spectrum or the building in of sufficient excess reactivity

  6. Neutronics Study of the KANUTER Space Propulsion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, Paolo; Nam, Seung Hyun; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    The Korea Advanced Nuclear Thermal Engine Rocket (KANUTER) has been developed at the Korea Advanced Institute of Science and Technology (KAIST). This space propulsion system is unique in that it implements a HEU fuel with a thermal spectrum system. This allows the system to be designed with a minimal amount of fissile material and an incredibly small and light system. This then allows the implementation of the system in a cluster format which enables redundancy and easy scalability for different mission requirements. This combination of low fissile content, compact size, and thermalized spectrum contribute to an interesting and novel behavior of the reactor system. The two codes were both used for the burn up calculations in order to verify their validity while the static calculations and characterization of the core were done principally with MCNPX. The KANUTER space propulsion reactor is in the process of being characterized and improved. Its basic neutronic characteristics have been studied, and its behavior over time has been identified. It has been shown that this reactor will have difficulty operating as hoped in a bimodal configuration where it is able to provide both propulsion and power throughout mission to Mars. The reason for this has been identified as Xe{sup 135}, and it is believed that a possible solution to this issue does exist, either in the form of an appropriately designed neutron spectrum or the building in of sufficient excess reactivity.

  7. Advanced Demonstration and Test Reactor Options Study

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Gehin, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States); Qualls, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Croson, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power’s share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercialization of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy’s (DOE’s) broader commitment to pursuing an “all of the above” clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate “advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy

  8. Advanced Demonstration and Test Reactor Options Study

    International Nuclear Information System (INIS)

    Petti, David Andrew; Hill, R.; Gehin, J.; Gougar, Hans David; Strydom, Gerhard; Heidet, F.; Kinsey, J.; Grandy, Christopher; Qualls, A.; Brown, Nicholas; Powers, J.; Hoffman, E.; Croson, D.

    2017-01-01

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power's share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercialization of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy's (DOE's) broader commitment to pursuing an 'all of the above' clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate 'advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy'. Advanced reactors are

  9. MINIMARS tandem mirror reactor study

    International Nuclear Information System (INIS)

    Perkins, L.J.; Logan, B.G.; Doggett, J.N.

    1986-01-01

    During 1985-1986, Lawrence Livermore National Lab., in partnership with the Fusion Engineering Design Center of Oak Ridge National Lab., the Univ. of Wisconsin, TRW, Grumman Aerospace Corporation, General Dynamics/Convair, Argonne National Lab., and the Canadian Fusion Fuels Technology Project, has conducted the conceptual design of MINIMARS, a small commercial tandem mirror reactor with novel octopole end plugs. With a net electric output of 600 MW(e), MINIMARS is expressly designed for short (∼4- to 5-yr) construction time, factory-built modules, and a passively safe blanket and thermal cycle. In this way, we intend to achieve a small reactor based on the tandem mirror principle that will minimize utility financial risk, thereby providing an attractive alternative to the more conventional large fusion plant designs encountered to date

  10. The ARIES-I tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses the following topics on the Aries-I Tokamak: Design description; systems studies and economics; reactor plasma physics; magnet engineering; fusion-power-ore engineering; and environmental and safety features

  11. Marine radioactivity studies in the World Oceans (MARS)

    International Nuclear Information System (INIS)

    Povinec, P.P.; Togawa, O.

    1999-01-01

    The International Atomic Energy Agency's Marine Environment Laboratory is carrying out from 1996 a project with international participation 'Marine Radioactivity Studies in the World Oceans (MARS)'. The main objectives of the project are to provide new data on marine radioactivity and to develop a better understanding of the present radionuclide distribution in the open ocean. Within the framework of the project, various research activities are being carried out to fulfill the objectives: Coordinated Research Programme (CRP), scientific expeditions to the open ocean, development of a database for marine radioactivity, evaluation of radionuclide distributions and dose assessments. (author)

  12. Studying the Mars atmosphere using a SOIR Instrument

    Science.gov (United States)

    Drummond, R.; Vandaele, A.; Daerden, F.; Neefs, E.; Mahieux, A.; Wilquet, V.; Montmessin, F.; Bertaux, J.; McConnell, J. C.; Kaminski, J. W.

    2009-05-01

    SOIR (Solar Occultation InfraRed spectrometer) is currently part of the SPICAV/SOIR instrument on board the Venus Express orbiter (VEX). SOIR, an Echelle infrared spectrometer using an acousto-optic tunable filter (AOTF) for the order selection, is probing the atmosphere by solar occultation, operating between 2.2 and 4.3 μm, with a resolution of 0.15 cm-1. This spectral range is suitable for the detection of several key components of planetary atmospheres, including H2O and its isotopologue HDO, CH4 and other trace species. The SOIR instrument was designed to have a minimum of moving parts, to be light and compact in order to fit on top of the SPICAV instrument. The AOTF allows a narrow range of wavelengths to pass, according to the radio frequency applied to the TeO2 crystal; this selects the order. The advantage of the AOTF is that different orders can be observed quickly and easily during one occultation. To obtain a compact optical scheme, a Littrow configuration was implemented in which the usual collimating and imaging lenses are merged into a single off-axis parabolic mirror. The light is diffracted on the echelle grating, where orders overlap and addition occurs, and finally is recorded by the detector. The detector is 320x256 pixels and is cooled to 88K during an occultation measurement, to maximise the signal to noise ratio. SOIR on VEX has been in orbit around Venus since April 2006, allowing us to characterise the instrument and study its performance. These data have allowed the engineering team to devise several instrumental improvements. The next step in further improving the readiness for Martian atmospheric studies comes in close collaboration with the Mars Atmospheric Modelling group at BIRA-IASB. A General Circulation Model is used to simulate the Martian atmosphere. Currently work is underway with SPICAM data to verify the GCM inputs and outputs. Later the GCM output will be used as feedback for instrumental design of both an improved version

  13. A Case Study in the Mars Landing Site Selection for Science Objects

    Directory of Open Access Journals (Sweden)

    Haingja Seo

    2012-12-01

    Full Text Available It is a crucial matter to select a landing site for landers or rovers in planning the Mars exploration. The landing site must have not only a scientific value as a landing site, but also geographical features to lead a safe landing for Mars probes. In this regard, this study analyzed landing site of Mars probes and rovers in previous studies and discussed the adequacy of the landing site to scientific missions. Moreover, this study also examined domestic studies on the Mars. The frameworks of these studies will guide the selection of exploration sites and a landing site when sending Mars probe to the Mars through our own efforts. Additionally, this paper will be used as the preliminary data for selection of exploration site and a landing site.

  14. Plasma boundaries at Mars: a 3-D simulation study

    Directory of Open Access Journals (Sweden)

    A. Bößwetter

    2004-12-01

    Full Text Available The interaction of the solar wind with the ionosphere of planet Mars is studied using a three-dimensional hybrid model. Mars has only a weak intrinsic magnetic field, and consequently its ionosphere is directly affected by the solar wind. The gyroradii of the solar wind protons are in the range of several hundred kilometers and therefore comparable with the characteristic scales of the interaction region. Different boundaries emerge from the interaction of the solar wind with the continuously produced ionospheric heavy-ion plasma, which could be identified as a bow shock (BS, ion composition boundary (ICB and magnetic pile up boundary (MPB, where the latter both turn out to coincide. The simulation results regarding the shape and position of these boundaries are in good agreement with the measurements made by Phobos-2 and MGS spacecraft. It is shown that the positions of these boundaries depend essentially on the ionospheric production rate, the solar wind ram pressure, and the often unconsidered electron temperature of the ionospheric heavy ion plasma. Other consequences are rays of planetary plasma in the tail and heavy ion plasma clouds, which are stripped off from the dayside ICB region by some instability.

    Key words. Magnetospheric physics (solar wind interactions with unmagnetized bodies – Space plasma physics (discontinuities; numerical simulation studies

  15. Fusion reactor safety studies, FY 1977

    International Nuclear Information System (INIS)

    Darby, J.B. Jr.

    1978-04-01

    This report reviews the technical progress in the fusion reactor safety studies performed during FY 1977 in the Fusion Power Program at the Argonne National Laboratory. The subjects reported on include safety considerations of the vacuum vessel and first-wall design for the ANL/EPR, the thermal responses of a tokamak reactor first wall, the vacuum wall electrical resistive requirements in relationship to magnet safety, and a major effort is reported on considerations and experiments on air detritiation

  16. Planetary Simulation Chambers bring Mars to laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Mateo-Marti, E.

    2016-07-01

    Although space missions provide fundamental and unique knowledge for planetary exploration, they are always costly and extremely time-consuming. Due to the obvious technical and economical limitations of in-situ planetary exploration, laboratory simulations are among the most feasible research options for making advances in planetary exploration. Therefore, laboratory simulations of planetary environments are a necessary and complementary option to expensive space missions. Simulation chambers are economical, more versatile, and allow for a higher number of experiments than space missions. Laboratory-based facilities are able to mimic the conditions found in the atmospheres and on the surfaces of a majority of planetary objects. Number of relevant applications in Mars planetary exploration will be described in order to provide an understanding about the potential and flexibility of planetary simulation chambers systems: mainly, stability and presence of certain minerals on Mars surface; and microorganisms potential habitability under planetary environmental conditions would be studied. Therefore, simulation chambers will be a promising tools and necessary platform to design future planetary space mission and to validate in-situ measurements from orbital or rover observations. (Author)

  17. Astrobiology through the ages of Mars: the study of terrestrial analogues to understand the habitability of Mars.

    Science.gov (United States)

    Fairén, Alberto G; Davila, Alfonso F; Lim, Darlene; Bramall, Nathan; Bonaccorsi, Rosalba; Zavaleta, Jhony; Uceda, Esther R; Stoker, Carol; Wierzchos, Jacek; Dohm, James M; Amils, Ricardo; Andersen, Dale; McKay, Christopher P

    2010-10-01

    Mars has undergone three main climatic stages throughout its geological history, beginning with a water-rich epoch, followed by a cold and semi-arid era, and transitioning into present-day arid and very cold desert conditions. These global climatic eras also represent three different stages of planetary habitability: an early, potentially habitable stage when the basic requisites for life as we know it were present (liquid water and energy); an intermediate extreme stage, when liquid solutions became scarce or very challenging for life; and the most recent stage during which conditions on the surface have been largely uninhabitable, except perhaps in some isolated niches. Our understanding of the evolution of Mars is now sufficient to assign specific terrestrial environments to each of these periods. Through the study of Mars terrestrial analogues, we have assessed and constrained the habitability conditions for each of these stages, the geochemistry of the surface, and the likelihood for the preservation of organic and inorganic biosignatures. The study of these analog environments provides important information to better understand past and current mission results as well as to support the design and selection of instruments and the planning for future exploratory missions to Mars.

  18. A Comparative Study of Aerocapture Missions with a Mars Destination

    Science.gov (United States)

    Vaughan, Diane; Miller, Heather C.; Griffin, Brand; James, Bonnie F.; Munk, Michelle M.

    2005-01-01

    Conventional interplanetary spacecraft use propulsive systems to decelerate into orbit. Aerocapture is an alternative approach for orbit capture, in which the spacecraft makes a single pass through a target destination's atmosphere. Although this technique has never been performed, studies show there are substantial benefits of using aerocapture for reduction of propellant mass, spacecraft size, and mission cost. The In-Space Propulsion (ISP) Program, part of NASA's Science Mission Directorate, has invested in aerocapture technology development since 2002. Aerocapture investments within ISP are largely driven by mission systems analysis studies, The purpose of this NASA-funded report is to identify and document the fundamental parameters of aerocapture within previous human and robotic Mars mission studies which will assist the community in identifying technology research gaps in human and robotic missions, and provide insight for future technology investments. Upon examination of the final data set, some key attributes within the aerocapture disciplines are identified.

  19. Study of reactivity of fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Rammsy, J.E.M.

    1985-01-01

    The reactor physics calculations of a 19 module Fluidized Bed Nuclear Reactor using Leopard and Odog codes are performed. The behaviour of the reactor was studied by calculating the reactivity of the reactor as a function of the parameters governing the operational and accidental conditions of the reactor. The effects of temperature, pressure, and vapor generation in the core on the reactivity are calculated. Also the start up behaviour of the reactor is analyzed. For the purpose of the study of a prototype research reactor, the calculations on a one module reactor have been performed. (Author) [pt

  20. L-Reactor Habitat Mitigation Study

    International Nuclear Information System (INIS)

    1988-02-01

    The L-Reactor Fish and Wildlife Resource Mitigation Study was conducted to quantify the effects on habitat of the L-Reactor restart and to identify the appropriate mitigation for these impacts. The completed project evaluated in this study includes construction of a 1000 acre reactor cooling reservoir formed by damming Steel Creek. Habitat impacts identified include a loss of approximately 3,700 average annual habitat units. This report presents a mitigation plan, Plan A, to offset these habitat losses. Plan A will offset losses for all species studied, except whitetailed deer. The South Carolina Wildlife and Marine Resources Department strongly recommends creation of a game management area to provide realistic mitigation for loss of deer habitats. 10 refs., 5 figs., 3 tabs

  1. Study on the decommissioning of research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Doo Hwan; Jun, Kwan Sik; Choi, Yoon Dong; Lee, Tae Yung; Kwon, Sang Woon; Lee, Jong Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    Currently, KAERI operates TRIGA Mark-II and TRIGA Mark-III research reactors as a general purpose research and training facility. As these are, however, situated at Seoul office site of KAERI which is scheduled to be transferred to KEPCO as well as 30 MW HANARO research reactor which is expected to reach the first criticality in 1995 is under construction at head site of KAERI, decommissioning of TRIGA reactors has become an important topic. The objective of this study is to prepare and present TRIGA facility decontamination and decommissioning plan. Estimation of the radioactive inventory in TRIGA research reactor was carried out by the use of computational method. In addition, summarized in particular were the methodologies associated with decontamination, segmenting processes for activated metallic components, disposition of wastes. Particular consideration in this study was focused available technology applicable to decommissioning of TRIGA research reactor. State-of-the-art summaries of the available technology for decommissioning presented here will serve a useful document for preparations for decommissioning in the future. 6 figs, 41 tabs, 30 refs. (Author).

  2. Fusion reactor remote maintenance study. Final report

    International Nuclear Information System (INIS)

    Sniderman, M.

    1979-04-01

    An analysis of a major maintenance operation, the remote replacement of a modular sector of a tokamak reactor, was performed in substantial detail. Specific assumptions were developed which included concepts from various existing designs so that the operation which was studied includes some design features generic to any fusion reactor design. Based on the work performed in this study, the principal conclusions are: (1) It appears feasible to design a tokamak fusion reactor plant with availability comparable to existing fossil and fission plants, but this will require diligence and comprehensive planning during the complete design phase. (2) Since the total fusion program is paced by the success of each device, maintenance considerations must be incorporated into each device during design, even if the device is an experimental unit. (3) Innovative approaches, such as automatic computer controlled operations, should be developed so that large step reductions in planned maintenance times can be achieved

  3. Neutronic study of fusion reactor blanket

    International Nuclear Information System (INIS)

    Barre, F.

    1983-06-01

    The problem of effective regeneration is a crucial issue for the fusion reactor, specially for the power reactor because of the conflicting requirements of heat removal and tritium breeding. For that, calculations are performed to evaluate blanket materials. Precise techniques are herein developed to improve the accuracy of the tritium production and the neutron and gamma transport calculations. Many configurations are studied with realistic breeder, structure, and coolant proportions. Accuracy of the results are evaluated from the sensitivity theory and uncertainty study using covariance matrices. At the end of this work, we presented the needs of nuclear data for fusion reactors and we give some advices for improving our knowledge of these data [fr

  4. Neutronic study of fusion reactor blanket

    International Nuclear Information System (INIS)

    Barre, F.

    1984-02-01

    The problem of effective regeneration is a crucial issue for the fusion reactor, specially for the power reactor because of the conflicting requirements of heat removal and tritium breeding. For that, calculations are performed to evaluate blanket materials. Precise techniques are herein developed to improve the accuracy of the tritium production and the neutron and gamma transport calculations. Many configurations are studied with realistic breeder, structure, and coolant proportions. Accuracy of the results are evaluated from the sensitivity theory and uncertainty study using covariance matricies. At the end of this work, we presented the needs of nuclear data for fusion reactors and we give some advices for improving our knowledge of these data [fr

  5. The ARIES-I tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    This report contains an overview of the Aries-I tokamak reactor study. The following topics are discussed on this tokamak: Systems studies; equilibrium, stability, and transport; summary and conclusions; current drive; impurity control system; tritium systems; magnet engineering; fusion-power-core engineering; power conversion; Aries-I safety design and analysis; design layout and maintenance; and start-up and operations

  6. Preliminary feasibility study of modular reactors

    International Nuclear Information System (INIS)

    Yamaji, Kenji

    1987-01-01

    In the future, electric utilities will be required to make a switch-over to a more flexible and dynamic form of power supply due to the slowing growth of power demand, increasing uncertainty, the stagnating economy of increasing scale, the bottleneck of transmission and so on. Nuclear technology would also be required to adapt to this changing environment surrounding its development. The long term prospect of energy demand and nuclear power growth, and the evolution of commercial reactors in Japan are shown. The design of 1,300 MWe advanced LWRs has been completed, and as the reactors of next generation, the ultralarge LWRs of 1,500 - 1,800 MWe are suggested. However, there can be an alternative future for nuclear power development, and in this paper, the possibility for altering the image of conventional nuclear power technology by developing modular reactors which are economical even at small capacity, and can be sited in urban areas just like conventional thermal power plants is examined. The factors for the economical evaluation of modular reactors, learning effect and scale effect on the economy, the case study on a modular high temperature reactor designed by Interatom-GHT, and the possibility of siting in urban areas due to the system of inherent safety are reported. (Kako, I.)

  7. Mars atmosphere studies with the OMEGA/Mars Express experiment: I. Overview and detection of lfuorescent emission by CO2

    Science.gov (United States)

    Drossart, P.; Combes, M.; Encrenaz, T.; Melchiorri, R.; Fouchet, T.; Forget, F.; Moroz, V.; Ignatiev, N.; Bibring, J.-P.; Langevin, Y.; OMEGA Team

    Observations of Mars by the OMEGA/Mars Express experiment provide extended maps of the martian disk at all latitudes, and with various conditions of illumination, between 0.4 to 5 micron. The atmospheric investigations so far conducted by our team are focussed on the infrared part of the spectrum (1-5 micron), and include: the development of a correction algorithm for atmospheric gaseous absorption, to give access to fine mineralogic studies, largely decorrelated from atmospheric effects the study of dust opacity effects in the near infrared, with the aim to correct also the rough spectra from dust opacity perturbation the study of minor constituents like CO, to search for regional or global variations the study of CO2 emission at 4.3 micron related to fluorescent emission This last effect is prominently detected in limb observations obtained in 3-axis stabilized mode of Mars Express, with high altitude emission in the CO2 fundamental at 4.3 micron, usually seen in absorption in nadir observations. These emissions are related to non-LTE atmospheric layers, well above the solid surface in the mesosphere. Such emissions are also present in Earth and Venus limb observations. They are present also in nadir observations, but are reinforced in limb viewing geometry due to the tangential view. A numerical model of these emission will be presented.

  8. Modular Stellarator Reactor conceptual design study

    International Nuclear Information System (INIS)

    Miller, R.L.; Bathke, C.G.

    1983-01-01

    A conceptual design study of the Modular Stellarator Reactor is summarized. The physics basis of the approach is elucidated with emphasis on magnetics performance optimization. Key engineering features of the fusion power core are described. Comparisons with an analogous continuous-helical-coil (torsatron) system are made as the basis of a technical and economic assessment

  9. Modular stellarator reactor conceptual design study

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.

    1983-01-01

    A conceptual design study of the Modular Stellarator Reactor is summarized. The physics basis of the approach is elucidated with emphasis on magnetics performance optimization. Key engineering features of the fusion power core are described. Comparisons with an analogous continuous-helical-coil (torsatron) system are made as the basis of a technical and economic assessment

  10. Mars ISRU for Production of Mission Critical Consumables - Options, Recent Studies, and Current State of the Art

    Science.gov (United States)

    Sanders, G. B.; Paz, A.; Oryshchyn, L.; Araghi, K.; Muscatello, A.; Linne, D.; Kleinhenz, J.; Peters, T.

    2015-01-01

    In 1978, a ground breaking paper titled, "Feasibility of Rocket Propellant Production on Mars" by Ash, Dowler, and Varsi discussed how ascent propellants could be manufactured on the Mars surface from carbon dioxide collected from the atmosphere to reduce launch mass. Since then, the concept of making mission critical consumables such as propellants, fuel cell reactants, and life support consumables from local resources, commonly known as In-Situ Resource Utilization (ISRU), for robotic and human missions to Mars has been studied many times. In the late 1990's, NASA initiated a series of Mars Human Design Reference Missions (DRMs), the first of which was released in 1997. These studies primarily focused on evaluating the impact of making propellants on Mars for crew ascent to Mars orbit, but creating large caches of life support consumables (water & oxygen) as a backup for regenerative life support systems for long-duration surface stays (>500 days) was also considered in Mars DRM 3.0. Until science data from the Mars Odyssey orbiter and subsequent robotic missions revealed that water may be widely accessable across the surface of Mars, prior Mars ISRU studies were limited to processing Mars atmospheric resources (carbon dioxide, nitrogen, argon, oxygen, and water vapor). In December 2007, NASA completed the Mars Human Design Reference Architecture (DRA) 5.0 study which considered water on Mars as a potential resource for the first time in a human mission architecture. While knowledge of both water resources on Mars and the hardware required to excavate and extract the water were very preliminary, the study concluded that a significant reduction in mass and significant enhancements to the mission architecture were possible if Mars water resources were utilized. Two subsequent Mars ISRU studies aimed at reexamining ISRU technologies, processing options, and advancements in the state-of-the-art since 2007 and to better understand the volume and packaging associated

  11. An experimental study to support the search for organics at Mars

    Science.gov (United States)

    Poch, Olivier; Stalport, Fabien; Noblet, Audrey; Szopa, Cyril; Coll, Patrice

    2012-07-01

    Several evidences suggest that early Mars offered favorable conditions for long-term sustaining water. As a consequence, we can assume that processes related to prebiotic chemistry, and even the emergence of life, may have occurred on early Mars. In those days, organic matter may have been widespread on Mars, due to exogenous delivery from small bodies, or endogenous chemical processes. The search for these organic relics is one of the main objectives of Mars exploration missions to come. But for about 3 Gy, due to the harsh environmental conditions of the Mars surface (UV radiation, oxidants etc.), the inventory of organic compounds at the current surface or subsurface of Mars may have been narrowed. Two major questions raised by this putative evolution are: What is the evolution pattern of organics in the Martian environment? What types of molecules would have been preserved, and if so, in which conditions? We address these questions using an experimental device dedicated to simulate the processes susceptible to have an effect on organic matter in the current environmental conditions of the Mars surface and subsurface. This experimental setup is part of a project called MOMIE, for Mars Organic Molecules Irradiation and Evolution. We study the evolution of some of the most likely molecular compounds potentially synthesized or brought to Mars (amino acids, hydrocarbons, nucleobases etc.). Nanometers thin deposits of a molecular compound or of a mineral in which the molecular compound has been embedded are allowed to evolve at mean Martian pressure and temperature, under a UV radiation environment similar to the Martian one. Qualitative and quantitative changes of the sample are monitored during the simulation, especially using infrared spectroscopy. We will present and compare the evolution of several organics submitted to these conditions. These experiments will provide essential insights to guide and discuss in situ analyses at Mars, particularly during the

  12. Development of the coupled 'system thermal-hydraulics, 3D reactor kinetics, and hot channel' analysis capability of the MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J. J.; Chung, B. D.; Lee, W.J

    2005-02-01

    The subchannel analysis capability of the MARS 3D module has been improved. Especially, the turbulent mixing and void drift models for flow mixing phenomena in rod bundles have been assessed using some well-known rod bundle test data. Then, the subchannel analysis feature was combined to the existing coupled 'system Thermal-Hydraulics (T/H) and 3D reactor kinetics' calculation capability of MARS. These features allow the coupled 'system T/H, 3D reactor kinetics, and hot channel' analysis capability and, thus, realistic simulations of hot channel behavior as well as global system T/H behavior. In this report, the MARS code features for the coupled analysis capability are described first. The code modifications relevant to the features are also given. Then, a coupled analysis of the Main Steam Line Break (MSLB) is carried out for demonstration. The results of the coupled calculations are very reasonable and realistic, and show these methods can be used to reduce the over-conservatism in the conventional safety analysis.

  13. Reversed field pinch reactor study 3

    International Nuclear Information System (INIS)

    Hollis, A.A.; Mitchell, J.T.D.

    1977-12-01

    This report, the third of a series on the Reversed Field Pinch Reactor, describes a preliminary concept of the engineering design and layout of this pulsed toroidal reactor, which uses the stable plasma behaviour first observed in ZETA. The basic parameters of the 600 MW(e) reactor are taken from a companion study by Hancox and Spears. The plasma volume is 1.75m minor radius and 16m major radius surrounded by a 1.8m blanket-shield region - with the blanket divided into 14 removable segments for servicing. The magnetic confinement system consists of 28 toroidal field coils situated just outside the blanket and inside the poloidal and vertical field coils and all coils have normal copper conductors. The requirement to incorporate a conducting shell at the front of the blanket to provide a short-time plasma stability has a marked effect on the design. It sets the size of the blanket segment and the scale of the servicing operations, limits the breeding gain and complicates the blanket cooling and its integration with the heat engine. An extensive study will be required to confirm the overall reactor potential of the concept. (author)

  14. Standard mirror fusion reactor design study

    International Nuclear Information System (INIS)

    Moir, R.W.

    1978-01-01

    This report covers the work of the Magnetic Fusion Energy Division's reactor study group during FY 1976 on the standard mirror reactor. The ''standard'' mirror reactor is characterized as a steady state, neutral beam sustained, D-T fusioning plasma confined by a Yin-Yang magnetic mirror field. The physics parameters are obtained from the same physics model that explains the 2XIIB experiment. The model assumes that the drift cyclotron loss cone mode occurs on the boundary of the plasma, and that it is stabilized by warm plasma with negligible energy investment. The result of the study was a workable mirror fusion power plant, steady-state blanket removal made relatively simple by open-ended geometry, and no impurity problem due to the positive plasma potential. The Q (fusion power/injected beam power) turns out to be only 1.1 because of loss out the ends from Coulomb collisions, i.e., classical losses. This low Q resulted in 77% of the gross electrical power being used to power the injectors, thereby causing the net power cost to be high. The low Q stimulated an intensive search for Q-enhancement concepts, resulting in the LLL reactor design effort turning to the field reversal mirror and the tandem mirror, each having Q of order 5

  15. Study on a nuclear spaceship for interplanetary cruise. Core design of a small fast reactor

    International Nuclear Information System (INIS)

    Kitamura, Taku; Yoshida, Yutaka; Honma, Yuji; Narabayashi, Tadashi; Shimazu, Yoichiro; Tsuji, Masashi

    2009-01-01

    In 21st century, the field which needs nuclear power plant systems are not just on the Earth. We considered that the nuclear power is proper for the energy source of the manned spaceship for interplanetary cruise. In this study, we considered the system configuration of the spaceship, the design of power generating system, some navigational plans to reach the Mars. The system configuration of the spaceship studied in our laboratory has one or two Fast Reactor with liquid sodium coolant as main heat source, dozens of Stirling Engines as main power generators and some Plasma Rockets called VASIMR as propulsion system. Because the Fast Reactor need not thick and heavy pressure vessel and the sodium has high performance of heat transfer, they are the best suited to the space nuclear reactor system. In addition, Stirling Engine has high theoretical thermal efficiency and need not water, steam generators, steam condenser and so on. This results in absence of sodium-water reaction and significant weight saving of power generator system. The VASIMR studied at ASPL is an advanced electric propulsion device which is able to convert large amount of electric power into great propulsion force. At reactor designing, we are using the SRAC2006 code developed at JAEA and pursuing the optimal fast reactor design for spaceship. We think that smaller reactor is better. To realize a system which has inherent safety, sodium void reactivity should be negative. We adopted the design of the small fast reactor named 4S (Super Safe, Small and Simple) as a reference design. As a result, we verified that a void reactivity had negative value in some of calculation cases and we realized safe, small and simple space fast reactor. In addition, to piece out power generator system in space, we need to consider if the budget of exhaust heat from radiator panels to space needed at this case is realistic. To obtain the optimal trajectory of rapid Mars transit, we made some analysis calculation codes

  16. MARS, a new beamline for radioactive matter studies at SOLEIL

    International Nuclear Information System (INIS)

    Solari, Pier Lorenzo; Schlutig, Sandrine; Hermange, Herve; Sitaud, Bruno

    2009-01-01

    MARS (Multi Analyses on Radioactive Samples) beamline is the hard X-ray bending magnet beamline dedicated to the study of radioactive matter of the new French synchrotron SOLEIL. The beamline, which has been built thanks to a close partnership and support by the CEA, has been designed to provide X-rays in the energy range of 3.5 keV to 35 keV. This allows to encompass M and L absorption edges of actinides, as well as K edges of transition metals (that are present in alloys and fuel claddings) up to heavy halogens, rare gases and alkalis (fission products in nuclear fuels). The MARS project aims to extend the possibilities of synchrotron based X-ray characterizations towards a wider variety of radioactive elements and a wider variety of techniques than what is currently available at other facilities. Thus, its specific and innovative infrastructure has been optimized in order to carry out analyses on materials with activities up to 18.5 GBq per sample for α and β emitters and 2 GBq for γ and n emitters. So, today, more than 70 different elements and more than 350 different isotopes have been proposed for studies on the beamline by the involved user community. The arrangement of the different elements in the optics hutch is based on an original scheme which permits to have two alternative optical configurations (monochromatic or dispersive) depending on the nature of experiments to be performed. At least three main techniques are progressively being proposed on the three complementary end-stations located in the experimental hutch: transmission and high resolution powder diffraction (TXRD and HRXRD), standard and dispersive X-ray absorption spectroscopy (XAS and EDXAS) and X-ray fluorescence (XRF). In addition, by using the KB optics, a micro-focused beam will be available on the second station of the monochromatic branch. The beamline is currently under commissioning. The first two experimental stations, using the monochromatic branch, are scheduled to be

  17. Power reactor noise studies and applications

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, V

    2002-03-01

    The present thesis deals with the neutron noise arising in power reactor systems. Generally, it can be divided into two major parts: first, neutron noise diagnostics, or more specifically, novel methods and algorithms to monitor nuclear industrial reactors; and second, contributions to neutron noise theory as applied to power reactor systems. Neutron noise diagnostics is presented by two topics. The first one is a theoretical study on the possibility to use a newly proposed current-flux (C/F) detector in Pressurised Water Reactors (PWR) for the localisation of anomalies. The second topic concerns various methods to detect guide tube impacting in Boiling Water Reactors (BWR). The significance of these problems comes from the operational experience. The thesis describes a novel method to localise vibrating control rods in a PWR by using only one C/F detector. Another novel method, based on wavelet analysis, is put forward to detect impacting guide tubes in a BWR. Neutron noise theory is developed for both Accelerator Driven Systems (ADS) and traditional reactors. By design the accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and methods that have been developed for traditional reactors and also it poses a number of new problems. As for the latter, the thesis investigates the space-dependent neutron noise caused by a fluctuating source. It is shown that the frequency-dependent spatial behaviour exhibits some new properties that are different from those known in traditional critical systems. On the other hand, various reactor physics approximations (point kinetic, adiabatic etc.) have not been defined yet for the subcritical systems. In this respect the thesis presents a systematic formulation of the above mentioned approximations as well as investigations of their properties. Another important problem in neutron noise theory is the treatment of moving boundaries. In this case one

  18. Power reactor noise studies and applications

    International Nuclear Information System (INIS)

    Arzhanov, V.

    2002-03-01

    The present thesis deals with the neutron noise arising in power reactor systems. Generally, it can be divided into two major parts: first, neutron noise diagnostics, or more specifically, novel methods and algorithms to monitor nuclear industrial reactors; and second, contributions to neutron noise theory as applied to power reactor systems. Neutron noise diagnostics is presented by two topics. The first one is a theoretical study on the possibility to use a newly proposed current-flux (C/F) detector in Pressurised Water Reactors (PWR) for the localisation of anomalies. The second topic concerns various methods to detect guide tube impacting in Boiling Water Reactors (BWR). The significance of these problems comes from the operational experience. The thesis describes a novel method to localise vibrating control rods in a PWR by using only one C/F detector. Another novel method, based on wavelet analysis, is put forward to detect impacting guide tubes in a BWR. Neutron noise theory is developed for both Accelerator Driven Systems (ADS) and traditional reactors. By design the accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and methods that have been developed for traditional reactors and also it poses a number of new problems. As for the latter, the thesis investigates the space-dependent neutron noise caused by a fluctuating source. It is shown that the frequency-dependent spatial behaviour exhibits some new properties that are different from those known in traditional critical systems. On the other hand, various reactor physics approximations (point kinetic, adiabatic etc.) have not been defined yet for the subcritical systems. In this respect the thesis presents a systematic formulation of the above mentioned approximations as well as investigations of their properties. Another important problem in neutron noise theory is the treatment of moving boundaries. In this case one

  19. Studies on multivariate autoregressive analysis using synthesized reactor noise-like data for optimal modelling

    Energy Technology Data Exchange (ETDEWEB)

    Ciftcioglu, O.; Hoogenboom, J.E.; Dam, H. van

    1988-01-01

    Studies on the multivariate autoregressive (MAR) analysis are carried out for the choice of the parameters for modelling the data obtained from various sensors optimally. Accordingly, the roles of the parameters on the analysis results are identified and the related ambiguities are reduced. Experimental investigations are carried out by means of synthesized reactor noise-like data obtained from a digital simulator providing simulated stochastic signals of an operating nuclear reactor so that the simulator constitutes a favourable tool for the present studies aimed. As the system is well defined with its known structure, precise comparison of the MAR analysis results with the true values is performed. With the help of the information gained through the studies carried out, conditions to be taken care of for optimal signal processing in MAR modelling are determined. Although the parameters involved are related among themselves and they have to be given different values suitable for the particular application in hand, some criteria, namely memory-time and sample length-time play an essential role in AR modelling and they are found to be applicable to each individual case commonly, for the establishment of the optimality.

  20. Studies on multivariate autoregressive analysis using synthesized reactor noise-like data for optimal modelling

    International Nuclear Information System (INIS)

    Ciftcioglu, O.

    1988-01-01

    Studies on the multivariate autoregressive (MAR) analysis are carried out for the choice of the parameters for modelling the data obtained from various sensors optimally. Accordingly, the roles of the parameters on the analysis results are identified and the related ambiguities are reduced. Experimental investigations are carried out by means of synthesized reactor noise-like data obtained from a digital simulator providing simulated stochastic signals of an operating nuclear reactor so that the simulator constitutes a favourable tool for the present studies aimed. As the system is well defined with its known structure, precise comparison of the MAR analysis results with the true values is performed. With the help of the information gained through the studies carried out, conditions to be taken care of for optimal signal processing in MAR modelling are determined. Although the parameters involved are related among themselves and they have to be given different values suitable for the particular application in hand, some criteria, namely memory-time and sample length-time play an essential role in AR modelling and they are found to be applicable to each individual case commonly, for the establishment of the optimality. (author)

  1. The ARIES tokamak fusion reactor study

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Bathke, C.G.; Krakowski, R.A.; Miller, R.L.; Beecraft, W.R.; Hogan, J.T.; Peng, Y.K.M.; Reid, R.L.; Strickler, D.J.; Whitson, J.C.; Blanchard, J.P.; Emmert, G.A.; Santarius, J.F.; Sviatoslavsky, I.N.; Wittenberg, L.J.

    1989-01-01

    The ARIES study is a community effort to develop several visions of the tokamak as fusion power reactors. The aims are to determine their potential economics, safety, and environmental features and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak in 2nd stability regime and employs both potential advances in the physics and expected advances in technology and engineering; and ARIES-III is a conceptual D 3 He reactor. This paper focuses on the ARIES-I design. Parametric systems studies show that the optimum 1st stability tokamak has relatively low plasma current (∼ 12 MA), high plasma aspect ratio (∼ 4-6), and high magnetic field (∼ 24 T at the coil). ARIES-I is 1,000 MWe (net) reactor with a plasma major radius of 6.5 m, a minor radius of 1.4 m, a neutron wall loading of about 2.8 MW/m 2 , and a mass power density of about 90 kWe/ton. The ARIES-I reactor operates at steady state using ICRF fast waves to drive current in the plasma core and lower-hybrid waves for edge-plasma current drive. The current-drive system supplements a significant (∼ 57%) bootstrap current contribution. The impurity control system is based on high-recycling poloidal divertors. Because of the high field and large Lorentz forces in the toroidal-field magnets, innovative approaches with high-strength materials and support structures are used. 24 refs., 4 figs., 1 tab

  2. A Study of Soil and Duricrust Models for Mars

    Science.gov (United States)

    Bishop, Janice L.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    This project includes analysis of the Mars Pathfinder soil data (spectral, chemical and magnetic) together with analog materials and the products of laboratory alteration experiments in order to describe possible mechanisms for the formation of soil, duricrust and rock coatings on Mars. Soil analog mixtures have been prepared, characterized and tested through wet/dry cycling experiments for changes in binding and spectroscopic properties that are related to what could be expected for duricrusts on Mars. The smectite-based mixture exhibited significantly greater changes (1) in its binding properties throughout the wet/dry cycling experiments than did the palagonite-based mixture, and (2) in its spectral properties following grinding and resieving of the hardened material than did the palagonite-based mixture.

  3. Vibrations measurement in fast and PWR reactor study

    International Nuclear Information System (INIS)

    Tigeot, Y.; Epstein, A.; Hareux, F.

    1975-01-01

    In the past severe damages have occured in several nuclear reactors, by structural vibrations induced by the primary cooling flow. To avoid this kind of troubles, the SEMT makes studies for two different types of reactors. For the light pressurized water reactors, some tests have been made on the SAFRAN test loop which is a three loop 1/8 scale internal model of a 900 MWe reactor. This study is actually undertaken jointly with Framatome. Elsewhere, measurements have been made on the Phenix fast breeder sodium reactor, and studies are planned for the Super Phenix reactor [fr

  4. Design studies of Tokamak power reactor in JAERI

    International Nuclear Information System (INIS)

    Tone, T.; Nishikawa, M.; Tanaka, Y.

    1985-01-01

    Recent design studies of tokamak power reactor and related activities conducted in JAERI are presented. A design study of the SPTR (Swimming-Pool Type Reactor) concept was carried out in FY81 and FY82. The reactor design studies in the last two years focus on nuclear components, heat transport and energy conversion systems. In parallel of design studies, tokamak systems analysis code is under development to evaluate reactor performances, cost and net energy balance

  5. Laser fusion hybrid reactor systems study

    International Nuclear Information System (INIS)

    1976-07-01

    The work was performed in three phases. The first phase included a review of the many possible laser-reactor-blanket combinations and resulted in the selection of a ''demonstration size'' 500 MWe plant for further study. A number of fast fission blankets using uranium metal, uranium-molybdenum alloy, and uranium carbide as fuel were investigated. The second phase included design of the reactor vessel and internals, heat transfer system, tritium processing system, and the balance of plant, excluding the laser building and equipment. A fuel management scheme was developed, safety considerations were reviewed, and capital and operating costs were estimated. Costs developed during the second phase were unexpectedly high, and a thorough review indicated considerable unit cost savings could be obtained by scaling the plant to a larger size. Accordingly, a third phase was added to the original scope, encompassing the redesign and scaling of the plant from 500 MWe to 1200 MWe

  6. The development of fast reactors in France from March 1980 to March 1981; Le developpement des reacteurs a neutrons rapides en France de mars 1980 a mars 1981

    Energy Technology Data Exchange (ETDEWEB)

    Vautrey, L. [Commissariat a l' Energie Atomique, CEN de Saclay, Gif-sur-Yvette (France)

    1981-05-15

    This paper describes general features concerning development in the field of fast reactors in France from March 1980 to March 1981. It concentrates mainly on: Rapsodie, Phenix NPP, prototype reactor Super Phenix 1, future fast reactor NPPs and current research and development programs in the field. The present situation is as follows. Rapsodie has restarted operation but at reduced power in July 1980 because of the problems in the primary circuit which have not yet been solved. Phenic operates in a very satisfactory manner. Construction of Super Phenix is continuing normally. Research activities are performed sometimes for the needs of Super Phenix and sometimes for the needs of future fast rector projects like Super Phenix 2. International cooperation is being continued.

  7. Study on Reactor Performance of Online Power Monitoring in PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Sabri Minhat

    2014-01-01

    The Reactor TRIGA PUSPATI (RTP) at Malaysia Nuclear Agency is a TRIGA Mark II type reactor and pool type cooled by natural circulation of light water. This paper describe on reactor performance of online power monitoring based on various parameter of reactor such as log power, linear power, period, Fuel and coolant temperature and reactivity parameter with using neutronic and other instrumentation system of reactor. Methodology of online power estimation and monitoring is to evaluate and analysis of reactor power which is important of reactor safety and control. Neutronic instrumentation system will use to estimate power measurement, differential of log and linear power and period during reactor operation .This study also focus on noise fluctuation from fission chamber during reactor operation .This work will present result of online power monitoring from RTP which indicated the safety parameter identification and initiate safety action on crossing the threshold set point trip. Conclude that optimization of online power monitoring will improved the reactor control and safety parameter of reactor during operation. (author)

  8. The TITAN reversed-field-pinch fusion reactor study

    International Nuclear Information System (INIS)

    1990-01-01

    This paper on titan plasma engineering contains papers on the following topics: reversed-field pinch as a fusion reactor; parametric systems studies; magnetics; burning-plasma simulations; plasma transient operations; current drive; and physics issues for compact RFP reactors

  9. Mars Atmospheric Conversion to Methane and Water: An Engineering Model of the Sabatier Reactor with Characterization of Ru/Al2O3 for Long Duration Use on Mars

    Science.gov (United States)

    Meier, Anne J.; Shah, Malay; Petersen, Elspeth; Hintze, Paul; Muscatello, Tony

    2017-01-01

    The Atmospheric Processing Module (APM) is a Mars In-Situ Resource Utilization (ISRU) technology designed to demonstrate conversion of the Martian atmosphere into methane and water. The Martian atmosphere consists of approximately 95 carbon dioxide (CO2) and residual argon and nitrogen. APM utilizes cryocoolers for CO2 acquisition from a simulated Martian atmosphere and pressure. The captured CO2 is sublimated and pressurized as a feedstock into the Sabatier reactor, which converts CO2 and hydrogen to methane and water. The Sabatier reaction occurs over a packed bed reactor filled with Ru/Al2O3 pellets. The long duration use of the APM system and catalyst was investigated for future scaling and failure limits. Failure of the catalyst was detected by gas chromatography and temperature sensors on the system. Following this, characterization and experimentation with the catalyst was carried out with analysis including x-ray photoelectron spectroscopy and scanning electron microscopy with elemental dispersive spectroscopy. This paper will discuss results of the catalyst performance, the overall APM Sabatier approach, as well as intrinsic catalyst considerations of the Sabatier reactor performance incorporated into a chemical model.

  10. Environment and safety: major goals for MARS

    International Nuclear Information System (INIS)

    Maninger, R.C.

    1983-01-01

    The Mirror Advanced Reactor Study (MARS) is a conceptual design study for a commercial fusion power reactor. One of the major goals of MARS is to develop design guidance so that fusion reactors can meet reasonable expectations for environmental health and safety. One of the first steps in the assessment of health and safety requirements was to examine what the guidelines might be for health and safety in disposal of radioactive wastes from fusion reactors. Then, using these quidelines as criteria, the impact of materials selection upon generation of radioactive wastes through neutron activation of structural materials was investigated. A conclusion of this work is that fusion power systems may need substantial engineering effort in new materials development and selection to meet the probable publicly acceptable levels of radioactivity for waste disposal in the future

  11. Astrobiology in the Field: Studying Mars by Analogue Expeditions on Earth

    Science.gov (United States)

    Conrad, Pamela G.

    2011-01-01

    We will present a strategy for how one prepares to engage in fieldwork on another planets by practicing in analogous environments on the Earth, including at Mono Lake. As an example, we will address the problem of how to study the habitability of an environment when you have no idea what kind of life might be there to exploit it. This will all be related to the upcoming launch of the Mars Science Laboratory to Mars in late November this year.

  12. Study of counter current flow limitation model of MARS-KS and SPACE codes under Dukler's air/water flooding test conditions

    International Nuclear Information System (INIS)

    Lee, Won Woong; Kim, Min Gil; Lee, Jeong Ik; Bang, Young Seok

    2015-01-01

    In particular, CCFL(the counter current flow limitation) occurs in components such as hot leg, downcomer annulus and steam generator inlet plenum during LOCA which is possible to have flows in two opposite directions. Therefore, CCFL is one of the thermal-hydraulic models which has significant effect on the reactor safety analysis code performance. In this study, the CCFL model will be evaluated with MARS-KS based on two-phase two-field governing equations and SPACE code based on two-phase three-field governing equations. This study will be conducted by comparing MARS-KS code which is being used for evaluating the safety of a Korean Nuclear Power Plant and SPACE code which is currently under assessment for evaluating the safety of the designed nuclear power plant. In this study, comparison of the results of liquid upflow and liquid downflow rate for different gas flow rate from two code to the famous Dukler's CCFL experimental data are presented. This study will be helpful to understand the difference between system analysis codes with different governing equations, models and correlations, and further improving the accuracy of system analysis codes. In the nuclear reactor system, CCFL is an important phenomenon for evaluating the safety of nuclear reactors. This is because CCFL phenomenon can limit injection of ECCS water when CCFL occurs in components such as hot leg, downcomer annulus or steam generator inlet plenum during LOCA which is possible to flow in two opposite directions. Therefore, CCFL is one of the thermal-hydraulic models which has significant effect on the reactor safety analysis code performance. In this study, the CCFL model was evaluated with MARS-KS and SPACE codes for studying the difference between system analysis codes with different governing equations, models and correlations. This study was conducted by comparing MARS-KS and SPACE code results of liquid upflow and liquid downflow rate for different gas flow rate to the famous Dukler

  13. Fusion-reactor physics and technology studies. Progress report, December 1, 1982-June 30, 1983

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Emmert, G.A.; Maynard, C.W.

    1983-01-01

    The work performed during the past fiscal year (1983) was directed almost entirely towards the MARS project. This tandem mirror reactor design study is due to be finished in September of 1983 and a final report will be issued at that time. The present report mainly covers progress made after the interim report and is meant to supplement information in UCRL-53333. The areas covered in this present report are: (1) blanket design improvements; (2) end cell neutronics; (3) RF heating systems; (4) economic optimization of blanket; (5) plasma startup; (6) Li 17 Pb 83 corrosion; (7) double walled steam generator analysis; and (8) tritium system

  14. Preliminary Study of 20 MWth Experiment Power Reactor based on Pebble Bed Reactor

    Science.gov (United States)

    Irwanto, Dwi; Permana, Sidik; Pramuditya, Syeilendra

    2017-07-01

    In this study, preliminary design calculations for experimental small power reactor (20 MWt) based on Pebble Bed Reactor (PBR) are performed. PBR technology chosen due to its advantages in neutronic and safety aspects. Several important parameters, such as fissile enrichment, number of fuel passes, burnup and effective multiplication factor are taken into account in the calculation to find neutronic characteristics of the present reactor design.

  15. FED/INTOR reactor design studies

    International Nuclear Information System (INIS)

    Brown, T.G.; Cramer, B.A.; Davisson, J.P.; Kunselman, M.H.; Reiersen, W.T.; Sager, P.H.; Strickler, D.J.

    1982-03-01

    Upon completing the design studies identified in this report, an overall assessment of the design options is made that will form the bases to define the configuration of the next major Tokamak device. The TF coil size will be defined, along with the vacuum boundary, the PF coil arrangement, and the torus configuration. After the configuration is established, an overall performance and cost re-assessment should be made to finally trade off device performance with machine capital and operating costs to establish a reactor design point for a given set of design requirements

  16. Feasibility study for fast reactor and related fuel cycle. Preliminary studies in 1998

    International Nuclear Information System (INIS)

    Hayafune, Hiroki; Enuma, Yasuhiro; Kubota, Kenichi; Yoshida, Masashi; Uno, Osamu; Ishikawa, Hiroyasu; Kobayashi, Jun; Umetsu, Youichiro; Ichimiya, Masakazu

    1999-10-01

    Prior to the feasibility study for fast reactors (FRs) starting from the 1999 fiscal year, planned in the medium and long-term program of JNC, preliminarily studies were performed on 'FR systems except sodium cooled MOX fueled reactors'. Small scale or module type reactors, heavy metal (Pb or Pb-Bi) cooled reactors, gas cooled reactors, light water cooled reactors, and molten salt reactors were studied on the basis of literature. They were evaluated from the viewpoint of the technical possibility (the structure integrity, earthquake resistance, safety, productivity, operability, maintenance repair, difficulty of the development), the long-term targets (market competitiveness as an energy system, utilization of uranium resources, reduction of radioactive waste, security of the non-proliferation), and developmental risk. As the result, the following concepts should be studied for future commercialized FRs. Small scale and module type reactor: Middle-sized reactor with an excellent economical efficiency. Small power reactor with a multipurpose design concept. Gas cooled reactor: CO2 gas cooled reactor, He gas cooled reactor. Heavy metal cooled reactor: Russian type lead cooled reactor. Light water cooled reactor: Light water cooled high converter reactor and super critical pressure light water cooled reactor. Molten salt reactor: Trichloride molten salt reactor which matches the U-Pu cycle. (author)

  17. Mars Pathfinder

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    First of NASA's Discovery missions. Launched in December 1996 and arrived at Mars on 4 July 1997. Mainly intended as a technology demonstration mission. Used airbags to cushion the landing on Mars. The Carl Sagan Memorial station returned images of an ancient flood plain in Ares Vallis. The 10 kg Sojourner rover used an x-ray spectrometer to study the composition of rocks and travelled about 100 ...

  18. Positron annihilation studies on structural materials for nuclear reactors

    International Nuclear Information System (INIS)

    Rajaraman, R.; Amarendra, G.; Sundar, C.S.

    2012-01-01

    Structural steels for nuclear reactors have renewed interest owing to the future advanced fission reactor design with increased burn-up goals as well as for fusion reactor applications. While modified austenitic steels continue to be the main cladding materials for fast breeder reactors, Ferritic/martensitic steels and oxide dispersion strengthened ferritic steels are the candidate materials for future reactors applications in India. Sensitivity and selectivity of positron annihilation spectroscopy to open volume type defects and nano clusters have been extensively utilized in studying reactor materials. We have recently reviewed the application of positron techniques to reactor structural steels. In this talk, we will present successful application of positron annihilation spectroscopy to probe various structural materials such as D9, ferritic/martensitic, oxide dispersion strengthened (ODS) steels and related model alloys, highlighting our recent studies. (author)

  19. Conceptual design study of small lead-bismuth cooled reactor

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka; Hori, Toru; Kida, Masanori; Konomura, Mamoru

    2004-11-01

    In phase 2 of the feasibility study of commercialized fast reactor cycle systems of JNC, we make a concept of a small sodium cooled reactor for a power source of a city with various requirements, such as, safety and economical competitiveness. various reactor concepts are surveyed and a tank type reactor whose intermediate heat exchanger and primary main pumps are arranged in series is selected. In this study, a compact long life core and a simple reactor structure designs are pursued. The core type is three regional Zr concentration with one Pu enrichment core, the reactor outlet temperature achieves 550degC and the reactor electric output increases from 150 MWe to 165 MWe. The construction cost is much higher than the economical goal in the case of FOAK. But the construction cost in the case of NOAK is estimated to be 85.6% achieving the economical goal. (author)

  20. Reference Mission Version 3.0 Addendum to the Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team. Addendum; 3.0

    Science.gov (United States)

    Drake, Bret G. (Editor)

    1998-01-01

    This Addendum to the Mars Reference Mission was developed as a companion document to the NASA Special Publication 6107, "Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team." It summarizes changes and updates to the Mars Reference Missions that were developed by the Exploration Office since the final draft of SP 6107 was printed in early 1999. The Reference Mission is a tool used by the exploration community to compare and evaluate approaches to mission and system concepts that could be used for human missions to Mars. It is intended to identify and clarify system drivers, significant sources of cost, performance, risk, and schedule variation. Several alternative scenarios, employing different technical approaches to solving mission and technology challenges, are discussed in this Addendum. Comparing alternative approaches provides the basis for continual improvement to technology investment plan and a general understanding of future human missions to Mars. The Addendum represents a snapshot of work in progress in support of planning for future human exploration missions through May 1998.

  1. Exploring Mars

    Science.gov (United States)

    Breuil, Stéphanie

    2016-04-01

    Mars is our neighbour planet and has always fascinated humans as it has been seen as a potential abode for life. Knowledge about Mars is huge and was constructed step by step through numerous missions. It could be difficult to describe these missions, the associated technology, the results, the questions they raise, that's why an activity is proposed, that directly interests students. Their production is presented in the poster. Step 1: The main Mars feature and the first Mars explorations using telescope are presented to students. It should be really interesting to present "Mars Canals" from Percival Lowell as it should also warn students against flawed interpretation. Moreover, this study has raised the big question about extra-terrestrial life on Mars for the first time. Using Google Mars is then a good way to show the huge knowledge we have on the planet and to introduce modern missions. Step 2: Students have to choose and describe one of the Mars mission from ESA and NASA. They should work in pairs. Web sites from ESA and NASA are available and the teacher makes sure the main missions will be studied. Step 3: Students have to collect different pieces of information about the mission - When? Which technology? What were the main results? What type of questions does it raise? They prepare an oral presentation in the form they want (role play, academic presentation, using a poster, PowerPoint). They also have to produce playing cards about the mission that could be put on a timeline. Step 4: As a conclusion, the different cards concerning different missions are mixed. Groups of students receive cards and they have to put them on a timeline as fast as possible. It is also possible to play the game "timeline".

  2. Habitability: Where to look for life? Halophilic habitats: Earth analogs to study Mars habitability

    Science.gov (United States)

    Gómez, F.; Rodríguez-Manfredi, J. A.; Rodríguez, N.; Fernández-Sampedro, M.; Caballero-Castrejón, F. J.; Amils, R.

    2012-08-01

    Oxidative stress, high radiation doses, low temperature and pressure are parameters which made Mars's surface adverse for life. Those conditions found on Mars surface are harsh conditions for life to deal with. Life, as we know it on Earth, needs several requirements for its establishment but, the only "sine qua nom" element is water. Extremophilic microorganisms widened the window of possibilities for life to develop in the universe, and as a consequence on Mars. Recently reported results in extreme environments indicate the possibility of presence of "oasys" for life in microniches due to water deliquescence in salts deposits. The compilation of data produced by the ongoing missions (Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Exploration Rover Opportunity) offers a completely different view from that reported by Viking missions: signs of an early wet Mars and rather recent volcanic activity. The discovery of important accumulations of sulfates, and the existence of iron minerals like jarosite, goethite and hematite in rocks of sedimentary origin has allowed specific terrestrial models related with this type of mineralogy to come into focus. Río Tinto (Southwestern Spain, Iberian Pyritic Belt) is an extreme acidic environment, product of the chemolithotrophic activity of microorganisms that thrive in the massive pyrite-rich deposits of the Iberian Pyritic Belt. The high concentration of ferric iron and sulfates, products of the metabolism of pyrite, generate a collection of minerals, mainly gypsum, jarosite, goethite and hematites, all of which have been detected in different regions of Mars. Some particular protective environments or elements could house organic molecules or the first bacterial life forms on Mars surface. Terrestrial analogs could help us to afford its comprehension. We are reporting here some preliminary studies about endolithic niches inside salt deposits used by phototrophs for taking advantage of sheltering particular light

  3. Joule-Heated Molten Regolith Electrolysis Reactor Concepts for Oxygen and Metals Production on the Moon and Mars

    Science.gov (United States)

    Sibille, Laurent; Dominques, Jesus A.

    2012-01-01

    The maturation of Molten Regolith Electrolysis (MRE) as a viable technology for oxygen and metals production on explored planets relies on the realization of the self-heating mode for the reactor. Joule heat generated during regolith electrolysis creates thermal energy that should be able to maintain the molten phase (similar to electrolytic Hall-Heroult process for aluminum production). Self-heating via Joule heating offers many advantages: (1) The regolith itself is the crucible material, it protects the vessel walls (2) Simplifies the engineering of the reactor (3) Reduces power consumption (no external heating) (4) Extends the longevity of the reactor. Predictive modeling is a tool chosen to perform dimensional analysis of a self-heating reactor: (1) Multiphysics modeling (COMSOL) was selected for Joule heat generation and heat transfer (2) Objective is to identify critical dimensions for first reactor prototype.

  4. Simulation of A Main Steam Line Break Accident Using the Coupled 'System Thermal-Hydraulics, 3D reactor Kinetics, and Hot Channel' Analysis Capability of MARS 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Jun; Chung, Bub Dong

    2005-09-15

    For realistic analysis of thermal-hydraulics (T-H) transients in light water reactors, KAERI has developed the best-estimate T-H system code, MARS. The code has been improved from the consolidated version of the RELAP5/MOD3 and COBRA-TF codes. Then, the MARS code was coupled with a three-dimensional (3-D) reactor kinetics code, MASTER. This coupled calculation feature, in conjunction with the existing hot channel analysis capabilities of the MARS and MASTER codes, allows for more realistic simulations of nuclear system transients. In this work, a main steam line break (MSLB) accident is simulated using the coupled 'system T-H, 3-D reactor kinetics, and hot channel analysis' feature of the MARS code. Two coupled calculations are performed for demonstration. First, a coupled calculation of the 'system T-H and 3-D reactor kinetics' with a refined core T-H nodalization is carried out to obtain global core power and local departure from nucleate boiling (DNB) ratio (DNBR) behaviors. Next, for a more accurate DNBR prediction, another coupled calculation with subchannel meshes for the hot channels is performed. The results of the coupled calculations are very reasonable and consistent so that these can be used to remove the excessive conservatism in the conventional safety analysis.

  5. Simulation of A Main Steam Line Break Accident Using the Coupled 'System Thermal-Hydraulics, 3D reactor Kinetics, and Hot Channel' Analysis Capability of MARS 3.0

    International Nuclear Information System (INIS)

    Jeong, Jae Jun; Chung, Bub Dong

    2005-09-01

    For realistic analysis of thermal-hydraulics (T-H) transients in light water reactors, KAERI has developed the best-estimate T-H system code, MARS. The code has been improved from the consolidated version of the RELAP5/MOD3 and COBRA-TF codes. Then, the MARS code was coupled with a three-dimensional (3-D) reactor kinetics code, MASTER. This coupled calculation feature, in conjunction with the existing hot channel analysis capabilities of the MARS and MASTER codes, allows for more realistic simulations of nuclear system transients. In this work, a main steam line break (MSLB) accident is simulated using the coupled 'system T-H, 3-D reactor kinetics, and hot channel analysis' feature of the MARS code. Two coupled calculations are performed for demonstration. First, a coupled calculation of the 'system T-H and 3-D reactor kinetics' with a refined core T-H nodalization is carried out to obtain global core power and local departure from nucleate boiling (DNB) ratio (DNBR) behaviors. Next, for a more accurate DNBR prediction, another coupled calculation with subchannel meshes for the hot channels is performed. The results of the coupled calculations are very reasonable and consistent so that these can be used to remove the excessive conservatism in the conventional safety analysis

  6. Neutronic study of the two french heavy water reactors

    International Nuclear Information System (INIS)

    Horowitz, J.

    1955-01-01

    The two french reactors - the reactor of Chatillon, named Zoe, and the reactor of Saclay - P2 - were the object of detailed neutronic studies which the main ideas are exposed in this report. These studies were mostly done by the Department of the Reactor Studies (D.E.P.). We have thus studied the distribution of neutronic fluxes; the factors influencing reactivity; the link between reactivity and divergence with the formula of Nordheim; the mean time life of neutrons; neutron spectra s of P2; the xenon effect; or the effect of the different adjustments of the plates and controls bar. (M.B.) [fr

  7. Tandem mirror reactor power balance studies

    International Nuclear Information System (INIS)

    Gorker, G.E.; Perkins, L.J.

    1985-01-01

    A tandem mirror reactor (TMR) power plant balance model has been developed and is now being used as a computer aid for performing parametric studies. End-cell power injection into the plasma and the physics thermal Q are used to determine the fusion power. About 80% of the fusion power is transferred by high-energy neutrons to the blanket modules and structures. The other 20% of the fusion power in the high-energy alpha particles is used to heat the deuterium-tritium (D-T) plasma. Most of the plasma-ionized particles transfer their energy to the halo dumps and direct converters. The plant efficiency is calculated for three different system cycles: (1) the pressurized water/saturated steam cycle; (2) the superheated steam cycle; and (3) the more complex superheat/reheat cycle. There is a signficiant improvement in plant efficiency as the electrical power multiplication factor and steam cycle efficiency increases

  8. Acceptable risk in reactor safety studies

    International Nuclear Information System (INIS)

    Benjamin, J.R.; Shinozuka, M.; Shah, H.C.

    1975-01-01

    Acceptable risk is defined in terms of its five basic parameters: the hazard or problem; the probability of occurrence; the consequence; the possible alternative actions; and the value system of the community or the society. The problem of consistency in design at a site and between differing sites is discussed and solutions are suggested. Techniques for consistent deterministic and probabilistic setting limits and design standards are illustrated using data from AEC Reactor Safety Study, WASH-1400. The influence of level of consequence is discussed and a general methodology for decision analysis in resource allocation problem is briefly introduced and illustrated. The concept of acceptable risk is put in a quantitative format that can be used by engineers and planners. Bayesian statistical methods are introduced to develop the methodologies

  9. Flow model study of 'Monju' reactor vessel

    International Nuclear Information System (INIS)

    Miyaguchi, Kimihide

    1980-01-01

    In the case of designing the structures in nuclear reactors, various problems to be considered regarding thermo-hydrodynamics exist, such as the distribution of flow quantity and the pressure loss in reactors and the thermal shock to inlet and outlet nozzles. In order to grasp the flow characteristics of coolant in reactors, the 1/2 scale model of the reactor structure of ''Monju'' was attached to the water flow testing facility in the Oarai Engineering Center, and the simulation experiment has been carried out. The flow characteristics in reactors clarified by experiment and analysis so far are the distribution of flow quantity between high and low pressure regions in reactors, the distribution of flow quantity among flow zones in respective regions of high and low pressure, the pressure loss in respective parts in reactors, the flow pattern and the mixing effect of coolant in upper and lower plenums, the effect of the twisting angle of inlet nozzles on the flow characteristics in lower plenums, the effect of internal cylinders on the flow characteristics in upper plenums and so on. On the basis of these test results, the improvement of the design of structures in reactors was made, and the confirmation test on the improved structures was carried out. The testing method, the calculation method, the test results and the reflection to the design of actual machines are described. (Kako, I.)

  10. Radioisotope tracer study in an aniline production reactor

    International Nuclear Information System (INIS)

    Pant, H.J.; Yelgoankar, V.N.; Mendhekar, G.N.

    1995-01-01

    A radioisotope tracer study was carried out in an aniline production reactor to investigate the cause of poor heat transfer from tube side to shell side in an aniline production (ANPO) reactor. The results of the study indicated that more than 50% of the shell volume was reduced due to deposition of the process material (i.e. fouling) on the shell walls and may be the cause of poor heat transfer in the reactor. (author). 2 refs., 2 figs

  11. Reactor parameters for European economic, safety and environmental studies

    International Nuclear Information System (INIS)

    Hancox, R.; Cooke, P.I.H.; Spears, W.R.

    1990-01-01

    Parameter sets for five 1200 MW e tokamak reactors were developed for the European Study Group on the Environmental, Safety-related and Economic Potential of Fusion Power, showing today's perception of the range of reactors likely to be available as a result of the Commission's fusion programme. On the basis of the cost of generating electricity, relative to a fission reactor, a reference set was chosen and endorsed by the Group for further studies including that on the environmental impact of fusion power. Key physics and technology parameters for the reference reactor are compared with values used in the ITER design, and with those from American studies. (author)

  12. The humanation of Mars

    Science.gov (United States)

    David, L. W.

    Early developments related to human excursions to Mars are examined, taking into account plans considered by von Braun, and the 'ambitious goal of a manned flight to Mars by the end of the century', proposed at the launch of Apollo 11. In response to public reaction, plans for manned flights to Mars in the immediate future were given up, and unmanned reconnaissance of Mars was continued. An investigation is conducted concerning the advantages of manned exploration of Mars in comparison to a study by unmanned space probes, and arguments regarding a justification for interplanetary flight to Mars are discussed. Attention is given to the possibility to consider Mars as a 'back-up' planet for preserving earth life, an international Mars expedition as a world peace project, the role of Mars in connection with resource utilization considerations, and questions of exploration ethics.

  13. Desalination of seawater with nuclear power reactors in cogeneration; Desalacion de agua de mar con reactores nucleares de potencia en cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Flores E, R M

    2004-07-01

    The growing demand for energy and hydraulic resources for satisfy the domestic, industrial, agricultural activities, etc. has wakened up the interest to carry out concerning investigations to study the diverse technologies guided to increase the available hydraulic resources, as well as to the search of alternatives of electric power generation, economic and socially profitable. In this sense the possible use of the nuclear energy is examined in cogeneration to obtain electricity and drinkable water for desalination of seawater. The technologies are analysed involved in the nuclear cogeneration (desalination technology, nuclear and desalination-nuclear joining) available in the world. At the same time it is exemplified the coupling of a nuclear reactor and a process of hybrid desalination that today in day the adult offers and economic advantages. Finally, the nuclear desalination is presented as a technical and economically viable solution in regions where necessities of drinkable water are had for the urban, agricultural consumption and industrial in great scale and that for local situations it is possible to satisfy it desalinating seawater. (Author)

  14. What Counts in After School? Findings from the Massachusetts Afterschool Research Study (MARS

    Directory of Open Access Journals (Sweden)

    Beth M. Miller

    2007-03-01

    Full Text Available This article discusses the Massachusetts Afterschool Research Study (MARS. Conducted during 2003-2005, MARS took an in-depth look at program structure and quality in 78 varied programs across Massachusetts, using data sources that included interviews with program directors, afterschool program site observations, school district student data, attendance data, and surveys with afterschool program staff, day school teachers, and afterschool program youth. The MARS study offers many useful insights into what afterschool programs look like, approaches to providing high quality experiences for youth, and the connections between high quality and improved outcomes for the young people attending these programs. The results may be useful to programs, policy makers, and others in the field by deepening our understanding of how youth participation leads to a variety of youth outcomes.

  15. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  16. Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors

    International Nuclear Information System (INIS)

    Fleischman, R.M.; Goldsmith, S.; Newman, D.F.; Trapp, T.J.; Spinrad, B.I.

    1981-09-01

    The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are too costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized

  17. Design study on small CANDLE reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sekimoto, H; Yan, M [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology (Japan)

    2007-07-01

    A new reactor burnup strategy CANDLE was proposed, where shapes of neutron flux, nuclide densities and power density distributions remain constant but move to an axial direction. Here important points are that the solid fuel is fixed at each position and that any movable burnup reactivity control mechanisms such as control rods are not required. This burnup strategy can derive many merits. The change of excess reactivity along burnup is theoretically zero, and shim rods will not be required for this reactor. The reactor becomes free from accidents induced by unexpected control rods withdrawal. The core characteristics, such as power feedback coefficients and power peaking factor, are not changed along burnup. Therefore, the operation of the reactor becomes much easier than the conventional reactors especially for high burnup reactors. The transportation and storage of replacing fuels become easy and safe, since they are free from criticality accidents. In our previous works it is appeared that application of this burnup strategy to neutron rich fast reactors makes excellent performances. Only natural or depleted uranium is required for the replacing fuels. The average burnup of the spent fuel is about 40% that is equivalent to 40% utilization of the natural uranium without the reprocessing and enrichment. This reactor can be realized for large reactor, since the neutron leakage becomes small and its neutron economy becomes improved. In the present paper we try to design small CANDLE reactor whose performance is similar to the large reactor by increasing its fuel volume ration of the core, since its performance is strongly required for local area usage. Small long life reactor is required for some local areas. Such a characteristic that only natural uranium is required after second core is also strong merit for this case. The core with 1.0 m radius, 2.0 m length can realize CANDLE burn-up with nitride (enriched N-15) natural uranium as fresh fuel. Lead-Bismuth is

  18. Design study on small CANDLE reactor

    International Nuclear Information System (INIS)

    Sekimoto, H.; Yan, M.

    2007-01-01

    A new reactor burnup strategy CANDLE was proposed, where shapes of neutron flux, nuclide densities and power density distributions remain constant but move to an axial direction. Here important points are that the solid fuel is fixed at each position and that any movable burnup reactivity control mechanisms such as control rods are not required. This burnup strategy can derive many merits. The change of excess reactivity along burnup is theoretically zero, and shim rods will not be required for this reactor. The reactor becomes free from accidents induced by unexpected control rods withdrawal. The core characteristics, such as power feedback coefficients and power peaking factor, are not changed along burnup. Therefore, the operation of the reactor becomes much easier than the conventional reactors especially for high burnup reactors. The transportation and storage of replacing fuels become easy and safe, since they are free from criticality accidents. In our previous works it is appeared that application of this burnup strategy to neutron rich fast reactors makes excellent performances. Only natural or depleted uranium is required for the replacing fuels. The average burnup of the spent fuel is about 40% that is equivalent to 40% utilization of the natural uranium without the reprocessing and enrichment. This reactor can be realized for large reactor, since the neutron leakage becomes small and its neutron economy becomes improved. In the present paper we try to design small CANDLE reactor whose performance is similar to the large reactor by increasing its fuel volume ration of the core, since its performance is strongly required for local area usage. Small long life reactor is required for some local areas. Such a characteristic that only natural uranium is required after second core is also strong merit for this case. The core with 1.0 m radius, 2.0 m length can realize CANDLE burn-up with nitride (enriched N-15) natural uranium as fresh fuel. Lead-Bismuth is

  19. A study of reactor vessel integrity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hoon [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Kim, Jong Kyung; Shin, Chang Ho; Seo, Bo Kyun [Hanyang Univ., Seoul (Korea, Republic of)

    1999-02-15

    The fast neutron fluence at the Reactor Pressure Vessel(RPV) of KNGR designed for 60 years lifetime was calculated by full-scope Monte Carlo simulation for reactor vessel integrity assessment. KNGR core geometry was modeled on a three-dimensional representation of the one-sixteenth of the reactor in-vessel component. Each fuel assemblies were modeled explicitly, and each fuel pins were axially divided into 5 segments. The maximum flux of 4.3 x 10{sup 10} neutrons/cm{sup 2}. sec at the RPV was obtained by tallying neutrons crossing the beltline of inner surface of the RPV.

  20. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  1. Mars Science Laboratory Launch-Arrival Space Study: A Pork Chop Plot Analysis

    Science.gov (United States)

    Cianciolo, Alicia Dwyer; Powell, Richard; Lockwood, Mary Kae

    2006-01-01

    Launch-Arrival, or "pork chop", plot analysis can provide mission designers with valuable information and insight into a specific launch and arrival space selected for a mission. The study begins with the array of entry states for each pair of selected Earth launch and Mars arrival dates, and nominal entry, descent and landing trajectories are simulated for each pair. Parameters of interest, such as maximum heat rate, are plotted in launch-arrival space. The plots help to quickly identify launch and arrival regions that are not feasible under current constraints or technology and also provide information as to what technologies may need to be developed to reach a desired region. This paper provides a discussion of the development, application, and results of a pork chop plot analysis to the Mars Science Laboratory mission. This technique is easily applicable to other missions at Mars and other destinations.

  2. Reactor vessel nozzle cracks: a photoelastic study

    International Nuclear Information System (INIS)

    Smith, C.W.

    1979-01-01

    A method consisting of a marriage between the ''frozen stress'' photoelastic approach and the local stress field equations of linear elastic fracture mechanics for estimating stress intensity factor distributions in three dimensional, finite cracked body problems is reviewed and extensions of the method are indicated. The method is then applied to the nuclear reactor vessel nozzle corner crack problem for both Intermediate Test Vessel and Boiling Water Reactor geometries. Results are compared with those of other investigators. 35 refs

  3. MARS Code in Linux Environment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Moon Kyu; Bae, Sung Won; Jung, Jae Joon; Chung, Bub Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    The two-phase system analysis code MARS has been incorporated into Linux system. The MARS code was originally developed based on the RELAP5/MOD3.2 and COBRA-TF. The 1-D module which evolved from RELAP5 alone could be applied for the whole NSSS system analysis. The 3-D module developed based on the COBRA-TF, however, could be applied for the analysis of the reactor core region where 3-D phenomena would be better treated. The MARS code also has several other code units that could be incorporated for more detailed analysis. The separate code units include containment analysis modules and 3-D kinetics module. These code modules could be optionally invoked to be coupled with the main MARS code. The containment code modules (CONTAIN and CONTEMPT), for example, could be utilized for the analysis of the plant containment phenomena in a coupled manner with the nuclear reactor system. The mass and energy interaction during the hypothetical coolant leakage accident could, thereby, be analyzed in a more realistic manner. In a similar way, 3-D kinetics could be incorporated for simulating the three dimensional reactor kinetic behavior, instead of using the built-in point kinetics model. The MARS code system, developed initially for the MS Windows environment, however, would not be adequate enough for the PC cluster system where multiple CPUs are available. When parallelism is to be eventually incorporated into the MARS code, MS Windows environment is not considered as an optimum platform. Linux environment, on the other hand, is generally being adopted as a preferred platform for the multiple codes executions as well as for the parallel application. In this study, MARS code has been modified for the adaptation of Linux platform. For the initial code modification, the Windows system specific features have been removed from the code. Since the coupling code module CONTAIN is originally in a form of dynamic load library (DLL) in the Windows system, a similar adaptation method

  4. MARS Code in Linux Environment

    International Nuclear Information System (INIS)

    Hwang, Moon Kyu; Bae, Sung Won; Jung, Jae Joon; Chung, Bub Dong

    2005-01-01

    The two-phase system analysis code MARS has been incorporated into Linux system. The MARS code was originally developed based on the RELAP5/MOD3.2 and COBRA-TF. The 1-D module which evolved from RELAP5 alone could be applied for the whole NSSS system analysis. The 3-D module developed based on the COBRA-TF, however, could be applied for the analysis of the reactor core region where 3-D phenomena would be better treated. The MARS code also has several other code units that could be incorporated for more detailed analysis. The separate code units include containment analysis modules and 3-D kinetics module. These code modules could be optionally invoked to be coupled with the main MARS code. The containment code modules (CONTAIN and CONTEMPT), for example, could be utilized for the analysis of the plant containment phenomena in a coupled manner with the nuclear reactor system. The mass and energy interaction during the hypothetical coolant leakage accident could, thereby, be analyzed in a more realistic manner. In a similar way, 3-D kinetics could be incorporated for simulating the three dimensional reactor kinetic behavior, instead of using the built-in point kinetics model. The MARS code system, developed initially for the MS Windows environment, however, would not be adequate enough for the PC cluster system where multiple CPUs are available. When parallelism is to be eventually incorporated into the MARS code, MS Windows environment is not considered as an optimum platform. Linux environment, on the other hand, is generally being adopted as a preferred platform for the multiple codes executions as well as for the parallel application. In this study, MARS code has been modified for the adaptation of Linux platform. For the initial code modification, the Windows system specific features have been removed from the code. Since the coupling code module CONTAIN is originally in a form of dynamic load library (DLL) in the Windows system, a similar adaptation method

  5. Experimental and numerical study of the mars pathfinder vehicle; Etude experimentale et numerique sur le mars pathfinder

    Energy Technology Data Exchange (ETDEWEB)

    Bur, R.; Benay, R.; Chanetz, B.; Galli, A.; Pot, T. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), Dept. Fundamental and Experimental Aerodynamics, 92 - Chatillon (France); Hollis, B.; Moss, J. [Aerothermodynamics Branch, NASA Langley Research Center Hampton, Virginia (United States)

    2002-07-01

    An experimental and numerical study on the Mars Pathfinder aero-shell vehicle has been carried out in the framework of an agreement between ONERA and NASA. The experimental work was performed in the ONERA R5Ch hypersonic wind tunnel. Flow-field visualizations and heat-flux measurements along the model have been obtained. Numerical simulations have been performed at ONERA with the RANS solver NASCA and at NASA with a DSMC code. The flow-field structure is correctly reproduced by both computations. The location of the bow shock is well predicted, as well as the expansion waves emanating from the end of the fore-body cone. Both computations also predict the same extension of the separation bubble in the base flow region of the model. Measured and calculated heat-flux distributions along the model have been compared. Both computations give similar results, excepted on the prediction of the heat-flux level on the after-body cone. But computations over-predict the measured heat-flux values on the fore-body and the sting of the model: the value of the stagnation point is overestimated of 28% and the averaged sting level of 35%. (authors)

  6. Joule-Heated Molten Regolith Electrolysis Reactor Concepts for Oxygen and Metals Production on the Moon and Mars

    Science.gov (United States)

    Sibille, Laurent; Dominguez, Jesus A.

    2012-01-01

    The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca. 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a Joule-heated (sometimes called 'self-heating') reactor in which the electrolytic currents generate enough Joule heat to create a molten bath. Solutions obtained by multiphysics modeling allow the identification of the critical dimensions of concept reactors.

  7. Liquid metal reactor/Pressurized water reactor plant comparison study

    International Nuclear Information System (INIS)

    Halverson, T.G.

    1986-01-01

    The selection between alternative electric power generating technologies is mainly based on their overall economics. Capital costs account for over 60% of the total busbar cost of nuclear plants. Estimates reported in the literature have shown capital cost ratios of LMRs to PWRs ranging from less than 1 to as high as 1.8. To reduce this range of uncertainty, the study selected a method for cataloging plant hardware and then performed comparisons using engineering judgment as to the anticipated and reasonable cost differences. The paper summarizes the resulting one-on-one comparisons of components, systems, and buildings and identifies the LMR-PWR similarities and differences which influence costs. The study leads to the conclusion that the capital cost of the most up-to-date large LMR design would be very close to that of the latest PWRs

  8. A Study on the Flow Characterization in the Reactor Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jung; Ko, Kwang Jeok; Kim, Sung Hwan; Kim, Min Gyu; Cho, Yeon Ho; Kim, Hyun Min [KEPCO Engineering and Construction Co. Ltd., Deajeon (Korea, Republic of)

    2016-10-15

    In this study, the flow characterization of the cooling air in reactor cavity nearby RCPSA has been analyzed by using a 3 dimensional model and the ANSYS CFX software in order to predict the Convective Heat Transfer Coefficient (CHTC) of the RCPSA. The Reactor Cavity is the annular space by the concrete structure, the Reactor Cavity Pool Seal Assembly (RCPSA), which consists of the welded steel and is designed to be installed between the RV and the refueling pool floor, and the Reactor Vessel (RV). For such reason, the RCPSA should be designed to provide the cooling air passage for ventilation to circulate high temperature air passing by the RV during the reactor operation. It means that the RCPSA is influenced by the convection of cooling air and the thermal expansion of the RV. Therefore, the flow characterization at the reactor cavity is one of the factors of the RCPSA design during the reactor operation. The flow distribution of the cooling air in reactor cavity nearby RCPSA has been analyzed using ANSYS CFX software to obtain the CHTC at surface of the RCPSA. 1) The temperature from the RV and the insulation is one of the critical factors for the thermal gradient of the cooling air and the CHTC in the reactor cavity. 2) The rapid change of the CHTC in inner region nearby inner and outer flexure is related to the geometry shape of the RCPSA and velocity of cooling air.

  9. Study on effects of development of reactor constant in fast reactor analysis

    International Nuclear Information System (INIS)

    Chiba, Gou

    2002-12-01

    Evaluation was carried out about an effect of development of the new generation reactor constant system that substitutes for the JFS library in fast reactor analysis. Analyzed cores were ZPPR in JUPITER critical experiment and several power reactor cores that were designed in the feasibility study. In the JUPITER analysis, large effects, over 10%, were observed in sodium void reactivity and sample Doppler reactivity. The former resulted from several factors, while the latter was due to an accurate of a resonance interaction effect between Doppler sample and core fuel. In the previous study, the effect had been evaluated in power reactor cores. The effect included an effect of corrosion of weighting spectrum because JFS-3-J3.2, which had been made with the incorrect weighting spectrum, was used in the evaluation. In the present study, JFS-3-J3.2R, which had been made with the correct weighting spectrum, was used. It was confirmed that the effect of development of reactor constant in power reactor was not as large as that in critical assembly. (author)

  10. Emotional energy, work self-efficacy, and perceived similarity during the Mars 520 study.

    Science.gov (United States)

    Solcová, Iva; Gushin, Vadim; Vinokhodova, Alla; Lukavský, Jirí

    2013-11-01

    The objective of the present research was to study the dynamics of changes in emotional energy, work self-efficacy and perceived similarity in the crew of the Mars 520 experimental study. The study comprised six volunteers, all men, between 27-38 yr of age (M = 32.16; SD = 4.99). The Mars 520 experimental study simulated all the elements of the proposed Mars mission that could be ground simulated, i.e., traveling to Mars, orbiting it, landing, and returning to Earth. During the simulation, measures of emotional energy, work self-efficacy, and perceived similarity were repeated every month. The data were analyzed using linear mixed effect models. Emotional energy, work self-efficacy, and perceived similarity gradually increased in the course of the simulation. There was no evidence for a so-called third quarter phenomenon (the most strenuous period of group isolation, psychologically, emotionally, and socially) in our data. On the contrary, work self-efficacy, emotional energy, and group cohesion (indexed here by the subject's perceived similarity to others) increased significantly in the course of the simulation, with the latter two variables showing positive growth in the group functioning.

  11. Studies in Phebus reactor of fuel behaviour upon LOCA conditions

    International Nuclear Information System (INIS)

    Manin, A.; Del Negro, R.; Reocreux, M.

    1980-09-01

    The fuel behaviour upon LOCA conditions is studied in an in-pile loop, in Phebus reactor. This paper presents: a short description of Phebus reactor; the current program (adjusting the thermohydraulic conditions in order to get cladding failure); the program developments (consequences involved by cladding failure); the fuel test conditions determination [fr

  12. Fast reactor physics at CEA: present studies and future prospects

    International Nuclear Information System (INIS)

    Hammer, P.

    1980-09-01

    This paper aims at giving a general survey of the fast reactor core physics and shielding studies wich are in progress at CEA (1979-1983) in order to solve the neutronic problems related to: - core design optimization, - reactor operation and fuel management, - safety, for the development of fast commercial breeders in France after the SUPER-PHENIX 1 construction is achieved

  13. Geology of Mars

    International Nuclear Information System (INIS)

    Soderblom, L.A.

    1988-01-01

    The geology of Mars and the results of the Mariner 4, 6/7, and 9 missions and the Viking mission are reviewed. The Mars chronology and geologic modification are examined, including chronological models for the inactive planet, the active planet, and crater flux. The importance of surface materials is discussed and a multispectral map of Mars is presented. Suggestions are given for further studies of the geology of Mars using the Viking data. 5 references

  14. Mars: The Viking Discoveries.

    Science.gov (United States)

    French, Bevan M.

    This booklet describes the results of NASA's Viking spacecraft on Mars. It is intended to be useful for the teacher of basic courses in earth science, space science, astronomy, physics, or geology, but is also of interest to the well-informed layman. Topics include why we should study Mars, how the Viking spacecraft works, the winds of Mars, the…

  15. Study on statistical analysis of nonlinear and nonstationary reactor noises

    International Nuclear Information System (INIS)

    Hayashi, Koji

    1993-03-01

    For the purpose of identification of nonlinear mechanism and diagnosis of nuclear reactor systems, analysis methods for nonlinear reactor noise have been studied. By adding newly developed approximate response function to GMDH, a conventional nonlinear identification method, a useful method for nonlinear spectral analysis and identification of nonlinear mechanism has been established. Measurement experiment and analysis were performed on the reactor power oscillation observed in the NSRR installed at the JAERI and the cause of the instability was clarified. Furthermore, the analysis and data recording methods for nonstationary noise have been studied. By improving the time resolution of instantaneous autoregressive spectrum, a method for monitoring and diagnosis of operational status of nuclear reactor has been established. A preprocessing system for recording of nonstationary reactor noise was developed and its usability was demonstrated through a measurement experiment. (author) 139 refs

  16. Contributions to safety studies for new concepts of nuclear reactors

    International Nuclear Information System (INIS)

    Perdu, F.

    2003-12-01

    The complete study of molten salt reactors, designed for a massive and durable nuclear energy production, must include neutronics, hydraulics and thermal effects. This coupled study, using the MCNP and Trio U codes, is undertaken in the case of the MSRE (molten salt reactor experiment) prototype. The obtained results fit very well the experiment. Their extrapolation suggests ways of improving the safety coefficients of power molten salt reactors. A second part is devoted to accelerator driven subcritical reactors, developed to incinerate radioactive waste.We propose a method to measure the prompt reactivity from the decay following a neutron pulse. It relies only on the distribution of times between generations, which is a characteristic of the reactor. This method is implemented on the results of the MUSE 4 experiment, and the obtained reactivity is accurate within 5%. (author)

  17. Study on secondary shutdown systems in Tehran research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, H.R.; Fadaei, A.H., E-mail: Fadaei_amir@aut.ac.ir; Gharib, M.

    2015-09-15

    Highlights: • A study was undertaken to summarize the techniques for secondary shutdown systems (SSS). • Neutronic calculation performed for proposed systems as SSS. • Dumping the heavy water stored in the reflector vessel is capable to shut down reactor. • Neutronic and transient calculation was done for validating the selected SSS. • All calculation shown that this system has advantages in safety and neutron economy. - Abstract: One important safety aspect of any research reactor is the ability to shut down the reactor. Usually, research reactors, currently in operation, have a single shutdown system based on the simultaneous insertion of the all control rods into the reactor core through gravity. Nevertheless, the International Atomic Energy Agency currently recommends use of two shutdown systems which are fully independent from each other to guarantee secure shutdown when one of them fails. This work presents an investigative study into secondary shutdown systems, which will be an important safety component in the research reactor and will provide another alternative way to shut down the reactor emergently. As part of this project, a study was undertaken to summarize the techniques that are currently used at world-wide research reactors for recognizing available techniques to consider in research reactors. Removal of the reflector, removal of the fuels, change in critical shape of reactor core and insertion of neutron absorber between the core and reflector are selected as possible techniques in mentioned function. In the next step, a comparison is performed for these methods from neutronic aspects. Then, chosen method is studied from the transient behavior point of view. Tehran research reactor which is a 5 MW open-pool reactor selected as a case study and all calculations are carried out for it. It has 5 control rods which serve the purpose of both reactivity control and shutdown of reactor under abnormal condition. Results indicated that heavy

  18. RETRAN sensitivity studies of light water reactor transients. Final report

    International Nuclear Information System (INIS)

    Burrell, N.S.; Gose, G.C.; Harrison, J.F.; Sawtelle, G.R.

    1977-06-01

    This report presents the results of sensitivity studies performed using the RETRAN/RELAP4 transient analysis code to identify critical parameters and models which influence light water reactor transient predictions. Various plant transients for both boiling water reactors and pressurized water reactors are examined. These studies represent the first detailed evaluation of the RETRAN/RELAP4 transient code capability in predicting a variety of plant transient responses. The wide range of transients analyzed in conjunction with the parameter and modeling studies performed identify several sensitive areas as well as areas requiring future study and model development

  19. Human Aspects and Habitat Studies from EuroGeoMars Campaign

    Science.gov (United States)

    Boche-Sauvan, L.; Pletser, V.; Foing, B. H.; Eurogeomars Team

    2009-04-01

    Introduction: In a human space mission, the human factor is one of the dominant aspects, which may strongly influence work results and efficiency. To quantify such a difficult and uncontrollable aspect of space missions, it is necessary to reproduce as exactly as possible the environmental and technical conditions in which astronauts may be confronted: limited re-sources, social interactions in an isolated and cramped area… We will take the benefit of the EuroGeoMars campaign in the Mars Desert Research Station (MDRS, Mars Society) in Utah to observe and measure these characteristics. EuroGeoMars campaign: The EuroGeoMars team aims at assessing the development of scientific protocols and techniques in geology and biology research in planetary conditions. In this framework, MRDS simulation constitutes its main achievement. The scientific investigations conducted in MRDS are expected to provide valuable results, beyond the simple reflection on how managing planetary specific conditions. Nevertheless, the different scientific protocols, even tailored for extreme environmental conditions, require an exhaustive analysis to evaluate how the results and their timing may possibly be affected. MDRS: The MDRS habitat will demand the crew members to work in a cramped environment, surrounded by dust and very limited manpower. Moreover, energy power and communication bandwidth will be limited to the crew members. Human aspects and habitat studies: The crewmember will work in an uncomfortable environment in the habitat: dust, cramping and crowd. Moreover, the sustainibility of the mission will relie on an optimal energy and ressources sharing. This will impose a planification of the different investigating activities. The study of the human aspects and habitat will be performed in terms of impact on scientific and technical tasks rather than in terms of crew's comfort. As any astronaut will previously be aware of the daily condition, we want to improve the working conditions

  20. Poloidal field distribution studies in tokamak reactor

    International Nuclear Information System (INIS)

    Ueda, Kojyu; Nishio, Satoshi; Fujisawa, Noboru; Sugihara, Masayoshi; Saito, Seiji

    1983-01-01

    On the design studies with the INTOR plasma equilibrium and poloidal field coil configuration (PFCC) from the Phase I to the Phase II A have been obtained the following main results. Three optimized PFCCs have been obtained: the INTOR-J ''Universal'' with the optimized PFCC for the divertor configuration, the optimized PFCC for the pump limiter, and the INTOR ''Universal'' with the PFCC defined as the INTOR reference. These PFCCs satisfy with the requirements for the porthole size for the remote assembly and maintenance of the device, and the maximum flux swing and current densities of the solenoidal coils. The INTOR-J ''Universal'' will be almost the same as the INTOR ''Universal'' in the reactor size. But the optimized PFCC for the pump limiter will be a little larger than the above two configuration because of being in need of slightly larger radii on the two large coils if the plasma with 1.5 in elongation is unconditionally necessary. The total sum of absolute currents with PFCC, which is used as a parameter for its figure of merit, is found to be given in a range of 80 -- 90 MAT at high beta for the divertor configuration for both of the INTOR-J ''Universal'' and the INTOR ''Universal''. The optimized PFCC for pump limiter has 70 -- 80 MAT in its range. The INTOR-J ''Universal'' and the INTOR ''Universal'' for the pump limiter will have its larger sum than one optimized for pump limiter by several MAT. The ''EF only'' method, where the flux, psi sub(P), necessary for maintaining the plasma current on high beta is provided only by EF coils, seems to give the total sum a little less than the ''EF + OH'' method using EF and OH coils for psi sub(P). (J.P.N.)

  1. Steady-state spheromak reactor studies

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Hagenson, R.L.

    1985-01-01

    After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design points is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported

  2. Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates

    Science.gov (United States)

    Wang, A.; Freeman, J.J.; Jolliff, B.L.; Chou, I.-Ming

    2006-01-01

    The martian orbital and landed surface missions, OMEGA on Mar Express and the two Mars Explorations Rovers, respectively, have yielded evidence pointing to the presence of magnesium sulfates on the martian surface. In situ identification of the hydration states of magnesium sulfates, as well as the hydration states of other Ca- and Fe- sulfates, will be crucial in future landed missions on Mars in order to advance our knowledge of the hydrologic history of Mars as well as the potential for hosting life on Mars. Raman spectroscopy is a technique well-suited for landed missions on the martian surface. In this paper, we report a systematic study of the Raman spectra of the hydrates of magnesium sulfate. Characteristic and distinct Raman spectral patterns were observed for each of the 11 distinct hydrates of magnesium sulfates, crystalline and non-crystalline. The unique Raman spectral features along with the general tendency of the shift of the position of the sulfate ??1 band towards higher wavenumbers with a decrease in the degree of hydration allow in situ identification of these hydrated magnesium sulfates from the raw Raman spectra of mixtures. Using these Raman spectral features, we have started the study of the stability field of hydrated magnesium sulfates and the pathways of their transformations at various temperature and relative humidity conditions. In particular we report on the Raman spectrum of an amorphous hydrate of magnesium sulfate (MgSO4??2H2O) that may have specific relevance for the martian surface. ?? 2006 Elsevier Inc. All rights reserved.

  3. Wet Mars, Dry Mars

    Science.gov (United States)

    Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Yan, D.; Fricke, K. W.; Thrall, L.

    2012-12-01

    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and even give us clues to the atmospheric history of these planets. This poster highlights the third in a series of presentations that target school-age audiences with the overall goal of helping the audience visualize planetary magnetic field and understand how they can impact the climatic evolution of a planet. Our first presentation, "Goldilocks and the Three Planets," targeted to elementary school age audiences, focuses on the differences in the atmospheres of Venus, Earth, and Mars and the causes of the differences. The second presentation, "Lost on Mars (and Venus)," geared toward a middle school age audience, highlights the differences in the magnetic fields of these planets and what we can learn from these differences. Finally, in the third presentation, "Wet Mars, Dry Mars," targeted to high school age audiences and the focus of this poster, the emphasis is on the long term climatic affects of the presence or absence of a magnetic field using the contrasts between Earth and Mars. These presentations are given using visually engaging spherical displays in conjunction with hands-on activities and scientifically accurate 3D models of planetary magnetic fields. We will summarize the content of our presentations, discuss our lessons learned from evaluations, and show (pictures of) our hands-on activities and 3D models.

  4. A study of reactor neutrino monitoring at the experimental fast reactor JOYO

    International Nuclear Information System (INIS)

    Furuta, H.; Fukuda, Y.; Hara, T.; Haruna, T.; Ishihara, N.; Ishitsuka, M.; Ito, C.; Katsumata, M.; Kawasaki, T.; Konno, T.; Kuze, M.; Maeda, J.; Matsubara, T.; Miyata, H.; Nagasaka, Y.; Nitta, K.; Sakamoto, Y.; Suekane, F.; Sumiyoshi, T.; Tabata, H.

    2012-01-01

    We carried out a study of neutrino detection at the experimental fast reactor JOYO using a 0.76 tons gadolinium loaded liquid scintillator detector. The detector was set up on the ground level at 24.3 m from the JOYO reactor core of 140 MW thermal power. The measured neutrino event rate from reactor on-off comparison was 1.11±1.24(stat.)±0.46(syst.) events/day. Although the statistical significance of the measurement was not enough, backgrounds in such a compact detector at the ground level were studied in detail and MC simulations were found to describe the data well. A study for improvement of the detector for future such experiments is also shown.

  5. Design study on sodium-cooled large-scale reactor

    International Nuclear Information System (INIS)

    Shimakawa, Yoshio; Nibe, Nobuaki; Hori, Toru

    2002-05-01

    In Phase 1 of the 'Feasibility Study on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2 of the F/S, it is planed to precede a preliminary conceptual design of a sodium-cooled large-scale reactor based on the design of the advanced loop type reactor. Through the design study, it is intended to construct such a plant concept that can show its attraction and competitiveness as a commercialized reactor. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2001, which is the first year of Phase 2. In the JFY2001 design study, a plant concept has been constructed based on the design of the advanced loop type reactor, and fundamental specifications of main systems and components have been set. Furthermore, critical subjects related to safety, structural integrity, thermal hydraulics, operability, maintainability and economy have been examined and evaluated. As a result of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  6. Safety design study of fast breeder reactors in Japan

    International Nuclear Information System (INIS)

    Miura, M.; Inagaki, T.

    1992-01-01

    This paper reports on two fast breeder reactor (FBR) concepts, the tank type and the loop type, that have been studied as possible reactor designs to be used for a demonstration FBR (DFBR). The basic principle fo the DFBR design is to ensure plant safety through a defense-in-depth methodology. Improvements in the seismic and thermal stress designs have been attempted for both reactor concepts. The system design study strives to maximize the reliability of the safety-related systems and to rationalize commercialization of the plant

  7. Parametric design study of tandem mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1977-01-01

    The parametric design study of the tandem mirror reactor (TMR) is described. The results of this study illustrate the variation of reactor characteristics with changes in the independent design parameters, reveal the set of design parameters which minimizes the cost of the reactor, and show the sensitivity of the optimized design to physics and technological uncertainties. The total direct capital cost of an optimized 1000 MWe TMR is estimated to be $1300/kWe. The direct capital cost of a 2000 MWe plant is less than $1000/kWe

  8. Observations of CO on Mars with OMEGA/Mars Express: A Study of Local Variations over the Volcanoes

    Science.gov (United States)

    Encrenaz, T.; Drossart, P.; Fouchet, T.; Melchiorri, R.; Lellouch, E.; Combes, M.; Bibring, J.-P.; Moroz, V.; Ignatiev, N.; Forget, F.; OMEGA Team

    Spectra of Mars recorded with the OMEGA/Mars Express experiment have been used to retrieve information on the CO mixing ratio over the planet. By using simultaneously the CO (1-0) band at 4.7 microns and a weak CO2 band at 4.85 microns, we have inferred the CO mixing ratio in all regions where the thermal emission is dominent, i.e. where the surface temperature is maximum. These observations, in particular, indicate a significant depletion of the CO/CO2 ratio over Olympus Mons. This preliminary result seems to confirm the analysis performed by the ISM imaging spectrometer aboard the Phobos mission, which suggested a possible depletion of CO over the volcanoes (Rosenqvist et al., Icarus 98, 254, 1992). Implications of this result will be discussed.

  9. Fusion reactor control study. Volume 3. Tandem mirror reactors. Final report

    International Nuclear Information System (INIS)

    Chang, F.R.; DeCanio, F.; Fisher, J.L.; Madden, P.A.

    1982-03-01

    A study of the control requirements of the Tandem Mirror Reactor concept is reported. The study describes the development of a control simulator that is based upon a spatially averaged physics code of the reactor concept. The simulator portrays the evolution of the plasma through the complete reactor operating cycle; it includes models of the control and measurement system, thus allowing the exploration of various strategies for reactor control. Startup, shutdown, and control during the quasi-steady-state power producing phase were explored. Configurations are described which use a variety of control effectors including modulation of the refueling rate, beam current, and electron cyclotron resonance heating. Multivariable design techniques were used to design the control laws and compensators for the feedback controllers and presume the practical measurement of only a subset of the plasma and machine variables. Performance of the various controllers is explored using the nonlinear control simulator. Derivative control strategies using new or developed sensors and effectors appropriate to a power reactor environment are postulated, based upon the results of the control configurations tested. Research and development requirements for these controls are delineated

  10. Digital study of nuclear reactor instrument

    International Nuclear Information System (INIS)

    Lv Gongxiang; Yang Zhijun

    2006-01-01

    The paper introduces the design method of nuclear reactor's digital instrument developed by authors based on the AT89C52 single chip microcomputer. Also the instrument system hardware structure and software framework are given. The instrument apply DDC112 which is responsible for the measure of lower current. When designing the instrument system, anti-interference measure of software, especially hardware is considered seriously. (authors)

  11. Study of an hypothetical reactor meltdown accident for a 50 MW sub(th) fast reactor

    International Nuclear Information System (INIS)

    Azevedo, E.M. de.

    1983-01-01

    A melhodology for determining the energy released in hypothetical reactor meltdown accidents is presented. A numerical code was developed based upon the Nicholson method for a uniform and homogeneous reactor with spherical geometry. A comparative study with other know programs in the literature which use better approximations for small energy released, shows that the methodology used were compatible with those under comparison. Besides the influence of some parameters on the energy released, such as the initial power level and the prompt neutron lifetime was studied under this metodology and its result exhibitted. The Doppler effect was also analyzed and its influence on the energy released has been emphasized. (Author) [pt

  12. A Study on the Kinetic Characteristics of Transmutation Process Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Cho, Jae seon; Huh, Chang Wook; Kim, Doh Hyung [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    The purpose of this study is to examine the transient heat transfer characteristics of liquid mental as the coolant used in accelerator-driven transmutation process reactor which is related the disposal of high-level radioactive nuclide. At current stage, the accelerator-driven transmutation process is investigated as the most appropriate method among many transmutation process methods. In this study, previous research works are investigated especially about the thermal hydraulics and kinetic behavior of coolant material including heat transfer of coolant in transmutation process reactor. A study on the heat transfer characteristics of liquid metal is performed based on the thermal hydraulic kinetic characteristics of liquid metal reactor which uses liquid metal coolant. Based on this study, the most appropriate material for the coolant of transmutation reactor will be recommended. 53 refs., 15 tabs., 33 figs. (author)

  13. Study of the reactor relevance of the NET design concept

    International Nuclear Information System (INIS)

    Reynolds, P.; Worraker, W.J.

    1987-08-01

    The objective of the study was to explore the reactor relevance of NET, i.e. whether the technologies and design principles proposed for NET can be directly extrapolated to a demonstration power reactor (DEMO). The main areas of study were those near to the plasma, namely the divertor, first wall and tritium breeding blanket. Other aspects which were investigated were tritium permeation and recovery, reactor maintenance, afterheat and effects of disruptions. The principal results of the study are briefly presented; the details of the work are given in fourteen appendices. These appendices were selected for INIS and indexed separately. The overall conclusion of the study is that the NET design is only partly relevant to the design requirements of a DEMO reactor. (U.K.)

  14. Transient behaviour study program of research reactors fuel elements at the Hydra Pulse Reactor

    International Nuclear Information System (INIS)

    Khvostionov, V.E.; Egorenkov, P.M.; Malankin, P.V.

    2004-01-01

    Program on behavior study of research reactor Fuel Elements (FE) under transient regimes initiated by excessive reactivity insertion is being presented. Program would be realized at HYDRA pulse reactor at Russian Research Center 'Kurchatov Institute' (RRC 'K1'). HYDRA uses aqueous solution of uranyl sulfate (UO 2 SO 4 ) as a fuel. Up to 30 MJ of energy can be released inside the core during the single pulse, effective power pulse width varying from 2 to 10 ms. Reactor facility allows to investigate behaviour of FE consisting of different types of fuel composition, being developed according to Russian RERTR. First part of program is aimed at transient behaviour studying of FE MR, IRT-3M, WWR-M5 types containing meats based on dioxide uranium in aluminum matrix. Mentioned FEs use 90% and 36% enriched uranium. (author)

  15. Design study of ship based nuclear power reactor

    International Nuclear Information System (INIS)

    Su'ud, Zaki; Fitriyani, Dian

    2002-01-01

    Preliminary design study of ship based nuclear power reactors has been performed. In this study the results of thermohydraulics analysis is presented especially related to behaviour of ship motion in the sea. The reactors are basically lead-bismuth cooled fast power reactors using nitride fuels to enhance neutronics and safety performance. Some design modification are performed for feasibility of operation under sea wave movement. The system use loop type with relatively large coolant pipe above reactor core. The reactors does not use IHX, so that the heat from primary coolant system directly transferred to water-steam loop through steam generator. The reactors are capable to be operated in difference power level during night and noon. The reactors however can also be used totally or partially to produce clean water through desalination of sea water. Due to the influence of sea wave movement the analysis have to be performed in three dimensional analysis. The computation time for this analysis is speeded up using Parallel Virtual Machine (PVM) Based multi processor system

  16. Feasibility study of self sustaining capability on water cooled thorium reactors for different power reactors

    International Nuclear Information System (INIS)

    Permana, S.; Takaki, N.; Sekimoto, H.

    2007-01-01

    Thorium fuel cycle can maintain the sustainable system of the reactor for self sustaining system for future sustainable development in the world. Some characteristics of thorium cycle show some advantages in relation to higher breeding capability, higher performance of burn-up and more proliferation resistant. Several investigations was performed to improve the breeding capability which is essential for maintaining the fissile sustainability during reactor operation in thermal reactor such as Shippingport reactor and molten salt breeder reactor (MSBR) project. The preliminary study of breeding capability on water cooled thorium reactor has been investigated for various power output. The iterative calculation system is employed by coupling the equilibrium fuel cycle burn-up calculation and cell calculation of PIJ module of SRAC2000. In this calculation, 1238 fission products and 129 heavy nuclides are employed. In the cell calculation, 26 heavy metals and 66 fission products and 1 pseudo FP are employed. The employed nuclear data library was JENDL 3.2. The reactor is fueled by 2 33U-Th Oxide and it has used the light water coolant as moderator. Some characteristics such as conversion ratio and void reactivity coefficient performances are evaluated for the systems. The moderator to fuel ratio (MFR) values and average burnups are studied for survey parameter. The parametric survey for different power outputs are employed from 10 MWt to 3000 MWt for evaluating the some characteristics of core size and leakage effects to the spectra profile, required enrichment, breeding capability, fissile inventory condition, and void reactivity coefficient. Different power outputs are employed in order to evaluate its effect to the required enrichment for criticality, breeding capability, void reactivity and fissile inventory accumulation. The obtained value of the conversion ratios is evaluated by using the equilibrium atom composition. The conversion ratio is employed based on the

  17. Controllability studies for an advanced CANDU boiling light water reactor

    International Nuclear Information System (INIS)

    Lepp, R.M.; Hinds, H.W.

    1976-12-01

    Bulk controllability studies carried out as part of a conceptual design study of a 1200 MWe CANDU boiling-light-water reactor fuelled with U 235 - or Pu-enriched uranium oxide are outlined. The concept, the various models developed for its simulation on a hybrid computer and the perturbations used to test system controllability, are described. The results show that this concept will have better bulk controllability than similar CANDU-BLW reactors fuelled with natural uranium. (author)

  18. UK methods for studying fuel management in water moderated reactors

    International Nuclear Information System (INIS)

    Fayers, F.J.

    1970-10-01

    Current UK methods for studying fuel management and for predicting the reactor physics performance for both light and heavy water moderated power reactors are reviewed. Brief descriptions are given of the less costly computer codes used for initial assessment studies, and also the more elaborate programs associated with detailed evaluation are discussed. Some of the considerations influencing the accuracy of predictions are included with examples of various types of experimental confirmation. (author)

  19. Inertial-fusion-reactor studies at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Monsler, M.J.; Meier, W.R.

    1982-08-01

    We present results of our reactor studies for inertial-fusion energy production. Design studies of liquid-metal wall chambers have led to reactors that are remarkably simple in design, and that promise long life and low cost. Variants of the same basic design, called HYLIFE, can be used for electricity production, as a fissile-fuel factory, a dedicated tritium breeder, or hybrids of each

  20. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Science.gov (United States)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  1. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    International Nuclear Information System (INIS)

    Hamann, S.; Röpcke, J.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.

    2015-01-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH 4 , C 2 H 2 , HCN, and NH 3 ). With the help of OES, the rotational temperature of the screen plasma could be determined

  2. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J. [INP-Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Börner, K.; Burlacov, I.; Spies, H.-J. [TU Bergakademie Freiberg, Institute of Materials Engineering, Gustav-Zeuner-Str. 5, 09599 Freiberg (Germany); Strämke, M.; Strämke, S. [ELTRO GmbH, Arnold-Sommerfeld-Ring 3, 52499 Baesweiler (Germany)

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.

  3. Methods for studying fuel management in advanced gas cooled reactors

    International Nuclear Information System (INIS)

    Buckler, A.N.; Griggs, C.F.; Tyror, J.G.

    1971-07-01

    The methods used for studying fuel and absorber management problems in AGRs are described. The basis of the method is the use of ARGOSY lattice data in reactor calculations performed at successive time steps. These reactor calculations may be quite crude but for advanced design calculations a detailed channel-by-channel representation of the whole core is required. The main emphasis of the paper is in describing such an advanced approach - the ODYSSEUS-6 code. This code evaluates reactor power distributions as a function of time and uses the information to select refuelling moves and determine controller positions. (author)

  4. Study on gas-liquid loop reactors with annular bubbling

    International Nuclear Information System (INIS)

    Fei, L.M.; Wang, S.X.; Wu, X.Q.; Lu, D.W.

    1987-01-01

    Bubbling column with draft tube is one of nearly developed reactor. On the background of hydrocarbon oxidations and biochemical engineerings, it has been widely used in chemical industry due to the well characteristics of mass and heat transfer. In this paper, the characteristics of fluid flow, such as gas hold-up, backmixing and mass transfer referred to the liquid volume were measured in a gas-liquid loop reactor with annular bubbling. Different materials - water, alcohol and oi l- were used in the study in measuring the gas hold-up in the annular of the reactor

  5. FISS: a computer program for reactor systems studies

    International Nuclear Information System (INIS)

    Tamm, H.; Sherman, G.R.; Wright, J.H.; Nieman, R.E.

    1979-08-01

    ΣFISSΣ is a computer code for use in investigating alternative fuel cycle strategies for Canadian and world nuclear programs. The code performs a system simulation accounting for dynamic effects of growing nuclear systems. Facilities in the model include storage for irradiated fuel, mines, plants for enrichment, fuel fabrication, fuel reprocessing and heavy water, and reactors. FISS is particularly useful for comparing various reactor strategies and studying sensitivities of resource consumption, capital investment and energy costs with changes in fuel cycle parameters, reactor parameters and financial variables. (author)

  6. Hydrodynamic study of an internal airlift reactor for microalgae culture.

    Science.gov (United States)

    Rengel, Ana; Zoughaib, Assaad; Dron, Dominique; Clodic, Denis

    2012-01-01

    Internal airlift reactors are closed systems considered today for microalgae cultivation. Several works have studied their hydrodynamics but based on important solid concentrations, not with biomass concentrations usually found in microalgae cultures. In this study, an internal airlift reactor has been built and tested in order to clarify the hydrodynamics of this system, based on microalgae typical concentrations. A model is proposed taking into account the variation of air bubble velocity according to volumetric air flow rate injected into the system. A relationship between riser and downcomer gas holdups is established, which varied slightly with solids concentrations. The repartition of solids along the reactor resulted to be homogenous for the range of concentrations and volumetric air flow rate studied here. Liquid velocities increase with volumetric air flow rate, and they vary slightly when solids are added to the system. Finally, liquid circulation time found in each section of the reactor is in concordance with those employed in microalgae culture.

  7. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Kobayashi, Takeshi; Yamada, Masao; Mizoguchi, Tadanori

    1987-09-01

    This report describes the results of the reactor configuration/structure design for the fusion experimental reactor (FER) performed in FY 1986. The design was intended to meet the physical and engineering mission of the next step device which was decided by the subcommittee on the next step device of the nuclear fusion council. The objectives of the design study in FY 1986 are to advance and optimize the design concept of the last year because the recommendation of the subcommittee was basically the same as the design philosophy of the last year. Six candidate reactor configurations which correspond to options C ∼ D presented by the subcommittee were extensively examined. Consequently, ACS reactor (Advanced Option-C with Single Null Divertor) was selected as the reference configuration from viewpoints of technical risks and cost performance. Regarding the reactor structure, the following items were investigated intensively: minimization of reactor size, protection of first wall against plasma disruption, simplification of shield structure, reactor configuration which enables optimum arrangement of poloidal field coils. (author)

  8. Study of enzymatic reactors with microencapsulated lipase. Doctoral thesis. Estudo de reactores enzimaticos com lipase microencapsulada

    Energy Technology Data Exchange (ETDEWEB)

    de Franca Teixeira dos Prazeres, D.M.

    1992-10-01

    The work reports the development of a membrane reactor for the hydrolysis of triglycerides catalyzed by lipase B from Chromobacterium viscosum in AOT/isooctane reversed miceller system. In a preliminary phase the potential of the organic system was evaluated with comparative studies on the activity and stability of lipase B in aqueous media (emulsion) and in the alternative miceller media. A tubular ceramic membrane reactor with recirculation was selected for the olive oil hydrolysis in a reversed miceller system. The influence of the hydration degree, recirculation rate, AOT, olive oil and lipase concentration in the operation of the reactor were investigated in a batch mode. The hydration degree was identified as a critical parameter due to its influence in the separation process and in the kinetics of the reaction.

  9. Calculation of fundamental parameters for the dynamical study of TRIGA-3-Salazar reactor (Mixed reactor core)

    International Nuclear Information System (INIS)

    Viais J, J.

    1994-01-01

    Kinetic parameters for dynamic study of two different configurations, 8 and 9, both with standard fuel, 20% enrichment and Flip (Fuel Life Improvement Program with 70% enrichment) fuel, for TRIGA Mark-III reactor from Mexico Nuclear Center, are obtained. A calculation method using both WIMS-D4 and DTF-IV and DAC1 was established, to decide which of those two configurations has the best safety and operational conditions. Validation of this methodology is done by calculate those parameters for a reactor core with new standard fuel. Configuration 9 is recommended to be use. (Author)

  10. Trade Study of Multiple Thruster Options for the Mars Airplane Concept

    Science.gov (United States)

    Kuhl, Christopher A.; Gayle, Steven W.; Hunter, Craig A.; Kenney, Patrick S.; Scola, Salvatore; Paddock, David A.; Wright, Henry S.; Gasbarre, Joseph F.

    2009-01-01

    A trade study was performed at NASA Langley Research Center under the Planetary Airplane Risk Reduction (PARR) project (2004-2005) to examine the option of using multiple, smaller thrusters in place of a single large thruster on the Mars airplane concept with the goal to reduce overall cost, schedule, and technical risk. The 5-lbf (22N) thruster is a common reaction control thruster on many satellites. Thousands of these types of thrusters have been built and flown on numerous programs, including MILSTAR and Intelsat VI. This study has examined the use of three 22N thrusters for the Mars airplane propulsion system and compared the results to those of the baseline single thruster system.

  11. Overview of the reactor safety study consequence model

    International Nuclear Information System (INIS)

    Wall, I.B.; Yaniv, S.S.; Blond, R.M.; McGrath, P.E.; Church, H.W.; Wayland, J.R.

    1977-01-01

    The Reactor Safety Study (WASH-1400) is a comprehensive assessment of the potential risk to the public from accidents in light water power reactors. The engineering analysis of the plants is described in detail in the Reactor Safety Study: it provides an estimate of the probability versus magnitude of the release of radioactive material. The consequence model, which is the subject of this paper, describes the progression of the postulated accident after the release of the radioactive material from the containment. A brief discussion of the manner in which the consequence calculations are performed is presented. The emphasis in the description is on the models and data that differ significantly from those previously used for these types of assessments. The results of the risk calculations for 100 light water power reactors are summarized

  12. Comparative study of cost models for tokamak DEMO fusion reactors

    International Nuclear Information System (INIS)

    Oishi, Tetsutarou; Yamazaki, Kozo; Arimoto, Hideki; Ban, Kanae; Kondo, Takuya; Tobita, Kenji; Goto, Takuya

    2012-01-01

    Cost evaluation analysis of the tokamak-type demonstration reactor DEMO using the PEC (physics-engineering-cost) system code is underway to establish a cost evaluation model for the DEMO reactor design. As a reference case, a DEMO reactor with reference to the SSTR (steady state tokamak reactor) was designed using PEC code. The calculated total capital cost was in the same order of that proposed previously in cost evaluation studies for the SSTR. Design parameter scanning analysis and multi regression analysis illustrated the effect of parameters on the total capital cost. The capital cost was predicted to be inside the range of several thousands of M$s in this study. (author)

  13. Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study

    Science.gov (United States)

    Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.

    2018-04-01

    1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.

  14. Studies for reactor containment at Narora

    International Nuclear Information System (INIS)

    Kurien, M.Z.

    1975-01-01

    The primary reactor containment at Narora has the unusual function of also carrying the heavy boilers (heat exchangers) and providing a flat work surface over the roof. The site being in a seismically active region, certain conflicting requirements in regard to ideal conditions to resist and analyse functional loads and seismic loads have to be reconciled. Alternative schemes are proposed and the stress flow for each major loading case examined and their consequent relative advantages discussed. Problems at the joints and functions are examined and the implications of various arrangements are reviewed. Suggestions to reduce the magnitude of the problems are tentatively proposed. (author)

  15. Experimental Equipment for Physics Studies in the Aagesta Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bernander, G; Blomberg, P E; Dubois, P O

    1967-03-15

    Comprehensive physics measurements were carried out in connection with the start up of the Agesta reactor. For this purpose special experimental equipment was constructed and installed in the reactor. Parts of this were indispensable and/or time-saving for the reactivity control during the core build-up period and during the first criticality studies. This report gives mainly a detailed description of the experimental equipment used, but also the relevant physics background and the experience gained during the performance.

  16. SOLASE conceptual laser fusion reactor study

    International Nuclear Information System (INIS)

    Moses, G.A.; Conn, R.W.; Abdel-Khalik, S.I.; Cooper, G.W.; Howard, J.; Magelssen, G.R.

    1978-01-01

    A conceptual laser fusion reactor for electric power, SOLASE, has been designed. The SOLASE design utilizes a 1 MJ, 6.7% efficient laser to implode 20 fusion targets per second. The target gain is 150 and produces a net electrical power of 1000 MW. The reactor cavity is spherical with a 6 m radius. The first wall is graphite and has a neutron wall loading of 5 MW/m 2 . It is protected from the target debris by low pressure xenon gas that is introduced into the cavity. The blanket structure is a honeycombed graphite composite. The tritium breeding and heat transport medium is Li 2 O in the form of pellets that flow through the blanket. The tritium breeding ration is 1.34. Temperature decoupling of the graphite structure and the Li 2 O coolant enables the structure to operate at temperatures that minimize radiation damage effects. The graphite blanket is replaced every year but exhibits low levels of radioactivity so that limited hands on maintenance is possible two weeks after shutdown, thus facilitating rapid replacement

  17. Microstructural studies of carbides in MAR-M247 nickel-based superalloy

    Science.gov (United States)

    Szczotok, A.; Rodak, K.

    2012-05-01

    Carbides play an important role in the strengthening of microstructures of nickel-based superalloys. Grain boundary carbides prevent or retard grain-boundary sliding and make the grain boundary stronger. Carbides can also tie up certain elements that would otherwise promote phase instability during service. Various types of carbides are possible in the microstructure of nickel-based superalloys, depending on the superalloy composition and processing. In this paper, scanning electron and scanning transmission electron microscopy studies of carbides occurring in the microstructure of polycrystalline MAR-M247 nickel-based superalloy were carried out. In the present work, MC and M23C6 carbides in the MAR-M247 microstructure were examined.

  18. Mars Exploration Study Workshop II. Report of a workshop, Ames Research Center, Moffett Field, CA (USA), 24 - 25 May 1993.

    Science.gov (United States)

    Duke, M. B.; Budden, N. A.

    1993-11-01

    This report, which summarizes the Mars Exploration Study Workshop II, provides an overview of the status of the Mars Exploration Study, material presented at the workshop, and discussions of open items being addressed by the study team. The workshop assembled three teams of experts to discuss cost, dual-use technology, and international involvement, and to generate a working group white paper addressing these issues.

  19. Studies of Life on Earth are Important for Mars Exploration

    Science.gov (United States)

    DesMarais, D. J.

    1998-01-01

    The search for evidence of the early martian environment and a martian biosphere is benefitted by diverse studies of life on Earth. Most fundamentally, origin-of-life research highlights the challenge in formulating a rigorous definition of life. Because such definitions typically list several of life's most basic properties, they also help to define those observable features that distinguish life and thus might be sought through telescopes, spacecraft, and analyses of extraterrestrial samples. Studies of prebiotic chemistry also help by defining the range of environments and processes that sustain prebiotic organic synthesis. These studies might indicate if and where prebiotic processes occur today on Earth and elsewhere. Such studies should also help to identify which localities are good candidates for the origin of life. A better understanding of the most fundamental principles by which molecules are assembled into living systems will help us to appreciate possible alternatives to the path followed by life on Earth. These perspectives will sharpen our ability to recognize exotic life and/or those environments that can sustain it.

  20. Calibration OGSE for a multichannel radiometer for Mars atmosphere studies

    Science.gov (United States)

    Jiménez, J. J.; Álvarez, F. J.; Gonzalez-Guerrero, M.; Apéstigue, V.; Martin, I.; Fernández, J. M.; Fernán, A. A.; Arruego, I.

    2017-09-01

    This work describes several OGSEs (Optical Ground Support Equipment) developed by INTA (Spanish Institute of Aerospace Technology - Instituto Nacional de Técnica Aeroespacial) for the calibration and characterization of their self-manufactured multichannel radiometers (Solar Irradiance Sensors - SIS) for planetary atmospheric studies in the frame of some Martian missions at which INTA is participating.

  1. Conceptual design study on inertial confinement reactor ''SENRI-II''

    International Nuclear Information System (INIS)

    Nakamura, N.; Ouura, H.

    1983-01-01

    Design features of a laser fusion reactor concept SENRI-II are reviewed and discussed. A conceptual design study of the ICF reactor SENRI-II (an advanced design of SENRI-I) has been carried out over 2 years in the Research Committee of ICF Reactors, Institute of Laser Engineering, Osaka University. While the ICF reactor SENRI-I utilized a magnetic field to guide and control an inner liquid lithium flow, SENRI-II is designed to use porous metal as the liquid lithium flow guide. In the design of SENRI-II, a metal porous lithium blanket serves as the protection of a wall against fusion products and as wall per se. Because of the separation of these two functions, a high power density can be attained

  2. Fusion reactor design studies: standard accounts for cost estimates

    International Nuclear Information System (INIS)

    Schulte, S.C.; Willke, T.L.; Young, J.R.

    1978-05-01

    The fusion reactor design studies--standard accounts for cost estimates provides a common format from which to assess the economic character of magnetically confined fusion reactor design concepts. The format will aid designers in the preparation of design concept costs estimates and also provide policymakers with a tool to assist in appraising which design concept may be economically promising. The format sets forth a categorization and accounting procedure to be used when estimating fusion reactor busbar energy cost that can be easily and consistently applied. Reasons for developing the procedure, explanations of the procedure, justifications for assumptions made in the procedure, and the applicability of the procedure are described in this document. Adherence to the format when evaluating prospective fusion reactor design concepts will result in the identification of the more promising design concepts thus enabling the fusion power alternatives with better economic potential to be quickly and efficiently developed

  3. Reactors

    DEFF Research Database (Denmark)

    Shah, Vivek; Vaz Salles, Marcos António

    2018-01-01

    The requirements for OLTP database systems are becoming ever more demanding. Domains such as finance and computer games increasingly mandate that developers be able to encode complex application logic and control transaction latencies in in-memory databases. At the same time, infrastructure...... engineers in these domains need to experiment with and deploy OLTP database architectures that ensure application scalability and maximize resource utilization in modern machines. In this paper, we propose a relational actor programming model for in-memory databases as a novel, holistic approach towards......-level function calls. In contrast to classic transactional models, however, reactors allow developers to take advantage of intra-transaction parallelism and state encapsulation in their applications to reduce latency and improve locality. Moreover, reactors enable a new degree of flexibility in database...

  4. Conceptual Study for development of a low power research reactor

    International Nuclear Information System (INIS)

    Park, C.; Kim, H. S.; Park, J. H.; Chae, H. T.; Lee, B. C.

    2013-01-01

    Even though the nuclear society is again facing with difficult situations after Fukusima accident, some countries still continues to consider nuclear power as one option of national energy sources and to introduce nuclear energy. As a research reactor has been regarded as a step-stone to establish infrastructures for the nuclear power development program, some countries that have plan to introduce the nuclear power energy are considering to construct a research reactor. Particularly, a low power research reactor whose main purpose is basic researches on the nuclear technology and education/training would be of interest to developing countries when taking the economy and level of science and technology into consideration. And many low power research reactors at operation are obsolescent and their numbers are decreasing. Hence, some concepts on a low power research reactor are being studied for the future needs. This paper presents the conceptual study on the basic requirements and the preliminary design features of a low power research reactor

  5. Preliminary design studies on the Broad Application Test Reactor

    International Nuclear Information System (INIS)

    Terry, W.J.; Terry, W.K.; Ryskamp, J.M.; Jahshan, S.N.; Fletcher, C.D.; Moore, R.L.; Leyse, C.F.; Ottewitte, E.H.; Motloch, C.G.; Lacy, J.M.

    1992-08-01

    This report describes progress made at the Idaho National Engineering Laboratory during the first three quarters of Fiscal Year (FY) 1992 on the Laboratory-Directed Research and Development (LDRD) project to perform preliminary design studies on the Broad Application Test Reactor (BATR). This work builds on the FY-92 BATR studies, which identified anticipated mission and safety requirements for BATR and assessed a variety of reactor concepts for their potential capability to meet those requirements. The main accomplishment of the FY-92 BATR program is the development of baseline reactor configurations for the two conventional conceptual test reactors recommended in the FY-91 report. Much of the present report consists of descriptions and neutronics and thermohydraulics analyses of these baseline configurations. In addition, we considered reactor safety issues, compared the consequences of steam explosions for alternative conventional fuel types, explored a Molten Chloride Fast Reactor concept as an alternate BATR design, and examined strategies for the reduction of operating costs. Work planned for the last quarter of FY-92 is discussed, and recommendations for future work are also presented

  6. Design study of 'HIBLIC-I' reactor cavity

    International Nuclear Information System (INIS)

    Fujiie, Y.

    1984-01-01

    A preliminary conceptual design of a reactor cavity for HIBLIC-1, a heavy ion fusion reactor system, was carried out. Design efforts have been concentrated mainly on the feasibility study of the physical scenario adopted and also on the system integration of the structures and components into a compact reactor cavity. The design features of the reactor are a compact reactor cavity, maximum coolant temperature up to 500 deg C, the protection of the sacrificial wall and cavity wall from radiation, the protection of the sacrificial wall from the pressure transient due to rapid heating, the selection of a ferritic steel HT-9 as the structural material and impurity control, and tritium breeding and recovery. The purpose of this paper is to describe the outline of the reactor cavity design of HIBLIC-1. The objectives of the preliminary conceptual design were to propose the idea and concept in order to constitute the physical scenario without contradiction and to find out the critical and fundamental problems to be studied in future. The cavity configuration and dynamics, tritium breeding and radiation damage, the behavior of a structural material in liquid lithium and tritium recovery are reported. (Kako, I.)

  7. Preliminary Study of Potential Market for Small Reactors

    International Nuclear Information System (INIS)

    Minato, A.; Brown, N. W.

    2008-01-01

    Small reactors are an energy supply for a specific purpose and oriented for a different market than large reactors. Small reactors will provide a local solution for developed and developing countries, such as, in remote areas, on small grids, or for non-electricity applications such as, district heating, seawater desalination and process heat. Single or medium sized power stations with small reactors should be compared with single fissile or renewable energy source and not be compared with large reactors. CRIEPI and LLNL have studied the business opportunities for small reactors. The small reactor concept is planned for initial use in small remote communities and in developing countries with small power distribution grid. Rapid installation and simple operation of the small plants is intended to support use in these communities without requiring development of a substantial nuclear technology infrastructure. In this study, two approaches were used in the assessment of the potential market. The first approach took a global look at the need for small nuclear plants. Then selected countries and sites were identified based on countries expressing interest in small reactors to the IAEA and consideration of sites in the US and Japan. (1) Tunisia, Mexico, Indonesia, Uruguay, Egypt and Argentina have demonstrated interest in nuclear power. Selecting one of these is dependent on political and socioeconomic factors, some of which have been identified, that require direct interaction with the countries to establish if they represent real opportunities. (2) The states of Hawaii and Alaska in the United States have high power cost and remote or island communities that may benefit from small nuclear plants. Alaska has shown greater interest in power alternatives including small than Hawaii and there is clearly less public resistance to nuclear power in Alaska. (3) The countries in Central America are actively expanding their power grids but have not demonstrated great interest

  8. Nuclear propulsion tradeoffs for manned Mars missions

    International Nuclear Information System (INIS)

    Walton, L.A.; Malloy, J.D.

    1991-01-01

    A conjunction class split/sprint manned Mars exploration mission was studied to evaluate tradeoffs in performance characteristics of nuclear thermal rockets. A Particle Bed Reactor-based nuclear thermal rocket was found to offer a 38% to 52% total mass savings compared with a NERVA-based nuclear thermal rocket for this mission. This advantage is primarily due to the higher thrust-to-weight ratio of the Particle Bed Reactor nuclear rocket. The mission is enabled by nuclear thermal rockets. It cannot be performed practically using chemical propulsion

  9. A Wind Tunnel Study on the Mars Pathfinder (MPF) Lander Descent Pressure Sensor

    Science.gov (United States)

    Soriano, J. Francisco; Coquilla, Rachael V.; Wilson, Gregory R.; Seiff, Alvin; Rivell, Tomas

    2001-01-01

    The primary focus of this study was to determine the accuracy of the Mars Pathfinder lander local pressure readings in accordance with the actual ambient atmospheric pressures of Mars during parachute descent. In order to obtain good measurements, the plane of the lander pressure sensor opening should ideally be situated so that it is parallel to the freestream. However, due to two unfavorable conditions, the sensor was positioned in locations where correction factors are required. One of these disadvantages is due to the fact that the parachute attachment point rotated the lander's center of gravity forcing the location of the pressure sensor opening to be off tangent to the freestream. The second and most troublesome factor was that the lander descends with slight oscillations that could vary the amplitude of the sensor readings. In order to accurately map the correction factors required at each sensor position, an experiment simulating the lander descent was conducted in the Martian Surface Wind Tunnel at NASA Ames Research Center. Using a 115 scale model at Earth ambient pressures, the test settings provided the necessary Reynolds number conditions in which the actual lander was possibly subjected to during the descent. In the analysis and results of this experiment, the readings from the lander sensor were converted to the form of pressure coefficients. With a contour map of pressure coefficients at each lander oscillatory position, this report will provide a guideline to determine the correction factors required for the Mars Pathfinder lander descent pressure sensor readings.

  10. Parameter study toward economical magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Yoshida, Tomoaki; Okano, Kunihiko; Nanahara, Toshiya; Hatayama, Akiyoshi; Yamaji, Kenji; Takuma, Tadashi.

    1996-01-01

    Although the R and D of nuclear fusion reactors has made a steady progress as seen in ITER project, it has become of little doubt that fusion power reactors require hugeness and enormous amount of construction cost as well as surmounting the physics and engineering difficulties. Therefore, it is one of the essential issues to investigate the prospect of realizing fusion power reactors. In this report we investigated the effects of physics and engineering improvements on the economics of ITER-like steady state tokamak fusion reactors using our tokamak system and costing analysis code. With the results of this study, we considered what is the most significant factor for realizing economical competitive fusion reactors. The results show that with the conventional TF coil maximum field (12T), physics progress in β-value (or Troyon coefficient) has the most considerable effect on the reduction of fusion plant COE (Cost of Electricity) while the achievement of H factor = 2-3 and neutron wall load =∼5MW/m 2 is necessary. The results also show that with the improvement of TF coil maximum field, reactors with a high aspect ratio are economically advantageous because of low plasma current driving power while the improvement of current density in the conductors and yield strength of support structures is indispensable. (author)

  11. Space reactor electric systems: system integration studies, Phase 1 report

    International Nuclear Information System (INIS)

    Anderson, R.V.; Bost, D.; Determan, W.R.; Harty, R.B.; Katz, B.; Keshishian, V.; Lillie, A.F.; Thomson, W.B.

    1983-01-01

    This report presents the results of preliminary space reactor electric system integration studies performed by Rockwell International's Energy Systems Group (ESG). The preliminary studies investigated a broad range of reactor electric system concepts for powers of 25 and 100 KWe. The purpose of the studies was to provide timely system information of suitable accuracy to support ongoing mission planning activities. The preliminary system studies were performed by assembling the five different subsystems that are used in a system: the reactor, the shielding, the primary heat transport, the power conversion-processing, and the heat rejection subsystems. The subsystem data in this report were largely based on Rockwell's recently prepared Subsystem Technology Assessment Report. Nine generic types of reactor subsystems were used in these system studies. Several levels of technology were used for each type of reactor subsystem. Seven generic types of power conversion-processing subsystems were used, and several levels of technology were again used for each type. In addition, various types and levels of technology were used for the shielding, primary heat transport, and heat rejection subsystems. A total of 60 systems were studied

  12. Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Jin; Chung, Bub Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures.

  13. Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS

    International Nuclear Information System (INIS)

    Lee, Young Jin; Chung, Bub Dong

    2004-01-01

    MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures

  14. Conceptual design studies of experimental and demonstration fusion reactors

    International Nuclear Information System (INIS)

    1978-01-01

    Since 1973 the FINTOR Group has been involved in conceptual design studies of TOKAMAK-type fusion reactors to precede the construction of a prototype power reactor plant. FINTOR-1 was the first conceptual design aimed at investigating the main physics and engineering constraints on a minimum-size (both dimensions and thermal power) tokamak experimental reactor. The required plasma energy confinement time as evaluated by various power balance models was compared with the values resulting from different transport models. For the reference design, an energy confinement time ten times smaller than neoclassical was assumed. This also implied a rather high (thermally stable) working temperature (above 20 keV) for the reactor. Other relevant points of the design were: circular plasma cross section, single-null axisymmetric divertor; lithium breeder, stainless steel structures, helium coolant; modular blanket and shield structure; copper-stabilized, superconducting Nb-Ti toroidal field and divertor coils; vertical field and transformer coils inside the toroidal coils; vacuum-tight containment vessel. Solutions involving air and iron transformer cores were compared. These assumptions led to a minimum size reactor with a thermal power of about 100MW and rather large dimensions (major radius of about 9m) similar to those of full-scale power reactors considered in other conceptual studies. The FINTOR-1 analysis was completed by the end of 1976. In 1977 a conceptual design of a Demonstration Power Reactor Plant (FINTOR-D) was started. In this study the main working assumptions differing from those of FINTOR-1 are: non-circular plasma cross section; plasma confinement compatible with trapped ion instabilities; cold (gas) blanket sufficient for wall protection (no divertor); wall loading between 1-3MW/m 2 and thermal power of a few GW. (author)

  15. Meteorological aspects of the reactor safety study requiring further study

    International Nuclear Information System (INIS)

    Slinn, W.G.N.

    1981-01-01

    Simple and approximate methods are used in a search for meteorological features that dominate estimates of reactor-accident consequences, and that require more accurate descriptions if consequence estimates are to be more realistic. By considering variations in the source term, it is seen that accidents involving containment-vessel failure dominate both the mean and variance of the distribution of consequences, although this conclusion is subject to uncertainties about plume rise. Research is recommended on the behavior of horizontal, sonic jets, with heat transfer to the ground, and especially during stable atmospheric conditions. Diffusion with fumigation and lofting require further study; use of K-theory and National Weather Service data should be vigorously pursued. Conditional upon an accident occurring, precipitation scavenging appears to dominate the variance of the consequences

  16. Study of gravity waves propagation in the thermosphere of Mars based on MAVEN/NGIMS density measurements

    Science.gov (United States)

    Vals, M.

    2017-09-01

    We use MAVEN/NGIMS CO2 density measurements to analyse gravity waves in the thermosphere of Mars. In particular the seasonal/latitudinal variability of their amplitude is studied and interpreted. Key background parameters controlling the activity of gravity waves are analysed with the help of the Mars Climate Database (MCD). Gravity waves activity presents a good anti-correlation to the temperature variability retrieved from the MCD. An analysis at pressure levels is ongoing.

  17. French studies and research program in pressurized water reactor safety

    International Nuclear Information System (INIS)

    Duco, J.

    1986-06-01

    The aim of researches developed now in France on water reactor safety is to obtain means and knowledge allowing to control accidental situations, including severe situations beyond design basis accidents. The main studies and researches concerning water reactors and described in this report are the following ones: core cooling accident and prevention of severe accidents, fuel behavior in accidental situation, behavior of the containment building, fission product transfer and releases in case of accident, problems related to equipment aging, and, methodology of risk analysis and ''human factor'' studies. Most of these studies follow an analytic approach of phenomena [fr

  18. A study of passive safety conditions for fast reactor core

    International Nuclear Information System (INIS)

    Shimizu, Akinao

    1991-01-01

    A study has been made for passive safety conditions of fast reactor cores. Objective of the study is to develop a concept of a core with passive safety as well as a simple safety philosophy. A simple safety philosophy, which is wore easy to explain to the public, is needed to enhance the public acceptance for nuclear reactors. The present paper describes a conceptual plan of the study including the definition of the problem a method of approach and identification of tasks to be solved

  19. Flow Reactor for studying Physicochemical and aging properties of SOA

    Science.gov (United States)

    Babar, Z. B.

    2016-12-01

    Secondary organic aerosols (SOA) have importance in environmental processes such as affecting earth's radiative balance and cloud formation processes. For studying SOA formation large scale environmental batch reactors and laboratory scale flow reactors have been used. In this study application of flow reactor to study physicochemical properties of SOA is also investigated after its characterization. The flow reactor is of cylindrical design (ID 15 cm x L 70 cm) equipped with UV lamps. It is coupled with various instruments such as scanning mobility particle sizer, NOx analyzer, ozone analyzer, VOC analyzer, hygrometer, and temperature sensors for gas and particle phase measurements. OH radicals were generated by custom build ozone generator and relative humidity. The following characterizations were performed: (1) residence time distribution (RTD) measurements, (2) RH and temperature control, (3) OH radical exposure range (atmospheric aging time), (4) gas phase oxidation of SOA precursors such as α-pinene by OH radical. The flow reactor yielded narrow RTDs. In particular, RH and temperature can be controlled effectively between 0-60% and 22-43oC, respectively. OH radical exposure ranges from 6.49x1010 to 3.68x1011 molecules/cm3s (0.49 to 4.91 days). Our initial efforts on OH radical generation using hydrogen peroxide and its quantification by using flourescenet technique will be also be presented.

  20. Electrical power systems for Mars

    Science.gov (United States)

    Giudici, Robert J.

    1986-01-01

    Electrical power system options for Mars Manned Modules and Mars Surface Bases were evaluated for both near-term and advanced performance potential. The power system options investigated for the Mission Modules include photovoltaics, solar thermal, nuclear reactor, and isotope power systems. Options discussed for Mars Bases include the above options with the addition of a brief discussion of open loop energy conversion of Mars resources, including utilization of wind, subsurface thermal gradients, and super oxides. Electrical power requirements for Mission Modules were estimated for three basic approaches: as a function of crew size; as a function of electric propulsion; and as a function of transmission of power from an orbiter to the surface of Mars via laser or radio frequency. Mars Base power requirements were assumed to be determined by production facilities that make resources available for follow-on missions leading to the establishment of a permanently manned Base. Requirements include the production of buffer gas and propellant production plants.

  1. Feasibility study on the thorium fueled boiling water breeder reactor

    International Nuclear Information System (INIS)

    PetrusTakaki, N.

    2012-01-01

    The feasibility of (Th,U)O 2 fueled, boiling water breeder reactor based on conventional BWR technology has been studied. In order to determine the potential use of water cooled thorium reactor as a competitive breeder, this study evaluated criticality, breeding and void reactivity coefficient in response to changes made in MFR and fissile enrichments. The result of the study shows that while using light water as moderator, low moderator to fuel volume ratio (MFR=0.5), it was possible to breed fissile fuel in negative void reactivity condition. However the burnup value was lower than the value of the current LWR. On the other hand, heavy water cooled reactor shows relatively wider feasible breeding region, which lead into possibility of designing a core having better neutronic and economic performance than light water with negative void reactivity coefficient. (authors)

  2. Study on operational aspect of natural circulation HLMC reactor (1)

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Cahalan, J.E.; Spencer, B.W.

    2000-08-01

    The concept of a heavy liquid metal cooled fast reactor that achieves 100% natural circulation heat removal from the core has the potential to attain improved cost competitiveness through extreme simplification, proliferation resistance, and heightened passive safety. The concept offers the potential for simplifications in plant control strategies wherein inherent reactor feedbacks may restore balance between energy release and heat removal from the reactor during operation as well as providing passive reactivity shutdown in the event of transients involving failure to scram. This study was initiated to evaluate the operational characteristics of the 100% natural circulation reactor under normal and transient states using a plant dynamics analysis computer code and to seek design and operational optimization of the concept. In the current Phase I of the project, the stage for the overall study has been prepared. A coupled thermal hydraulics-kinetics plant dynamics analysis code has been developed/modified that has the capabilities to calculate operational and accident transients. Code input has been prepared for the heavy liquid metal cooled natural circulation reactor concept. A preliminary analysis using the plant dynamics code and its input to calculate three illustrative cases relevant to initial startup, shutdown following long-term operation, and change in turbine load demonstrates the capability to analyze typical transient cases. (author)

  3. System design study of small lead-bismuth cooled reactor

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka; Hori, Toru; Konomura, Mamoru

    2003-07-01

    In phase II of the feasibility study of JNC, we will make a concept of a dispersion power source reactor with various requirements, such as economical competitiveness and safety. In the study of a small lead-bismuth cooled reactor, a concept whose features are long life core, inherent safety, natural convection of cooling system and steam generators in the reactor vessel has been designed since 2000. The investigations which have been done in 2002 are shown as follows; Safety analysis of UTOP considering uncertainty of reactivity. Possibility of reduction of number of control rods. Estimation of construction cost. Transient analyses of UTOP have been done in considering uncertainty of reactivity in order to show the inherent safety in the probabilistic method. And the inherent safety in UTOP is realized under the condition of considering uncertainty. Transient analyses of UTOP with various numbers of control rods have been done and it is suggested that there is possibility of reduction of the number of control rods considering accident managements. The method of cost estimation is a little modified. The cost of reactor vessel is estimated from that of medium sized lead-bismuth cooled reactor and the estimation of a purity control system is by coolant volume flow rate. The construction cost is estimated 850,000yen/kWe. (author)

  4. CRL research reactor diesel generator reliability study 1960 - 1992

    International Nuclear Information System (INIS)

    Winfield, D.J.; McCauley, G.M.

    1994-07-01

    A data base has been provided for the Chalk River Laboratories (CRL) research reactor diesel generator reliability, for use in risk assessment studies of CRL research reactors. Data from 1960 to end of 1992 have been collected, representing 358 diesel generator years of experience. The data is used to provide failure-to-start probabilities and failure-to-run rates. Data is also classified according to subsystem failures, multiple failures and common cause failures. Comparisons with other recent studies of nuclear power plant diesel generator reliability have been made. This revision updates the 1989 September report. (author). 14 refs., 13 tabs., 10 figs

  5. CRNL research reactor diesel generator reliability study 1960-1985

    International Nuclear Information System (INIS)

    Winfield, D.J.

    1989-09-01

    A data base has been provided for the CRNL research reactor diesel generator reliability, for use in risk assessment studies of CRNL research reactors. Data from 1960 to the present have been collected, representing 281 diesel generator years of experience. The data is used to provide failure-to-start probabilities and failure-to-run rates. Data is also classified according to subsystem failures, multiple failures and common cause failures. Comparisons with other recent studies of nuclear power plant diesel generator reliability have been made

  6. Neutronic study of a nuclear reactor of fused salts

    International Nuclear Information System (INIS)

    Garcia B, F. B.; Francois L, J. L.

    2012-10-01

    The reactors of fused salts called Molten Salt Reactor have presented a resurgence of interest in the last decade, due to they have a versatility in particular to operate, either with a thermal or fast neutrons spectrum. The most active development was by the middle of 1950 and principles of 1970 in the Oak Ridge National Laboratory. In this work some developed models are presented particularly and studied with the help of the MCNPX code, for the development of the neutronic study of this reactor, starting of proposed models and from a simple and homogeneous geometry until other more complex models and approximate to more real cases. In particular the geometry conditions and criticality of each model were analyzed, the isotopic balance, as well as the concentrations of the salts and different assigned fuel types. (Author)

  7. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Saito, Ryusei; Kashihara, Shin-ichiro; Itoh, Shin-ichi

    1987-08-01

    This report describes the results of conceptual design study on plant systems for the Fusion Experimental Reactor (FY86 FER). Design studies for FER plant systems have been continued from FY85, especially for design modifications made in accordance with revisions of plasma scaling parameters and system improvements. This report describes 1) system construction, 2) site and reactor building plan, 3) repaire and maintenance system, 4) tritium circulation system, 5) heating, ventilation and air conditioning system, 6) tritium clean-up system, 7) cooling and baking system, 8) waste treatment and storage system, 9) control system, 10) electric power system, 11) site factory plan, all of which are a part of FY86 design work. The plant systems described in this report generally have been based on the FY86 FER (ACS Reactor) which is an one of the six candidates for FER. (author)

  8. Reliabitity study of the accumulator system for Angra-1 reactor

    International Nuclear Information System (INIS)

    Santos Maciel, C.C.R.

    1980-01-01

    The realibility of the Accumulator System of Angra 1 reactor is studied. The fault tree techniques is use for identification and evaluation of the probability of occurrence of the possible failure modes of the system. The study has as a guide the report WASH 1400 in which the analysis of the reliability of a Tipical PWR reactor of USA. Comparisons between results obtained for Accumulator System of Angra 1 and that published in the report WASH 1400 for the Accumulator System of the Typical Reactor are done. Critiques to the methodology used in the reportd WASH 1400 and an analysis of the sensitivity of the system in relation with its components are also done. (author) [pt

  9. ELMO Bumpy Torus Reactor and power plant: conceptual design study

    International Nuclear Information System (INIS)

    Bathke, C.G.; Dudziak, D.J.; Krakowski, R.A.

    1981-08-01

    A complete power plant design of a 1200-MWe ELMO Bumpy Torus Reactor (EBTR) is presented. An emphasis is placed on those features that are unique to the EBT confinement concept, with subsystems and balance-of-plant items that are more generic to magnetic fusion being adapted from past, more extensive tokamak reactor designs. Similar to the latter tokamak studies, this conceptual EBTR design also emphasizes the use of conventional or near state-of-the-art engineering technology and materials. An emphasis is also placed on system accessibility, reliability, and maintainability, as these crucial and desirable characteristics relate to the unique high-aspect-ratio configuration of EBTs. Equal and strong emphasis is given to physics, engineering/technology, and costing/economics components of this design effort. Parametric optimizations and sensitivity studies, using cost-of-electricity as an object function, are reported. Based on these results, the direction for future improvement on an already attractive reactor design is identified

  10. Conceptual design study of Fusion Experimental Reactor (FY87FER)

    International Nuclear Information System (INIS)

    1988-05-01

    The design study of Fusion Experimental Reactor(FER) which has been proposed to be the next step fusion device has been conducted by JAERI Reactor System Laboratory since 1982 and by FER design team since 1984. This is the final report of the FER design team program and describes the results obtained in FY1987 (partially in FY1986) activities. The contents of this report consist of the reference design which is based on the guideline in FY1986 by the Subcomitees set up in Nuclear Fusion Council of Atomic Energy Commission of Japan, the Low-Physics-Risk reactor design for achieving physics mission more reliably and the system study of FER design candidates including above two designs. (author)

  11. Entrained Flow Reactor Study of KCl Capture by Solid Additives

    DEFF Research Database (Denmark)

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao

    been proved to be very promising additives and havereceived extensive studies during the past decades. However, mostprevious studies were carried out in fixed-bed reactors where the reaction conditions are obviously different from that in suspension fired boilers.Detailed knowledge on the reaction...

  12. Reactor

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1976-01-01

    Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)

  13. Design study on sodium cooled large-scale reactor

    International Nuclear Information System (INIS)

    Murakami, Tsutomu; Hishida, Masahiko; Kisohara, Naoyuki

    2004-07-01

    In Phase 1 of the 'Feasibility Studies on Commercialized Fast Reactor Cycle Systems (F/S)', an advanced loop type reactor has been selected as a promising concept of sodium-cooled large-scale reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase 2, design improvement for further cost reduction of establishment of the plant concept has been performed. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2003, which is the third year of Phase 2. In the JFY2003 design study, critical subjects related to safety, structural integrity and thermal hydraulics which found in the last fiscal year has been examined and the plant concept has been modified. Furthermore, fundamental specifications of main systems and components have been set and economy has been evaluated. In addition, as the interim evaluation of the candidate concept of the FBR fuel cycle is to be conducted, cost effectiveness and achievability for the development goal were evaluated and the data of the three large-scale reactor candidate concepts were prepared. As a results of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000 yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowing down candidate concepts at the end of Phase 2. (author)

  14. Comparative Study on Cyber Securities between Power Reactor and Research Reactor with Bayesian Update

    International Nuclear Information System (INIS)

    Shin, Jinsoo; Heo, Gyunyoung; Son, Han Seong

    2016-01-01

    The Stuxnet has shown that nuclear facilities are no more safe from cyber-attack. Due to practical experiences and concerns on increasing of digital system application, cyber security has become the important issue in nuclear industry. Korea Institute of Nuclear Nonproliferation and control (KINAC) published a regulatory standard (KINAC/RS-015) to establish cyber security framework for nuclear facilities. However, it is difficult to research about cyber security. It is hard to quantify cyber-attack which has malicious activity which is different from existing design basis accidents (DBAs). We previously proposed a methodology on development of a cyber security risk model with BBN. However, the methodology had a limitation in which the input data as prior information was solely on expert opinions. In this study, we propose a cyber security risk model for instrumentation and control (I and C) system of nuclear facilities with some equation for quantification by using Bayesian Belief Network (BBN) in order to overcome the limitation of previous research. The proposed model has been used for comparative study on cyber securities between large-sized nuclear power plants (NPPs) and small-sized Research Reactors (RR). In this study, we proposed the cyber security risk evaluation model with BBN. It includes I and C architecture, which is a target system of cyber-attack, malicious activity, which causes cyber-attack from attacker, and mitigation measure, which mitigates the cyber-attack risk. Likelihood and consequence as prior information are evaluated by considering characteristics of I and C architecture and malicious activity. The BBN model provides posterior information with Bayesian update by adding any of assumed cyber-attack scenarios as evidence. Cyber security risk for nuclear facilities is analyzed by comparing between prior information and posterior information of each node. In this study, we conducted comparative study on cyber securities between power reactor

  15. Comparative Study on Cyber Securities between Power Reactor and Research Reactor with Bayesian Update

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jinsoo; Heo, Gyunyoung [Kyung Hee University, Yongin (Korea, Republic of); Son, Han Seong [Joongbu Univiersity, Geumsan (Korea, Republic of)

    2016-10-15

    The Stuxnet has shown that nuclear facilities are no more safe from cyber-attack. Due to practical experiences and concerns on increasing of digital system application, cyber security has become the important issue in nuclear industry. Korea Institute of Nuclear Nonproliferation and control (KINAC) published a regulatory standard (KINAC/RS-015) to establish cyber security framework for nuclear facilities. However, it is difficult to research about cyber security. It is hard to quantify cyber-attack which has malicious activity which is different from existing design basis accidents (DBAs). We previously proposed a methodology on development of a cyber security risk model with BBN. However, the methodology had a limitation in which the input data as prior information was solely on expert opinions. In this study, we propose a cyber security risk model for instrumentation and control (I and C) system of nuclear facilities with some equation for quantification by using Bayesian Belief Network (BBN) in order to overcome the limitation of previous research. The proposed model has been used for comparative study on cyber securities between large-sized nuclear power plants (NPPs) and small-sized Research Reactors (RR). In this study, we proposed the cyber security risk evaluation model with BBN. It includes I and C architecture, which is a target system of cyber-attack, malicious activity, which causes cyber-attack from attacker, and mitigation measure, which mitigates the cyber-attack risk. Likelihood and consequence as prior information are evaluated by considering characteristics of I and C architecture and malicious activity. The BBN model provides posterior information with Bayesian update by adding any of assumed cyber-attack scenarios as evidence. Cyber security risk for nuclear facilities is analyzed by comparing between prior information and posterior information of each node. In this study, we conducted comparative study on cyber securities between power reactor

  16. Savannah River Site reactor hardware design modification study

    International Nuclear Information System (INIS)

    Fisher, J.E.

    1990-01-01

    A study was undertaken to assess the merits of proposed design modifications to the Savannah River Site (SRS) reactors. The evaluation was based on the responses calculated by the RELAP5 systems code to double-ended guillotine break loss-of-coolant-accidents (DEGB LOCAs). The three concepts evaluated were (a) elevated plenum inlet piping with a guard vessel and clamshell enclosures, (b) closure of both rotovalves in the affected loop, and (c) closure of the pump suction valve in the affected loop. Each concept included a fast reactor shutdown (to 65% power in 100 ms) and a 2-s ac pump trip. System recovery potential was evaluated for break locations at the pump suction, the pump discharge, and the plenum inlet. The code version used was RELAP5/MOD2.5 version 3d3, a preliminary version of RELAP5/MOD3. The model was a three-dimensional representation of the K-Reactor water plenum and moderator tank. It included explicit representations of all six loops, which were based on the configuration of L-Reactor. A combination of features is recommended to ensure liquid inventory recovery for all break locations. Valve closure design performance for a break location in the short section of piping between the reactor concrete shield and the pump suction valve would benefit from the clamshell enclosing that section of piping. 7 refs., 10 figs., 2 tabs

  17. Probabilistic study of LOFA in ETRR-1 reactor. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    El-Messeiry, A M [National Center for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    In evaluating the safety of a research reactor an analysis of reactor to a wide range of postulated initiating events must be carried out, that could lead to anticipated operational occurrences or accident conditions. These disturbances include decrease in heat removal by the reactor coolant system which may be due to loss of coolant flow (LOFA) or loss of coolant heat sink. LOFA is considered here for this study for the tank type research reactor with a probabilistic approach applied to (ET-RR-1). The reactor is provided with engineering safety system to respond to accidents and perform mitigating functions. The possible malfunctions, Failures, operator errors leading to LOFA initiating event are presented (pipe break; valve opening; pump failure ...etc.). The basic event frequency/probability is calculated using appropriate probability model. The logic event tree model is constructed to illustrate all possible accident scenarios. This scenario combines system success and failure probabilities with the probability of postulated initiating events occurring that result in an accident sequence probability associated with a certain plant state. Fault tree technique is adopted to determine engineering safety features probabilities. The results show the possible minimal cut sets of variable order of each system failure. Accident sequences leading to core damage state, effects of component failures, operator errors, and system failure on plant states. The possible weak points in the design are presented. 14 figs., 3 tabs.

  18. Control rod studies in small and medium sized fast reactors

    International Nuclear Information System (INIS)

    John, T.M.; Mohanakrishnan, P.; Mahalakshmi, B.; Singh, R.S.

    1988-01-01

    Control rods are the primary safety mechanism in the operation of fast reactors. Neutronic parameters associated with the control rods have to be evaluated precisely for studying the behaviour of the reactor under various operating conditions. Control rods are strong neutron absorbers discretely distributed in the reactor core. Accurate estimation of control rod parameters demand, in principle transport theory solutions in exact geometry. But computer codes for such evaluations usually consume exorbitantly large computer time and memory for even a single parameter evaluation. During the design of reactors, evaluation of these parameters will be required for many configurations of control rods. In this paper, the method used at Indira Gandhi Centre for Atomic Research for estimating the parameters associated with control rods is presented. Diffusion theory solutions were used for computations. A scheme using three dimensional geometry represented by triangular meshes and diffusion theory solutions in few energy groups for control rod parameter evaluation is presented. This scheme was employed in estimating the control rod parameters in a 500 Mw(e) fast reactor. Error due to group collapsing is estimated by comparing with 25 group calculations in three dimensions for typical cases. (author). 5 refs, 4 figs, 3 tabs

  19. Probabilistic study of LOFA in ETRR-1 reactor. Vol. 4

    International Nuclear Information System (INIS)

    El-Messeiry, A.M.

    1996-01-01

    In evaluating the safety of a research reactor an analysis of reactor to a wide range of postulated initiating events must be carried out, that could lead to anticipated operational occurrences or accident conditions. These disturbances include decrease in heat removal by the reactor coolant system which may be due to loss of coolant flow (LOFA) or loss of coolant heat sink. LOFA is considered here for this study for the tank type research reactor with a probabilistic approach applied to (ET-RR-1). The reactor is provided with engineering safety system to respond to accidents and perform mitigating functions. The possible malfunctions, Failures, operator errors leading to LOFA initiating event are presented (pipe break; valve opening; pump failure ...etc.). The basic event frequency/probability is calculated using appropriate probability model. The logic event tree model is constructed to illustrate all possible accident scenarios. This scenario combines system success and failure probabilities with the probability of postulated initiating events occurring that result in an accident sequence probability associated with a certain plant state. Fault tree technique is adopted to determine engineering safety features probabilities. The results show the possible minimal cut sets of variable order of each system failure. Accident sequences leading to core damage state, effects of component failures, operator errors, and system failure on plant states. The possible weak points in the design are presented. 14 figs., 3 tabs

  20. Parametric study of the Incompletely Stirred Reactor modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mobini, K. [Department of Mechanical Engineering, Shahid Rajaee University, Lavizan, Tehran (Iran); Bilger, R.W. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney (Australia)

    2009-09-15

    The Incompletely Stirred Reactor (ISR) is a generalization of the widely-used Perfectly Stirred Reactor (PSR) model and allows for incomplete mixing within the reactor. Its formulation is based on the Conditional Moment Closure (CMC) method. This model is applicable to nonpremixed combustion with strong recirculation such as in a gas turbine combustor primary zone. The model uses the simplifying assumptions that the conditionally-averaged reactive-scalar concentrations are independent of position in the reactor: this results in ordinary differential equations in mixture fraction space. The simplicity of the model permits the use of very complex chemical mechanisms. The effects of the detailed chemistry can be found while still including the effects of micromixing. A parametric study is performed here on an ISR for combustion of methane at overall stoichiometric conditions to investigate the sensitivity of the model to different parameters. The focus here is on emissions of nitric oxide and carbon monoxide. It is shown that the most important parameters in the ISR model are reactor residence time, the chemical mechanism and the core-averaged Probability Density Function (PDF). Using several different shapes for the core-averaged PDF, it is shown that use of a bimodal PDF with a low minimum at stoichiometric mixture fraction and a large variance leads to lower nitric oxide formation. The 'rich-plus-lean' mixing or staged combustion strategy for combustion is thus supported. (author)

  1. Studies of fragileness in steels of vessels of BWR reactors

    International Nuclear Information System (INIS)

    Robles, E.F.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E.

    2003-01-01

    The structural materials with those that are manufactured the pressure vessels of the BWR reactors, suffer degradation in its mechanical properties mainly to the damage taken place by the fast neutrons (E > 1 MeV) coming from the reactor core. Its are experimentally studied those mechanisms of neutron damage in this material type, by means of the irradiation of steel vessel in experimental reactors to age them quickly. Alternatively it is simulated the neutron damage by means of irradiation of steel with heavy ions. In this work those are shown first results of the damage induced by irradiation from a similar steel to the vessel of a BWR reactor. The irradiation was carried out with fast neutrons (E > 1 MeV, fluence of 1.45 x 10 18 n/cm 2 ) in the TRIGA MARK lll reactor and separately with Ni +3 ions in a Tandetrom accelerator, E = 4.8 MeV and range of the ionic flow of 0.1 to 53 iones/A 2 . (Author)

  2. Results of a comparison study of advanced reactors

    International Nuclear Information System (INIS)

    Bueno de Mesquita, K.G.; Gout, W.; Heil, J.A.; Tanke, R.H.J.; Geevers, F.

    1991-06-01

    The PINK programme is a 4-year programme of five parties involved in nuclear energy in the Netherlands: GKN (operator of the Dodewaard plant), KEMA (Research institute of the Netherlands Utilities), ECN (Netherlands Energy Research Foundation), NUCON (Engineering and Contracting Company) and IRI Interfaculty Reactor Institute of the Delft University of Technology), to coordinate their efforts to intensify the nuclear competence of the industry, the utilities and the research and engineering companies. This programme is sponsored by the Ministry of Economic Affairs. The PINK programme consists of five parts. This report pertains to part 1 of the programme: comparison study of advanced reactors concerning the four so-called second-stage designs SBWR, AP600, SIR and CANDU, which, compared to the first-stage reactor designs, features increased use of passive safety systems and simplification. The objective of the current study is to compare these advanced reactor designs in order to provide comprehensive information for the PINK steering committee that is useful in the selection process of a design for further study and development work. In ch. 2 the main features of the four reactors are highlighted. In ch. 3 the most important safety features and the behaviour of the four reactors under accident situations are compared. Passive safety systems are identified and forgivingness is described and compared. Results of the preliminary probabilistic safety analysis are presented. Ch. 4 deals with the proven technology of the four concepts, ch. 5 with the Netherlands requirements, ch. 6 with commercial aspects, and ch. 7 with the fuel cycle and radioactive waste produced. In ch. 8 the costs are compared and finally in ch. 9 conclusions are drawn and recommendations are made. (author). 13 figs

  3. Studies of a modular advanced stellarator reactor ASRA6C

    International Nuclear Information System (INIS)

    Boehme, G.; Jentzsch, K.; Komarek, P.; Maurer, W.; El-Guebaly, L.A.; Emmert, G.A.; Kulcinski, G.L.; Larsen, E.M.; Sanatarius, J.F.; Schawan, M.E.; Scharer, J.E.; Sviatoslavski, I.N.; Vogelsang, W.F.; Walstrom, P.L.; Wittenberg, L.J.; Grieger, G.; Harmeyer, E.; Herrnegger, F.; Kisslinger, J.; Rau, F.; Wobig, H.

    1987-05-01

    This study is directed towards the clarification of critical issues of advanced modular stellerator reactors exploiting the inherent potential of steady state operation, and is not a point design study of a reactor. Critical technology issues arise from the three-dimensional magnetic field structure. The first wall, blanket and shield are more complex than those of axi-symmetric systems, but this is eased at moderate to large aspect ratio typical of stellerators. Several blanket options have been studied and a thin blanket (21 cm) was the first choice for the design. Superconducting modular coils were investigated with respect to the conductor and mechanical supports. From the analysis of forces and stresses caused by the electromagnetic loads the coils are considered to be feasible, although shear stresses might pose a critical issue. Demountable intermagnetic support elements were designed for use at separation areas between the cryostat modules. A scheme for remote reactor maintenance was also developed. The plasma physics issues of different configurations were studied using extrapolations of transort behaviour and equilibrium from theory and present experiments. These studies indicate that the confinement and equilibrium behaviour is adequate for ignited operation at an average value of 5% beta. Impurities may pose a critical issue. Several impurity control operations were investigated; a pumped limiter configuration utilizing the 'ergodic layer' at the plasma edge was chosen for edge plasma and impurity control. A general conclusion of the study is that the modular stellerator configuration offers interesting prospects regarding the development towards steady-state reactors. (orig.)

  4. Studies of a modular advanced stellarator reactor ASRA6C

    International Nuclear Information System (INIS)

    Boehme, G.; El-Guebaly, L.A.; Emmert, G.A.; Grieger, G.; Harmeyer, E.; Herrnegger, F.; Huebener, J.; Jentzsch, K.; Kisslinger, J.; Komarek, P.; Kulcinski, G.L.; Larsen, E.M.; Maurer, W.; Rau, F.; Santarius, J.F.; Sawan, M.E.; Scharer, J.E.; Sviatoslavsky, I.N.; Vogelsang, W.F.; Walstrom, P.L.; Wittenberg, L.J.; Wobig, H.

    1987-06-01

    This study is directed towards the clarification of critical issues of advanced modular stellerator reactors exploiting the inherent potential of steady state operation, and is not a point design study of a reactor. Critical technology issues arise from the three-dimensional magnetic field structure. The first wall, blanket and shield are more complex than those of axi-symmetric systems, but this is eased at moderate to large aspect ratio typical of stellarators. Several blanket options have been studied and a thin blanket (21 cm) was the first choice for the design. Superconducting modular coils were investigated with respect to the conductor and mechanical supports. From the analysis of forces and stresses caused by the electromagnetic loads the coils are considered to be feasible, although shear stresses might pose a critical issue. Demountable intermagnetic support elements were designed for use at separation areas between the cryostat modules. A scheme for remote reactor maintenance was also developed. The plasma physics issues of different configurations were studied using extrapolations of transport behaviour and equilibrium from theory and present experiments. These studies indicate that the confinement and equilibrium behaviour is adequate for ignited operation at an average value of 5% beta. Impurities may pose a critical issue. Several impurity control operations were investigated; a pumped limiter configuration utilizing the 'ergodic layer' at the plasma edge was chosen for edge plasma and impurity control. A general conclusion of the study is that the modular stellerator configuration offers interesting prospects regarding the development towards steady-state reactors. (orig.) [de

  5. Mars Stratigraphy Mission

    Science.gov (United States)

    Budney, C. J.; Miller, S. L.; Cutts, J. A.

    2000-01-01

    The Mars Stratigraphy Mission lands a rover on the surface of Mars which descends down a cliff in Valles Marineris to study the stratigraphy. The rover carries a unique complement of instruments to analyze and age-date materials encountered during descent past 2 km of strata. The science objective for the Mars Stratigraphy Mission is to identify the geologic history of the layered deposits in the Valles Marineris region of Mars. This includes constraining the time interval for formation of these deposits by measuring the ages of various layers and determining the origin of the deposits (volcanic or sedimentary) by measuring their composition and imaging their morphology.

  6. Some studies related to decommissioning of nuclear reactors

    International Nuclear Information System (INIS)

    Bergman, C.; Menon, S.

    1990-02-01

    Decommissioning of large nuclear reactors has not yet taken place in the Nordic countries. Small nuclear installations, however, have been dismantled. This NKA-programme has dealt with some interesting and important factors which have to be analysed before a large scale decommissioning programme starts. Prior to decommissioning, knowledge is required regarding the nuclide inventory in various parts of the reactor. Measurements were performed in regions close to the reactor tank and the biological shield. These experimental data are used to verify theoretical calculations. All radioactive waste generated during decommissioning will have to be tansported to a repository. Studies show that in all the Nordic countries there are adequate transport systems with which decommissioning waste can be transported. Another requirement for orderly decommissioning planning is that sufficient information about the plant and its operation history must be available. It appears that if properly handled and sorted, all such information can be extracted from existing documentation. (authors)

  7. Conceptual design study of Fusion Experimental Reactor (FY87FER)

    International Nuclear Information System (INIS)

    Miki, Nobuharu; Iida, Fumio; Wachi, Yoshihiro; Toyoda, Katsuyoshi; Hashizume, Takashi; Konno, Masayuki.

    1988-06-01

    This report describes the FER magnet design which was conducted last year (1987). Based on a large uncertainty of the physics assumption, two sets of FER concepts have been developed. One is based on the best existing physics data bases and another is based on rather conservative physics bases. In the magnet design, the improvements of superconducting magnet design were investigated to reduce the reactor size and to realize higher reactor-core performance. In addition, we studied several critical technical issues that affect the magnet design specification. (author)

  8. Studies on components for a molten salt reactor

    International Nuclear Information System (INIS)

    Nejedly, M.; Matal, O.

    2003-01-01

    The aim is contribute to a design of selected components of molten salt reactors with fuel in the molten fluoride salt matrix. Molten salt reactors (MSRs) permit the utilization of plutonium and minor actinides as new nuclear fuel from a traditional nuclear power station with production of electric energy. Results of preliminary feasibility studies of an intermediate heat exchanger, a small power molten salt pump and a modular conception of a steam generator for a demonstration unit of the MSR (30 MW) are summarized. (author)

  9. Rock Abrasion and Ventifact Formation on Mars from Field Analog, Theoretical, and Experimental Studies

    Science.gov (United States)

    Bridges, N. T.; Laity, J. E.

    2001-01-01

    Rocks observed by the Viking Landers and Pathfinder Lander/Sojourner rover exhibit a suite of perplexing rock textures. Among these are pits, spongy textures, penetrative flutes, lineaments, crusts, and knobs Fluvial, impact, chemical alteration, and aeolian mechanisms have been proposed for many of these. In an effort to better understand the origin and characteristics of Martian rock textures, abraded rocks in the Mojave Desert and other regions have been studied. We find that most Martian rock textures, as opposed to just a few, bear close resemblance to terrestrial aeolian textures and can most easily be explained by wind, not other, processes. Flutes, grooves, and some pits on Mars are consistent with abrasion by saltating particles, as described previously. However, many other rock textures probably also have an aeolian origin. Sills at the base of rocks that generally lie at high elevations, such as Half Dome, are consistent with such features on Earth that are related to moats or soil ramps that shield the basal part of the rock from erosion. Crusts consisting of fluted fabrics, such as those on Stimpy and Chimp, are similar to fluted crusts on Earth that spall off over time. Knobby and lineated rocks are similar to terrestrial examples of heterogeneous rocks that differentially erode. The location of specific rock textures on Mars also gives insight into their origin. Many of the most diagnostic ventifacts found at the Pathfinder site are located on rocks that lie near the crests or the upper slopes of ridges. On Earth, the most active ventifact formation occurs on sloped or elevated topography, where windflow is accelerated and particle kinetic energy and flux are increased. Integrated 0 together, these observations point to significant aeolian 0 modification of rocks on Mars and cast doubt on whether many primary textures resulting from other processes are preserved. Experimental simulations of abrasion in the presence of abundant sand indicate that

  10. The TITAN Reversed-Field Pinch fusion reactor study

    International Nuclear Information System (INIS)

    1988-03-01

    The TITAN Reversed-Field Pinch (RFP) fusion reactor study is a multi-institutional research effort to determine the technical feasibility and key developmental issues of an RFP fusion reactor, especially at high power density, and to determine the potential economics, operations, safety, and environmental features of high-mass-power-density fusion systems. The TITAN conceptual designs are DT burning, 1000 MWe power reactors based on the RFP confinement concept. The designs are compact, have a high neutron wall loading of 18 MW/m 2 and a mass power density of 700 kWe/tonne. The inherent characteristics of the RFP confinement concept make fusion reactors with such a high mass power density possible. Two different detailed designs have emerged: the TITAN-I lithium-vanadium design, incorporating the integrated-blanket-coil concept; and the TITAN-II aqueous loop-in-pool design with ferritic steel structure. This report contains a collection of 16 papers on the results of the TITAN study which were presented at the International Symposium on Fusion Nuclear Technology. This collection describes the TITAN research effort, and specifically the TITAN-I and TITAN-II designs, summarizing the major results, the key technical issues, and the central conclusions and recommendations. Overall, the basic conclusions are that high-mass power-density fusion reactors appear to be technically feasible even with neutron wall loadings up to 20 MW/m 2 ; that single-piece maintenance of the FPC is possible and advantageous; that the economics of the reactor is enhanced by its compactness; and the safety and environmental features need not to be sacrificed in high-power-density designs. The fact that two design approaches have emerged, and others may also be possible, in some sense indicates the robustness of the general findings

  11. On use of ZPR research reactors and associated instrumentation and measurement methods for reactor physics studies

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, J.P. [CEA,DEN, DER, SPEX, Experimental Physics Service, Cadarache, F-13108 St-Paul-Lez-Durance (France); Blaise, P. [CEA, DEN, DER, SPEX Experimental Programs Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-07-01

    The French atomic and alternative energies -CEA- is strongly involved in research and development programs concerning the use of nuclear energy as a clean and reliable source of energy and consequently is working on the present and future generation of reactors on various topics such as ageing plant management, optimization of the plutonium stockpile, waste management and innovative systems exploration. Core physics studies are an essential part of this comprehensive R and D effort. In particular, the Zero Power Reactor (ZPR) of CEA: EOLE, MINERVE and MASURCA play an important role in the validation of neutron (as well photon) physics calculation tools (codes and nuclear data). The experimental programs defined in the CEA's ZPR facilities aim at improving the calculation routes by reducing the uncertainties of the experimental databases. They also provide accurate data on innovative systems in terms of new materials (moderating and decoupling materials) and new concepts (ADS, ABWR, new MTR (e.g. JHR), GENIV) involving new fuels, absorbers and coolant materials. Conducting such interesting experimental R and D programs is based on determining and measuring main parameters of phenomena of interest to qualify calculation tools and nuclear data 'libraries'. Determining these parameters relies on the use of numerous and different experimental techniques using specific and appropriate instrumentation and detection tools. Main ZPR experimental programs at CEA, their objectives and challenges will be presented and discussed. Future development and perspectives regarding ZPR reactors and associated programs will be also presented. (authors)

  12. Experimental facilities for gas-cooled reactor safety studies. Task group on Advanced Reactor Experimental Facilities (TAREF)

    International Nuclear Information System (INIS)

    2009-01-01

    In 2007, the NEA Committee on the Safety of Nuclear Installations (CSNI) completed a study on Nuclear Safety Research in OECD Countries: Support Facilities for Existing and Advanced Reactors (SFEAR) which focused on facilities suitable for current and advanced water reactor systems. In a subsequent collective opinion on the subject, the CSNI recommended to conduct a similar exercise for Generation IV reactor designs, aiming to develop a strategy for ' better preparing the CSNI to play a role in the planned extension of safety research beyond the needs set by current operating reactors'. In that context, the CSNI established the Task Group on Advanced Reactor Experimental Facilities (TAREF) in 2008 with the objective of providing an overview of facilities suitable for performing safety research relevant to gas-cooled reactors and sodium fast reactors. This report addresses gas-cooled reactors; a similar report covering sodium fast reactors is under preparation. The findings of the TAREF are expected to trigger internationally funded CSNI projects on relevant safety issues at the key facilities identified. Such CSNI-sponsored projects constitute a means for efficiently obtaining the necessary data through internationally co-ordinated research. This report provides an overview of experimental facilities that can be used to carry out nuclear safety research for gas-cooled reactors and identifies priorities for organizing international co-operative programmes at selected facilities. The information has been collected and analysed by a Task Group on Advanced Reactor Experimental Facilities (TAREF) as part of an ongoing initiative of the NEA Committee on the Safety of Nuclear Installations (CSNI) which aims to define and to implement a strategy for the efficient utilisation of facilities and resources for Generation IV reactor systems. (author)

  13. Advances made in French safety studies on pressurized water reactors

    International Nuclear Information System (INIS)

    Pelce, J.

    1979-01-01

    The programme of French safety studies on reactors is supposed to be known in its main outlines. A few recent results, obtained in different fields are presented. They concern the safety margins evaluation, the contamination transfer and the effect of external aggressions

  14. Kartini Research Reactor prospective studies for neutron scattering application

    International Nuclear Information System (INIS)

    Widarto

    1999-01-01

    The Kartini Research Reactor (KRR) is located in Yogyakarta Nuclear Research Center, Yogyakarta - Indonesia. The reactor is operated for 100 kW thermal power used for research, experiments and training of nuclear technology. There are 4 beam ports and 1 column thermal are available at the reactor. Those beam ports have thermal neutron flux around 10 7 n/cm 2 s each other and used for sub critical assembly, neutron radiography studies and Neutron Activation Analysis (NAA). Design of neutron collimator has been done for piercing radial beam port and the calculation result of collimated neutron flux is around 10 9 n/cm 2 s. This paper describes experiment facilities and parameters of the Kartini research reactor, and further more the prospective studies for neutron scattering application. The purpose of this paper is to optimize in utilization of the beam ports facilities and enhance the manpower specialty. The special characteristic of the beam ports and preliminary studies, pre activities regarding with neutron scattering studies for KKR is presented. (author)

  15. Impingement studies at the 100-N reactor water intake

    International Nuclear Information System (INIS)

    Page, T.L.; Neitzel, D.A.; Gray, R.H.

    1977-09-01

    Fish impingement and traveling screen passage were studied at the 100-N reactor water intake structure, Columbia River mile 380, from late April to August 1977. Species and numbers of fish affected were determined and compared to those at the adjacent Hanford Generating Project (HGP). Fish protection procedures previously developed for HGP were evaluated for application at 100-N

  16. Magnetic enzyme reactors for isolation and study of heterogeneous glycoproteins

    International Nuclear Information System (INIS)

    Korecka, Lucie; Jezova, Jana; Bilkova, Zuzana; Benes, Milan; Horak, Daniel; Hradcova, Olga; Slovakova, Marcela; Viovy, Jean-Louis

    2005-01-01

    The newly developed magnetic micro- and nanoparticles with defined hydrophobicity and porosity were used for the preparation of magnetic enzyme reactors. Magnetic particles with immobilized proteolytic enzymes trypsin, chymotrypsin and papain and with enzyme neuraminidase were used to study the structure of heterogeneous glycoproteins. Factors such as the type of carrier, immobilization procedure, operational and storage stability, and experimental conditions were optimized

  17. Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyses.

    Science.gov (United States)

    Mitchell, D M; Montabone, L; Thomson, S; Read, P L

    2015-01-01

    Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth.

  18. A Study of Parallels Between Antarctica South Pole Traverse Equipment and Lunar/Mars Surface Systems

    Science.gov (United States)

    Mueller, Robert P.; Hoffman, Stephen, J.; Thur, Paul

    2010-01-01

    The parallels between an actual Antarctica South Pole re-supply traverse conducted by the National Science Foundation (NSF) Office of Polar Programs in 2009 have been studied with respect to the latest mission architecture concepts being generated by the United States National Aeronautics and Space Administration (NASA) for lunar and Mars surface systems scenarios. The challenges faced by both endeavors are similar since they must both deliver equipment and supplies to support operations in an extreme environment with little margin for error in order to be successful. By carefully and closely monitoring the manifesting and operational support equipment lists which will enable this South Pole traverse, functional areas have been identified. The equipment required to support these functions will be listed with relevant properties such as mass, volume, spare parts and maintenance schedules. This equipment will be compared to space systems currently in use and projected to be required to support equivalent and parallel functions in Lunar and Mars missions in order to provide a level of realistic benchmarking. Space operations have historically required significant amounts of support equipment and tools to operate and maintain the space systems that are the primary focus of the mission. By gaining insight and expertise in Antarctic South Pole traverses, space missions can use the experience gained over the last half century of Antarctic operations in order to design for operations, maintenance, dual use, robustness and safety which will result in a more cost effective, user friendly, and lower risk surface system on the Moon and Mars. It is anticipated that the U.S Antarctic Program (USAP) will also realize benefits for this interaction with NASA in at least two areas: an understanding of how NASA plans and carries out its missions and possible improved efficiency through factors such as weight savings, alternative technologies, or modifications in training and

  19. Planning Considerations for a Mars Sample Receiving Facility: Summary and Interpretation of Three Design Studies

    Science.gov (United States)

    Beaty, David W.; Allen, Carlton C.; Bass, Deborah S.; Buxbaum, Karen L.; Campbell, James K.; Lindstrom, David J.; Miller, Sylvia L.; Papanastassiou, Dimitri A.

    2009-10-01

    It has been widely understood for many years that an essential component of a Mars Sample Return mission is a Sample Receiving Facility (SRF). The purpose of such a facility would be to take delivery of the flight hardware that lands on Earth, open the spacecraft and extract the sample container and samples, and conduct an agreed-upon test protocol, while ensuring strict containment and contamination control of the samples while in the SRF. Any samples that are found to be non-hazardous (or are rendered non-hazardous by sterilization) would then be transferred to long-term curation. Although the general concept of an SRF is relatively straightforward, there has been considerable discussion about implementation planning. The Mars Exploration Program carried out an analysis of the attributes of an SRF to establish its scope, including minimum size and functionality, budgetary requirements (capital cost, operating costs, cost profile), and development schedule. The approach was to arrange for three independent design studies, each led by an architectural design firm, and compare the results. While there were many design elements in common identified by each study team, there were significant differences in the way human operators were to interact with the systems. In aggregate, the design studies provided insight into the attributes of a future SRF and the complex factors to consider for future programmatic planning.

  20. Safety benefits from CANDU reactor replacement - a case study

    International Nuclear Information System (INIS)

    Mottram, R.; Millard, J.W.F.; Purdy, P.

    2011-01-01

    Both total core replacement and core retubing have been used in the CANDU industry. For future plant refurbishments, based on experience both in new construction and in recent refurbishments, the concept of total core replacement has been revisited. This builds on practices for replacement of other large plant equipment like boilers. The Bruce CANDU reactors, with their local shield tanks built around the Calandria and containment closely located around that Calandria Shield Tank Assembly (CSTA), are believed to be good candidates for core replacement. A structured process was used to design a replacement CSTA suitable for Bruce A use. The work started with a study of opportunities for safety enhancements in the core. This progressed into design studies and related design assist safety analysis on the reactor. A key element of the work involved consideration of how verified features from later CANDU designs, and from our new reactor design work, could be tailored to fit this replacement core. The replacement reactor core brings in structural improvements in both calandria and end shield, and safety improvements like the natural circulation enhancing moderator cooling layout and further optimized reactivity layouts to improve shutdown system performance. Bruce Power are currently studying the business implications of this and retube techniques as part of preparation for future refurbishments. The work explained in this paper is in the context of the safety related changes and the work to choose and quantify them. (author)

  1. Safety benefits from CANDU reactor replacement. A case study

    International Nuclear Information System (INIS)

    Mottram, R.; Millard, J.W.F.; Purdy, P.

    2011-01-01

    Both total core replacement and core retubing have been used in the CANDU industry. For future plant refurbishments, based on experience both in new construction and in recent refurbishments, the concept of total core replacement has been revisited. This builds on practices for replacement of other large plant equipment like boilers. The Bruce CANDU reactors, with their local shield tanks built around the Calandria and containment closely located around that Calandria Shield Tank Assembly (CSTA), are believed to be good candidates for core replacement. A structured process was used to design a replacement CSTA suitable for Bruce A use. The work started with a study of opportunities for safety enhancements in the core. This progressed into design studies and related design assist safety analysis on the reactor. A key element of the work involved consideration of how verified features from later CANDU designs, and from our new reactor design work, could be tailored to fit this replacement core. The replacement reactor core brings in structural improvements in both calandria and end shield, and safety improvements like the natural circulation enhancing moderator cooling layout and further optimized reactivity layouts to improve shutdown system performance. Bruce Power are currently studying the business implications of this and retube techniques as part of preparation for future refurbishments. The work explained in this paper is in the context of the safety related changes and the work to choose and quantify them. (author)

  2. The minimum area requirements (MAR) for giant panda: an empirical study.

    Science.gov (United States)

    Qing, Jing; Yang, Zhisong; He, Ke; Zhang, Zejun; Gu, Xiaodong; Yang, Xuyu; Zhang, Wen; Yang, Biao; Qi, Dunwu; Dai, Qiang

    2016-12-08

    Habitat fragmentation can reduce population viability, especially for area-sensitive species. The Minimum Area Requirements (MAR) of a population is the area required for the population's long-term persistence. In this study, the response of occupancy probability of giant pandas against habitat patch size was studied in five of the six mountain ranges inhabited by giant panda, which cover over 78% of the global distribution of giant panda habitat. The probability of giant panda occurrence was positively associated with habitat patch area, and the observed increase in occupancy probability with patch size was higher than that due to passive sampling alone. These results suggest that the giant panda is an area-sensitive species. The MAR for giant panda was estimated to be 114.7 km 2 based on analysis of its occupancy probability. Giant panda habitats appear more fragmented in the three southern mountain ranges, while they are large and more continuous in the other two. Establishing corridors among habitat patches can mitigate habitat fragmentation, but expanding habitat patch sizes is necessary in mountain ranges where fragmentation is most intensive.

  3. ACS experiment for atmospheric studies on "ExoMars-2016" Orbiter

    Science.gov (United States)

    Korablev, O. I.; Montmessin, F.; Fedorova, A. A.; Ignatiev, N. I.; Shakun, A. V.; Trokhimovskiy, A. V.; Grigoriev, A. V.; Anufreichik, K. A.; Kozlova, T. O.

    2015-12-01

    ACS is a set of spectrometers for atmospheric studies (Atmospheric Chemistry Suite). It is one of the Russian instruments for the Trace Gas Orbiter (TGO) of the Russian-European "ExoMars" program. The purpose of the experiment is to study the Martian atmosphere by means of two observations regimes: sensitive trace gases measurements in solar occultations and by monitoring the atmospheric state during nadir observations. The experiment will allow us to approach global problems of Mars research such as current volcanism, and the modern climate status and its evolution. Also, the experiment is intended to solve the mystery of methane presence in the Martian atmosphere. Spectrometers of the ACS set cover the spectral range from the near IR-range (0.7 μm) to the thermal IR-range (17 μm) with spectral resolution λ/Δλ reaching 50000. The ACS instrument consists of three independent IR spectrometers and an electronics module, all integrated in a single unit with common mechanical, electrical and thermal interfaces. The article gives an overview of scientific tasks and presents the concept of the experiment.

  4. A reactor study on a belt-shaped screw pinch

    International Nuclear Information System (INIS)

    Bustraan, M.; Franken, W.M.P.; Klippel, H.Th.; Veringa, H.J.; Verschuur, K.A.

    1979-10-01

    A previous study on a screw-pinch reactor with circular cross section (ECN-16 (1977) or Rijnhuizen report 77-101) has been extended to a belt configuration which allows to raise β to 0.5. The present study starts from the main assumptions and principal constraints of the previous work, but some technical aspects are treated more realistically. More attention has been paid to the modular construction, the non-uniform distribution of the wall loading, the thermo-hydraulics, the design of and the losses in the coil systems, and the energy storage and electric transmission systems. A potential use of the first wall of the blanket as part of the implosion coil system is suggested. Finally, a conceptual design of a reactor, with a cost estimate is given. Numerical results are given of parameter variations around the values for the reference reactor. The belt screw-pinch reactor with resistive coils turns out to be uneconomical because of its low net efficiency and its high capital costs. The application of superconducting coils to reduce the ohmic losses turns out to be a non-viable alternative. A more promising way to improve the energy balance seems to be the alternative scheme of fuel injection during the burn

  5. Preliminary feasibility study of the heat - pipe ENHS reactor

    International Nuclear Information System (INIS)

    Fratoni, M.; Kim, L.; Mattafirri, S.; Petroski, R.; Greenspan, E.

    2007-01-01

    This preliminary study assesses the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor [1] to have a solid core from which heat is removed by liquid-metal heat pipes (HP). Like the SAFE space nuclear reactor core [2], the HP-ENHS core is comprised of fuel rods and HPs embedded in a solid structure arranged in a hexagonal lattice in a 3:1 ratio. The HPs extend beyond the core length and transfer heat to a secondary coolant that flows by natural circulation. The HP-ENHS reactor is designed to preserve many features of the ENHS reactor including 20-year operation without refueling, very small excess reactivity throughout life, natural circulation cooling, walk-away passive safety, and robust proliferation resistance. The target power level and specific power of the HP-ENHS reactor are those of the reference ENHS reactor [1]. Compared to previous ENHS reactor designs utilizing a lead or lead-bismuth alloy natural circulation cooling system, the HP-ENHS reactor offers a number of possible advantageous features including: (1) significantly enhanced decay heat removal capability; (2) no positive void reactivity coefficients; (3) no direct contact between the fuel clad and coolant, hence, relatively lower wet corrosion of the clad; (4) a core that is more robust for transportation; (5) higher temperature potentially offering higher efficiency and hydrogen production capability. The study focuses on four areas: material compatibility analysis, HP performance analysis, neutronic analysis and thermal-hydraulic analysis. Of four high-temperature structural materials evaluated, Mo TZM alloy is the preferred choice; its upper estimated feasible operating temperature is 1350 K. HP performance is evaluated as a function of working fluid type, operating temperature, wick design and HP diameter and length. Sodium is the preferred working fluid and the HP working temperature is 1300 K. The neutronic analysis found that it is possible to achieve criticality

  6. Alternative institutional arrangements for developing and commercializing breeder reactor technology. Final report 15 Nov 1975--31 Mar 1977

    International Nuclear Information System (INIS)

    Johnson, L.L.; Merrow, E.W.; Baer, W.S.; Alexander, A.J.

    1976-11-01

    In light of large costs, potential benefits, and uncertainties surrounding breeder development, many questions need to be addressed concerning the roles of government, equipment vendors, and electric power utilities in financing, owning, and managing breeder development. The study assesses nine institutional arrangements, ranging from those with heavy private sector initiative to complete government ownership and control. These arrangements are evaluated in terms of: the degree of clearly defined centralized management control that would be afforded; the effectiveness of cost control; the strength of the vendor-utility interface; the value of information produced for subsequent commercialization; the ease of financing; the prospects for risk-sharing; and overall plausibility. Some time-slippage at this stage in order to ensure strong private sector involvement might well accelerate commercialization in the longer run. The alternative is a government-directed program that might proceed faster in the next decade but subsequently encounter more barriers to commercial adoption

  7. A comparative study between control strategies for a solar sailcraft in an Earth-Mars transfer

    Science.gov (United States)

    Mainenti-Lopes, I.; Souza, L. C. Gadelha; De Sousa, Fabiano. L.

    2016-10-01

    The goal of this work was a comparative study of solar sail trajectory optimization using different control strategies. Solar sailcraft is propulsion system with great interest in space engineering, since it uses solar radiation to propulsion. So there is no need for propellant to be used, thus it can remains active throughout the entire transfer maneuver. This type of propulsion system opens the possibility to reduce the cost of exploration missions in the solar system. In its simplest configuration, a Flat Solar Sail (FSS) consists of a large and thin structure generally composed by a film fixed to flexible rods. The performance of these vehicles depends largely on the sails attitude relative to the Sun. Using a FSS as propulsion, an Earth-Mars transfer optimization problem was tackled by the algorithms GEOreal1 and GEOreal2 (Generalized Extremal Optimization with real codification). Those algorithms are Evolutionary Algorithms (AE) based on the theory of Self-Organized Criticality. They were used to optimize the FSS attitude angle so it could reach Mars orbit in minimum time. It was considered that the FSS could perform up to ten attitude maneuvers during orbital transfer. Moreover, the time between maneuvers can be different. So, the algorithms had to optimize an objective function with 20 design variables. The results obtained in this work were compared with previously results that considered constant values of time between maneuvers.

  8. Mars @ ASDC

    Science.gov (United States)

    Carraro, Francesco

    "Mars @ ASDC" is a project born with the goal of using the new web technologies to assist researches involved in the study of Mars. This project employs Mars map and javascript APIs provided by Google to visualize data acquired by space missions on the planet. So far, visualization of tracks acquired by MARSIS and regions observed by VIRTIS-Rosetta has been implemented. The main reason for the creation of this kind of tool is the difficulty in handling hundreds or thousands of acquisitions, like the ones from MARSIS, and the consequent difficulty in finding observations related to a particular region. This led to the development of a tool which allows to search for acquisitions either by defining the region of interest through a set of geometrical parameters or by manually selecting the region on the map through a few mouse clicks The system allows the visualization of tracks (acquired by MARSIS) or regions (acquired by VIRTIS-Rosetta) which intersect the user defined region. MARSIS tracks can be visualized both in Mercator and polar projections while the regions observed by VIRTIS can presently be visualized only in Mercator projection. The Mercator projection is the standard map provided by Google. The polar projections are provided by NASA and have been developed to be used in combination with APIs provided by Google The whole project has been developed following the "open source" philosophy: the client-side code which handles the functioning of the web page is written in javascript; the server-side code which executes the searches for tracks or regions is written in PHP and the DB which undergoes the system is MySQL.

  9. Reactor physics studies at the Zittau Training and research reactor ZLFR

    Energy Technology Data Exchange (ETDEWEB)

    Konschak, K.; Horche, W.; Honisch, H.; Berger, J. (Ingenieurhochschule Zittau (German Democratic Republic). Sektion Kraftwerksanlagenbau und Energieumwandlung); Doerschel, B. (Technische Univ., Dresden (German Democratic Republic). Sektion Physik)

    1982-04-01

    It is reported on experimental studies during the start-up period of the Zittau training and research reactor ZLFR. The critical mass obtained is in good agreement with the calculated value. It corresponds to a core charge of 90 fuel assemblies ECH-1. The shutdown reactivity of the safety rod and of the three control rods is 3.2% in total. The reactivity effects due to shuffling, internals, and configuration modifications as well as to intentional or unintentional changes in the operating conditions have been analyzed from the viewpoint of safe operation.

  10. The study of the martian atmosphere from top to bottom with SPICAM light on mars express

    Science.gov (United States)

    Bertaux, Jean-Loup; Fonteyn, D.; Korablev, O.; Chassefière, E.; Dimarellis, E.; Dubois, J. P.; Hauchecorne, A.; Cabane, M.; Rannou, P.; Levasseur-Regourd, A. C.; Cernogora, G.; Quemerais, E.; Hermans, C.; Kockarts, G.; Lippens, C.; de Maziere, M.; Moreau, D.; Muller, C.; Neefs, B.; Simon, P. C.; Forget, F.; Hourdin, F.; Talagrand, O.; Moroz, V. I.; Rodin, A.; Sandel, B.; Stern, A.

    2000-10-01

    SPICAM Light is a small UV-IR instrument selected for Mars Express to recover most of the science that was lost with the demise of Mars 96, where the SPICAM set of sensors was dedicated to the study of the atmosphere of Mars (Spectroscopy for the investigation of the characteristics of the atmosphere of mars). The new configuration of SPICAM Light includes optical sensors and an electronics block. A UV spectrometer (118-320 nm, resolution 0.8 nm) is dedicated to Nadir viewing, limb viewing and vertical profiling by stellar occultation (3.8 kg). It addresses key issues about ozone, its coupling with H 2O, aerosols, atmospheric vertical temperature structure and ionospheric studies. An IR spectrometer (1.2- 4.8 μm, resolution 0.4-1 nm) is dedicated to vertical profiling during solar occultation of H 2O, CO 2, CO, aerosols and exploration of carbon compounds (3.5 kg). A nadir looking sensor for H 2O abundances (1.0- 1.7 μm, resolution 0.8 nm) is recently included in the package (0.8 kg). A simple data processing unit (DPU, 0.9 kg) provides the interface of these sensors with the spacecraft. In nadir orientation, SPICAM UV is essentially an ozone detector, measuring the strongest O 3 absorption band at 250 nm in the spectrum of the solar light scattered back from the ground. In the stellar occultation mode the UV Sensor will measure the vertical profiles of CO 2, temperature, O 3, clouds and aerosols. The density/temperature profiles obtained with SPICAM Light will constrain and aid in the development of the meteorological and dynamical atmospheric models, from the surface to 160 km in the atmosphere. This is essential for future missions that will rely on aerocapture and aerobraking. UV observations of the upper atmosphere will allow study of the ionosphere through the emissions of CO, CO +, and CO 2+, and its direct interaction with the solar wind. Also, it will allow a better understanding of escape mechanisms and estimates of their magnitude, crucial for insight

  11. Kinetic studies on a repetitively pulsed fast reactor

    International Nuclear Information System (INIS)

    Das, S.

    1982-01-01

    Neutronic analysis of an earlier proposed periodically pulsed fast reactor at Kalpakkam (KPFR) has been carried out numerically under equilibrium and transient conditions using the one-point model of reactor kinetics and the experimentally measured total worth of reactivity modulator, the parabolic coefficient of reactivity of the movable reflector and the mean prompt neutron lifetime. Results of steady-state calculations - treated on the basis of delayed neutron precursor and energy balances during a period of operation - have been compared with the analytical formulae of Larrimore for a parabolic reactivity input. Empirical relations for half-width of the fast neutron pulse, the peak pulse power and the power at first crossing of prompt criticality have been obtained and shown to be accurate enough for predicting steady-state power pulse characteristics of a periodically pulsed fast reactor. The concept of a subprompt-critical reactor has been used to calculate the fictitious delayed neutron fraction, β of the KPFR through a numerical experiment. Relative pulse height stability and pulse shape sensitivity to changes of maximum reactivity is discussed. With the aid of new safety concepts, the Power Amplification Factor (PAF) and the Pulse Growth Factor (Rsub(p)), the dynamics KPFR under accidental conditions has been studied for step and ramp reactivity perturbations. All the analysis has been done without taking account of reactivity feedback. (orig.)

  12. Studies on fuel failure detection in Rikkyo Research Reactor

    International Nuclear Information System (INIS)

    Matsuura, T.; Hayashi, S.H.; Harasawa, S.; Tomura, K.

    1992-01-01

    Studies on fuel failure detection have been made since 1986 in Rikkyo Research Reactor. One of the methods is the monitoring of the trace concentration of fission products appearing in the air on the surface of the water tank of the reactor. The interested radionuclides here are 89 Rb and 138 Cs, which are the daughter nuclides of the FP rare gas nuclides, 89 Kr and 138 Xe, respectively and have the half lives of 15.2 min and 32.2 min respectively. They are detected on a filter paper attached on a conventional dust sampler, by sucking the air of the surface of the water for 15 ∼ 30 min during reactor operation (100 kW). In this presentation are reported the results of an attempt to increase the sensitivity of detecting these nuclides by introducing nitrogen gas bubbles into the water. The bubbling of the gas increased the sensitivity as much as several times compared with the case without bubbling. These measurements are giving us the 'background' concentration, the order of which is almost unchanged for these several years, --in 10 -6 Bq/cm 3 . The origin of these nuclides is considered to be not from the fuel but from the uranium contained as an impurity in the reactor material in the core. (author)

  13. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Karsten M. [Yale Univ., New Haven, CT (United States)

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  14. Conceptual design study of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1986-11-01

    Since 1980 the design study has been conducted at JAERI for the Fusion Experimental Reactor (FER) which has been proposed to be the next machine to JT-60 in the Japanese long term program of fusion reactor development. During two years from 1984 to 1985 FER concept was reviewed and redesigned. This report is the summary of the results obtained in the review and redesign activities in 1984 and 85. In the first year FER concept was discussed again and its frame work was reestablished. According to the new frame work the major reactor components of FER were designed. In the second year the whole plant system design including plant layout plan was conducted as well as the more detailed design analysis of the reactor conponents. The newly established frame for FER design is as follows: 1) Plasma : Self-ignition. 2) Operation scenario : Quasi-steady state operation with long burn pulse. 3) Neutron fluence on the first wall : 0.3 MWY/M 2 . 4) Blanket : Non-tritium breeding blanket with test modules for breeding blanket development. 5) Magnets : Superconducting Magnets. (author)

  15. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    International Nuclear Information System (INIS)

    Heeger, Karsten M.

    2014-01-01

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta . Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  16. Reactor core conversion studies of Ghana: Research Reactor-1 and proposal for addition of safety rod

    International Nuclear Information System (INIS)

    Odoi, H.C.

    2014-06-01

    The inclusion of an additional safety rod in conjunction with a core conversion study of Ghana Research Reactor-1 (GHARR-1) was carried out using neutronics, thermal hydraulics and burnup codes. The study is based on a recommendation by Integrated Safety Assessment for Research Reactors (INSARP) mission to incorporate a safety rod to the reactor safety system as well as the need to replace the reactor fuel with LEU. Conversion from one fuel type to another requires a complete re-evaluation of the safety analysis. Changes to the reactivity worth, shutdown margin, power density and material properties must be taken into account, and appropriate modifications made. Neutronics analysis including burnup was studied followed by thermal hydraulics analyses which comprise steady state and transients. Four computer codes were used for the analysis; MCNP, REBUS, PLTEP and PARET. The neutronics analysis revealed that the LEU core must be operated at 34 Kw in order to attain the flux of 1.0E12 n/cm 2 .s as the nominal flux of the HEU core. The auxiliary safety rod placed at a modified irradiation site gives a better worth than the cadmium capsules. For core excess reactivity of 4 mk, 348 fuel pins would be appropriate for the GHARR-1 LEU core. Results indicate that flux level of 1.0E12 n/cm 2 .s in the inner irradiation channel will not be compromised, if the power of the LEU core is increased to 34 kW. The GHARR-1 core using LEU-U0 2 -12.5% fuel can be operated for 23 shim cycles, with cycles length 2.5 years, for over 57 years at the 17 kW power level. All 23 LEU cycles meet the ∼ 4.0 mk excess reactivity required at the beginning of cycle . For comparison, the MNSR HEU reference core can also be operated for 23 shim cycles, but with a cycle length of 2.0 years for just over 46 years at 15.0kW power level. It is observed that the GHARR-1 core with LEU UO 2 fuel enriched to 12.5% and a power level of 34 kW can be operated ∼25% longer than the current HEU core operated at

  17. Review of PSI studies on reactor physics and thermal fluid dynamics of pebble bed reactors

    International Nuclear Information System (INIS)

    Prasser, Horst-Michael

    2014-01-01

    Switzerland is member of the Generation IV International Forum (GIF). The related work takes entirely place at PSI in the working groups of Gas-Cooled Fast Reactors and Very High Temperature Reactors. In the past, PSI has performed experimental and theoretical studies on criticality issues of pebble beds at the PROTEUS reactor, as well as a preliminary risk assessment of a prototypal HTR as an input for a comparison of energy supply options. PROTEUS was a critical assembly with an annular driver zone. The central region was filled by arrangements of fuel spheres. The reactivity effect of a water ingress was investigated by simulating the water by polyethylene rods of different diameter inserted into the gaps of a regular package. For sub-criticality measurements in pebble beds, a built-in pulsed neutron source was used. The experimental results were used to validate diffusion and higher order neutron transport models. Concerning thermal hydraulics of gas flows, the vast experience of PSI is focused on hydrogen transport, accumulation, and dispersion in containments of light water reactors. The phenomena are comparable in many aspects to the fluid dynamic issues relevant to HTR. Experiments on hydrogen flows are performed for numerous scenarios in the large-scale containment test facility PANDA. Hydrogen is substituted by helium as a model fluid. An important generic aspect is turbulent mixing in the presence of strong stratification, which is relevant for HTR as well. In a parallel project, generic small-scale mixing experiments with a high density ratio of 1:7 are carried out in a horizontal rectangular channel, where helium and nitrogen flows are brought into contact downstream of the rear edge of a splitter plate. Due to the high density ratio, turbulent mixing is affected by strong non-Boussinesq effects. The measurements taken by Particle Imaging Velocimetry (PIV) and Laser Induced Fluorescence techniques are compared to RANS and LES simulations. Similar large

  18. Study on reactor building structure using ultrahigh strength materials, 1

    International Nuclear Information System (INIS)

    Ishimura, Kikuo; Odajima, Masahiro; Irino, Kazuo; Hashiba, Toshio.

    1991-01-01

    This study was promoted to be aimed at realization of the optimal nuclear reactor building structure of the future. As the first step, the study regarding ultrahigh strength reinforced concrete (abbr. RC) shear wall was selected. As the result of various tests, the application of ultrahigh strength RC shear walls was verified. The tests conducted were relevant to; ultrahigh strength concrete material tests; pure shear tests of RC flat panels; and bending shear tests and its simulation analysis of RC shear walls. (author)

  19. Design study of blanket structure for tokamak experimental fusion reactor

    International Nuclear Information System (INIS)

    1979-11-01

    Design study of the blanket structure for JAERI Experimental Fusion Reactor (JXFR) has been carried out. Studied here were fabrication and testing of the blanket structure (blanket cells, blanket rings, piping and blanket modules), assembly and disassembly of the blanket module, and monitering and testing technique. Problems in design and fabrication of the blanket structure could be revealed. Research and development problems for the future were also disclosed. (author)

  20. Full-scale leaching study of commercial reactor waste forms

    International Nuclear Information System (INIS)

    Kalb, P.D.; Colombo, P.

    1984-01-01

    This paper describes a full-scale leaching experiment which has been conducted at Brookhaven National Laboratory (BNL) to study the release of radionuclides from actual commercial reactor waste forms. While many studies characterizing the leaching behavior of simulated laboratory-scale waste forms have been performed, this program represents one of the first attempts in the United States to quantify activity releases for real, full-scale waste forms. 5 references, 5 figures, 1 table

  1. Parametric Sensitivity Study on Continuous Reactors with Stirring

    Directory of Open Access Journals (Sweden)

    Dr. Carlos Hernández-Pedrera

    2015-11-01

    Full Text Available In this work present the results obtained in a study of sensibility, by using a mathematical model developed for the simulation of the conduct of an endless reactor with agitation, by using as data source of information of reasonable operation of the industrial plant. The study permits value the effect that the changes in the variables of operation can occasion in the results of the process and the possibility that exists or not interactions between the variables analyzed.

  2. Reactor neutrinos study: integration and characterization of the Nucifer detector

    International Nuclear Information System (INIS)

    Gaffiot, Jonathan

    2012-01-01

    The major advances done in the understanding of neutrinos properties and in detector technology have opened the door to a new discipline: the Applied Antineutrino Physics. Indeed, this particle has the great advantage to carry information from its emission place without perturbation. Because neutrinos are inextricably linked to nuclear processes, new applications are in nuclear safeguards. In this context, the Nucifer project aims to test a small electron-antineutrino detector to be installed a few 10 meters from a reactor core for monitoring its thermal power and for testing the sensitivity to the plutonium content. Moreover, recent re-analysis of previous short-distance reactor-neutrino experiments shows a significant discrepancy between measured and expected neutrino count rates. Among the various hypotheses a new phenomenon as the existence of a fourth sterile neutrino can explain this anomaly. To be able to count neutrinos and get the corresponding energy spectrum, the detection is based on the inverse beta decay in about 850 kg of doped liquid scintillator. The experimental challenge is to operate such a small detector in a high background place, due to the closeness with the surface and the reactor radiations. The detector is now finished and data taking has begun at the Osiris research reactor in Saclay since April 2012. Sadly, unexpected low liquid attenuation length and high gamma background level prevented us to highlight neutrinos. We are now waiting for a liquid change and a new lead wall to study reactor monitoring and to test the sterile neutrino hypothesis. (author) [fr

  3. Study on enhancement of heat transfer of reactor vessel auxiliary cooling system of fast breeder reactor

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Kinoshita, Izumi; Ueda, Nobuyuki; Furuya, Masahiro

    1996-01-01

    A reactor vessel auxiliary cooling system (RVACS), which is one of the decay heat removal systems of the fast breeder reactor (FBR), has passive safety as well as high reliability. However, the heat removal capability is relatively small, because its heat exchange is dependent on the natural convection of the air. The objectives of this report are to propose a heat transfer medium to enhance the heat transfer and to confirm the heat transfer performance of this system by experimental and analytical studies. From these studies, the following main results were obtained. (1) A porous plate with 5 mm thickness, 5 mm pore diameter, 92% porosity, was found to have the highest enhancement of heat transfer. (2) The heat transfer enhancement was demonstrated by large scale heat transfer experiments. Also, the heat transfer correlations, which can be used in the plant transient analyses, were derived from the experimental results. (3) Analysing the transient conditions of conventional pool-type FBR by means of the system analysis code, the applicable range of this system was assumed from the capability of the RVACS with porous plates. As a result, this type of RVACS was found to be applicable to conventional pool-type FBRs with capacity of about 500 MWe or less. (author)

  4. Fish distribution studies near N Reactor, Summer 1983

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, D.D.; Page, T.L.

    1984-06-01

    This report summarizes field studies that were initiated in July 1983 to provide estimates of the relative distribution of late-summer outmigrant juvenile salmonids and juvenile resident fish upstream of the N Reactor 009 Outfall. Chinook salmon are among the fish species most sensitive to thermal effects, and impacts to the juvenile outmigrant populations are of particular concern to state and federal regulatory and fisheries management agencies. Therefore, the distribution studies were conducted from late July through September, a period when high ambient river temperatures and low river flows make these salmonid populations most susceptible to thermal effects. In addition, data were not available on the spatial distribution of outmigrant juvenile chinook salmon in late summer. Information on the relative distribution of resident fish populations was also gathered. Previous studies of midstream distribution of juvenile resident fish were limited to a description of ichthyoplankton populations (Beak Consultants, Inc. 1980 Page et al. 1982), and no data were available on vertical or horizontal distribution of juvenile resident fish species near N Reactor. Relative densities and spatial distribution estimates of juvenile salmonid and resident fish species will be used in conjunction with laboratory thermal effects studies (Neitzel et al. 1984) and with plume characterization studies (Ecker et al. 1983) to assess potential impacts of thermal discharge on fish populations near N Reactor.

  5. Utilization of the experimental reactor Osiris for the study and the development of fuels of the fast neutron reactor type

    International Nuclear Information System (INIS)

    Marcon, M.; Faugere, J.L.; Genthon, J.P.; Maillot, R.

    1977-01-01

    Nuclear fuel tests for the fast neutron reactor type have been carried out at the Osiris reactor: thermal study of (U,Pu)O 2 oxide by measurement with thermocouples in the core of the fuel pellet; study of the effects of power cycling on nuclear fuel; study of the mechanical interactions between oxide and cladding by measurement of the cladding deformation during irradiation [fr

  6. Radar studies of the planets. [radar measurements of lunar surface, Mars, Mercury, and Venus

    Science.gov (United States)

    Ingalls, R. P.; Pettengill, G. H.; Rogers, A. E. E.; Sebring, P. B. (Editor); Shapiro, I. I.

    1974-01-01

    The radar measurements phase of the lunar studies involving reflectivity and topographic mapping of the visible lunar surface was ended in December 1972, but studies of the data and production of maps have continued. This work was supported by Manned Spacecraft Center, Houston. Topographic mapping of the equatorial regions of Mars has been carried out during the period of each opposition since that of 1967. The method comprised extended precise traveling time measurements to a small area centered on the subradar point. As measurements continued, planetary motions caused this point to sweep out extensive areas in both latitude and longitude permitting the development of a fairly extensive topographical map in the equatorial region. Radar observations of Mercury and Venus have also been made over the past few years. Refinements of planetary motions, reflectivity maps and determinations of rotation rates have resulted.

  7. Building Virtual Mars

    Science.gov (United States)

    Abercrombie, S. P.; Menzies, A.; Goddard, C.

    2017-12-01

    Virtual and augmented reality enable scientists to visualize environments that are very difficult, or even impossible to visit, such as the surface of Mars. A useful immersive visualization begins with a high quality reconstruction of the environment under study. This presentation will discuss a photogrammetry pipeline developed at the Jet Propulsion Laboratory to reconstruct 3D models of the surface of Mars using stereo images sent back to Earth by the Curiosity Mars rover. The resulting models are used to support a virtual reality tool (OnSight) that allows scientists and engineers to visualize the surface of Mars as if they were standing on the red planet. Images of Mars present challenges to existing scene reconstruction solutions. Surface images of Mars are sparse with minimal overlap, and are often taken from extremely different viewpoints. In addition, the specialized cameras used by Mars rovers are significantly different than consumer cameras, and GPS localization data is not available on Mars. This presentation will discuss scene reconstruction with an emphasis on coping with limited input data, and on creating models suitable for rendering in virtual reality at high frame rate.

  8. Progress in design study on reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu; Kugo, Teruhiko; Shimada, Shoichiro; Shirakawa, Toshihisa; Iwamura, Takamichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Takeda, Renzo [Hitachi Ltd., Tokyo (Japan); Yokoyama, Tsugio [Toshiba Corp., Kawasaki, Kanagawa (Japan); Hibi, Koki [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Wada, Shigeyuki [Japan Atomic Power Co., Tokyo (Japan)

    2000-06-01

    The Reduced-Moderation Water Reactor (RMWR) is a next generation water-cooled reactor which aims at effective utilization of uranium resource, high burn-up and long operation cycle, and plutonium multi-recycle. These characteristics can be achieved by the high conversion ratio from {sup 238}U to {sup 239}Pu resulted from the higher neutron energy spectrum in comparison to conventional light water reactors. Considering the extension of LWR utilization, Japan Atomic Energy Research Institute (JAERI) started the research on it in 1997 and then started a collaboration in the conceptual design study with the Japan Atomic Power Company (JAPC) in 1998, under technical cooperation with three Japanese reactor vendors. In the core design study of the RMWR, negative void reactivity coefficient is required from a viewpoint of safety as well as establishing hard neutron spectrum. In order to achieve the above trade-off characteristics simultaneously, several basic core design ideas should be combined, such as a tight-lattice fuel assembly, a flat core, a blanket effect, a streaming effect and so on. Up to now, five core concepts have been created for the RMWR as follows: a high conversion BWR type core with high void fraction and super-flat core, a long operation cycle BWR type core using void tube assembly, a high conversion BWR type core without blankets, a high conversion PWR type core using heavy water as a coolant, and a PWR type core for plutonium multi-recycle using seed-blanket type fuel assemblies. Detailed feasibility studies for the RMWR have been continued on core design study. The present report summarizes the recent progress in the design study for the RMWR. (author)

  9. Feasibility study for Tehran Research Reactor power upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Farhadi, Kazem [Nuclear Research Center, Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of)], E-mail: kfarhadi@aeoi.org.ir; Khakshournia, Samad [Nuclear Research Center, Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of)

    2008-07-15

    The present work is concerned with a power upgrading study of Tehran Research Reactor (TRR). The upgrading study is aimed at investigating the possibility of raising power of the TRR from the current level of 5 MW{sub th} to a higher level without violating the original thermal-hydraulic safety criteria. The existing core, comprising 22 standard fuel elements and five control fuel elements, is used for the analyses. Different reactor thermal powers (5-11 MW) and different core coolant flow rates (500-921 m{sup 3}/h) are considered. It is shown that, for the present core, this goal could be achieved safely by gradually opening the butterfly control valve until the desired coolant flow rate is reached. The TRR power could be upgraded up to around 7.5 MW{sub th} with the total power peaking factor maintained at less than or equal to 3.0.

  10. Feasibility study for Tehran Research Reactor power upgrading

    International Nuclear Information System (INIS)

    Farhadi, Kazem; Khakshournia, Samad

    2008-01-01

    The present work is concerned with a power upgrading study of Tehran Research Reactor (TRR). The upgrading study is aimed at investigating the possibility of raising power of the TRR from the current level of 5 MW th to a higher level without violating the original thermal-hydraulic safety criteria. The existing core, comprising 22 standard fuel elements and five control fuel elements, is used for the analyses. Different reactor thermal powers (5-11 MW) and different core coolant flow rates (500-921 m 3 /h) are considered. It is shown that, for the present core, this goal could be achieved safely by gradually opening the butterfly control valve until the desired coolant flow rate is reached. The TRR power could be upgraded up to around 7.5 MW th with the total power peaking factor maintained at less than or equal to 3.0

  11. Consequence model of the German reactor safety study

    International Nuclear Information System (INIS)

    Bayer, A.; Aldrich, D.; Burkart, K.; Horsch, F.; Hubschmann, W.; Schueckler, M.; Vogt, S.

    1979-01-01

    The consequency model developed for phase A of the German Reactor Safety Study (RSS) is similar in many respects to its counterpart in WASH-1400. As in that previous study, the model describes the atmosphere dispersion and transport of radioactive material released from the containment during a postulated reactor accident, and predicts its interaction with and influence on man. Differences do exist between the two models however, for the following reasons: (1) to more adequately reflect central European conditions, (2) to include improved submodels, and (3) to apply additional data and knowledge that have become available since publication of WASH-1400. The consequence model as used in phase A of the German RSS is described, highlighting differences between it and the U.S. model

  12. Fast-mixed spectrum reactor interim report initial feasibility study

    International Nuclear Information System (INIS)

    Fischer, G.J.; Cerbone, R.J.

    1979-01-01

    The report summarizes the results of an initial four-month feasibility study of the Fast-Mixed Spectrum Reactor (FMSR). Reactor physics, fuel cycle, and thermal-hydraulic analyses were performed on a reference design. These results when coupled to a fuel and materials evaluation performed in cooperation with the Argonne National Laboratory indicate that the FMSR is feasible provided the fuels, cladding, and subassembly ducts can survive a peak fuel burnup of 15 to 20 atom percent heavy metal and peak fluences of 8 x 10 23 (nvt > 0.1 MeV). The results of this short study have also provided a basis for exploring alternative designs requiring significantly lower peak burnup and fluences for their operation

  13. Parametric study of the criticality of natural reactors

    International Nuclear Information System (INIS)

    Naudet, R.

    1978-01-01

    Conditions for the criticality of natural reactors are investigated from a general point of view; a parametric study is presented, which expresses the possibility of chain reactions as functions of five parameters: the age of the deposit, the ore's uranium content, the volume of high-grade ore, the neutron capture of the vein of ore and the amount of water associated with the uranium. It is demonstrated that although criticality could theoretically be attained for ages that are not in excess of 1000 to 1200 MA, conditions would have to be exceptionally favorable for it since the deposits are clearly much younger than those at Oklo. The study offers a much better appreciation of the probability for discovery of other natural fissionable reactors

  14. Organics on Mars : Laboratory studies of organic material under simulated martian conditions

    NARCIS (Netherlands)

    Kate, Inge Loes ten

    2006-01-01

    The search for organic molecules and traces of life on Mars has been a major topic in planetary science for several decades, and is the future perspective of several missions to Mars. In order to determine where and what those missions should be looking for, laboratory experiments under simulated

  15. Mars bevares

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Hendricks, Elbert

    2009-01-01

    2009 er femåret for Mission Mars. I den anledning opridser de to kronikører, far og søn, hvorfor man bør lade planer om en bemandet tur til Mars forblive i skrivebordsskuffen......2009 er femåret for Mission Mars. I den anledning opridser de to kronikører, far og søn, hvorfor man bør lade planer om en bemandet tur til Mars forblive i skrivebordsskuffen...

  16. A comparative study of fuel management in PWR reactors

    International Nuclear Information System (INIS)

    Barroso, D.E.G.; Nair, R.P.K.; Vellozo, S.O.

    1981-01-01

    A study about fuel management in PWR reactors, where not only the conventional uranium cycle is considered, but also the thorium cycle as an alternative is presented. The final results are presented in terms of U 3 O 8 demand and SWU and the approximate costs of the principal stages of the fuel cycle, comparing with the stardand cycle without recycling. (E.G.) [pt

  17. Reactor safety study applied to the Forsmark 3 Power Plant

    International Nuclear Information System (INIS)

    Ericsson, G.; Tiren, L.I.

    1978-01-01

    A reactor safety study of the Forsmark 3 BWR power plant has been carried out for the purpose of calculating core melt probabilities using WASH-1400 methods. A sensitivity analysis shows that the calculated core melt probability is changed by approximately a factor of 10 depending on assumptions made with respect to the probability of human error. The importance of the availability of off-site power and the influence of common cause failure is also discussed. (author)

  18. Numerical Study of Thermal Hydraulics for Secondary side of Steam Generator by CUPID/MARS Coupled Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Ryong; Yoon, Han Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    As a thermal-hydraulic behavior in the secondary side of steam generator such as two-phase boiling flow, flow-induce vibration of U-tubes is quite complicated, the importance to numerically investigate the flow behavior has been arisen. Recently, multi-scale analyses have been developed to take into account the primary side as well. In this study, the coupled CUPID and MARS code was used for the simulation of boiler side of the PWR steam generator. Calculation results are compared with the existing code quantitatively. Coupled CUPID/MARS code was applied for the simulation of the steam generator. The primary side of the steam generator and other RCS was simulated by MARS and the secondary side was calculated by CUPID with porous media approach.

  19. A study on ex-vessel steam explosion for a flooded reactor cavity of reactor scale - 15216

    International Nuclear Information System (INIS)

    Song, S.; Yoon, E.; Kim, Y.; Cho, Y.

    2015-01-01

    A steam explosion can occur when a molten corium is mixed with a coolant, more volatile liquid. In severe accidents, corium can come into contact with coolant either when it flows to the bottom of the reactor vessel and encounters the reactor coolant, or when it breaches the reactor vessel and flows into the reactor containment. A steam explosion could then threaten the containment structures, such as the reactor vessel or the concrete walls/penetrations of the containment building. This study is to understand the shortcomings of the existing analysis code (TEXAS-V) and to estimate the steam explosion loads on reactor scale and assess the effect of variables, then we compared results and physical phenomena. Sensitivity study of major parameters for initial condition is performed. Variables related to melt corium such as corium temperature, falling velocity and diameter of melt are more important to the ex-vessel steam explosion load and the steam explosion loads are proportional to these variables related to melt corium. Coolant temperature on reactor cavity has a specific area to increase the steam explosion loads. These results will be used to evaluate the steam explosion loads using ROAAM (Risk Oriented Accident Analysis Methodology) and to develop the evaluation methodology of ex-vessel steam explosion. (authors)

  20. Process Inherent Ultimate Safety (PIUS) reactor evaluation study: Final report

    International Nuclear Information System (INIS)

    1987-02-01

    This report presents the results of an independent study by United Engineers and Constructors (UNITED) of the SECURE-P Process Inherent Ultimate Safety (PIUS) Reactor Concept which is presently under development by the Swedish light water reactor vendor ASEA-ATOM of Vasteras, Sweden. This study was performed to investigate whether there is any realistic basis for believing that the PIUS reactor could be a viable competitor in the US energy market in the future. Assessments were limited to the technical, economic and licensing aspects of PIUS. Socio-political issues, while certainly important in answering this question, are so broad and elusive that it was considered that addressing them with the limited perspective of one small group from one company would be of questionable value and likely be misleading. Socio-political issues aside, the key issue is economics. For this reason, the specific objectives of this study were to determine if the estimated PIUS plant cost will be competitive in the US market and to identify and evaluate the technical and licensing risks that might make PIUS uneconomical or otherwise unacceptable

  1. Conceptual design study of fusion experimental reactor (FY86FER)

    International Nuclear Information System (INIS)

    Nakashima, Kunihiko; Yamamoto, Shin; Ohara, Yoshihiro; Watanabe, Kazuhiro; Mizuno, Makoto; Araki, Masanori; Uede, Taisei; Okano, Kunihiko.

    1987-09-01

    This report describes the results of applicability studies for the negative ion-based neutral beam injector to the Fusion Experimental Reactor (FER). The operation scenario of FER has been proposed to adopt the neutral injection method as one of candidates, which has three functions of heating, current drive and profile control. One of the fundamental requirements is the tangential injection of the neutral beam. For neutral beam injectors, three port sections are available. Supposing to adopt the beam line with the straight long neutralizer which has been designed in JAERI, the geometrical arrangement was determined so as to avoid any trouble to the reactor structure. The conceptual study for major components which compose the beam line system was carried out including the estimation of the neutron streaming. The power supply system was studied also and the work was concentrated on the acceleration power supply which requires the output voltage of 500 kV and fast cut-off time. A basic concept, in which a inverter with a AC switch is used and the frequency of the supplied AC line is increased was proposed. In these works, the configuration of the neutral beam injection system was detailed and it was shown that the beam line seems to be well implemented with the geometrical constraints related to the reactor configuration. (author)

  2. Experimental studies on catalytic hydrogen recombiners for light water reactors

    International Nuclear Information System (INIS)

    Drinovac, P.

    2006-01-01

    In the course of core melt accidents in nuclear power plants a large amount of hydrogen can be produced and form an explosive or even detonative gas mixture with aerial oxygen in the reactor building. In the containment atmosphere of pressurized water reactors hydrogen combines a phlogistically with the oxygen present to form water vapor even at room temperature. In the past, experimental work conducted at various facilities has contributed little or nothing to an understanding of the operating principles of catalytic recombiners. Hence, the purpose of the present study was to conduct detailed investigations on a section of a recombiner essentially in order to deepen the understanding of reaction kinetics and heat transport processes. The results of the experiments presented in this dissertation form a large data base of measurements which provides an insight into the processes taking place in recombiners. The reaction-kinetic interpretation of the measured data confirms and deepens the diffusion theory - proposed in an earlier study. Thus it is now possible to validate detailed numeric models representing the processes in recombiners. Consequently the present study serves to broaden and corroborate competence in this significant area of reactor technology. In addition, the empirical knowledge thus gained may be used for a critical reassessment of previous numeric model calculations. (orig.)

  3. Synthetic study of reactor irradiation for medical use

    International Nuclear Information System (INIS)

    An, Shigehiro; Furuhashi, Akira; Kanda, Keiji; Sumita, Kenji; Kakihana, Hidetake.

    1978-01-01

    This report is described on the results of the study on the reactor irradiation for medical use shared by the Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, and other seventeen facilities. Boron neutron-capturing therapy developed in Japan is extremely significant treating method for tumors by destroying tumor cells of encephaloma, etc. selectively. This is the synthetic study for promoting the above therapeutic method. Two existing reactors were reconstructed into the thermal neutron reactors for boron neutron-capturing therapy. The various preparatory and physical researches were made with the reconstruction, and the therapy was tried on eleven cases. Further experiments were made on the following points: (1) To promote treatment on encephaloma by boron neutron-capturing therapy. (2) To develop its application to malignant tumors other than encephaloma. (3) Animal irradiation experiments. (4) The basic experiments on the cellular level. (5) The study of remote controlled anesthesia. (6) To control irradiated dose. (7) To improve boron compounds. (8) To condense radioisotopes. (Kobatake, H.)

  4. Lagrangian Approach to Study Catalytic Fluidized Bed Reactors

    Science.gov (United States)

    Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration

    2013-03-01

    Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)

  5. Molten salt reactors. Synthesis of studies realized between 1973 and 1983. General synthesis

    International Nuclear Information System (INIS)

    Hery, M.; Lecocq, A.

    1983-03-01

    After a brief recall of the MSBR project, French studies on molten salt reactors are summed up. Theoretical and experimental studies for a graphite moderated 1000 MWe reactor using molten Li, Be, Th and U fluorides cooled by salt-lead direct contact are given. These studies concern the core, molten salt chemistry, graphite, metals (molybdenum, alloy TZM), corrosion, reactor components [fr

  6. Inertial Fusion Energy reactor design studies: Prometheus-L, Prometheus-H

    International Nuclear Information System (INIS)

    Waganer, L.M.; Driemeyer, D.E.; Lee, V.D.

    1992-03-01

    This report contains a review of design studies for inertial confinement reactors. The first of three volumes briefly discusses the following: Introduction; Key objectives, requirements, and assumptions; Systems modeling and trade studies; Prometheus-L reactor plant design overview; Prometheus-H reactor plant design overview; Key technical issues and R ampersand D requirements; Comparison of IFE designs; and study conclusions

  7. Physics-magnetics trade studies for tandem mirror reactors

    International Nuclear Information System (INIS)

    Campbell, R.B.; Perkins, L.J.; Blackfield, D.T.

    1985-01-01

    We describe and present results obtained from the optimization package of the Tandem Mirror Reactor Systems Code. We have found it to be very useful in searching through multidimensional parameter space, and have applied it here to study the effect of choke coil field strength and net electric power on cost of electricity (COE) and mass utilization factor (MUF) for MINIMARS type reactors. We have found that a broad optimum occurs at B/sub choke/ = 26 T for both COE and MUF. The COE economy of scale approaches saturation at quite low powers, around 600 MW(e). The saturation is mainly due to longer construction times for large plants, and the associated time related costs. The MUF economy of scale does not saturate, at least for powers up to 2400 MW(e)

  8. Fuelling study of CANDU reactors using neutron absorber poisoned fuel

    Energy Technology Data Exchange (ETDEWEB)

    Song, J.J.; Chan, P.K.; Bonin, H.W., E-mail: s25815@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2014-07-01

    A comparative fuelling study is conducted to determine the potential gain in operating margin for CANDU reactors incurred by implementing a change to the design of the conventional 37-element natural uranium (NU) fuel. The change involves insertion of minute quantities of neutron absorbers, Gd{sub 2}O{sub 3} and Eu{sub 2}O{sub 3}, into the fuel pellets. The Reactor Fuelling Simulation Program (RFSP) is used to conduct core-following simulations, for the regular 37-element NU fuel, which is to be used as control for comparison. Preliminary results are presented for fuelling with the regular 37-element NU fuel, which indicate constraints on fuelling that may be relaxed with addition of neutron absorbers. (author)

  9. Study on core design for reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Okubo, Tsutomu

    2002-01-01

    The Reduced-Moderation Water Reactor (RMWR) is a water-cooled reactor with the harder neutron spectrum comparing with the LWR, resulting from low neutron moderation due to reduced water volume fraction. Based on the difference from the spectrum from the LWR, the conversion from U-238 to Pu-239 is promoted and the new cores preferable to effective utilization of uranium resource can be possible Design study of the RMWR core started in 1997 and new four core concepts (three BWR cores and one PWR core) are recently evaluated in terms of control rod worths, plutonium multiple recycle, high burnup and void coefficient. Comparative evaluations show needed incorporation of control rod programming and simplified PUREX process as well as development of new fuel cans for high burnup of 100 GW-d/t. Final choice of design specifications will be made at the next step aiming at realization of the RMWR. (T. Tanaka)

  10. Systems study of tokamak fusion--fission reactors

    International Nuclear Information System (INIS)

    Tenney, F.H.; Bathke, C.G.; Price, W.G. Jr.; Bohlke, W.H.; Mills, R.G.; Johnson, E.F.; Todd, A.M.M.; Buchanan, C.H.; Gralnick, S.L.

    1978-11-01

    This publication reports the results of a two to three year effort at a systematic analysis of a wide variety of tokamak-driven fissioning blanket reactors, i.e., fusion--fission hybrids. It addresses the quantitative problems of determining the economically most desirable mix of the two products: electric power and fissionable fuel and shows how the price of electric power can be minimized when subject to a variety of constraints. An attempt has been made to avoid restricting assumptions, and the result is an optimizing algorithm that operates in a six-dimensional parameter space. Comparisons are made on sets of as many as 100,000 distinct machine models, and the principal results of the study have been derived from the examination of several hundred thousand possible reactor configurations

  11. Study on core design for reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    The Reduced-Moderation Water Reactor (RMWR) is a water-cooled reactor with the harder neutron spectrum comparing with the LWR, resulting from low neutron moderation due to reduced water volume fraction. Based on the difference from the spectrum from the LWR, the conversion from U-238 to Pu-239 is promoted and the new cores preferable to effective utilization of uranium resource can be possible Design study of the RMWR core started in 1997 and new four core concepts (three BWR cores and one PWR core) are recently evaluated in terms of control rod worths, plutonium multiple recycle, high burnup and void coefficient. Comparative evaluations show needed incorporation of control rod programming and simplified PUREX process as well as development of new fuel cans for high burnup of 100 GW-d/t. Final choice of design specifications will be made at the next step aiming at realization of the RMWR. (T. Tanaka)

  12. Study of heterogeneous nuclear reactor lattice properties in multizone systems

    International Nuclear Information System (INIS)

    Raisic, N.M.

    1964-12-01

    Described analysis of substitution experiments and its comparison with the classic procedures showed that it could be successfully applied for processing the experimental results. This method shows some advantages and some deficiencies compared to classic methods. Precision of the method is considered sufficient for design of nuclear facilities. Routine standards used in design of nuclear facilities demand following precision of nuclear parameters: about 5% during feasibility study and design of heavy water facility with natural uranium; 2 - 3% in the phase of parameters optimisation and preparing the main project; 1% during optimization of operation. Accuracy of core parameters obtained by analysis of substitution experiments show that they could be successfully used in the phase of reactor parameters optimisation. It is possible to increase the precision of critical parameters and thus apply the proposed method for analysis of reactor parameters needed in the phase of operation optimization

  13. Fusion-reactor blanket-material safety-compatibility studies

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Muhlestein, L.D.; Keough, R.F.; Cohen, S.

    1982-11-01

    Blanket material selection for fusion reactors is strongly influenced by the desire to minimize safety and environmental concerns. Blanket material safety compatibility studies are being conducted to identify and characterize blanket-coolant-material interactions under postulated reactor accident conditions. Recently completed scoping compatibility tests indicate that : (1) ternary oxides (LiAlO 2 , Li 2 ZrO 3 , Li 2 SiO 3 , Li 4 SiO 4 and LiTiO 3 ) at postulated blanket operating temperatures are compatible with water coolant, while liquid lithium and Li 7 Pb 2 alloy reactions with water generate heat, aerosol and hydrogen; (2) lithium oxide and Li 17 Pb 83 alloy react mildly with water requiring special precautions to control hydrogen release; (3) liquid lithium reacts substantially, while Li 17 Pb 83 alloy reacts mildly with concrete to produce hydrogen; and (4) liquid lithium-air reactions present some major safety concerns

  14. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-B. Commercial fusion electric plant

    International Nuclear Information System (INIS)

    Donohue, M.L.; Price, M.E.

    1984-07-01

    Volume 1-B contains the following chapters: (1) blanket and reflector; (2) central cell shield; (3) central cell structure; (4) heat transport and energy conversion; (5) tritium systems; (6) cryogenics; (7) maintenance; (8) safety; (9) radioactivity, activation, and waste disposal; (10) instrumentation and control; (11) balance of plant; (12) plant startup and operation; (13) plant availability; (14) plant construction; and (15) economic analysis

  15. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-A. Commercial fusion electric plant

    International Nuclear Information System (INIS)

    Donohue, M.L.; Price, M.E.

    1984-07-01

    Volume 1-A contains the following chapters: (1) plasma engineering, (2) magnets, (3) ecr heating systems, (4) anchor ion-cyclotron resonance heating system, (5) sloshing ion neutral beam, (6) end cell structure, (7) end plasma technology, (8) fueling, (9) startup ion cyclotron resonant heating systems, and (10) end cell radiation analysis

  16. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-B. Commercial fusion electric plant

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, M.L.; Price, M.E. (eds.)

    1984-07-01

    Volume 1-B contains the following chapters: (1) blanket and reflector; (2) central cell shield; (3) central cell structure; (4) heat transport and energy conversion; (5) tritium systems; (6) cryogenics; (7) maintenance; (8) safety; (9) radioactivity, activation, and waste disposal; (10) instrumentation and control; (11) balance of plant; (12) plant startup and operation; (13) plant availability; (14) plant construction; and (15) economic analysis.

  17. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-A. Commercial fusion electric plant

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, M.L.; Price, M.E. (eds.)

    1984-07-01

    Volume 1-A contains the following chapters: (1) plasma engineering, (2) magnets, (3) ecr heating systems, (4) anchor ion-cyclotron resonance heating system, (5) sloshing ion neutral beam, (6) end cell structure, (7) end plasma technology, (8) fueling, (9) startup ion cyclotron resonant heating systems, and (10) end cell radiation analysis. (MOW)

  18. Experimental studies of tritium barrier concepts for fusion reactors

    International Nuclear Information System (INIS)

    Maroni, V.A.; Van Deventer, E.H.; Renner, T.A.; Pelto, R.H.; Wierdak, C.J.

    1976-01-01

    Ongoing experimental studies at ANL aimed at the development of methods to reduce tritium migration in fusion reactor systems currently include (1) work on the development of multilayered metal composites and impurity-coated refractory metals as barriers to tritium permeation in elevated temperature (greater than 300 0 C) structures and (2) investigations of the kinetics of tritium trapping reactions in inert gas purge streams under conditions that emulate fusion reactor environments. Significant results obtained thus far are (1) demonstration of greater than 50-fold reductions in the hydrogen permeability of stainless steel structures by using stainless steel-clad composites containing an intermediate layer of a selected copper alloy and (2) verification that surface-oxide coatings lead to greater than 100-fold reductions in the hydrogen permeability of vanadium, but that severe oxygen penetration and embrittlement of the vanadium occur at temperatures in the range from 300 to 800 0 C and under conditions of extremely low oxygen potential. Other considerations pertaining to the large-scale use of metal composites in fusion reactors are discussed, and progress in efforts to demonstrate the fabricability of metal composites is reviewed. Also presented are results of studies of the efficiencies of (1) CuO and CuO--MnO 2 beds in converting HT to HTO and (2) magnesium metal beds in converting HTO to HT

  19. Rebuilding the Brookhaven high flux beam reactor: A feasibility study

    International Nuclear Information System (INIS)

    Brynda, W.J.; Passell, L.; Rorer, D.C.

    1995-01-01

    After nearly thirty years of operation, Brookhaven's High Flux Beam Reactor (HFBR) is still one of the world's premier steady-state neutron sources. A major center for condensed matter studies, it currently supports fifteen separate beamlines conducting research in fields as diverse as crystallography, solid-state, nuclear and surface physics, polymer physics and structural biology and will very likely be able to do so for perhaps another decade. But beyond that point the HFBR will be running on borrowed time. Unless appropriate remedial action is taken, progressive radiation-induced embrittlement problems will eventually shut it down. Recognizing the HFBR's value as a national scientific resource, members of the Laboratory's scientific and reactor operations staffs began earlier this year to consider what could be done both to extend its useful life and to assure that it continues to provide state-of-the-art research facilities for the scientific community. This report summarizes the findings of that study. It addresses two basic issues: (i) identification and replacement of lifetime-limiting components and (ii) modifications and additions that could expand and enhance the reactor's research capabilities

  20. Exposure mode study to xenon-133 in a reactor building

    International Nuclear Information System (INIS)

    Perier, Aurelien

    2014-01-01

    The work described in this thesis focuses on the external and internal dose assessment to xenon-133. During the nuclear reactor operation, fission products and radioactive inert gases, as 133 Xe, are generated and might be responsible for the exposure of workers in case of clad defect. Particle Monte Carlo transport code is adapted in radioprotection to quantify dosimetric quantities. The study of exposure to xenon-133 is conducted by using Monte-Carlo simulations based on GEANT4, an anthropomorphic phantom, a realistic geometry of the reactor building, and compartmental models. The external exposure inside a reactor building is conducted with a realistic and conservative exposure scenario. The effective dose rate and the eye lens equivalent dose rate are determined by Monte-Carlo simulations. Due to the particular emission spectrum of xenon-133, the equivalent dose rate to the lens of eyes is discussed in the light of expected new eye dose limits. The internal exposure occurs while xenon-133 is inhaled. The lungs are firstly exposed by inhalation, and their equivalent dose rate is obtained by Monte-Carlo simulations. A biokinetic model is used to evaluate the internal exposure to xenon-133. This thesis gives us a better understanding to the dosimetric quantities related to external and internal exposure to xenon-133. Moreover the impacts of the dosimetric changes are studied on the current and future dosimetric limits. The dosimetric quantities are lower than the current and future dosimetric limits. (author)

  1. The feasibility study on commercialized fast reactor cycle system

    International Nuclear Information System (INIS)

    Noda, Hiroshi

    2002-01-01

    The feasibility study on commercialized Fast Reactor cycle system (FS) has been carried out by a joint team with the participation of all parties concerned in Japan since July, 1999. It aims to clarify various perspectives for commercialized fast reactor cycle system and also suggest development strategies to diverse social needs in the 21 st century. The FS consists of several phases. The phase 1 has progressed as planned and the highly feasible candidate concepts with innovative technologies have been screened out among a wide variety of concepts. During the phase 2, approximately five years after the phase 1, the in-depth design studies and engineering scale tests of key technologies are being conducted to verify and validate the feasibility of screened candidate concepts. At the end of the phase 2, a few promising concepts will be selected with their R and D tasks. The paper describes the results of the phase 1, the activities of the phase 2 and the new concept related to the fast reactor fuel cycle focusing on the reduction in environmental burden, which is one of key factors to sustain the nuclear power generation in the 21 st century

  2. Sensitivity analysis of the reactor safety study. Final report

    International Nuclear Information System (INIS)

    Parkinson, W.J.; Rasmussen, N.C.; Hinkle, W.D.

    1979-01-01

    The Reactor Safety Study (RSS) or Wash 1400 developed a methodology estimating the public risk from light water nuclear reactors. In order to give further insights into this study, a sensitivity analysis has been performed to determine the significant contributors to risk for both the PWR and BWR. The sensitivity to variation of the point values of the failure probabilities reported in the RSS was determined for the safety systems identified therein, as well as for many of the generic classes from which individual failures contributed to system failures. Increasing as well as decreasing point values were considered. An analysis of the sensitivity to increasing uncertainty in system failure probabilities was also performed. The sensitivity parameters chosen were release category probabilities, core melt probability, and the risk parameters of early fatalities, latent cancers and total property damage. The latter three are adequate for describing all public risks identified in the RSS. The results indicate reductions of public risk by less than a factor of two for factor reductions in system or generic failure probabilities as high as one hundred. There also appears to be more benefit in monitoring the most sensitive systems to verify adherence to RSS failure rates than to backfitting present reactors. The sensitivity analysis results do indicate, however, possible benefits in reducing human error rates

  3. Research from the NASA Twins Study and Omics in Support of Mars Missions

    Science.gov (United States)

    Kundrot, C.; Shelhamer, M.; Scott, G.

    2015-01-01

    The NASA Twins Study, NASA's first foray into integrated omic studies in humans, illustrates how an integrated omics approach can be brought to bear on the challenges to human health and performance on a Mars mission. The NASA Twins Study involves US Astronaut Scott Kelly and his identical twin brother, Mark Kelly, a retired US Astronaut. No other opportunity to study a twin pair for a prolonged period with one subject in space and one on the ground is available for the foreseeable future. A team of 10 principal investigators are conducting the Twins Study, examining a very broad range of biological functions including the genome, epigenome, transcriptome, proteome, metabolome, gut microbiome, immunological response to vaccinations, indicators of atherosclerosis, physiological fluid shifts, and cognition. A novel aspect of the study is the integrated study of molecular, physiological, cognitive, and microbiological properties. Major sample and data collection from both subjects for this study began approximately six months before Scott Kelly's one year mission on the ISS, continue while Scott Kelly is in flight and will conclude approximately six months after his return to Earth. Mark Kelly will remain on Earth during this study, in a lifestyle unconstrained by this study, thereby providing a measure of normal variation in the properties being studied. An overview of initial results and the future plans will be described as well as the technological and ethical issues raised for spaceflight studies involving omics.

  4. Study of trans-uranian incineration in molten salt reactor

    International Nuclear Information System (INIS)

    Valade, M.

    2000-01-01

    With the emergence of new options for nuclear power, molten salt reactors are envisaged for waste management. The aim of this thesis is to show how molten salt reactors can help to solve the transuranics issue. Their high versatility regarding to isotopic vector allows to accommodate large fractions of minor actinides as compared to solid fuel system. In this thesis, a neutronics study of molten salt reactors, MSR, has been conducted. For this purpose, two reference systems were considered, TIER1 and AMSTER. In the case of TIER1, an optimisation was made to reach an equilibrium. The analysis of both systems showed the main characteristics of MSR: their link to chemistry and on line reprocessing. In this work, several methods to drive the system to a state of equilibrium have been implemented and compared. During this process the isotopic composition and neutron spectrum, thus the nuclear reaction cross sections, vary tremendously. It is essential to take these evolutions into account in order to accurately estimate the equilibrium state. This has been accomplished inside the multi-recycling procedure we set with ERANOS. A dedicated calculation schema has been realized to simulate superthermal systems with this computation code. These results were checked through a benchmark against other computer codes. Then, with multi-recycling method, several molten salt systems have been compared in order to define the optimal reactor for transuranics incineration. Nevertheless, a final choice can not only be done using only neutronics characteristics since chemistry and thermal-hydraulics constraints are really important for MSR. Moreover, a complete safety study would be required. (author)

  5. Digital Elevation Models of Patterned Ground in the Canadian Arctic and Implications for the Study of Mars

    Science.gov (United States)

    Knightly, P.; Murakami, Y.; Clarke, J.; Sizemore, H.; Siegler, M.; Rupert, S.; Chevrier, V.

    2017-12-01

    Patterned ground forms in periglacial zones from both expansion and contraction of permafrost by freeze-thaw and sub-freezing temperature changes and has been observed on both Earth and Mars from orbital and the surface at the Phoneix and Viking 2 landing sites. The Phoenix mission to Mars studied patterned ground in the vicinity of the spacecraft including the excavation of a trench revealing water permafrost beneath the surface. A study of patterned ground at the Haughton Impact structure on Devon Island used stereo-pair imaging and three-dimensional photographic models to catalog the type and occurrence of patterned ground in the study area. This image catalog was then used to provide new insight into photographic observations gathered by Phoenix. Stereo-pair imagery has been a valuable geoscience tool for decades and it is an ideal tool for comparative planetary geology studies. Stereo-pair images captured on Devon Island were turned into digital elevation models (DEMs) and comparisons were noted between the permafrost and patterned ground environment of Earth and Mars including variations in grain sorting, active layer thickness, and ice table depth. Recent advances in 360° cameras also enabled the creation of a detailed, immersive site models of patterned ground at selected sites in Haughton crater on Devon Island. The information from this ground truth study will enable the development and refinement of existing models to better evaluate patterned ground on Mars and predict its evolution.

  6. Communications with Mars During Periods of Solar Conjunction: Initial Study Results

    Science.gov (United States)

    Morabito, D.; Hastrup, R.

    2001-07-01

    During the initial phase of the human exploration of Mars, a reliable communications link to and from Earth will be required. The direct link can easily be maintained during most of the 780-day Earth-Mars synodic period. However, during periods in which the direct Earth-Mars link encounters increased intervening charged particles during superior solar conjunctions of Mars, the resultant effects are expected to corrupt the data signals to varying degrees. The purpose of this article is to explore possible strategies, provide recommendations, and identify options for communicating over this link during periods of solar conjunctions. A significant improvement in telemetry data return can be realized by using the higher frequency 32 GHz (Ka-band), which is less susceptible to solar effects. During the era of the onset of probable human exploration of Mars, six superior conjunctions were identified from 2015 to 2026. For five of these six conjunctions, where the signal source is not occulted by the disk of the Sun, continuous communications with Mars should be achievable. Only during the superior conjunction of 2023 is the signal source at Mars expected to lie behind the disk of the Sun for about one day and within two solar radii (0. 5 deg) for about three days.

  7. Chemical and Biological Substances Decontamination Study for Mars Missions and Terrestrial Applications

    Science.gov (United States)

    Pottage, Thomas; Walker, James; Bennett, Allan; Vrublevskis, John; Hovland, Scott

    This study, funded by the European Space Agency (ESA) and undertaken by the Health Protec-tion Agency, UK supported by Systems Engineering and Assessment Ltd., was devised to select suitable current decontamination technologies for development for future manned missions to the Moon and Mars. There is a requirement to decontaminate the habitat module due to the concerns about astronaut ill health, microbial deterioration of materials and potential forward contamination in the case of Mars. In the case of the MIR space station, biodeterioration of components and materials occurred, and dangerous levels of airborne microorganisms were detected during air sampling procedures which lead to the introduction of microbial exposure limits (as MORD SSP 50260) to ensure the health of the crew. COSPAR planetary protection guidelines highlight the need to reduce any potential forward or backwards contamination issues that may occur through the use of Extra Vehicular Activity (EVA) suits whilst on Mars. Decontamination of the suit exterior must be completed before any EVA activity on Mars, whilst a further decontamination cycle must be completed after entry to the airlock following EVA. Technologies and techniques have also been investigated for the microbial reduction of the interior surfaces of the EVA suit to stop biodeterioration of the materials and protect the user from pathogenic microbe accumulation. The first work package reviewed the systems description and requirements as detailed in the statement of work. The requirements were broken down into 12 further requirement sections, where they were updated and expanded, resulted in Technical Note (TN) 1 which was then used as the base document for WP2 and WP3. WP2 investigated the current technologies available for the decontamination of the habitat module interior on missions of up to 6 months and missions that have durations of greater than 6 months. A comprehensive review was carried out for the different methods that

  8. Study on modeling technology in digital reactor system

    International Nuclear Information System (INIS)

    Liu Xiaoping; Luo Yuetong; Tong Lili

    2004-01-01

    Modeling is the kernel part of a digital reactor system. As an extensible platform for reactor conceptual design, it is very important to study modeling technology and develop some kind of tools to speed up preparation of all classical computing models. This paper introduces the background of the project and basic conception of digital reactor. MCAM is taken as an example for modeling and its related technologies used are given. It is an interface program for MCNP geometry model developed by FDS team (ASIPP and HUT), and designed to run on windows system. MCAM aims at utilizing CAD technology to facilitate creation of MCNP geometry model. There have been two ways for MCAM to utilize CAD technology: (1) Making use of user interface technology in aid of generation of MCNP geometry model; (2) Making use of existing 3D CAD model to accelerate creation of MCNP geometry model. This paper gives an overview of MCAM's major function. At last, several examples are given to demonstrate MCAM's various capabilities. (authors)

  9. Study of a compact reversed shear Tokamak reactor

    International Nuclear Information System (INIS)

    Okano, K.; Asaoka, Y.; Tomabechi, K.; Yoshida, T.; Hiwatari, R.; Ogawa, Y.; Tokimatsu, K.; Yamamoto, T.; Inoue, N.; Murakami, Y.

    1998-01-01

    A reversed shear configuration, which was observed recently in some tokamak experiments, might have a possibility to realize compact and cost-competitive tokamak reactors. In this study, a compact (low cost) commercial reactor based on the shear reversed high beta equilibrium with β N =5.5, is considered, namely the compact reversed shear tokamak, CREST-1. The CREST-1 is designed with a moderate aspect ratio (R/a=3.4), which will allow us to experimentally develop this CREST concept by ITER. This will be very advantageous with regard to the fusion development strategy. The current profile for the reversed shear operation is sustained and controlled in steady state by bootstrap (88%), beam and r driven currents, which are calculated by a neo-classical model code in 3D geometry. The MHD stability has been checked by an ideal MHD stability analysis code (ERATO) and it has been confirmed that the ideal low n kink, ballooning and Mercier modes are stable while a closed conductive shell is required for stability. Such a compact tokamak can be cost-competitive as an electric power source in the 21st century and it is one possible scenario in realizing a commercial fusion reactor beyond the ITER project. (orig.)

  10. Savannah River Site reactor hardware design modification study

    International Nuclear Information System (INIS)

    Fisher, J.E.

    1990-03-01

    A study was undertaken to assess the merits of proposed design modifications to the SRS reactors. The evaluation was based on the responses calculated by the RELAP5 systems code to double-ended guillotine break loss-of-coolant-accidents (DEGB LOCAs). The three concepts evaluated were (a) elevated plenum inlet piping with a guard vessel and clamshell enclosures, (b) closure of both rotovalves in the affected loop, and (c) closure of the pump suction valve in the affected loop. Each concept included a fast reactor shutdown (to 65% power in 100 ms) and a 2-s ac pump trip. For the elevated piping design, system recovery was predicted for breaks in the plenum inlet or pump suction piping; response to the pump discharge break location did not show improvement compared to the present system configuration. The rotovalve closure design improved system response to plenum inlet or pump discharge breaks; recovery was not predicted for pump suction breaks. The pump suction valve closure design demonstrated system recovery for all break locations downstream of the valve. A combination of features is recommended to ensure liquid inventory recovery for all break locations. The elevated piping design performance during pump discharge breaks would be improved with addition of a dc pump trip in the affected loop. Valve closure design performance for a break location in the short section of piping between the reactor concrete shield and the pump suction valve would benefit from the clamshell enclosing that section of piping. 12 refs., 10 figs., 2 tabs

  11. A preliminary conceptual design study for Korean fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keeman, E-mail: kkeeman@nfri.re.kr [National Fusion Research Institute, 169-148 Gwahak-ro, Daejeon 305-806 (Korea, Republic of); Kim, Hyoung Chan; Oh, Sangjun; Lee, Young Seok; Yeom, Jun Ho; Im, Kihak; Lee, Gyung-Su [National Fusion Research Institute, 169-148 Gwahak-ro, Daejeon 305-806 (Korea, Republic of); Neilson, George; Kessel, Charles; Brown, Thomas; Titus, Peter [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States)

    2013-10-15

    Highlights: ► Perform a preliminary conceptual study for a steady-state Korean DEMO reactor. ► Present design guidelines and requirements of Korean DEMO reactor. ► Present a preliminary design of TF (toroidal field) and CS (central solenoid) magnet. ► Present a preliminary result of the radial build scheme of Korean DEMO reactor. -- Abstract: As the ITER is being constructed, there is a growing anticipation for an earlier realization of fusion energy, so called fast-track approach. Korean strategy for fusion energy can be regarded as a fast-track approach and one special concept discussed in this paper is a two-stage development plan. At first, a steady-state Korean DEMO Reactor (K-DEMO) is designed not only to demonstrate a net electricity generation and a self-sustained tritium cycle, but also to be used as a component test facility. Then, at its second stage, a major upgrade is carried out by replacing in-vessel components in order to show a net electric generation on the order of 300 MWe and the competitiveness in cost of electricity (COE). The major radius is designed to be just below 6.5 m, considering practical engineering feasibilities. By using high performance Nb{sub 3}Sn-based superconducting cable currently available, high magnetic field at the plasma center above 8 T can be achieved. A design concept for TF magnets and radial builds for the K-DEMO considering a vertical maintenance scheme, are presented together with preliminary design parameters.

  12. Are tags from Mars and descriptors from Venus? A study on the ecology of educational resource metadata

    NARCIS (Netherlands)

    Vuorikari, Riina; Sillaots, Martin; Panzavolta, Silvia; Koper, Rob

    2009-01-01

    Vuorikari, R., Sillaots, M., Panzavolta, S. & Koper, R. (2009). Are tags from Mars and descriptors from Venus? A study on the ecology of educational resource metadata. In M. Spaniol, Q. Li, R. Klamma & R. W. H. Lau (Eds.), Proceedings of the 8th International Conference Advances in Web Based

  13. The study meeting report on the undermoderated spectrum reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Nobuya; Ochiai, Masaaki [eds.

    1998-09-01

    The interest to the high converter or in the breeder is rising as the research and the development of the light water-type nuclear reactor in future. A study session about the undermoderated spectrum reactor of the Japan Atomic Energy Research Institute (JAERI) sponsorship was held in March, 1998 4, on the 5th. This report is the contents of the study session. The study session began with the basis lecture to entitle to be `The expectations to the undermoderated core study` almost. Next, the review of the high conversion-type core study about PWR and BWR was reported. As the undermoderated spectrum MOX core study, the latest situation of (1) the development of the supercritical pressure water reactor, (2) the development of RBWR, (3) the development of the advanced fuel cycle by BWR and (4) the development of the pressurized water-type breeder were reported from the university and the maker. As also the study present situation and the plan in future in JAERI, there was an explanation about the design study of the undermoderated spectrum core and the actinide research facility. The panel discussion lastly, to entitle to be `Undermoderated MOX core research and development of the future and the technical issues` was done. There was an opinion about the way of carrying forward concerned research and development, the acceptability of the society, the view of the future, the cooperation of the electric power or the desire to JAERI and there was wide inquiry replying. The 9 of the presented papers are indexed individually. (J.P.N.)

  14. Mars Atmosphere and Volatile EvolutioN (MAVEN) mission's Red Planet program: Bridging the gap in elementary school science through climate studies of Mars

    Science.gov (United States)

    Wood, E. L.

    2012-12-01

    Although reading, writing, and math examinations are often conducted early in elementary school, science is not typically tested until 4th or 5th grade. The result is a refocus on the tested topics at the expense of the untested ones, despite that standards exist for each topic at all grades. On a national level, science instruction is relegated to a matter of a few hours per week. A 2007 Education Policy study states that elementary school students spend an average of 178 minutes a week on science while spending 500 minutes on literacy. A recent NSTA report in July of 2011 of elementary and middle school teachers confirms that teachers feel pressured to teach math and literacy at the expense of other programs. In our interaction with elementary teachers, it is also apparent that many are uncomfortable with science concepts. In order for us to successfully address the Next Generation Science Standards, teachers must be able to reconcile all of the different requirements placed on them in a given school day and in a given school environment. A unique way to combat the lack of science instruction at elementary grades is to combine literacy into an integrated science program, thereby increasing the number of science contact hours. The Red Planet: Read, Write, Explore program, developed for the MAVEN mission, is a science, art, and literacy program designed to easily fit into a typical 3rd-5th grade instructional day. Red Planet tackles climate change through Mars' geologic history and makes Mars-Earth comparisons, while encouraging students to reflect on the environmental requirements needed to keep a biological organisms (including humans) happy, healthy, and alive. The Red Planet program is currently being pilot tested at Acres Green Elementary School in Colorado.

  15. Martian Feeling: An Analogue Study to Simulate a Round-Trip to Mars using the International Space Station

    Science.gov (United States)

    Felix, C. V.; Gini, A.

    When talking about human space exploration, Mars missions are always present. It is clear that sooner or later, humanity will take this adventure. Arguably the most important aspect to consider for the success of such an endeavour is the human element. The safety of the crew throughout a Martian mission is a top priority for all space agencies. Therefore, such a mission should not take place until all the risks have been fully understood and mitigated. A mission to Mars presents unique human and technological challenges in terms of isolation, confinement, autonomy, reliance on mission control, communication delays and adaptation to different gravity levels. Analogue environments provide the safest way to simulate these conditions, mitigate the risks and evaluate the effects of long-term space travel on the crew. Martian Feeling is one of nine analogue studies, from the Mars Analogue Path (MAP) report [1], proposed by the TP Analogue group of ISU Masters class 2010. It is an integrated analogue study which simulates the psychological, physiological and operational conditions that an international, six-person, mixed gender crew would experience on a mission to Mars. Set both onboard the International Space Station (ISS) and on Earth, the Martian Feeling study will perform a ``dress rehearsal'' of a mission to Mars. The study proposes to test both human performance and operational procedures in a cost-effective manner. Since Low Earth Orbit (LEO) is more accessible than other space-based locations, an analogue studies in LEO would provide the required level of realism to a simulated transit mission to Mars. The sustained presence of microgravity and other elements of true spaceflight are features of LEO that are neither currently feasible nor possible to study in terrestrial analogue sites. International collaboration, economics, legal and ethical issues were considered when the study was proposed. As an example of international collaboration, the ISS would

  16. Conceptual design study for the enhanced gas cooled reactor (EGCR)

    International Nuclear Information System (INIS)

    Nakano, M.; Sadahiro, D.; Ozaki, H.; Bryant, S.D.; Cheyne, A.; Gilroy, J.E.; Hulme, G.; Lennox, T.A.; Sunderland, R.E.; Beaumont, H.M.; Kida, M.; Nomura, M.

    2001-01-01

    The preliminary concept of the carbon dioxide cooled fast reactor EGCR has been studied as a Generation IV system. EGCR with MOX fuel has a very good core performance, a breeding ratio over 1.2, a long operating cycle of 24 months, and a high burnup of 150 GWd/t. The plant system is based on the successful AGR experience but provides 3600 MWth. Enhanced passive safety features are provided and a debris tray included. Preliminary costing studies show that EGCR can be competitive to LWRs and can be constructed on a similar schedule. This EGCR concept also shows development potential. (author)

  17. Oak Ridge Tokamak experimental power reactor study scoping report

    International Nuclear Information System (INIS)

    Roberts, M.

    1977-03-01

    This report presents the scoping studies performed as the initial part of the program to produce a conceptual design for a Tokamak Experimental Power Reactor (EPR). The EPR as considered in this study is to employ all systems necessary for significant electric power production at continuous high duty cycle operation; it is presently scheduled to be the final technological step before a Demonstration Reactor Plant (Demo). The scoping study tasks begin with an exploration and identification of principal problem areas and then concentrate on consideration and evaluation of alternate design choices for each of the following major systems: Plasma Engineering and Physics, Nuclear, Electromagnetics, Neutral Beam Injection, and Tritium Handling. In addition, consideration has been given to the integration of these systems and requirements arising out of their incorporation into an EPR. One intent of this study is to document the paths explored in search of the appropriate EPR characteristics. To satisfy this intent, the explorations are presented in chart form outlining possible options in key areas with extensive supporting footnotes. An important result of the scoping study has been the development and definition of an EPR reference design to serve as (1) a common focus for the continuing design study and (2) a guide for associated development programs. In addition, the study has identified research and development requirements essential to facilitate the successful conceptual design, construction, and operation of an EPR

  18. The Importance of Geodetically Controlled Data Sets: THEMIS Controlled Mosaics of Mars, a Case Study

    Science.gov (United States)

    Fergason, R. L.; Weller, L.

    2018-04-01

    Accurate image registration is necessary to answer questions that are key to addressing fundamental questions about our universe. To provide such a foundational product for Mars, we have geodetically controlled and mosaicked THEMIS IR images.

  19. Contribution to the development of the MARS beamline to study oxide dispersion strengthened steels (ODS) irradiated with neutrons using synchrotron source: secondary phases evolution under irradiation

    International Nuclear Information System (INIS)

    Menut, Denis

    2016-01-01

    X-Ray Diffraction (XRD) coupled with X-ray Absorption Fine Structure (XAFS) analyses at the MARS beamline of the synchrotron SOLEIL facility were used to study the microstructural evolution of oxides phases found in oxide dispersion strengthened steels (ODS) irradiated in Material Testing Reactors. Two hold generations of ODS steel grades (DY and MA957) irradiated up to high fluencies (∼75 dpa) were studied. These experiments have required specific developments, in particular a dedicated sample holder. An important milestone was overcome integrating the MARS beamline to the nuclearized facilities accessible for CEA. First, XRD analysis provide new results concerning intermediate sizes of precipitates (around 100 nm) essentially from crystallographic point of view, the nano-sized oxides (from 1 to 10 nm) being not detected, due to the material itself, sample preparation as thin foil and experimental set-up calibration. Secondly, XAFS analysis is not a discriminating technique as soon as the absorber atom is involved in the chemical composition of various precipitates found in ODS. Nevertheless, the stability of the Ti with a coordination number of 5 is evidenced whatever the irradiation conditions. As our experimental study was not able to detect the nano-sized oxides, an alternative way is to perform modeling approach of the behavior of massive oxides under irradiation, compared to experimental analyses under ion irradiations. We have shown that the defect fluorite is an intermediate phase of the crystal-to-amorphous phase transition of the pyrochlore oxide structure, whatever the irradiation conditions and the ratio of the cationic radii, the Ti coordination number remaining around 5 in the amorphous state. (author) [fr

  20. Thermal-hydraulic analysis of water cooled breeding blanket of K-DEMO using MARS-KS code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Hun; Park, Il Woong; Kim, Geon-Woo; Park, Goon-Cherl [Seoul National University, Seoul (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • The thermal design of breeding blanket for the K-DEMO is evaluated using MARS-KS. • To confirm the prediction capability of MARS, the results were compared with the CFD. • The results of MARS-KS calculation and CFD prediction are in good agreement. • A transient simulation was carried out so as to show the applicability of MARS-KS. • A methodology to simulate the entire blanket system is proposed. - Abstract: The thermal design of a breeding blanket for the Korean Fusion DEMOnstration reactor (K-DEMO) is evaluated using the Multidimensional Analysis of Reactor Safety (MARS-KS) code in this study. The MARS-KS code has advantages in simulating transient two-phase flow over computational fluid dynamics (CFD) codes. In order to confirm the prediction capability of the code for the present blanket system, the calculation results were compared with the CFD prediction. The results of MARS-KS calculation and CFD prediction are in good agreement. Afterwards, a transient simulation for a conceptual problem was carried out so as to show the applicability of MARS-KS for a transient or accident condition. Finally, a methodology to simulate the multiple blanket modules is proposed.

  1. A Simulation Study about OECD-SETH PANDA Tests by using MARS Code

    International Nuclear Information System (INIS)

    Bae, Sung Won; Chung, Bub Dong

    2007-04-01

    Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-Of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. In addition, the multi-D module component has been developed to meet the expand the multi-dimensional analysis capability of MARS. Participating in OECD-SETH, MARS provides and undergoes the assess procedure of comercial CFD codes, like FLUENT, CFX, etc. During the participation, MARS has been used to provide the system code results, which is made with the intermediate length scale, restricted analysis volume numbers. With these restrictions and shortcomings, MARS predicts well about the steam concentration distribution and mixture temperature in the large multi-comparted bulk spaces. After the SETH project, NEA has planned the SETH II, which deals with the multiple non-condensible gas stratification and mixing phenomena

  2. The Spread of Economic Ideas among Romanian People. Case Study: Dionisie Pop Marţian

    Directory of Open Access Journals (Sweden)

    Angela ROGOJANU

    2010-12-01

    Full Text Available In the nineteenth century, the accelerating globalizationstarted to show demands that the majority of the Romanians could notunderstand. The delay in the economic development, the political-stateestablishment, the scarcity of instruction and education, the historical andgeographical context marked by hostility, all these formed the gap betweenthe "West" and "East". The renewing economic ideas penetrated hard,often deformed ... The relentless intelligence of some young peopleeducated outside the Romanian land, as Dionisie Pop Marţian (1829-1865, has started the struggle for "the economic emancipation of thenation" by promoting the ideas, the principles and the institutions on whichwas build the prosperity of the West. Seen as a "reactionary" or as a "manof progress", Marţian has delivered a heterogeneous economic outlook, amixture of liberal principles and protectionist principles. The mostsignificant "protection" supported by Marţian was the one againstignorance. The compilation made by Marţian using the works of variousauthors sustaining the "social economy" shows the dimensions of economicbackwardness - the absence of current economic terms from the lexicon.Marţian invents some economic terms, which are understandable, such as:„comerciu”(trade, „manufaptură” (manufacture, „product”, „const”,„fair price”, „banc-rupt” etc. Marţian's mission was clear: "the spreadingof economics through speaking and writing.".

  3. Preliminary closed Brayton cycle study for a space reactor application

    International Nuclear Information System (INIS)

    Guimaraes, Lamartine Nogueira Frutuoso; Carvalho, Ricardo Pinto de; Camillo, Giannino Ponchio

    2007-01-01

    The Nuclear Energy Division (ENU) of the Institute for Advanced Studies (IEAv) has started a preliminary design study for a Closed Brayton Cycle Loop (CBCL) aimed at a space reactor application. The main objectives of the study are to establish a starting concept for the CBCL components specifications, and to develop a demonstrative simulator of CBCL in nominal operation conditions. The ENU/IEAv preliminary design study is developing the CBCL around the NOELLE 60290 turbo machine. The actual nuclear reactor study is being conducted independently. Because of that, a conventional heat source is being used for the CBCL, in this preliminary design phase. This paper describes the steady state simulator of the CBCL operating with NOELLE 60290 turbo machine. In principle, several gases are being considered as working fluid, as for instance: air, helium, nitrogen, CO2 and gas mixtures such as helium and xenon. At this moment the simulator is running with Helium as the working fluid. Simplified models of heat and mass transfer are being developed to simulate thermal components. Future efforts will focus on keeping track of the modifications being implemented at the NOELLE 60290 turbo machine in order to build the CBCL. (author)

  4. Preliminary closed Brayton cycle study for a space reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine Nogueira Frutuoso; Carvalho, Ricardo Pinto de [Institute for Advanced Studies, Sao Jose dos Campos, SP (Brazil)]. E-mail: guimarae@ieav.cta.br; Camillo, Giannino Ponchio [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)]. E-mail: gianninocamillo@gmail.com

    2007-07-01

    The Nuclear Energy Division (ENU) of the Institute for Advanced Studies (IEAv) has started a preliminary design study for a Closed Brayton Cycle Loop (CBCL) aimed at a space reactor application. The main objectives of the study are to establish a starting concept for the CBCL components specifications, and to develop a demonstrative simulator of CBCL in nominal operation conditions. The ENU/IEAv preliminary design study is developing the CBCL around the NOELLE 60290 turbo machine. The actual nuclear reactor study is being conducted independently. Because of that, a conventional heat source is being used for the CBCL, in this preliminary design phase. This paper describes the steady state simulator of the CBCL operating with NOELLE 60290 turbo machine. In principle, several gases are being considered as working fluid, as for instance: air, helium, nitrogen, CO2 and gas mixtures such as helium and xenon. At this moment the simulator is running with Helium as the working fluid. Simplified models of heat and mass transfer are being developed to simulate thermal components. Future efforts will focus on keeping track of the modifications being implemented at the NOELLE 60290 turbo machine in order to build the CBCL. (author)

  5. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids

    Directory of Open Access Journals (Sweden)

    Renu Gupta

    2010-10-01

    Full Text Available Hydrodynamic studies of trickle bed reactors (TBRs are essential for the design and prediction of their performance. The hydrodynamic characteristics involving pressure drop and dynamic liquid saturation are greatly affected by the physical properties of the liquids. In the present study experiments have been carried out in a concurrent downflow air - liquid trickle bed reactor to investigate the dynamic liquid saturation and pressure drop for the water (non-foaming and 3% polyethylene glycol and 4% polyethylene glycol foaming liquids in the gas continuous regime (GCF and foaming pulsing regime (FP. In the GCF regime the dynamic liquid saturation was found to increase with increase in liquid flow rate for non-foaming and foaming liquids. While for 3% and 4% polyethylene glycol solutions the severe foaming was observed in the high interaction regime and the regime is referred to as foaming pulsing (FP regime. The decrease in dynamic liquid saturation followed by a sharp rise in the pressure drop was observed during transition from gas GCF to FP regime. However in the FP regime, a dip in the dynamic liquid saturation was observed. The pressure drop for foaming liquids is observed to be manifolds higher compared to non-foaming liquid in the GCF regime. ©2010 BCREC UNDIP. All rights reserved(Received: 16th January 2010, Revised: 10th February 2010, Accepted: 21st Feberuary 2010[How to Cite: R. Gupta, A. Bansal. (2010. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids. Bulletin of Chemical Reaction Engineering & Catalysis, 5 (1: 31-37. doi:10.9767/bcrec.5.1.7127.31-37][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.5.1.7127.31-37 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/7127][Cited by: Scopus 1 | ] 

  6. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids

    Directory of Open Access Journals (Sweden)

    Ajay Bansal

    2010-10-01

    Full Text Available Hydrodynamic studies of trickle bed reactors (TBRs are essential for the design and prediction of their performance. The hydrodynamic characteristics involving pressure drop and dynamic liquid saturation are greatly affected by the physical properties of the liquids. In the present study experiments have been carried out in a concurrent downflow air - liquid trickle bed reactor to investigate the dynamic liquid saturation and pressure drop for the water (non-foaming and 3% polyethylene glycol and 4% polyethylene glycol foaming liquids in the gas continuous regime (GCF and foaming pulsing regime (FP. In the GCF regime the dynamic liquid saturation was found to increase with increase in liquid flow rate for non-foaming and foaming liquids. While for 3% and 4% polyethylene glycol solutions the severe foaming was observed in the high interaction regime and the regime is referred to as foaming pulsing (FP regime. The decrease in dynamic liquid saturation followed by a sharp rise in the pressure drop was observed during transition from gas GCF to FP regime. However in the FP regime, a dip in the dynamic liquid saturation was observed. The pressure drop for foaming liquids is observed to be manifolds higher compared to non-foaming liquid in the GCF regime. ©2010 BCREC UNDIP. All rights reserved(Received: 16th January 2010, Revised: 10th February 2010, Accepted: 21st Feberuary 2010[How to Cite: R. Gupta, A. Bansal. (2010. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids. Bulletin of Chemical Reaction Engineering & Catalysis, 5 (1: 31-37. doi:10.9767/bcrec.5.1.775.31-37][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.5.1.775.31-37 ][Cited by: Scopus 1 |

  7. A design study of reactor core optimization for direct nuclear heat-to-electricity conversion in a space power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hidekazu; Takahashi, Makoto; Shimoda, Hiroshi; Takeoka, Satoshi [Kyoto Univ. (Japan); Nakagawa, Masayuki; Kugo, Teruhiko

    1998-01-01

    To propose a new design concept of a nuclear reactor used in the space, research has been conducted on the conceptual design of a new nuclear reactor on the basis of the following three main concepts: (1) Thermionic generation by thermionic fuel elements (TFE), (2) reactivity control by rotary reflector, and (3) reactor cooling by liquid metal. The outcomes of the research are: (1) A calculation algorithm was derived for obtaining convergent conditions by repeating nuclear characteristic calculation and thermal flow characteristic calculation for the space nuclear reactor. (2) Use of this algorithm and the parametric study established that a space nuclear reactor using 97% enriched uranium nitride as the fuel and lithium as the coolant and having a core with a radius of about 25 cm, a height of about 50 cm and a generation efficiency of about 7% can probably be operated continuously for at least more than ten years at 100 kW only by reactivity control by rotary reflector. (3) A new CAD/CAE system was developed to assist design work to optimize the core characteristics of the space nuclear reactor comprehensively. It is composed of the integrated design support system VINDS using virtual reality and the distributed system WINDS to collaboratively support design work using Internet. (N.H.)

  8. Pratt and Whitney ESCORT derivative for mars surface power

    International Nuclear Information System (INIS)

    Feller, Gerald J.; Joyner, Russell

    1999-01-01

    The purpose of this paper is to address the applicability of a common reactor system design from the Pratt and Whitney ESCORT nuclear thermal rocket engine concept to support current NASA mars surface-based power requirements. The ESCORT is a bimodal engine capable of supporting a wide range of propulsive thermal and vehicle electrical power requirements. The ESCORT engine is powered by a fast-spectrum beryllium-reflected CERMET-fueled nuclear reactor. In addition to an expander cycle propulsive mode, the ESCORT is capable of operating in an electrical power mode. In this mode, the reactor is used to heat a mixture of helium and xenon to drive a closed-loop Brayton cycle in order to generate electrical energy. Recent Design Reference Mission requirements (DRM) from NASA Johnson Space Center and NASA Lewis Research Center studies in 1997 and 1998 have detailed upgraded requirements for potential mars transfer missions. The current NASA DRM requires a nuclear thermal propulsion system capable of delivering total mission requirements of 200170 N (45000 lbf) thrust and 50 kWe of spacecraft electrical power. Additionally, these requirements detailed a surface power system capable of providing approximately 160 kW of electrical energy over an approximate 10 year period within a given weight and volume envelope. Current NASA studies use a SP-100 reactor (0.8 MT) and a NERVA derivative (1.6 MT) as baseline systems. A mobile power cart of approximate dimensions 1.7 mx4.5 mx4.4 m has been conceptualized to transport the reactor power system on the Mars Surface. The 63.25 cm diameter and 80.25 cm height of the ESCORT and its 1.3 MT of weight fit well within the current weight and volume target range of the NASA DRM requirements. The modifications required to the ESCORT reactor system to support this upgraded electrical power requirements along with operation in the Martian atmospheric conditions are addressed in this paper. Sufficient excess reactivity and burnup capability

  9. Study of advanced fission power reactor development for the United States. Volume I

    International Nuclear Information System (INIS)

    1976-01-01

    This volume summarizes the results and conclusions of an assessment of five advanced fission power reactor concepts in the context of potential nuclear power economies developed over the time period 1975 to 2020. The study was based on the premise that the LMFBR program has been determined to be the highest priority fission reactor program and it will proceed essentially as planned. Accepting this fact, the overall objective of the study was to provide evaluations of advanced fission reactor systems for input to evaluating the levels of research and development funding for fission power. Evaluation of the reactor systems included the following categories: (1) power plant performance, (2) fuel resource utilization; (3) fuel-cycle requirements; (4) economics; (5) environmental impact; (6) risk to the public; and (7) R and D requirements to achieve commercial status. The specific major objectives of the study were twofold: (1) to parametrically assess the impact of various reactor types for various levels of power demand through the year 2020 on fissile fuel utilization, economics, and the environment, based on varying but reasonable assumptions on the rates of installation; and (2) to qualitatively assess the practicality of the advanced reactor concepts, and their research and development. The reactor concepts examined were limited to the following: advanced high-temperature, gas-cooled reactor (HTGR) systems including the thorium/U-233 fuel cycle, gas turbine, and binary cycle (BIHTGR); gas-cooled fast breeder reactor (GCFR); molten salt breeder reactor (MSBR); light water breeder reactor (LWBR); and CANDU heavy water reactor

  10. Radiation protection for human exploration of the moon and mars: Application of the mash code system

    International Nuclear Information System (INIS)

    Johnson, J.O.; Santoro, R.T.; Drischler, J.D.; Barnes, J.M.

    1992-01-01

    The Monte Carlo Adjoint Shielding code system -- MASH, developed for the Department of Defense for calculating radiation protection factors for armored vehicles against neutron and gamma radiation, has been used to assess the dose from reactor radiation to an occupant in a habitat on Mars. The capability of MASH to reproduce measured data is summarized to demonstrate the accuracy of the code. The estimation of the radiation environment in an idealized reactor-habitat model is reported to illustrate the merits of the adjoint Monte Carlo procedure for space related studies. The reactor radiation dose for different reactor-habitat surface configurations to a habitat occupant is compared with the natural radiation dose acquired during a 500-day Mars mission

  11. Study of Physical Protection System at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Ligam, A.S.; Ina, I.; Zarina Masood

    2016-01-01

    Physical protection program at PUSPATI TRIGA Reactor (RTP) which is located at Nuklear Malaysia, Bangi Complex has been strengthened and upgraded from time to time to accommodate current situation needs. However, there is always room for improvement. Hence, study have been made to look deeper into physical protection components such as delay systems, external sensors, PPS intruder alarm sensors, use of video system, personnel security or insider threats, access control operation system operation rules and security culture that may need to take into consideration. (author)

  12. Experimental power reactor dc generator energy storage study

    International Nuclear Information System (INIS)

    Heck, F.M.; Smeltzer, G.S.; Myers, E.H.; Kilgore, L.

    1978-01-01

    This study covers the use of dc generators for meeting the Experimental Power Reactor Ohmic Heating Energy Storage Requirements. The dc generators satisfy these requirements which are the same as defined in WFPS-TME-038 which covered the use of ac generators and homopolar generators. The costs of the latter two systems have been revised to eliminate first-of-a-kind factors. The cost figures for dc generators indicate a need to develop larger machines in order to take advantage of the economy-of-scale that the large ac machines have. Each of the systems has its own favorable salient features on which to base a system selection

  13. Conceptual design study of a scyllac fusion test reactor

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1975-07-01

    The report describes a conceptual design study of a fusion test reactor based on the Scyllac toroidal theta-pinch approach to fusion. It is not the first attempt to describe the physics and technology required for demonstrating scientific feasibility of the approach, but it is the most complete design in the sense that the physics necessary to achieve the device goals is extrapolated from experimentally tested MHD theories of toroidal systems,and it uses technological systems whose engineering performance has been carefully calculated to ensure that they meet the machine requirements

  14. Feasibility study of full-reactor gas core demonstration test

    Science.gov (United States)

    Kunze, J. F.; Lofthouse, J. H.; Shaffer, C. J.; Macbeth, P. J.

    1973-01-01

    Separate studies of nuclear criticality, flow patterns, and thermodynamics for the gas core reactor concept have all given positive indications of its feasibility. However, before serious design for a full scale gas core application can be made, feasibility must be shown for operation with full interaction of the nuclear, thermal, and hydraulic effects. A minimum sized, and hence minimum expense, test arrangement is considered for a full gas core configuration. It is shown that the hydrogen coolant scattering effects dominate the nuclear considerations at elevated temperatures. A cavity diameter of somewhat larger than 4 ft (122 cm) will be needed if temperatures high enough to vaporize uranium are to be achieved.

  15. Study of the seismic behaviour of the fast reactor cores

    International Nuclear Information System (INIS)

    Cerqueira, E.

    1998-01-01

    This work studies the seismic behaviour of fast neutrons reactor cores. It consists in analyzing the tests made on the models Rapsodie and Symphony by using the calculation code Castem 2000. Te difficulty is in the description of connections of the system and the effects of the fluid (calculation in water). The results for the programme Rapsodie are near the experimental results. For the programme Symphony, the calculations in air have allowed to represent the behaviour of fuel assemblies in a satisfying way. It is still to analyze the tests Symphony in water. (N.C.)

  16. Transverse flow reactor studies of the dynamics of radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, R.G. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Radical reactions are in important in combustion chemistry; however, little state-specific information is available for these reactions. A new apparatus has been constructed to measure the dynamics of radical reactions. The unique feature of this apparatus is a transverse flow reactor in which an atom or radical of known concentration will be produced by pulsed laser photolysis of an appropriate precursor molecule. The time dependence of individual quantum states or products and/or reactants will be followed by rapid infrared laser absorption spectroscopy. The reaction H + O{sub 2} {yields} OH + O will be studied.

  17. Technical feasibility study of 60 MWe fast reactor concept: RAPID

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Ueda, Nobuyuki; Uotani, Masaki

    1993-01-01

    A study has been performed on the passive safety features and technical feasibility of an inherently safe 60 MWe fast reactor concept RAPID to meet various power requirements in Japan. The system dynamic analyses on the UTOP and ULOF transients revealed that the enhanced reactivity feedback derived from an annular core configuration and the integrated fuel assembly provides a high margin of self-protection. Structural integrity of the integrated fuel assembly has also been confirmed. The following innovative key technologies have been demonstrated; Lithium Injection Modules (LIM) for ultimate shutdown, Lithium Expansion Modulus (LEM) for inherent reactivity feedback and Void Leading Channel (VLC) for the sodium void worth reduction. (author)

  18. Studies of biominerals relevant to the search for life on Mars.

    Science.gov (United States)

    Blanco, Armando; D'Elia, Marcella; Licchelli, Domenico; Orofino, Vincenzo; Fonti, Sergio

    2006-12-01

    The evidence of the water erosion on Mars is particularly interesting since present climatic conditions are such that liquid water cannot exist at the surface. But, if water was present on the planet in the past, there may have been life, too. Since the discovery of carbonates on Mars also may have very important implications on the possibility that life developed there, we are studying minerals that can have biotic or abiotic origin: calcite (CaCO(3)) and aragonite, a metastable state of calcite.We have analysed biomineral aragonite, in the form of recent sea shells, as well as crystals of mineral aragonite. Infrared spectroscopy in the 2-25 mum wavelength range reveals that, after thermal processing, the biotic samples have a different spectral behaviour from the abiotic ones. As a result, it is possible to distinguish abiotic mineral aragonite from aragonite of recent biological origin.Obviously, if life existed in the past on the Red Planet, we could expect to find "ancient" biotic carbonates, which should therefore be investigated, in order to search for a way of discriminating them from abiotic minerals. For this reason, at the beginning we have considered samples of crushed fossil shells of aragonite composition. Afterwards, in order to take into account that fossilization processes almost always produce a transformation of metastable form (aragonite) into more stable form (calcite), we also studied samples of mineral calcite and different types of fossils completely transformed into calcite. All these biotic fossil samples show the same spectral behaviour as the fresh biotic material after thermal annealing at 485 degrees C. Instead, the calcite behaves like abiotic aragonite.Furthermore, it is known that seashells and other biominerals are formed through an intimate association of inorganic materials with organic macromolecules. The macromolecules control the nucleation, structure, morphology, crystal orientation and spatial confinement of the inorganic

  19. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Nakashima, Kunihiko; Okano, Kunihiko; Miyamoto, Kazuhiro.

    1987-09-01

    This report describes the results of a conceptual study on the RF system in the typical candidates for the Fusion Experimental Reactor (FER), which were picked out through the '86FER scoping studies. According to the FER operation scenario, three RF systems, that is, ICRF (heating), LHRF (current drive and heating), ECRF (auxiliary heating) were studied. Main concern in these RF systems is the launcher, which may be so designed that required power match the geometrical constraints of the reactor. Then studies were concentrated on the launcher configuration. A prug-in concept of the launcher was adopted in each system and vacancies except transmission space were filled with water. The ICRF launcher had the 2 x 2 loop arrays antenna and the faraday shield area of 1.5 m x 1 m to provide a power of 20 MW. The LHRF launcher had the grillantenna with 28 x 8 open waveguides, and included multi junction-type power splitters which were connected to 56 transmission wave guides. The grild was designed to have two functions of current drive and heating, and provide a power of 20 MW each. The ECRF launcher had a boundle of open wave guides which a reflection mirror each, and three plain mirrors. Assuming a oscillator unit size of 200 kW, it had 40 oversized wave guides to provide a power of 3 MW. (author)

  20. Study and application of boiling water reactor jet pump characteristic

    International Nuclear Information System (INIS)

    Liao Lihyih

    1992-01-01

    RELAP5/MOD2 is an advanced thermal-hydraulic computer code used to analyze plant response to postulated transient and loss-of-coolant accidents in light water nuclear reactors. Since this computer code was originally developed for pressurized water reactor transient analysis, some of its capabilities are questioned when the methods are applied to a boiling water reactor. One of the areas which requires careful assessment is the jet pump model. In this paper, the jet pump models of RELAP5/MOD2, RETRAN-02/MOD3, and RELAP4/MOD3 are compared. From an investigation of the momentum equations, it is found that the jet pump models of these codes are not exactly the same. However, the effects of the jet pump models on the M-N characteristic curve are negligible. In this study, it is found that the relationship between the flow ratio, M, and the head ratio, N, is uniquely determined for a given jet pump geometry provided that the wall friction and gravitational head are neglected. In other words, under the given assumptions, the M-N characteristic curve will not change with power, level, recirculation pump speed or loop flow rate. When the effects of wall friction and gravitational head are included, the shape of the M-N curve will change. For certain conditions, the slope of the M-N curve can even change from negative to positive. The changes in the M-N curve caused by the separate effects of the wall friction and gravitational head will be presented. Sensitivity studies on the drive flow nozzle form loss coefficients, K d , the suction flow junction form loss coefficients, K s , the diffuser form loss coefficient, K c , and the ratio of different flow areas in the jet pump are performed. Finally, useful guidelines will be presented for plants without a plant specific M-N curve. (orig.)

  1. Isotopic study of the ''Laguna Mar Chiquita'', Cordoba, Argentina and its hydrogeological and paleoclimatological implications

    International Nuclear Information System (INIS)

    Dapena, C.; Panarello, H.O.

    2001-01-01

    This work presents the results obtained during the first stage of the investigations carried out in the Mar Chiquita lake (Cordoba Province, Argentine Republic) within the framework of the Coordinated Research Programme (CRP) on ''Isotope Techniques in Lake Dynamics Investigations'' of the International Atomic Energy Agency. The main objectives are to contribute to the study of this huge water body that in the past two decades increased its size almost three folds, to establish its water balance and to asses the influence of the climatic changes on the water budget. This water body is the final receptacle of a large closed basin formed mainly by the rivers Dulce, Suquia and Xanaes. During 1890-1973 it occupied 1800 to 2000 km 2 with a salinity of 310-250 g/L. At present, it has around 5000 km 2 , a maximum depth of 10-12 m and a salinity rounding 42 g/L. The changes in salinity and size are related to an increase in precipitation which, at the same time, depends on different palaeoclimatic conditions. From a scientific point of view it is also important to study the lake hydrological balance, its groundwater input and output as well as the evaporation rate and the mean residence time. These latter considerations are the object of the present isotopic research. Future studies will consider a paleoclimatic approach. (author)

  2. Feasibility study on small modular reactors for modern microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Islam, R.; Gabbar, H.A., E-mail: hossam.gabbar@uoit.ca [Univ. of Ontario Inst. of Technology, Faculty of Energy Systems and Nuclear Science, Oshawa, Ontario (Canada)

    2013-07-01

    Microgrid is a solution of conventional power grid problem and offer sustainable decentralized power system. Microgrid with modern distributed energy resources (DER) could play an important role to alleviate dependency on the main electricity grid. Distributed energy resource comprises wind turbine, solar photovoltaic, diesel generator, gas engine, micro turbine, fuel cells, etc.Due to the gap between typical loads and supply within microgrid, larger scale energy generation could provide a possible solution to balance power demand and supply. Feasibility study of Small Nuclear Power Plant, such as Small Modular reactor (SMR), within microgrids could be achieved via different cases. To achieve the target, a comprehensive feasibility study is conducted on microgrid with SMR through electricity generation profiles, geographical and environmental assessment, as well as cost analysis using simulation practices and data analysis.Also potency of SMRs is analyzed. Parameters and Key Performance Indicators (KPIs) could be analyzed to achieve feasible solution of microgrids with small modular reactor (SMR) to improve the overall microgrid performance.The study shows that SMR could be a feasible solution if microgrid parameters are selected properly. (author)

  3. Nordic study on reactor waste. Technical part 1 and 2

    International Nuclear Information System (INIS)

    1981-08-01

    An important part of the Nordic studies on system- and safety analysis of the management of low and medium level radioactive waste from nuclear power plants, is the safety analysis of a Reference System. This reference system was established within the study and is described in this Technical Part 1. The reference system covers waste management Schemes that are potential possibilities in either one of the four participating Nordic countries. The reference system is based on: a power reactor system consisting of 6 BWR's of 500 MWe each, operated simultaneously over the same 30 year period, and deep bed granular ion exchange resin wastes from the Reactor Water Clean-Up System (RWCS and powdered ion exchange resin from the Spent Fuel Pool Cleanup System (SFPCS)). Both waste types are supposed to be solidified by mixing with cement and bitumen. Two basic types of containers are considered. Standard 200 liter steel drums and specially made cubicreinforced concrete moulds with a net volume of 1 m 3 . The Nordic study assumes temporary storage of the solidified waste for a maximum of 50 years before the waste is transferred to the disposal site. Transportation of the waste from the storage facilitiy to the disposal site will be by road or sea. Three different disposal facilities are considered: Shallow land burial, near surface concrete bunker, and rock cavern with about 30 m granite cover. (EG)

  4. Aging study of boiling water reactor high pressure injection systems

    International Nuclear Information System (INIS)

    Conley, D.A.; Edson, J.L.; Fineman, C.F.

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200 degrees C (2,200 degrees F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission's Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed

  5. Feasibility study on small modular reactors for modern microgrids

    International Nuclear Information System (INIS)

    Islam, R.; Gabbar, H.A.

    2013-01-01

    Microgrid is a solution of conventional power grid problem and offer sustainable decentralized power system. Microgrid with modern distributed energy resources (DER) could play an important role to alleviate dependency on the main electricity grid. Distributed energy resource comprises wind turbine, solar photovoltaic, diesel generator, gas engine, micro turbine, fuel cells, etc.Due to the gap between typical loads and supply within microgrid, larger scale energy generation could provide a possible solution to balance power demand and supply. Feasibility study of Small Nuclear Power Plant, such as Small Modular reactor (SMR), within microgrids could be achieved via different cases. To achieve the target, a comprehensive feasibility study is conducted on microgrid with SMR through electricity generation profiles, geographical and environmental assessment, as well as cost analysis using simulation practices and data analysis.Also potency of SMRs is analyzed. Parameters and Key Performance Indicators (KPIs) could be analyzed to achieve feasible solution of microgrids with small modular reactor (SMR) to improve the overall microgrid performance.The study shows that SMR could be a feasible solution if microgrid parameters are selected properly. (author)

  6. Joint KAERI/VAEC pre-possibility study on a new research reactor for Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol; Lee, B. C.; Chae, H. T.; Kim, H.; Lee, C. S.; Choi, C. O.; Jun, B. J. [KAERI, Taejon (Korea, Republic of); Vien, Luong Ba; Dien, Nguyen Nhi [Vietnam Atomic Energy Commission, Hanoi (Viet Nam)

    2004-05-01

    Based on the agreement on the technical cooperation for nuclear technology between Korea and Vietnam, a KAERI/VAEC joint study on the pre-possibility of a new research reactor for Vietnam has been carried out in the research reactor area from Nov. 2003 to May 2004. In this report, the results of the pre-possibility study on a new research reactor are described. The report presents the necessity of a new research reactor in Vietnam, and the desired performance requirements of the new research reactor if necessary. The major design characteristics of some existing research reactors and those under planning were also reviewed and the main characteristics which should be considered in selecting a new multipurpose research reactor for Vietnam were drawn. Some recommendations on the considerations for the next step of the feasibility study such as the project formulation, manpower requirements and international co-operation were also briefly touched upon.

  7. Joint KAERI/VAEC pre-possibility study on a new research reactor for Vietnam

    International Nuclear Information System (INIS)

    Park, Cheol; Lee, B. C.; Chae, H. T.; Kim, H.; Lee, C. S.; Choi, C. O.; Jun, B. J.; Vien, Luong Ba; Dien, Nguyen Nhi

    2004-05-01

    Based on the agreement on the technical cooperation for nuclear technology between Korea and Vietnam, a KAERI/VAEC joint study on the pre-possibility of a new research reactor for Vietnam has been carried out in the research reactor area from Nov. 2003 to May 2004. In this report, the results of the pre-possibility study on a new research reactor are described. The report presents the necessity of a new research reactor in Vietnam, and the desired performance requirements of the new research reactor if necessary. The major design characteristics of some existing research reactors and those under planning were also reviewed and the main characteristics which should be considered in selecting a new multipurpose research reactor for Vietnam were drawn. Some recommendations on the considerations for the next step of the feasibility study such as the project formulation, manpower requirements and international co-operation were also briefly touched upon

  8. A feasibility study of a linear laser heated solenoid fusion reactor. Final report

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1976-02-01

    This report examines the feasibility of a laser heated solenoid as a fusion or fusion-fission reactor system. The objective of this study, was an assessment of the laser heated solenoid reactor concept in terms of its plasma physics, engineering design, and commercial feasibility. Within the study many pertinent reactor aspects were treated including: physics of the laser-plasma interaction; thermonuclear behavior of a slender plasma column; end-losses under reactor conditions; design of a modular first wall, a hybrid (both superconducting and normal) magnet, a large CO 2 laser system; reactor blanket; electrical storage elements; neutronics; radiation damage, and tritium processing. Self-consistent reactor configurations were developed for both pure fusion and fusion-fission designs, with the latter designed both to produce power and/or fissile fuels for conventional fission reactors. Appendix A is a bibliography with commentary of theoretical and experimental studies that have been directed at the laser heated solenoid

  9. Austere Human Missions to Mars

    Science.gov (United States)

    Price, Hoppy; Hawkins, Alisa M.; Tadcliffe, Torrey O.

    2009-01-01

    The Design Reference Architecture 5 (DRA 5) is the most recent concept developed by NASA to send humans to Mars in the 2030 time frame using Constellation Program elements. DRA 5 is optimized to meet a specific set of requirements that would provide for a robust exploration program to deliver a new six-person crew at each biennial Mars opportunity and provide for power and infrastructure to maintain a highly capable continuing human presence on Mars. This paper examines an alternate architecture that is scaled back from DRA 5 and might offer lower development cost, lower flight cost, and lower development risk. It is recognized that a mission set using this approach would not meet all the current Constellation Mars mission requirements; however, this 'austere' architecture may represent a minimum mission set that would be acceptable from a science and exploration standpoint. The austere approach is driven by a philosophy of minimizing high risk or high cost technology development and maximizing development and production commonality in order to achieve a program that could be sustained in a flat-funded budget environment. Key features that would enable a lower technology implementation are as follows: using a blunt-body entry vehicle having no deployable decelerators, utilizing aerobraking rather than aerocapture for placing the crewed element into low Mars orbit, avoiding the use of liquid hydrogen with its low temperature and large volume issues, using standard bipropellant propulsion for the landers and ascent vehicle, and using radioisotope surface power systems rather than a nuclear reactor or large area deployable solar arrays. Flat funding within the expected NASA budget for a sustained program could be facilitated by alternating cargo and crew launches for the biennial Mars opportunities. This would result in two assembled vehicles leaving Earth orbit for Mars per Mars opportunity. The first opportunity would send two cargo landers to the Mars surface to

  10. Nuclear reactor system study for NASA/JPL

    Science.gov (United States)

    Palmer, R. G.; Lundberg, L. B.; Keddy, E. S.; Koenig, D. R.

    1982-01-01

    Reactor shielding, safety studies, and heat pipe development work are described. Monte Carlo calculations of gamma and neutron shield configurations show that substantial weight penalties are incurred if exposure at 25 m to neutrons and gammas must be limited to 10 to the 12th power nvt and 10 to the 6th power rad, instead of the 10 to the 13th power nvt and 10 to the 7th power rad values used earlier. For a 1.6 MW sub t reactor, the required shield weight increases from 400 to 815 kg. Water immersion critically calculations were extended to study the effect of water in fuel void spaces as well as in the core heat pipes. These show that the insertion into the core of eight blades of B4C with a mass totaling 2.5 kg will guarantee subcriticality. The design, fabrication procedure, and testing of a 4m long molybdenum/lithium heat pipe are described. It appears that an excess of oxygen in the wick prevented the attainment of expected performance capability.

  11. Studies on air ingress for pebble bed reactors

    International Nuclear Information System (INIS)

    Moore, R.L.; Oh, C.H.; Merrill, B.J.; Petti, D.A.

    2002-01-01

    A loss-of-coolant accident (LOCA) has been considered a critical event for helium-cooled pebbled bed reactors. Following helium depressurization, it is anticipated that unless countermeasures are taken air will enter the core through the break and then by molecular diffusion and ultimately by natural convection leading to oxidation of the in-core graphite structure and graphite pebbles. Thus, without any mitigating features a LOCA will lead to an air ingress event. The INEEL is studying such an event with two well-respected light water reactor transient response codes: RELAP5/ATHENA and MELCOR. To study the degree of graphite oxidation occurring due to an air ingress event, a MELCOR model of a reference pebble bed design was constructed. A modified version of MELCOR developed at INEEL, which includes graphite oxidation capabilities, and molecular diffusion of air into helium was used for these calculations. Results show that the lower reflector graphite consumes all of the oxygen before reaching the core. The results also show a long time delay between the time that the depressurization phase of the accident is over and the time that natural circulation air through the core occurs. (author)

  12. Blanket concepts for the ARIES commercial tokamak reactor study

    International Nuclear Information System (INIS)

    Grotz, S.P.; Ghoniem, N.M.; Hasan, M.Z.; Martin, R.C.; Najmabadi, F.; Sharafat, S.; Hua, T.; Sze, D.K.; Cheng, E.T.; Creedon, R.L.; Wong, C.P.C.; Herring, J.S.; Klein, A.; Snead, L.; Steiner, D.

    1989-01-01

    The ARIES study is a 3-year effort, started in 1988, exploring the potential of the tokamak to be an attractive and competitive commercial power reactor. Several different versions of the tokamak are being considered, combining different levels of extrapolations in physics and engineering databases. The first version studied in detail, ARIES-I, combines present-day physics (with minimal extrapolation) with aggressive engineering technology such as very high-field, superconducting magnets and low-activation silicon carbide composite materials. The ARIES-I version is designed to meet acceptable safety and environmental criteria. In particular, achieving a passively safe concept that meets Class-C waste disposal is one of the high leverage items in the design. This paper summarizes the scoping analysis and engineering design of the ARIES-I fusion-power-core subsystems. The ARIES-I design is a 1000 MW e power reactor, operating at steady state in the 1 st stability regime and uses a high magnetic field. Typical operating parameters of the ARIES-I strawman design are listed

  13. Design study of electrostatically plugged cusp fusion reactor

    International Nuclear Information System (INIS)

    Dolan, T.J.

    1976-01-01

    This study concentrates on the following aspects of an electrostatically plugged cusp reactor that will be different from other fusion reactor designs: the coil geometry and structural supports, high voltage electrodes, plasma parameters, power balance, and operating cycle. Assuming the electron density distribution in the anodes to have a characteristic width of two electron Larmor radii, which is consistent with present experimental results, the theory predicts that a device with a magnetic field strength, B = 8 T sustained solely by electron beam injection at 300 kV will have a power gain ratio, Q, of about 5. A toroidal multipole cusp configuration with six cusps was selected for the present design, based on a study of the ratio of plasma volume to coil volume. Coil forces are sustained by cryogenic trusses between like coils, fiberglass compression columns, and room temperature hoops. Radiation collimators in front of the high voltage electrodes greatly reduce the radiation impinging on the cathodes, helping to avoid breakdown and to prolong insulator life. The operating cycle consists of a startup period of about 20 s, followed by a fusion burn period lasting about 200 s (limited by impurity buildup) and a 20-s flushing period

  14. Evaluation of the PRHRS Performance Degradation due to Non-Condensable Gas for the Small and Medium Reactor using MARS-KS code

    International Nuclear Information System (INIS)

    Kim, Sook Kwan; Sim, Suk Ku; Park, Ju Yeop; Seol, Kwang Won; Ryu, Yong Ho

    2011-01-01

    The effect of non-condensable gas on the performance of PRHRS (Passive Residual Heat Removal System) of the Small and Medium Reactor(SMR) was evaluated during a loss of flow event. Since the TMI accident in 1979, the passive systems have been considered in the advanced reactors as a feature of design improvement because the passive system simplifies the system and thus increases the reliability of the system. The Westinghouse received the design certification from the USNRC for the AP600 and AP1000 passive type pressurized water reactors. The APR+ under development by KEPCO considers the use of PAFS (Passive Auxiliary Feedwater System). And the PRHRS is adopted as a passive secondary heat removal system for the SMART (System-integrated Modular Advanced ReacTor)

  15. Terrestrial Analogs to Mars

    Science.gov (United States)

    Farr, T. G.; Arcone, S.; Arvidson, R. W.; Baker, V.; Barlow, N. G.; Beaty, D.; Bell, M. S.; Blankenship, D. D.; Bridges, N.; Briggs, G.; Bulmer, M.; Carsey, F.; Clifford, S. M.; Craddock, R. A.; Dickerson, P. W.; Duxbury, N.; Galford, G. L.; Garvin, J.; Grant, J.; Green, J. R.; Gregg, T. K. P.; Guinness, E.; Hansen, V. L.; Hecht, M. H.; Holt, J.; Howard, A.; Keszthelyi, L. P.; Lee, P.; Lanagan, P. D.; Lentz, R. C. F.; Leverington, D. W.; Marinangeli, L.; Moersch, J. E.; Morris-Smith, P. A.; Mouginis-Mark, P.; Olhoeft, G. R.; Ori, G. G.; Paillou, P.; Reilly, J. F., II; Rice, J. W., Jr.; Robinson, C. A.; Sheridan, M.; Snook, K.; Thomson, B. J.; Watson, K.; Williams, K.; Yoshikawa, K.

    2002-08-01

    It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of Martian meteorites), and computer and laboratory modeling. The combination of all these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the Mars Exploration Payload Assessment Group science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel has considered the issues of data collection, value of field workshops, data archiving, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities.

  16. Gas-cooled reactor commercialization study. Interim report

    International Nuclear Information System (INIS)

    1977-01-01

    This report of the gas-cooled reactor commercialization study completes the technical and cost evaluation portions of this study contract. A final report in December will update the status of the incentive analyses and the issues of commercialization. This study was designed to bring together potential industry participants (utilities and suppliers) to evaluate the commercial potential of the HTGR-SC and to build channels of communication among the participating organizations at the same time that technical, economic and institutional issues were being evaluated. RAMCO, Inc., in suggesting and using this study approach, believes its application extends to any commercialization problem involving multi-party involvement in high capital, intensive, high risk energy technologies

  17. Investigation/evaluation of water cooled fast reactor in the feasibility study on commercialized fast reactor cycle systems. Intermediate evaluation of phase-II study

    International Nuclear Information System (INIS)

    Kotake, Syoji; Nishikawa, Akira

    2005-01-01

    Feasibility study on commercialized fast reactor cycle systems aims at investigation and evaluation of FBR design requirement's attainability, operation and maintenance, and technical feasibility of the candidate system. Development targets are 1) ensuring safety, 2) economic competitiveness, 3) efficient utilization of resources, 4) reduction of environmental load and 5) enhancement of nuclear non-proliferation. Based on the selection of the promising concepts in the first phase, conceptual design for the plant system has proceeded with the following plant system: a) sodium cooled reactors at large size and medium size module reactors, b) a lead-bismuth cooled medium size reactor, c) a helium gas cooled large size reactor and d) a BWR type large size FBR. Technical development and feasibility has been assessed and the study considers the need of respective key technology development for the confirmation of the feasibility study. (T. Tanaka)

  18. A study on the fusion reactor - A study on the design feature of fusion reactor divertor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Jin [Chosun University, Kwangju (Korea, Republic of); Paek, Won Pil; Jang, Soon Hong [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Sim, Young Jae [Kyungsang University, Jinju (Korea, Republic of)

    1996-09-01

    The contents and scope of the project can be summarized as, - study on the trend of divertor design - study on characteristics of coolant materials - study on characteristics of divertor materials - study on the thermal analysis method of divertor design. 36 refs., 12 tabs., 16 figs. (author)

  19. K-Rankine systems for piloted and cargo Mars missions

    International Nuclear Information System (INIS)

    Mills, J.C.; Rovang, R.D.; Johnson, G.A.

    1992-03-01

    Studies are performed to demonstrate the attractiveness of potassium-Rankine (K-Rankine) nuclear electric propulsion (NEP) systems for both piloted and cargo Mars missions. The key results of the piloted mission study are that a full-up piloted mission can be accomplished with a trip time of less than 390 days with an attractive initial mass in low earth orbit (IMLEO) of 700 metric tons. This is achieved by coupling two advanced cermet fuel reactors (1550 K outlet temperature) to K-Rankine power-conversion systems to produce the 46 MWe needed to power advanced ion engines. This design approach offers an alternative to a more risky split-sprint mission where comparable trip times and IMLEO can be achieved with a nearer-term reactor (SP-100 at 1350 K outlet temperature) technology. The results of the cargo-mission study indicate that a lower-power K-Rankine system (5.5 MWe) operating at SP-100 reactor conditions would best perform a representative Mars cargo transport. A round-trip mission (480 days outbound; 600 day return) to Mars requires only 225 metric tons IMLEO and permit possible system reuse. 6 refs

  20. A brief history of design studies on innovative nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sekimoto, Hiroshi, E-mail: hsekimot@gmail.com [Emeritus Professor, Tokyo Institute of Technology (Japan)

    2014-09-30

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970’s the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980’s the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.

  1. A brief history of design studies on innovative nuclear reactors

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi

    2014-01-01

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970’s the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980’s the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors

  2. A Numerical Study of Fluid Flow and Heat Transfer in Carbon Dioxide Enclosures on Mars

    Directory of Open Access Journals (Sweden)

    Yue Sun

    2018-03-01

    Full Text Available In order to support the future thermal control and energy conservation design for the Mars rover, numerical studies on natural convection in CO2 enclosures on Mars’ surface were conducted for both horizontal and vertical enclosures. The parameters are as follows: the atmospheric pressure was 1000 Pa, the gravitational acceleration was 3.62 m/s2, and the Prandtl number was 0.77. The heat flux, temperature, and velocity fields of the CO2 enclosures were obtained with the aspect ratio ranging from 5.56 to 200 and the Grashof number ranging from 430 to 2.6 × 104. It was found that natural convection formed more easily in the horizontal enclosures than that in the vertical enclosures when the enclosures had same thickness. With the increasing thickness of the enclosures, Rayleigh–Bénard convections formed in the horizontal enclosures, while only single-cell convections formed in the vertical enclosures. The heat flux through the horizontal enclosures was greater than that through the vertical enclosures with the same thickness when natural convection formed. The maximum difference between them reached 35.26%, which was illustrated by the field synergy principle. A hysteresis phenomenon of the natural convection dominating the heat transfer was found in the vertical enclosure on Mars’ surface. New values for the critical Grashof number and correlations for the average Nusselt number for both the horizontal and vertical CO2 enclosures on Mars’ surface were also developed.

  3. \\title{MARS15 Simulation Studies in the CMS Detector of Some LHC Beam Accident Scenarios}

    CERN Document Server

    Bhat, Pushpalatha C; Striganov, S.I; Singh, Amandeep

    2009-01-01

    \\begin{abstract} The CMS tracker, made of silicon strips and pixels and silicon-based electronics, is vulnerable to effects of radiation exposure during the LHC operation. Of much concern is the potential for damage from a high instantaneous dose to the pixel detectors and electronics located only a few centimeters from the beam in the event of a fast accidental beam loss. One of the worst case scenarios for such a beam loss is an unintended firing of an abort kicker module, referred to as the kicker pre-fire. MARS15 simulation studies of radiation loads in CMS for the kicker pre-fire scenario are described in this paper. It is found that, in a kicker pre-fire accident, in a time span of about 100 ns, the innermost pixel layer may see a radiation dose of about 0.02 Gy \\-- equivalent to a fluence of $\\sim 6\\times 10^{7}$ MIPs/$cm^2$. No discernible damage to the pixel detectors or the electronics were seen at these levels of fluence in recent beam tests. We note that the dose is about 1000 times smaller t...

  4. Mars atmosphere studies with the SPICAM IR emission phase function observations

    Science.gov (United States)

    Trokhimovskiy, Alexander; Fedorova, Anna; Montmessin, Franck; Korablev, Oleg; Bertaux, Jean-Loup

    Emission Phase Function (EPF) observations is a powerful tool for characterization of atmosphere and surface. EPF sequence provides the extensive coverage of scattering angles above the targeted surface location which allow to separate the surface and aerosol scattering, study a vertical distribution of minor species and aerosol properties. SPICAM IR instrument on Mars Express mission provides continuous atmospheric observations in near IR (1-1.7 mu) in nadir and limb starting from 2004. For the first years of SPICAM operation only a very limited number of EPFs was performed. But from the mid 2013 (Ls=225, MY31) SPICAM EPF observations become rather regular. Based on the multiple-scattering radiative transfer model SHDOM, we analyze equivalent depths of carbon dioxide (1,43 mu) and water vapour (1,38 mu) absorption bands and their dependence on airmass during observation sequence to get aerosol optical depths and properties. The derived seasonal dust opacities from near IR can be used to retrieve the size distribution from comparison with simultaneous results of other instruments in different spectral ranges. Moreover, the EPF observations of water vapour band allow to access poorly known H2O vertical distribution for different season and locations.

  5. Assessing the degree of plug flow in oxidation flow reactors (OFRs): a study on a potential aerosol mass (PAM) reactor

    Science.gov (United States)

    Mitroo, Dhruv; Sun, Yujian; Combest, Daniel P.; Kumar, Purushottam; Williams, Brent J.

    2018-03-01

    Oxidation flow reactors (OFRs) have been developed to achieve high degrees of oxidant exposures over relatively short space times (defined as the ratio of reactor volume to the volumetric flow rate). While, due to their increased use, attention has been paid to their ability to replicate realistic tropospheric reactions by modeling the chemistry inside the reactor, there is a desire to customize flow patterns. This work demonstrates the importance of decoupling tracer signal of the reactor from that of the tubing when experimentally obtaining these flow patterns. We modeled the residence time distributions (RTDs) inside the Washington University Potential Aerosol Mass (WU-PAM) reactor, an OFR, for a simple set of configurations by applying the tank-in-series (TIS) model, a one-parameter model, to a deconvolution algorithm. The value of the parameter, N, is close to unity for every case except one having the highest space time. Combined, the results suggest that volumetric flow rate affects mixing patterns more than use of our internals. We selected results from the simplest case, at 78 s space time with one inlet and one outlet, absent of baffles and spargers, and compared the experimental F curve to that of a computational fluid dynamics (CFD) simulation. The F curves, which represent the cumulative time spent in the reactor by flowing material, match reasonably well. We value that the use of a small aspect ratio reactor such as the WU-PAM reduces wall interactions; however sudden apertures introduce disturbances in the flow, and suggest applying the methodology of tracer testing described in this work to investigate RTDs in OFRs to observe the effect of modified inlets, outlets and use of internals prior to application (e.g., field deployment vs. laboratory study).

  6. Assessing the degree of plug flow in oxidation flow reactors (OFRs: a study on a potential aerosol mass (PAM reactor

    Directory of Open Access Journals (Sweden)

    D. Mitroo

    2018-03-01

    Full Text Available Oxidation flow reactors (OFRs have been developed to achieve high degrees of oxidant exposures over relatively short space times (defined as the ratio of reactor volume to the volumetric flow rate. While, due to their increased use, attention has been paid to their ability to replicate realistic tropospheric reactions by modeling the chemistry inside the reactor, there is a desire to customize flow patterns. This work demonstrates the importance of decoupling tracer signal of the reactor from that of the tubing when experimentally obtaining these flow patterns. We modeled the residence time distributions (RTDs inside the Washington University Potential Aerosol Mass (WU-PAM reactor, an OFR, for a simple set of configurations by applying the tank-in-series (TIS model, a one-parameter model, to a deconvolution algorithm. The value of the parameter, N, is close to unity for every case except one having the highest space time. Combined, the results suggest that volumetric flow rate affects mixing patterns more than use of our internals. We selected results from the simplest case, at 78 s space time with one inlet and one outlet, absent of baffles and spargers, and compared the experimental F curve to that of a computational fluid dynamics (CFD simulation. The F curves, which represent the cumulative time spent in the reactor by flowing material, match reasonably well. We value that the use of a small aspect ratio reactor such as the WU-PAM reduces wall interactions; however sudden apertures introduce disturbances in the flow, and suggest applying the methodology of tracer testing described in this work to investigate RTDs in OFRs to observe the effect of modified inlets, outlets and use of internals prior to application (e.g., field deployment vs. laboratory study.

  7. A CFD Study on Inlet Plenum Flow Field of Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Lee, Won Jae; Chang, Jong Hwa

    2005-01-01

    High temperature gas cooled reactor, largely divided into two types of PBR (Pebble Bed Reactor) and PMR (Prismatic Modular Reactor), has becomes great interest of researchers in connection with the hydrogen production. KAERI has started a project to develop the gas cooled reactor for the hydrogen production and has been doing in-depth study for selecting the reactor type between PBR and PMR. As a part of the study, PBMR (Pebble Bed Modular Reactor) was selected as a reference PBR reactor for the CFD analysis and the flow field of its inlet plenum was simulated with computational fluid dynamics program CFX5. Due to asymmetrical arrangement of pipes to the inlet plenum, non-uniform flow distribution has been expected to occur, giving rise to non-uniform power distribution at the core. Flow fields of different arrangement of inlet pipes were also investigated, as one of measures to reduce the non-uniformity

  8. Conceptual design study for the demonstration reactor of JSFR. (1) Current status of JSFR development

    International Nuclear Information System (INIS)

    Hayafune, Hiroki; Sakamoto, Yoshihiko; Kotake, Shoji; Aoto, Kazumi; Ohshima, Jun; Ito, Takaya

    2011-01-01

    JAEA is now conducting 'Fast Reactor Cycle Technology Development (FaCT)' project for the commercialization before 2050s. A demonstration reactor of Japan Sodium-cooled Fast Reactor (JSFR) is planned to start operation around 2025. In the FaCT project, conceptual design study on the demonstration reactor has been performed since 2007 to determine the referential reactor specifications for the next stage design work from 2011 for the licensing and construction. Plant performance as a demonstration reactor for the 1.5 GWe commercial reactor JSFR is being compared between 750 MWe and 500 MWe plant designs. By using the results of conceptual design study, output power will be determined during year of 2010. This paper describes development status of key technologies and comparison between 750 MWe and 500 MWe plants with the view points of demonstration ability for commercial JSFR plant. (author)

  9. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Seki, Yasushi; Iida, Hiromasa; Honda, Tsutomu.

    1987-08-01

    This report describes the study on safety for FER(Fusion Experimental Reactor) which has been designed as a next step machine to the JT-60. Though the final purpose of this study is to have an image of design base accident, maximum credible accident and to assess their risk or probability, etc., as FER plant system, the emphasis of this years study is placed on fuel-gas circulation system where the tritium inventory is maximum. This report consists of two chapters. The first chapter of this report summaries the FER system and describes FMEA(Failure Mode and Effect Analysis) and related accident progression sequence for FER plant system as a whole. The second chapter of this report is focused on fuel-gas circulation system including the purification, isotope separation system and storage system. Here, probability of risk is assessed by the probabilistic risk analysis (PRA) procedure based on FMEA, ETA and FTA. (author)

  10. Sustainable operations in nuclear research reactors. A bibliographical study

    International Nuclear Information System (INIS)

    Kibrit, Eduardo; Rodrigues de Aquino, Afonso; Marotti de Mello, Adriana; Tromboni de Souza Nascimento, Paulo

    2017-01-01

    Sustainability is gaining prominence in the area of operations management. By means of a bibliographical research, we identified in literature sustainable operations carried out by operating organizations of nuclear research reactors. The methodology applied consisted in gathering material, descriptive analysis, selection of analytical categories and evaluation of the material collected. The collection of material was performed by a search made on academic and nuclear databases, with keywords structured for the subject of the research. The collected material was analysed and analytical categories on the theme sustainable operations were established. The evaluation of the collected material resulted in references accepted for the study, classified according to the pre-established analytical categories. The results were significant. From then on, a theoretical review on the topic under study was structured, based on pre-defined analytical categories. Thus, we were able to identify gaps in the literature and propose new studies on the subject.

  11. Sustainable operations in nuclear research reactors. A bibliographical study

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo; Rodrigues de Aquino, Afonso [Cidade Univ., Sao Paolo (Brazil). Inst. de Pesquisas Energeticas e Nucleares; Marotti de Mello, Adriana [Sao Paolo Univ. (Brazil). Faculdade de Economia; Tromboni de Souza Nascimento, Paulo [Sao Paolo Univ. (Brazil). Faculdade de Economia Administracao e Contabilidade

    2017-10-15

    Sustainability is gaining prominence in the area of operations management. By means of a bibliographical research, we identified in literature sustainable operations carried out by operating organizations of nuclear research reactors. The methodology applied consisted in gathering material, descriptive analysis, selection of analytical categories and evaluation of the material collected. The collection of material was performed by a search made on academic and nuclear databases, with keywords structured for the subject of the research. The collected material was analysed and analytical categories on the theme sustainable operations were established. The evaluation of the collected material resulted in references accepted for the study, classified according to the pre-established analytical categories. The results were significant. From then on, a theoretical review on the topic under study was structured, based on pre-defined analytical categories. Thus, we were able to identify gaps in the literature and propose new studies on the subject.

  12. Neutronic study of a nuclear reactor of fused salts; Estudio neutronico de un reactor nuclear de sales fundidas

    Energy Technology Data Exchange (ETDEWEB)

    Garcia B, F. B.; Francois L, J. L., E-mail: faviolabelen@gmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    The reactors of fused salts called Molten Salt Reactor have presented a resurgence of interest in the last decade, due to they have a versatility in particular to operate, either with a thermal or fast neutrons spectrum. The most active development was by the middle of 1950 and principles of 1970 in the Oak Ridge National Laboratory. In this work some developed models are presented particularly and studied with the help of the MCNPX code, for the development of the neutronic study of this reactor, starting of proposed models and from a simple and homogeneous geometry until other more complex models and approximate to more real cases. In particular the geometry conditions and criticality of each model were analyzed, the isotopic balance, as well as the concentrations of the salts and different assigned fuel types. (Author)

  13. XAFS study on silica glasses irradiated in a nuclear reactor

    International Nuclear Information System (INIS)

    Yoshida, Tomoko; Yoshida, Hisao; Hara, Takanobu; Ii, Tatsuya; Okada, Tomohisa; Tanabe, Tetsuo

    2000-01-01

    X-ray absorption technique (XANES and EXAFS) was applied to study the local structures of silica glasses before and after the irradiation in a nuclear reactor. Although our separate photoluminescence (PL) measurements clearly showed the different aspects about oxygen vacancies in these samples, i.e., at least the B 2β type oxygen-deficient center exists as an intrinsic defect in the fused silica glass while another type B 2α center is formed in the synthesized silica glass, such differences did not directly reflect on the X-ray absorption spectra (XANES and EXAFS). However, the curve-fitting analysis of EXAFS showed that the number of oxygen atoms coordinated to Si relatively increased after the irradiation. This result may indicate the occurrence of the structural relaxation in the irradiated samples, that is, a slightly distorted SiO 4 tetrahedra in silica glasses relaxed to the regular SiO 4 tetrahedra due to the break of some connections between SiO 4 units in the silica glasses. Thus, the X-ray absorption technique gave the important information of the in-reactor irradiated silica glasses which complements the results obtained from PL measurements

  14. Program for studying fundamental interactions at the PIK reactor facilities

    International Nuclear Information System (INIS)

    Serebrov, A. P.; Vassiljev, A. V.; Varlamov, V. E.; Geltenbort, P.; Gridnev, K. A.; Dmitriev, S. P.; Dovator, N. A.; Egorov, A. I.; Ezhov, V. F.; Zherebtsov, O. M.; Zinoviev, V. G.; Ivochkin, V. G.; Ivanov, S. N.; Ivanov, S. A.; Kolomensky, E. A.; Konoplev, K. A.; Krasnoschekova, I. A.; Lasakov, M. S.; Lyamkin, V. A.; Martemyanov, V. P.

    2016-01-01

    A research program aimed at studying fundamental interactions by means of ultracold and polarized cold neutrons at the GEK-4-4′ channel of the PIK reactor is presented. The apparatus to be used includes a source of cold neutrons in the heavy-water reflector of the reactor, a source of ultracold neutrons based on superfluid helium and installed in a cold-neutron beam extracted from the GEK-4 channel, and a number of experimental facilities in neutron beams. An experiment devoted to searches for the neutron electric dipole moment and an experiment aimed at a measurement the neutron lifetime with the aid of a large gravitational trap are planned to be performed in a beam of ultracold neutrons. An experiment devoted to measuring neutron-decay asymmetries with the aid of a superconducting solenoid is planned in a beam of cold polarized neutrons from the GEK-4′ channel. The second ultracold-neutron source and an experiment aimed at measuring the neutron lifetime with the aid of a magnetic trap are planned in the neutron-guide system of the GEK-3 channel. In the realms of neutrino physics, an experiment intended for sterile-neutrino searches is designed. The state of affairs around the preparation of the experimental equipment for this program is discussed.

  15. A comparative study of fuel management in PWR reactors

    International Nuclear Information System (INIS)

    Barroso, D.E.G.

    1980-01-01

    A comparitive study of fuel recycling in Pressurized Water Reactors was developed, considering not only the conventional uranium cycle, but also the use of thorium as an alternative. The use of thorium was done by varying its conoentration in the homogeneous mixture with uranium in the fuel from 30% up to 90%. The U-233 produced is incorporated within the isotopic composition of irradiated uranium. Various fractions of irradiated recycled fuel to be reprocessed and recycled was considered. Various alternatives of recycling were outlined and a final comparison in the tests done, is furnished in terms of U 3 O 8 and UTS requirements and approximated costs of fuel cycle stages involved. The recycled fuel is considered to be uniformly distributed in the fuel element rods introduced in the nucleus. The influence of the utilization of thorium was also considered for the development of an optimum fuel cycle, regarding the safeguards against nuclear proliferation when utilizing plutonium. A zero-dimensional cellular model was adopted to represent the reactor and the calculus of microscopic cross-sections for the homogenized cell was done by the computer code LEOPARD. A digital computer program was develped for neutronic and fuel depletion calculus and to simulate the refueling of various cycles. (Author) [pt

  16. Boiling-Water Reactor internals aging degradation study

    International Nuclear Information System (INIS)

    Luk, K.H.

    1993-09-01

    This report documents the results of an aging assessment study for boiling water reactor (BWR) internals. Major stressors for BWR internals are related to unsteady hydrodynamic forces generated by the primary coolant flow in the reactor vessel. Welding and cold-working, dissolved oxygen and impurities in the coolant, applied loads and exposures to fast neutron fluxes are other important stressors. Based on results of a component failure information survey, stress corrosion cracking (SCC) and fatigue are identified as the two major aging-related degradation mechanisms for BWR internals. Significant reported failures include SCC in jet-pump holddown beams, in-core neutron flux monitor dry tubes and core spray spargers. Fatigue failures were detected in feedwater spargers. The implementation of a plant Hydrogen Water Chemistry (HWC) program is considered as a promising method for controlling SCC problems in BWR. More operating data are needed to evaluate its effectiveness for internal components. Long-term fast neutron irradiation effects and high-cycle fatigue in a corrosive environment are uncertainty factors in the aging assessment process. BWR internals are examined by visual inspections and the method is access limited. The presence of a large water gap and an absence of ex-core neutron flux monitors may handicap the use of advanced inspection methods, such as neutron noise vibration measurements, for BWR

  17. Operators of nuclear reactors. A study about their professional identity

    International Nuclear Information System (INIS)

    Valente, Paula Mercedes Becker

    1997-01-01

    This research studies the process of identity formation/transformation in a group of workers at a Research Institute, which deals with nuclear energy for peaceful uses. It had as a referential the work developed by Antonio da Costa Ciampa (1995). This approach conceives identity as metamorphosis and it is empirically expressed by characters. The research was candied out at the IPEN-CNEN/SP with the oldest reactor operators at work, with open interviews mainly. At the end of the analysis, it was observed that the team, in spite of its grievance and complaints, is still united and operates the reactor with great responsibility. This fact can be proved since no accidents have happened in the last forty years. Nevertheless, the group misses the community recognition for the importance of its work. This was interpreted as the search for an emancipatory feeling towards the development of a collective identity. The lack of this feeling tends to produce an identity with a mere instrumental rationality, suggesting that the organization identity policy must be reviewed. (author)

  18. Program for studying fundamental interactions at the PIK reactor facilities

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Vassiljev, A. V.; Varlamov, V. E. [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation); Geltenbort, P. [Institut Laue-Langevin (France); Gridnev, K. A. [St. Petersburg State University (Russian Federation); Dmitriev, S. P.; Dovator, N. A. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Egorov, A. I.; Ezhov, V. F.; Zherebtsov, O. M.; Zinoviev, V. G.; Ivochkin, V. G.; Ivanov, S. N.; Ivanov, S. A.; Kolomensky, E. A.; Konoplev, K. A.; Krasnoschekova, I. A.; Lasakov, M. S.; Lyamkin, V. A. [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation); Martemyanov, V. P. [National Research Center Kurchatov Institute (Russian Federation); and others

    2016-05-15

    A research program aimed at studying fundamental interactions by means of ultracold and polarized cold neutrons at the GEK-4-4′ channel of the PIK reactor is presented. The apparatus to be used includes a source of cold neutrons in the heavy-water reflector of the reactor, a source of ultracold neutrons based on superfluid helium and installed in a cold-neutron beam extracted from the GEK-4 channel, and a number of experimental facilities in neutron beams. An experiment devoted to searches for the neutron electric dipole moment and an experiment aimed at a measurement the neutron lifetime with the aid of a large gravitational trap are planned to be performed in a beam of ultracold neutrons. An experiment devoted to measuring neutron-decay asymmetries with the aid of a superconducting solenoid is planned in a beam of cold polarized neutrons from the GEK-4′ channel. The second ultracold-neutron source and an experiment aimed at measuring the neutron lifetime with the aid of a magnetic trap are planned in the neutron-guide system of the GEK-3 channel. In the realms of neutrino physics, an experiment intended for sterile-neutrino searches is designed. The state of affairs around the preparation of the experimental equipment for this program is discussed.

  19. A fast plasma analyser for the study of the solar wind interaction with Mars

    Science.gov (United States)

    James, Adrian Martin

    This thesis describes the design and development of the FONEMA instrument to be flown aboard the Russian mission to Mars in 1996. Many probes have flown to Mars yet despite this many mysteries still remain, among them the nature of the interaction of the solar wind with the planetary obstacle. In this thesis I will present some of the results from earlier spacecraft and the models of the interaction that they suggest paying particular attention to the contribution of ion analysers. From these results it will become clear that a fast ion sensor is needed to resolve many of the questions about the magnetosphere of Mars. The FONEMA instrument was designed for this job making use of a novel electrostatic mirror and particle collimator combined with parallel magnetic and electrostatic fields to resolve the ions into mass and energy bins. Development and production of the individual elements is discussed in detail.

  20. Trade study for kWe class space reactors

    Science.gov (United States)

    Bost, Donald S.

    Recent interest by NASA and other government agencies in space reactor power systems with power levels in the 1 to 100 kWe range has prompted a review of earlier space reactor programs, as well as the ongoing SP-100 program, to identify a system that will best fulfill their needs. The candidate reactor types that were reviewed are listed. They are categorized according to the method of heat removal. The five types are: conduction cooled, heat pipe cooled, liquid metal cooled, in-core thermionic and gas cooled. The UZrH moderated reactor coupled with an organic Rankine cycle power conversion system provides an attractive system for multikilowatt, long lived missions. The reactor requires a minimum development because a similar reactor has already flown and the ORC is being developed for use in the Dynamic Isotope Power System (DIPS) and on the Space Station.

  1. Studying Prokaryotic Communities in Iron Depositing Hot Springs (IDHS): Implication for Early Mars Habitability

    Science.gov (United States)

    Sarkisova, S. A.; Tringe, S. G.; Thomas-Keprta, K. L.; Allen, C. c.; Garrison, D. H.; McKay, David S.; Brown, I. I.

    2010-01-01

    We speculate that both external and intracellular iron precipitate in iron-tolerant CB might be involved in oxidative stress suppression shown by [9]. Significant differences are apparent between a set of proteins involved in the maintenance of Fe homeostasis and oxidative stress protection in iron-tolerant and fresh-water and marine CB. Correspondingly, these properties may help to make iron-tolerant CB as dominant organisms in IDHS and probably on early Earth and Mars. Further comparative analyses of hot springs metagenomes and the genomes of iron-tolerant microbes versus fresh-water/marine ones may point out to different habitable zones on early Mars.

  2. Studies of fragileness in steels of vessels of BWR reactors; Estudios de fragilizacion en aceros de vasija de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Robles, E.F.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The structural materials with those that are manufactured the pressure vessels of the BWR reactors, suffer degradation in its mechanical properties mainly to the damage taken place by the fast neutrons (E > 1 MeV) coming from the reactor core. Its are experimentally studied those mechanisms of neutron damage in this material type, by means of the irradiation of steel vessel in experimental reactors to age them quickly. Alternatively it is simulated the neutron damage by means of irradiation of steel with heavy ions. In this work those are shown first results of the damage induced by irradiation from a similar steel to the vessel of a BWR reactor. The irradiation was carried out with fast neutrons (E > 1 MeV, fluence of 1.45 x 10{sup 18} n/cm{sup 2}) in the TRIGA MARK lll reactor and separately with Ni{sup +3} ions in a Tandetrom accelerator, E = 4.8 MeV and range of the ionic flow of 0.1 to 53 iones/A{sup 2}. (Author)

  3. A half-century of terrestrial analog studies: From craters on the Moon to searching for life on Mars

    Science.gov (United States)

    Léveillé, Richard

    2010-03-01

    Terrestrial analogs to the Moon and Mars have been used to advance knowledge in planetary science for over a half-century. They are useful in studies of comparative geology of the terrestrial planets and rocky moons, in astronaut training and testing of exploration technologies, and in developing hypotheses and exploration strategies in astrobiology. In fact, the use of terrestrial analogs can be traced back to the origins of comparative geology and astrobiology, and to the early phases of the Apollo astronaut program. Terrestrial analog studies feature prominently throughout the history of both NASA and the USGS' Astrogeology Research Program. In light of current international plans for a return missions to the Moon, and eventually to send sample return and manned missions to Mars, as well as the recent creation of various analog research and development programs, this historical perspective is timely.

  4. Design Considerations and Conceptual Designs for Surface Nuclear Power Systems for the Moon and Mars

    International Nuclear Information System (INIS)

    Blessing, David L.; Kirkland, Joel

    2006-01-01

    A set of design considerations is proposed for nuclear power systems to provide power on the Moon or Mars. Setting the initial requirements is extremely important since they govern the choices that determine the final design. In addition, the choice of reactor and its operating conditions depends on details of the energy conversion and heat rejection systems, which must be studied in tandem. Refractory materials are not suitable for the primary pressure boundary for the reactor due to their susceptibility to chemical attack from particles of regolith on the Moon and Mars or by the carbon dioxide atmosphere on Mars. High nickel superalloys would be acceptable in these environments, but their limited creep strength at elevated temperatures limits reactor outlet temperature to about 1150 K or less. This temperature restriction results in the mass of a gas cooled reactor coupled to a Brayton power conversion system being somewhat lighter than that of a liquid metal-cooled reactors coupled to a Brayton power conversion system. The mass of a liquid metal-cooled reactor coupled to an advanced Stirling power conversion system would be in between that of the gas and liquid metal cooled systems which use Brayton power conversion

  5. System modeling and reactor design studies of the Advanced Thermionic Initiative space nuclear reactor

    International Nuclear Information System (INIS)

    Lee, H.H.; Abdul-Hamid, S.; Klein, A.C.

    1996-01-01

    In-core thermionic space reactor design concepts that operate at a nominal power output range of 20 to 50 kW(electric) are described. Details of the neutronic, thermionic, thermal hydraulics, and shielding performance are presented. Because of the strong absorption of thermal neutrons by natural tungsten and the large amount of natural tungsten within the reactor core, two designs are considered. An overall system design code has been developed at Oregon State University to model advanced in-core thermionic energy conversion-based nuclear reactor systems for space applications. The results show that the driverless single-cell Advanced Thermionic Initiative (ATI) configuration, which does not have driver fuel rods, proved to be more efficient than the driven core, which has driver rods. The results also show that the inclusion of the true axial and radial power distribution decrease the overall conversion efficiency. The flattening of the radial power distribution by three different methods would lead to a higher efficiency. The results show that only one TFE works at the optimum emitter temperature; all other TFEs are off the optimum performance and result in a 40% decrease of the efficiency of the overall system. The true axial profile is significantly different as there is a considerable amount of neutron leakage out of the top and bottom of the reactor. The analysis reveals that the axial power profile actually has a chopped cosine shape. For this axial profile, the reactor core overall efficiency for the driverless ATI reactor version is found to be 5.84% with a total electrical power of 21.92 kW(electric). By considering the true axial power profile instead of the uniform power profile, each TFE loses ∼80 W(electric)

  6. Two earth years of Moessbauer studies of the surface of Mars with MIMOS II

    International Nuclear Information System (INIS)

    Klingelhoefer, G.; Morris, R. V.; De Souza, P. A.; Rodionov, D.; Schroeder, C.

    2006-01-01

    The element iron plays a crucial role in the study of the evolution of matter from an interstellar cloud to the formation and evolution of the planets. In the Solar System iron is the most abundant metallic element. It occurs in at least three different oxidation states: Fe(0) (metallic iron), Fe(II) and Fe(III). Fe(IV) and Fe(VI) compounds are well known on Earth, and there is a possibility for their occurrence on Mars. In January 2004 the USA space agency NASA landed two rovers on the surface of Mars, both carrying the Mainz Moessbauer spectrometer MIMOS II. They performed for the first time in-situ measurements of the mineralogy of the Martian surface, at two different places on Mars, Meridiani Planum and Gusev crater, respectively, the landing sites of the Mars-Exploration-Rovers (MER) Opportunity and Spirit. After about two Earth years or one Martian year of operation the Moessbauer (MB) spectrometers on both rovers have acquired data from more than 150 targets (and more than thousand MB spectra) at each landing site. The scientific measurement objectives of the Moessbauer investigation are to obtain for rock, soil, and dust (1) the mineralogical identification of iron-bearing phases (e.g., oxides, silicates, sulfides, sulfates, and carbonates), (2) the quantitative measurement of the distribution of iron among these iron-bearing phases (e.g., the relative proportions of iron in olivine, pyroxenes, ilmenite and magnetite in a basalt), (3) the quantitative measurement of the distribution of iron among its oxidation states (e.g., Fe 2+ , Fe 3+ , and Fe 6+ ), and (4) the characterization of the size distribution of magnetic particles. Special geologic targets of the Moessbauer investigation are dust collected by the Athena magnets and interior rock and soil surfaces exposed by the Athena Rock Abrasion Tool and by trenching with rover wheels. The Moessbauer spectrometer on Opportunity at Meridiani Planum, identified eight Fe-bearing phases: jarosite (K,Na,H3O

  7. Life on Mars

    Science.gov (United States)

    McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    Although the Viking results may indicate that Mars has no life today, the possibility exists that Mars may hold the best record of the events that led to the origin of life. There is direct geomorphological evidence that in the past Mars had large amounts of liquid water on its surface. Atmospheric models would suggest that this early period of hydrological activity was due to the presence of a thick atmosphere and the resulting warmer temperatures. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. From studies of the Earth's earliest biosphere we know that by 3.5 Gyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Gyr timeframe. If Mars did maintain a clement environment for longer than it took for life to originate on Earth, then the question of the origin of life on Mars follows naturally.

  8. Sensitivity Study on Analysis of Reactor Containment Response to LOCA

    International Nuclear Information System (INIS)

    Chung, Ku Young; Sung, Key Yong

    2010-01-01

    As a reactor containment vessel is the final barrier to the release of radioactive material during design basis accidents (DBAs), its structural integrity must be maintained by withstanding the high pressure conditions resulting from DBAs. To verify the structural integrity of the containment, response analyses are performed to get the pressure transient inside the containment after DBAs, including loss of coolant accidents (LOCAs). The purpose of this study is to give regulative insights into the importance of input variables in the analysis of containment responses to a large break LOCA (LBLOCA). For the sensitivity study, a LBLOCA in Kori 3 and 4 nuclear power plant (NPP) is analyzed by CONTEMPT-LT computer code

  9. Sensitivity Study on Analysis of Reactor Containment Response to LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ku Young; Sung, Key Yong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2010-10-15

    As a reactor containment vessel is the final barrier to the release of radioactive material during design basis accidents (DBAs), its structural integrity must be maintained by withstanding the high pressure conditions resulting from DBAs. To verify the structural integrity of the containment, response analyses are performed to get the pressure transient inside the containment after DBAs, including loss of coolant accidents (LOCAs). The purpose of this study is to give regulative insights into the importance of input variables in the analysis of containment responses to a large break LOCA (LBLOCA). For the sensitivity study, a LBLOCA in Kori 3 and 4 nuclear power plant (NPP) is analyzed by CONTEMPT-LT computer code

  10. Imploding-liner reactor nucleonic studies: the LINUS blanket

    International Nuclear Information System (INIS)

    Dudziak, D.J.

    1977-09-01

    Scoping nucleonic studies have been performed for a small imploding-liner fusion reactor concept. Tritium breeding ratio and time-dependent energy deposition rates were the primary parameters of interest in the study. Alloys of Pb and LiPb were considered for the liquid liner (blanket), and tritium breeding was found to be more than adequate with blankets less than 1 m thick. However, neutron leakages into the solid cylinder block surrounding the liquid liner are generally quite high, so considerable effort was concentrated on minimizing these values. Time-dependent calculations reveal that 89% of the energy is deposited in the blanket within 2 μs. Thus, LINUS's blanket should remain intact for the requisite neutron and gamma-ray lifetimes

  11. Studying the effect of xenon poisoning on the power of the Syrian miniature neutron source reactor

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.

    1999-07-01

    The uranium 235 is often used as a fuel to produce the energy in nuclear reactors. Uranium nuclei are fissioned with thermal neutrons and produce energy plus a number of neutrons. A fraction of such fission neutrons is involved in other fission with new nuclei to sustain the fission reactions. The remain fraction of the neutrons is lost from the reactor in two ways: escaped from the reactor, or absorbed with other nuclei that exist in the reactor before or produced from fission. Fission nuclei which absorb neutrons heavily are called p oison , such as Xe 135. Because Xe 135 absorbs neutrons heavily, it reduces the number of neutrons in the reactor. Hence, Xe 135 is studied explicitly in the MNSR reactor, and calculation of its negative reactivity is presented in this research during the operation, equilibrium, and after the shutting down of the reactor. (author)

  12. Study for improvement of performance of the test and research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Fumio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    Current utilization needs for the test and research reactors become more advanced and diversified along with the advance of nuclear science and technology. Besides, the requested safety for the research and test reactors grows strictly every year as well as a case of the power reactors. Under this circumstance, every effort to improve reactor performance including its safety is necessary to be sustained for allowing more effective utilization of the test and research reactors as experimental apparatus for advanced researches. In this study, the following three themes i.e., JMTR high-performance fuel element, evaluation method of fast neutron irradiation dose in the JMTR, evaluation method of performance of siphon break valve as core covering system for water-cooled test and research reactors, were investigated respectively from the views of improvement of core performance as a neutron source, utilization performance as an experimental apparatus, and safety as a reactor plant. (author)

  13. Study of Xenon-poisoning effect on the research reactor power

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.

    2000-01-01

    The uranium 235 is often used as a fuel to produce the energy in nuclear reactors. Uranium nuclei are fissioned with thermal neutrons and produce energy plus a number of neutrons. A fraction of such fission neutrons is involved in other fission with new nuclei to sustain the fission reactions. The remain fraction of the neutrons is lost from the reactor in two ways: escaped from the reactor, or absorbed with other nuclei that exist in the reactor before or produced from fission. Fission nuclei which absorb neutrons heavily are called p oison , such as Xe 135. Because Xe 135 absorbs neutrons heavily, it reduces the number of neutrons in the reactor. Hence, Xe 135 is studied explicitly in the MNSR reactor, and calculation of its negative reactivity is presented in this research during the operation, equilibrium, and after the shutting down of the reactor. (author)

  14. MARS Validation Plan and Status

    International Nuclear Information System (INIS)

    Ahn, Seung-hoon; Cho, Yong-jin

    2008-01-01

    The KINS Reactor Thermal-hydraulic Analysis System (KINS-RETAS) under development is directed toward a realistic analysis approach of best-estimate (BE) codes and realistic assumptions. In this system, MARS is pivoted to provide the BE Thermal-Hydraulic (T-H) response in core and reactor coolant system to various operational transients and accidental conditions. As required for other BE codes, the qualification is essential to ensure reliable and reasonable accuracy for a targeted MARS application. Validation is a key element of the code qualification, and determines the capability of a computer code in predicting the major phenomena expected to occur. The MARS validation was made by its developer KAERI, on basic premise that its backbone code RELAP5/MOD3.2 is well qualified against analytical solutions, test or operational data. A screening was made to select the test data for MARS validation; some models transplanted from RELAP5, if already validated and found to be acceptable, were screened out from assessment. It seems to be reasonable, but does not demonstrate whether code adequacy complies with the software QA guidelines. Especially there may be much difficulty in validating the life-cycle products such as code updates or modifications. This paper presents the plan for MARS validation, and the current implementation status

  15. An overview on the reactors to study drinking water biofilms.

    Science.gov (United States)

    Gomes, I B; Simões, M; Simões, L C

    2014-10-01

    The development of biofilms in drinking water distribution systems (DWDS) can cause pipe degradation, changes in the water organoleptic properties but the main problem is related to the public health. Biofilms are the main responsible for the microbial presence in drinking water (DW) and can be reservoirs for pathogens. Therefore, the understanding of the mechanisms underlying biofilm formation and behavior is of utmost importance in order to create effective control strategies. As the study of biofilms in real DWDS is difficult, several devices have been developed. These devices allow biofilm formation under controlled conditions of physical (flow velocity, shear stress, temperature, type of pipe material, etc), chemical (type and amount of nutrients, type of disinfectant and residuals, organic and inorganic particles, ions, etc) and biological (composition of microbial community - type of microorganism and characteristics) parameters, ensuring that the operational conditions are similar as possible to the DWDS conditions in order to achieve results that can be applied to the real scenarios. The devices used in DW biofilm studies can be divided essentially in two groups, those usually applied in situ and the bench top laboratorial reactors. The selection of a device should be obviously in accordance with the aim of the study and its advantages and limitations should be evaluated to obtain reproducible results that can be transposed into the reality of the DWDS. The aim of this review is to provide an overview on the main reactors used in DW biofilm studies, describing their characteristics and applications, taking into account their main advantages and limitations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Study on plant concept for gas cooled fast reactor

    International Nuclear Information System (INIS)

    Moribe, Takeshi; Kubo, Shigenobu; Saigusa, Toshiie; Konomura, Mamoru

    2003-05-01

    In 'Feasibility Study on Commercialized Fast Reactor Cycle System', technological options including various coolant (sodium, heavy metal, gas, water, etc.), fuel type (MOX, metal, nitride) and output power are considered and classified, and commercialized FBR that have economical cost equal to LWR are pursued. In conceptual study on gas cooled FBR in FY 2002, to identify the prospect of the technical materialization of the helium cooled FBR using coated particle fuel which is an attractive concept extracted in the year of FY2001, the preliminary conceptual design of the core and entire plant was performed. This report summarizes the results of the plant design study in FY2002. The results of study is as follows. 1) For the passive core shutdown equipment, the curie point magnet type self-actuated device was selected and the device concept was set up. 2) For the reactor block, the concept of the core supporting structure, insulators and liners was set up. For the material of the heat resistant structure, SiC was selected as a candidate. 3) For the seismic design of the plant, it was identified that a design concept with three-dimensional base isolation could be feasible taking the severe seismic condition into account. 4) For the core catcher, an estimation of possible event sequences under severe core damage condition was made. A core catcher concept which may suit the estimation was proposed. 5) The construction cost was roughly estimated based on the amount of materials and its dependency on the plant output power was evaluated. The value for a small sized plant exceeds the target construction cost about 20%. (author)

  17. Experimental studies of U-Pu-Zr fast reactor fuel pins in the Experimental Breeder Reactor 2

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Lahm, C.E.; Hofman, G.L.

    1990-01-01

    Argonne National Laboratory's Integral Fast Reactor (IFR) concept has been under demonstration in the Experimental Breeder Reactor II (EBR-II) since February 1985. Irradiation tests of U-Zr and U-Pu-Zr fuel pins to >15 at. pct burnup have demonstrated their viability as driver fuel prototypes in innovative design liquid metal reactors. A number of technically challenging irradiation effects have been observed and are now under study. Microstructural changes in the fuel are dominated early in exposure by grain boundary cavitation and fission gas bubble growth, producing large amounts of swelling. Irradiation creep and swelling of the austenitic (D9) and martensitic (HT-9) candidate cladding alloys have been measured and correlate well with property modeling efforts. Chemical interaction between the fuel and cladding alloys has been characterized to assess the magnitude of cladding wastage during steady-state irradiation. Significant interdiffusion of the uranium and zirconium occurs producing metallurgically distinct zones in the fuel

  18. Blind post-test analysis of Phenix End-of-Life natural circulation test with the MARS-LMR

    International Nuclear Information System (INIS)

    Jeong, Hae Yong; Ha, Kwi Seok; Kwon, Young Min; Chang, Won Pyo; Suk, Su Dong; Lee, Kwi Lim

    2010-01-01

    KAERI is developing a system analysis code, MARS-LMR, for the application to a sodium-cooled fast reactor (SFR). This code will be used as a basic tool in the design and analysis of future SFR systems in Korea. Before wide application of a system analysis code, it is required to verify and validate the code models through analyses for appropriate experimental data or analytical results. The MARS-LMR code has been developed from MARS code which had been well verified and validated for a pressurized water reactor (PWR) system. The MARS-LMR code shares the same form of governing equations and solution schemes with MARS code, which eliminates the need of independent verification procedure. However, it is required to validate the applicability of the code to an SFR system because it adopts some dedicated heat transfer models, pressure drop models, and material properties models for a sodium system. Phenix is a medium-sized pool-type SFR successfully operated for 35 years since 1973. This reactor reached its final shutdown in February 2009. An international program of Phenix end-of-life (EOL) test was followed and some valuable information was obtained from the test, which will be useful for the validation of SFR system analysis code. In the present study, the performance of MARS-LMR code is evaluated through a blind calculation with the boundary conditions measured in the real test. The post-test analysis results are also compared with the test data generated in the test

  19. Geologic Mapping and Studies of Diverse Deposits at Noctis Labyrinthus, Mars

    Science.gov (United States)

    Weitz, C. M.; Berman, D. C.; Rodriguez, A. P.; Bishop, J. L.

    2018-06-01

    We are mapping the western portion of Noctis Labyrinthus (–6 to –14°N, –99.5 to –95.0°W) at 1:500,000 scale, which includes some of the most diverse mineralogies identified on Mars using CRISM data.

  20. Delta and fan morphologies on Mars as climate indicators (Utrecht Studies in Geosciences 042)

    NARCIS (Netherlands)

    de Villiers, G.

    2013-01-01

    The presence, duration and quantity of water on Mars remains an important research topic in planetary science. Large valley networks, regional outflow channels, and small-scale gullies indicate the presence of water on the surface at certain points in the past. However, the climatic history and

  1. Radioactive tracer applications in the study of flow reactors. 4

    International Nuclear Information System (INIS)

    Thyn, J.; Hovorka, J.

    1975-01-01

    Response curves of gas streaming through the jet fluidized bed of a granular material in a rotary-jet pilot reactor were measured for a number of gas flow rates. A mathematical model of the gas residence time distribution was designed. Good agreement of the mathematical model with the experiments permits determining the ratio of streaming through the fluidized bed in form of bubbles of a different size. The measured values were evaluated as the distribution density of the gas residence time (age) at the outlet, the distribution function of the internal gas age in the device, and the so-called intensity function. The gas was labelled by a rapid injection of the radioactive 85 Kr and the response was studied by specially connected Geiger-Mueller counters placed inside the device, immediately above the granular material bed. (author)

  2. A Parameter Study of Large Fast Reactor Nuclear Explosion Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Wiesel, J R

    1969-02-15

    An IBM-code EEM (Explosive Excursion Model) has been developed for calculating the energy releases associated with the explosive disassembly of a large fast reactor following a superprompt critical condition. The assumed failure chain of events and the possible core collapse following a fuel meltdown give the input data and initial conditions, the most important of which is the reactivity insertion rate at the moment of the explosive core disassembly. The dependence of the energy releases on the reactivity insertion rate, the Doppler reactivity feedback, the power form factor and the core size have been studied. The model enables a quick estimation of conservative values of the destructive mechanical energy releases following a nuclear explosion and gives suggestions as to how to reduce or even avoid such excursions.

  3. Siting study for small platform-mounted industrial energy reactors

    International Nuclear Information System (INIS)

    1975-07-01

    Utilizing an existing 313 MW(t) ship propulsion reactor design, a concept has been formulated for a floating platform-mounted nuclear plant and an evaluation has been made to determine reductions in construction time and cost achievable by repetitive platform construction in a shipyard. Concepts and estimates are presented for siting platform-mounted nuclear plants at the location of industrial facilities where the nuclear plants would furnish industrial process heat and/or electrical power. The representative industrial site designated for this study is considered typical of sites that might be used along the extensive network of navigable canals adjacent to the ocean and is similar to potential sites along the inland waterways of the United States

  4. A Parameter Study of Large Fast Reactor Nuclear Explosion Accidents

    International Nuclear Information System (INIS)

    Wiesel, J.R.

    1969-02-01

    An IBM-code EEM (Explosive Excursion Model) has been developed for calculating the energy releases associated with the explosive disassembly of a large fast reactor following a superprompt critical condition. The assumed failure chain of events and the possible core collapse following a fuel meltdown give the input data and initial conditions, the most important of which is the reactivity insertion rate at the moment of the explosive core disassembly. The dependence of the energy releases on the reactivity insertion rate, the Doppler reactivity feedback, the power form factor and the core size have been studied. The model enables a quick estimation of conservative values of the destructive mechanical energy releases following a nuclear explosion and gives suggestions as to how to reduce or even avoid such excursions

  5. Conceptual design study of high conversion light water reactor

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Akie, Hiroshi; Mori, Takamasa; Nakagawa, Masayuki; Ishiguro, Yukio

    1990-06-01

    Since 1984, R and D work has been made for high conversion light water reactors (HCLWRs), at JAERI, to improve the natural uranium saving and effective plutonium utilization by the use of conventional or extended LWR technology. This report summarizes the results of the feasibility study made mainly from the viewpoint of nuclear design in the Phase-I Program (1985∼1989). Until now, the following various types of HCLWR core concepts have been investigated; 1) homogeneous core with tight pitch lattice of fuel rods, 2) homogeneous core with semi-tight pitch lattice, 3) spectral shift core using fertile rod with semi-tight pitch lattice, 4) flat-core, 5) axial heterogeneous core. The core burnup and thermohydraulic analyses during normal operations have been performed to clear up the burnup performances and feasibility for each core. Based on the analysis results, the axial heterogeneous HCLWR core was selected as the JAERI reference core. (author)

  6. Size optimization and dynamics studies for a heliac stellarators reactor

    International Nuclear Information System (INIS)

    Perez-Navarro, A.; Fraguas, A.L.; Ochando, M.A.; Garcia Gonzalo, L.

    1995-01-01

    Design studies for a stellarator reactor based on a heliac configuration have been addressed to determine the minimum size requirements and operational techniques for plasma start-up and run-down. Assuming constraints derived from the available technologies and plasma parameter limitations, a device with a major radius of 15 m and a plasma radius of 2 m is obtained, for a magnetic field of 5 T and a power output around 1 GW(e). A coil system with enough space for blanket and shielding has been defined. Finally it is proved that by a continuous use of a modest amount of auxiliary power, all dynamical process of the plant operation can be eased. 13 refs

  7. Blanket design study for a Commercial Tokamak Hybrid Reactor (CTHR)

    International Nuclear Information System (INIS)

    Chapin, D.L.; Green, L.; Lee, A.Y.; Culbert, M.E.; Kelly, J.L.

    1979-09-01

    The results are presented of a study on two blanket design concepts for application in a Commercial Tokamak Hybrid Reactor (CTHR). Both blankets operate on the U-Pu cycle and are designed to achieve tritium self-sufficiency while maximizing the fissile fuel production within thermal and mechanical design constraints. The two blanket concepts that were evaluated were: (1) a UC fueled, stainless steel clad and structure, helium cooled blanket; and (2) a UO 2 fueled, zircaloy clad, stainless steel structure, boiling water cooled blanket. Two different tritium breeding media, Li 2 O and LiH, were evaluated for use in both blanket concepts. The use of lead as a neutron multiplier or reflector and graphite as a reflector was also considered for both blankets

  8. Positron annihilation studies on reactor irradiated and thermal annealed ferrocene

    International Nuclear Information System (INIS)

    Marques Netto, A.; Carvalho, R.S.; Magalhaes, W.F.; Sinisterra, R.D.

    1996-01-01

    Retention and thermal annealing following (n, γ) reaction in solid ferrocene, Fe(C 5 H 5 ) 2 , were studied by positron annihilation lifetime spectroscopy (PAL). Positronium (Ps) formation was observed in the non-irradiated compound with a probability or intensity (I 3 ) of 30%. Upon irradiation of the compound with thermal neutrons in a nuclear reactor, I 3 decreases with increasing irradiation time. Thermal treatment again increases I 3 values from 16% to 25%, revealing an important proportion of molecular reformation without variation of the ortho-positronium lifetime (τ 3 ). These results point out the major influence of the electronic structure as determining the Ps yields in the pure complex. In the irradiated and non irradiated complexes the results are satisfactorily explained on the basis of the spur model. (orig.)

  9. Basic studies for molten-salt reactor engineering in Japan

    International Nuclear Information System (INIS)

    Ishiguro, R.; Sugiyama, K.; Sakashita, H.

    1985-01-01

    A research project of nuclear engineering for the molten-salt reactor is underway which is supported by the Grant-in-Aid for Scientific Research of the Ministry of Education of Japan. At present, the major effort is devoted only to basic engineering problems because of the limited amount of the grant. The reporters introduce these and related studies that have been carrying out in Japanese universities. Discussions on the following four subjects are summerized in this report: a) Vapour explosion when hight temperature molten-salts are brought into direct contact with water. b) Measurements of exact thermophysical properties of molten-salt. c) Free convection heat transfer with uniform internal heat generation and a constant heating rate from the bottem. d) Stability of frozen salt film on the container surface. (author)

  10. Simultaneous nuclear data target accuracy study for innovative fast reactors

    International Nuclear Information System (INIS)

    Aliberti, G.; Palmiotti, G.; Salvatores, M.

    2007-01-01

    The present paper summarizes the major outcomes of a study conducted within a Nuclear Energy Agency Working Party on Evaluation Cooperation (NEA WPEC) initiative aiming to investigate data needs for future innovative nuclear systems, to quantify them and to propose a strategy to meet them. Within the NEA WPEC Subgroup 26 an uncertainty assessment has been carried out using covariance data recently processed by joint efforts of several US and European Labs. In general, the uncertainty analysis shows that for the wide selection of fast reactor concepts considered, the present integral parameters uncertainties resulting from the assumed uncertainties on nuclear data are probably acceptable in the early phases of design feasibility studies. However, in the successive phase of preliminary conceptual designs and in later design phases of selected reactor and fuel cycle concepts, there will be the need for improved data and methods, in order to reduce margins, both for economic and safety reasons. It is then important to define as soon as possible priority issues, i.e. which are the nuclear data (isotope, reaction type, energy range) that need improvement, in order to quantify target accuracies and to select a strategy to meet the requirements needed (e.g. by some selected new differential measurements and by the use of integral experiments). In this context one should account for the wide range of high accuracy integral experiments already performed and available in national or, better, international data basis, in order to indicate new integral experiments that will be needed to account for new requirements due to innovative design features, and to provide the necessary full integral data base to be used for validation of the design simulation tools.

  11. Feasibility study of plutonium recycling in light water reactors

    International Nuclear Information System (INIS)

    Tabuchi, Hideoto

    1979-01-01

    The feasibility of plutonium recycling in light water reactors has been studied by the Agency of Natural Resources and Energy, MITI. As the first step of the feasibility study, it was planned to charge two fuel assemblies, containing uranium-plutonium mixed oxide (MO 2 ), in the core of the Tsuruga nuclear power plant (BWR) for testing. The design of fuel the safety of these fuel and the operating characteristics of these special fuel assemblies were evaluated. The specifications of MO 2 fuel pin and fuel assembly are compared to those of present uranium oxide (UO 2 ) fuel. The weight of fissile plutonium in one MO 2 fuel assembly is 2.22 kg. The characteristics of MO 2 fuel assemblies, such as reactivity, control rod worth and power distribution can be kept similar to UO 2 fuel. The plutonium isotope ratio of the MO 2 fuel is assumed as that obtained in the fuel taken out of the Tokai No. 1 gas cooled reactor. The temperature distribution in the fuel pellets is shown, compared to that of UO 2 fuel. The linear power density is 440 w/cm at the beginning of the fuel life and 360 w/cm after the burn-up of 44,000 Mwd/t. The stress in the cladding tubes of MO 2 fuel is not different from that of UO 2 fuel. The pellet-cladding interaction (PCM1) was analyzed, utilizing the FEM code, FEAST. Concerning the calculation of resonance absorption, the space dependence of thermal neutron spectra and the nuclear behavior of hollow pellets the methods of design calculation were checked up. It was recognized that regarding the nuclear characteristics of MO 2 fuel, no special technical question remains. (Nakai, Y.)

  12. Study of plutonium recycling physics in light water reactors

    International Nuclear Information System (INIS)

    Reuss, Paul

    1979-10-01

    A stock of plutonium from the reprocessing of thermal neutron reactor fuel is likely to appear in the next few years. The use of this plutonium as fuel replacing 235 U in thermal reactors is probably more interesting than simple stock-piling storage: immobilization of a capital which moreover would deteriorate by radioactive decay of isotope 241 also fissile and present to an appreciable extend in plutonium from reprocessing (half-life 15 years); recycling, on the other hand, will supply energy without complete degradation of the stock for fast neutron reactor loads, the burned matter having been partially renewed by conversion; furthermore the use of plutonium will meet the needs created by a temporary pressure on the naturel and/or enriched uranium market. For these two reasons the recycling of plutonium in thermal neutron reactors is being considered seriously today. The present work is confined to neutronic aspects and centres mainly on pressurized water-moderated reactors, the most highly developed at present in France. Four aspects of the problem are examined: 1. the physics of a plutonium-recycling reactor special features of neutronic phenomena with respect to the 'conventional' scheme of the 235 U burning reactor; 2. calculation of a plutonium-recycling reactor: adaptation of standard methods; 3. qualification of these calculations from the viewpoint of both data and inevitable approximations; 4. the fuel cycle and particularly the equivalence of fissile matters [fr

  13. Plutonium-239 production rate study using a typical fusion reactor

    International Nuclear Information System (INIS)

    Faghihi, F.; Havasi, H.; Amin-Mozafari, M.

    2008-01-01

    The purpose of the present paper is to compute fissile 239 Pu material by supposed typical fusion reactor operation to make the fuel requirement for other purposes (e.g. MOX fissile fuel, etc.). It is assumed that there is a fusion reactor has a cylindrical geometry and uses uniformly distributed deuterium-tritium as fuel so that neutron wall load is taken at 10(MW)/(m 2 ) . Moreover, the reactor core is surrounded by six suggested blankets to make best performance of the physical conditions described herein. We determined neutron flux in each considered blanket as well as tritium self-sufficiency using two groups neutron energy and then computation is followed by the MCNP-4C code. Finally, material depletion according to a set of dynamical coupled differential equations is solved to estimate 239 Pu production rate. Produced 239 Pu is compared with two typical fission reactors to find performance of plutonium breeding ratio in the case of the fusion reactor. We found that 0.92% of initial U is converted into fissile Pu by our suggested fusion reactor with thermal power of 3000 MW. For comparison, 239 Pu yield of suggested large scale PWR is about 0.65% and for LMFBR is close to 1.7%. The results show that the fusion reactor has an acceptable efficiency for Pu production compared with a large scale PWR fission reactor type

  14. Plutonium-239 production rate study using a typical fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, F. [Research Center for Radiation Protection, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: faghihif@shirazu.ac.ir; Havasi, H.; Amin-Mozafari, M. [Department of Nuclear Engineering, School of Engineering, Shiraz University, 71348-51154 Shiraz (Iran, Islamic Republic of)

    2008-05-15

    The purpose of the present paper is to compute fissile {sup 239}Pu material by supposed typical fusion reactor operation to make the fuel requirement for other purposes (e.g. MOX fissile fuel, etc.). It is assumed that there is a fusion reactor has a cylindrical geometry and uses uniformly distributed deuterium-tritium as fuel so that neutron wall load is taken at 10(MW)/(m{sup 2}) . Moreover, the reactor core is surrounded by six suggested blankets to make best performance of the physical conditions described herein. We determined neutron flux in each considered blanket as well as tritium self-sufficiency using two groups neutron energy and then computation is followed by the MCNP-4C code. Finally, material depletion according to a set of dynamical coupled differential equations is solved to estimate {sup 239}Pu production rate. Produced {sup 239}Pu is compared with two typical fission reactors to find performance of plutonium breeding ratio in the case of the fusion reactor. We found that 0.92% of initial U is converted into fissile Pu by our suggested fusion reactor with thermal power of 3000 MW. For comparison, {sup 239}Pu yield of suggested large scale PWR is about 0.65% and for LMFBR is close to 1.7%. The results show that the fusion reactor has an acceptable efficiency for Pu production compared with a large scale PWR fission reactor type.

  15. ELMO Bumpy Torus fusion-reactor design study

    International Nuclear Information System (INIS)

    Bathke, C.G.; Krakowski, R.A.

    1981-01-01

    A complete power plant design of a 1200-MWe ELMO Bumpy Torus Reactor (EBTR) is described that emphasizes those features that are unique to the EBT confinement concept, with subsystems and balance-of-plant items that are generic to magnetic fusion being adopted from past, more extensive tokamak reactor designs

  16. Characterizing of a Mid-Latitude Ice-Rich Landing Site on Mars to Enable in Situ Habitability Studies

    Science.gov (United States)

    Heldmann, J.; Schurmeier, L. R.; Wilhelm, M.; Stoker, C.; McKay, C.; Davila, A.; Marinova, M.; Karcz, J.; Smith, H.

    2012-01-01

    We suggest an ice-rich landing site at 188.5E 46.16N within Amazonis Planitia as a candidate location to support a Mars lander mission equipped to study past habitability and regions capable of preserving the physical and chemical signs of life and organic matter. Studies of the ice-rich subsurface on Mars are critical for several reasons. The subsurface environment provides protection from radiation to shield organic and biologic compounds from destruction. The ice-rich substrate is also ideal for preserving organic and biologic molecules and provides a source of H2O for biologic activity. Examination of martian ground ice can test several hypotheses such as: 1) whether ground ice supports habitable conditions, 2) that ground ice can preserve and accumulate organic compounds, and 3) that ice contains biomolecules evident of past or present biological activity on Mars. This Amazonis site, located near the successful Viking Lander 2, shows indirect evidence of subsurface ice (ubiquitous defined polygonal ground, gamma ray spectrometer hydrogen signature, and numerical modeling of ice stability) and direct evidence of exposed subsurface ice. This site also provides surface conditions favorable to a safe landing including no boulders, low rock density, minimal rough topography, and few craters.

  17. MATLAB/SIMULINK model of CANDU reactor for control studies

    International Nuclear Information System (INIS)

    Javidnia, H.; Jiang, J.

    2006-01-01

    In this paper a MATLAB/SIMULINK model is developed for a CANDU type reactor. The data for the reactor are taken from an Indian PHWR, which is very similar to CANDU in its design. Among the different feedback mechanisms in the core of the reactor, only xenon has been considered which plays an important role in spatial oscillations. The model is verified under closed loop scenarios with simple PI controller. The results of the simulation show that this model can be used for controller design and simulation of the reactor systems. Adding models of the other components of a CANDU reactor would ultimately result in a complete model of CANDU plant in MATLAB/SIMULINK. (author)

  18. Recent studies of Reversed-Field Pinch reactors

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1981-01-01

    The reactor prognoses of a class of confinement scheme that relies primarily on self-fields induced by axial currents flowing within a plasma column are presented. The primary focus has been placed on the toroidal Reversed-Field Pinch (RFP). At the limit of very large current densities is the gas-embedded Dense Z-Pinch (DZP), a small-radius, linear device. Past conventional RFP reactor designs are reviewed. The extention of these conventional RFP reactors to DD advanced-fuel operation is described. The implications are summarized of operating higher-density, compact RFPs as reactors, wherein the current density rather than physical dimensions are scaled. Lastly, the application of very high current densities supported in a sub-millimeter linear current channel, as embodied in the DZP reactor, is reviewed

  19. Study of the pyrochemical treatment-recycling process of the Molten Salt Reactor fuel

    International Nuclear Information System (INIS)

    Boussier, H.; Heuer, D.

    2010-01-01

    The Separation Processes Studies Laboratory (Commissariat a l'energie Atomique) has made a preliminary assessment of the reprocessing system associated with Molten Salt Fast Reactor (MSFR). The scheme studied in this paper is based on the principle of reductive extraction and metal transfer that constituted the core process designed for the Molten Salt Breeder Reactor (MSBR), although the flow diagram has been adapted to the current needs of the Molten Salt Reactor Fast (MSFR).

  20. A study on the fault diagnostic techniques for reactor internal structures using neutron noise analysis

    International Nuclear Information System (INIS)

    Kim, Tae Ryong; Jeong, Seong Ho; Park, Jin Ho; Park, Jin Suk

    1994-08-01

    The unfavorable phenomena, such as flow induced vibration and aging process in reactor internals, cause degradation of structural integrity and may result in loosing some mechanical binding components which might impact other equipments and components or cause flow blockage. Since these malfunctions and potential failures change reactor noise signal, it is necessary to analyze reactor noise signal for early fault diagnosis in the point of few of safety and plant economics. The objectives of this study are to establish fault diagnostic and TS(thermal shield), and to develop a data acquisition and signal processing software system. In the first year of this study, an analysis technique for the reactor internal vibration using the reactor noise was proposed. With the technique proposed and the reactor noise signals (ex-core neutron and acceleration), the dynamic characteristics of Ulchin-1 reactor internals were obtained, and compared with those of Tricastin-1 which is the prototype of Ulchin-1. In the second year, a PC-based expert system for reactor internals fault diagnosis is developed, which included data acquisition, signal processing, feature extraction function, and represented diagnostic knowledge by the IF-THEN rule. To know the effect of the faults, the reactor internals of Ulchin-1 is modeled using FEM and simulated with an artificial defect given in the hold-down spring. Trend in the dynamic characteristics of reactor internals is also observed during one fuel cycle to know the effect of boron concentration. 100 figs, 7 tabs, 18 refs. (Author)

  1. A study of reactor monitoring method with neural network

    Energy Technology Data Exchange (ETDEWEB)

    Nabeshima, Kunihiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    The purpose of this study is to investigate the methodology of Nuclear Power Plant (NPP) monitoring with neural networks, which create the plant models by the learning of the past normal operation patterns. The concept of this method is to detect the symptom of small anomalies by monitoring the deviations between the process signals measured from an actual plant and corresponding output signals from the neural network model, which might not be equal if the abnormal operational patterns are presented to the input of the neural network. Auto-associative network, which has same output as inputs, can detect an kind of anomaly condition by using normal operation data only. The monitoring tests of the feedforward neural network with adaptive learning were performed using the PWR plant simulator by which many kinds of anomaly conditions can be easily simulated. The adaptively trained feedforward network could follow the actual plant dynamics and the changes of plant condition, and then find most of the anomalies much earlier than the conventional alarm system during steady state and transient operations. Then the off-line and on-line test results during one year operation at the actual NPP (PWR) showed that the neural network could detect several small anomalies which the operators or the conventional alarm system didn't noticed. Furthermore, the sensitivity analysis suggests that the plant models by neural networks are appropriate. Finally, the simulation results show that the recurrent neural network with feedback connections could successfully model the slow behavior of the reactor dynamics without adaptive learning. Therefore, the recurrent neural network with adaptive learning will be the best choice for the actual reactor monitoring system. (author)

  2. Preliminary design study of the Tandem Mirror Reactor (TMR)

    International Nuclear Information System (INIS)

    Moir, R.W.; Barr, W.L.; Carlson, G.A.

    1978-01-01

    This report describes work done in Fiscal Year 1977 by the Fusion Reactor Studies Group of LLL on the conceptual design of a 1000-MW(e) Tandem Mirror Reactor (TMR). The high Q (defined as the ratio of fusion power to injection power) predicted for the TMR (approximately 5) reduces the recirculating power to a nondominant problem and results in an attractive mirror fusion power plant. The fusion plasma of the TMR is contained in the 100-m-long central cell where the magnetic field strength is a modest 2 T. The blanket for neutron energy recovery and tritium breeding is cylindrical and, along with the solenoidal magnet, is divided into 3-m-long modules to facilitate maintenance. The central cell is fueled (but not heated) by the injection of low-energy neutral beams near its ends. Thus, the central cell is simple and of low technology. The end-cell plasmas must be of high density and high energy in order to plug and heat (via the electrons) the central-cell plasma. The present conceptual design uses 1.2-MeV neutral-beam injection for the end plugs and a cryogenic-aluminum, Yin-Yang magnet that produces an incremental field of about 1 T over a field of 16 T produced by a pair of Nb 3 Sn superconducting solenoids. Important design problems remain in both the neutral-beam injector and in the end-plug magnet. Also remaining are important physics questions such as alpha-beam particle transport and end-plug stability. These questions are discussed at length in the report and suggestions for future work are given

  3. Sustainable Mars Sample Return

    Science.gov (United States)

    Alston, Christie; Hancock, Sean; Laub, Joshua; Perry, Christopher; Ash, Robert

    2011-01-01

    The proposed Mars sample return mission will be completed using natural Martian resources for the majority of its operations. The system uses the following technologies: In-Situ Propellant Production (ISPP), a methane-oxygen propelled Mars Ascent Vehicle (MAV), a carbon dioxide powered hopper, and a hydrogen fueled balloon system (large balloons and small weather balloons). The ISPP system will produce the hydrogen, methane, and oxygen using a Sabatier reactor. a water electrolysis cell, water extracted from the Martian surface, and carbon dioxide extracted from the Martian atmosphere. Indigenous hydrogen will fuel the balloon systems and locally-derived methane and oxygen will fuel the MAV for the return of a 50 kg sample to Earth. The ISPP system will have a production cycle of 800 days and the estimated overall mission length is 1355 days from Earth departure to return to low Earth orbit. Combining these advanced technologies will enable the proposed sample return mission to be executed with reduced initial launch mass and thus be more cost efficient. The successful completion of this mission will serve as the next step in the advancement of Mars exploration technology.

  4. Studies of the mass spectrometer of the PALOMA instrument dedicated to Mars atmosphere analysis from a landed platform

    Science.gov (United States)

    Goulpeau, G.; Berthelier, J.-J.; Covinhes, J.; Chassefière, E.; Jambon, A.; Agrinier, P.; Sarda, Ph.

    2003-04-01

    An instrument to analyze the molecular, elemental and isotopic composition of Mars atmosphere from a landed platform is being developed under CNES funding. This instrument, called PALOMA (PAyload for Local Observation of Mars Atmosphere), will be proposed in response to the AO for the instrumentation of the NASA Mars Smart Lander mission, planned to be launched in 2009. It might be part as well of the EXOMARS mission presently studied at ESA in the frame of the Aurora program. Noble gases (He, Ne, Ar, Xr, Xe), stable isotopes (C, H, O, N) and trace constituents of astrobiological interest, like CH4, H2CO, N2O, H2S, will be analyzed by using a system of gas purification and separation, coupled with a mass spectrometer. Isotopic ratios have to be measured with an accuracy of about 1‰, or better, in order to provide a clear diagnostic of possible life signatures, to allow a detailed comparison of Earth and Mars atmospheric fractionation patterns, finally to accurately disentangle escape, climatic, geochemical and hypothesized biological effects. In order to reach these high sensitivity levels, two spectrometers of complitely different conceptions have been developed. The first one is constituted of conscutive electrostatic and magnetic sectors. It’s an application of E. G. Johnson and A. O. Nier’s previous work in that domain. Theirs parameters have been calculated in a way both angular and energetic optical aberrations from the two fields compensate each other to the second order. Simulated flights of ions in the resulting electromagnetic optic forshadow the effectiveness of the instrument. The second spectrometer is of the time of flight type. Its developpement, as a possible alternative to the magnetic system, shows the TOF spectrometer as an instrument allying great sensitivity and reduiced weight and dimensions.

  5. Functional studies of ssDNA binding ability of MarR family protein TcaR from Staphylococcus epidermidis.

    Directory of Open Access Journals (Sweden)

    Yu-Ming Chang

    Full Text Available The negative transcription regulator of the ica locus, TcaR, regulates proteins involved in the biosynthesis of poly-N-acetylglucosamine (PNAG. Absence of TcaR increases PNAG production and promotes biofilm formation in Staphylococci. Previously, the 3D structure of TcaR in its apo form and its complex structure with several antibiotics have been analyzed. However, the detailed mechanism of multiple antibiotic resistance regulator (MarR family proteins such as TcaR is unclear and only restricted on the binding ability of double-strand DNA (dsDNA. Here we show by electrophoretic mobility shift assay (EMSA, electron microscopy (EM, circular dichroism (CD, and Biacore analysis that TcaR can interact strongly with single-stranded DNA (ssDNA, thereby identifying a new role in MarR family proteins. Moreover, we show that TcaR preferentially binds 33-mer ssDNA over double-stranded DNA and inhibits viral ssDNA replication. In contrast, such ssDNA binding properties were not observed for other MarR family protein and TetR family protein, suggesting that the results from our studies are not an artifact due to simple charge interactions between TcaR and ssDNA. Overall, these results suggest a novel role for TcaR in regulation of DNA replication. We anticipate that the results of this work will extend our understanding of MarR family protein and broaden the development of new therapeutic strategies for Staphylococci.

  6. Design principles, targets and criterions for a Multipurpose Advanced Reactor Inherently Safe (MARS). Evaluation of the total production cost of electric energy

    International Nuclear Information System (INIS)

    Cumo, M.

    2001-01-01

    To be accepted and to be, sooner or later, extensively utilized, a new technology must respect the nature and its equilibria. For a nuclear power plant, the full respect of nature and of its equilibria means: for normal operation of the plant, guaranteeing a radiological impact comparable to the standard deviation of the radioactive natural background; for worst design plant accidents, guaranteeing an external impact only with the same probability as that of ultra-catastrophic natural events, such as bolide impacts to the earth. In compliance with Prof. A. Weinberg's suggestions, the design of the MARS nuclear plant was conceived according to this philosophy. The main factors which have affected the design development process of the MARS nuclear plant are introduced in the following. They include design principles, design targets and design criteria. These factors will be presented in two groups: the first group refers to the most relevant ones, regarding project fundamentals, as design principles, targets and main criteria (paragraph 1). The second group refers to detailed design criteria adopted for systems, structures and components relevant to safety (paragraph 2). (author)

  7. Multiphysics Modeling for Dimensional Analysis of a Self-Heated Molten Regolith Electrolysis Reactor for Oxygen and Metals Production on the Moon and Mars

    Science.gov (United States)

    Dominguez, Jesus A.; Sibille, Laurent

    2010-01-01

    The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a self-heating reactor in which the electrolytic currents generate enough Joule heat to create a molten bath. In a first phase, a thermal analysis model was built to study the formation of a melt of lunar basaltic regolith irradiated by a focused solar beam This mode of heating was selected because it relies on radiative heat transfer, which is the dominant mode of transfer of energy in melts at 1600 C. Knowing and setting the Gaussian-type heat flux from the concentrated solar beam and the phase and temperature dependent thermal properties, the model predicts the dimensions and temperature profile of the melt. A validation of the model is presented in this paper through the experimental formation of a spherical cap melt realized by others. The Orbitec/PSI experimental setup uses an 3.6-cm diameter concentrated solar beam to create a hemispheric melt in a bed of lunar regolith simulant contained in a large pot. Upon cooling, the dimensions of the vitrified melt are measured to validate the thermal model. In a second phase, the model is augmented by multiphysics components to compute the passage of electrical currents between electrodes inserted in the molten regolith. The current through the melt generates Joule heating due to the high resistivity of the medium and this energy is transferred into the melt by conduction, convection and primarily by radiation. The model faces challenges in two major areas, the change of phase as

  8. A Study on thermal-hydraulic characteristics of the coolant materials for the transmutation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; You, Young Woo; Cho, Jae Seon; Kim, Ju Youl; Kim, Do Hyoung; Kim, Yoon Ik; Yang, Hui Chang [Seoul National University, Taejon (Korea)

    1998-03-01

    The objective of this study is to provide the direction of transmutation reactor design in terms of thermal hydraulics especially through the analysis of thermal hydraulic characteristics of various candidate materials for the transmutation reactor coolant. In this study, the characteristics of coolant materials used in current nuclear power plants and candidate materials for transmutation reactor are analyzed and compared. To evaluate the thermal hydraulic characteristics, the preliminary thermal-hydraulic calculation is performed for the candidate coolant materials of transmutation reactor. An analysis of thermal-hydraulic characteristics of transmutation reactor. An analysis of thermal-hydraulic characteristics of Sodium, Lead, Lead-Bismuth, and Lead-Lithium among the liquid metals considered as the coolant of transmutation reactor is performed by using computational fluid dynamics code FLUENT, and SIMPLER algorithm. (author). 50 refs., 40 figs., 30 tabs.

  9. Study on the numerical analysis of nuclear reactor kinetics equations

    International Nuclear Information System (INIS)

    Yang, J.C.

    1980-01-01

    A two-step alternating direction explict method is proposed for the solution of the space-and time-dependent diffusion theory reactor kinetics equations in two space dimensions as a special case of the general class of alternating direction implicit method and the truncation error of this method is estimated. To test the validity of this method it is applied to the Pressurized Water Reactor and CANDU-PHW reactor which have been operating and underconstructing in Korea. The time dependent neutron flux of the PWR reactor during control rod insertion and time dependent neutronic power of CANDU-PHW reactor in the case of postulated loss of coolant accident are obtained from the numerical calculation results. The results of the PWR reactor problem are shown the close agreement between implicit-difference method used in the TWIGL program and this method, and the results of the CANDU-PHW reactor are compared with the results of improved quasistic method and modal method. (Author)

  10. analysis and implementation of reactor protection system circuits - case study Egypt's 2 nd research reactor-

    International Nuclear Information System (INIS)

    Elnokity, O.E.M.

    2006-01-01

    this work presents a way to design and implement the trip unit of a reactor protection system (RPS) using a field programmable gate arrays (FPGA). instead of the traditional embedded microprocessor based interface design method, a proposed tailor made FPGA based circuit is built to substitute the trip unit (TU), which is used in Egypt's 2 nd research reactor ETRR-2. the existing embedded system is built around the STD32 field computer bus which is used in industrial and process control applications. it is modular, rugged, reliable, and easy-to-use and is able to support a large mix of I/O cards and to easily change its configuration in the future. therefore, the same bus is still used in the proposed design. the state machine of this bus is designed based around its timing diagrams and implemented in VHDL to interface the designed TU circuit

  11. Study of ice-related flow features around Tanaica Montes, Mars: Implications for late amazonian debris-covered glaciation

    Science.gov (United States)

    Sinha, Rishitosh K.; Vijayan, S.; Bharti, Rajiv R.

    2017-11-01

    Lobate debris aprons (LDA) and lineated valley fill (LVF) have been broadly recognized in the mid-latitudes of Mars and their subsequent analyses using data from the SHAllow RADar (SHARAD) instrument has suggested evidence for contemporary ice preserved beneath these features. In this study, we conduct detailed characterization of newly identified LDA flow units within the Tanaica Montes region (39.55˚ N, 269.17˚ E) of Mars to assess and understand the similarities in their emplacement with respect to LDA flow units mapped in other regions of Mars. We utilize the Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) images and SHAllow RADar (SHARAD) datasets for geomorphic and subsurface analysis and Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) point tracks for topographic analysis. Geomorphic observation of LDA flow units surrounding the montes flanks and massif walls reveal integrated pattern of convergence and divergence and evidence of bending and deflection within the flow lines that resulted in concentric, loop-like flow patterns in the downslope. Brain-terrain texture and craters with varying morphological characteristics (ring-mold type) is suggestive that LDAs may be similar to ice-rich, debris-covered glaciers. MOLA point track based convex-up topographic profiles of LDAs suggest that their thickness vary in the range of ∼100-200 m in both the northwestern and southeastern portions of study region. Further, the slope values of mapped LDA surfaces within the study region are within ∼0.1˚-4˚. The extent of mapped LDAs within the study region is such that some of the low elevation (∼0.8-1.3 km) portions of montes flanks are surrounded by relatively less extent (up to ∼0.5-0.8 km) of LDA flow units. Geomorphic and topographic evidence for flow units that appear to be superposed on the main LDA body collectively suggest the possibility of episodic glacial activity in the region. Furthermore, based on the alignment of subsurface

  12. Preliminary Study for Conceptual Design of Advanced Long Life Small Modular Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tak, Taewoo; Choe, Jiwon; Jeong, Yongjin; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, T. K. [Argonne National Laboratory, Argonne (United States)

    2015-05-15

    As one of the non-water coolant Small-Modular Reactor (SMR) core concepts for use in the mid- to long-term, ANL has proposed a 100 MWe Advanced sodium-cooled Fast Reactor core concept (AFR-100) targeting a small grid, transportable from pre-licensed factories to the remote plant site for affordable supply. Various breed-and-burn core concepts have been proposed to extend the reactor cycle length, which includes CANDLE with a cigar-type depletion strategy, TerraPower reactors with fuel shuffling for effective breeding, et al. UNIST has also proposed an ultra-long cycle fast reactor (UCFR) core concept having the power rating of 1000 MWe. By adopting the breed-and-burn strategies, the UCFR core can maintain criticality for a targeting reactor lifetime of 60 years without refueling. The objective of this project is to develop an advanced long-life SMR core concept by adopting both the small modular design features of the AFR-100 and the long-life breed-and-burn concept of the UCFR. A conceptual design of long life small modular fast reactor is under development by adopting both the small modular design features of the AFR-100 and the long-life breed-and-burn concept of the UCFR. The feasibility of the long-life fast reactor concepts was reviewed to obtain the core design guidelines and the reactor design requirements of long life small modular fast reactor were proposed in this study.

  13. Study on the reactivity behavior partially loaded reactor cores using SIMULATE-3

    International Nuclear Information System (INIS)

    Holzer, Robert; Zeitz, Andreas; Grimminger, Werner; Lubczyk, Tobias

    2009-01-01

    The reactor core design for the NPP Gundremmingen unit B and C is performed since several years using the validated 3D reactor core calculation program SIMULATE-3. The authors describe a special application of the program to study the reactivity for different partial core loadings. Based on the comparison with results of the program CASMO-4 the program SIMULATE-3 was validated for the calculation of partially loaded reactor cores. For the planned reactor operation in NPP Gundremmingen using new MOX fuel elements the reactivity behavior was studied with respect to the KTA-Code requirements.

  14. Study on transient of fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Streck, E.E.

    1988-01-01

    The point kinetic equations for a Fluidized-Bed Nuclear Reactor are solved by the method of Hansen. Due to the time varying nature of the reactor volume, the equations have a non-conventional formulation (moving boundary problem), but the method of solution preserves its asymptotic convergence and efficiency characteristics under this formulation. A one dimensional and linearized thermal hydraulics feedback model was coupled to the point kinetic equations in order to obtain a more realistic representation of the reactor power. The resulting equations are solved by the Euler explicit method. (author)

  15. Experimental study of the passive flooding system in the WWER-1000 reactor

    International Nuclear Information System (INIS)

    Malyshev, A.B.; Efanov, A.D.; Kalyakin, S.G.

    2002-01-01

    The design solution of the passive flooding system in the WWER-1000 reactor core with the V-392 reactor facility and the scheme of the GE-2 large-scale thermohydraulic stand for substantiation of its functions are presented. The proposals, improving the efficiency of the system are developed on the basis of the experimental studies on the equipment input-output operational characteristics and the recommendations on the substantiation of the function of the reactor core flooding system are given [ru

  16. Study for improvement of light water reactor technology, (3)

    International Nuclear Information System (INIS)

    Suzuki, Hideaki; Morita, Terumichi; Igarashi, Hiroshi; Tabata, Hiroaki

    1991-01-01

    The Japan Atomic Power Company has performed some studies, which are referred to as 'some feasibility studies of LWR technology', in order to help improve and up-grade the light water reactor technology. We would like to show the key results of the above studies in an orderly fashion in this document. As the third issue, this paper describes the study of the feasibility of applying a suppression pool system in a 4-loop PWR plant in order to reduce containment volume and evaluates the merits of such a system. The results confirmed the feasibility of such a plant consisting of a 4-loop plant with a suppression pool system. The expected merits of a suppression pool type PWR are as follows: (1) The volume within the containment boundary is half of that for the conventional plant. This reduces the material quantity substantially. (2) A wider layout space is obtained since the operating floor is located outside the containment are. And this improves the maneuverability of plant outage. (3) Low center of gravity of the plant contributes to improving the ability to withstand seismic activity. Although there are some open items left that should be confirmed, we consider that PWR with small CV is an appealing plant in the light of further sales points such as relaxing siting conditions, extending the use of robotics and so on. (author)

  17. Feasibility Study for Cobalt Bundle Loading to CANDU Reactor Core

    International Nuclear Information System (INIS)

    Park, Donghwan; Kim, Youngae; Kim, Sungmin

    2016-01-01

    CANDU units are generally used to produce cobalt-60 at Bruce and Point Lepreau in Canada and Embalse in Argentina. China has started production of cobalt-60 using its CANDU 6 Qinshan Phase III nuclear power plant in 2009. For cobalt-60 production, the reactor’s full complement of stainless steel adjusters is replaced with neutronically equivalent cobalt-59 adjusters, which are essentially invisible to reactor operation. With its very high neutron flux and optimized fuel burn-up, the CANDU has a very high cobalt-60 production rate in a relatively short time. This makes CANDU an excellent vehicle for bulk cobalt-60 production. Several studies have been performed to produce cobalt-60 using adjuster rod at Wolsong nuclear power plant. This study proposed new concept for producing cobalt-60 and performed the feasibility study. Bundle typed cobalt loading concept is proposed and evaluated the feasibility to fuel management without physics and system design change. The requirement to load cobalt bundle to the core was considered and several channels are nominated. The production of cobalt-60 source is very depend on the flux level and burnup directly. But the neutron absorption characteristic of cobalt bundle is too high, so optimizing design study is needed in the future

  18. Feasibility Study for Cobalt Bundle Loading to CANDU Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghwan; Kim, Youngae; Kim, Sungmin [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    CANDU units are generally used to produce cobalt-60 at Bruce and Point Lepreau in Canada and Embalse in Argentina. China has started production of cobalt-60 using its CANDU 6 Qinshan Phase III nuclear power plant in 2009. For cobalt-60 production, the reactor’s full complement of stainless steel adjusters is replaced with neutronically equivalent cobalt-59 adjusters, which are essentially invisible to reactor operation. With its very high neutron flux and optimized fuel burn-up, the CANDU has a very high cobalt-60 production rate in a relatively short time. This makes CANDU an excellent vehicle for bulk cobalt-60 production. Several studies have been performed to produce cobalt-60 using adjuster rod at Wolsong nuclear power plant. This study proposed new concept for producing cobalt-60 and performed the feasibility study. Bundle typed cobalt loading concept is proposed and evaluated the feasibility to fuel management without physics and system design change. The requirement to load cobalt bundle to the core was considered and several channels are nominated. The production of cobalt-60 source is very depend on the flux level and burnup directly. But the neutron absorption characteristic of cobalt bundle is too high, so optimizing design study is needed in the future.

  19. Reactor Technology Options Study for Near-Term Deployment of GNEP Grid-Appropriate Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, Daniel T [ORNL; Poore III, Willis P [ORNL

    2007-09-01

    World energy demand is projected to significantly increase over the coming decades. The International Energy Agency projects that electricity demand will increase 50% by 2015 and double by 2030, with most of the increase coming in developing countries as they experience double-digit rates of economic growth and seek to improve their standards of living. Energy is the necessary driver for human development, and the demand for energy in these countries will be met using whatever production technologies are available. Recognizing this inevitable energy demand and its implications for the United States, the U.S. National Security Strategy has proposed the Global Nuclear Energy Partnership (GNEP) to work with other nations to develop and deploy advanced nuclear recycling and reactor technologies. This initiative will help provide reliable, emission-free energy with less of the waste burden of older technologies and without making available separated plutonium that could be used by rogue states or terrorists for nuclear weapons. These new technologies will make possible a dramatic expansion of safe, clean nuclear energy to help meet the growing global energy demand. In other words, GNEP seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy without increasing the risk of nuclear weapon proliferation. This global expansion of nuclear power is strategically important to the United States for several reasons, including the following: (1) National security, by reducing the competition and potential for conflict over increasingly scarce fossil energy resources; (2) Economic security, by helping maintain stable prices for nonrenewable resources such as oil, gas, and coal; (3) Environmental security, by replacing or off-setting large-scale burning of greenhouse gas-emitting fuels for electricity production; and (4) Regaining technical leadership, through deployment of innovative U.S. technology-based reactors. Fully meeting

  20. Reactor Technology Options Study for Near-Term Deployment of GNEP Grid-Appropriate Reactors

    International Nuclear Information System (INIS)

    Ingersoll, Daniel T.; Poore, Willis P. III

    2007-01-01

    World energy demand is projected to significantly increase over the coming decades. The International Energy Agency projects that electricity demand will increase 50% by 2015 and double by 2030, with most of the increase coming in developing countries as they experience double-digit rates of economic growth and seek to improve their standards of living. Energy is the necessary driver for human development, and the demand for energy in these countries will be met using whatever production technologies are available. Recognizing this inevitable energy demand and its implications for the United States, the U.S. National Security Strategy has proposed the Global Nuclear Energy Partnership (GNEP) to work with other nations to develop and deploy advanced nuclear recycling and reactor technologies. This initiative will help provide reliable, emission-free energy with less of the waste burden of older technologies and without making available separated plutonium that could be used by rogue states or terrorists for nuclear weapons. These new technologies will make possible a dramatic expansion of safe, clean nuclear energy to help meet the growing global energy demand. In other words, GNEP seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy without increasing the risk of nuclear weapon proliferation. This global expansion of nuclear power is strategically important to the United States for several reasons, including the following: (1) National security, by reducing the competition and potential for conflict over increasingly scarce fossil energy resources; (2) Economic security, by helping maintain stable prices for nonrenewable resources such as oil, gas, and coal; (3) Environmental security, by replacing or off-setting large-scale burning of greenhouse gas-emitting fuels for electricity production; and (4) Regaining technical leadership, through deployment of innovative U.S. technology-based reactors. Fully meeting

  1. Study of organic waste for production of hydrogen in reactor

    International Nuclear Information System (INIS)

    Guzmán Chinea, Jesús Manuel; Guzmán Marrero, Elizabeth; Pérez Ponce, Alejandro

    2015-01-01

    Biological processes have long been used for the treatment of organic waste makes, especially our study is based on the anaerobic process in reactors, using residual organic industry. Without excluding other non-industrial we have studied. Fundamental objectives treating organic waste is to reduce the pollutant load to the environment, another aim is to recover the waste recovering the energy contained in it. In this context, the biological hydrogen production from organic waste is an interesting alternative because it has low operating costs and raw material is being used as a residue in any way should be treated before final disposal. Hydrogen can be produced sustainable by anaerobic bacteria that grow in the dark with rich carbohydrate substrates giving as final products H 2 , CO 2 and volatile fatty acids. The whey byproduct from cheese production, has great potential to be used for the generation of hydrogen as it has a high carbohydrate content and a high organic load. The main advantages of using anaerobic processes in biological treatment of organic waste, are the low operating costs, low power consumption, the ability to degrade high organic loads, resistance biomass to stay long in the absence of substrate, without lose their metabolic activity, and low nutritional requirements and increase the performance of 0.9 mol H2 / mol lactose. (full text)Biological processes have long been used for the treatment of organic waste makes, especially our study is based on the anaerobic process in reactors, using residual organic industry. Without excluding other non-industrial we have studied. Fundamental objectives treating organic waste is to reduce the pollutant load to the environment, another aim is to recover the waste recovering the energy contained in it. In this context, the biological hydrogen production from organic waste is an interesting alternative because it has low operating costs and raw material is being used as a residue in any way should be treated

  2. Human life support during interplanetary travel and domicile. III - Mars expedition system trade study

    Science.gov (United States)

    Seshan, P. K.; Ferrall, Joseph F.; Rohatgi, Naresh K.

    1991-01-01

    Several alternative configurations of life-support systems (LSSs) for a Mars missions are compared analytically on a quantitative basis in terms of weight, volume, and power. A baseline technology set is utilized for the illustrations of systems including totally open loop, carbon dioxide removal only, partially closed loop, and totally closed loop. The analytical model takes advantage of a modular, top-down hierarchical breakdown of LSS subsystems into functional elements that represent individual processing technologies. The open-loop systems are not competitive in terms of weight for both long-duration orbiters and short-duration lander vehicles, and power demands are lowest with the open loop and highest with the closed loop. The closed-loop system can reduce vehicle weight by over 70,000 lbs and thereby overcome the power penalty of 1600 W; the closed-loop variety is championed as the preferred system for a Mars expedition.

  3. Autonomous optical navigation using nanosatellite-class instruments: a Mars approach case study

    Science.gov (United States)

    Enright, John; Jovanovic, Ilija; Kazemi, Laila; Zhang, Harry; Dzamba, Tom

    2018-02-01

    This paper examines the effectiveness of small star trackers for orbital estimation. Autonomous optical navigation has been used for some time to provide local estimates of orbital parameters during close approach to celestial bodies. These techniques have been used extensively on spacecraft dating back to the Voyager missions, but often rely on long exposures and large instrument apertures. Using a hyperbolic Mars approach as a reference mission, we present an EKF-based navigation filter suitable for nanosatellite missions. Observations of Mars and its moons allow the estimator to correct initial errors in both position and velocity. Our results show that nanosatellite-class star trackers can produce good quality navigation solutions with low position (<300 {m}) and velocity (<0.15 {m/s}) errors as the spacecraft approaches periapse.

  4. Study of reactor parameters of on critical systems, Phase I: Safety report for RB zero power reactor

    International Nuclear Information System (INIS)

    Raisic, N.

    1962-09-01

    In addition to the safety analysis for the zero power RB reactor, this report contains a general description of the reactor, reactor components, auxiliary equipment and the reactor building. Reactor Rb has been reconstructed during 1961-1962 and supplied with new safety-control system as well as with a complete dosimetry instrumentation. Since RB reactor was constructed without shielding special attention is devoted to safety and protection of the staff performing experiments. Due to changed circumstances in the Institute ( start-up of the RA 7 MW power reactor) the role of the RB reactor was redefined

  5. Comparative Study on Research Reactor Design Requirements between IAEA and Korea

    International Nuclear Information System (INIS)

    Chang, Won Joon; Yune, Young Gill; Song, Myung Ho; Cho, Seung Ho

    2013-01-01

    This study has identified the gaps in the safety requirements for design of research reactors of Korea comparing with those of the IAEA. The review results showed that the gaps have arisen mainly from the following aspects: - The differences in the characteristics of design and operation between power reactor and research reactor - Enhancement of the level of safety of nuclear reactor facility - Consideration of advanced safety technologies. The review results will be utilized to reflect the IAEA safety requirements for design of research reactors into those of Korea, which will contribute to enhancing the level of safety and improving the technical standards of research reactors of Korea. The IAEA safety standards encompass international consensus to strengthen the nuclear safety and to reflect the latest advancement of nuclear safety technologies. Also, they provide reliable means to ensure the effective fulfillment of obligations under the various international safety conventions. Many countries have adopted the IAEA safety standards as their national standards in nuclear regulations. Since Korea has exported research reactor technologies abroad these days and will continue to export them in the future, it is desirable to harmonize domestic safety requirements for research reactor with those of the IAEA. The KINS (Korea Institute of Nuclear Safety) has performed a review of the IAEA safety requirements for design of research reactors comparing with those of Korea. The purpose of this comparative study is to harmonize the safety requirements for the design of research reactors of Korea with those of the IAEA as a member state of the IAEA, and to encompass global efforts to enhance the nuclear safety and to reflect the latest advancement of nuclear safety technologies into the safety requirements for the design of research reactors of Korea. Design requirements for structures, systems, and components of research reactors important to safety, which are required to

  6. Design study on steam generator integration into the VVER reactor pressure vessel

    International Nuclear Information System (INIS)

    Hort, J.; Matal, O.

    2004-01-01

    The primary circuit of VVER (PWR) units is arranged into loops where the heat generated by the reactor is removed by means of main circulating pumps, loop pipelines and steam generators, all located outside the reactor pressure vessel. If the primary circuit and reactor core were integrated into one pressure vessel, as proposed, e.g., within the IRIS project (WEC), a LOCA situation would be limited by the reactor pressure vessel integrity only. The aim of this design study regarding the integration of the steam generator into the reactor pressure vessel was to identify the feasibility limits and some issues. Fuel elements and the reactor pressure vessel as used in the Temelin NPP were considered for the analysis. From among the variants analyzed, the variant with steam generators located above the core and vertically oriented circulating pumps at the RPV lower bottom seems to be very promising for future applications

  7. Neutron irradiation facilities for fission and fusion reactor materials studies

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.

    1985-01-01

    The successful development of energy-conversion machines based upon nuclear fission or fusion reactors is critically dependent upon the behavior of the engineering materials used to construct the full containment and primary heat extraction systems. The development of radiation damage-resistant materials requires irradiation testing facilities which reproduce, as closely as possible, the thermal and neutronic environment expected in a power-producing reactor. The Oak Ridge National Laboratory (ORNL) reference core design for the Center for Neutron Research (CNR) reactor provides for instrumented facilities in regions of both hard and mixed neutron spectra, with substantially higher fluxes than are currently available. The benefits of these new facilities to the development of radiation damage resistant materials are discussed in terms of the major US fission and fusion reactor programs

  8. Small and medium power reactors: project initiation study, Phase 1

    International Nuclear Information System (INIS)

    1985-07-01

    In conformity with the Agency's promotional role in the peaceful uses of nuclear energy, IAEA has provided, over the past 20 years, assistance to Member States, particularly developing countries, in planning for the introduction of nuclear power plants in the Small and Medium range (SMPR). However these efforts did not produce any significant results in the market introduction of these reactors, due to various factors. In 1983 the Agency launched a new SMPR Project Initiation Study with the objective of surveying the available designs, examining the major factors influencing the decision-making processes in Developing Countries and thereby arriving at an estimate of the potential market. Two questionnaires were used to obtain information from possible suppliers and prospective buyers. The Nuclear Energy Agency of OECD assisted in making a study of the potential market in industrialized countries. The information gained during the study and discussed during a Technical Committee Meeting on SMPRs held in Vienna in March 1985, along with the contribution by OECD-NEA is embodied in the present report

  9. Conceptual design study of fusion experimental reactor (FY86FER)

    International Nuclear Information System (INIS)

    Nakashima, Kunihiko; Ishigaki, Yukio; Ozaki, Akira; Yamane, Minoru.

    1987-09-01

    This report describes the results of the capacity estimation for the electrical power system on the typical two candidates for the FER (Fusion Experimental Reactor) which were picked out through the process of '86 FER scoping studies. Main concern in the electrical systems is coil power supplies which have a capacity of about 1 GW, and this is dominated by poloidal coil power supplies. Then, studies to reduce the converter capacity are concentrated on the poloidal coil power system in relation to the sypplying poloidal flux at the initial phase of plasma ramp-up. A quench protection circuit was proposed on the toroidal coil power supply. On the position control power supply, a circuit with reasonable functions was proposed. Under these system studies, general specifications were determined and the capacity of each power supply unit was estimated. On the poloidal coil power supply system, the accumulated capacity of converters amounted to 885 MW for the one candidate and 782 MW for another. (author)

  10. Reflector Performance Study in Ultra-long Cycle Fast Reactor

    International Nuclear Information System (INIS)

    Tak, Taewoo; Kong, Chidong; Choe, Jiwon; Lee, Deokjung

    2013-01-01

    There are reflector assemblies outside the fuel region, surrounding the fuel assemblies and axial reflector is located at the bottom of the core to control the neutron leakage fraction which is an important factor in fast reactor system. HT-9 was used as a reflector material as well as a structure material. In this study, alternative reflector materials were proposed and their reflection performance was tested and studied focused on its physics. ODS-MA957 and SiC were chosen from iron based alloy and ceramic respectively. The two materials were tested and compared with HT-9 in UCFR-1000 as a radial and an axial reflector and it was evaluated from the neutronics point of view with comparing the core life and the coolant void reactivity. The calculation and evaluation were performed by McCARD Monte Carlo code. The reflector materials for UCFR-1000 have been investigated in the aspect of neutronics. The reflection effect shows different performance corresponding to reflector material used. Also, the neutron energy spectrum is affected by changing materials which causes spectrum softening but it is not enough to influence the core life. With more reflector material candidates such as lead-based liquid metal, reflection performance and core parameter study will be investigated for next step

  11. Study of the HTGR fission product migration at the Osiris experimental reactor

    International Nuclear Information System (INIS)

    Homme, A. l'; Lucot, M.

    1977-01-01

    A program of study on accidents in HTR reactor operation is presented: blowdown of primary coolant circuit, water inlet into the primary circuit, fuel element overheating by pipe logging or loss of cooling. These studies will be made in Aida irradiation loop in the pool of the Osiris reactor [fr

  12. Evaluation of the trial design studies for an advanced marine reactor, (2)

    International Nuclear Information System (INIS)

    Ambo, Noriaki; Yokomura, Takeyoshi.

    1988-03-01

    As for the CARAMEL fuel (plate-type fuel) that was the fuel of the integrated-type reactor which was one of the trial design studies for an Advanced Marine Reactor, its structure and its fuel specific characteristics were studied and compared with a fuel rod (cylindrical fuel), and the total characteristics of the caramel fuel was reviewed and evaluated. (author)

  13. Studying Antarctic Ordinary Chondrite (OC) and Miller Range (MIL) Nakhlite Meteorites to Assess Carbonate Formation on Earth and Mars

    Science.gov (United States)

    Evans, Michael Ellis

    Carbonates are found in meteorites collected from Antarctica. The stable isotope composition of these carbonates records their formation environment on either Earth or Mars. The first research objective of this dissertation is to characterize the delta18O and delta 13C values of terrestrial carbonates formed on Ordinary Chondrites (OCs) collected in regions near known martian meteorites. The second objective is to characterize the delta18O and delta13C values of martian carbonates from Nakhlites collected from the Miller Range (MIL). The third objective is to assess environmental changes on Mars since the Noachian period. The OCs selected had no pre-terrestrial carbonates so any carbonates detected are presumed terrestrial in origin. The study methodology is stepped extraction of CO2 created from phosphoric acid reaction with meteorite carbonate. Stable isotope results show that two distinct terrestrial carbonate species (Ca-rich and Fe/Mg-rich) formed in Antarctica on OCs from a thin-film of meltwater containing dissolved CO2. Carbon isotope data suggests the terrestrial carbonates formed in equilibrium with atmospheric CO2 delta 13C = -7.5‰ at >15°C. The wide variation in delta 18O suggests the carbonates did not form in equilibrium with meteoric water alone, but possibly formed from an exchange of oxygen isotopes in both water and dissolved CO2. Antarctica provides a model for carbonate formation in a low water/rock ratio, near 0°C environment like modern Mars. Nakhlite parent basalt formed on Mars 1.3 billion years ago and the meteorites were ejected by a single impact approximately 11 million years ago. They traveled thru space before eventually falling to the Earth surface 10,000-40,000 years ago. Nakhlite samples for this research were all collected from the Miller Range (MIL) in Antarctica. The Nakhlite stable isotope results show two carbonate species (Ca-rich and Fe/Mg-rich) with a range of delta18O values that are similar to the terrestrial OC

  14. A study on naphtha catalytic reforming reactor simulation and analysis.

    Science.gov (United States)

    Liang, Ke-min; Guo, Hai-yan; Pan, Shi-wei

    2005-06-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation unit data.

  15. A study on naphtha catalytic reforming reactor simulation and analysis

    OpenAIRE

    Liang, Ke-min; Guo, Hai-yan; Pan, Shi-wei

    2005-01-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation uni...

  16. Multiregion reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The study of reflected reactors can be done employing the multigroup diffusion method. The neutron conservation equations, inside the intervals, can be written by fluxes and group constants. A reflected reactor (one and two groups) for a slab geometry is studied, aplying the continuity of flux and current in the interface. At the end, the appropriated solutions for a infinite cylindrical reactor and for a spherical reactor are presented. (Author) [pt

  17. Study on the transient behaviours of MNSR reactor for control rod withdrawal

    International Nuclear Information System (INIS)

    Yang Shunhai

    1995-10-01

    The transient behaviours of Miniature Neutron Source Reactor MNSR are analyzed and calculated with the reactor thermohydraulics RETRAN-02 program and the reactor physics MARIA program. The obtained event sequence and consequence from the calculation are compared with the experiments. The effective resonance integral for study on Doppler effect is taken into account. The reactivity temperature coefficient weighting factors are computed. The transient parameters related to reactor power peaking, coolant inlet temperatures, outlet temperatures and coolant mass flow, etc. are computed and compared with the experimental results. (6 refs., 2 figs., 5 tabs.)

  18. Conceptual design study of quasi-steady state fusion experimental reactor (FEQ-Q), part 1

    International Nuclear Information System (INIS)

    1985-12-01

    Since 1980 the design study has been conducted at JAERI for the Fusion Experimental Reactor (FER) which has been proposed to be the next machine to JT-60 in the Japanese long term program of fusion reactor development. Starting from 1984 JER design is being reviewed and redesigned. This report is a part of the interim report which describes the results obtained in the review and redesign activities in FY 1984. The results of the following design items are included; core plasma, reactor structure, reactor core components, magnets. (author)

  19. Preliminary study on aerobic granular biomass formation with aerobic continuous flow reactor

    Science.gov (United States)

    Yulianto, Andik; Soewondo, Prayatni; Handajani, Marissa; Ariesyady, Herto Dwi

    2017-03-01

    A paradigm shift in waste processing is done to obtain additional benefits from treated wastewater. By using the appropriate processing, wastewater can be turned into a resource. The use of aerobic granular biomass (AGB) can be used for such purposes, particularly for the processing of nutrients in wastewater. During this time, the use of AGB for processing nutrients more reactors based on a Sequencing Batch Reactor (SBR). Studies on the use of SBR Reactor for AGB demonstrate satisfactory performance in both formation and use. SBR reactor with AGB also has been applied on a full scale. However, the use use of SBR reactor still posses some problems, such as the need for additional buffer tank and the change of operation mode from conventional activated sludge to SBR. This gives room for further reactor research with the use of a different type, one of which is a continuous reactor. The purpose of this study is to compare AGB formation using continuous reactor and SBR with same operation parameter. Operation parameter are Organic Loading Rate (OLR) set to 2,5 Kg COD/m3.day with acetate as substrate, aeration rate 3 L/min, and microorganism from Hospital WWTP as microbial source. SBR use two column reactor with volumes 2 m3, and continuous reactor uses continuous airlift reactor, with two compartments and working volume of 5 L. Results from preliminary research shows that although the optimum results are not yet obtained, AGB can be formed on the continuous reactor. When compared with AGB generated by SBR, then the characteristics of granular diameter showed similarities, while the sedimentation rate and Sludge Volume Index (SVI) characteristics showed lower yields.

  20. Comparative study of ion cyclotron waves at Mars, Venus and Earth

    Science.gov (United States)

    Wei, H. Y.; Russell, C. T.; Zhang, T. L.; Blanco-Cano, X.

    2011-08-01

    Ion cyclotron waves are generated in the solar wind when it picks up freshly ionized planetary exospheric ions. These waves grow from the free energy of the highly anisotropic distribution of fresh pickup ions, and are observed in the spacecraft frame with left-handed polarization and a wave frequency near the ion's gyrofrequency. At Mars and Venus and in the Earth's polar cusp, the solar wind directly interacts with the planetary exospheres. Ion cyclotron waves with many similar properties are observed in these diverse plasma environments. The ion cyclotron waves at Mars indicate its hydrogen exosphere to be extensive and asymmetric in the direction of the interplanetary electric field. The production of fast neutrals plays an important role in forming an extended exosphere in the shape and size observed. At Venus, the region of exospheric proton cyclotron wave production may be restricted to the magnetosheath. The waves observed in the solar wind at Venus appear to be largely produced by the solar-wind-Venus interaction, with some waves at higher frequencies formed near the Sun and carried outward by the solar wind to Venus. These waves have some similarity to the expected properties of exospherically produced proton pickup waves but are characterized by magnetic connection to the bow shock or by a lack of correlation with local solar wind properties respectively. Any confusion of solar derived waves with exospherically derived ion pickup waves is not an issue at Mars because the solar-produced waves are generally at much higher frequencies than the local pickup waves and the solar waves should be mostly absorbed when convected to Mars distance as the proton cyclotron frequency in the plasma frame approaches the frequency of the solar-produced waves. In the Earth's polar cusp, the wave properties of ion cyclotron waves are quite variable. Spatial gradients in the magnetic field may cause this variation as the background field changes between the regions in which