WorldWideScience

Sample records for reactor steels vliyanie

  1. The reactor vessel steels

    International Nuclear Information System (INIS)

    Bilous, W.; Hajewska, E.; Szteke, W.; Przyborska, M.; Wasiak, J.; Wieczorkowski, M.

    2005-01-01

    In the paper the fundamental steels using in the construction of pressure vessel water reactor are discussed. The properties of these steels as well as the influence of neutron irradiation on its degradation in the time of exploitation are also done. (authors)

  2. Reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Van De Velde, J.; Fabry, A.; Van Walle, E.; Chaouuadi, R.

    1998-01-01

    Research and development activities related to reactor pressure vessel steels during 1997 are reported. The objectives of activities of the Belgian Nuclear Research Centre SCK/CEN in this domain are: (1) to develop enhanced surveillance concepts by applying micromechanics and fracture-toughness tests to small specimens, and by performing damage modelling and microstructure characterization; (2) to demonstrate a methodology on a broad database; (3) to achieve regulatory acceptance and industrial use

  3. Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Van de Velde, J.; Fabry, A.; Van Walle, E.; Chaoudi, R

    1998-07-01

    SCK-CEN's R and D programme on Reactor Pressure Vessel (RPV) Steels in performed in support of the RVP integrity assessment. Its main objectives are: (1) to develop enhanced surveillance concepts by applying micromechanics and fracture-toughness tests to small specimens, and by performing damage modelling and microstructure characterization; (2) to demonstrate the applied methodology on a broad database; (3) to achieve regulatory acceptance and industrial use. Progress and achievements in 1999 are reported.

  4. Reactor Structural Materials: Reactor Pressure Vessel Steels

    International Nuclear Information System (INIS)

    Chaouadi, R.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported

  5. Thermal embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Corwin, W.R.; Nanstad, R.K.; Alexander, D.J.; Stoller, R.E.; Wang, J.A.; Odette, G.R.

    1995-01-01

    As a result of observations of possible thermal embrittlement from recent studies with welds removed from retired steam generators of the Palisades Nuclear Plant (PNP), an assessment was made of thermal aging of reactor pressure vessel (RPV) steels under nominal reactor operating conditions. Discussions are presented on (1) data from the literature regarding relatively low-temperature thermal embrittlement of RPV steels; (2)relevant data from the US power reactor-embrittlement data base (PR-EDB); and (3)potential mechanisms of thermal embrittlement in low-alloy steels

  6. Use of ferritic steels in breeder reactors worldwide

    International Nuclear Information System (INIS)

    Patriarca, P.

    1983-01-01

    The performance of LMFBR reactor steam generator materials is reviewed. Tensile properties of stainless steel-304, stainless steel-316, chromium-molybdenum steels, and Incoloy 800H are presented for elevated temperatures

  7. Integrity of Magnox reactor steel pressure vessels

    International Nuclear Information System (INIS)

    Flewitt, P.E.J.; Williams, G.H.; Wright, M.B.

    1992-01-01

    The background to the safety assessment of the steel reactor pressure vessels for Magnox power stations is reviewed. The evolved philosophy adopted for the 1991 safety cases prepared for the continued operation of four Magnox power stations operated by Nuclear Electric plc is described, together with different aspects of the multi-legged integrity argument. The main revisions to the materials mechanical property data are addressed together with the assessment methodology adopted and their implications for the overall integrity argument formulated for the continued safe operation of these reactor pressure vessels. (author)

  8. Effect of partial oxygen pressure on physicochemical properties of Kh18N10T steel at isothermal oxidation. Vliyanie partsial'nogo davleniya kisloroda na fiziko-khimicheskie svojstva poverkhnosti stali Kh18N10T pri izotermicheskom okislenii

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, V N; Oshe, E K; Fokin, M N; Bogdanova, S V; Loskutov, A I [AN SSSR, Moscow (USSR). Inst. Fizicheskoj Khimii

    1990-10-01

    Auger-electron spectroscopy, photoelectric polarization, conductometry methods have been used to analyze chemical and defect composition of surface oxide layers, formed on stainless steel Kh18N10T in vacuum (10{sup -9} - 10{sup -2} torr) and at temperatures 593-673 K. The boundary conditions of manifestation of extermal behaviour of the dependence of the surface oxide growth rate at isothermal oxidation of this steel are determined. The relation between passivation properties of the surface oxide and the magnitude of the edge angle of the surface wetting with molten tin is revealed.

  9. Low temperature radiation embrittlement for reactor vessel steels

    International Nuclear Information System (INIS)

    Ginding, I.A.; Chirkina, L.A.

    1978-01-01

    General conceptions of cold brittleness of bcc metals are in a review. Considered are experimental data and theoretical representations about the effect of irradiation conditions, chemical composition, phase and structural constitutions, grain size, mechanical and thermomechanical treatments on low-temperature irradiation embrittlement of reactor vessel steels. Presented are the methods for increasing radiation stability of metals (carbon and Cr-Mo steels) used in manufacturing reactor vessels

  10. Use of stainless steel as structural materials in reactor cores

    International Nuclear Information System (INIS)

    Teodoro, C.A.

    1990-01-01

    Austenitic stainless steels are used as structural materials in reactor cores, due to their good mechanical properties at working temperatures and high generalized corrosion resistance in aqueous medium. The objective of this paper is to compare several 300 series austenitic stainless steels related to mechanical properties, localized corrosion resistance (SCC and intergranular) and content of delta ferrite. (author)

  11. Modeling irradiation embrittlement in reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Odette, G.R.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 10, numerical modeling of irradiation embrittlement in reactor vessel steels are introduced. Physically-based models are developed and their role in advancing the state-of-the-art of predicting irradiation embrittlement of RPV steels is stressed

  12. Microstructural evolution in neutron irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    English, C.A.; Phythian, W.J.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. The microstructural evolution in neutron irradiated reactor pressure vessel steels is described. The damage mechanisms are elaborated and techniques for examining the microstructure are suggested. The importance of the initial damage event is analysed, and the microstructural evolution in RPV steels is examined

  13. Development of ferritic steels for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Maziasz, P.J.; Corwin, W.R.

    1988-08-01

    Chromium-molybdenum ferritic (martensitic) steels are leading candidates for the structural components for future fusion reactors. However, irradiation of such steels in a fusion environment will produce long-lived radioactive isotopes that will lead to difficult waste-disposal problems. Such problems could be reduced by replacing the elements in the steels (i.e., Mo, Nb, Ni, N, and Cu) that lead to long-lived radioactive isotopes. We have proposed the development of ferritic steels analogous to conventional Cr-Mo steels, which contain molybdenum and niobium. It is proposed that molybdenum be replaced by tungsten and niobium be replaced by tantalum. Eight experimental steels were produced. Chromium concentrations of 2.25, 5, 9, and 12% were used (all concentrations are in wt %). Steels with these chromium compositions, each containing 2% W and 0.25% V, were produced. To determine the effect of tungsten and vanadium, 2.25 Cr steels were produced with 2% W and no vanadium and with 0.25% V and O and 1% W. A 9Cr steel containing 2% W, 0.25 V, and 0.07% Ta was also studied. For all alloys, carbon was maintained at 0.1%. Tempering studies on the normalized steels indicated that the tempering behavior of the new Cr-W steels was similar to that of the analogous Cr-Mo steels. Microscopy studies indicated that 2% tungsten was required in the 2.25 Cr steels to produce 100% bainite in 15.9-mm-thick plate during normalization. The 5Cr and 9Cr steels were 100% martensite, but the 12 Cr steel contained about 75% martensite with the balance delta-ferrite. 33 refs., 35 figs., 5 tabs.

  14. Development of ferritic steels for fusion reactor applications

    International Nuclear Information System (INIS)

    Klueh, R.L.; Maziasz, P.J.; Corwin, W.R.

    1988-08-01

    Chromium-molybdenum ferritic (martensitic) steels are leading candidates for the structural components for future fusion reactors. However, irradiation of such steels in a fusion environment will produce long-lived radioactive isotopes that will lead to difficult waste-disposal problems. Such problems could be reduced by replacing the elements in the steels (i.e., Mo, Nb, Ni, N, and Cu) that lead to long-lived radioactive isotopes. We have proposed the development of ferritic steels analogous to conventional Cr-Mo steels, which contain molybdenum and niobium. It is proposed that molybdenum be replaced by tungsten and niobium be replaced by tantalum. Eight experimental steels were produced. Chromium concentrations of 2.25, 5, 9, and 12% were used (all concentrations are in wt %). Steels with these chromium compositions, each containing 2% W and 0.25% V, were produced. To determine the effect of tungsten and vanadium, 2.25 Cr steels were produced with 2% W and no vanadium and with 0.25% V and O and 1% W. A 9Cr steel containing 2% W, 0.25 V, and 0.07% Ta was also studied. For all alloys, carbon was maintained at 0.1%. Tempering studies on the normalized steels indicated that the tempering behavior of the new Cr-W steels was similar to that of the analogous Cr-Mo steels. Microscopy studies indicated that 2% tungsten was required in the 2.25 Cr steels to produce 100% bainite in 15.9-mm-thick plate during normalization. The 5Cr and 9Cr steels were 100% martensite, but the 12 Cr steel contained about 75% martensite with the balance delta-ferrite. 33 refs., 35 figs., 5 tabs

  15. Assessment of martensitic steels for advanced fusion reactors

    International Nuclear Information System (INIS)

    Wareing, J.; Tavassoli, A.A.

    1995-01-01

    Martensitic steels are currently considered in Europe to be prime structural candidate materials for the first wall and breeding blanket of the DEMO fusion reactor. In this design, reactor power and wall loading will be significantly higher than those of an experimental reactor. ITER and will give rise to component operating temperatures in the range 250 to 550 0 C with neutron doses higher than 70 dpa. These conditions render austenitic stainless steel, which will be used in ITER, less favourable. Factors contributing to the promotion of martensitic steels are their excellent resistance to irradiation induced swelling, low thermal expansion and high thermal conductivity allied to advanced industrial maturity, compared to other candidate materials vanadium alloys. This paper described the development and optimisation of the steel and weld metal. Using data design rules generated on modified 9 Cr 1 Mo steel during its qualification as a steam generator material for the European Fast Reactor (EFR), interim design guidelines are formulated. Whilst the merits of the steel are validated, it is shown that irradiation embrittlement at low temperature, allied to the need for prolonged post-weld hat treatment and the long term creep response of welds remain areas of some concern. (author). 18 refs., 6 figs., 2 tabs

  16. Application of high strength steel to nuclear reactor containment vessel

    International Nuclear Information System (INIS)

    Susukida, H.; Sato, M.; Takano, G.; Uebayashi, T.; Yoshida, K.

    1976-01-01

    Nuclear reactor containment vessels are becoming larger in size with the increase in the power generating capacity of nuclear power plants. For example, a containment vessel for a PWR power plant with an output of 1,000 MWe becomes an extremely large one if it is made of the conventional JIS SGV 49 (ASTM A 516 Gr. 70) steel plates less than 38 mm in thickness. In order to design the steel containment vessel within the conventional dimensional range, therefore, it is necessary to use a high strength steel having a higher tensile strength than SGV 49 steel, good weldability and a higher fracture toughness and moreover, possessing satisfactory properties without undergoing post-weld heat treatment. The authors conducted a series of verification tests on high strength steel developed by modifying the ASTM A 543 Grade B Class 1 steel with a view to adopting it as a material for the nuclear reactor containment vessels. As the result of evaluation of the test results from various angles, we confirmed that the high strength steel is quite suitable for the manufacture of nuclear reactor containment vessels. (auth.)

  17. East/west steels for reactor pressure vessels

    International Nuclear Information System (INIS)

    Davies, M.; Kryukov, A.; Nikolaev, Y.; English, C.

    1997-01-01

    The report consist of three parts dealing with comparison of the irradiation behaviour of 'Eastern' and 'Western' steels, mechanisms of irradiation embrittlement and the role of compositional variations on the irradiation sensitivity of pressure vessels. Nickel, copper and phosphorus are the elements rendering the most essential influence on behaviour of pressure vessel steels under irradiation and subsequent thermal annealing. For WWER-440 reactor pressure vessel (RPV) steels in which nickel content does nor exceed 0.3% the main affecting factors are phosphorous and copper. For WWER-1000 RPV welds in which nickel content generally exceed 1.5% the role of nickel in radiation embrittlement is decisive. In 'Western' type steels main influencing elements are nickel and copper. The secondary role of phosphorus in radiation embrittlement of 'Western' steels is caused by lower relative content compared to 'Eastern' steels. The process of how copper, phosphorus and nickel contents affect the irradiation sensitivity of both types of steel seem to be similar. Some distinctions between the observed radiation effects is apparently caused by differences in the irradiation conditions and ratios of the contents of above mentioned elements in both types of steel. For 'Eastern' RPV steels the dependence of the recovery degree of irradiated steels due to postirradiation thermal annealing id obviously dependent on phosphorus contents and the influence of nickel contents on this process is detectable

  18. Defects investigation in neutron irradiated reactor steels by positron annihilation

    International Nuclear Information System (INIS)

    Slugen, V.

    2003-01-01

    Positron annihilation spectroscopy (PAS) based on positron lifetime measurements using the Pulsed Low Energy Positron System (PLEPS) was applied to the investigation of defects of irradiated and thermally treated reactor pressure vessel (RPV) steels. PLEPS results showed that the changes in microstructure of the RPV-steel properties caused by neutron irradiation and post-irradiation heat treatment can be well detected. From the lifetime measurements in the near-surface region (20-550 nm) the defect density in Russian types of RPV-steels was calculated using the diffusion trapping model. The post-irradiation heat treatment studies performed on non-irradiated specimens are also presented. (author)

  19. Structure of steel reactor building and construction method therefor

    International Nuclear Information System (INIS)

    Yamakawa, Toshikimi.

    1997-01-01

    The building of the present invention contains a reactor pressure vessel, and has double steel plate walls endurable to elevation of inner pressure and keeping airtightness, and shielding concretes are filled between the double steel plate walls. It also has empty double steel plate walls not filled with concretes and has pipelines, vent ducts, wirings and a support structures for attaching them between the double steel plate walls. It is endurable to a great inner pressure satisfactory and keeps airtightness by the two spaced steel plates. It can be greatly reduced in the weight, and can be manufactured efficiently with high quality in a plant by so called module construction, and the dimension of the entire of the reactor building can be reduced. It is constructed in a dock, transported on the sea while having the space between the two steel plate walls as a ballast tanks, placed in the site, and shielding concretes are filled between the double steel plate walls. The term for the construction can be reduced, and the cost for the construction can be saved. (N.H.)

  20. Radiation embrittlement of Spanish nuclear reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Bros, J.; Ballesteros, A.; Lopez, A.

    1993-01-01

    Commercial pressurized water reactor (PWR) and boiling water reactor (BWR) nuclear power plants contain a series of pressure vessel steel surveillance capsules as the principal means of monitoring radiation effects on the pressure vessel. Changes in fracture toughness are more severe in surveillance capsules than in reactor vessel materials because of their proximity of the reactor core. Therefore, it is possible to predict changes in fracture toughness of the reactor vessel materials. This paper describes the status of the reactor vessel surveillance program relating to Spanish nuclear power plants. To date, twelve capsules have been removed and analyzed from seven of the nine Spanish reactors in operation. The results obtained from the analysis of these capsules are compared with the predictions of the Nuclear Regulatory Commission (NRC) Regulatory Guide 1.99, Rev. 2, by means of measured and expected increase of the nil-ductility transition reference temperature (RT NDT ). The comparison is made considering the different variables normally included in the studies of radiation response of reactor pressure vessel materials, such as copper content of steel, level of neutron fluence above 1 MeV, base metal or weld metal, and so forth. The surveillance data have been used for determining the adjusted reference temperatures and upper shelf energies at any time. The results have shown that the seven pressure vessels are in excellent condition to continue operating with safety against brittle fracture beyond the design life, without the need to recuperate the degraded properties of the materials by annealing of the vessel

  1. Irradiation embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Bros, J.

    2000-01-01

    From the historical decision of closing the Yankee Rowe NPP because of the uncertainties on the level of reactor pressure vessel neutron embrittlement, this paper reviews the technical-scientist bases of the degradation phenomena, and refers to the evolution of reactor pressure vessel radiation surveillance programs. (Author)

  2. Austenitic stainless steel bulk property considerations for fusion reactors

    International Nuclear Information System (INIS)

    Mattas, R.F.

    1979-04-01

    The bulk properties of annealed 304, 316, and 20% cold-worked 316 stainless steels are evaluated for the temperature and radiation conditions expected in a near-term fusion reactor. Of interest are the thermophysical properties, void swelling produced by neutron radiaion, and the tensile, creep, and fatigue properties before and after irradiation

  3. Irradiation proposition of ferritic steels in a russian reactor

    International Nuclear Information System (INIS)

    Seran, J.L.; Decours, J.; Levy, L.

    1987-04-01

    Using the low temperatures of russian reactors, a sample irradiation is proposed to study mechanical properties and swelling of martensitic steels (EM10, T91, 1.4914, HT9), ferrito-martensitic (EM12) and ferritic (F17), at temperatures lower than 400 0 C [fr

  4. Microstructure and embrittlement of VVER 440 reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Hennion, A.

    1999-03-01

    27 VVER 440 pressurised water reactors operate in former Soviet Union and in Eastern Europe. The pressure vessel, is made of Cr-Mo-V steel. It contains a circumferential arc weld in front of the nuclear core. This weld undergoes a high neutron flux and contains large amounts of copper and phosphorus, elements well known for their embrittlement potency under irradiation. The embrittlement kinetic of the steel is accelerated, reducing the lifetime of the reactor. In order to get informations on the microstructure and mechanical properties of these steels, base metals, HAZ, and weld metals have been characterized. The high amount of phosphorus in weld metals promotes the reverse temper embrittlement that occurs during post-weld heat treatment. The radiation damage structure has been identified by small angle neutron scattering, atomic probe, and transmission electron microscopy. Nanometer-sized clusters of solute atoms, rich in copper with almost the same characteristics as in western pressure vessels steels, and an evolution of the size distribution of vanadium carbides, which are present on dislocation structure, are observed. These defects disappear during post-irradiation tempering. As in western steels, the embrittlement is due to both hardening and reduction of interphase cohesion. The radiation damage specificity of VVER steels arises from their high amount of phosphorus and from their significant density of fine vanadium carbides. (author)

  5. Microstructural evolution in reactor pressure vessel steel under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Katsumi; Fukuya, Koji [Institute of Nuclear Safety System Inc., Seika, Kyoto (Japan)

    2000-09-01

    Understanding microstructural changes in reactor pressure vessel steels is important in order to evaluate radiation-induced embrittlement, one of the major aging phenomena affecting the extension of plant life. In this study, actual surveillance test specimens and samples of rector vessel low-alloy steel (A533B steel) irradiated in a research reactor were examined using state-of-the-art techniques to clarify the neutron flux effect on the microstructural changes. These techniques included small angle neutron scattering and atom probes. Microstructural changes which are considered to be the main factors affecting embrittlement, including the production of copper-rich precipitates and the segregation of impurity elements, were confirmed by the results of the study. In addition, the mechanical properties were predicted based on the obtained quantitative data such as the diameters of precipitates. Consequently, the hardening due to irradiation was almost simulated. (author)

  6. Studies of fragileness in steels of vessels of BWR reactors

    International Nuclear Information System (INIS)

    Robles, E.F.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E.

    2003-01-01

    The structural materials with those that are manufactured the pressure vessels of the BWR reactors, suffer degradation in its mechanical properties mainly to the damage taken place by the fast neutrons (E > 1 MeV) coming from the reactor core. Its are experimentally studied those mechanisms of neutron damage in this material type, by means of the irradiation of steel vessel in experimental reactors to age them quickly. Alternatively it is simulated the neutron damage by means of irradiation of steel with heavy ions. In this work those are shown first results of the damage induced by irradiation from a similar steel to the vessel of a BWR reactor. The irradiation was carried out with fast neutrons (E > 1 MeV, fluence of 1.45 x 10 18 n/cm 2 ) in the TRIGA MARK lll reactor and separately with Ni +3 ions in a Tandetrom accelerator, E = 4.8 MeV and range of the ionic flow of 0.1 to 53 iones/A 2 . (Author)

  7. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 log (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.

  8. Behavior of stainless steels in pressurized water reactor primary circuits

    International Nuclear Information System (INIS)

    Féron, D.; Herms, E.; Tanguy, B.

    2012-01-01

    Stainless steels are widely used in primary circuits of pressurized water reactors (PWRs). Operating experience with the various grades of stainless steels over several decades of years has generally been excellent. Nevertheless, stress corrosion failures have been reported in few cases. Two main factors contributing to SCC susceptibility enhancement are investigated in this study: cold work and irradiation. Irradiation is involved in the stress corrosion cracking and corrosion of in-core reactor components in PWR environment. Irradiated assisted stress corrosion cracking (IASCC) is a complex and multi-physics phenomenon for which a predictive modeling able to describe initiation and/or propagation is not yet achieved. Experimentally, development of initiation smart tests and of in situ instrumentation, also in nuclear reactors, is an important axis in order to gain a better understanding of IASCC kinetics. A strong susceptibility for SCC of heavily cold worked austenitic stainless steels is evidenced in hydrogenated primary water typical of PWRs. It is shown that for a given cold-working procedure, SCC susceptibility of austenitic stainless steels materials increases with increasing cold-work. Results have shown also strong influences of the cold work on the oxide layer composition and of the maximum stress on the time to fracture.

  9. Stainless steel clad for light water reactor fuels. Final report

    International Nuclear Information System (INIS)

    Rivera, J.E.; Meyer, J.E.

    1980-07-01

    Proper reactor operation and design guidelines are necessary to assure fuel integrity. The occurrence of fuel rod failures for operation in compliance with existing guidelines suggests the need for more adequate or applicable operation/design criteria. The intent of this study is to develop such criteria for light water reactor fuel rods with stainless steel clad and to indicate the nature of uncertainties in its development. The performance areas investigated herein are: long term creepdown and fuel swelling effects on clad dimensional changes and on proximity to clad failure; and short term clad failure possibilities during up-power ramps

  10. Perspective steels for generation IV and fusion reactors

    International Nuclear Information System (INIS)

    Bartosva, I.; Cizek, J.

    2013-01-01

    In this study we focus on the F/M steel Eurofer, the European candidate material for the future fusion reactor and for the strengthening we consider oxides of yttrium. The oxides of yttrium and complex yttrium titanium oxides reinforce the material by forming more or less stable obstacles to dislocations, and by promoting grain refinement by pinning grain boundaries. It appears that part of the yttrium titanium oxides particles dissolves from about 600 grad C while pure Yttria particles are stable at least to 1000 grad C in the steel. The aims of this study are the following: 1) Prove the positive effect of strengthening by yttrium oxides. 2) Measure the hardness of base Eurofer and ODS version by Vickers hardness test (HV). 3) Investigate the behaviour of steels at different annealing temperatures and the changes in strength. 4) Assess defects in microstructure by Coincidence Doppler Broadening (CDB) and Positron Annihilation Lifetime Spectroscopy (PALS) at chosen annealing temperatures. (authors)

  11. Development of austenitic stainless steel tubes for nuclear reactor cladding

    International Nuclear Information System (INIS)

    Padilha, A.F.; Ferreira, P.I.; Andrade, P.I.; Andrade, A.H.P. de; Meyerhof, S.; Mauricio, J.

    1984-01-01

    In the development of thin wall tubes for nuclear reactor fuel cladding applications, a great number of activities, related to the fabrication process as the qualification are involved. A test program was envisaged to verify the quality of seam welded stainless steel tubes (AISI 304), obtained as a result of an effort by the IPEN-CNEN/SP and the brazilian industry. The relevant aspects involved in the preparation of the tubes and some preliminary test results are presented. (Author) [pt

  12. Thermal stability study for candidate stainless steels of GEN IV reactors

    International Nuclear Information System (INIS)

    Simeg Veternikova, J.; Degmova, J.; Pekarcikova, M.; Simko, F.; Petriska, M.; Skarba, M.; Mikula, P.; Pupala, M.

    2016-01-01

    Highlights: • Thermal resistance of advanced stainless steels were observed at 1000 °C. • GEN IV candidate steels were confronted to classic AISI steels. • ODS AISI 316 has weaker thermal resistance than classic AISI steel. • Ferritic ODS steels and NF 709 has better thermal resistance than AISI steels. - Abstract: Candidate stainless steels for GEN IV reactors were investigated in term of thermal and corrosion stability at high temperatures. New austenitic steel (NF 709), austenitic ODS steel (ODS 316) and two ferritic ODS steels (MA 956 and MA 957) were exposed to around 1000 °C in inert argon atmosphere at pressure of ∼8 MPa. The steels were further studied in a light of vacancy defects presence by positron annihilation spectroscopy and their thermal resistance was confronted to classic AISI steels. The thermal strain supported a creation of oxide layers observed by scanning electron microscopy (SEM).

  13. Thermal stability study for candidate stainless steels of GEN IV reactors

    Energy Technology Data Exchange (ETDEWEB)

    Simeg Veternikova, J., E-mail: jana.veternikova@stuba.sk [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Degmova, J. [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Pekarcikova, M. [Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, Paulinska 16, 917 24 Trnava (Slovakia); Simko, F. [Department of Molten Salts, Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 36 Bratislava (Slovakia); Petriska, M. [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Skarba, M. [Slovak University of Technology, Vazovova 5, 812 43 Bratislava (Slovakia); Mikula, P. [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Pupala, M. [Department of Molten Salts, Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 36 Bratislava (Slovakia)

    2016-11-30

    Highlights: • Thermal resistance of advanced stainless steels were observed at 1000 °C. • GEN IV candidate steels were confronted to classic AISI steels. • ODS AISI 316 has weaker thermal resistance than classic AISI steel. • Ferritic ODS steels and NF 709 has better thermal resistance than AISI steels. - Abstract: Candidate stainless steels for GEN IV reactors were investigated in term of thermal and corrosion stability at high temperatures. New austenitic steel (NF 709), austenitic ODS steel (ODS 316) and two ferritic ODS steels (MA 956 and MA 957) were exposed to around 1000 °C in inert argon atmosphere at pressure of ∼8 MPa. The steels were further studied in a light of vacancy defects presence by positron annihilation spectroscopy and their thermal resistance was confronted to classic AISI steels. The thermal strain supported a creation of oxide layers observed by scanning electron microscopy (SEM).

  14. In-reactor deformation and fracture of austenitic stainless steels

    International Nuclear Information System (INIS)

    Bloom, E.E.; Wolfer, W.G.

    1978-01-01

    An experimental technique for determining in-reactor fracture strain was developed and demonstrated. Differential swelling between a sample holder and a test specimen with a lower swelling rate produced uniaxial deformation. In-reactor deformations of 0.7 to 2.1% were achieved in type 304 stainless steel previously irradiated to fluences up to 8.8 x 10 26 n/m 2 without fracture. These strains are significantly higher than found in postirradiation creep-rupture tests on similar samples. From the measured strain values and published irradiation creep data and correlations, the stress levels during the irradiation were calculated. On the basis of previous postirradiation creep-rupture results, many of the samples that did not fail would be predicted to fail. Thus we conclude that the in-reactor rupture life is longer than predicted by postirradiation tests. Strain in a fractured sample was estimated to be less than 3.8%, and the in-reactor fractures were intergranular--the same fracture mode as found in postirradiation tests. Irradiation creep may relax stresses at crack tips and sliding boundaries, thus retarding the initiation and/or growth of cracks and leading to longer rupture lives in-reactor. However, the very high ductility or superplastic behavior predicted by the strain rate sensitivity of irradiation creep is not achieved because of the eventual interruption of the deformation process by grain boundary fracture

  15. Application of positron annihilation spectroscopy for investigation of reactor steels

    International Nuclear Information System (INIS)

    Sojak, S.; Slugen, V.; Petriska, M.; Stacho, M.; Veternikova, J.; Sabelova, V.; Egger, W.; Ravelli, L.

    2013-01-01

    Our work is focused on the study of radiation damage simulated by ion implantations and thermal treatment evaluation of RAFM steels in the form of binary Fe-Cr model alloys. In order to study the microstructure recovery after ion irradiation, we applied an approach for restoration of initial physical and mechanical characteristics of structural materials in the form of thermal annealing, with the goal to decrease the size and amount of accumulated defects. The experimental analysis of material damage at microstructural level was performed by the pulsed low energy positron system (PLEPS) [1] at the high intensity positron source NEPOMUC at the Munich research reactor FRM-II. (authors)

  16. Neutron irradiation embrittlement of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Steele, L.E.

    1975-01-01

    The reliability of nuclear power plants depends on the proper functioning of complex components over the whole life on the plant. Particular concern for reliability is directed to the primary pressure boundary. This report focuses on the portion of the primary system exposed to and significantly affected by neutron radiation. Experimental evidence from research programmes and from reactor surveillance programmes has indicated radiation embrittlement of a magnitude sufficient to raise doubts about reactor pressure vessel integrity. The crucial nature of the primary vessel function heightens the need to be alert to this problem, to which, fortunately, there are positive aspects: for example, steels have been developed which are relatively immune to radiation embrittlement. Further, awareness of such embrittlement has led to designs which can accomodate this factor. The nature of nuclear reactors, of the steels used in their construction, and of the procedures for interpreting embrittlement and minimizing the effects are reviewed with reference to the reactors that are expected to play a major role in electric power production from now to about the turn of the century. The report is intended as a manual or guidebook; the aim has been to make each chapter or major sub-division sufficiently comprehensive and self-contained for it to be understood and read independently of the rest of the book. At the same time, it is hoped that the whole is unified enough to make a complete reading useful and interesting to the several classes of reader that are involved with only specific aspects of the topic

  17. Steel

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.; Savukov, V.P.; Runov, A.E.; Belov, V.A.; Sobolev, J.V.; Sobolev, V.V.; Pavlov, N.M.; Paton, B.E.

    1977-01-01

    Steels also containing Al, N and arsenic, are suitable for the construction of large components for high-power nuclear reactors due to their good mechanical properties such as good through-hardening, sufficiently low brittleness conversion temperature and slight displacement of the latter with neutron irradiation. Defined steels and their properties are described. (IHOE) [de

  18. Residual stresses in weld-clad reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Bertram, W.

    1975-01-01

    Cladding of low alloy nuclear reactor pressure vessel steel with austenitic stainless steel introduces in heavy section components high residual stresses which may cause microcrack formation in stress relief heat treatment. In this investigation an attempt is made to contribute to the solution of the stress relief cracking problem by determining quantitatively the magnitude and distribution of the residual stresses after cladding and after subsequent stress relief heat treatment. The distribution of residual stresses was determined on the basis of a combined experimental-mathematical procedure. Heavy section plate specimens of low alloy steel as base material were given an austenitic monolayer-cladding using the techniques of strip electrode and plasma hot wire cladding, respectively. A number of plates was stress relief heat treated. Starting from the cladded surface the thickness of the plates was reduced by subsequent removal of layers of material. The elastic strain reaction to the removal of each layer was measured by strain gauges. From the data obtained the biaxial residual stress distribution was computed as a function of thickness using relations which are derived for this particular case. In summary, lower residual stresses are caused by reduced thickness of the components. As the heat input, is decreased at identical base material thickness, the residual stresses are lowered also. The height of the tensile residual stress peak, however, remains approximataly constant. In stress relief annealed condition the residual stresses in the cladding are in tension; in the base material the residual stresses are negligibly small

  19. Research to sustain cases for Magnox-reactor steel pressure vessels

    International Nuclear Information System (INIS)

    Graham, W.J.

    1997-01-01

    Britain's Magnox Electric plc owns and operates six power stations, each of which has twin gas-cooled reactors of the Magnox-fuel type. The older group of four power stations has steel pressure-circuits. The reactor cores are housed within spherical, steel vessels. This article describes some of the research which is undertaken to sustain the safety cases for these steel vessels which have now been in operation for just over 30 years. (author) 2 figs., 4 refs

  20. Refurbishment of Pakistan research reactor (PARR-1) for stainless steel lining of the reactor pool

    International Nuclear Information System (INIS)

    Salahuddin, A.; Israr, M.; Hussain, M.

    2002-01-01

    Pakistan Research Reactor-1 (PARR-1) is a pool-type research reactor. Reactor aging has resulted in the increase of water seepage from the concrete walls of the reactor pool. To stop the seepage, it was decided to augment the existing pool walls with an inner lining of stainless steel. This could be achieved only if the pool walls could be accessed unhindered and without excessive radiation doses. For this purpose a partial decommissioning was done by removing all active core components including standard/control fuel elements, reflector elements, beam tubes, thermal shield, core support structure, grid plate and the pool's ceramic tiles, etc. An overall decommissioning program was devised which included procedures specific to each item. This led to the development of a fuel transport cask for transportation, and an interim fuel storage bay for temporary storage of fuel elements (until final disposal). The safety of workers and the environment was ensured by the use of specially designed remote handling tools, appropriate shielding and pre-planned exposure reduction procedures based on the ALARA principle. During the implementation of this program, liquid and solid wastes generated were legally disposed of. It is felt that the experience gained during the refurbishment of PARR-1 to install the stainless steel liner will prove useful and better planning and execution for the future decommissioning of PARR-1, in particular, and for other research reactors like PARR-2 (27 kW MNSR), in general. Furthermore, due to the worldwide activities on decommissioning, especially those communicated through the IAEA CRP on 'Decommissioning Techniques for Research Reactors', the importance of early planning has been well recognized. This has made possible the implementation of some early steps like better record keeping, rehiring of trained manpower, and creation of interim and final waste storage. (author)

  1. Gamma-radiation effect on diamond and steel during their irradiation in WWER type reactors

    International Nuclear Information System (INIS)

    Nikolaenko, V.A.; Karpukhin, V.I.; Amaev, A.D.; Vikhrov, V.I.; Korolev, Yu.N.; Krasikov, E.A.

    1996-01-01

    A study is made into the influence of reactor gamma radiation on expansion of crystal lattice in diamond. The data obtained are compared to those on radiation embrittlement of reactor vessel steels. The necessity of taking into consideration gamma radiation effects on WWER reactor vessel radiation resistance during long-term operation is shown [ru

  2. Nuclear reactors sited deep underground in steel containment vessels

    Energy Technology Data Exchange (ETDEWEB)

    Bourque, Robert [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2006-07-01

    Although nuclear power plants are certainly very safe, they are not perceived as safe by the general populace. Also, there are concerns about overland transport of spent fuel rods and other irradiated components. It is hereby proposed that the nuclear components of nuclear power plants be placed in deep underground steel vessels with secondary coolant fed from them to turbines at or near the surface. All irradiated components, including spent fuel, would remain in the chamber indefinitely. This general concept was suggested by the late Edward Teller, generated some activity 20-25 years ago and appears to be recently reviving in interest. Previous work dealt with issues of geologic stability of underground, possibly reinforced, caverns. This paper presents another approach that makes siting independent of geology by placing the reactor components in a robust steel vessel capable of resisting full overburden pressure as well as pressures resulting from accident scenarios. Structural analysis of the two vessel concepts and approximate estimated costs are presented. This work clears the way for the extensive discussions required to evaluate the advantages of this concept. (author)

  3. Shallow-crack toughness results for reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Theiss, T.J.; Shum, D.K.M.; Rolfe, S.T.

    1992-01-01

    The Heavy Section Steel Technology Program (HSST) is investigating the influence of flaw depth on the fracture toughness of reactor pressure vessel (RPV) steel. To complete this investigation, techniques were developed to determine the fracture toughness from shallow-crack specimens. A total of 38 deep and shallow-crack tests have been performed on beam specimens about 100 mm deep loaded in 3-point bending. Two crack depths (a ∼ 50 and 9 mm) and three beam thicknesses (B ∼ 50, 100, and 150 mm) have been tested. Techniques were developed to estimate the toughness in terms of both the J-integral and crack-tip opening displacement (CTOD). Analytical J-integral results were consistent with experimental J-integral results, confirming the validity of the J-estimation schemes used and the effect of flaw depth on fracture toughness. Test results indicate a significant increase in the fracture toughness associated with the shallow flaw specimens in the lower transition region compared to the deep-crack fracture toughness. There is, however, little or no difference in toughness on the lower shelf where linear-elastic conditions exist for specimens with either deep or shallow flaws. The increase in shallow-flaw toughness compared with deep-flaw results appears to be well characterized by a temperature shift of 35 degree C

  4. Irradiation Microstructure of Austenitic Steels and Cast Steels Irradiated in the BOR-60 Reactor at 320°C

    Science.gov (United States)

    Yang, Yong; Chen, Yiren; Huang, Yina; Allen, Todd; Rao, Appajosula

    Reactor internal components are subjected to neutron irradiation in light water reactors, and with the aging of nuclear power plants around the world, irradiation-induced material degradations are of concern for reactor internals. Irradiation-induced defects resulting from displacement damage are critical for understanding degradation in structural materials. In the present work, microstructural changes due to irradiation in austenitic stainless steels and cast steels were characterized using transmission electron microscopy. The specimens were irradiated in the BOR-60 reactor, a fast breeder reactor, up to 40 dpa at 320°C. The dose rate was approximately 9.4x10-7 dpa/s. Void swelling and irradiation defects were analyzed for these specimens. A high density of faulted loops dominated the irradiated-altered microstructures. Along with previous TEM results, a dose dependence of the defect structure was established at 320°C.

  5. Estimation of residual stresses in reactor pressure vessel steel specimens clad by stainless steel strip electrodes

    International Nuclear Information System (INIS)

    Schimmoeller, H.A.; Ruge, J.L.

    1978-01-01

    The equations to determine a two-dimensional state of residual stress in flat laminated plates are well known from an earlier work by one of the authors. The derivation of these equations leads to a linear, inhomogeneous system of Volterra's integral equations of the second kind. To ascertain the unknown residual stresses from these equations it is necessary to cut down the thickness of the test plate layer by layer. This results in two-dimensional deformation reactions in the rest of the test plate, which can be measured, e.g. by a strain gauge rosette applied to the opposite side of the plate. The above-mentioned stress analysis has been transferred to 86mm thick reactor pressure vessel steel specimens (Type 22NiMoCr 37, DIN-No. 1.6751, similar to ASTM A508, Class 2) double-run clad by austenitic stainless steel strip electrodes (first layer 24/13 Cr-Ni steel, second layer 21/10 Cr-Ni steel). The overall dimensions of the clad specimens investigated amounted to 200 x 200 x (86+4.5+4.5)mm. At the surface of the austenitic cladding there is a two-dimensional tensile normal stress state of about 200N/mm 2 parallel, and about 300N/mm 2 transverse, to the welding direction. The maximum tensile stress was 8mm below the interface (fusion line, material transition) in the parent material. The stress distributions of the specimens investigated, determined on the basis of the above-mentioned combined experimental mathematical procedure, are presented graphically for the as-welded (as-delivered) and annealed (600 0 C/12hr) conditions. (author)

  6. Fracture assessment of Savannah River Reactor carbon steel piping

    International Nuclear Information System (INIS)

    Mertz, G.E.; Stoner, K.J.; Caskey, G.R.; Begley, J.A.

    1991-01-01

    The Savannah River Site (SRS) production reactors have been in operation since the mid-1950's. One postulated failure mechanism for the reactor piping is brittle fracture of the original A285 and A53 carbon steel piping. Material testing of archival piping determined (1) the static and dynamic tensile properties; (2) Charpy impact toughness; and (3) the static and dynamic compact tension fracture toughness properties. The nil-ductility transition temperature (NDTT), determined by Charpy impact test, is above the minimum operating temperature for some of the piping materials. A fracture assessment was performed to demonstrate that potential flaws are stable under upset loading conditions and minimum operating temperatures. A review of potential degradation mechanisms and plant operating history identified weld defects as the most likely crack initiation site for brittle fracture. Piping weld defects, as characterized by radiographic and metallographic examination, and low fracture toughness material properties were postulated at high stress locations in the piping. Normal operating loads, upset loads, and residual stresses were assumed to act on the postulated flaws. Calculated allowable flaw lengths exceed the size of observed weld defects, indicating adequate margins of safety against brittle fracture. Thus, a detailed fracture assessment was able to demonstrate that the piping systems will not fail by brittle fracture, even though the NDTT for some of the piping is above the minimum system operating temperature

  7. Aluminide Coating on Stainless Steel for Nuclear Reactor Application: A Preliminary Study

    International Nuclear Information System (INIS)

    Hishamuddin Husain; Zaifol Samsu; Yusof Abdullah; Muhamad Daud

    2015-01-01

    Stainless steels have been used as structural materials in the nuclear reactor since its first generation. Stainless steels type 304 and 316 are commonly used in structural components. Since the first generation materials, improvements were made on Stainless steels. This includes addition of stabilizing elements and by modification of metallurgical structure. This study investigates the formation of aluminide coating on Stainless steels by diffusion to help improve corrosion resistance. Stainless steels type 304 and 316 substrates were immersed in molten aluminium at 750 degree Celsius for 5 minutes. Interaction between molten aluminium and solid to form the outer aluminide coating by hot dipped aluminizing is studied. (Author)

  8. A Review on the Potential Use of Austenitic Stainless Steels in Nuclear Fusion Reactors

    Science.gov (United States)

    Şahin, Sümer; Übeyli, Mustafa

    2008-12-01

    Various engineering materials; austenitic stainless steels, ferritic/martensitic steels, vanadium alloys, refractory metals and composites have been suggested as candidate structural materials for nuclear fusion reactors. Among these structural materials, austenitic steels have an advantage of extensive technological database and lower cost compared to other non-ferrous candidates. Furthermore, they have also advantages of very good mechanical properties and fission operation experience. Moreover, modified austenitic stainless (Ni and Mo free) have relatively low residual radioactivity. Nevertheless, they can't withstand high neutron wall load which is required to get high power density in fusion reactors. On the other hand, a protective flowing liquid wall between plasma and solid first wall in these reactors can eliminate this restriction. This study presents an overview of austenitic stainless steels considered to be used in fusion reactors.

  9. Welding of stainless steel clad fuel rods for nuclear reactors

    International Nuclear Information System (INIS)

    Neves, Mauricio David Martins das

    1986-01-01

    This work describes the obtainment of austenitic stainless steel clad fuel rods for nuclear reactors. Two aspects have been emphasized: (a) obtainment and qualification of AISI 304 and 304 L stainless steel tubes; b) the circumferential welding of pipe ends to end plugs of the same alloy followed by qualification of the welds. Tubes with special and characteristic dimensions were obtained by set mandrel drawing. Both, seamed and seamless tubes of 304 and 304 L were obtained.The dimensional accuracy, surface roughness, mechanical properties and microstructural characteristics of the tubes were found to be adequate. The differences in the properties of the tubes with and without seams were found to be insignificant. The TIG process of welding was used. The influence of various welding parameters were studied: shielding gas (argon and helium), welding current, tube rotation speed, arc length, electrode position and gas flow. An inert gas welding chamber was developed and constructed with the aim of reducing surface oxidation and the heat affected zone. The welds were evaluated with the aid of destructive tests (burst-test, microhardness profile determination and metallographic analysis) and non destructive tests (visual inspection, dimensional examination, radiography and helium leak detection). As a function of the results obtained, two different welding cycles have been suggested; one for argon and another for helium. The changes in the microstructure caused by welding have been studied in greater detail. The utilization of work hardened tubes, permitted the identification by optical microscopy and microhardness measurements, of the different zones: weld zone; heat affected zone (region of grain growth, region of total and partial recrystallization) and finally, the zone not affected by heat. Some correlations between the welding parameters and metallurgical phenomena such as: solidification, recovery, recrystallization, grain growth and precipitation that occurred

  10. Aircraft-crash-protected steel reactor building roof structure for the European market

    International Nuclear Information System (INIS)

    Posta, B.A.; Kadar, I.; Rao, A.S.

    1996-01-01

    This paper recommends the use of all steel roof structures for the reactor building of European Boiling Water Reactor (BWR) plants. This change would make the advanced US BWR designs more compatible with European requirements. Replacement of the existing concrete roof slab with a sufficiently thick steel plate would eliminate the concrete spelling resulting from a postulated aircraft crash, potentially damaging the drywell head or the spent fuel pool

  11. Effect of radiation damage on operating safety of steel pressure vessels of nuclear reactors

    International Nuclear Information System (INIS)

    Vacek, M.; Havel, S.; Stoces, B.; Brumovsky, M.

    1980-01-01

    The effects are assessed of the environment upon mechanical properties of steel used generally for pressure vessels of light water nuclear reactors. Changes caused by radiation affect the reliability of vessels. Deterioration of steel properties is mainly due to neutron radiation. The article deals with factors bearing upon damage and with methods allowing to evaluate the reliability of vessels and predict their service life. Operating reliability of vessels is very unfavourably affected by planned and accidental reactor transients. (author)

  12. Current Status of Development of High Nickel Low Alloy Steels for Commercial Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Chul; Lee, B. S.; Park, S. G.; Lee, K. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    SA508 Gr.3 Mn-Mo-Ni low alloy steels have been used for nuclear reactor pressure vessel steels up to now. Currently, the design goal of nuclear power plant is focusing at larger capacity and longer lifetime. Requirements of much bigger pressure vessels may cause critical problems in the manufacturing stage as well as for the welding stage. Application of higher strength steel may be required to overcome the technical problems. It is known that a higher strength and fracture toughness of low alloy steels such as SA508 Gr.4N low alloy steel could be achieved by increasing the Ni and Cr contents. Therefore, SA508 Gr.4N low alloy steel is very attractive as eligible RPV steel for the next generation PWR systems. In this report, we propose the possibility of SA508 Gr.4N low alloy steel for an application of next generation commercial RPV, based on the literature research result about development history of the RPV steels and SA508 specification. In addition, we have surveyed the research result of HSLA(High Strength Low Alloy steel), which has similar chemical compositions with SA508 Gr.4N, to understand the problems and the way of improvement of SA508 Gr.4N low alloy steel. And also, we have investigated eastern RPV steel(WWER-1000), which has higher Ni contents compared to western RPV steel.

  13. Topic 1. Steels for light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Brynda, J.; Kepka, M.; Barackova, L.; Vacek, M.; Havel, S.; Cukr, B.; Protiva, K.; Petrman, I.; Tvrdy, M.; Hyspecka, L.; Mazanec, K.; Kupca, L.; Brezina, M.

    1980-01-01

    Part 1 of the Proceedings consists of papers on the criteria for the selection and comparison of the properties of steel for pressure vessels and on the metallurgy of the said steels, the selection of suitable material for internal tubing systems, the manufacture of high-alloy steels for WWER components, the mechanical and metallurgical properties of steel 22K for WWER 440 pressure components, and of steel 10MnNi2Mo for the WWER primary coolant circuit, and the metallographic assessment of steel 0Kh18N10T. (J.P.)

  14. Mechanical properties of reactor pressure vessel steels studied by static and dynamic torsion tests

    International Nuclear Information System (INIS)

    Munier, A.; Maamouri, M.; Schaller, R.; Mercier, O.

    1993-01-01

    Internal friction measurements and torsional plastic deformation tests have been performed in reactor pressure vessel steels (unirradiated, irradiated and irradiated/annealed specimens). The results of these experiments have been interpreted with help of transmission electron microscopy observations (conventional and in situ). It is shown how the interactions between screw dislocations and obstacles (Peierls valleys, impurities and precipitates) could explain the low temperature hardening and the irradiation embrittlement of ferritic steels. In addition, it appears that the nondestructive internal friction technique could be used advantageously to follow the evolution of the material properties under irradiation, as for instance the irradiation embrittlement of the reactor pressure vessel steels. (orig.)

  15. Irradiation effects in low-alloy reactor pressure vessel steels (Heavy-Section Steel Technology program series 4 and 5)

    International Nuclear Information System (INIS)

    McGowan, J.J.; Nanstad, R.K.; Thoms, K.R.; Menke, B.H.

    1985-01-01

    This report presents studies on the irradiation effects in low-alloy reactor pressure vessel steels. The Fourth Heavy-Section Steel Technology (HSST) Irradiation Series, almost completed, was aimed at elastic-plastic and fully plastic fracture toughness of low-copper weldments (''current practice welds''). A typical nuclear pressure vessel plate steel was included for statistical purposes. The Fifth HSST Irradiation Series, now in progress, is aimed at determining the shape of the K/sub IR/ curve after significant radiation-induced shift of the transition temperatures. This series includes irradiated test specimens of thicknesses up to 100 mm and weldment compositions typical of early nuclear power reactor pressure vessel welds. 27 refs., 22 figs

  16. Swelling, mechanical properties, and microstructure of Type 316 stainless steel at fusion reactor damage levels

    International Nuclear Information System (INIS)

    Horak, J.A.; Bloom, E.E.; Grossbeck, M.L.; Maziasz, P.J.; Stiegler, J.O.; Wiffen, F.W.

    1979-01-01

    Alloys such as AISI 316 stainless steel exhibit more swelling and larger decreases in ductility when irradiated to produce fusion reactor He and dpa levels than at fast reactor He and dpa levels. For T approx. 0 C to ensure adequate ductility for long-term service

  17. Elevated-Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, RL

    2005-01-31

    In the 1970s, high-chromium (9-12% Cr) ferritic/martensitic steels became candidates for elevated-temperature applications in the core of fast reactors. Steels developed for conventional power plants, such as Sandvik HT9, a nominally Fe-12Cr-1Mo-0.5W-0.5Ni-0.25V-0.2C steel (composition in wt %), were considered in the United States, Europe, and Japan. Now, a new generation of fission reactors is in the planning stage, and ferritic, bainitic, and martensitic steels are again candidates for in-core and out-of-core applications. Since the 1970s, advances have been made in developing steels with 2-12% Cr for conventional power plants that are significant improvements over steels originally considered. This paper will review the development of the new steels to illustrate the advantages they offer for the new reactor concepts. Elevated-temperature mechanical properties will be emphasized. Effects of alloying additions on long-time thermal exposure with and without stress (creep) will be examined. Information on neutron radiation effects will be discussed as it applies to ferritic and martensitic steels.

  18. Swelling and swelling resistance possibilities of austenitic stainless steels in fusion reactors

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1983-01-01

    Fusion reactor helium generation rates in stainless steels are intermediate to those found in EBR-II and HFIR, and swelling in fusion reactors may differ from the fission swelling behavior. Advanced titanium-modified austenitic stainless steels exhibit much better void swelling resistance than AISI 316 under EBR-II (up to approx. 120 dpa) and HFIR (up to approx. 44 dpa) irradiations. The stability of fine titanium carbide (MC) precipitates plays an important role in void swelling resistance for the cold-worked titanium-modified steels irradiated in EBR-II. Futhermore, increased helium generation in these steels can (a) suppress void conversion, (b) suppress radiation-induced solute segregation (RIS), and (c) stabilize fine MC particles, if sufficient bubble nucleation occurs early in the irradation. The combined effects of helium-enhanced MC stability and helium-suppressed RIS suggest better void swelling resistance in these steels for fusion service than under EBR-II irradiation

  19. Microstructural investigations of fast reactor irradiated austenitic and ferritic-martensitic stainless steel fuel cladding

    International Nuclear Information System (INIS)

    Agueev, V.S.; Medvedeva, E.A.; Mitrofanova, N.M.; Romanueev, V.V.; Tselishev, A.V.

    1992-01-01

    Electron microscopy has been used to characterize the microstructural changes induced in advanced fast reactor fuel claddings fabricated from Cr16Ni15Mo3NbB and Cr16Ni15Mo2Mn2TiVB austenitic stainless steels in the cold worked condition and Cr13Mo2NbVB ferritic -martensitic steel following irradiation in the BOR-60, BN-350 and BN-600 fast reactors. The data are compared with the results obtained from a typical austenitic commercial cladding material, Cr16Ni15Mo3Nb, in the cold worked condition. The results reveal a beneficial effect of boron and other alloying elements in reducing void swelling in 16Cr-15Ni type austenitic steels. The high resistance of ferritic-martensitic steels to void swelling has been confirmed in the Cr13Mo2NbVB steel. (author)

  20. Evaluation of the Steel Creek ecosystem in relation to the proposed restart of L reactor

    International Nuclear Information System (INIS)

    Smith, M.H.; Sharitz, R.R.; Gladden, J.B.

    1981-10-01

    Information is presented on the following subjects: habitat and vegetation, the avifauna, semi-aquatic and terrestrial vertebrates, and aquatic communities of Steel Creek, species of special concern, and radiocesium in Steel Creek. Two main goals of the study were the compilation of a current inventory of the flora and fauna of the Steel Creek ecosystem and an assessment of the probable impacts of radionuclides, primarily 137 Cs, that were released into Steel Creek during earlier reactor operations. Although a thorough evaluation of the impacts of the L reactor restart is impossible at this time, it is concluded that the effects on the Steel Creek ecosystem will be substantial if no mitigative measures are taken

  1. In-reactor creep rupture of 20% cold-worked AISI 316 stainless steel

    International Nuclear Information System (INIS)

    Lovell, A.J.; Chin, B.A.; Gilbert, E.R.

    1981-01-01

    Results of an experiment designed to measure in-reactor stress-to-rupture properties of 20% cold-worked AISI 316 stainless steel are reported. The in-reactor rupture data are compared with postirradiation and unirradiated test results. In-reactor rupture lives were found to exceed rupture predictions of postirradiation tests. This longer in-reactor rupture life is attributed to dynamic point defect generation which is absent during postirradiation testing. The in-reactor stress-to-rupture properties are shown to be equal to or greater than the unirradiated material stress-to-rupture properties for times up to 7000 h. (author)

  2. Attenuation capability of low activation-modified high manganese austenitic stainless steel for fusion reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Eissa, M.M. [Steel Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan (Egypt); El-kameesy, S.U.; El-Fiki, S.A. [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Ghali, S.N. [Steel Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan (Egypt); El Shazly, R.M. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt); Saeed, Aly, E-mail: aly_8h@yahoo.com [Nuclear Power station Department, Faculty of Engineering, Egyptian-Russian University, Cairo (Egypt)

    2016-11-15

    Highlights: • Improvement stainless steel alloys to be used in fusion reactors. • Structural, mechanical, attenuation properties of investigated alloys were studied. • Good agreement between experimental and calculated results has been achieved. • The developed alloys could be considered as candidate materials for fusion reactors. - Abstract: Low nickel-high manganese austenitic stainless steel alloys, SSMn9Ni and SSMn10Ni, were developed to use as a shielding material in fusion reactor system. A standard austenitic stainless steel SS316L was prepared and studied as a reference sample. The microstructure properties of the present stainless steel alloys were investigated using Schaeffler diagram, optical microscopy, and X-ray diffraction pattern. Mainly, an austenite phase was observed for the prepared stainless steel alloys. Additionally, a small ferrite phase was observed in SS316L and SSMn10Ni samples. The mechanical properties of the prepared alloys were studied using Vickers hardness and tensile tests at room temperature. The studied manganese stainless steel alloys showed higher hardness, yield strength, and ultimate tensile strength than SS316L. On the other hand, the manganese stainless steel elongation had relatively lower values than the standard SS316L. The removal cross section for both slow and total slow (primary and those slowed down in sample) neutrons were carried out using {sup 241}Am-Be neutron source. Gamma ray attenuation parameters were carried out for different gamma ray energy lines which emitted from {sup 60}Co and {sup 232}Th radioactive sources. The developed manganese stainless steel alloys had a higher total slow removal cross section than SS316L. While the slow neutron and gamma rays were nearly the same for all studied stainless steel alloys. From the obtained results, the developed manganese stainless steel alloys could be considered as candidate materials for fusion reactor system with low activation based on the short life

  3. Reactor Materials Program electrochemical potential measurements by ORNL with unirradiated and irradiated stainless steel specimens

    International Nuclear Information System (INIS)

    Baumann, E.W.; Caskey, G.R. Jr.

    1993-07-01

    Effect of irradiation of stainless steel on electrochemical potential (ECP) was investigated by measurements in dilute HNO 3 and H 2 O 2 solutions, conditions simulating reactor moderator. The electrodes were made from unirradiated/irradiated, unsensitized/sensitized specimens from R-reactor piping. Results were inconclusive because of budgetary restrictions. The dose rate may have been too small to produce a significant radiolytic effect. Neither the earlier CERT corrosion susceptibility tests nor the present ECP measurements showed a pronounced effect of irradiation on susceptibility of the stainless steel to IGSCC; this is confirmed by the absence in the stainless steel of the SRS reactor tanks (except for the C Reactor tank knuckle area)

  4. Reactor Materials Program electrochemical potential measurements by ORNL with unirradiated and irradiated stainless steel specimens

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, E.W.; Caskey, G.R. Jr.

    1993-07-01

    Effect of irradiation of stainless steel on electrochemical potential (ECP) was investigated by measurements in dilute HNO{sub 3} and H{sub 2}O{sub 2} solutions, conditions simulating reactor moderator. The electrodes were made from unirradiated/irradiated, unsensitized/sensitized specimens from R-reactor piping. Results were inconclusive because of budgetary restrictions. The dose rate may have been too small to produce a significant radiolytic effect. Neither the earlier CERT corrosion susceptibility tests nor the present ECP measurements showed a pronounced effect of irradiation on susceptibility of the stainless steel to IGSCC; this is confirmed by the absence in the stainless steel of the SRS reactor tanks (except for the C Reactor tank knuckle area).

  5. Effect of the plutonium isotopic composition on the performance of fast reactors; Effet de la composition isotopique du plutonium sur le rendement de reacteurs a neutrons rapides; Vliyanie izotopnogo sostava plutoniya na rabotu reaktorov na bystrykh nejtronakh; Efectos de la composicion isotopica del plutonio sobre el funcionamiento de los reactores rapidos

    Energy Technology Data Exchange (ETDEWEB)

    Yiftah, S [Israel Atomic Energy Commission (Israel)

    1962-03-15

    The isotopic composition of plutonium to be used as fuel for fast reactors will depend on the source of plutonium. In principle three different sources are possible: (a) production reactors; (6) thermal power reactors (using natural uranium or enriched uranium as fuel); (c) fast reactor blankets. In general, source (a) and to some extent source (c) will provide relatively 'clean' plutonium, that is mostly Pu{sup 239}, while plutonium from source (6) will be 'dirty' plutonium, that is plutonium rich in Pu{sup 240}, Pu{sup 241}, and Pu{sup 242}. The degree of 'dirtiness' will depend on the kind of reactor, amount of burn-up and in general on the irradiation history of the fuel. The question then arises, can one use as fuel for fast reactors any kind of plutonium? To investigate the effect of different isotopic composition of the plutonium fuel, in the metallic, oxide and carbide form, on the performance of fast reactors, a limited series of spherical geometry 16-group diffusion theory calculations were performed, using the 16-group cross-section set developed recently by Yiftah, Okrent and Moldauer and taking three different kinds of plutonium, starting with pure Pu{sup 239} and increasing the amount of higher isotopes. For the systems studied-800, 1500 and 2500-l core-volumes, which are typical for large fast power reactors-the result is, when one takes into account only the thermally fissionable isotopes Pu{sup 239} arid Pu{sup 241}, that the 'dirtier' the plutonium, the smaller the critical mass and the higher the breeding ratio. For the 1500-l reactor, taken as an example, it is further found that in the metallic, oxide and carbide plutonium fuels the reactivity change upon removal of 40% of the sodium initially present in the core is made more negative (or less positive) when the plutonium is richer in higher isotopes. (author) [French] La composition isotopique du plutonium qui doit etre utilise comme combustible dans des reacteurs a neutrons rapides depend de

  6. Optimum alloy compositions in reduced-activation martensitic 9Cr steels for fusion reactor

    International Nuclear Information System (INIS)

    Abe, F.; Noda, T.; Okada, M.

    1992-01-01

    In order to obtain potential reduced-activation ferritic steels suitable for fusion reactor structures, the effect of alloying elements W and V on the microstructural evolution, toughness, high-temperature creep and irradiation hardening behavior was investigated for simple 9Cr-W and 9Cr-V steels. The creep strength of the 9Cr-W steels increased but their toughness decreased with increasing W concentration. The 9Cr-V steels exhibited poor creep rupture strength, far below that of a conventional 9Cr-1MoVNb steel and poor toughness after aging at 873 K. It was also found that the Δ-ferrite should be avoided, because it degraded both the roughness and high-temperature creep strength. Based on the results on the simple steels, optimized martensitic 9Cr steels were alloy-designed from a standpoint of enough thoughness and high-temperature creep strength. Two kinds of optimized 9Cr steels with low and high levels of W were obtained; 9Cr-1WVTa and 9Cr-3WVTa. These steels indeed exhibited excellent toughness and creep strength, respectively. The 9Cr-1WVTa steel exhibiting an excellent roughness was shown to be the most promising for relatively low-temperature application below 500deg C, where irradiation embrittlement is significant. The 9Cr-3WVTa steel was the most promising for high temperature application above 500deg C from the standpoint of enough high-temperature strength. (orig.)

  7. Guide to the periodic inspection of nuclear reactor steel pressure vessels

    International Nuclear Information System (INIS)

    1969-01-01

    This Guide is intended to provide general information and guidance to reactor owners or operators, inspection authorities, certifying authorities or regulatory bodies who are responsible for establishing inspection procedures for specific reactors or reactor types, and for the preparation of national codes or standards. The recommendations of the Guide apply primarily to water-cooled steel reactor vessels which are at a sufficiently early stage of design so that recommendations to provide accessibility for inspection can be incorporated into the early stages of design and inspection planning. However, much of the contents of the Guide are also applicable in part to vessels for other reactor types, such as gas-cooled, pressure-tube, or liquid-metal-cooled reactors, and also to some existing water-cooled reactors and reactors which are in advanced stage of design or construction. 46 refs, figs, 1 tab

  8. A study on the irradiation embrittlement and recovery characteristics of light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Chi, Se Hwan; Hong, Jun Hwa; Lee, Bong Sang; Oh, Jong Myung; Song, Sook Hyang; Milan, Brumovsky

    1999-03-01

    The neutron irradiation embrittlement phenomenon of light water RPV steels greatly affects the life span for safe operation of a reactor. Reliable evaluation and prediction of the embrittlement of RPV steels, especially of aged reactors, are of importance to the safe operation of a reactor. In addition, the thermal recovery of embrittled RPV has been recognized as an option for life extension. This study aimed to tracer/refine available technologies for embrittlement characterization and prediction, to prepare relevant materials for several domestic RPV steels of the embrittlement and recovery, and to find out possible remedy for steel property betterment. Small specimen test techniques, magnetic measurement techniques, and the Meechan and Brinkmann's recovery curve analysis method were examined/applied as the evaluation techniques. Results revealed a high irradiation sensitivity in YG 3 RPV steel. Further extended study may be urgently needed. Both the small specimen test technique for the direct determination of fracture toughness, and the magnetic measurement technique for embrittlement evaluation appeared to be continued for the technical improvement and data base preparation. Manufacturing process relevant to the heat treatment appeared to be improved in lowering the irradiation sensitivity of the steel. Further study is needed especially in applying the present techniques to the new structural materials under new irradiation environment of advanced reactors. (author)

  9. Mechanical Performance of Ferritic Martensitic Steels for High Dose Applications in Advanced Nuclear Reactors

    Science.gov (United States)

    Anderoglu, Osman; Byun, Thak Sang; Toloczko, Mychailo; Maloy, Stuart A.

    2013-01-01

    Ferritic/martensitic (F/M) steels are considered for core applications and pressure vessels in Generation IV reactors as well as first walls and blankets for fusion reactors. There are significant scientific data on testing and industrial experience in making this class of alloys worldwide. This experience makes F/M steels an attractive candidate. In this article, tensile behavior, fracture toughness and impact property, and creep behavior of the F/M steels under neutron irradiations to high doses with a focus on high Cr content (8 to 12) are reviewed. Tensile properties are very sensitive to irradiation temperature. Increase in yield and tensile strength (hardening) is accompanied with a loss of ductility and starts at very low doses under irradiation. The degradation of mechanical properties is most pronounced at martensitic steels exhibit a high fracture toughness after irradiation at all temperatures even below 673 K (400 °C), except when tested at room temperature after irradiations below 673 K (400 °C), which shows a significant reduction in fracture toughness. Creep studies showed that for the range of expected stresses in a reactor environment, the stress exponent is expected to be approximately one and the steady state creep rate in the absence of swelling is usually better than austenitic stainless steels both in terms of the creep rate and the temperature sensitivity of creep. In short, F/M steels show excellent promise for high dose applications in nuclear reactors.

  10. A study on the irradiation embrittlement and recovery characteristics of light water reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Se Hwan; Hong, Jun Hwa; Lee, Bong Sang; Oh, Jong Myung; Song, Sook Hyang; Milan, Brumovsky [NRI Czech (Czech Republic)

    1999-03-01

    The neutron irradiation embrittlement phenomenon of light water RPV steels greatly affects the life span for safe operation of a reactor. Reliable evaluation and prediction of the embrittlement of RPV steels, especially of aged reactors, are of importance to the safe operation of a reactor. In addition, the thermal recovery of embrittled RPV has been recognized as an option for life extension. This study aimed to tracer/refine available technologies for embrittlement characterization and prediction, to prepare relevant materials for several domestic RPV steels of the embrittlement and recovery, and to find out possible remedy for steel property betterment. Small specimen test techniques, magnetic measurement techniques, and the Meechan and Brinkmann's recovery curve analysis method were examined/applied as the evaluation techniques. Results revealed a high irradiation sensitivity in YG 3 RPV steel. Further extended study may be urgently needed. Both the small specimen test technique for the direct determination of fracture toughness, and the magnetic measurement technique for embrittlement evaluation appeared to be continued for the technical improvement and data base preparation. Manufacturing process relevant to the heat treatment appeared to be improved in lowering the irradiation sensitivity of the steel. Further study is needed especially in applying the present techniques to the new structural materials under new irradiation environment of advanced reactors. (author)

  11. Structure and creep of Russian reactor steels with a BCC structure

    Science.gov (United States)

    Sagaradze, V. V.; Kochetkova, T. N.; Kataeva, N. V.; Kozlov, K. A.; Zavalishin, V. A.; Vil'danova, N. F.; Ageev, V. S.; Leont'eva-Smirnova, M. V.; Nikitina, A. A.

    2017-05-01

    The structural phase transformations have been revealed and the characteristics of the creep and long-term strength at 650, 670, and 700°C and 60-140 MPa have been determined in six Russian reactor steels with a bcc structure after quenching and high-temperature tempering. Creep tests were carried out using specially designed longitudinal and transverse microsamples, which were fabricated from the shells of the fuel elements used in the BN-600 fast neutron reactor. It has been found that the creep rate of the reactor bcc steels is determined by the stability of the lath martensitic and ferritic structures in relation to the diffusion processes of recovery and recrystallization. The highest-temperature oxide-free steel contains the maximum amount of the refractory elements and carbides. The steel strengthened by the thermally stable Y-Ti nanooxides has a record high-temperature strength. The creep rate at 700°C and 100 MPa in the samples of this steel is lower by an order of magnitude and the time to fracture is 100 times greater than that in the oxide-free reactor steels.

  12. European development of ferritic-martensitic steels for fast reactor wrapper applications

    International Nuclear Information System (INIS)

    Bagley, K.; Little, E.A.; Levy, V.; Alamo, A.

    1987-01-01

    9-12%Cr ferritic-martensitic stainless steels are under development in Europe for fast reactor sub-assembly wrapper applications. Within this class of alloys, attention is focussed on three key specifications, viz. FV448 and DIN 1.4914 (both 10-12%CrMoVNb steels) and EM10 (an 8-10%Cr-0.15%C steel), which can be optimized to give acceptably low ductile-brittle transition characteristics. The results of studies on these steels, and earlier choices, covering heat treatment and compositional optimization, evolution of wrapper fabrication routes, pre and post-irradiation mechanical property and fracture toughness behaviour, microstructural stability, void swelling and in-reactor creep characteristics are reviewed. The retention of high void swelling to displacement doses in excess of 100 dpa in reactor irradiations reaffirms the selection of 9-12%Cr steels for on-going wrapper development. Moreover, irradiation-induced changes in mechanical properties (e.g. in-reactor creep and impact behaviour), measured to intermediate doses, do not give cause for concern; however, additional data to higher doses and at the lower irradiation temperatures of 370 0 -400 0 C are needed in order to fully endorse these alloys for high burnup applications in advanced reactor systems

  13. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    Science.gov (United States)

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. Copyright © 2014. Published by Elsevier B.V.

  14. Studies of fragileness in steels of vessels of BWR reactors; Estudios de fragilizacion en aceros de vasija de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Robles, E.F.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The structural materials with those that are manufactured the pressure vessels of the BWR reactors, suffer degradation in its mechanical properties mainly to the damage taken place by the fast neutrons (E > 1 MeV) coming from the reactor core. Its are experimentally studied those mechanisms of neutron damage in this material type, by means of the irradiation of steel vessel in experimental reactors to age them quickly. Alternatively it is simulated the neutron damage by means of irradiation of steel with heavy ions. In this work those are shown first results of the damage induced by irradiation from a similar steel to the vessel of a BWR reactor. The irradiation was carried out with fast neutrons (E > 1 MeV, fluence of 1.45 x 10{sup 18} n/cm{sup 2}) in the TRIGA MARK lll reactor and separately with Ni{sup +3} ions in a Tandetrom accelerator, E = 4.8 MeV and range of the ionic flow of 0.1 to 53 iones/A{sup 2}. (Author)

  15. Flaw evaluation of thermally aged cast stainless steel in light-water reactor applications

    International Nuclear Information System (INIS)

    Lee, S.; Kuo, P.T.; Wichman, K.; Chopra, O.

    1997-01-01

    Cast stainless steel may be used in the fabrication of the primary loop piping, fittings, valve bodies, and pump casings in light-water reactors. However, this material is subject to embrittlement due to thermal aging at the reactor temperature, that is 290 o C (550 o F). The Argonne National Laboratory (ANL) recently completed a research program and the results indicate that the lower-bound fracture toughness of thermally aged cast stainless steel is similar to that of submerged arc welds (SAWs). Thus, the US Nuclear Regulatory Commission (NRC) staff has accepted the use of SAW flaw evaluation procedures in IWB-3640 of Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code to evaluate flaws in thermally aged cast stainless steel for a license renewal evaluation. Alternatively, utilities may estimate component-specific fracture toughness of thermally aged cast stainless steel using procedures developed at ANL for a case-by-case flaw evaluation. (Author)

  16. Adaptation of fuel code for light water reactor with austenitic steel rod cladding

    International Nuclear Information System (INIS)

    Gomes, Daniel de Souza; Silva, Antonio Teixeira; Giovedi, Claudia

    2015-01-01

    Light water reactors were used with steel as nuclear fuel cladding from 1960 to 1980. The high performance proved that the use of low-carbon alloys could substitute the current zirconium alloys. Stainless steel is an alternative that can be used as cladding. The zirconium alloys replaced the steel. However, significant experiences in-pile occurred, in commercial units such as Haddam Neck, Indian Point, and Yankee experiences. Stainless Steel Types 347 and 348 can be used as cladding. An advantage of using Stainless Steel was evident in Fukushima when a large number of hydrogens was produced at high temperatures. The steel cladding does not eliminate the problem of accumulating free hydrogen, which can lead to a risk of explosion. In a boiling water reactor, environments easily exist for the attack of intergranular corrosion. The Stainless Steel alloys, Types 321, 347, and 348, are stabilized against attack by the addition of titanium, niobium, or tantalum. The steel Type 348 is composed of niobium, tantalum, and cobalt. Titanium preserves type 321, and niobium additions stabilize type 347. In recent years, research has increased on studying the effects of irradiation by fast neutrons. The impact of radiation includes changes in flow rate limits, deformation, and ductility. The irradiation can convert crystalline lattices into an amorphous structure. New proposals are emerging that suggest using a silicon carbide-based fuel rod cladding or iron-chromium-aluminum alloys. These materials can substitute the classic zirconium alloys. Once the steel Type 348 was chosen, the thermal and mechanical properties were coded in a library of functions. The fuel performance codes contain all features. A comparative analysis of the steel and zirconium alloys was made. The results demonstrate that the austenitic steel alloys are the viable candidates for substituting the zirconium alloys. (author)

  17. Adaptation of fuel code for light water reactor with austenitic steel rod cladding

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel de Souza; Silva, Antonio Teixeira, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (POLI/USP), Sao Paulo, SP (Brazil). Lab. de Analise, Avaliacao e Gerenciamento de Risco

    2015-07-01

    Light water reactors were used with steel as nuclear fuel cladding from 1960 to 1980. The high performance proved that the use of low-carbon alloys could substitute the current zirconium alloys. Stainless steel is an alternative that can be used as cladding. The zirconium alloys replaced the steel. However, significant experiences in-pile occurred, in commercial units such as Haddam Neck, Indian Point, and Yankee experiences. Stainless Steel Types 347 and 348 can be used as cladding. An advantage of using Stainless Steel was evident in Fukushima when a large number of hydrogens was produced at high temperatures. The steel cladding does not eliminate the problem of accumulating free hydrogen, which can lead to a risk of explosion. In a boiling water reactor, environments easily exist for the attack of intergranular corrosion. The Stainless Steel alloys, Types 321, 347, and 348, are stabilized against attack by the addition of titanium, niobium, or tantalum. The steel Type 348 is composed of niobium, tantalum, and cobalt. Titanium preserves type 321, and niobium additions stabilize type 347. In recent years, research has increased on studying the effects of irradiation by fast neutrons. The impact of radiation includes changes in flow rate limits, deformation, and ductility. The irradiation can convert crystalline lattices into an amorphous structure. New proposals are emerging that suggest using a silicon carbide-based fuel rod cladding or iron-chromium-aluminum alloys. These materials can substitute the classic zirconium alloys. Once the steel Type 348 was chosen, the thermal and mechanical properties were coded in a library of functions. The fuel performance codes contain all features. A comparative analysis of the steel and zirconium alloys was made. The results demonstrate that the austenitic steel alloys are the viable candidates for substituting the zirconium alloys. (author)

  18. Characteristics of Modified 9Cr-1Mo Steel for Reactor Pressure Vessel of Very High Temperature Gas Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ho; Ryu, W. S.; Han, Chang Hee; Yoon, J. H.; Chang, Jong Hwa

    2004-11-15

    Many researches and developments have been progressed for the construction of VHTR by 2020 in Korea. Modified 9Cr-1Mo steel has been receiving attention for the application to the reactor pressure vessel material of VHTR. We collected and analyzed the research data for modified 9Cr-1Mo steel in order to understand the characteristics of modified 9Cr-1Mo steel. The modified 9Cr-1Mo steel is a modified alloy system similar to conventional 9Cr-1Mo grade ferritic steel. Modifications include additions of vanadium, niobium, and nitrogen, as well as lower carbon content. In this report, we summarized the change of microstructure and mechanical properties after tempering, thermal aging, and irradiation. Modified 9Cr-1Mo steel has high strength and thermal conductivity, low thermal expansion, and good resistance to corrosion. But the irradiation embrittlement behavior of modified 9Cr-1Mo steel should be evaluated and the evaluation methodology also should be developed. At the same time, the characteristics of weldment which is the weak part in pressure vessel should be evaluated.

  19. The effects of stainless steel radial reflector on core reactivity for small modular reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jung Kil, E-mail: jkkang@email.kings.ac.kr; Hah, Chang Joo, E-mail: changhah@kings.ac.kr [KINGS, 658-91, Haemaji-ro, Seosaeng-myeon, Ulju-gun, Ulsan, 689-882 (Korea, Republic of); Cho, Sung Ju, E-mail: sungju@knfc.co.kr; Seong, Ki Bong, E-mail: kbseong@knfc.co.kr [KNFC, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2016-01-22

    Commercial PWR core is surrounded by a radial reflector, which consists of a baffle and water. Radial reflector is designed to reflect neutron back into the core region to improve the neutron efficiency of the reactor and to protect the reactor vessels from the embrittling effects caused by irradiation during power operation. Reflector also helps to flatten the neutron flux and power distributions in the reactor core. The conceptual nuclear design for boron-free small modular reactor (SMR) under development in Korea requires to have the cycle length of 4∼5 years, rated power of 180 MWth and enrichment less than 5 w/o. The aim of this paper is to analyze the effects of stainless steel radial reflector on the performance of the SMR using UO{sub 2} fuels. Three types of reflectors such as water, water/stainless steel 304 mixture and stainless steel 304 are selected to investigate the effect on core reactivity. Additionally, the thickness of stainless steel and double layer reflector type are also investigated. CASMO-4/SIMULATE-3 code system is used for this analysis. The results of analysis show that single layer stainless steel reflector is the most efficient reflector.

  20. Survey of postirradiation heat treatment as a means to mitigate radiation embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1979-01-01

    Nuclear-radiation service typically produces a progressive reduction in the notch ductility of low-alloy steels. The reduction is manifested by a decrease in Charpy-V (Csub(v)) upper-shelf energy level and by an elevation in temperature of the ductile-to-brittle transition. Post irradiation heat treatment (annealing) is being investigated as a method for the reversal of these detrimental radiation effects for reactor-vessel steels. This study was undertaken to analyze factors which could affect annealing response, report data available to qualify suspected influences on annealing, and summarize experimental results generated for many commercially produced reactor materials and companion materials produced in the laboratory

  1. Development of ODS (oxide dispersion strengthened) ferritic-martensitic steels for fast reactor fuel cladding

    International Nuclear Information System (INIS)

    Ukai, Shigeharu

    2000-01-01

    In order to attain higher burnup and higher coolant outlet temperature in fast reactor, oxide dispersion strengthened (ODS) ferritic-martensitic steels were developed as a long life fuel cladding. The improvement in formability and ductility, which are indispensable in the cold-rolling method for manufacturing cladding tube, were achieved by controlling the microstructure using techniques such as recrystallization heat-treatment and α to γ phase transformation. The ODS ferritic-martensitic cladding tubes manufactured using these techniques have the highest internal creep rupture strength in the world as ferritic stainless steels. Strength level approaches adequate value at 700degC, which meets the requirement for commercial fast reactors. (author)

  2. Comparison of material property specifications of ferritic steels in fast-breeder reactor technology

    International Nuclear Information System (INIS)

    Delporte, E.; Vanderborck, Y.

    1988-01-01

    The component fabrications for the fast breeder reactors request the use of ferritic steels specially appropriated for the construction of the equipments sustaining pressure and high temperature. The Activity Group nr 3 Materials of the FRCC has decided to make a study to compare the different norms related to the properties of somme ferritic steels used in the different European fast breeder projects. In particular, this study should allow in the different countries of the Community, to identify the designation of a specific steel and to compare its properties. Deviations between the different norms of a same material are mentioned to facilitate European standardization of this type of material

  3. Control of activation levels to simplify waste management of fusion reactor ferritic steel components

    International Nuclear Information System (INIS)

    Wiffen, F.W.; Santoro, R.T.

    1984-01-01

    The objective of this work is to examine the restrictions placed on the composition of steels to allow simplified waste management after service in a fusion reactor first wall. Decay of steel activity within tens of years could simplify waste disposal or even permit recycle. For material recycle, N, Al, Ni, Cu, Nb, and Mo must be excluded. For shallow land burial, initial concentration limits include (in at. ppM) Ni, <20,000; Mo, <3650; N, <3650; Cu, <2400; and Nb, <1.0. Other constituents of steels will not be limited

  4. Characterization of four prestressed concrete reactor vessel liner steels

    International Nuclear Information System (INIS)

    Nanstad, R.K.

    1980-12-01

    A program of fracture toughness testing and analysis is being performed with PCRV steels for HTGRs. This report focuses on background information for the base materials and results of characterization testing, such as tensile and impact properties, chemical composition, and microstructural examination. The steels tested were an SA-508 class 1 forging, two plates of SA-537 class 1, and one plate of SA-537 class 2. Tensile requirements in effect at the time of procurement are met by all four steels. However, the SA-537 class 2 plate would not meet the minimum requirement for yield strength. Drop-weight and Charpy impact tests verified that the RT/sub NDT/ is equal to the NDT for each steel. Charpy impact energies at the NDT range from 40 J (30 ft-lb) for one heat of SA-537 class 1 to 100 J (74 ft-lb) for the SA-537 class 2 plate; upper-shelf energies range from 170 to 310 J (125 to 228 ft-lb) for the same two steels, respectively. The onset of upper-shelf energy occurred at temperatures ranging from 0 to 50 0 C

  5. Ductile austenitic steel for fuel cans and core components of sodium cooled reactors

    International Nuclear Information System (INIS)

    Schaefer, L.

    1995-01-01

    Two austenitic steel melts of a new composition have been studied after irradiation in the PFR fast neutron flux, in the BR2 reactor, and in the Harwell V.E. Cyclotron. The investigations were focussed on helium embrittlement and irradiation induced swelling. (orig.)

  6. Isothermal and thermal–mechanical fatigue of VVER-440 reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, Balazs, E-mail: fekete.mm.bme@gmail.com [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Department of Applied Mechanics, Budapest University of Technology and Economics, Muegyetem 5, Budapest H-1111 (Hungary); Trampus, Peter [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary)

    2015-09-15

    Highlights: • We aimed to determine the thermomechanical behaviour of VVER reactor steels. • Material tests were developed and performed on GLEEBLE 3800 physical simulator. • Coffin–Manson curves and parameters were derived. • High accuracy of the strain energy based evaluation was found. • The observed dislocation evolution correlates with the mechanical behaviour. - Abstract: The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin–Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  7. Positron annihilation and Moessbauer studies of neutron irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Brauer, G.; Matz, W.; Liszkay, L.; Molnar, B.

    1990-11-01

    Positron annihilation (lifetime, Doppler broadening) and Moessbauer studies on unirradiated, neutron irradiated and neutron irradiated plus annealed reactor pressure vessel steels (Soviet type 15Kh2NMFA) are presented. The role of microstructural properties and the formation of irradiation-induced precipitates is discussed. (orig.) [de

  8. Correlation between radiation damage and magnetic properties in reactor vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Kempf, R.A., E-mail: kempf@cnea.gov.ar [División Caracterización, GCCN, CAC-CNEA (Argentina); Sacanell, J. [Departamento Física de la Materia Condensada, GIyA, CAC-CNEA, CONICET (Argentina); Milano, J. [División Resonancias Magnéticas, CAB-CNEA, CONICET (Argentina); Guerra Méndez, N. [Departamento Física de la Materia Condensada, GIyA, CAC-CNEA, CONICET (Argentina); Winkler, E.; Butera, A. [División Resonancias Magnéticas, CAB-CNEA, CONICET (Argentina); Troiani, H. [División Física de Metales, CAB-CNEA and Instituto Balseiro (UNCU), CONICET (Argentina); Saleta, M.E. [División Resonancias Magnéticas, CAB-CNEA, CONICET (Argentina); Fortis, A.M. [Departamento Estructura y Comportamiento. Gerencia Materiales-GAEN, CAC-CNEA (Argentina)

    2014-02-01

    Since reactor pressure vessel steels are ferromagnetic, provide a convenient means to monitor changes in the mechanical properties of the material upon irradiation with high energy particles, by measuring their magnetic properties. Here, we discuss the correlation between mechanical and magnetic properties and microstructure, by studying the flux effect on the nuclear pressure vessel steel used in reactors currently under construction in Argentina. Charpy-V notched specimens of this steel were irradiated in the RA1 experimental reactor at 275 °C with two lead factors (LFs), 93 and 183. The magnetic properties were studied by means of DC magnetometry and ferromagnetic resonance. The results show that the coercive field and magnetic anisotropy spatial distribution are sensitive to the LF and can be explained by taking into account the evolution of the microstructure with this parameter. The saturation magnetization shows a dominant dependence on the accumulated damage. Consequently, the mentioned techniques are suitable to estimate the degradation of the reactor vessel steel.

  9. Lessons Learned From Developing Reactor Pressure Vessel Steel Embrittlement Database

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL

    2010-08-01

    Materials behaviors caused by neutron irradiation under fission and/or fusion environments can be little understood without practical examination. Easily accessible material information system with large material database using effective computers is necessary for design of nuclear materials and analyses or simulations of the phenomena. The developed Embrittlement Data Base (EDB) at ORNL is this comprehensive collection of data. EDB database contains power reactor pressure vessel surveillance data, the material test reactor data, foreign reactor data (through bilateral agreements authorized by NRC), and the fracture toughness data. The lessons learned from building EDB program and the associated database management activity regarding Material Database Design Methodology, Architecture and the Embedded QA Protocol are described in this report. The development of IAEA International Database on Reactor Pressure Vessel Materials (IDRPVM) and the comparison of EDB database and IAEA IDRPVM database are provided in the report. The recommended database QA protocol and database infrastructure are also stated in the report.

  10. RPV-1: A Virtual Test Reactor to simulate irradiation effects in light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Jumel, Stephanie; Van-Duysen, Jean Claude

    2005-01-01

    Many key components in commercial nuclear reactors are subject to neutron irradiation which modifies their mechanical properties. So far, the prediction of the in-service behavior and the lifetime of these components has required irradiations in so-called 'Experimental Test Reactors'. This predominantly empirical approach can now be supplemented by the development of physically based computer tools to simulate irradiation effects numerically. The devising of such tools, also called Virtual Test Reactors (VTRs), started in the framework of the REVE Project (REactor for Virtual Experiments). This project is a joint effort among Europe, the United States and Japan aimed at building VTRs able to simulate irradiation effects in pressure vessel steels and internal structures of LWRs. The European team has already built a first VTR, called RPV-1, devised for pressure vessel steels. Its inputs and outputs are similar to those of experimental irradiation programs carried out to assess the in-service behavior of reactor pressure vessels. RPV-1 is made of five codes and two databases which are linked up so as to receive, treat and/or convey data. A user friendly Python interface eases the running of the simulations and the visualization of the results. RPV-1 is sensitive to its inputs (neutron spectrum, temperature, ...) and provides results in conformity with experimental ones. The iterative improvement of RPV-1 has been started by the comparison of simulation results with the database of the IVAR experimental program led by the University of California Santa Barbara. These first successes led 40 European organizations to start developing RPV-2, an advanced version of RPV-1, as well as INTERN-1, a VTR devised to simulate irradiation effects in stainless steels, in a large effort (the PERFECT project) supported by the European Commission in the framework of the 6th Framework Program

  11. Compatibility of steels for fast breeder reactor in high temperature sodium

    International Nuclear Information System (INIS)

    Yuhara, Shunichi

    1981-01-01

    In recent years, considerable progress has been made and experience has been obtained for material applicability in sodium-cooled fast breeder reactors. In this report, materials, principal dimensions and sodium conditions for the reactor system components, which include fuel pin cladding, intermediate heat exchangers, steam generators and pipings, are reviewed with emphasis on the thin-walled, high temperature and high strength components. The corrosion, mechanical and tribological behavior in sodium of important materials used for the reactor components, such as Types 304 and 316 stainless steel and 2 1/4Cr-1Mo steel, are discussed on the basis of characteristic testing results. Furthermore, material requirements concerned with compatibility in sodium are summarized from this review and discussion. (author)

  12. Investigation of neutron irradiated reactor vessel steels using post-irradiation annealing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Hayato; Fukuya, Koji [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    The matrix damage is known to be a major factor that contributes to embrittlement and hardening of irradiated reactor vessel steels, and is assumed to be composed of the point defect clusters. However field emission gun scanning transmission electron microscopy (FEGSTEM) and atom probe (AP) could not detect any evidence of the matrix damage. In this study, post irradiation annealing experiments combining positron annihilation lineshape analysis (PALA) and hardness experiments were applied to an actual surveillance test specimen and a sample of reactor vessel steel irradiated in a material test reactor (MTR), in order to investigate the matrix damage recovery behavior and its contribution to hardening. It was confirmed that higher fluence increased the hardness and the volume fraction of open volume defects and that higher flux decreased the thermal stability of matrix damage and the effect on hardening. The contribution of matrix damage to hardening could be estimated to be below 30%. (author)

  13. Stainless steels in boiling water reactors. Corrosion problems and possible solutions

    International Nuclear Information System (INIS)

    Combrade, P.; Desestret, A.; Leroy, F.; Coriou, H.

    1977-01-01

    In boiling water reactors, the heat-carrying water may have an up to 0.1 or even 0.2 ppm oxygen content, which can make it highly agressive at operating temperature for stainless steels subject to high physical stresses. Several metallurgical solutions can be considered, and in particular the use of stainless steels having a mixed austenitic-ferritic structure or of standard austenitic steels (18.10 or 18.10 Mo, such as AISI 304 and 316) with carefully controlled carbon and alloy element contents. The behavior of these steels during prolonged tests in water at 288 0 C with a 30 and even 100 ppm oxygen content turned out to be quite satisfactory [fr

  14. Apparent embrittlement saturation and radiation mechanisms of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Pachur, D.

    1981-01-01

    The irradiation and annealing results of three different reactor pressure vessel steels are reported. Steel A, a basic material according to ASTM A-533 B having 0.15 percent vanadium; and Steel C contained 3.2 percent nickel. The steels were irradiated at 150, 300, and 400 degree C with neutron fluxes of 6 multiplied by 10 11 and 3 multiplied by 10 13 neutrons (n)/cm 2 /s. An apparent saturation-in-irradiation effect was found within certain neutron fluence ranges. During the annealing, various recovery processes occur in different temperature ranges. These are characterized by various activation energies. The individual processes were determined by the different time dependencies at various temperatures. Two causes for the apparent saturation were discovered from the behavior of the annealing curves

  15. Study of reactions between nuclear fuel and cladding (316 stainless steel) in reactors. Influence of oxygen

    International Nuclear Information System (INIS)

    Otter, Monique.

    1980-12-01

    We have studied oxidation of 316 steel in close contact with oxides (Usub(0,74)Pusub(0,26)O 2 or UO 2 ), the stoichiometry of oxygen ranging from 2.00 to 2.5. Experiments are carried out either in a closed isothermal system or in an opened isothermal system with a fixed oxygen potential of uranium oxide. We have realized a potentiostatic device using a solid state electrotyte galvanic cell. In a closed system, the sensitized austenitic steel shows intergranular and volume oxidation probably enhanced by migration of steel components towards the fuel. Evidence of the usefulness of passivation have been obtained. We conclude that in a fast reactor sensitized cladding steel is oxydized by the constant potential of oxygen of UPuO 2 . Deposits observed in fuel can be explain by evaporation and cyclic transport phenomena that can be differents from VAN-ARKEL mechanism taking place through fission products [fr

  16. Behavior of Type 316 stainless steel under simulated fusion reactor irradiation

    International Nuclear Information System (INIS)

    Wiffen, F.W.; Maziasz, P.J.; Bloom, E.E.; Stiegler, J.O.; Grossbeck, M.L.

    1978-05-01

    Fusion reactor irradiation response in alloys containing nickel can be simulated in thermal-spectrum fission reactors, where displacement damage is produced by the high-energy neutrons and helium is produced by the capture of two thermal neutrons in the reactions: 58 Ni + n → 59 Ni + γ; 59 Ni + n → 56 Fe + α. Examination of type 316 stainless steel specimens irradiated in HFIR has shown that swelling due to cavity formation and degradation of mechanical properties are more severe than can be predicted from fast reactor irradiations, where the helium contents produced are far too low to simulate fusion reactor service. Swelling values are greater and the temperature dependence of swelling is different than in the fast reactor case

  17. Inelastic Cyclic Deformation Behaviors of Type 316H Stainless Steel for Reactor Pressure Vessel of Sodium-Cooled Fast Reactor at Elevated Temperatures

    International Nuclear Information System (INIS)

    Yoon, Ji-Hyun; Hong, Seokmin; Koo, Gyeong-Hoi; Lee, Bong-Sang; Kim, Young-Chun

    2015-01-01

    Type 316H stainless steel is a primary candidate material for a reactor pressure vessel of a sodium-cooled fast (SFR) reactor which is under development in Korea. The reactor pressure vessel for a SFR is subjected to inelastic deformation induced by cyclic thermal stress. Fully reversed cyclic testing and ratcheting testing at elevated temperatures were performed to characterize the inelastic cyclic deformation behaviors of Type 316H stainless steel at the SFR operating temperature. It was found that cyclic hardening of Type 316H stainless steel was enhanced, and the accumulation of ratcheting deformation of Type 316H stainless steel was retarded at around the SFR operating temperature. The results of the tensile testing and the microstructural investigation for dislocated structures after the inelastic deformation testing showed that dynamic strain aging affected the inelastic cyclic deformation behavior of Type 316 stainless steel at around the SFR operating temperature.

  18. Development of austenitic stainless steel plate (316MN) for fast breeder reactors

    International Nuclear Information System (INIS)

    Nakazawa, Takanori; Abo, Hideo; Tanino, Mitsuru; Komatsu, Hazime.

    1989-01-01

    High creep-fatigue resistance is required for the structural materials for fast breeder reactors. As creep-fatigue life is closely related to creep-rupture ductility, the effects of C, N and Mo on creep-rupture properties were investigated with a view to improving the creep-fatigue resistance of stainless steel. Strengthening by the addition of C has a great adverse effect on rupture ductility, but N can strengthen the steel without decreasing rupture ductility. Strengthening by Mo decreases rupture ductility but this effect is small. The low-C-medium-N (0.01%C - 0.07%N) stainless steel 316 MN developed based on the findings described above exhibits only a small decrease in creep-rupture strength in long-time periods compared with the conventional 316 steel. This steel offers excellent rupture ductility and the 10,000-hour rupture strength which is about 1.2 times that of conventional steel. Moreover, this steel exhibits excellent properties in creep fatigue test. (author)

  19. Relationships between Charpy impact shelf energies and upper shelf Ksub(IC) values for reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Witt, F.J.

    1983-01-01

    Charpy shelf data and lower bound estimates of Ksub(IC) shelf data for the same steels and test temperatures are given. Included are some typical reactor pressure vessel steels as well as some less tough or degraded steels. The data were evaluated with shelf estimates of Ksub(IC) up to and exceeding 550 MPa√m. It is shown that the high shelf fracture toughness representative of tough reactor pressure vessel steels may be obtained from a knowledge of the Charpy shelf energies. The toughness transition may be obtained either by testing small fracture toughness specimens or by Charpy energy indexing. (U.K.)

  20. Irradiation effects on material properties of steels used in nuclear reactors: a literature review

    International Nuclear Information System (INIS)

    Gerceker, N.; Dara, I. H.

    2001-01-01

    The structural materials of a nuclear power plant are of vital importance as they provide mechanical strength, structural support and physical containment for the primary reactor components as well as the nuclear power plant itself. These structural materials comprise mainly of metals and their alloys, ceramics and cermets. However, metals and their alloys are the most widely used materials and the irradiation effects are more pronounced on metallic materials as of their high temperature properties are more sensitive (with respect to ceramics and cermets) to any kind of external effects. The wholesale creation of effects on material properties has been studied for over four decades and it is not realistic to attempt to represent even a small part of the field in single poster paper. In the present contribution, a literature review of the irradiation effects on the material properties of different types of steel alloys will be given because steels are widely used as structural materials in reactors and therefore the irradiation effects on steels may be of paramount importance for reactor design, operation and safety concepts which will be discussed about radiation effects on material properties of steels will provide highlights to better understanding of the origins and development of radiation effects in materials

  1. Behaviour and microstructure of stainless steels irradiated in the french fast breeder reactors

    International Nuclear Information System (INIS)

    Dubuisson, P.; Gilbon, D.

    1991-01-01

    The burn-up of Fast Breeder Reactors is limited by the irradiation induced dimensional changes and mechanical properties of structural materials used for replaceable in-core components. This paper describes the behaviour improvements and also the radiation-induced microstructures of the different steels used for fuel pin cladding and wrapper tubes in French reactors. Materials of fuel pin cladding are austenitic steels whose main problem is swelling. Improvements in swelling resistance by cold-working, titanium additions and modifications of matrix (Fe-Cr-Ni) from SA 316 to CW 15-15 Ti are shown. These improvements are correlated with a best stability of microstructure under irradiation. Beneficial effects of phosphorus addition and multistabilisation (NbVTi) on radiation induced microstructure and swelling resistance are also shown. Austenitic steels used for wrapper tubes are limited both by swelling and by void embrittlement. The ferritic F17 (17Cr), ferritic-martensitic EM12 (9Cr-2MoNbV) and martensitic EM10 (9Cr-1Mo) steels present high swelling resistance. Nevertheless radiation-induced embrittlement is observed in EM12 and especially in F17. This embrittlement results from a fine and uniform radiation enhanced precipitation in ferrite grains. By contrast, the microstructure of fully martensitic EM10 steel is mush more stable and its ductile-brizzle transition temperature stays below 0 0 C. 12 figs

  2. Control of activation levels to simplify waste management of fusion reactor ferritic steel components

    International Nuclear Information System (INIS)

    Wiffen, F.W.; Santoro, R.T.

    1983-01-01

    Activation characteristics of a material for service in the neutron flux of a fusion reactor first wall fall into three areas: waste management, reactor maintenance and repair, and safety. Of these, the waste management area is the most likely to impact the public acceptance of fusion reactors for power generation. The decay of the activity in steels within tens of years could lead to simplified waste disposal or possibly even to materials recycle. Whether or not these can be achieved will be controlled by (1) selection of alloying elements, (2) control of critical impurity elements, and (3) control of cross contamination from other reactor components. Several criteria can be used to judge the acceptability of potential alloying elements in iron, and to define the limits on content of critical impurity elements. One approach is to select and limit alloying additions on the basis of the activity. If material recycle is a goal, N, Al, Ni, Cu, Nb, and Mo must be excluded. If simplified waste storage by shallow land burial is the goal, regulations limit the concentration of only a few isotopes. For first-wall material that will be exposed to 9 MW-y/m 2 service, allowable initial concentration limits include (in at. ppM) Ni < 20,000; Mo < 3650; N < 3650, Cu < 2400; and Nb < 1.0. The other constituent elements of ferritic steels will not be limited. Possible substitutes for the molybdenum normally used to strengthen the steels include W, Ta, Ti, and V

  3. Two new techniques for the remote evaluation of reactor steel condition - microscopic removal and surface examination

    International Nuclear Information System (INIS)

    Clayton, R.

    Much reactor inspection work involves an assessment of the condition of structural steel. This paper reviews two different techniques which provide information for such an assessment. The first - micro-sample removal (for the measurement of surface oxide thickness and chemical composition) - requires contact with the steel surface, whereas the second - a 'teach and learn' photographic technique (in which a special photogrammatic camera is used to obtain high-quality close-up photographs, to assess surface condition and corrosion growth) can obtain surface information on inaccessible components. (author)

  4. Damage mechanism of piping welded joints made from austenitic Steel for the type RBMK reactor

    International Nuclear Information System (INIS)

    Karzov, G.; Timofeev, B.; Gorbakony, A.; Petrov, V.; Chernaenko, T.

    1999-01-01

    In the process of operation of RBMK reactors the damages were taking place on welded piping, produced from austenitic stainless steel of the type 08X18H10T. The inspection of damaged sections in piping has shown that in most cases crack-like defects are of corrosion and mechanical character. The paper considers in details the reasons of damages appearance and their development for this type of welded joints of downcomers 325xl6 mm, which were fabricated from austenitic stainless steel using TlG and MAW welding methods. (author)

  5. Effects of nickel on irradiation embrittlement of light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    2005-06-01

    This TECDOC was developed under the IAEA Coordinated Research Project (CRP) entitled Effects of Nickel on Irradiation Embrittlement of Light Water Reactor Pressure Vessel (RPV) Steels. This CRP is the sixth in a series of CRPs to determine the influence of the mechanism and quantify the influence of nickel content on the deterioration of irradiation embrittlement of reactor pressure vessel steels of the Ni-Cr-Mo-V or Mn-Ni-Cr-Mo types. The scientific scope of the programme includes procurement of materials, determination of mechanical properties, irradiation and testing of specimens in power and/or test reactors, and microstructural characterization. Eleven institutes from eight different countries and the European Union participated in this CRP and six institutes conducted the irradiation experiments of the CRP materials. In addition to the irradiation and testing of those materials, irradiation experiments of various national steels were also conducted. Moreover, some institutes performed microstructural investigations of both the CRP materials and national steels. This TECDOC presents and discusses all the results obtained and the analyses performed under the CRP. The results analysed are clear in showing the significantly higher radiation sensitivity of high nickel weld metal (1.7 wt%) compared with the lower nickel base metal (1.2 wt%). These results are supported by other similar results in the literature for both WWER-1000 RPV materials, pressurized water reactor (PWR) type materials, and model alloys. Regardless of the increased sensitivity of WWER-1000 high nickel weld metal (1.7 wt%), the transition temperature shift for the WWER-1000 RPV design fluence is still below the curve predicted by the Russian code (standard for strength calculations of components and piping in NPPs - PNAE G 7-002-86). For higher fluence, no data were available and the results should not be extrapolated. Although manganese content was not incorporated directly in this CRP

  6. Stability of ferritic steel to higher doses: Survey of reactor pressure vessel steel data and comparison with candidate materials for future nuclear systems

    International Nuclear Information System (INIS)

    Blagoeva, D.T.; Debarberis, L.; Jong, M.; Pierick, P. ten

    2014-01-01

    This paper is illustrating the potential of the well-known low alloyed clean steels, extensively used for the current light water Reactor Pressure Vessels (RPV) steels, for a likely use as a structural material also for the new generation nuclear systems. This option would provide, especially for large components, affordable, easily accessible and a technically more convenient solution in terms of manufacturing and joining techniques. A comprehensive comparison between several sets of surveillance and research data available for a number of RPV clean steels for doses up to 1.5 dpa, and up to 12 dpa for 9%Cr steels, is carried out in order to evaluate radiation stability of the currently used RPV clean steels even at higher doses. Based on the numerous data available, positive preliminary conclusions are drawn regarding the eventual use of clean RPV steels for the massive structural components of the new reactor systems. - Highlights: • Common embrittlement trend between RPV and advanced steels till intermediate doses. • For doses >1.5 dpa, damage rate saturation tendency is observed for RPV steels. • RPV steels might be conveniently utilised also outside their foreseen dose range

  7. Environmentally-Assisted Cracking of Low-Alloy Reactor Pressure Vessel Steels under Boiling Water Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P.; Ritter, S

    2002-02-01

    The present report summarizes the experimental work performed by PSI on the environmentally-assisted cracking (EAC) of low-alloy steels (LAS) in the frame of the RIKORR-project during the period from January 2000 to August 2001. Within this project, the EAC crack growth behaviour of different low-alloy reactor pressure vessel (RPV) steels, weld filler and weld heat-affected zone materials is investigated under simulated transient and steady-state BWR/NWC power operation conditions. The EAC crack growth behaviour of different low-alloy RPV steels was characterized by slow rising load (SRL) / low-frequency corrosion fatigue (LFCF) and constant load tests with pre-cracked fracture mechanics specimens in oxygenated high-temperature water at temperatures of either 288, 250, 200 or 150 C. These tests revealed the following important interim results: Under low-flow and highly oxidizing (ECP >= 100 mV SHE) conditions, the ASME XI 'wet' reference fatigue crack growth curve could be significantly exceeded by cyclic fatigue loading at low frequencies (<0.001 Hz), at high and low load-ratios R, and by ripple loading near to DKth fatigue thresholds. The BWR VIP 60 SCC disposition lines may be significantly or slightly exceeded (even in steels with a low sulphur content) in the case of small load fluctuations at high load ratios (ripple loading) or at intermediate temperatures (200 -250 C) in RPV materials, which show a distinct susceptibility to dynamic strain ageing (DSA). (author)

  8. Evaluation on Safety of Stainless Steels in Chemical Decontamination Process with Immersion Type of Reactor Coolant Pump for Nuclear Reactor

    International Nuclear Information System (INIS)

    Kim, Seong Jong; Han, Min Su; Jang, Seok Ki; Kim, Ki Joon

    2011-01-01

    Due to commercialization of nuclear power, most countries have taken interest in decontamination process of nuclear power plant and tried to develop a optimum process. Because open literature of the decontamination process are rare, it is hard to obtain skills on decontamination of foreign country and it is necessarily to develop proper chemical decontamination process system in Korea. In this study, applicable possibility in chemical decontamination for reactor coolant pump (RCP) was investigated for the various stainless steels. The stainless steel (STS) 304 showed the best electrochemical properties for corrosion resistance and the lowest weight loss ratio in chemical decontamination process with immersion type than other materials. However, the pitting corrosion was generated in both STS 415 and STS 431 with the increasing numbers of cycle. The intergranular corrosion in STS 431 was sporadically observed. The sizes of their pitting corrosion also increased with increasing cycle numbers

  9. Underwater cutting of stainless steel plate and pipe for dismantling reactor pressure vessels

    International Nuclear Information System (INIS)

    Hamasaki, M.; Tateiwa, F.; Kanatani, F.; Yamashita, S.

    1982-01-01

    A consumable electrode water jet cutting technique is described. Satisfactory underwater cutting of 80mm stainless steel plate using a current of 2000A and at a water depth of 200mm has been demonstrated. The electrical requirements for this arc welding method applied to cutting were found to be approximately one third those required for conventional plasma arc cutting for the same thickness plate. An application of this technique might be found in the dismantling of atomic reactor pressure vessels, and parts of commercial atomic reactors. (author)

  10. Progress in Investigation of WWER-440 Reactor Pressure Vessel Steel by Gamma and Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Hascik, J.; Slugen, V.; Lipka, J.; Hinca, R.; Toth, I.; Groene, R.; Uvacik, P.; Kupca, L.

    1998-01-01

    Gamma spectroscopic analyse and first experimental results of original irradiated reactor pressure vessel surveillance specimens are discussed in. In 1994, the new ''Extended Surveillance Specimen Program for nuclear Reactor Material Study'' was started in collaboration with the nuclear power plants (NPP) V-2 Bohunice (Slovakia). The first batch of MS samples (after 1 year, which is equivalent to 5 years of loading RPV-steel) was measured and interpreted using the new four components approach with the aim to observe microstructural changes due to thermal and neutron treatment resulting from operating conditions in NPP. The systematic changes in the relative areas of Moessbauer spectra components were observed. (author)

  11. Mechanism of fatigue crack initiation in austenitic stainless steels in light water reactor environments

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.; Muscara, J.

    2003-01-01

    This paper examines the mechanism of fatigue crack initiation in austenitic stainless steels (SSs) in light water reactor (LWR) coolant environments. The effects of key material and loading variables on the fatigue lives of wrought and cast austenitic SSs in air and LWR environments have been evaluated. The influence of reactor coolant environments on the formation and growth of fatigue cracks in polished smooth SS specimens is discussed. The results indicate that the fatigue lives of these steels are decreased primarily by the effects of the environment on the growth of cracks <200 μm and, to a lesser extent, on enhanced growth rates of longer cracks. The fracture morphology in the specimens has been characterized. Exploratory fatigue tests were conducted to study the effects of surface micropits or minor differences in the surface oxide on fatigue crack initiation. (author)

  12. Research and development of austenitic stainless steels for fusion reactors, (1)

    International Nuclear Information System (INIS)

    1984-11-01

    In the alloy development for the first wall of blanket structure of the fusion experimental reactor and a subsequent reactor of Tokamak type, the prime candidate alloy (PCA) and reference steels were melted and examined on fundamental materials properties under a contract between JAERI and iron and steel companies, and under NRIM-JAERI collaborative work during the fiscal years of 1981 and 1982. All the alloys showed reasonable performance on mechanical properties, phase stability at elevated temperatures and weldability. The PCA has been proved to be used in controlled water-coolant environment. As to the welding of the PCA, welding rods suitable for TIG and covered arc welding have been selected from several candidate rods. (author)

  13. Development of ferritic steels for steam generators of fast breeder reactors

    International Nuclear Information System (INIS)

    Nguyen-Thanh; Vigneron, G.; Vanderschaeghe, A.

    1988-01-01

    STEIN INDUSTRIE, a manufacturer of equipment for the conventional and nuclear power industry, has built up expertise in the use of Cr-Mo steels used at high temperatures. The main ferritic steels developed were 10 CD 9-10 (AFNOR), Z10 CDNb V 9-2 (AFNOR), X 20 Cr Mo V 12-1 (DIN) and ASTM Grade 9.1. For the fast breeder reactor system, STEIN INDUSTRIE proposes the use of these steels in the construction of steam generators. The wide programme of development undertaken by STEIN INDUSTRIE is aimed at the following main subjects: - characterization of materials - welding and bending tests - studies of special junctions. This article reports the results obtained

  14. Some aspects of the utilization of zicaloy and austenitic steel as cladding material for PWR reactor fuel rods

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Perrotta, J.A.

    1985-01-01

    The behaviour under irradiation of fuel rods for light water reactors was simulated by using fuel performance codes. Two types of cladding were analyzed: zircaloy and austenitic stainless steel. The fuel performance codes, originally made for zircaloy cladding, were adapted for austenitic stainless steel. The simulation results for the two types of cladding are presented, compared and discussed. (F.E.) [pt

  15. Reactor pressure vessel steels ASTM A533B and A508 Cl.2

    International Nuclear Information System (INIS)

    Pelli, R.; Kemppainen, M.; Toerroenen, K.

    1979-11-01

    This report presents the tensile test results of steels ASTM A533B and A508 Cl.2 obtained in connection with a programme initiated to gather and create information needed for the assessment of the structural integrity of the reactor pressure vessels. The tensile properties were studied between -196 and 300 degC varying austenitizing and tempering temperatures and having two different carbon contents for the heats of A533B. (author)

  16. Experimental study of neutron streaming through steel-walled annular ducts in reactor shields

    International Nuclear Information System (INIS)

    Toshimas, M.; Nobuo, S.

    1983-01-01

    For the purpose of providing experimental data to assess neutron streaming calculations, neutron flux measurements were performed along the axes of the steel-walled annular ducts set up in a water shield of the pool-type reactor JRR-4. An annular duct simulated the air gap around the main coolant pipe. Another duct simulated the streaming path around the primary circulating pump of the integrated-type marine reactor. A 90-deg bend annular duct was also studied. In a set of measurements, the distance Z between the core center and the duct axis and the annular gap width delta were taken as parameters, that is, Z = 0, 80, and 160 cm and delta = 2.2, 4.7, and 10.1 cm. The reaction rates and the fluxes measured by the activation method are given in terms of absolute magnitude within an accuracy of + or - 30%. An empirical formula is derived based on those measured data, which describes the axial distribution of the neutron flux in the steel-walled annular duct in reactor shields. It is expressed by a simple function of the axial distance in units of the square root of the line-of-sight area, S /SUB l/ . The accuracy of the formula is examined by taking into account the duct location with respect to the reactor core, the neutron energy, the steel wall thickness, and the media outside of the steel wall. The accuracy of the formula is, in general, <30% in the axial distance between 3√S /SUB l/ and 30√S /SUB l/

  17. Effect of decontamination on oxidation of austenitic stainless steel in reactor conditions

    International Nuclear Information System (INIS)

    Starkman, T.

    1984-07-01

    Austenitic stainless steels were oxidized in static autoclaves in light water reactor conditions. After the autoclave treatments the specimens were decontaminated with the aid of alkaline potassium permanganate (AP) and oxalic and citric acid (CITROX) as well as electrochemically in H 3 PO 4 . Alternating oxidation and decontamination tests were performed. An elemental analysis of the surfaces of the specimens was carried out by electron spectroscopy. Changes in structures and thicknesses of the oxide layers were observed. (author)

  18. Reactor pressure vessel steels[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Van De Velde, J.; Fabry, A.; Van Walle, E.; Chaouuadi, R.

    1998-07-01

    Research and development activities related to reactor pressure vessel steels during 1997 are reported. The objectives of activities of the Belgian Nuclear Research Centre SCK/CEN in this domain are: (1) to develop enhanced surveillance concepts by applying micromechanics and fracture-toughness tests to small specimens, and by performing damage modelling and microstructure characterization; (2) to demonstrate a methodology on a broad database; (3) to achieve regulatory acceptance and industrial use.

  19. Study on prediction model of irradiation embrittlement for reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Wang Rongshan; Xu Chaoliang; Huang Ping; Liu Xiangbing; Ren Ai; Chen Jun; Li Chengliang

    2014-01-01

    The study on prediction model of irradiation embrittlement for reactor pres- sure vessel (RPV) steel is an important method for long term operation. According to the deep analysis of the previous prediction models developed worldwide, the drawbacks of these models were given and a new irradiation embrittlement prediction model PMIE-2012 was developed. A corresponding reliability assessment was carried out by irradiation surveillance data. The assessment results show that the PMIE-2012 have a high reliability and accuracy on irradiation embrittlement prediction. (authors)

  20. Compatibility of 316L stainless steel with tritium breeders for fusion reactors

    International Nuclear Information System (INIS)

    Broc, M.; Fauvet, P.; Flament, T.; Sannier, J.

    1986-06-01

    Compatibility problems with structural materials are a concern for the choice of the tritium breeder for fusion reactors. In the frame of the European Programme on Fusion Technology, two types of blankets are considered: liquid (eutectic lithium-lead alloy at 0.68 wt % Li: 17Li83Pb) and solid (lithium aluminate or silicate) breeders. This paper is devoted to compatibility studies of 316L stainless steel with 17Li83Pb alloy and γ-LiA10 2 ceramic

  1. Neutron irradiation embrittlement of reactor pressure vessel steel 20 MnMoNi55 weld

    International Nuclear Information System (INIS)

    Ghoneim, M.M.

    1987-05-01

    The effect of neutron irradiation on the mechanical and fracture properties of an 'improved' 20 MnMoNi 55 Pressure Vessel Steel (PVS) weld was investigated. In addition to very low residual element content, especially Cu (0.035 wt.%), and relatively higher Ni content (0.9 wt.%), this steel has higher strength (30% more) than the steels used currently in nuclear reactor pressure vessels. The material was irradiated to 3.5x10 19 and 7x10 19 n/cm 2 (E > 1 Mev) at 290 0 C and 2.5x10 19 n/cm 2 (E > 1 MeV) at 160 0 C in FRJ-1 and FRJ-2 research reactors at KFA, Juelich, F.R.G. Test methods used in the evaluation included instrumented impact testing of standard and precracked Charpy specimens, tensile, and fracture toughness testing. Instrumented impact testing provided load and energy vs. time (deflection) data in addition to energy absorption data. The results indicated that the investigated high strength improved steel is more resistant to irradiation induced embrittlement than conventional PVSs. (orig./IHOE)

  2. Comparison of material property specifications of austenitic steels in fast breeder reactor technology

    International Nuclear Information System (INIS)

    Vanderborck, Y.; Van Mulders, E.

    1985-01-01

    Austenitic stainless steels are very widely used in components for European Fast Breeder Reactors. The Activity Group Nr.3 ''Materials'', within Working Group ''Codes and Standards'' of the Fast Reactor Co-Ordination Committee of the European Communities, has decided to initiate a study to compare the material property specifications of the austenitic stainless steel used in the European Fast Breeder Technology. Hence, this study would allow one to view rapidly the designation of a particular steel grade in different European countries and to compare given property values for a same grade. There were dissimilarities, differences or voids appear, it could lead to an attempt to complete and/or to uniformize the nationally given values, so that on a practical level interchangeability, availability and use ease design and construction work. A selection of the materials and of their properties has been made by the Working Group. Materials examined are Stainless Steel AISI 304, 304 L, 304 LN, 316, 316 L, 316 LN, 316''Ti stab.'', 316''Nb stab''., 321, 347

  3. Acoustic emission during the elastic-plastic deformation of low alloy reactor pressure vessel steels. I

    International Nuclear Information System (INIS)

    Holt, J.; Goddard, D.J.

    1980-01-01

    Measurements of the acoustic emission behaviour of A533B and C-Mn low alloy reactor pressure vessel steels subjected to uniaxial tensile deformation are described. The effects on the emission activity of the rolling plane orientation and the carbide morphology were examined. Detailed discussions are given of the stress dependence of the emission activity below yield and of its recovery by annealing at the stress relief temperature. It is shown that the dominant emission source is the same in both steels and is associated with inclusions, such as MnS, elongated by the rolling process, the carbide morphology being relatively unimportant. A criterion for the occurrence of an emission is obtained which is directly analogous to the general criterion for yielding. It is also shown that a large fraction, at least, of the emission activity arises from a recoverable process such as localized yielding around inclusions or limited inclusion decohesion and not from inclusion fracture. Low activity in C-Mn steel taken from reactor pressure vessels, previously attributed to spheroidization of carbides, is shown to be due to the limited acoustic recovery of these relatively high sulphur content steels when annealed at the stress relief temperature. It is concluded that the limited amplitudes of these emissions during deformation severely restrict their potential application in practice. (Auth.)

  4. Isothermal and thermal-mechanical fatigue of VVER-440 reactor pressure vessel steels

    Science.gov (United States)

    Fekete, Balazs; Trampus, Peter

    2015-09-01

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin-Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  5. Ultra-large size austenitic stainless steel forgings for fast breeder reactor 'Monju'

    International Nuclear Information System (INIS)

    Tsukada, Hisashi; Suzuki, Komei; Sato, Ikuo; Miura, Ritsu.

    1988-01-01

    The large SUS 304 austenitic stainless steel forgings for the reactor vessel of the prototype FBR 'Monju' of 280 MWe output were successfully manufactured. The reactor vessel contains the heart of the reactor and sodium coolant at 530 deg C, and its inside diameter is about 7 m, and height is about 18 m. It is composed of 12 large forgings, that is, very thick flanges and shalls made by ring forging and an end plate made by disk forging and hot forming, using a special press machine. The manufacture of these large forgings utilized the results of the basic test on the material properties in high temperature environment and the effect that the manufacturing factors exert on the material properties and the results of the development of manufacturing techniques for superlarge forgings. The problems were the manufacturing techniques for the large ingots of 250 t class of high purity, the hot working techniques for stainless steel of fine grain size, the forging techniques for superlarge rings and disks, and the machining techniques of high precision for particularly large diameter, thin wall rings. The manufacture of these large stainless steel forgings is reported. (Kako, I.)

  6. Nondestructive characterization of embrittlement in reactor pressure vessel steels -- A feasibility study

    International Nuclear Information System (INIS)

    McHenry, H.I.; Alers, G.A.

    1998-01-01

    The Nuclear Regulatory Commission recently initiated a study by NIST to assess the feasibility of using physical-property measurements for evaluating radiation embrittlement in reactor pressure vessel (RPV) steels. Ultrasonic and magnetic measurements provide the most promising approaches for nondestructive characterization of RPV steels because elastic waves and magnetic fields can sense the microstructural changes that embrittle materials. The microstructural changes of particular interest are copper precipitation hardening, which is the likely cause of radiation embrittlement in RPV steels, and the loss of dislocation mobility that is an attribute of the ductile-to-brittle transition. Measurements were made on a 1% copper steel, ASTM grade A710, in the annealed, peak-aged and overaged conditions, and on an RPV steel, ASTM grade A533B. Nonlinear ultrasonic and micromagnetic techniques were the most promising measures of precipitation hardening. Ultrasonic velocity measurements and the magnetic properties associated with hysteresis-loop measurements were not particularly sensitive to either precipitation hardening or the ductile-to-brittle transition. Measurements of internal friction using trapped ultrasonic resonance modes detected energy losses due to the motion of pinned dislocations; however, the ultrasonic attenuation associated with these measurements was small compared to the attenuation caused by beam spreading that would occur in conventional ultrasonic testing of RPVs

  7. Design and analysis of reactor containment of steel-concrete composite laminated shell

    International Nuclear Information System (INIS)

    Ichikawa, K.

    1977-01-01

    Reinforced and prestressed concrete containments for reactors have been developed in order to avoid the difficulties of welding of steel containments encountered as their capacities have become large: growing thickness of steel shells gave rise to the requirement of stress relief at the construction sites. However, these concrete vessels also seem to face another difficulty: the lack of shearing resistance capacity. In order to improve the shearing resistance capacity of the containment vessel, while avoiding the difficulty of welding, a new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented. The results of model tests in 1:30 scale are also reported. (Auth.)

  8. Embrittlement recovery due to annealing of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Eason, E.D.; Wright, J.E.; Nelson, E.E.; Odette, G.R.; Mader, E.V.

    1996-01-01

    Embrittlement of reactor pressure vessels (RPVs) can be reduced by thermal annealing at temperatures higher than the normal operating conditions. Although such an annealing process has not been applied to any commercial plants in the United States, one US Army reactor, the BR3 plant in Belgium, and several plants in eastern Europe have been successfully annealed. All available Charpy annealing data were collected and analyzed in this project to develop quantitative models for estimating the recovery in 30 ft-lb (41 J) Charpy transition temperature and Charpy upper shelf energy over a range of potential annealing conditions. Pattern recognition, transformation analysis, residual studies, and the current understanding of the mechanisms involved in the annealing process were used to guide the selection of the most sensitive variables and correlating parameters and to determine the optimal functional forms for fitting the data. The resulting models were fitted by nonlinear least squares. The use of advanced tools, the larger data base now available, and insight from surrogate hardness data produced improved models for quantitative evaluation of the effects of annealing. The quality of models fitted in this project was evaluated by considering both the Charpy annealing data used for fitting and the surrogate hardness data base. The standard errors of the resulting recovery models relative to calibration data are comparable to the uncertainty in unirradiated Charpy data. This work also demonstrates that microhardness recovery is a good surrogate for transition temperature shift recovery and that there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes

  9. Estimation of fast neutron fluence in steel specimens type Laguna Verde in TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Galicia A, J.; Francois L, J. L.; Aguilar H, F.

    2015-09-01

    The main purpose of this work is to obtain the fluence of fast neutrons recorded within four specimens of carbon steel, similar to the material having the vessels of the BWR reactors of the nuclear power plant of Laguna Verde when subjected to neutron flux in a experimental facility of the TRIGA Mark III reactor, calculating an irradiation time to age the material so accelerated. For the calculation of the neutron flux in the specimens was used the Monte Carlo code MCNP5. In an initial stage, three sheets of natural molybdenum and molybdenum trioxide (MoO 3 ) were incorporated into a model developed of the TRIGA reactor operating at 1 M Wth, to calculate the resulting activity by setting a certain time of irradiation. The results obtained were compared with experimentally measured activities in these same materials to validate the calculated neutron flux in the model used. Subsequently, the fast neutron flux received by the steel specimens to incorporate them in the experimental facility E-16 of the reactor core model operating at nominal maximum power in steady-state was calculated, already from these calculations the irradiation time required was obtained for values of the neutron flux in the range of 10 18 n/cm 2 , which is estimated for the case of Laguna Verde after 32 years of effective operation at maximum power. (Author)

  10. Radiation damage structure in irradiated and annealed 440 WWER-Type reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Kocik, J.; Keilova, E.

    1993-01-01

    A review of irradiation damages in WWER-type RPV steels based on conventional Transmission Electron Microscopy investigations in a power reactor and a research reactor, is presented; the samples consist in Cr-Mo-V ferritic steel (15Kh2MFA type). The visible part of radiation-induced defects consists of very fine vanadium carbide precipitates, small dislocation loops and black dots (presumably corresponding to clusters and particle embryos formed from vacancies and solute-atoms (vanadium, copper, phosphorus) and carbon associated with vanadium. Radiation-induced defects are concentrated at dislocation substructure during irradiation in a power reactor, revealing the role of radiation-enhanced diffusion in damage structure forming process. Contrarily, the distribution of defects resulting from annealing of specimens irradiated in the research reactor is pre-determined by an homogenous distribution of radiation-induced defects prior to annealing. Increasing the number of re-irradiation and annealing cycles, the amount of dislocation loops among all defects seems to be growing. Simultaneously, the dislocation substructure recovers considerably. (authors). 14 refs., 11 figs., 3 tabs

  11. Radiation damage structure in irradiated and annealed 440 WWER-Type reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Kocik, J; Keilova, E [Czech Nuclear Society, Prague (Czech Republic)

    1994-12-31

    A review of irradiation damages in WWER-type RPV steels based on conventional Transmission Electron Microscopy investigations in a power reactor and a research reactor, is presented; the samples consist in Cr-Mo-V ferritic steel (15Kh2MFA type). The visible part of radiation-induced defects consists of very fine vanadium carbide precipitates, small dislocation loops and black dots (presumably corresponding) to clusters and particle embryos formed from vacancies and solute-atoms (vanadium, copper, phosphorus) and carbon associated with vanadium. Radiation-induced defects are concentrated at dislocation substructure during irradiation in a power reactor, revealing the role of radiation-enhanced diffusion in damage structure forming process. Contrarily, the distribution of defects resulting from annealing of specimens irradiated in the research reactor is pre-determined by an homogenous distribution of radiation-induced defects prior to annealing. Increasing the number of re-irradiation and annealing cycles, the amount of dislocation loops among all defects seems to be growing. Simultaneously, the dislocation substructure recovers considerably. (authors). 14 refs., 11 figs., 3 tabs.

  12. RPV-1: a first virtual reactor to simulate irradiation effects in light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Jumel, St.

    2005-01-01

    The presented work was aimed at building a first VTR (virtual test reactor) to simulate irradiation effects in pressure vessel steels of nuclear reactor. It mainly consisted in: - modeling the formation of the irradiation induced damage in such steels, as well as their plasticity behavior - selecting codes and models to carry out the simulations of the involved mechanisms. Since the main focus was to build a first tool (rather than a perfect tool), it was decided to use, as much as possible, existing codes and models in spite of their imperfections. - developing and parameterizing two missing codes: INCAS and DUPAIR. - proposing an architecture to link the selected codes and models. - constructing and validating the tool. RPV-1 is made of five codes and two databases which are linked up so as to receive, treat and/or transmit data. A user friendly Python interface facilitates the running of the simulations and the visualization of the results. RPV-1 relies on many simplifications and approximations and has to be considered as a prototype aimed at clearing the way. According to the functionalities targeted for RPV-1, the main weakness is a bad Ni and Mn sensitivity. However, the tool can already be used for many applications (understanding of experimental results, assessment of effects of material and irradiation conditions,....). (O.M.)

  13. Neutron irradiation effects in reactor pressure vessel steels and weldments. Working document

    International Nuclear Information System (INIS)

    1998-10-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. A separate abstract was prepared for the introduction and for each of the eleven chapters, which are: 1. Reactor Pressure Vessel Design, 2. Reactor Pressure Materials, 3. WWER Pressure Vessels, 4. Determination of Mechanical Properties, 5. Neutron Exposure, 6. Methodology of Irradiation Experiments, 7. Effect of Irradiation on Mechanical Properties, 8. Mechanisms of Irradiation Embrittlement, 9. Modelling of Irradiation Damage, 10. Annealing of Irradiation Damage, 11. Safety Assessment using Surveillance Programmes and Data Bases

  14. The metrological problems of irradiation embrittlement of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Vodenicharov, S.; Kamenova, Ts.

    1993-01-01

    Neutron irradiation of reactor pressure vessel steels increases the T k -values of transition temperature from ductile to brittle fracture. This effect is very important in emergency situations, when the water cooling injection in the reactor results in high thermal gradients. In such cases there is a risk from the appearance of a brittle fracture with catastrophic crack propagation speed at relatively low stresses. That is why the T k -value determination is very important for the safe operation of the reactor systems. Some advanced experimental methods for T k -testing and control have been discussed in the present article and the standards of different countries have been compared. The methods applying subsize specimens and welding-restored specimens have been reviewed. (author)

  15. Testing of methods for decontamination of stainless steels and carbon steels conformably to demountable equipment of nuclear power plant with WWR type reactor

    International Nuclear Information System (INIS)

    Dergunova, G.M.; Nazarov, V.K.; Ozolin, A.B.; Smirnov, L.M.; Stel'mashuk, V.P.; Yulikov, E.I.; Vlasov, I.N.

    1978-01-01

    Results are given of experiments on decontamination of stainless steel by the oxidation-reduction method and also results of decontamination of carbon steel by means of solutions based on oxalic acid, citric acid and phosphoric acid. Investigations of efficiency of oxidation-reduction treatment were done on samples of stainless steel cut from the pipeline of the primary coolant circuit of reactor. Comparison is given of efficiency of oxidation-reduction methods of contamination of stainless steel in the case of application of different compositions of decontaminating solutions. Dependences are given for decontamination completeness on duration of operations, on temperature and on ratio of volume of decontaminating solutions to surface are of the sample. For carbon steels parameters are given for decontamination process by means of oxalic, citric and phosphoric acid solutions. (I.T.) [ru

  16. Feasibility analysis of modified AL-6XN steel for structure component application in supercritical water-cooled reactor

    Institute of Scientific and Technical Information of China (English)

    Xinggang LI; Qingzhi YAN; Rong MA; Haoqiang WANG; Changchun GE

    2009-01-01

    Modified AL-6XN austenite steel was patterned after AL-6XN superaustenitic stainless steel by introducing microalloy elements such as zirconium and titanium in order to adapt to recrystallizing thermo-mechanical treatment and further improve crevice corrosion resistance. Modified AL-6XN exhibited comparable tensile strength, and superior plasticity and impact toughness to commercial AL-6XN steel. The effects of aging behavior on corrosion resistance and impact toughness were measured to evaluate the qualification of modified AL-6XN steel as an in-core component and cladding material in a supercritical water-cooled reactor. Attention should be paid to degradation in corrosion resistance and impact toughness after aging for 50 hours when modified AL-6XN steel is considered as one of the candidate materials for in-core components and cladding tubes in supercritical water-cooled reactors.

  17. Evaluation of the Steel Creek ecosystem in relation to the proposed restart of the L-reactor

    International Nuclear Information System (INIS)

    Smith, M.H.; Sharitz, R.R.; Gladden, J.B.

    1982-10-01

    This report summarizes the findings of slightly more than one year's study of the Steel Creek ecosystem. Generally, the findings have allowed us to refine our understanding of the structural and functional organization of the Steel Creek ecosystem which is an essential prerequisite for predicting the impacts associated with L-reactor restart. Reanalysis of the Steel Creek plant community relationships using 1981 aerial photography revealed that this component of the delta ecosystem continues to change as a result of natural successional processes. The major detectable changes have occurred on the more elevated portions of Steel Creek delta where coverage by woody species (especially willow) is continuing to increase. This successional woody community is invading areas previously dominated by persistent herbaceous species such as cut grass. Eleven vegetation associations were identified in the Steel Creek delta area, including two associations that were not apparently affected by the earlier reactor operations

  18. Effects of irradiation at lower temperature on the microstructure of Cr-Mo-V-alloyed reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, M; Boehmert, J; Gilles, R [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1998-10-01

    The microstructural damage process due to neutron irradiation [1] proceeds in two stages: - formation of displacement cascades - evolution of the microstructure by defect reactions. Continuing our systematic investigation about the microstructural changes of Russian reactor pressure vessel steel due to neutron irradiation the microstructure of two laboratory heats of the VVER 440-type reactor pressure vessel steel after irradiation at 60 C was studied by small angle neutron scattering (SANS). 60 C-irradiation differently changes the irradiation-induced microstructure in comparison with irradiation at reactor operation temperature and can, thus, provide new insights into the mechanisms of the irradiation damage. (orig.)

  19. Updated embrittlement trend curve for reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Kirk, M.; Santos, C.; Eason, E.; Wright, J.; Odette, G.R.

    2003-01-01

    The reactor pressure vessels of commercial nuclear power plants are subject to embrittlement due to exposure to high energy neutrons from the core. Irradiation embrittlement of RPV belt-line materials is currently evaluated using US Regulatory Guide 1.99 Revision 2 (RG 1.99 Rev 2), which presents methods for estimating the Charpy transition temperature shift (ΔT30) at 30 ft-lb (41 J) and the drop in Charpy upper shelf energy (ΔUSE). A more recent embrittlement model, based on a broader database and more recent research results, is presented in NUREG/CR-6551. The objective of this paper is to describe the most recent update to the embrittlement model in NUREG/CR-6551, based upon additional data and increased understanding of embrittlement mechanisms. The updated ΔT30 and USE models include fluence, copper, nickel, phosphorous content, and product form; the ΔT30 model also includes coolant temperature, irradiation time (or flux), and a long-time term. The models were developed using multi-variable surface fitting techniques, understanding of the ΔT30 mechanisms, and engineering judgment. The updated ΔT30 model reduces scatter significantly relative to RG 1.99 Rev 2 on the currently available database for plates, forgings, and welds. This updated embrittlement trend curve will form the basis of revision 3 to Regulatory Guide 1.99. (author)

  20. Embrittlement recovery due to annealing of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Eason, E.D.; Wright, J.E.; Nelson, E.E.; Odette, G.R.; Mader, E.V.

    1998-01-01

    The irradiation embrittlement of nuclear reactor pressure vessels (RPV) can be reduced by thermal annealing at temperatures higher than the normal operating conditions. The objective of this work was to analyze the pertinent data and develop quantitative models for estimating the recovery in 41 J (30 ft-lb) Charpy transition temperature (TT) and Charpy upper shelf energy (USE) due to annealing. An analysis data base was developed, reviewed for completeness and accuracy, and documented as part of this work. Models were developed based on a combination of statistical techniques, including pattern recognition and transformation analysis, and the current understanding of the mechanisms governing embrittlement and recovery. The quality of models fitted in this project was evaluated by considering both the Charpy annealing data used for fitting and a surrogate hardness data base. This work demonstrates that microhardness recovery is a good surrogate for shift recovery and that there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes. (orig.)

  1. Regulatory aspects of radiation embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Randall, P.N.

    1979-01-01

    One purpose of this conference, is to re-examine the conventional wisdom about neutron radiation embrittlement and the methods used to counteract embrittlement in reactor vessels. Perhaps, there have been sufficient advances in fracture mechanics, core physics, dosimetry, and physical metallurgy to permit a forward step in the quantitative treatment of the subject. Certainly this would be consistent with the position of the U.S. Nuclear Regulatory Commission (the NRC) in general. ''There has been a continued evolution toward increased specificity.'' This statement appeared in the response prepared by the staff to a request from the Commission to explain how the staff decides to apply a new requirement and to whom, i.e., to back-fit or forward-fit-only or whatever. Pressure for increased specificity, i.e., for fleshing out general design criteria, comes from ''technical surprises'' in the form of operating experiences or from research information, and from attempts to improve our confidence in the safety of plants, especially new plants. Our goal is to have anticipated and evaluated all possible modes of failure with sufficient quantitativeness that the probability of failure can be estimated with some accuracy. Failing this, regulators demand large margins of safety to cover our ignorance

  2. Microstructural stability of fast reactor irradiated 10 to 12% Cr ferritic-martensitic stainless steels

    International Nuclear Information System (INIS)

    Little, E.A.; Stoter, L.P.

    1982-01-01

    The strength and microstructural stability of three 10 to 12% Cr ferritic-martensitic stainless steels have been characterized following fast reactor irradiation to damage levels of 30 displacements per atom (dpa) at temperatures in the range 380 to 615 0 C. Irradiation results in either increases or decreases in room temperature hardness depending on the irradiation temperature. These strength changes can be qualitatively rationalized in terms of the combined effects of irradiation-induced interstitial dislocation loop formation and recovery of the dislocation networks comprising the initial tempered martensite structures. Precipitate evolution in the irradiated steels is associated with the nonequilibrium segregation of the elements nickel, silicon, molybdenum, chromium and phosphorus, brought about by solute-point defect interactions. The principal irradiation-induced precipitates identified are M 6 X, intermetallic chi and sigma phases and also α' (Cr-rich ferrite). The implications of the observed microstructural changes on the selection of martensitic stainless steels for fast reactor wrapper applications are briefly considered

  3. Microstructure and grain size effects on irradiation hardening of low carbon steel for reactor tanks

    Energy Technology Data Exchange (ETDEWEB)

    Milasin, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1964-05-15

    Irradiation hardening of steel for reactor pressure vessels has been studied extensively during the past few years. A great number of experimental results concerning the behaviour of these steels in the radiation field and several review papers (1,2) have been published. Most of the papers deal with the effects of specific metallurgical factors or irradiation conditions (temperature, flux) on irradiation hardening and embrittlement. In addition, a number of experiments are performed to give evidence on the mechanism of irradiation hardening of these steels. However, this mechanism is still unknown due to the complexity of steel as a system. Among different methods used in radiation damage studies, the changes of mechanical properties have been mainly investigated. By using Hall-Petch's empirical relation, {sigma}{sub y}={sigma}{sub i}+k{sub y} d{sup -1/2} between lower yield stress, {sigma}{sub y}, and grain size, 2d, the information about the effect of irradiation on the parameters {sigma}{sub i} and k{sub y} is obtained. Taking as a base interpretation of {sigma}{sub i} and k{sub y} given by Petch and his co-workers it has been concluded that radiation does not change the stress to start slip but that it increase the friction that opposes the passage of free dislocations across a slip plane. In attempting to apply Hall-Petch's relation to one unirradiated ferritic steel with a carbon content higher than 0.15% some difficulties were encountered. The results obtained indicate that the influence of grain size can not be isolated from other factors introduced by the treatments used to produce different grain sizes. This paper deals with a similar problem in the case of irradiated steel. The results obtained give the changes of the mechanical properties of steel in neutron irradiation field as a function of microstructure and grain size. In addition, the mechanical properties of irradiated steel are measured after annealing at 150 deg C and 450 deg C. On the basis of

  4. Microstructure and grain size effects on irradiation hardening of low carbon steel for reactor tanks

    International Nuclear Information System (INIS)

    Milasin, N.

    1964-05-01

    Irradiation hardening of steel for reactor pressure vessels has been studied extensively during the past few years. A great number of experimental results concerning the behaviour of these steels in the radiation field and several review papers (1,2) have been published. Most of the papers deal with the effects of specific metallurgical factors or irradiation conditions (temperature, flux) on irradiation hardening and embrittlement. In addition, a number of experiments are performed to give evidence on the mechanism of irradiation hardening of these steels. However, this mechanism is still unknown due to the complexity of steel as a system. Among different methods used in radiation damage studies, the changes of mechanical properties have been mainly investigated. By using Hall-Petch's empirical relation, σ y =σ i +k y d -1/2 between lower yield stress, σ y , and grain size, 2d, the information about the effect of irradiation on the parameters σ i and k y is obtained. Taking as a base interpretation of σ i and k y given by Petch and his co-workers it has been concluded that radiation does not change the stress to start slip but that it increase the friction that opposes the passage of free dislocations across a slip plane. In attempting to apply Hall-Petch's relation to one unirradiated ferritic steel with a carbon content higher than 0.15% some difficulties were encountered. The results obtained indicate that the influence of grain size can not be isolated from other factors introduced by the treatments used to produce different grain sizes. This paper deals with a similar problem in the case of irradiated steel. The results obtained give the changes of the mechanical properties of steel in neutron irradiation field as a function of microstructure and grain size. In addition, the mechanical properties of irradiated steel are measured after annealing at 150 deg C and 450 deg C. On the basis of the experimental results obtained the relative microstructure and

  5. Flux effect on neutron irradiation embrittlement of reactor pressure vessel steels irradiated to high fluences

    International Nuclear Information System (INIS)

    Soneda, N.; Dohi, K.; Nishida, K.; Nomoto, A.; Iwasaki, M.; Tsuno, S.; Akiyama, T.; Watanabe, S.; Ohta, T.

    2011-01-01

    Neutron irradiation embrittlement of reactor pressure vessel (RPV) steels is of great concern for the long term operation of light water reactors. In particular, the embrittlement of the RPV steels of pressurized water reactors (PWRs) at very high fluences beyond 6*10 19 n/cm 2 , E > 1 MeV, needs to be understood in more depth because materials irradiated in material test reactors (MTRs) to such high fluences show larger shifts than predicted by current embrittlement correlation equations available worldwide. The primary difference between the irradiation conditions of MTRs and surveillance capsules is the neutron flux. The neutron flux of MTR is typically more than one order of magnitude higher than that of surveillance capsule, but it is not necessarily clear if this difference in neutron flux causes difference in mechanical properties of RPV. In this paper, we perform direct comparison, in terms of mechanical property and microstructure, between the materials irradiated in surveillance capsules and MTRs to clarify the effect of flux at very high fluences and fluxes. We irradiate the archive materials of some of the commercial reactors in Japan in the MTR, LVR-15, of NRI Rez, Czech Republic. Charpy impact test results of the MTR-irradiated materials are compared with the data from surveillance tests. The comparison of the results of microstructural analyses by means of atom probe tomography is also described to demonstrate the similarity / differences in surveillance and MTR-irradiated materials in terms of solute atom behavior. It appears that high Cu material irradiated in a MTR presents larger shifts than those of surveillance data, while low Cu materials present similar embrittlement. The microstructural changes caused by MTR irradiation and surveillance irradiation are clearly different

  6. Borated stainless steel storage project to the spent fuel of the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Rodrigues, Antonio Carlos Iglesias; Madi Filho, Tufic; Ricci Filho, Walter

    2013-01-01

    The IEA-R1 research reactor operates in a regimen of 64h weekly, at the power of 4.5 MW. In these conditions, the racks to the spent fuel elements have less than half of its initial capacity. Thus, maintaining these operating circumstances, the storage will have capacity for approximately six years. Whereas the estimated useful life of the IEA-R1 is around twenty years, it will be necessary to increase the storage capacity for the spent fuel. Dr. Henrik Grahn, expert of the International Atomic Energy Agency on wet storage, visiting the IEA-R1 Reactor (September/2012) made some recommendations: among them, the design and installation of racks made with borated stainless steel and internally coated with an aluminum film, so that corrosion of the fuel elements would not occur. This work objective is the project of high capacity storage for spent fuel elements, using borated stainless steel, to answer the Reactor IEA-R1 demand and the security requirements of the International Atomic Energy Agency. (author)

  7. Borated stainless steel storage project to the spent fuel of the IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Antonio Carlos Iglesias; Madi Filho, Tufic; Ricci Filho, Walter, E-mail: acirodri@ipen.br, E-mail: tmfilho@ipen.br, E-mail: wricci@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The IEA-R1 research reactor operates in a regimen of 64h weekly, at the power of 4.5 MW. In these conditions, the racks to the spent fuel elements have less than half of its initial capacity. Thus, maintaining these operating circumstances, the storage will have capacity for approximately six years. Whereas the estimated useful life of the IEA-R1 is around twenty years, it will be necessary to increase the storage capacity for the spent fuel. Dr. Henrik Grahn, expert of the International Atomic Energy Agency on wet storage, visiting the IEA-R1 Reactor (September/2012) made some recommendations: among them, the design and installation of racks made with borated stainless steel and internally coated with an aluminum film, so that corrosion of the fuel elements would not occur. This work objective is the project of high capacity storage for spent fuel elements, using borated stainless steel, to answer the Reactor IEA-R1 demand and the security requirements of the International Atomic Energy Agency. (author)

  8. Nanostructure evolution of neutron-irradiated reactor pressure vessel steels: Revised Object kinetic Monte Carlo model

    Energy Technology Data Exchange (ETDEWEB)

    Chiapetto, M., E-mail: mchiapet@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Messina, L. [DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-114 21 Stockholm (Sweden); Becquart, C.S. [Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Olsson, P. [KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-114 21 Stockholm (Sweden); Malerba, L. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium)

    2017-02-15

    This work presents a revised set of parameters to be used in an Object kinetic Monte Carlo model to simulate the microstructure evolution under neutron irradiation of reactor pressure vessel steels at the operational temperature of light water reactors (∼300 °C). Within a “grey-alloy” approach, a more physical description than in a previous work is used to translate the effect of Mn and Ni solute atoms on the defect cluster diffusivity reduction. The slowing down of self-interstitial clusters, due to the interaction between solutes and crowdions in Fe is now parameterized using binding energies from the latest DFT calculations and the solute concentration in the matrix from atom-probe experiments. The mobility of vacancy clusters in the presence of Mn and Ni solute atoms was also modified on the basis of recent DFT results, thereby removing some previous approximations. The same set of parameters was seen to predict the correct microstructure evolution for two different types of alloys, under very different irradiation conditions: an Fe-C-MnNi model alloy, neutron irradiated at a relatively high flux, and a high-Mn, high-Ni RPV steel from the Swedish Ringhals reactor surveillance program. In both cases, the predicted self-interstitial loop density matches the experimental solute cluster density, further corroborating the surmise that the MnNi-rich nanofeatures form by solute enrichment of immobilized small interstitial loops, which are invisible to the electron microscope.

  9. Evolution of manganese–nickel–silicon-dominated phases in highly irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Wells, Peter B.; Yamamoto, Takuya; Miller, Brandon; Milot, Tim; Cole, James; Wu, Yuan; Odette, G. Robert

    2014-01-01

    Formation of a high density of Mn–Ni–Si nanoscale precipitates in irradiated Cu-free and Cu-bearing reactor pressure vessel steels could lead to severe unexpected embrittlement. Models long ago predicted that these precipitates, which are not treated in current embrittlement prediction models, would emerge only at high fluence. However, the mechanisms and variables that control Mn–Ni–Si precipitate formation, and their detailed characteristics, have not been well understood. High flux irradiations of six steels with systematic variations in Cu and Ni contents were carried out at ∼295 °C to high and very high neutron fluences of ∼1.3 × 10 20 and ∼1.1 × 10 21 n cm −2 . Atom probe tomography shows that significant mole fractions of Mn–Ni–Si-dominated precipitates form in the Cu-bearing steels at ∼1.3 × 10 20 n cm −2 , while they are only beginning to develop in Cu-free steels. However, large mole fractions of these precipitates, far in excess of those found in previous studies, are observed at 1.1 × 10 21 n cm −2 at all Cu contents. At the highest fluence, the precipitate mole fractions primarily depend on the alloy Ni, rather than Cu, content. The Mn–Ni–Si precipitates lead to very large increases in measured hardness, corresponding to yield strength elevations of up to almost 700 MPa

  10. Overview of 9Cr steels properties for structural application in sodium fast reactors

    International Nuclear Information System (INIS)

    Cabet, Celine; Courouau, Jean-Louis; Dalle, France; Desgranges, Clara; Forest, Laurent; Martinelli, Laure; Sauzay, Maxime

    2015-01-01

    A research and development programme has been launched by CEA, EDF and AREVA for the choice and qualification of material for sodium fast reactor (SFR) structural components. The requirements on steam generator (SG) are demanding, with operating temperatures ranging from 240 deg. C to 530 deg. C in water/steam and in sodium for an extended design life of several decades. The selection of the SG materials is based on many characteristics: fabrication, welding, thermal properties, mechanical strength at low and high temperature, environmental resistance. 9%Cr steels which are relevant candidate alloys for different designs of SGs have been extensively studied in the past decade. The objective of this paper is to review some advances made at CEA on determining properties of the X10CrMoVNb9-1 steel (hereafter named 'grade 91'): welding, modelling of cyclic softening, modelling of long-term creep, compatibility with liquid sodium, corrosion in steam. (authors)

  11. Stress corrosion cracking of L-grade stainless steels in boiling water reactor (BWR) plants

    International Nuclear Information System (INIS)

    Suzuki, Shunichi; Fukuda, Toshihiko; Yamashita, Hironobu

    2004-01-01

    L-grade stainless steels as 316NG, SUS316L and SUS304L have been used for the BWR reactor internals and re-circulation pipes as SCC resistant materials. However, SCC of the L-grade material components were reported recently in many Japanese BWR plants. The detail investigation of the components showed the fabrication process such as welding, machining and surface finishing strongly affected SCC occurrence. In this paper, research results of SCC of L-grade stainless steels, metallurgical investigation of core shrouds and re-circulation pipings, and features of SCC morphology were introduced. Besides, the structural integrity of components with SCC, countermeasures for SCC and future R and D planning were introduced. (author)

  12. Irradiation, Annealing, and Reirradiation Effects on American and Russian Reactor Pressure Vessel Steels

    International Nuclear Information System (INIS)

    Chernobaeva, A.A.; Korolev, Y.N.; Nanstad, R.K.; Nikolaev, Y.A.; Sokolov, M.A.

    1998-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. Even though a postirradiation anneal may be deemed successful, a critical aspect of continued RPV operation is the rate of embrittlement upon reirradiation. There are insufficient data available to allow for verification of available models of reirradiation embrittlement or for the development of a reliable predictive methodology. This is especially true in the case of fracture toughness data. Under the U.S.-Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS), Working Group 3 on Radiation Embrittlement, Structural Integrity, and Life Extension of Reactor Vessels and Supports agreed to conduct a comparative study of annealing and reirradiation effects on RPV steels. The Working Group agreed that each side would irradiate, anneal, reirradiate (if feasible ), and test two materials of the other. Charpy V-notch (CVN) and tensile specimens were included. Oak Ridge National Laboratory (ORNL) conducted such a program (irradiation and annealing, including static fracture toughness) with two weld metals representative of VVER-440 and VVER-1000 RPVs, while the Russian Research Center-Kurchatov Institute (RRC-KI) conducted a program (irradiation, annealing, reirradiation, and reannealing) with Heavy-Section Steel Technology (HSST) Program Plate 02 and Heavy-Section Steel Irradiation (HSSI) Program Weld 73W. The results for each material from each laboratory are compared with those from the other laboratory. The ORNL experiments with the VVER welds included irradiation to about 1 x 10 19 n/cm 2 (>1 MeV), while the RRC-KI experiments with the U.S. materials included irradiations from about 2 to 18 x 10 19 n/cm 2 (>l MeV). In both cases, irradiations were conducted at ∼290 C and annealing treatments were conducted at ∼454 C. The ORNL and RRC

  13. Transmutation and activation of stainless steel 316 SS in a thermal fusion reactor blanket

    International Nuclear Information System (INIS)

    Gruber, J.; Schneider, J.

    1977-10-01

    Using the program MATEXP (matrix exponential method) the influence of neutron flux is calculated for stainless steel 3s16 SS which is used as a structural material in a fusion reactor blanket (CTRD-I). The transmutations, activations and γ-dose rates are determined for an operation time of 20 years. Investigating the decay behaviour after operation time, we found that the long term activity and dose rate was mainly influenced by five nuclides: Fe55, Ni63, Ni59, Co60 and Nb94. (orig.) [de

  14. Pressure vessels for reactors made from structural steel with limited tensile strength

    International Nuclear Information System (INIS)

    Machatti, H.

    1973-01-01

    The reactor pressure vessel is prestressed in several directions with prestressing elements fabricated of steel with a high yielding point. This design allows a substantial reduction of wall thickness or an increase of the inner diameter at equal wall thickness. The prestress of the prestressing elements is designed to achieve a maximum stress release of the vessel walls at normal operating conditions and to fully utilize the maximum load of the vessel walls. For safety reasons the cross section of the prestressing elements is constructed in a way that strain is always 20 % lower the yield point. (P.K.)

  15. IRRADIATION CREEP AND MECHANICAL PROPERTIES OF TWO FERRITIC-MARTENSITIC STEELS IRRADIATED IN THE BN-350 FAST REACTOR

    International Nuclear Information System (INIS)

    Porollo, S. I.; Konobeev, Yu V.; Dvoriashin, A. M.; Budylkin, N. I.; Mironova, E. G.; Leontyeva-Smirnova, M. V.; Loltukhovsky, A. G.; Bochvar, A. A.; Garner, Francis A.

    2002-01-01

    Russian ferritic/martensitic steels EP-450 and EP-823 were irradiated to 20-60 dpa in the BN-350 fast reactor in the form of pressurized creep tubes and small rings used for mechanical property tests. Data derived from these steels serves to enhance our understanding of the general behavior of this class of steels. It appears that these steels exhibit behavior that is very consistent with that of Western steels. Swelling is relatively low at high neutron exposure and confined to temperatures less then 420 degrees C, but may be camouflaged somewhat by precipitation-related densification. The irradiation creep studies confirm that the creep compliance of F/M steels is about one-half that of austenitic steels, and that the loss of strength at test temperatures above 500 degrees C is a problem generic to all F/M steels. This conclusion is supported by post-irradiation measurement of short-term mechanical properties. At temperatures below 500 degrees C both steels retain their high strength (yield stress 0.2=550-600 MPa), but at higher test temperatures a sharp decrease of strength properties occurs. However, the irradiated steels still retain high post-irradiation ductility at test temperatures in the range of 20-700 degrees C.

  16. Lower Length Scale Model Development for Embrittlement of Reactor Presure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the lower-length-scale effort during FY 2016 in developing mesoscale capabilities for microstructure evolution, plasticity and fracture in reactor pressure vessel steels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation induced defect accumulation and irradiation enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. A crystal plasticity model to capture defect-dislocation interaction and a damage model for cleavage micro-crack propagation is also provided.

  17. Fast reactor shield sensitivity studies for steel--sodium--iron systems

    International Nuclear Information System (INIS)

    Oblow, E.M.; Weisbin, C.R.

    1977-01-01

    A study was made of the adequacy of the current ENDF/B-IV sodium and iron neutron cross section data files for fast reactor shield design work. Experimental data from 21 fast reactor shield configurations containing large thicknesses of steel, sodium, and iron were analyzed with discrete ordinates calculations and sensitivity methods to assess the data files. This study represents the largest full-scale sensitivity analysis of benchmark quality experimental data to date. Included in the sensitivity studies were the results of the new cross section adjustment algorithms added to the FORSS code system. Conclusions were drawn about the need for more accurate data for sodium and iron elastic and discrete inelastic cross sections above 1 MeV and the values of the total cross section in the vicinity of important minima

  18. Creep crack growth in a reactor pressure vessel steel at 360 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Seitisleam, F.; Sandstroem, R. [Swedish Institute for Metals Research, Stockholm (Sweden)

    1998-12-31

    Plain creep (PC) and creep crack growth (CCG) tests at 360 deg C and post metallography were carried out on a low alloy reactor pressure vessel steel (ASTM A508 class 2) with different microstructures. Lives for the CCG tests were shorter than those for the PC tests and this is more pronounced for simulated heat affected zone microstructure than for the parent metal at longer lives. For the CCG tests, after initiation, the cracks grew constantly and intergranularly before they accelerated to approach rupture. The creep crack growth rate is well described by C*. The relations between reference stress, failure time and steady crack growth rate are presented for the CCG tests. It is demonstrated that the failure stress due to CCG is considerably lower than the yield stress at 360 deg C. Consequently, the CCG will control the static strength of a reactor vessel. (orig.) 17 refs.

  19. Creep crack growth in a reactor pressure vessel steel at 360 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Rui; Seitisleam, F; Sandstroem, R [Swedish Institute for Metals Research, Stockholm (Sweden)

    1999-12-31

    Plain creep (PC) and creep crack growth (CCG) tests at 360 deg C and post metallography were carried out on a low alloy reactor pressure vessel steel (ASTM A508 class 2) with different microstructures. Lives for the CCG tests were shorter than those for the PC tests and this is more pronounced for simulated heat affected zone microstructure than for the parent metal at longer lives. For the CCG tests, after initiation, the cracks grew constantly and intergranularly before they accelerated to approach rupture. The creep crack growth rate is well described by C*. The relations between reference stress, failure time and steady crack growth rate are presented for the CCG tests. It is demonstrated that the failure stress due to CCG is considerably lower than the yield stress at 360 deg C. Consequently, the CCG will control the static strength of a reactor vessel. (orig.) 17 refs.

  20. Low cycle thermomechanical fatigue of reactor steels: Microstructural and fractographic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, Balazs, E-mail: fekete.mm.bme@gmail.com [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Department of Applied Mechanics, Budapest University of Technology and Economics, Muegyetem 5, Budapest H-1111 (Hungary); Kasl, Josef; Jandova, Dagmar [Výzkumný a zkušební ústav Plzeň s.r.o., Tylova 1581/46, 316 00 Plzen (Czech Republic); Jóni, Bertalan [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Eötvös Loránd University, Egyetem tér 1-3, Budapest H-1053 (Hungary); Misják, Fanni [Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. 29-33, Budapest H-1121 (Hungary); Trampus, Peter [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary)

    2015-07-29

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of a VVER-440 reactor pressure vessel were investigated under fully reversed total strain controlled low cycle fatigue tests. The measurements were carried out in isothermal conditions at 260 °C and with thermal-mechanical conditions in the range 150–270 °C using a GLEEBLE-3800 servo-hydraulic thermal-mechanical simulator. The low cycle fatigue results were evaluated with the Coffin–Manson law, and the parameters of the Ramberg–Osgood stress–strain relation were investigated. Fracture mechanics behavior was observed using scanning electron microscopic analysis of the crack shapes and fracture surfaces. Crack propagation was assessed in relation to the actual crack size and the loading level. Interrupted fatigue tests were also carried out to investigate the kinetics of the fatigue evolution of the materials. Microstructural evaluation of the samples was performed using light, scanning and transmission electron microscopy as well as X-ray diffraction, and measurement of dislocations was completed using TEM and XRD. The course of dislocation density in relation to cumulative usage factor was similar for both steels. However, the nature and distribution of dislocations were different in the individual steels and this resulted in different mechanical behaviors. The nature of the fracture surfaces of both steels appeared similar despite differences in dislocation arrangement. The distances between striation lines initially increased with increasing crack length and then became saturated. The low cycle fatigue behavior investigated can provide a reference for the remaining life assessment and lifetime extension analysis of nuclear power plant components.

  1. Effect of reactor temperature on direct growth of carbon nanomaterials on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Edzatty, A. N., E-mail: nuredzatty@gmail.com; Syazwan, S. M., E-mail: mdsyazwan.sanusi@gmail.com; Norzilah, A. H., E-mail: norzilah@unimap.edu.my; Jamaludin, S. B., E-mail: sbaharin@unimap.edu.my [Centre of Excellence for Frontier Materials Research, School of Materials Engineering, University Malaysia Perlis (Malaysia)

    2016-07-19

    Currently, carbon nanomaterials (CNMs) are widely used for various applications due to their extraordinary electrical, thermal and mechanical properties. In this work, CNMs were directly grown on the stainless steel (SS316) via chemical vapor deposition (CVD). Acetone was used as a carbon source and argon was used as carrier gas, to transport the acetone vapor into the reactor when the reaction occurred. Different reactor temperature such as 700, 750, 800, 850 and 900 °C were used to study their effect on CNMs growth. The growth time and argon flow rate were fixed at 30 minutes and 200 ml/min, respectively. Characterization of the morphology of the SS316 surface after CNMs growth using Scanning Electron Microscopy (SEM) showed that the diameter of grown-CNMs increased with the reactor temperature. Energy Dispersive X-ray (EDX) was used to analyze the chemical composition of the SS316 before and after CNMs growth, where the results showed that reduction of catalyst elements such as iron (Fe) and nickel (Ni) at high temperature (700 – 900 °C). Atomic Force Microscopy (AFM) analysis showed that the nano-sized hills were in the range from 21 to 80 nm. The best reactor temperature to produce CNMs was at 800 °C.

  2. Specification for carbon and low alloy steel containment structures for stationary nuclear power reactors. [Now obsolescent (by Amendment No. 1)

    Energy Technology Data Exchange (ETDEWEB)

    1967-01-01

    This British Standard covers the design, construction, inspection and testing of steel reactor containment structures made of carbon and low alloy steel for temperatures not exceeding 300 deg C. Such structures are not in contact with the reactor coolant during normal operation. Pressure-relieved structures are not excluded, provided they are of a form that contains the fission products or ensures their safe disposal. Attachments such as air-locks or piping that is or may become directly connected between the interior of the containment structure and a closure, and may therefore contain radioactive material released during accidents, is considered part of the containment structure.

  3. Influence of crack depth on the fracture toughness of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Theiss, T.J.; Bryson, J.W.

    1991-01-01

    The Heavy Section Steel Technology Program (HSST) at Oak Ridge National Laboratory (ORNL) is investigating the influence of flaw depth on the fracture toughness of reactor pressure vessel (RPV) steel. Recently, it has been shown that, in notched beam testing, shallow cracks tend to exhibit an elevated toughness as a result of a loss of constraint at the crack tip. The loss of constraint takes place when interaction occurs between the elastic-plastic crack-tip stress field and the specimen surface nearest the crack tip. An increased shallow-crack fracture toughness is of interest to the nuclear industry because probabilistic fracture-mechanics evaluations show that shallow flaws play a dominant role in the probability of vessel failure during postulated pressurized-thermal-shock (PTS) events. Tests have been performed on beam specimens loaded in 3-point bending using unirradiated reactor pressure vessel material (A533 B). Testing has been conducted using specimens with a constant beam depth (W = 94 mm) and within the lower transition region of the toughness curve for A533 B. Test results indicate a significantly higher fracture toughness associated with the shallow flaw specimens compared to the fracture toughness determined using deep-crack (a/W = 0.5) specimens. Test data also show little influence of thickness on the fracture toughness for the current test temperature (-60 degree C). 21 refs., 5 figs., 3 tabs

  4. The tensile and fatigue properties of type 1.4914 ferritic steel for fusion reactor applications

    International Nuclear Information System (INIS)

    Marmy, P.; Victoria, M.; Ruan, Y.

    1989-08-01

    Martensitic steels have received considerable attention as structural materials in fusion reactor applications. In present designs, fusion reactors are expected to operate in a cyclic mode, thus producing cyclic thermal stresses in the first wall. Due to its thermal expansion coefficient and very low swelling rate, 1.4914 martensitic steel is a suitable candidate for the first wall with high neutron loadings. This paper presents the preirradiation results obtained with subsize-specimens designed to be irradiated with a proton beam in the PIREX facility at the Paul Scherrer Institute (PSI) of Wuerenlingen. Both tensile and low cycle fatigue tests were performed in vacuum in the region from 300 K to 870 K (720 K in the case of fatigue tests). Tensile tests on the subsize specimens (0.33 mm thick) compared well to those on bulk specimens, showing a minimum in ductility at around 620 K. The fatigue tests, performed on tubular specimens (3.4 mm external diameter, 0.35 mm wall thickness) showed substantial softening setting in at a low number of cycles. The initial microstructure observed in transmission microscopy consists of fine martensite laths. As cyclic deformation proceeds, dislocation cells form, that gradually replace the martensitic laths. (author) 19 figs., 5 tabs., 16 refs

  5. On flux effects in a low alloy steel from a Swedish reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Boåsen, Magnus, E-mail: boasen@kth.se [Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Efsing, Pål [Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Ehrnstén, Ulla [VTT Technical Research Centre of Finland Ltd, PO Box 1000, FI-02044 VTT (Finland)

    2017-02-15

    This study aims to investigate the presence of Unstable Matrix Defects in irradiated pressure vessel steel from weldments of the Swedish PWR Ringhals 4 (R4). Hardness tests have been performed on low flux (surveillance material) and high flux (Halden reactor) irradiated material samples in combination with heat treatments at temperatures of 330, 360 and 390 °C in order to reveal eventual recovery of any hardening features induced by irradiation. The experiments carried out in this study could not reveal any hardness recovery related to Unstable Matrix Defects at relevant temperatures. However, a difference in hardness recovery was found between the low and the high flux samples at heat treatments at higher temperatures than expected for the annihilation of Unstable Matrix Defects–the observed recovery is here attributed to differences of the solute clusters formed by the high and low flux irradiations. - Highlights: • Hardness testing is combined with post irradiation annealing at 330, 360 and 390 °C. • Unstable matrix defects is studied in a reactor pressure vessel steel. • Comparison between surveillance material and accelerated irradiation. • No evidence of unstable matrix defects, i.e. not present in studied material. • Difference in hardness recovery between irradiation conditions found at 390 °C.

  6. Effects of thermal annealing and reirradiation on toughness of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Iskander, S.K.; Sokolov, M.A.

    1996-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPV) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response, or open-quotes recovery,close quotes of several irradiated RPV steels; it also includes recent results from both ORNL and the Russian Research Center-Kurchatov Institute (RRC-KI) on a cooperative program of irradiation, annealing and reirradiation of both U.S. and Russian RPV steels. The cooperative program was conducted under the auspices of Working Group 3, U.S./Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS). The materials investigated are an RPV plate and various submerged-arc welds, with tensile, Charpy impact toughness, and fracture toughness results variously determined. Experimental results are compared with applicable prediction guidelines, while observed differences in annealing responses and reirradiation rates are discussed

  7. Effects of thermal annealing and reirradiation on toughness of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Iskander, S.K.; Sokolov, M.A.

    1997-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPV) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response, or open-quotes recovery,close quotes of several irradiated RPV steels; it also includes recent results from both ORNL and the Russian Research Center-Kurchatov Institute (RRC-KI) on a cooperative program of irradiation, annealing and reirradiation of both U.S. and Russian RPV steels. The cooperative program was conducted under the auspices of Working Group 3, U.S./Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS). The materials investigated are an RPV plate and various submerged-arc welds, with tensile, Charpy impact toughness, and fracture toughness results variously determined. Experimental results are compared with applicable prediction guidelines, while observed differences in annealing responses and reirradiation rates are discussed

  8. Statistical properties of material strength for reliability evaluation of components of fast reactors. Austenitic stainless steels

    International Nuclear Information System (INIS)

    Takaya, Shigeru; Sasaki, Naoto; Tomobe, Masato

    2015-03-01

    Many efforts have been made to implement the System Based Code concept of which objective is to optimize margins dispersed in several codes and standards. Failure probability is expected to be a promising quantitative index for optimization of margins, and statistical information for random variables is needed to evaluate failure probability. Material strength like tensile strength is an important random variable, but the statistical information has not been provided enough yet. In this report, statistical properties of material strength such as creep rupture time, steady creep strain rate, yield stress, tensile stress, flow stress, fatigue life and cyclic stress-strain curve, were estimated for SUS304 and 316FR steel, which are typical structural materials for fast reactors. Other austenitic stainless steels like SUS316 were also used for statistical estimation of some material properties such as fatigue life. These materials are registered in the JSME code of design and construction of fast reactors, so test data used for developing the code were used as much as possible in this report. (author)

  9. Mechanical Properties of Advanced Gas-Cooled Reactor Stainless Steel Cladding After Irradiation

    Science.gov (United States)

    Degueldre, Claude; Fahy, James; Kolosov, Oleg; Wilbraham, Richard J.; Döbeli, Max; Renevier, Nathalie; Ball, Jonathan; Ritter, Stefan

    2018-05-01

    The production of helium bubbles in advanced gas-cooled reactor (AGR) cladding could represent a significant hazard for both the mechanical stability and long-term storage of such materials. However, the high radioactivity of AGR cladding after operation presents a significant barrier to the scientific study of the mechanical properties of helium incorporation, said cladding typically being analyzed in industrial hot cells. An alternative non-active approach is to implant He2+ into unused AGR cladding material via an accelerator. Here, a feasibility study of such a process, using sequential implantations of helium in AGR cladding steel with decreasing energy is carried out to mimic the buildup of He (e.g., 50 appm) that would occur for in-reactor AGR clad in layers of the order of 10 µm in depth, is described. The implanted sample is subsequently analyzed by scanning electron microscopy, nanoindentation, atomic force and ultrasonic force microscopies. As expected, the irradiated zones were affected by implantation damage (steel cladding is retained despite He2+ implantation.

  10. Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Sun Mingyue, E-mail: mysun@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Luhan, Hao; Shijian, Li; Dianzhong, Li; Yiyi, Li [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2011-11-15

    Highlights: > A series of flow stress constitutive equations for SA508-3 steel were successfully established. > The experimental results under different conditions have validated the constitutive equations. > An industrial application of the model was present to simulate a large conical shell forging process. - Abstract: Based on the measured stress-strain curves under different temperatures and strain rates, a series of flow stress constitutive equations for SA508-3 steel were firstly established through the classical theories on work hardening and softening. The comparison between the experimental and modeling results has confirmed that the established constitutive equations can correctly describe the mechanical responses and microstructural evolutions of the steel under various hot deformation conditions. We further represented a successful industrial application of this model to simulate a forging process for a large conical shell used in a nuclear steam generator, which evidences its practical and promising perspective of our model with an aim of widely promoting the hot plasticity processing for heavy nuclear components of fission reactors.

  11. Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Sun Mingyue; Hao Luhan; Li Shijian; Li Dianzhong; Li Yiyi

    2011-01-01

    Highlights: → A series of flow stress constitutive equations for SA508-3 steel were successfully established. → The experimental results under different conditions have validated the constitutive equations. → An industrial application of the model was present to simulate a large conical shell forging process. - Abstract: Based on the measured stress-strain curves under different temperatures and strain rates, a series of flow stress constitutive equations for SA508-3 steel were firstly established through the classical theories on work hardening and softening. The comparison between the experimental and modeling results has confirmed that the established constitutive equations can correctly describe the mechanical responses and microstructural evolutions of the steel under various hot deformation conditions. We further represented a successful industrial application of this model to simulate a forging process for a large conical shell used in a nuclear steam generator, which evidences its practical and promising perspective of our model with an aim of widely promoting the hot plasticity processing for heavy nuclear components of fission reactors.

  12. Characterization of matrix damage in ion-irradiated reactor vessel steel

    International Nuclear Information System (INIS)

    Fujii, Katsuhiko; Fukuya, Koji

    2004-01-01

    Exact nature of the matrix damage, that is one of radiation-induced nano-scale microstructural features causing radiation embrittlement of reactor vessel, in irradiated commercial steels has not been clarified yet by direct characterization using transmission electron microscopy (TEM). We designed a new preparation method of TEM observation samples and applied it to the direct TEM observation of the matrix damage in the commercial steel samples irradiated by ions. The simulation irradiation was carried out by 3 MeV Ni 2+ ion to a dose of 1 dpa at 290degC. Thin foil specimens for TEM observation were prepared using the modified focused ion beam method. A weak-beam TEM study was carried out for the observation of matrix damage in the samples. Results of this first detailed observation of the matrix damage in the irradiated commercial steel show that it is consisted of small dislocation loops. The observed and analyzed dislocation loops have Burgers vectors b = a , and a mean image size and the number density are 2.5 nm and about 1 x 10 22 m -3 , respectively. In this experiment, all of the observed dislocation loops were too small to determine the vacancy or interstitial nature of the dislocation loops directly. Although it is an indirect method, post-irradiation annealing was used to infer the loop nature. Most of dislocation loops were stable after the annealing at 400degC for 30 min. This result suggests that their nature is interstitial. (author)

  13. Heavy reflector experiments composed of carbon steel and nickel in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Santos, Adimir dos; Silva, Graciete Simoes de Andrade e; Mura, Luis Felipe; Jerez, Rogerio; Mendonca, Arlindo Gilson; Fuga, Rinaldo

    2013-01-01

    The heavy reflector experiments performed in the IPEN/Mb-01 research reactor facility comprise a set of critical configurations employing the standard 28x26-fuel-rod configuration. The heavy reflector either, carbon steel or nickel plates was placed at one of the faces of the IPEN/MB-01 reactor. Criticality is achieved by inserting the control banks BC1 and BC2 to the critical position. 32 plates around 0.3 mm thick were used in all the experiment. The chosen distance between last fuel rod row and the first laminate for all types of laminates was 5.5 mm. Considering initially the carbon steel case, the experimental data reveal that the reactivity decreases up to the fifth plate and after that it increases, becomes nearly zero (which was equivalent to initial zero excess reactivity with zero plates) for the 28 plates case and reaches a value of 42.73 pcm when the whole set of 32 plates are inserted in the reflector. This is a very striking result because it demonstrates that when all 32 plates are inserted in the reflector there is a net gain of reactivity. The reactivity behavior demonstrates all the physics events already mentioned in this work. When the number of plates are small (around 5), the neutron absorption in the plates is more important than the neutron reflection and the reactivity decreases. This condition holds up to a point where the neutron reflection becomes more important than the neutron absorption in the plates and the reactivity increases. The experimental data for the nickel case shows the main features of the carbon steel case, but for the carbon steel case the reactivity gain is small, thus demonstrating that carbon steel or essentially iron has not the reflector capability as the nickel laminates do. The measured data of nickel plates show a higher reactivity gain, thus demonstrating that nickel is a better reflector than iron. The theoretical analysis employing MCNP5 and ENDF/B-VII.0 show that the calculated results have good results up to

  14. Evolution of precipitation in reactor pressure vessel steel welds under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Kristina, E-mail: kristina.lindgren@chalmers.se [Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Boåsen, Magnus [Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Stiller, Krystyna [Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Efsing, Pål [Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Vattenfall Ringhals AB, SE-430 22 Väröbacka (Sweden); Thuvander, Mattias [Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2017-05-15

    Reactor pressure vessel steel welds are affected by irradiation during operation. The irradiation results in nanometre cluster formation, which in turn affects the mechanical properties of the material, e.g. the ductile-to-brittle transition temperature is shifted to higher levels. In this study, cluster formation is characterised in high Ni (1.58%) low Cu (0.04%) steel welds identical to Ringhals R4 welds, using atom probe tomography in both surveillance material and in material irradiated at accelerated dose rates. Clusters containing mainly Ni and Mn, but also some Si and Cu were observed in all of the irradiated materials. Their evolution did not change drastically during irradiation; the clusters grew and new clusters were nucleated. Hence, both the cluster number density and the average size increased with irradiation time. Some flux effects were observed when comparing the high flux material and the surveillance material. The surveillance material has a lower cluster number density, but larger clusters. The resulting impact on the mechanical properties of these two effects cancel out, resulting in a measured hardness that seems to be on the same trend as the high flux material. The dispersed barrier hardening model with an obstacle strength factor of 0.15 was found to reproduce the increase in hardness. In the investigated high flux materials, the clusters' Cu content was higher. - Highlights: •Clustering in a low Cu, high Ni reactor pressure vessel steel weld is studied. •The clusters nucleate and grow during irradiation, and consist of Ni, Mn, Si, and Cu. •High flux neutron irradiated material is compared to surveillance material. •High flux was found to result in smaller clusters with a larger number density. •Hardness follows the same dependence on fluence, independent of flux.

  15. Meso-scale magnetic signatures for nuclear reactor steel irradiation embrittlement monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Suter, J. D., E-mail: pradeep.ramuhalli@pnnl.gov; Ramuhalli, P., E-mail: pradeep.ramuhalli@pnnl.gov; Hu, S.; Li, Y.; Jiang, W.; Edwards, D. J.; Schemer-Kohrn, A. L.; Johnson, B. R. [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); McCloy, J. S., E-mail: john.mccloy@wsu.edu; Xu, K., E-mail: john.mccloy@wsu.edu [Washington State University, PO Box 642920, Pullman, WA 99164 (United States)

    2015-03-31

    Verifying the structural integrity of passive components in light water and advanced reactors will be necessary to ensure safe, long-term operations of the existing U.S. nuclear fleet. This objective can be achieved through nondestructive condition monitoring techniques, which can be integrated with plant operations to quantify the “state of health” of structural materials in real-time. While nondestructive methods for monitoring many classes of degradation (such as fatigue or stress corrosion cracking) are relatively advanced, this is not the case for degradation caused by irradiation. The development of nondestructive evaluation technologies for these types of degradation will require advanced materials characterization techniques and tools that enable comprehensive understanding of nuclear reactor material microstructural and behavioral changes under extreme operating environments. Irradiation-induced degradation of reactor steels causes changes in their microstructure that impacts their micro-magnetic properties. In this paper, we describe preliminary results of integrating advanced material characterization techniques with meso-scale computational models. In the future, this will help to provide an interpretive understanding of the state of degradation in structural materials. Microstructural data are presented from monocrystalline Fe and are correlated with variable-field magnetic force microscopy and micro-magnetic measurements. Ongoing research is focused on extending the measurements and models on thin films to gain insights into the structural state of irradiated materials and the resulting impact on magnetic properties. Preliminary conclusions from these correlations are presented, and next steps described.

  16. Comparison of four NDT methods for indication of reactor steel degradation by high fluences of neutron irradiation

    Czech Academy of Sciences Publication Activity Database

    Tomáš, Ivan; Vértesy, G.; Pirfo Barroso, S.; Kobayashi, S.

    2013-01-01

    Roč. 265, DEC (2013), s. 201-209 ISSN 0029-5493 Institutional support: RVO:68378271 Keywords : neutron irradiation * steel degradation * nuclear reactor pressure vessel * magnetic NDT * magnetic minor hysteresis loops * Magnetic Barkhausen Emission Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.972, year: 2013 http://www.sciencedirect.com/science/article/pii/S0029549313004664

  17. New stainless steels of ferrite-martensite grade and perspectives of their application in thermonuclear facilities and fast reactors

    International Nuclear Information System (INIS)

    Ajtkhozhin, Eh.S.; Maksimkin, O.P.

    2007-01-01

    Review of scientific literature for last 5 years in which results on study of radiation effect on ferrite-martensite steels - construction materials of fast reactors and most probable candidates for first wall and blanket of the thermonuclear facilities ITER and Demo - are presented. Alongside with this a prior experimental data on study of microstructure changing and physical- mechanical properties of ferrite-martensite steel EhP-450 - the material of hexahedral case of spent assembly of BN-350 fast reactor- are cited. Principal attention was paid to considering of radiation effects of structural components content changing and ferrite-martensite steel swelling irradiated at comparatively low values of radiation damage climb rate

  18. On the transition of short cracks into long fatigue cracks in reactor pressure vessel steels

    Directory of Open Access Journals (Sweden)

    Singh Rajwinder

    2018-01-01

    Full Text Available Short fatigue cracks, having dimension less than 1 mm, propagate at much faster rates (da/dN even at lower stress intensity factor range (da/dN as compared to the threshold stress intensity factor range obtained from long fatigue crack growth studies. These short cracks originate at the sub-grain level and some of them ultimately transit into critical long cracks over time. Therefore, designing the components subjected to fatigue loading merely on the long crack growth data and neglecting the short crack growth behavior can overestimate the component’s life. This aspect of short fatigue cracks become even more critical for materials used for safety critical applications such as reactor pressure vessel (RPV steel in nuclear plants. In this work, the transition behaviour of short fatigue crack gowth into long fatigue crack is studied in SA508 Grade 3 Class I low alloy steel used in RPVs. In-situ characterization of initiation, propagation and transition of short fatigue cracks is performed using fatigue stage for Scanning Electron Microscope (SEM in addition to digital microscopes fitted over a servo-hydraulic fatigue machine and correlated with the microtructural information obtained using electron backscatter diffraction (EBSD. SA508 steel having an upper bainitic microstructure have several microstructural interfaces such as phase and grain boundaries that play a significant role in controlling the short fatigue crack propagation. Specially designed and prepared short fatigue specimens (eletro-polished with varying initial crack lengths of the order of tens of microns are used in this study. The transition of such short initial cracks into long cracks is then tracked to give detailed insight into the role of each phase and phase/grain boundary with an objective of establishing Kitagawa-Takahashi diagram for the given RPV steel. The behavior of the transited long cracks is then compared with the crack propagation behavior obtained using

  19. Production of a 304 stainless steel nuclear reactor forging from a very large electroslag refined ingot

    International Nuclear Information System (INIS)

    Watkins, E.J.; Tihansky, E.L.

    1986-01-01

    A four-loop, upper barrel flange forging for a nuclear reactor was produced from what the authors believe to be the largest 304H grade stainless steel electroslag refined (ESR) ingot ever refined. The ingot was refined in a 1524-mm-diameter, ingot withdrawal-type ESR furnace using a lime-bearing slag, low-frequency a-c power, and dry air protection. Five electrodes were remelted in order to produce the desired ingot weight. The ingot was subsequently forged in a five-step operation on a 6800-metric-ton press to produce the desired barrel flange configuration. Testing of the finished machined forging revealed excellent tensile ductility, excellent ultrasonic penetrability, and good chemical uniformity with no macrosegregation. Overall quality was judged to be superior to previously produced, conventionally melted forgings

  20. The IAEA data base ageing of reactor pressure vessel steels and welds

    International Nuclear Information System (INIS)

    Gillemot, F.; Ianko, L.; Davies, L.M.

    1995-01-01

    This paper describes one aspect of the International Atomic Energy Agency (IAEA) data base, that is to do with the ageing of reactor pressure vessel (RPV) steels and welds. It describes the background and the need for and the benefits deriving from such an international data base encompassing a greater number of sources than currently incorporated in existing international and national data bases. The paper describes the organization of this data base and the controls necessary for data acquisition and control. The current state of progress is described. Membership of and participation in this project is given and data access is also described. The technical features of the data base are described in terms of the structure of the data base and the hardware and software. New features are proposed such as the inclusion of measured curve data and metallographic data. Technical aspects of data evaluation are also included. (author). 1 ref., 6 figs

  1. Long-term ageing effects in reactor pressure vessel steels investigated by positron annihilation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Butterling, Maik; Anwand, Wolfgang; Wagner, Andreas [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden (Germany); Bergner, Frank; Ulbricht, Andreas; Wagner, Arne [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden (Germany)

    2014-07-01

    Neutron irradiation of reactor pressure vessel steels leads to the formation of nano-sized defects which can deteriorate the material. An understanding of the microstructural evolution of the material is important for making reliable security assessments about possible future long-term operation of nuclear power plants. So-called late-blooming phases are formed after long-term irradiation and lead to considerable material ageing effects. Encouraging factors for the formation of these phases are a low Cu-content, moderate to high contents of Mn and Ni, low irradiation temperatures and different neutron fluxes. Positron annihilation lifetime spectroscopy which is ideally suited for the detection and characterization of these irradiation-induced defects was applied for different selected materials which fulfill these conditions in order to investigate the occurrence and behavior of these phases.

  2. Modelling of crack chemistry in sensitized stainless steel in boiling water reactor environments

    International Nuclear Information System (INIS)

    Turnbull, A.

    1997-01-01

    An advanced model has been used to predict the chemistry and potential in a stress corrosion crack in sensitized stainless steel in a boiling water reactor (BWR) environment. The model assumes trapezoidal crack geometry, incorporates anodic reaction and cathodic reduction within the crack, and takes into account the limited solubility of cations in high temperature water. The results indicate that the crack tip potential is not independent of the external potential, and that the reactions on the walls of the crack must be included for reliable prediction. Accordingly, both the modelling assumptions of Ford and Andresen and of Macdonald and Urquidi-Macdonald, whilst having merit, are not fully satisfactory. Extended application of the model for improved prediction of stress corrosion crack growth rate is constrained by limitations in electrochemical data which are currently inadequate. (author)

  3. Warm pre-stress experiments on highly irradiated reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Landron, C.; Ait-Bachir, M.; Moinereau, D.; Molinie, E.; Garbay, E.

    2015-01-01

    In the aim to justify in-service integrity of reactor pressure vessel beyond 40 years, experimental warm pre-stress (WPS) tests were performed on irradiated materials representative of RPV steels corresponding to 40 operating years. Different types of WPS loading path have been considered to cover typical postulated accidental transients. These results confirmed the beneficial effect of WPS on the cleavage fracture resistance of the irradiated materials. No fracture occurred during the cooling phase of the loading path and the fracture toughness values are higher than that measured with conventional isothermal tests. The analyses of the experiments, conducted using either simplified engineering models or more refined fracture models based on local approach to cleavage fracture, are in agreement with the experimental results. (authors)

  4. Stress corrosion cracking studies of reactor pressure vessel steels. Final report

    International Nuclear Information System (INIS)

    Van Der Sluys, W.A.

    1996-10-01

    The objective of this project was to perform a critical review of the information available in open literature on stress corrosion cracking of reactor pressure vessel materials in simulated light-water-reactor (LWR) conditions, develop a test procedure for conducting stress corrosion crack growth experiments in simulated LWR environments, and conduct a test program in an effort to duplicate some of the data available from the literature. The authors concluded that stress corrosion crack growth has been observed in pressure vessel steels under laboratory test conditions. The composition of the water in most cases where growth was observed is outside of the composition specified for operating conditions. Crack growth was observed in the experiments performed in this program, and it was intermittent. The cracking would start and stop for no apparent reason. In most instances, it would not restart without the change of some external variable. In a few instances, it restarted on its own. Crack growth rates as high as 3.6 x 10 -9 m/sec were observed in pressure vessel steels in high-purity water with 8 ppm oxygen. These high crack growth rates were observed for extremely short bursts in crack extension. They could not be sustained for crack growth extensions greater than a few tenths of a millimeter. From the results of this project it appears highly unlikely that stress corrosion cracking will be observed in operating nuclear plants where the coolant composition is maintained within water chemistry guidelines. However, more work is needed to better define the contaminations that cause crack growth. The crack growth rates are so high and the threshold values for crack nucleation are so low that the conditions causing them need to be well defined and avoided

  5. Biaxial loading effects on fracture toughness of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    McAfee, W.J.; Bass, B.R.; Bryson, J.W. Jr.; Pennell, W.E.

    1995-03-01

    The preliminary phases of a program to develop and evaluate fracture methodologies for assessing crack-tip constraint effects on fracture toughness of reactor pressure vessel (RPV) steels have been completed by the Heavy-Section Steel Technology (HSST) Program. Objectives were to investigate effect of biaxial loading on fracture toughness, quantify this effect through existing stress-based, dual-parameter, fracture-toughness correlations, or propose and verify alternate correlations. A cruciform beam specimen with 2-D, shallow, through-thickness flaw and a special loading fixture was designed and fabricated. Tests were performed using biaxial loading ratios of 0:1 (uniaxial), 0.6:1, and 1:1 (equi-biaxial). Critical fracture-toughness values were calculated for each test. Biaxial loading of 0.6:1 resulted in a reduction in the lower bound fracture toughness of ∼12% as compared to that from the uniaxial tests. The biaxial loading of 1:1 yielded two subsets of toughness values; one agreed well with the uniaxial data, while one was reduced by ∼43% when compared to the uniaxial data. Results were evaluated using J-Q theory and Dodds-Anderson (D-A) micromechanical scaling model. The D-A model predicted no biaxial effect, while the J-Q method gave inconclusive results. When applied to the 1:1 biaxial data, these constraint methodologies failed to predict the observed reduction in fracture toughness obtained in one experiment. A strain-based constraint methodology that considers the relationship between applied biaxial load, the plastic zone width in the crack plane, and fracture toughness was formulated and applied successfully to the data. Evaluation of this dual-parameter strain-based model led to the conclusion that it has the capability of representing fracture behavior of RPV steels in the transition region, including the effects of out-of-plane loading on fracture toughness. This report is designated as HSST Report No. 150

  6. Irradiation induced tensile property change of SA 508 Cl.3 reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Chi, Se-Hwan; Hong, Jun-Hwa; Kuk, Il-Hiun

    1998-01-01

    Irradiation induced tensile property change of four kinds of reactor pressure vessel steels manufactured by different steel refining process was compared based on the differences in the unirradiated and irradiated microstructure. Microvickers hardness, indentation, and miniature tensile specimen tests were conducted for mechanical property measurement and optical microscope (OM) and transmission electron microscope (TEM) were used for microstructural characterization. Specimens were 2 irradiated to a neutron fluence of 2.7x10 19 n/cm 2 (E ≥ 1 MeV) at 288 deg. C. Investigation on the unirradiated microstructures showed largely a same microstructure in that tempered acicular bainite and ferrite with bainitic phase prevailing in the unirradiated condition. Band-shaped segregations were also clearly observed except a kind of materials. A large difference in the unirradiated microstructure appeared in the grain size and carbide microstructure. Of carbide microstructures, noticeable differences were observed in the size and distribution of cementite, and bainitic lath microstructures. No noticeable changes were observed in the optical and thin film TEM microstructures after irradiation. Complicated microstructural. state of heat treated bainitic low alloy microstructure prevents easy quantification of microstructural changes due to irradiation. Apparent differences, however, were observed in the results of mechanical testing. Results of tensile testing and hardness measurement show that a steel refined by vacuum carbon deoxidation(VCD) method exhibits the highest radiation hardening behavior. Some of mechanical testing results on irradiated materials were possible to understand based on the initial microstructure, but further investigations using a wide array of sophisticated tools (for example, SANS, APFIM) are required to understand and characterize irradiation induced defects that are responsible for irradiation hardening behavior but are not revealed by

  7. Irradiation induced tensile property change of SA 508 Cl. 3 reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Chi, Se Hwan; Hong, Jun Hwa; Kuk, Il Hiun

    1998-01-01

    Irradiation induced tensile property change of four kinds of reactor pressure vessel steels manufactured by different steel refining process was compared based on the differences in the miniature tensile specimen tests were conducted for mechanical property measurement and optical microscope (OM) and transmission electron microscope (TEM) were used for microstructural characterization. Specimens were irradiated to a neutron fluence of 2.7 x 10 19 n/cm 2 (E ≥ 1 MeV) at 288 deg C. Investigation on the unirradiated microstructures showed largely a same microstructure in that tempered acicular bainite and ferrite with bainitic phase prevailing in the unirradiated condition. Ban-shaped segregations were also clearly observed except a kind of materials. A large difference in the unirradiated microstructure appeared in the grain size and carbide microstructure. Of carbide microstructures, noticeable differences were observed in the size and distribution of cementite, and bainitic lath microstructures. No noticeable changes were observed in the optical and thin film TEM microstructures after irradiation. Complicated microstructural state of heat treated bainitic low alloy microstructure prevents easy quantification of microstructural changes due to irradiation. Apparent differences, however, were observed in the results of mechanical testing. Results of tensile testing and hardness measurement show that a steel refined by vacuum carbon deoxidation (VCD) method exhibits the highest radiation hardening behavior. Some of mechanical testing results on irradiated materials were possible to understand based on the initial microstructure, but further investigations using a wide array of sophisticated tools (for example, SANS, APFIM) are required to understand and characterize irradiation induced defects that are responsible for irradiation hardening behavior but are not revealed by conventional TEM. (author)

  8. Fatigue life response of ASME SA 106-B steel in pressurized water reactor environments

    Energy Technology Data Exchange (ETDEWEB)

    Terrell, J B [Materials Engineering Associates, Inc., Lanham, MD (USA)

    1989-01-01

    Fatigue strain-life tests were conducted on ASMESA 106-B piping steel base metal and weld metal specimens in 288{sup 0}C (550{sup 0}F) pressurized water reactor (PWR) environments as a function of strain amplitude, strain ratio, notch acuity, and cyclic frequency. Notched base metal specimens tested at 0.017 Hz in 0.001 part per million (ppm) dissolved oxygen environments nearly completely used up the margins of safety of 2 on stress and 20 on cycles incorporated into the ASMA Section III design curve for carbon steels. Tests conducted with smooth base metal and weld metal specimens at 1.0 Hz showed virtually no degradation in cycles to failure when compared to 288{sup 0}C air test results. In all cases, however, the effect of temperature alone reduced the margin of safety offered by the design curve in the low cycle regime for the test specimens. Comparison between the fatigue life results of smooth and notched specimens suggests that fatigue crack initiation is not significantly affected by 0.001 ppm dissolved oxygen, and that most of the observed degradation may be attributed to crack growth acceleration. These results suggest that the ASMA Section III methodology should be reviewed, taking into account the PWR environment variables which degrade the fatigue life of pressure-retaining components. (author).

  9. Evaluation of neutron irradiation embrittlement in the Korean reactor pressure vessel steels (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J. H.; Lee, B. S.; Chi, S. H.; Kim, J. H.; Oh, Y. J.; Yoon, J. H.; Kwon, S. C.; Park, D. G.; Kang, Y. H.; Choo, K. N.; Oh, J. M.; Park, S. J.; Kim, B. K.; Shin, Y. T.; Cho, M. S.; Sohn, J. M.; Kim, D. S.; Choo, Y. S.; Ahn, S. B.; Oh, W. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-05-01

    Reactor pressure vessel materials, which were produced by a domestic company, Doosan Heavy Industries and construction Co., Ltd., have been evaluated using the neutron irradiation facility HANARO. For this evaluation, instrumented capsules were used for neutron irradiation of various kinds of specimens made of different heats of steels, which are VCD(Y4), VCD+Al(U4), Si+Al(Y5), U4 weld metal, and U4 HAZ, respectively. The fast neutron fluence levels ranged 1 to 5 (x10{sup 19} n/cm{sup 2}, E>1MeV) depending on the specimens and the irradiation temperature was controlled within 290{+-}10 deg C. The test results showed that, in the ranking of the material properties of the base metals, both before and after neutron irradiation, Y5 is the best, U4 the next and Y4 the last. Y4 showed a substantial change by neutron irradiation as well as the properties was worse than others in the unirradiated state. However, Y5, which showed the best properties in unirradiated state, was also the best in the resistance for irradiation embrittlement and one can hardly detect the property change after irradiation. The weldment showed a reasonably good resistance to irradiation embrittlement while the unirradiated properties were worse than base metals. The RPV steels are all expected to meet the screening criteria of the USNRC codes and regulations during the end of plant life. 39 refs., 42 figs., 27 tabs. (Author)

  10. Steel fibre concrete, a safer material for reactor construction. A general theory for rupture prediction

    International Nuclear Information System (INIS)

    Rammant, J.P.; Van Laethem, L.; Backx, E.

    1977-01-01

    The effect of steel fibre reinforcement on the mechanical behavior of concrete reactor structures is studied. It is shown that this material leads to a higher safety factor for highly stressed concrete structures like prestressed concrete pressure vessels. The reinforcement of concrete with short steel fibres results clearly in a fundamental change of the material properties. The study comprises basic experiments, the elaboration of an expression of the material laws, the development of a general computer program and the comparison of computational results with more elaborate experiments. Basic experimental work is conducted to determine the material characteristics of the fibre reinforced concrete. It is shown how the fibre reinforcement mechanism is translated into mathematical formulae by expressing the principal characteristics as matrix relationships. These relationships describe the elasto-plastic behavior and the cracked behavior. Probabilistic principles are used to express to fibre efficiency, such that a general stress-strain relationship is incorporated in a subsequent computer program. A general finite element program is developed which includes the new matrix relationships, the pull-out of fibres and the general stress-strain equations. A nonlinear calculation method gives the propagation of the distributed cracks with increasing load untill failure of the structure. Similarly, thermal cycling conditions are accounted for. For example the crack propagation in a fibre reinforced beam was measured by the photostress coating technique: the comparison with the computed crack propagation reveals an excellent agreement. Other comparative studies on simple structural parts are also reported

  11. Microstructural control and high temperature mechanical property of ferritic/martensitic steels for nuclear reactor application

    International Nuclear Information System (INIS)

    Adetunji, G.J.

    1991-04-01

    The materials under study are 9-12% Cr ferritic/martensitic steels, alternative candidate materials for application in core components of nuclear power reactors. This work involves (1) Investigation of high temperature fracture mechanism during slow tensile and limited creep testing at 600 o C (2) Extensive study of solute element segregation both theoretically and experimentally (3) Investigation of effects by thermal ageing and irradiation on microstructural developments in relation to high temperature mechanical behaviour. From (1) the results obtained indicate that the important microstructural characteristics controlling the fracture of 9-12% Cr ferritic/martensitic steels at high temperature are (a) solute segregation to inclusion-matrix interfaces (b) hardness of the martensitic matrix and (c) carbide particle size distribution. From (2) the results indicate a strong concentration gradient of silicon and molybdenum near lath packet boundaries for certain quenching rates from the austenitizing temperature. From (3) high temperature tensile data were obtained for irradiated samples with thermally aged ones as control. (author)

  12. Fatigue life response of ASME SA 106-B steel in pressurized water reactor environments

    International Nuclear Information System (INIS)

    Terrell, J.B.

    1989-01-01

    Fatigue strain-life tests were conducted on ASMESA 106-B piping steel base metal and weld metal specimens in 288 0 C (550 0 F) pressurized water reactor (PWR) environments as a function of strain amplitude, strain ratio, notch acuity, and cyclic frequency. Notched base metal specimens tested at 0.017 Hz in 0.001 part per million (ppm) dissolved oxygen environments nearly completely used up the margins of safety of 2 on stress and 20 on cycles incorporated into the ASMA Section III design curve for carbon steels. Tests conducted with smooth base metal and weld metal specimens at 1.0 Hz showed virtually no degradation in cycles to failure when compared to 288 0 C air test results. In all cases, however, the effect of temperature alone reduced the margin of safety offered by the design curve in the low cycle regime for the test specimens. Comparison between the fatigue life results of smooth and notched specimens suggests that fatigue crack initiation is not significantly affected by 0.001 ppm dissolved oxygen, and that most of the observed degradation may be attributed to crack growth acceleration. These results suggest that the ASMA Section III methodology should be reviewed, taking into account the PWR environment variables which degrade the fatigue life of pressure-retaining components. (author)

  13. Chemical and physical changes at sodium-stainless steel interfaces in fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, C K [Bhabha Atomic Research Centre, Bombay (India). Radiochemistry Div.

    1977-01-01

    In the sodium loops of a fast reactor, mass transfer occurs due to the interaction of flowing sodium on stainless steel surfaces. Under the non-isothermal conditions prevailing in the loop some elements are preferentially leached from the surface layers of the hot zone and transported by sodium to the cooled zone where deposition may take place. The available information on the mass transport in non-isothermal sodium loops has been summarised, and an attempt has been made to understand the mechanisms involved, of which the chemical reactions at the sodium-stainless steel interface are especially important. The rate of diffusion towards the solid/liquid interface may be the rate-determining step in some of these reactions. When a ferritic surface layer is formed by the selective removal of austenitic stabilizing elements, diffusion of alloying constituents through the ferritic layer limits the growth of this layer. Only when the surface film is adherent, the diffusion across this layer becomes important. NaCrO/sub 2/, for instance, has poor adherence, and a surface film of this compound may not inhibit further corrosion.

  14. Modeling of Microstructure Evolution in Austenitic Stainless Steels Irradiated Under Light Water Reactor Conditions

    International Nuclear Information System (INIS)

    Gan, J.; Stoller, R.E.; Was, G.S.

    1998-01-01

    A model for the development of microstructure during irradiation in fast reactors has been adapted for light water reactor (LWR) irradiation conditions (275 approximately 325 C, up to approximately10 dpa). The original model was based on the rate-theory, and included descriptions of the evolution of both dislocation loops and cavities. The model was modified by introducing in-cascade interstitial clustering, a term to account for the dose dependence of this clustering, and mobility of interstitial clusters. The purpose of this work was to understand microstructural development under LWR irradiation with a focus on loop nucleation and saturation of loop density. It was demonstrated that in-cascade interstitial clustering dominates loop nucleation in neutron irradiation in LWRS. Furthermore it was shown that the dose dependence of in-cascade interstitial clustering is needed to account for saturation behavior as commonly observed. Both quasi-steady-state (QSS) and non-steady-state (NSS) solutions to the rate equations were obtained. The difference between QSS and NSS treatments in the calculation of defect concentration is reduced at LWR temperature when in-cascade interstitial clustering dominates loop nucleation. The mobility of interstitial clusters was also investigated and its impact on loop density is to reduce the nucleation term. The ultimate goal of this study is to combine the evolution of microstructure and microchemistry together to account for the radiation damage in austenitic stainless steels

  15. Radiation damage characterization in reactor pressure vessel steels with nonlinear ultrasound

    International Nuclear Information System (INIS)

    Matlack, K. H.; Kim, J.-Y.; Wall, J. J.; Qu, J.; Jacobs, L. J.

    2014-01-01

    Nuclear generation currently accounts for roughly 20% of the US baseload power generation. Yet, many US nuclear plants are entering their first period of life extension and older plants are currently undergoing assessment of technical basis to operate beyond 60 years. This means that critical components, such as the reactor pressure vessel (RPV), will be exposed to higher levels of radiation than they were originally intended to withstand. Radiation damage in reactor pressure vessel steels causes microstructural changes such as vacancy clusters, precipitates, dislocations, and interstitial loops that leave the material in an embrittled state. The development of a nondestructive evaluation technique to characterize the effect of radiation exposure on the properties of the RPV would allow estimation of the remaining integrity of the RPV with time. Recent research has shown that nonlinear ultrasound is sensitive to radiation damage. The physical effect monitored by nonlinear ultrasonic techniques is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave, arising from the interaction of the ultrasonic wave with microstructural features such as dislocations, precipitates, and their combinations. Current findings relating the measured acoustic nonlinearity parameter to increasing levels of neutron fluence for different representative RPV materials are presented

  16. Radiation damage characterization in reactor pressure vessel steels with nonlinear ultrasound

    Science.gov (United States)

    Matlack, K. H.; Kim, J.-Y.; Wall, J. J.; Qu, J.; Jacobs, L. J.

    2014-02-01

    Nuclear generation currently accounts for roughly 20% of the US baseload power generation. Yet, many US nuclear plants are entering their first period of life extension and older plants are currently undergoing assessment of technical basis to operate beyond 60 years. This means that critical components, such as the reactor pressure vessel (RPV), will be exposed to higher levels of radiation than they were originally intended to withstand. Radiation damage in reactor pressure vessel steels causes microstructural changes such as vacancy clusters, precipitates, dislocations, and interstitial loops that leave the material in an embrittled state. The development of a nondestructive evaluation technique to characterize the effect of radiation exposure on the properties of the RPV would allow estimation of the remaining integrity of the RPV with time. Recent research has shown that nonlinear ultrasound is sensitive to radiation damage. The physical effect monitored by nonlinear ultrasonic techniques is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave, arising from the interaction of the ultrasonic wave with microstructural features such as dislocations, precipitates, and their combinations. Current findings relating the measured acoustic nonlinearity parameter to increasing levels of neutron fluence for different representative RPV materials are presented.

  17. The non-destructive examination of reactor pressure vessel steels by positron annihilation

    International Nuclear Information System (INIS)

    Highton, J.P.

    1983-01-01

    The rapid radiation hardening of copper bearing reactor pressure vessel steels has been linked with microvoids that are associated with copper based complexes in the metal lattice. These microvoids are active in the sense that their size appears to be related to the temperature of irradiation, which thus determines their influence on dislocation mobility. These sites appear to grow by vacancy condensation which causes a reduction in the local lattice energy. Thus prolonged exposure to PWR temperatures, even in the absence of a neutron flux, may also cause embrittlement. It has been found that these sites, which represent a local negative charge, act as traps to positrons. The size of each site dictates its positron trapping potential. As the trapping potential increases so too does the probability that the positrons will annihilate with low momentum conduction electrons. The momentum of the annihilating electrons will determine the degree of Doppler broadening of the 511 keV annihilation gamma peak. Thus careful analysis of this peak can yield useful information on the degree of embrittlement caused by these active defect complexes. In this way positron annihilation offers a powerful non-destructive alternative to current methods of assessing the integrity of nuclear reactor pressure vessels. (author)

  18. Activation calculation of steel of the control rods of TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Garcia M, T.; Cruz G, H. S.; Ruiz C, M. A.; Angeles C, A.

    2014-10-01

    In the pool of TRIGA Mark III reactor of the Instituto Nacional de Investigaciones Nucleares (ININ), there are control rods that were removed from the core, and which are currently on shelves of decay. These rods were part of the reactor core when only had fuel standard (from 1968-1989). To conduct a proper activation analysis of the rods, is very important to have well-characterized the materials which are built, elemental composition of the same ones, the atomic densities and weight fractions of the elements that constitute them. To determine the neutron activation of the control rods MCNP5 code was used, this code allows us to have well characterized the radionuclides inventory that were formed during irradiation of the control rods. This work is limited to determining the activation of the steel that is part of the shielding of the control rods, the nuclear fuel that is in the fuel follower does not include. The calculation model of the code will be validated with experimental measurements and calculating the activity of fission products of the fuel follower which will take place at the end of 2014. (Author)

  19. Stress corrosion cracking of nuclear reactor pressure vessel and piping steels

    International Nuclear Information System (INIS)

    Speidel, M.O.; Magdowski, R.M.

    1988-01-01

    This paper presents an extensive investigation of stress corrosion cracking of nuclear reactor pressure vessel and piping steels exposed to hot water. Experimental fracture mechanics results are compared with data from the literature and other laboratories. Thus a comprehensive overview of the present knowledge concerning stress corrosion crack growth rates is provided. Several sets of data confirm that 'fast' stress corrosion cracks with growth rates between 10 -8 and 10 -7 m/s and threshold stress intensities around 20 MN m -3/2 can occur under certain conditions. However, it appears possible that specific environmental, mechanical and metallurgical conditions which may prevail in reactors can result in significantly lower stress corrosion crack growth rates. The presently known stress corrosion crack growth rate versus stress intensity curves are discussed with emphasis on their usefulness in establishing safety margins against stress corrosion cracking of components in service. Further substantial research efforts would be helpful to provide a data base which permits well founded predictions as to how stress corrosion cracking in pressure vessels and piping can be reliably excluded or tolerated. It is emphasized, however, that the nucleation of stress corrosion cracks (as opposed to their growth) is difficult and may contribute substantially to the stress corrosion free service behaviour of the overwhelming majority of pressure vessels and pipes. (author)

  20. Comparison of SA508 Gr.3 and SA508 Gr.4N Low Alloy Steels for Reactor Pressure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Chul; Lee, B. S

    2009-12-15

    The microstructural characteristics and mechanical properties of SA508 Gr.3 Mn-Mo-Ni low alloy steel and SA508 Gr.4N Ni-Mo-Cr low alloy steel were investigated. The differences in the stable phases between these two low alloy steels were evaluated by means of a thermodynamic calculation using ThermoCalc. They were then compared to microstructural features and correlated with mechanical properties. Mn-Mo-Ni low alloy steel shows the upper bainite structure which has the coarse cementite in the lath boundaries. However, Ni-Mo-Cr low alloy steel shows the mixture of lower bainite and tempered martensite structure that homogeneously precipitates the small carbides such as M{sub 23}C{sub 6} and M{sub 7}C{sub 3} due to an increase of hardenability and Cr addition. In the mechanical properties, Ni-Mo-Cr low alloy steel has higher strength and toughness than Mn-Mo-Ni low alloy steel. Ni and Cr additions increase the strength by solid solution hardening. Besides, microstructural changes from upper bainite to tempered martensite improve the strength of the low alloy steel by grain refining effect. And the changes in the precipitation behavior by Cr addition improve the ductile-brittle transition behavior along with a toughening effect of Ni addition.

  1. Improvement in the long term creep rupture strength of SUS 316 steel for fast breeder reactors by nitrogen addition

    International Nuclear Information System (INIS)

    Nakazawa, Takanori; Abo, Hideo; Tanino, Mitsuru; Komatsu, Hazime; Tashimo, Masanori; Nishida, Takashi.

    1989-01-01

    Improvement of creep fatigue property of structural materials for fast breeder reactors. In order to improve the resistance to creep fatigue of SUS 316 steels, the effects of nitrogen, carbon, and molybdenum on creep properties have been investigated, under the concept that creep fatigue endurance is correspond to creep rupture ductility. Creep rupture tests and slow strain rate tensile tests were conducted at 550degC and extensive microstructural works were performed. The strengthening by nitrogen is much greater than carbon. Moreover, while carbon reduces rupture ductility, nitrogen does not change it. The addition of carbon results in coarse carbide formation on grain boundaries during creep, but with nitrogen very fine Fe 2 Mo particles precipitate on grain boundaries. The difference between the effects of nitrogen and carbon on creep properties is arise from the different morphology of precipitation. Strengthening by molybdenum brings about a slight decrease in rupture ductility. On the basis of these results, 0.01%C-0.07%N-11%Ni-16.5%Cr-2%Mo steel is selected as a promising material for fast breeder reactors. This steel has higher rupture ductility and strength than SUS 316 steel. It is also confirmed that this steel has a higher resistance to creep fatigue. (author)

  2. Requirements on cast steel for the primary coolant circuit of water cooled reactors

    International Nuclear Information System (INIS)

    The most important requirements placed on the structural components of water cooled nuclear reactors include corrosion resistance and mechanical materials properties. Intercrystalline corrosion resistance was tested using the Strauss Test in compliance with the DIN 50914 Standard. Following sensitization between 600 to 700 degC with a dwell time between 15 minutes and 100 hours, a specimen homogeneously annealed with the casting and rapidly water cooled showed no intercrystalline corrosion. Specimens cooled from 1050 degC at a rate of 100 degC per hour showed no unambiguous tendency for intercrystalline corrosion after sensitization; in some cases, however, an initial attack of intercrystalline corrosion was found. It was found that austenitic Cr-Ni cast steel containing 2.5% Mo and about 15% ferrite showed the sensitive intercrystalline corrosion range at higher temperatures and longer dwell times than rolled Cr-Ni steels. In plating the ferritic cast steel with a corrosion resistant plating material, annealing temperature after welding must not exceed 600 to 620 degC otherwise the resistance of the plated layer against intercrystalline corrosion would not be safeguarded, and following annealing for stress removal at a temperature of 600 to 620 degC all requirements must be satisfied by the weld metal and weld transition placed on the initial material. Martensite materials are used for the manufacture of components which are not used under pressure, such as alloys with 13% Cr and 1% to 6% Ni and alloys with 17% Cr and 4% Ni. Carbon content is maintained below 0.10% to guarantee good weldability and the highest corrosion resistance. Cast steels with 13% Cr and 4% Ni after a dwell of 2500 hours in fully desalinated water without oxygen and with 3600 ppm of boron at a test temperature of 95 to 300 degC showed a surface reduction of 0.005 mm annually. In identical conditions except for the water containing oxygen the reduction in surface was 0.05 mm per year. (J.B.)

  3. Microstructural characterization and model of hardening for the irradiated austenitic stainless steels of the internals of pressurized water reactors

    International Nuclear Information System (INIS)

    Pokor, C.

    2003-01-01

    The core internals of Pressurized Water Reactors (PWR) are composed of SA 304 stainless steel plates and CW 316 stainless steel bolts. These internals undergo a neutron flux at a temperature between 280 deg C and 380 deg C which modifies their mechanical properties. These modifications are due to the changes in the microstructure of these materials under irradiation which depend on flux, dose and irradiation temperature. We have studied, by Transmission Electron Microscopy, the microstructure of stainless steels SA 304, CW 316 and CW 316Ti irradiated in a mixed flux reactor (OSIRIS at 330 deg C between 0,8 dpa et 3,4 dpa) and in a fast breeder reactor at 330 deg C (BOR-60) up to doses of 40 dpa. Moreover, samples have been irradiated at 375 deg C in a fast breeder reactor (EBR-II) up to doses of 10 dpa. The microstructure of the irradiated stainless steels consists in faulted Frank dislocation loops in the [111] planes of austenitic, with a Burgers vector of [111]. It is possible to find some voids in the solution annealed samples irradiated at 375 deg C. The evolution of the dislocations loops and voids has been simulated with a 'cluster dynamic' model. The fit of the model parameters has allowed us to have a quantitative description of our experimental results. This description of the microstructure after irradiation was coupled together with a hardening model by Frank loops that has permitted us to make a quantitative description of the hardening of SA 304, CW 316 and CW 316Ti stainless steels after irradiation at a certain dose, flux and temperature. The irradiation doses studied grow up to 90 dpa, dose of the end of life of PWR internals. (author)

  4. An examination of the potential for 9%Cr1%Mo steel as thick section tubeplates in fast reactors

    International Nuclear Information System (INIS)

    Orr, J.; Sanderson, S.J.

    1984-01-01

    The steam generator units of future commercial demonstration fast reactors are likely to have a requirement for heavy section tubeplates (up to 500mm thick) with good elevated temperature strength and creep-fatigue resistance. A comparison of the mechanical properties available for ferritic steels has suggested that 9%Cr1%Mo steel would be a strong candidate material for this application. Although this steel is covered in some national specifications for tubes, pipes, plates and forgings and is also well established in the UK nuclear industry, international experience to date is confined to sections less than ca 150mm. The potential of 9%Cr1%Mo steel for use in thick sections has therefore been assessed in the present study by using simulation heat treatments. The work reported here involved the laboratory-scale cooling of bar samples to simulate water-quenching rates in cylindrical sections up to 720mm diameter (ie: equivalent to 500mm thick plate). The tensile properties at ambient and 525 0 C and impact fracture appearance transition temperatures were determined for material tempered after cooling at simulated thick section rates; the transformation characteristics as influenced by the net chromium equivalent were also established. The results of this work show that 9%Cr1%Mo steel may be fully hardened in the equivalent of the section sizes examined,and the mechanical properties of tempered material show only a small reduction from those of thin section normalised and tempered 9%Cr1%Mo steel. These findings support the potential usage of heavy section 9%Cr1%Mo steel envisaged for fast reactor steam generator tubeplates

  5. Elevated temperature tensile properties of P9 steel towards ferritic steel wrapper development for sodium cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, B.K., E-mail: bkc@igcar.gov.in; Mathew, M.D.; Isaac Samuel, E.; Christopher, J.; Jayakumar, T.

    2013-11-15

    Tensile deformation and fracture behaviour of the three developmental heats of P9 steel for wrapper applications containing varying silicon in the range 0.24–0.60% have been examined in the temperature range 300–873 K. Yield and ultimate tensile strengths in all the three heats exhibited gradual decrease with increase in temperature from room to intermediate temperatures followed by rapid decrease at high temperatures. A gradual decrease in ductility to a minimum at intermediate temperatures followed by an increase at high temperatures has been observed. The fracture mode remained transgranular ductile. The steel displayed signatures of dynamic strain ageing at intermediate temperatures and dominance of recovery at high temperatures. No significant difference in the strength and ductility values was observed for varying silicon in the range 0.24–0.60% in P9 steel. P9 steel for wrapper application displayed strength and ductility values comparable to those reported in the literature.

  6. Elevated temperature tensile properties of P9 steel towards ferritic steel wrapper development for sodium cooled fast reactors

    Science.gov (United States)

    Choudhary, B. K.; Mathew, M. D.; Isaac Samuel, E.; Christopher, J.; Jayakumar, T.

    2013-11-01

    Tensile deformation and fracture behaviour of the three developmental heats of P9 steel for wrapper applications containing varying silicon in the range 0.24-0.60% have been examined in the temperature range 300-873 K. Yield and ultimate tensile strengths in all the three heats exhibited gradual decrease with increase in temperature from room to intermediate temperatures followed by rapid decrease at high temperatures. A gradual decrease in ductility to a minimum at intermediate temperatures followed by an increase at high temperatures has been observed. The fracture mode remained transgranular ductile. The steel displayed signatures of dynamic strain ageing at intermediate temperatures and dominance of recovery at high temperatures. No significant difference in the strength and ductility values was observed for varying silicon in the range 0.24-0.60% in P9 steel. P9 steel for wrapper application displayed strength and ductility values comparable to those reported in the literature.

  7. Elevated temperature tensile properties of P9 steel towards ferritic steel wrapper development for sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Choudhary, B.K.; Mathew, M.D.; Isaac Samuel, E.; Christopher, J.; Jayakumar, T.

    2013-01-01

    Tensile deformation and fracture behaviour of the three developmental heats of P9 steel for wrapper applications containing varying silicon in the range 0.24–0.60% have been examined in the temperature range 300–873 K. Yield and ultimate tensile strengths in all the three heats exhibited gradual decrease with increase in temperature from room to intermediate temperatures followed by rapid decrease at high temperatures. A gradual decrease in ductility to a minimum at intermediate temperatures followed by an increase at high temperatures has been observed. The fracture mode remained transgranular ductile. The steel displayed signatures of dynamic strain ageing at intermediate temperatures and dominance of recovery at high temperatures. No significant difference in the strength and ductility values was observed for varying silicon in the range 0.24–0.60% in P9 steel. P9 steel for wrapper application displayed strength and ductility values comparable to those reported in the literature

  8. Effects of alloys elements, impurities and microstructural factors in austenitic stainless steel to utilize in fuel rod of nuclear reactors

    International Nuclear Information System (INIS)

    Yoshimoto, A.

    1988-08-01

    Austenitic Stainless Steel is used as cladding material of pressurized water reactor fuel rods because of its good performance. The addition of alloy elements and the control of impurities make this to happen. Fission products do not contribute to corrosion. Dimensional changes are not critical up to 1,0 x 10 22 n/cm 2 (E>0,1 MeV) of neutronic doses. The hydrogen does not cause embrittlement in the reactor operation temperatures, and helium contributes to embrittlement if the material is warmed upon 650 0 C. (author) [pt

  9. A phenomenological method of mechanical properties definition of reactor pressure vessels (RPV) steels VVER according to the ball indentation diagram

    International Nuclear Information System (INIS)

    Bakirov, M. B.; Potapov, V.V.; Massoud, J.P.

    2002-01-01

    This work presents specimen-free methods of a standard uniaxial tension diagram construction and RPV (reactor pressure vessel) steels VVER strength properties definition out of a continuous ball indentation diagram. A similarity phenomenon of uniaxial tension strain curves at a hardening area and an area of a ball indentation constitutes the ground of the methods. The methods are developed on the basis of the uniform graphic representation of elasto-plastic strain processes by indentation and tension and with the reception of the unified yield curve at a hardening area. The calculation results on the phenomenological method conducted for a wide range of RPV steels conditions of nuclear reactors have shown a good precision as far as strain curves construction by the uniaxial tension out of the elasto-plastic indentation diagram is concerned. (authors)

  10. Creep behavior of 8Cr2WVTa martensitic steel designed for fusion DEMO reactor. An assessment on helium embrittlement resistance

    International Nuclear Information System (INIS)

    Yamamoto, Norikazu; Murase, Yoshiharu; Nagakawa, Johsei; Shiba, Kiyoyuki

    2001-01-01

    Mechanical response against transmutational helium production, alternatively susceptibility to helium embrittlement, in a nuclear fusion reactor was examined on 8Cr2WVTa martensitic steel, a prominent structural candidate for advanced fusion systems. In order to simulate DEMO (demonstrative) reactor environments, helium was implanted into the material at 823 K with concentrations up to 1000 appmHe utilizing an α-beam from a cyclotron. Creep rupture properties were subsequently determined at the same temperature and were compared with those of the material without helium. It has been proved that helium caused no meaningful deterioration in terms of both the creep lifetime and rupture elongation. Furthermore, failure occurred completely in a transgranular and ductile manner even after high concentration helium introduction and there was no symptom of grain boundary decohesion which very often arises in helium bearing materials. These facts would mirror preferable resistance of this steel toward helium embrittlement. (author)

  11. Mitigating the Risk of Stress Corrosion of Austenitic Stainless Steels in Advanced Gas Cooled Reactor Boilers

    International Nuclear Information System (INIS)

    Bull, A.; Owen, J.; Quirk, G.; G, Lewis; Rudge, A.; Woolsey, I.S.

    2012-09-01

    Advanced Gas-Cooled Reactors (AGRs) operated in the UK by EDF Energy have once-through boilers, which deliver superheated steam at high temperature (∼500 deg. C) and pressure (∼150 bar) to the HP turbine. The boilers have either a serpentine or helical geometry for the tubing of the main heat transfer sections of the boiler and each individual tube is fabricated from mild steel, 9%Cr1%Mo and Type 316 austenitic stainless steel tubing. Type 316 austenitic stainless steel is used for the secondary (final) superheater and steam tailpipe sections of the boiler, which, during normal operation, should operate under dry, superheated steam conditions. This is achieved by maintaining a specified margin of superheat at the upper transition joint (UTJ) between the 9%Cr1%Mo primary superheater and the Type 316 secondary superheater sections of the boiler. Operating in this mode should eliminate the possibility of stress corrosion cracking of the Type 316 tube material on-load. In recent years, however, AGRs have suffered a variety of operational problems with their boilers that have made it difficult to maintain the specified superheat margin at the UTJ. In the case of helical boilers, the combined effects of carbon deposition on the gas side and oxide deposition on the waterside of the tubing have resulted in an increasing number of austenitic tubes operating with less than the specified superheat margin at the UTJ and hence the possibility of wetting the austenitic section of the boiler. Some units with serpentine boilers have suffered creep-fatigue damage of the high temperature sections of the boiler, which currently necessitates capping the steam outlet temperature to prevent further damage. The reduction in steam outlet temperature has meant that there is an increased risk of operation with less than the specified superheat margin at the UTJ and hence stress corrosion cracking of the austenitic sections of the boiler. In order to establish the risk of stress

  12. Applicability of the fracture toughness master curve to irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Sokolov, M.A.; McCabe, D.E.; Alexander, D.J.; Nanstad, R.K.

    1997-01-01

    The current methodology for determination of fracture toughness of irradiated reactor pressure vessel (RPV) steels is based on the upward temperature shift of the American Society of Mechanical Engineers (ASME) K Ic curve from either measurement of Charpy impact surveillance specimens or predictive calculations based on a database of Charpy impact tests from RPV surveillance programs. Currently, the provisions for determination of the upward temperature shift of the curve due to irradiation are based on the Charpy V-notch (CVN) 41-J shift, and the shape of the fracture toughness curve is assumed to not change as a consequence or irradiation. The ASME curve is a function of test temperature (T) normalized to a reference nit-ductility temperature, RT NDT , namely, T-RT NDT . That curve was constructed as the lower boundary to the available K Ic database and, therefore, does not consider probability matters. Moreover, to achieve valid fracture toughness data in the temperature range where the rate of fracture toughness increase with temperature is rapidly increasing, very large test specimens were needed to maintain plain-strain, linear-elastic conditions. Such large specimens are impractical for fracture toughness testing of each RPV steel, but the evolution of elastic-plastic fracture mechanics has led to the use of relatively small test specimens to achieve acceptable cleavage fracture toughness measurements, K Jc , in the transition temperature range. Accompanying this evolution is the employment of the Weibull distribution function to model the scatter of fracture toughness values in the transition range. Thus, a probabilistic-based bound for a given data population can be made. Further, it has been demonstrated by Wallin that the probabilistic-based estimates of median fracture toughness of ferritic steels tend to form transition curves of the same shape, the so-called ''master curve'', normalized to one common specimen size, namely the 1T [i.e., 1.0-in

  13. Process for testing noise emission from containers or pipelines made of steel, particularly for nuclear reactor plants

    International Nuclear Information System (INIS)

    Votava, E.; Stipsits, G.; Sommer, R.

    1982-01-01

    In a process for noise emission testing of steel containers or pipelines, particularly for testing primary circuit components of nuclear reactor plants, measuring sensors and/or associated electronic amplifiers are used, which are tuned for receiving the frequency band of the sound emission spectrum above a limiting frequency f G , but are limited or non-resonant for frequency bands less than f G . (orig./HP) [de

  14. Proof, interpretation and evaluation of radiation-induced microstructural changes in WWER reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Boehmert, J.; Gokhman, A.; Grosse, M.; Ulbricht, A.

    2003-06-01

    Neutron embrittlement is a special issue for the VVER-type reactors. One of the fundamentals for a reliable assessment of the current material state is knowledge of the causes and mechanisms of neutron embrittlement. The aim of the project is to understand and to quantify the microstructural appearances due to neutron radiation in VVER-type reactor pressure vessel steels. The material base is a broad variation of irradiation probes taken from the irradiation programme Rheinsberg, surveillance programmes of Russian, Ukrainian or Hungarian NPPs or irradiation experiments with mockup-alloys. The microstructure was investigated by different methods. The small angle neutron scattering (SANS) proved to be the most suitable method. A procedure was developed to determine mean diameter, size distribution and volume fraction of irradiation-induced microstructure from SANS experiments in a reliable and comparable manner. With this method microstructural parameters were systematically determined and the main factors of influence were identified. Apart from the neutron fluence the volume fraction of radiation defects mainly changes with the copper or nickel content whereas phosphorus is hardly relevant. Annealing remedies the radiation-induced microstructural appearances. The ratio between nuclear and magnetic neutron scattering provides information on the type of radiation defects. This leads to the conclusion that the material composition changes the radiation defects. The change occurs gradually rather than abruptly. The radiation defects detected by SANS correlate with the radiation hardening and embrittlement. Generally, the results suggest a bimodal mechanism due to radiation-enhanced and radiation-induced defect evolution. A kinetic model on base of the rate theory approach was established. (orig.)

  15. Critical survey of the neutron-induced creep behaviour of steel alloys for the fusion reactor materials programme

    International Nuclear Information System (INIS)

    Hausen, H.

    1985-01-01

    The differences between the irradiation environment of a fission reactor and that of a fusion reactor are respectively described in relation to the radiation damage found and expected in the two types of nuclear reactor. It is shown that the microstructure developing for instance in stainless steel alloys is almost invariant to whether the production rate of helium is high or low. The finding is valid up to neutron doses corresponding to about 60 dpa. For this reason, irradiation creep data obtained in fission reactors may be used, with caution, for predicting creep behaviour in fusion reactors.It was further recognized that irradiation creep performed with high energy particles from an accelerator, yields results which are comparable to those obtained in fission reactors. For this reason, simulation creep experiments are found to be valuable for the development of irradiation creep resistant materials using, for example, high energy electrons or protons. Such kind of experiments are performed in many laboratories. For irradiation doses larger than 60 dpa, predictions with respect to creep rates in fission and fusion reactors are difficult. In end-of-life tests, which concern swelling, ductility, tensile properties, rupture, fatigue and embrittlement, the presence of helium, due to its production rate being much higher in most materials exposed to 14 MeV neutrons than to fission neutrons, may be of great importance

  16. Research and tests of steel-concrete-steel sandwich composite shear wall in reactor containment of HTR-PM

    International Nuclear Information System (INIS)

    Sun Yunlun; Huang Wen; Zhang Ran; Zhang Pei; Tian Chunyu

    2014-01-01

    By quasi-static test of 8 specimens of steel-concrete-steel sandwich composite shear wall, the bearing capacity, hysteretic behavior, failure mode of the specimens was studied. So was the effect of the shear-span ratios, steel ratios and spacing of studs on the properties of the specimens. The failure patterns of all specimens with different shear-span ratios between 1.0 and 1.5 were compression-bending failure. The hysteretic curves of all specimens were relatively plump, which validated the well deformability and energy dissipation capacity of the specimens. When shear-span ratio less than 1.5, the shear property of the steel plate was well played, and so was the deformability of the specimens. The bigger the steel ratio was, the better the lateral resistance capacity and the deformability was. Among the spacing of studs in the test, the spacing of studs had no significant effect on the bearing capacity, deformability and ductility of the specimens. Based on the principle of superposition an advised formula for the compression-bending capacity of the shear wall was proposed, which fitted well with the test result and had a proper safety margin. (author)

  17. Postirradiation recovery of a reactor pressure vessel steel investigated by positron annihilation and microhardness measurements

    International Nuclear Information System (INIS)

    Pareja, R.; Diego, N. De; Cruz, R.M. de la; Del Rio, J.

    1993-01-01

    Positron lifetime and microhardness measurements have been performed on untreated, thermal-aged, neutron-irradiated, and postirradiation-annealed samples of reactor pressure vessel steels with the purpose of investigating the mechanisms of irradiation-induced hardening and recovery of the mechanical properties in these materials. The positron lifetime experiments have not revealed any evidence of the formation of a significant concentration of voids or vacancy clusters in samples irradiated at ∼290 C with fluences ≤2.71 x 10 23 n/m 2 (E>1 MeV), but they suggest a dislocation annealing induced by the irradiation. Isochronal annealing experiments with neutron-irradiated samples show a simultaneous recovery in their positron lifetime and microhardness at ∼340 C. From the microhardness measurements, the yield strength of the irradiated material has been estimated. The results appear to be consistent with a model of hardening due to irradiation-induced dissolution of precipitates with formation of small metastable precipitates after postirradiation aging and recovery induced by the disappearance of these metastable precipitates

  18. Optimisation of the mechanical alloying process for odsferritic steels for generation IV reactors application

    International Nuclear Information System (INIS)

    Stanciulescu, M.; Carlan, P.; Mihalache, M.; Abrudeanu, M.

    2016-01-01

    ODS ferritic steels appear as promising materials for fusion and Gen IV fission reactors, offering high temperature performance, corrosion and irradiation resistance and meeting low activation criteria. Mechanical alloying (MA) is a powder metallurgy technique efficient for fabricating advanced materials, and has been used for strengthening structural materials including Fe-Cr alloys. In this paper a high-energy ball mill is used to study the microstructural evolution of 14YW alloy during the mechanical alloying process. The elemental powders are milled at a rotation speed of 250rot/min in cycles of 10min milling and 5min pause, with a ball-to-powder ration of 10:1 and in argon protective atmosphere. After 72 hours milling, the morphology and element distribution of the MA powders is investigated by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis, respectively. It is observed that the particles size increases in the first milling stages and then decreases with the milling time. Changes in the material composition are analysed by X-ray diffraction (DRX). It seems that after milling part of the W remains non-dissolved in the Fe-Cr matrix retarding the solid solution formation. (authors)

  19. A new computational method for studies of 3-D dislocation-precipitate interactions in reactor steels

    International Nuclear Information System (INIS)

    Takahashi, A.; Gohniem, N.M.

    2008-01-01

    To enable computational design of advanced steels for reactor pressure vessels and core structural components, we present a new computational method for studies of the interaction between dislocations and precipitates. The method is based on three-dimensional parametric dislocation dynamics, Eshelby's inclusion and inhomogeneity solutions, and boundary and volume element numerical models. Results from this new method are successfully compared to recent molecular dynamics (MD) simulation results, and show good agreement with atomistic simulations. Then the method is first applied to the investigation of the critical shear stress (CSS) of precipitates sheared by successive dislocation cuttings. The simulations reveal that the CSS is reduced when dislocations cut precipitates, and that it can be as low as half the original value for a completely sheared precipitate. The influence of precipitate geometry and the ratio of precipitate-to-matrix elastic shear modulus on the CSS is presented, and the dependence of the interaction stress between dislocations and precipitates on their relative geometry is discussed. Finally an extension of the method to incorporate the dislocation core contribution to the CSS is highlighted. (author)

  20. Study of crack propagation velocity in steel tanks of PWR type reactor

    International Nuclear Information System (INIS)

    Amzallac, C.; Bernard, J.L.; Slama, G.

    1983-05-01

    Description and results of a serie of tests carried out on crack propagation velocity of steels in PWR environment (pressurized high temperature water), in order to examine the effects of metallurgical parameters such as chemical composition of steel, especially sulfur and carbon content, and steel type (laminate or forged steels), effects of mechanical parameters such as loading ratio, cycle form, frequency and application mode of loads and of chemical parameters (anodal dissolution or fatigue with hydrogen) [fr

  1. Melting of contaminated steel scrap from the dismantling of the CO2 systems of gas cooled, graphite moderated nuclear reactors

    International Nuclear Information System (INIS)

    Feaugas, J.; Jeanjacques, M.; Peulve, J.

    1994-01-01

    G2 and G3 are the natural Uranium cooled reactors Graphite/Gas. The two reactors were designed for both plutonium and electricity production (45 MWe). The dismantling of the reactors at stage 2 has produced more than 4 000 tonnes of contaminated scrap. Because of their large mass and low residual contamination level, the French Atomic Energy Commission (CEA) considered various possibilities for the processing of these metallic products in order to reduce the volume of waste going to be stored. After different studies and tests of several processes and the evaluation of their results, the choice to melt the dismantled pipeworks was taken. It was decided to build the Nuclear Steel Melting Facility known as INFANTE, in cooperation with a steelmaker (AHL). The realization time schedule for the INFANTE lasted 20 months. It included studies, construction and the licensing procedure. (authors). 2 tabs., 3 figs

  2. Time dependent design curves for a high nitrogen grade of 316LN stainless steel for fast reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh Kumar, J.; Ganesan, V.; Laha, K.; Mathew, M.D., E-mail: mathew@igcar.gov.in

    2013-12-15

    Highlights: • 316LN SS is an important high temperature structural material for sodium cooled fast reactors. • Creep strength of 316LN SS has been increased substantially by increasing the nitrogen content. • Creep design curves based on RCC-MR code procedures have been generated for this new material. • 100,000 h allowable stress at 600 °C increased by more than 40% as a result of doubling the nitrogen content in the steel. - Abstract: Type 316L(N) stainless steel (SS) containing 0.06–0.08 wt.% nitrogen is the major material for reactor assembly components of sodium cooled fast reactors (SFRs). With a view to increase the design life of SFRs to 60 years from the current life of 40 years, studies are being carried out to improve the high temperature creep and low cycle fatigue properties of 316LN SS by increasing the nitrogen content above 0.08 wt.%. In this investigation, the creep properties of a high nitrogen grade of 316LN SS containing 0.14 wt.% nitrogen have been studied. Creep tests were carried out at 550 °C, 600 °C and 650 °C at various stress levels in the range of 140–350 MPa. Creep strength was found to be significantly improved by doubling the nitrogen content in this steel. The maximum rupture life in these tests was 33,000 h. The creep data has been analyzed according to RCC-MR nuclear code procedures in order to generate the creep design curves for the high nitrogen grade of 316LN SS. Allowable stress for 100,000 h at 600 °C increased by more than 38% as a result of doubling the nitrogen content in the steel.

  3. Establishment of the observing system for boron in steels by alpha-particle track etching method using JAERI reactor

    International Nuclear Information System (INIS)

    Asakura, Kentaro; Shibata, Koji; Sawahata, Hiroyuki; Kawate, Minoru; Harasawa, Susumu

    2003-01-01

    Alpha-particle track etching (ATE) method is most effective in observing boron distribution in steels. Previously, in Japan, neutron irradiation for this method was carried out in the reactor at the Institute of Atomic Energy, Rikkyo University. This reactor, however, was shut down in 1999. Therefore, the establishment of a new system for ATE method has been required and experimental research was performed using the reactor at the Japan Atomic Energy Research Institute (JAERI). It was clarified that the irradiation equipment for medical treatment of the reactor JRR-4 was most suitable for ATE method. The specimen trestle for low radioactive exposure was newly-developed. ATE image obtained by 12h irradiation using this trestle showed a good quality similar to that obtained using Rikkyo's reactor and that obtained using the trestle of the old model. Using this new trestle, the amount of neutron which the worker suffers during the operation at the irradiation equipment decreases from 4μSv/h to 0-1 μSv/h compared with the trestle of the old model. The total amount of thermal neutron after 12 h irradiation was almost same as that under the recommended condition of the reactor at Rikkyo University, 6.5 x 10 14 n cm -2 . (author)

  4. Long-term irradiation effects on reactor-pressure vessel steels. Investigations on the nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Arne

    2017-06-01

    The exposure of reactor pressure vessel (RPV) steels to neutron irradiation gives rise to irradiation-enhanced diffusion, a rearrangement of solute atoms and, consequently, a degradation of the mechanical properties. The increasing age of existing nuclear power plants raises new questions specific to long-term operation. Two of them are addressed in this thesis: flux effects and the late-blooming effect. Can low-flux irradiations up to a given fluence be reproduced by more rapid high-flux irradiations up to the same fluence? Can the irradiation response of RPV steels be extrapolated to higher fluences or are there unexpected ''late-blooming'' effects. Small-angle neutron scattering (SANS), atom-probe tomography (APT) and Vickers-hardness testing were applied. A novel Monte-Carlo based fitting algorithm for SANS data was implemented in order to derive statistically reliable characteristics of irradiation-induced solute-atom clusters. APT was applied in selected cases to gain additional information on the composition and the shape of clusters. Vickers hardness testing was performed on the SANS samples to link the nanometer-scale changes to irradiation hardening. The investigations on flux effects show that clusters forming upon high-flux irradiation are smaller and tend to have a higher number density compared to low-flux irradiations at a given neutron fluence. The measured flux dependence of the cluster-size distribution is consistent with the framework of deterministic growth (but not with coarsening) in combination with radiation-enhanced diffusion. Since the two effects on cluster-size and volume fraction partly cancel each other out, no significant effect on the hardening is observed. The investigations of a possible late-blooming effect indicate that the very existence (yes or no) of such an effect depends on the irradiation conditions. Irradiations at lower fluxes and a lower temperature (255 C) give rise to a significant increase of the

  5. A perspective on research and development in austenitic stainless steels for fast breeder reactor technology at Kalpakkam

    International Nuclear Information System (INIS)

    Baldev Raj; Jayakumar, T.; Shankar, P.

    2010-01-01

    A fast breeder reactor with closed fuel cycle is an inevitable technology option to provide energy security for India. Innovations in materials technology have enabled the realization of unique and advanced features in the Indian fast breeder reactors and their associated fuel cycles. Materials development and materials technologies, particularly the widely used austenitic stainless steels discussed in this paper, have a deterministic influence on the advancement, safety, reliability, cost effectiveness and thus success of the fast breeder programme. Rigorous research and development for alloy development complemented with detailed structure-property evaluation of relevant mechanical and corrosion behaviour data have been possible with the state of art facilities housed at IGCAR. These data provide useful inputs for design engineers to ensure reliable and safe operation of the components. Advanced concepts in alloy design and grain boundary engineering are utilized to enhance the corrosion resistance and mechanical properties of various structural materials. Advanced NDE techniques for the assessment of manufactured components and in-service inspection have been developed, enhancing the confidence in the performance of the plant components and systems. The technology demonstration of critical stainless steel components using advanced forming and welding technologies with support from modelling for optimization of the fabrication processes enhanced the confidence in the development of the complex fast breeder reactor and associated fuel cycle technologies, with active support from national academic and research institutes and industry. This chapter presents a comprehensive overview on the advances in stainless steel technology as well as the challenges ahead for aspiring young minds in the field of fast reactor technology. (author)

  6. Application of the master curve approach to fracture mechanics characterisation of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Viehrig, Hans-Werner; Zurbuchen, Conrad; Kalkhof, Dietmar

    2010-06-01

    The paper presents results of a research project founded by the Swiss Federal Nuclear Inspectorate concerning the application of the Master Curve approach in nuclear reactor pressure vessels integrity assessment. The main focus is put on the applicability of pre-cracked 0.4T-SE(B) specimens with short cracks, the verification of transferability of MC reference temperatures T 0 from 0.4T thick specimens to larger specimens, ascertaining the influence of the specimen type and the test temperature on T 0 , investigation of the applicability of specimens with electroerosive notches for the fracture toughness testing, and the quantification of the loading rate and specimen type on T 0 . The test material is a forged ring of steel 22 NiMoCr 3-7 of the uncommissioned German pressurized water reactor Biblis C. SE(B) specimens with different overall sizes (specimen thickness B=0.4T, 0.8T, 1.6T, 3T, fatigue pre-cracked to a/W=0.5 and 20% side-grooved) have comparable T 0 . T 0 varies within the 1σ scatter band. The testing of C(T) specimens results in higher T 0 compared to SE(B) specimens. It can be stated that except for the lowest test temperature allowed by ASTM E1921-09a, the T 0 values evaluated with specimens tested at different test temperatures are consistent. The testing in the temperature range of T 0 ± 20 K is recommended because it gave the highest accuracy. Specimens with a/W=0.3 and a/W=0.5 crack length ratios yield comparable T 0 . The T 0 of EDM notched specimens lie 41 K up to 54 K below the T 0 of fatigue pre-cracked specimens. A significant influence of the loading rate on the MC T 0 was observed. The HSK AN 425 test procedure is a suitable method to evaluate dynamic MC tests. The reference temperature T 0 is eligible to define a reference temperature RT To for the ASME-KIC reference curve as recommended in the ASME Code Case N-629. An additional margin has to be defined for the specific type of transient to be considered in the RPV integrity assessment

  7. Specific Features of Structural-Phase State and Properties of Reactor Pressure Vessel Steel at Elevated Irradiation Temperature

    Directory of Open Access Journals (Sweden)

    E. A. Kuleshova

    2017-01-01

    Full Text Available This paper considers influence of elevated irradiation temperature on structure and properties of 15Kh2NMFAA reactor pressure vessel (RPV steel. The steel is investigated after accelerated irradiation at 300°C (operating temperature of VVER-1000-type RPV and 400°C supposed to be the operating temperature of advanced RPVs. Irradiation at 300°C leads to formation of radiation-induced precipitates and radiation defects-dislocation loops, while no carbide phase transformation is observed. Irradiation at a higher temperature (400°C neither causes formation of radiation-induced precipitates nor provides formation of dislocation loops, but it does increase the number density of the main initial hardening phase—of the carbonitrides. Increase of phosphorus concentration in grain boundaries is more pronounced for irradiation at 400°C as compared to irradiation at 300°C due to influence of thermally enhanced diffusion at a higher temperature. The structural-phase changes determine the changes of mechanical properties: at both irradiation temperatures irradiation embrittlement is mainly due to the hardening mechanism with some contribution of the nonhardening one for irradiation at 400°C. Lack of formation of radiation-induced precipitates at T = 400°C provides a small ΔTK shift (17°C. The obtained results demonstrate that the investigated 15Kh2NMFAA steel may be a promising material for advanced reactors with an elevated operating temperature.

  8. Experimental study of the effect of neutron radiation on pressurised water reactor vessel steel resilience - First part

    International Nuclear Information System (INIS)

    Verdeau, Jean-Jacques

    1969-12-01

    After having outlined the importance of the embrittlement of vessel steels by neutrons during the exploitation of pressurised water reactors, the author reports a set of tests which aimed at determining the effect of neutron irradiation on vessel steel resilience for operated, under construction or projected pressurized water reactors. He also tries to highlight the influence of irradiation temperature and of initial thermal treatments, and to look for a restoration thermal treatment of neutron-induced damages which could be applied to the considered vessels. Tests were performed on V Charpy resilience samples. Some samples have been irradiated by the Pile Department of the Grenoble CEN and then broken by the Laboratory of very high activity, whereas other samples have been irradiated in a prototype vessel and broken by a Cadarache department. The author presents characteristics of the studied steels (chemical compositions, thermal treatments), describes sample irradiation conditions, and the method of assessment of the transition temperature after irradiation, presents experimental results, discusses their interpretation, and presents future tests to be performed [fr

  9. Effect of tempering temperature on the microstructure and mechanical properties of a reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, C.W.; Han, L.Z.; Luo, X.M.; Liu, Q.D.; Gu, J.F., E-mail: gujf@sjtu.edu.cn

    2016-08-15

    The microstructure and mechanical properties of reactor pressure vessel (RPV) steel were investigated after tempering at different temperatures ranging from 580 to 700 °C for 5 h. With increasing tempering temperature, the impact toughness, which is qualified by Charpy V-notch total absorbed energy, initially increases from 142 to 252 J, and then decreases to 47 J, with a maximum value at 650 °C, while the ultimate tensile strength varies in exactly the opposite direction. Comparing the microstructure and fracture surfaces of different specimens, the variations in toughness and strength with the tempering temperature were generally attributed to the softening of the bainitic ferrite, the agminated Fe{sub 3}C carbides that resulted from decomposition of martensite/austenite (M/A) constituents, the precipitation of Mo{sub 2}C carbides, and the newly formed M/A constituents at the grain boundaries. Finally, the correlation between the impact toughness and the volume fraction of the M/A constituents was established, and the fracture mechanisms for the different tempering conditions are explained. - Highlights: • The dependence of the deterioration of impact toughness on tempering temperature has been analysed. • The instrumented Charpy V-notch impact test has been employed to study the fracture mechanism. • The influence of M/A constituents on different fracture mechanisms based on the hinge model has been demonstrated. • A correlation between the mechanical properties and the amount of M/A constituents has been established.

  10. Synthesis of Multi-Walled Carbon Nanotubes from Plastic Waste Using a Stainless-Steel CVD Reactor as Catalyst

    Directory of Open Access Journals (Sweden)

    Pranav K. Tripathi

    2017-09-01

    Full Text Available The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316 metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys, which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman ID/IG ratio = 0.48. The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD furnace did not require the use of an added catalyst.

  11. Precipitation in 20 Cr-25 Ni type stainless steel irradiated at low temperatures in a thermal reactor (AGR)

    International Nuclear Information System (INIS)

    Taylor, C.

    1983-01-01

    The effects of irradiation on the microstructure of AGR fuel rod cladding have been studied by analytical electron microscopy. Two alloys were investigated, the standard 20 Cr-25 Ni steel stabilised with Nb and a variant containing less Nb but strengthened with a dispersion of TiN precipitates. Irradiation at 360 deg C to 480 deg C produced (Ni, Si)-rich precipitates in both alloys; additionally the standard alloy contained (Ni, Nb, Si)-rich precipitates when irradiated at 440 deg C to 640 deg C. While similar features have been observed in other austenitic stainless steels irradiated in fast reactors, where the lattice-damage rate is greater than in a thermal reactor, their formation is not predicted by isothermal equilibrium diagrams. It is suggested here that the phases are irradiation-induced and that the total displacement damage is the controlling factor. Cladding solution-treated above 1050 deg C then irradiated at 2 -based reactor coolant occurred in cladding with low levels of cold-work at the outer surface, also resulting in Cr-rich carbide formation. (author)

  12. Synthesis of Multi-Walled Carbon Nanotubes from Plastic Waste Using a Stainless-Steel CVD Reactor as Catalyst.

    Science.gov (United States)

    Tripathi, Pranav K; Durbach, Shane; Coville, Neil J

    2017-09-22

    The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman I D / I G ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst.

  13. Corrosion fatigue initiation and short crack growth behaviour of austenitic stainless steels under light water reactor conditions

    International Nuclear Information System (INIS)

    Seifert, H.P.; Ritter, S.; Leber, H.J.

    2012-01-01

    Highlights: ► Corrosion fatigue in austenitic stainless steels under light water reactor conditions. ► Identification of major parameters of influence on initiation and short crack growth. ► Critical system conditions for environmental reduction of fatigue initiation life. ► Comparison with the environmental factor (F env ) approach. - Abstract: The corrosion fatigue initiation and short crack growth behaviour of different wrought low-carbon and stabilised austenitic stainless steels was characterised under simulated boiling water reactor and pressurised water reactor primary water conditions by cyclic fatigue tests with sharply notched fracture mechanics specimens. The special emphasis was placed to the behaviour at low corrosion potentials and, in particular, to hydrogen water chemistry conditions. The major parameter effects and critical conjoint threshold conditions, which result in relevant environmental reduction and acceleration of fatigue initiation life and subsequent short crack growth, respectively, are discussed and summarised. The observed corrosion fatigue behaviour is compared with the fatigue evaluation procedures in codes and regulatory guidelines.

  14. Disclosure of the oscillations in kinetics of the reactor pressure vessel steel damage at fast neutron intensity decreasing

    Science.gov (United States)

    Krasikov, E.; Nikolaenko, V.

    2017-01-01

    Fast neutron intensity influence on reactor materials radiation damage is a critically important question in the problem of the correct use of the accelerated irradiation tests data for substantiation of the materials workability in real irradiation conditions that is low neutron intensity. Investigations of the fast neutron intensity (flux) influence on radiation damage and experimental data scattering reveal the existence of non-monotonous sections in kinetics of the reactor pressure vessels (RPV) steel damage. Discovery of the oscillations as indicator of the self-organization processes presence give reasons for new ways searching on reactor pressure vessel (RPV) steel radiation stability increasing and attempt of the self-restoring metal elaboration. Revealing of the wavelike process in the form of non monotonous parts of the kinetics of radiation embrittlement testifies that periodic transformation of the structure take place. This fact actualizes the problem of more precise definition of the RPV materials radiation embrittlement mechanisms and gives reasons for search of the ways to manage the radiation stability (nanostructuring and so on to stimulate the radiation defects annihilation), development of the means for creating of more stableness self recovering smart materials.

  15. Shear compression testing of glass-fibre steel specimens after 4K reactor irradiation: Present status and facility upgrade

    International Nuclear Information System (INIS)

    Gerstenberg, H.; Kraehling, E.; Katheder, H.

    1997-01-01

    The shear strengths of various fibre reinforced resins being promising candidate insulators for superconducting coils to be used tinder a strong radiation load, e.g. in future fusion reactors were investigated prior and subsequent to reactor in-core irradiation at liquid helium temperature. A large number of sandwich-like (steel-bonded insulation-steel) specimens representing a widespread variety of materials and preparation techniques was exposed to irradiation doses of up to 5 x 10 7 Gy in form of fast neutrons and γ-radiation. In a systematic study several experimental parameters including irradiation dose, postirradiation storage temperature and measuring temperature were varied before the determination of the ultimate shear strength. The results obtained from the different tested materials are compared. In addition an upgrade of the in-situ test rig installed at the Munich research reactor is presented, which allows combined shear/compression loading of low temperature irradiated specimens and provides a doubling of the testing rate

  16. Demonstration test on manufacturing steel bars for concrete reinforcement for recycling of reactor decommissioning metal scrap

    International Nuclear Information System (INIS)

    Sakurai, D.; Anabuki, Y.

    1993-01-01

    To prove the possibility of recycling the steel scrap resulting from decommissioning of a nuclear power plant, this salvaged steel would be formed into steel bars for concrete reinforcement, as the restricted use and limited use at nuclear plants. The shifting behavior of radioactive isotopes (RI) in the melting process was confirmed through the laboratory hot test using the RI. Then, the demonstration cold test for steel bars for reinforcement using the nonradioactive isotope was conducted in on-line production facilities. In this test the quality of steel bars and uniform distribution of RI were proven and material balance and operational data were obtained. These data show the recycling to steel bars for concrete reinforcement is applicable from economical and safety aspects

  17. Residual-stresses in austenitic stainless-steel primary coolant pipes and welds of pressurized-water reactors

    International Nuclear Information System (INIS)

    Faure, F.; Leggatt, R.H.

    1996-01-01

    Surface and through thickness residual stress measurements were performed on an aged cast austenitic-ferritic stainless steel pipe and on an orbital TIG weld representative of those of primary coolant pipes in pressurized water reactors. An abrasive-jet hole drilling method and a block removal and layering method were used. Surface stresses and through thickness stress profiles are strongly dependent upon heat treatments, machining and welding operations. In the aged cast stainless steel pipe, stresses ranged between -250 and +175 MPa. On and near the orbital TIG weld, the outside surface of the weld was in tension both in the axial and hoop directions, with maximum values reaching 420 MPa in the weld. On the inside surface, the hoop stresses were compressive, reaching -300 MPa. However, the stresses in the axial direction at the root of the weld were tensile within 4 mm depth from the inside surface, locally reaching 280 MPa. (author)

  18. Economic aspect comparison between steel plate reinforced concrete and reinforced concrete technique in reactor containment wall construction

    International Nuclear Information System (INIS)

    Yuliastuti; Sriyana

    2008-01-01

    Construction costs of nuclear power plant were high due to the construction delays, regulatory delays, redesign requirement, and difficulties in construction management. Based on US DOE (United States Department of Energy) study in 2004, there were thirteen advanced construction technologies which were potential to reduce the construction time of nuclear power plant. Among these technologies was the application of steel-plate reinforced concrete (SC) on reactor containment construction. The conventional reinforced concrete (RC) technique were built in place and require more time to remove framework since the external form is temporary. Meanwhile, the SC technique offered a more efficient way to placing concrete by using a permanent external form made of steel. The objective of this study was to calculate construction duration and economic comparison between RC and SC technique. The result of this study showed that SC technique could reduce the construction time by 60% and 29,7% cost reduced compare to the RC technique. (author)

  19. Corrosion Behavior of Carbon Steel Coated with Octadecylamine in the Secondary Circuit of a Pressurized Water Reactor

    Science.gov (United States)

    Jäppinen, Essi; Ikäläinen, Tiina; Järvimäki, Sari; Saario, Timo; Sipilä, Konsta; Bojinov, Martin

    2017-12-01

    Corrosion and particle deposition in the secondary circuits of pressurized water reactors can be mitigated by alternative water chemistries featuring film-forming amines. In the present work, the corrosion of carbon steel in secondary side water with or without octadecylamine (ODA) is studied by in situ electrochemical impedance spectroscopy, combined with weight loss/gain measurements, scanning electron microscopy and glow-discharge optical emission spectroscopy. The impedance spectra are interpreted using the mixed-conduction model to extract kinetic parameters of oxide growth and metal dissolution through it. From the experimental results, it can be concluded that ODA addition reduces the corrosion rate of both fresh and pre-oxidized carbon steel in secondary circuit significantly by slowing down both interfacial reactions and transport through the oxide layer.

  20. Cracking behavior and microstructure of austenitic stainless steels and alloy 690 irradiated in BOR-60 reactor, phase I.

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Chopra, O. K.; Soppet, W. K.; Shack, W. J.; Yang, Y.; Allen, T. R.; Univ. of Wisconsin at Madison

    2010-02-16

    Cracking behavior of stainless steels specimens irradiated in the BOR-60 at about 320 C is studied. The primary objective of this research is to improve the mechanistic understanding of irradiation-assisted stress corrosion cracking (IASCC) of core internal components under conditions relevant to pressurized water reactors. The current report covers several baseline tests in air, a comparison study in high-dissolved-oxygen environment, and TEM characterization of irradiation defect structure. Slow strain rate tensile (SSRT) tests were conducted in air and in high-dissolved-oxygen (DO) water with selected 5- and 10-dpa specimens. The results in high-DO water were compared with those from earlier tests with identical materials irradiated in the Halden reactor to a similar dose. The SSRT tests produced similar results among different materials irradiated in the Halden and BOR-60 reactors. However, the post-irradiation strength for the BOR-60 specimens was consistently lower than that of the corresponding Halden specimens. The elongation of the BOR-60 specimens was also greater than that of their Halden specimens. Intergranular cracking in high-DO water was consistent for most of the tested materials in the Halden and BOR-60 irradiations. Nonetheless, the BOR-60 irradiation was somewhat less effective in stimulating IG fracture among the tested materials. Microstructural characterization was also carried out using transmission electron microscopy on selected BOR-60 specimens irradiated to {approx}25 dpa. No voids were observed in irradiated austenitic stainless steels and cast stainless steels, while a few voids were found in base and grain-boundary-engineered Alloy 690. All the irradiated microstructures were dominated by a high density of Frank loops, which varied in mean size and density for different alloys.

  1. Creep and swelling of Type 348 stainless steel at temperatures up to 700 K and comparison with fast reactor data

    International Nuclear Information System (INIS)

    Beeston, J.M.; Thomas, L.E.

    1982-01-01

    In-reactor creep and swelling of Type 248 stainless steel from ATR SN-5 and ETR H-10 in-pile tube measurements were investigated to identify and characterize their mechanistic relationships at temperatures less than 723 0 K. The principal creep mechanism appears to be diffusion along high conductivity paths related to interstitial loops. The irradiation creep is a function of temperature and is presented as an empirical equation. The swelling in the ATR in-pile tubes is also presented as an empirical equation

  2. Review on experience in operation of steels for use as fast reactor fuel element cladding and wrappers

    International Nuclear Information System (INIS)

    Weisz, Michel.

    1978-01-01

    The informations on the behavior of steels which can be gathered from routine destructive or non-destructive examination of fast reactor cans and wrapper tubes are presented. The relative merits of swelling measurements made on specimens or on real cans are compared. The diametral deformations of all the cans of a bundle and the immersion density measurements on industrial fabrication of wrapper tubes are discussed. The swelling temperature relationships and the double peak swelling of SA316 in relation with microstructural evolution are studied. Irradiation creep is also investigated, particularly the bulging of the wrapper tubes allowing to derive mean creep rate measurements for the high dose region [fr

  3. Irradiation Creep and Swelling of Russian Ferritic-Martensitic Steels Irradiated to Very High Exposures in the BN-350 Fast Reactor at 305-335 degrees C

    International Nuclear Information System (INIS)

    Konobeev, Yury V.; Dvoriashin, Alexander M.; Porollo, S.I.; Shulepin, S.V.; Budylkin, N.I.; Mironova, Elena G.; Garner, Francis A.

    2003-01-01

    Russian ferritic/martensitic (F/M) steels EP-450, EP-852 and EP-823 were irradiated in the BN-350 fast reactor in the form of gas-pressurized creep tubes. The first steel is used in Russia for hexagonal wrappers in fast reactors. The other steels were developed for compatibility with Pb-Bi coolants and serve to enhance our understanding of the general behavior of this class of steels. In an earlier paper we published data on irradiation creep of EP-450 and EP-823 at temperatures between 390 and 520C, with dpa levels ranging from 20 to 60 dpa. In the current paper new data on the irradiation creep and swelling of EP-450 and EP-852 at temperatures between 305 and 335C and doses ranging from 61 to 89 dpa are presented. Where comparisons are possible, it appears that these steels exhibit behavior that is very consistent with that of Western steels. Swelling is relatively low at high neutron exposure and confined to temperatures <420C, but may be camouflaged somewhat by precipitation-related densification. These irradiation creep studies confirm that the creep compliance of F/M steels is about one-half that of austenitic steels.

  4. Development of oxide dispersion strengthened 9Cr ferritic-martensitic steel clad tube for fast reactor

    International Nuclear Information System (INIS)

    Laha, K.; Saroja, S.; Mathew, M.D.; Jayakumar, T.; Vijay, R.; Venugopal Reddy, A.; Lakshminarayana, B.; Kapoor, Komal; Jha, S.K.; Tonpe, S.S.

    2012-01-01

    One of the key issues in the economical operation of FBR is to achieve high burn-up of fuel (200-250 GWd/t) which considerably reduces the fuel cycle cost. This imposes stringent requirements of void swelling resistance upto 200 dpa for the core structural materials. Presently used alloy 09 (a modified austenitic stainless steel, 15Cr-15Ni-Ti) for PFBR has void swelling limit less than 150 dpa. Because of the inherent void swelling resistance, 9-12Cr steels ferritic/martensitic steels are qualified for irradiation upto 200 dpa but their low creep strength at temperatures above 600 deg C restricts their application as a clad material. Oxide dispersion strengthening is found to be promising means of extending the creep resistance of ferritic/martensitic steels beyond 650 deg C without sacrificing the inherent advantages of high thermal conductivity and low swelling of ferritic steels

  5. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    Science.gov (United States)

    Stephenson, Kale J.; Was, Gary S.

    2015-01-01

    The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni-Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed after proton and reactor irradiation, providing additional evidence that proton irradiation is a useful tool for accelerated testing of irradiation effects in austenitic stainless steel.

  6. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, Kale J., E-mail: kalejs@umich.edu; Was, Gary S.

    2015-01-15

    Highlights: • Dislocation loops were the prominent defect, but neutron irradiation caused higher loop density. • Grain boundaries had similar amounts of radiation-induced segregation. • The increment in hardness and yield stress due to irradiation were very similar. • Relative IASCC susceptibility was nearly identical. • The effect of dislocation channel step height on IASCC was similar. - Abstract: The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni–Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed

  7. Hydrogen behaviour in the aged low activation martensitic steel F82H for fusion reactor applications

    International Nuclear Information System (INIS)

    Benamati, G.

    1997-10-01

    A time dependent permeation method is used to measure the permeability, diffusivity and solubility of hydrogen in the low activation martensitic steel F82H aged for 2000 h under vacuum at 773 K. The measurements cover the temperature range from 373 to 723 K which includes the onset of hydrogen trapping effects on diffusivity and solubility. The results are interpreted using a trapping model. The number of trap sites and their average energies for hydrogen in the aged F82H steel are determined. These data are compared with those obtained for deuterium in F82H steel

  8. Technology development and production of elongated shell for reactor vessel active zone of WWER-TOI project from steel 15Cr2NiMoVN class 1

    International Nuclear Information System (INIS)

    Shklyaev, S.Eh.; Titova, T.I.; Ratushev, D.V.; Shul'gan, N.A.; Eroshkin, S.B.; Durynin, V.A.; Efimov, S.V.; Dub, V.S.; Kulikov, A.P.; Romashkin, A.N.

    2015-01-01

    Production process for the elongated shell blank of the active zone of the reactor pressure vessel made from steel 15Cr2NiMoVN Class 1 with finished sizes Dext=4.655 mm, Dint=4.240 mm, H=4.910 mm (height for heat treatment – 5.750 mm) is presented. For the first time in Russia in production site of OMZ-Special steel LLC a unique elongated shell blank of the reactor vessel active zone was made from ingot 420.0 t for WWER-TOI project fully meeting the specified requirements in terms of metallurgical quality and set of service properties [ru

  9. Some initial considerations on the suitability of Ferritic/ martensitic stainless steels as first wall and blanket materials in fusion reactors

    International Nuclear Information System (INIS)

    Butterworth, G.J.

    1982-01-01

    The constitution of stainless iron alloys and the characteristic properties of alloys in the main ferritic, martensitic and austenitic groups are discussed. A comparison of published data on the mechanical, thermal and irradiation properties of typical austenitic and martensitic/ferritic steels shows that alloys in the latter groups have certain advantages for fusion applications. The ferromagnetism exhibited by martensitic and ferritic alloys has, however, been identified as a potentially serious obstacle to their utilisation in magnetic confinement devices. The paper describes measurements performed in other laboratories on the magnetic properties of two representative martensitic alloys 12Cr-1Mo and 9Cr-2Mo. These observations show that a modest bias magnetic field of magnitude 1 - 2 tesla induces a state of magnetic saturation in these materials. They would thus behave as essentially paramagnetic materials having a relative permeability close to unity when saturated by the toroidal field of a tokamak reactor. The results of computations by the General Atomic research group to assess the implications of such magnetic behaviour on reactor design and operation are presented. The results so far indicate that the ferromagnetism of martensitic/ferritic steels would not represent a major obstacle to their utilisation as first wall or blanket materials. (author)

  10. Analysis of the micro-structural damages by neutronic irradiation of the steel of reactor vessels of the nuclear power plant of Laguna Verde. Characterization of the design steel

    International Nuclear Information System (INIS)

    Moranchel y Rodriguez, M.; Garcia B, A.; Longoria G, L. C.

    2010-09-01

    The vessel of a nuclear reactor is one of the safety barriers more important in the design, construction and operation of the reactor. If the vessel results affected to the grade of to have fracture and/or cracks it is very probable the conclusion of their useful life in order to guarantee the nuclear safety and the radiological protection of the exposure occupational personnel, of the public and the environment avoiding the exposition to radioactive sources. The materials of the vessel of a nuclear reactor are exposed continually to the neutronic irradiation that generates the same nuclear reactor. The neutrons that impact to the vessel have the sufficient energy to penetrate certain depth in function of the energy of the incident neutron until reaching the repose or to be absorbed by some nucleus. In the course of their penetration, the neutrons interact with the nuclei, atoms, molecules and with the same crystalline nets of the vessel material producing vacuums, interstitial, precipitate and segregations among other defects that can modify the mechanical properties of the steel. The steel A533-B is the material with which is manufactured the vessel of the nuclear reactors of nuclear power plant of Laguna Verde, is an alloy that, among other components, it contains atoms of Ni that if they are segregated by the neutrons impact this would favor to the cracking of the same vessel. This work is part of an investigation to analyze the micro-structural damages of the reactor vessels of the nuclear power plant of Laguna Verde due to the neutronic irradiation which is exposed in a continuous way. We will show the characterization of the design steel of the vessel, what offers a comprehension about their chemical composition, the superficial topography and the crystalline nets of the steel A533-B. It will also allow analyze the existence of precipitates, segregates, the type of crystalline net and the distances inter-plains of the design steel of the vessel. (Author)

  11. A case study of environmental assisted cracking in a low alloy steel under simulated environment of pressurized water reactor

    International Nuclear Information System (INIS)

    Shahzad, M.; Qureshi, A.H.; Waqas, H.; Hussain, N.

    2011-01-01

    Highlights: → We study environmental assisted cracking (EAC) in simulated PWR environment. → The corrosion rate in simulated coolant is low but increases with B conc. → A516 steel shows EAC in simulated coolant particularly at high oxygen levels. → Fracture occurs when the surface cracks join the subsurface cracks. → Corrosion of MnS inclusions and ferrite provide crack nucleation sites. -- Abstract: The electromechanical behavior of a pressure vessel grade steel A516 has been investigated using potentiodynamic polarization curves and slow strain rate test (SSRT) in simulated environment of pressurized water reactor. The anodic polarization behavior shows that the steel remains active in the solution till localized attack (pitting) starts. The cracks initiated at the surface propagate in a trans-granular mode. These cracks are initiated at the inclusion (MnS) sites and at the interfaces between local anode (ferrite) and local cathode (pearlite). It seems that the ultimate fracture occurs when the propagating surface cracks join the subsurface hydrogen induced cracks. The addition of oxygen in the testing chamber to supersaturation levels shifts the corrosion potential to anodic side and significantly lowers the strength and ductility. Compared to the room temperature properties, the UTS and tensile elongation in various simulated conditions are reduced by 10-25% and 25-75%, respectively.

  12. High-throughput design of low-activation, high-strength creep-resistant steels for nuclear-reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Qi; Zwaag, Sybrand van der [Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Xu, Wei, E-mail: xuwei@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, 110819, Shenyang (China); Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands)

    2016-02-15

    Reduced-activation ferritic/martensitic steels are prime candidate materials for structural applications in nuclear power reactors. However, their creep strength is much lower than that of creep-resistant steel developed for conventional fossil-fired power plants as alloying elements with a high neutron activation cannot be used. To improve the creep strength and to maintain a low activation, a high-throughput computational alloy design model coupling thermodynamics, precipitate-coarsening kinetics and an optimization genetic algorithm, is developed. Twelve relevant alloying elements with either low or high activation are considered simultaneously. The activity levels at 0–10 year after the end of irradiation are taken as optimization parameter. The creep-strength values (after exposure for 10 years at 650 °C) are estimated on the basis of the solid-solution strengthening and the precipitation hardening (taking into account precipitate coarsening). Potential alloy compositions leading to a high austenite fraction or a high percentage of undesirable second phase particles are rejected automatically in the optimization cycle. The newly identified alloys have a much higher precipitation hardening and solid-solution strengthening at the same activity level as existing reduced-activation ferritic/martensitic steels.

  13. Phased Array Ultrasonic Examination of Reactor Coolant System (Carbon Steel-to-CASS) Dissimilar Metal Weld Mockup Specimen

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, S. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cinson, A. D. [US Nuclear Regulatory Commission (NRC), Washington, DC (United States); Diaz, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, M. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-23

    In the summer of 2009, Pacific Northwest National Laboratory (PNNL) staff traveled to the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina, to conduct phased-array ultrasonic testing on a large bore, reactor coolant pump nozzle-to-safe-end mockup. This mockup was fabricated by FlawTech, Inc. and the configuration originated from the Port St. Lucie nuclear power plant. These plants are Combustion Engineering-designed reactors. This mockup consists of a carbon steel elbow with stainless steel cladding joined to a cast austenitic stainless steel (CASS) safe-end with a dissimilar metal weld and is owned by Florida Power & Light. The objective of this study, and the data acquisition exercise held at the EPRI NDE Center, were focused on evaluating the capabilities of advanced, low-frequency phased-array ultrasonic testing (PA-UT) examination techniques for detection and characterization of implanted circumferential flaws and machined reflectors in a thick-section CASS dissimilar metal weld component. This work was limited to PA-UT assessments using 500 kHz and 800 kHz probes on circumferential flaws only, and evaluated detection and characterization of these flaws and machined reflectors from the CASS safe-end side only. All data were obtained using spatially encoded, manual scanning techniques. The effects of such factors as line-scan versus raster-scan examination approaches were evaluated, and PA-UT detection and characterization performance as a function of inspection frequency/wavelength, were also assessed. A comparative assessment of the data is provided, using length-sizing root-mean-square-error and position/localization results (flaw start/stop information) as the key criteria for flaw characterization performance. In addition, flaw signal-to-noise ratio was identified as the key criterion for detection performance.

  14. Development of Advanced 9Cr Ferritic-Martensitic Steels and Austenitic Stainless Steels for Sodium-Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Sham, T.-L.; Tan, L.; Yamamoto, Y.

    2013-01-01

    Summary of creep, thermal aging and weldability aspects: • The creep resistance of advanced 9Cr FM steels was greatly enhanced by optimizing their compositions as well as by using TMT. – Up to about 700 times increase in creep life, compared to Gr91, was achieved under the accelerated test conditions at 600°C. • The increased density of ultrafine precipitates facilitated the increase in strength and thermal aging resistance, leading to the improved creep resistance. • Properties of four candidate austenitic alloys, HT-UPS, NF709, and two modified HT-UPS alloy (designated Alloys A and B), have been evaluated and compared with 316H. – Alloys A and B showed successful improvement in weldability. – Only a little difference in thermal stability of the alloys in solution annealed conditions. 10% cold work increased the yield strength of the alloys for more than 200% compared to the HT-UPS without cold work. – HT-UPS exhibited the best creep properties among the alloys with and without cold work, and NF709 followed

  15. Effect of hydrazine on general corrosion of carbon and low-alloyed steels in pressurized water reactor secondary side water

    Energy Technology Data Exchange (ETDEWEB)

    Järvimäki, Sari [Fortum Ltd, Loviisa Power Plant, Loviisa (Finland); Saario, Timo; Sipilä, Konsta [VTT Technical Research Centre of Finland Ltd., Nuclear Safety, P.O. Box 1000, FIN-02044 VTT (Finland); Bojinov, Martin, E-mail: martin@uctm.edu [Department of Physical Chemistry, University of Chemical Technology and Metallurgy, Kl. Ohridski Blvd, 8, 1756 Sofia (Bulgaria)

    2015-12-15

    Highlights: • The effect of hydrazine on the corrosion of steel in secondary side water investigated by in situ and ex situ techniques. • Oxide grown on steel in 100 ppb hydrazine shows weaker protective properties – higher corrosion rates. • Possible explanation of the accelerating effect of higher concentrations of hydrazine on flow assisted corrosion offered. - Abstract: The effect of hydrazine on corrosion rate of low-alloyed steel (LAS) and carbon steel (CS) was studied by in situ and ex situ techniques under pressurized water reactor secondary side water chemistry conditions at T = 228 °C and pH{sub RT} = 9.2 (adjusted by NH{sub 3}). It is found that hydrazine injection to a maximum level of 5.06 μmol l{sup −1} onto surfaces previously oxidized in ammonia does not affect the corrosion rate of LAS or CS. This is confirmed also by plant measurements at Loviisa NPP. On the other hand, hydrazine at the level of 3.1 μmol l{sup −1} decreases markedly the amount and the size of deposited oxide crystals on LAS and CS surface. In addition, the oxide grown in the presence of 3.1 μmol l{sup −1} hydrazine is somewhat less protective and sustains a higher corrosion rate compared to an oxide film grown without hydrazine. These observations could explain the accelerating effect of higher concentrations of hydrazine found in corrosion studies of LAS and CS.

  16. Prediction and Monitoring Systems of Creep-Fracture Behavior of 9Cr-1Mo Steels for Reactor Pressure Vessels

    International Nuclear Information System (INIS)

    Potirniche, Gabriel; Barlow, Fred D.; Charit, Indrajit; Rink, Karl

    2013-01-01

    A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize the mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.

  17. High-cycle fatigue characteristics of weldable steel for light-water reactors

    International Nuclear Information System (INIS)

    Klesnil, M.; Polak, J.; Obrtlik, K.; Troshchenko, V.T.; Mishchenko, Yu.I.; Khamaza, L.A.

    1982-01-01

    Czechoslovak and Soviet 15Kh2NMFA steel was used for running fatigue tests at temperatures of 20, 350 and 400 degC in the high-cycle range with various loading regimes. The results show that at the given temperatures in this type of steel a cyclic softening occurs. The fatigue characteristics were measured with great dispersion of results, but within this dispersion they are almost identical for various steels at the same temperature. Increased temperature results in the decrease in the amplitude of cyclic deformation stress and in the increase in the amplitude of plastic deformation. The diversity in the values of cyclic plasticity and stress response measured in the given mode may be explained by the lower level of softening and the non-homogeneous cyclic plastic deformation of material under the given constant conditions. (J.B.)

  18. R and D Developments. Research Programs on Irradiation Embrittlement of Reactor Vessel Steels

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Lapena, J.; Serrano, M.; Perosanz, F.

    2000-01-01

    Irradiation embrittlement of pressure vessel steels is a degradation mechanism time dependent that can lead to operational restrictions with adverse effects in the efficiency and life of a plant. For the last year, several research programs have been devoted to study thye evaluation of neutronic radiation effect on mechanical properties of pressure vessel steels. However, at the present, there is a growing interest on the development of new methodologies to optimize the surveillance program information, and the understanding of the irradiation damage mechanism. This paper give an overview of international research programs, and on the R+D activities carried out by the Structural Materials Project on irradiation embrittlement on pressure vessel steels. (Author)

  19. Design of aging-resitant martensitic stainless steels for pressurized water reactors

    International Nuclear Information System (INIS)

    Cozar, R.; Meyzaud, Y.

    1983-06-01

    With the exception of AISI 403 or 410 grades, the use of high strength martensitic stainless steels in PWR is poorly developped because these materials, like ferritic stainless steels, become embrittled by the precitation of a b.c.c. chromium-rich phase during aging at the operating temperature (290 to 350 0 C). The influence of alloying elements and microstructure on the aging behavior of forged low-carbon martensitic stainless steels containing 12 to 16% Cr, 0 to 2% Mo and 0 to 8% Ni was determined during accelerated aging at 450 0 C. Quantitative relationships were derived between the maximum increase in hardness, the maximum shift in CVN transition temperature and the chemical composition (Cr, Mo, C) and microstructure

  20. Ductile austenitic steel for fuel cans and core components of sodium cooled reactors; Ein duktiler austenitischer Stahl fuer Huellrohre und Kernkomponenten natriumgekuehlter Brueter

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, L.

    1995-08-01

    Two austenitic steel melts of a new composition have been studied after irradiation in the PFR fast neutron flux, in the BR2 reactor, and in the Harwell V.E. Cyclotron. The investigations were focussed on helium embrittlement and irradiation induced swelling. (orig.)

  1. Irradiation Creep of Ferritic-Martensitic Steels EP-450, EP-823 and EI-852 Irradiated in the BN-350 Reactor over Wide Ranges of Irradiation Temperature and Dose

    International Nuclear Information System (INIS)

    Porollo, S.I.; Konobeev, Y.V.; Ivanov, A.A.; Shulepin, S.V.; Garner, F.

    2007-01-01

    Full text of publication follows: Ferritic/martensitic (F/M) steels appear to be the most promising materials for advanced nuclear systems, especially for fusion reactors. Their main advantages are higher resistance to swelling and lower irradiation creep rate as has been repeatedly demonstrated in examinations of these materials after irradiation. Nevertheless, available experimental data on irradiation resistance of F/M steels are insufficient, with the greatest deficiency of data for high doses and for both low and high irradiation temperatures. From the very beginning of operation the BN-350 fast reactor has been used for irradiation of specimens of structural materials, including F/M steels. The most unique feature of BN-350 was its low inlet sodium temperature, allowing irradiation at temperatures over a very wide range of temperatures compared with the range in other fast reactors. In this paper data are presented on swelling and irradiation creep of three Russian F/M steels EP-450, EP-823 and EI-852, irradiated in experimental assemblies of the BN-350 reactor at temperatures in the range of 305-700 deg. C to doses ranging from 20 to 89 dpa. The investigation was performed using gas-pressurized creep tubes with hoop stresses in the range of 0 - 294 MPa. (authors)

  2. Activation calculation of steel of the control rods of TRIGA Mark III reactor; Calculo de activacion del acero de las barras de control del reactor TRIGA Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, T.; Cruz G, H. S.; Ruiz C, M. A.; Angeles C, A., E-mail: teodoro.garcia@inin.gob.mx [ININ, Carretera Mexico-Toluca sn, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    In the pool of TRIGA Mark III reactor of the Instituto Nacional de Investigaciones Nucleares (ININ), there are control rods that were removed from the core, and which are currently on shelves of decay. These rods were part of the reactor core when only had fuel standard (from 1968-1989). To conduct a proper activation analysis of the rods, is very important to have well-characterized the materials which are built, elemental composition of the same ones, the atomic densities and weight fractions of the elements that constitute them. To determine the neutron activation of the control rods MCNP5 code was used, this code allows us to have well characterized the radionuclides inventory that were formed during irradiation of the control rods. This work is limited to determining the activation of the steel that is part of the shielding of the control rods, the nuclear fuel that is in the fuel follower does not include. The calculation model of the code will be validated with experimental measurements and calculating the activity of fission products of the fuel follower which will take place at the end of 2014. (Author)

  3. Internal strains after recovery of hardness in tempered martensitic steels for fusion reactors

    Science.gov (United States)

    Brunelli, L.; Gondi, P.; Montanari, R.; Coppola, R.

    1991-03-01

    After tempering, with recovery of hardness, MANET steels present internal strains; these residual strains increase with quenching rate prior to tempering, and they remain after prolonged tempering times. On account of their persistence, after thermal treatments which lead to low dislocation and sub-boundary densities, the possibility has been considered that the high swelling resistance of MANET is connected with these centres of strain, probably connected with the formation, in ferrite, of Cr-enriched and contiguous Cr-depleted zones which may act as sinks for interstitials. Comparative observations on the internal strain behaviour of cold worked 316L stainless steel appear consistent with this possibility.

  4. Stress corrosion of low alloy steels used in external bolting on pressurised water reactors

    International Nuclear Information System (INIS)

    Skeldon, P.; Hurst, P.; Smart, N.R.

    1992-01-01

    The stress corrosion cracking (SCC) susceptibility of AISI 4140 and AISI 4340 steels has been evaluated in five environments, three simulating a leaking aqueous boric acid environment and two simulating ambient external conditions ie moist air and salt spray. Both steels were found to be highly susceptible to SCC in all environments at hardnesses of 400 VPN and above. The susceptibility was greatly reduced at hardnesses below 330 VPN but in one environment, viz refluxing PWR primary water, SCC was observed at hardnesses as low as 260VPN. Threshold stress intensities for SCC were frequently lower than those in the literature

  5. A study of the mechanisms for the irradiation embrittlement of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Solt, G.; Zimmermann, U.; Waeber, W.B.; Mercier, O.; Frisius, F.; Ghazi-Wakili, K.

    1987-03-01

    Irradiation damage particles were detected by small angle neutron scattering and positron annihilation techniques in two RPV steels. The particle radii were 8A and 14A prior to heat treatments for the plate and weldment, respectively; annealing leads to coarsening in the weldment, the volume fraction remains essentially constant at about 0.14%. The model of copper-rich precipitates 'diluted' by Mn atoms or, alternatively, by vacancy agglomerates is consistent with the neutron scattering data, the presence of simple voids in the weldment would contradict the positron results. Preliminary results on these steels and also on related alloys by methods 'new' in this field are reported. (author)

  6. Evaluation of defects induced by neutron radiation in reactor pressure vessels steels

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.

    1978-01-01

    We have developed a method for calculating the production of neutron induced defects (depleted zone and crowdions) in ferritic pressure vessel steels for different neutron spectra. They have been analysed both the recoil primary atoms produced by elastic and inelastic collisions with fast neutrons and the ones produced by gamma-ray emission by thermal neutron absorption. Theoretical modelling of increasing in the ductile-brittle transition temperature of ferritic steels has been correlated with experimental data at irradiation temperature up to 400 degree centigree (Author) 15 refs

  7. Microstructure and embrittlement of VVER 440 reactor pressure vessel steels; Microstructure et fragilisation des aciers de cuve des reacteurs nucleaires VVER 440

    Energy Technology Data Exchange (ETDEWEB)

    Hennion, A

    1999-03-15

    27 VVER 440 pressurised water reactors operate in former Soviet Union and in Eastern Europe. The pressure vessel, is made of Cr-Mo-V steel. It contains a circumferential arc weld in front of the nuclear core. This weld undergoes a high neutron flux and contains large amounts of copper and phosphorus, elements well known for their embrittlement potency under irradiation. The embrittlement kinetic of the steel is accelerated, reducing the lifetime of the reactor. In order to get informations on the microstructure and mechanical properties of these steels, base metals, HAZ, and weld metals have been characterized. The high amount of phosphorus in weld metals promotes the reverse temper embrittlement that occurs during post-weld heat treatment. The radiation damage structure has been identified by small angle neutron scattering, atomic probe, and transmission electron microscopy. Nanometer-sized clusters of solute atoms, rich in copper with almost the same characteristics as in western pressure vessels steels, and an evolution of the size distribution of vanadium carbides, which are present on dislocation structure, are observed. These defects disappear during post-irradiation tempering. As in western steels, the embrittlement is due to both hardening and reduction of interphase cohesion. The radiation damage specificity of VVER steels arises from their high amount of phosphorus and from their significant density of fine vanadium carbides. (author)

  8. Nuclear reactor plant with a small gas-cooled HT reactor accommodated in a steel pressure vessel

    International Nuclear Information System (INIS)

    Schoening, J.; Elter, C.

    1986-01-01

    The plant has a small HT reactor and an He/He heat exchanger situated above this, with preferably two parallel circulating blowers connected after it. It also has at least one post-shutdown heat removal system, which is situated after the He/He heat exchanger in the direction of flow and which always has the total quantity of primary helium flowing through it. In one version of the design, the heat exchanger consists of two concentric bundles of helices connected after one another, which have primary helium flowing in one direction and secondary helium in the opposite direction. (orig./HP) [de

  9. Reactor pressure vessel and reactor coolant circuit cast duplex stainless steel components contribution of the expertise for life management studies

    International Nuclear Information System (INIS)

    Bezdikian, Georges

    2006-09-01

    The life management of French Nuclear Power Plants is a major stake from an economic and a technical point of view considering the aging management assessment of the key components of the plant. The actual life evaluation is the result of prediction of life assessment from important program of expertise for the 3-loop PWR and 4-loop PWR plants in operation. To optimize the strategic policy in order to achieve the best possible performance and to prepare the technical and economical choice and decision, the paper presents the association of life management strategy and the program of expertise considering: - the identification of degradation for different components and prediction criteria proposed; - the large database from cast reactor coolant and component removed from nuclear power plants and expertise studies to confirm the prediction; - the life evaluation of RPV with radiation surveillance program based on the expertise of irradiation capsules, it is particularly shown how the expertise is in the center of the strategic choice. The French utility has organized the life management of nuclear plant as a function of several programs of expertise of knowledge on the long term experience feedback and the maintenance program for life. This paper shows updated on RPV and reactor coolant equipment activities engaged by utility on: - periodic maintenance and volume of expertise; - Alternative maintenance actions; - Large volume of expertise and how are managed these results to predict the aging management. (author)

  10. Study of cladding toughness in a pressure vessel steel water reactor

    International Nuclear Information System (INIS)

    Soulat, P.; Al Mundheri, M.

    1984-12-01

    Toughness of cladding and pressure vessel steel were determined at different temperatures in order to appreciate the participation of cladding resistance against crack propagation. The toughness of cladding is comparable with typical results on austenitic welds. The test on covered CT specimens shows the possibility of having a relatively good prevision of the behaviour of a coated structure

  11. Experimental Study of Interactions Between Sub-oxidized Corium and Reactor Vessel Steel

    International Nuclear Information System (INIS)

    Bechta, S.V.; Khabensky, V.B.; Granovsky, V.S.; Krushinov, E.V.; Vitol, S.A.; Gusarov, V.V.; Almiashev, V.I.; Lopukh, D.B.; Tromm, W.; Miassoedov, A.; Bottomley, D.; Fischer, M.; Piluso, P.; Altstadt, E.; Willschutz, H.G.; Fichoti, F.

    2006-01-01

    One of the critical factors in the analysis of in-vessel melt retention is the vessel strength. It is, in particular, sensitive to the thickness of intact vessel wall, which, in its turn, depends on the thermal conditions and physicochemical interactions with corium. Physicochemical interaction of prototypic UO 2 -ZrO 2 -Zr corium melt and VVER vessel steel was examined during the 2. Phase of the ISTC METCOR Project. Rasplav-3 test facility was used for conducting four tests, in which the Zr oxidation degree and interaction front temperature were varied; in one of the tests, stainless steel was added to the melt. Direct experimental measurements and post-test analyses were used for determining corrosion kinetics and maximum corrosion depth (i.e. the physicochemical impact of corium on the cooled vessel steel specimens), as well as the steel temperature conditions during the interaction, and finally the structure and composition of crystallized ingots, including the interaction zone. The minimum temperature on the interaction front boundary, which determined its final position and maximum corrosion depth was ∼ 1090 deg. C. An empirical correlation for calculation of corrosion kinetics has been derived. (authors)

  12. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Apu, E-mail: asarkar@barc.gov.in; Kumawat, Bhupendra K.; Chakravartty, J.K.

    2015-07-15

    The cyclic stress–strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain–stress relationships and the strain–life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.

  13. Outgassing characteristics of F82H ferritic steel as a low activation material for fusion reactor

    International Nuclear Information System (INIS)

    Odaka, Kenji; Satou, Osamu; Ootsuka, Michio; Abe, Tetsuya; Hara, Shigemitsu; Takatsu, Hideyuki; Enoeda, Mikio.

    1997-01-01

    Outgassing characteristics of F82H ferritic steel as a low activation material for the blanket of fusion device were investigated. A test chamber was constructed by welding F82H ferritic steel plates. The inner surface of the chamber was buffed and electropolished. The test chamber was degassed by the prebaking at temperature of 350degC for 20 h in vacuum. Then outgassing rates of the test chamber were measured by the throughput method as a function of pumping time for the cases that the test chamber was baked and not baked. The typical outgassing rate after baking at 250degC for 24 h was 3 x 10 -9 Pa·ms -1 and it seems that this value is sufficiently small to produce pressures at least as low as 10 -9 Pa in the vacuum chamber made of F82H ferritic steel. In the pump-down of the test chamber without baking after exposure to air, the outgassing rate decreases with pumping time and reached 1 x 10 -7 Pa·ms -1 at t = 10 5 s. The activation energy of hydrogen in bulk diffusion in the F82H ferritic steel was measured and found to be 7 kcal/mol. (author)

  14. The temperature dependence of void swelling of fast reactor irradiated 316 stainless steel

    International Nuclear Information System (INIS)

    Bramman, J.I.; Brown, C.

    The swelling versus temperature profile for cold-worked M316 stainless steel irradiated in DFR to fluences around 6.5 x 10 22 n.cm -2 (E > 0.1 MeV) is singly-peaked with maximum swelling at just below 600 0 C. The underlying microstructural features are discussed

  15. Seismic fragility analysis of buried steel piping at P, L, and K reactors

    International Nuclear Information System (INIS)

    Wingo, H.E.

    1989-10-01

    Analysis of seismic strength of buried cooling water piping in reactor areas is necessary to evaluate the risk of reactor operation because seismic events could damage these buried pipes and cause loss of coolant accidents. This report documents analysis of the ability of this piping to withstand the combined effects of the propagation of seismic waves, the possibility that the piping may not behave in a completely ductile fashion, and the distortions caused by relative displacements of structures connected to the piping

  16. Permeation of hydrogen at low pressures through stainless steel and implications for tritium control in fusion reactor systems

    International Nuclear Information System (INIS)

    Axtmann, R.C.; Johnson, E.F.; Kuehler, C.W.

    1976-01-01

    New experimental data on the permeation of hydrogen through stainless steel indicate that at driving pressures below 10 -2 torr, the permeation rate is linearly dependent on the driving pressure. A possible consequence is that the permeation rates of hydrogenic species in fusion reactor systems might be much lower than those reported in contemporary conceptual design studies which assume that the rates are dependent on the square root of the driving pressure. The important implications of these low permeation rates are: (1) tritium losses to the environment may be more dependent on ordinary leaks from equipment than on permeation to the steam cycle; (2) recovery of tritium from breeding blankets via permeation windows may be impracticable; and (3) recovery of tritium from breeding blankets not dependent on permeation windows may be simplified by the possibility of operating at much higher average tritium concentrations in the blanket and cooling systems

  17. J-R Fracture Resistance of SA533 Gr.B-Cl.1 Steel for Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji-Hyun; Hong, Seokmin; Lee, Bong-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    A rolled plate might show different mechanical behaviors from a forging, even though they contain same chemical compositions. Furthermore, it is known that the fracture behavior of a rolled plate is very sensitive to material orientation comparing to a forging. In this study, the J-R fracture resistances of SA533 Gr.B-Cl.1 plate were measured at reactor operating temperature and the material orientation sensitivity was discussed. The decrease of fracture resistance of this kind of low alloy steel at an elevated temperature is known as the effect of dynamic strain aging (DSA). It was attributed to that the carbides and grains elongated to primary rolling direction, so that the aspect ratio of carbides and grains in the specimen with T-L orientation is larger. Generally, the hard second phase could take a roll of trigger point of unstable fracture. It is needed that the fracture surfaces of the tested specimens to be examined profoundly.

  18. On the correlation between irradiation-induced microstructural features and the hardening of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Lambrecht, M.; Meslin, E.; Malerba, L.; Hernandez-Mayoral, M.; Bergner, F.; Pareige, P.; Radiguet, B.; Almazouzi, A.

    2010-01-01

    A correlation is attempted between microstructural observations by various complementary techniques, which have been implemented within the PERFECT project and the hardening measured by tensile tests of reactor pressure vessel steel and model alloys after irradiation to a dose of ∼7 x 10 19 n cm -2 . This is done, using the simple hardening model embodied by the Orowan equation and applying the most suitable superposition law, as suggested by a parametric study using the DUPAIR line tension code. It is found that loops are very strong obstacles to dislocation motion, but due to their low concentration, they only play a minor role in the hardening itself. For the precipitates, the contrary is found, although they are quite soft (due to their very small sizes and their coherent nature), they still play the dominant role in the hardening. Vacancy clusters are important for the formation of both loops and precipitates, but they will play almost no role in the hardening by themselves.

  19. Patent Analysis of Ferritic/Martensitic Steels for the Fuel Cladding in Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Baek, Jong Hyuk; Kim, Sung Ho; Kim, Tae Kyu; Kim, Woo Gon; Jang, Jin Sung; Kim, Dae Whan; Han, Chang Hee; Lee, Chan Bock

    2007-09-01

    The Korean, Japanese, U.S. and European patents related to the ferritic/martensitic steels were systematically surveyed to evaluate their patent status, which would be applicable to the fuel cladding materials for the Sodium-cooled Fast Reactor (SFR). From the surveys, totally 38 patents were finally selected for the quantitative and qualitative analysis. Among them, 28 patents (74%) were processed by Japanese companies and Sumitomo Metal industries Ltd. was top-ranked in the number (9) of priority patents. On the basis of these surveys, most patents could be applicable to the fuel cladding materials for SFR and, especially, some useful patents as the cladding were registered by the Russian and the Korean

  20. Patent Analysis of Ferritic/Martensitic Steels for the Fuel Cladding in Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong Hyuk; Kim, Sung Ho; Kim, Tae Kyu; Kim, Woo Gon; Jang, Jin Sung; Kim, Dae Whan; Han, Chang Hee; Lee, Chan Bock

    2007-09-15

    The Korean, Japanese, U.S. and European patents related to the ferritic/martensitic steels were systematically surveyed to evaluate their patent status, which would be applicable to the fuel cladding materials for the Sodium-cooled Fast Reactor (SFR). From the surveys, totally 38 patents were finally selected for the quantitative and qualitative analysis. Among them, 28 patents (74%) were processed by Japanese companies and Sumitomo Metal industries Ltd. was top-ranked in the number (9) of priority patents. On the basis of these surveys, most patents could be applicable to the fuel cladding materials for SFR and, especially, some useful patents as the cladding were registered by the Russian and the Korean.

  1. Accelerated development of Zr-containing new generation ferritic steels for advanced nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States)

    2015-12-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe2+) irradiation.

  2. Design and analysis of reactor containment of steel-concrete composite laminated shell

    International Nuclear Information System (INIS)

    Ichikawa, K.; Isobata, O.; Kawamata, S.

    1977-01-01

    A new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. Because of the compressive and shearing resistance of the concrete core, the layers behave as a composite solid shell. Membrane forces are shared by steel plates and partly by concrete core. Bending moment is effectively resisted by the section with extreme layers of steel. Therefore, both surfaces can be designed as extremely thin plates: the inner plate, which is a load carrying members as well as a liner, can be welded without the laborious process of stress-relieving, and various jointing methods can be applied to the outer plate which is free from the need for leak tightness. The capability of the composite layers of behaving as a unified solid shell section depends largely on the shearing rigidity of the concrete core. However, as its resisting capacity to transverse shearing force is comparatively low, a device for reducing the shearing stress at the junction to the base mat is needed. In the new scheme, this part of the cylindrical shell is divided into multiple layers of the same kind of composite shell. This device makes the stiffness of the bottom of the cylindrical shell to lateral movement minimum while maintaining the proper resistance to membrane forces. The analysis shows that the transverse shearing stress can be reduced to less than 1√n of the ordinary case by dividing the thickness of the shell into n layers which are able to slip against each other at the contact surface. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented

  3. Hot Deformation Behavior of SA508Gr.4N Steel for Reactor Pressure Vessels

    Directory of Open Access Journals (Sweden)

    YANG Zhi-qiang

    2017-08-01

    Full Text Available The high-temperature plastic deformation and dynamic recrystallization behavior of SA508Gr.4N steel were investigated through hot deformation tests in a Gleeble1500D thermal mechanical simulator. The compression tests were performed in the temperature range of 1050-1250℃ and the strain rate range of 0.001-0.1s-1 with true strain of 0.16. The results show that from the high-temperature true stress-strain curves of the SA508Gr.4N steel, the main feature is dynamic recrystallization,and the peak stress increases with the decrease of deformation temperature or the increase of strain rate, indicating the experimental steel is temperature and strain rate sensitive material. The constitutive equation for SA508Gr.4N steel is established on the basis of the true stress-strain curves, and exhibits the characteristics of the high-temperature flow behavior quite well, while the activation energy of the steel is determined to be 383.862kJ/mol. Furthermore, an inflection point is found in the θ-σ curve, while the -dθ/dσ-σ curve shows a minimum value. The critical strain increases with increasing strain rate and decreasing deformation temperature. A linear relationship between critical strain (εc and peak strain (εp is found and could be expressed as εc/εp=0.517. The predicted model of critical strain could be described as εc=8.57×10-4Z0.148.

  4. Combination of helical ferritic-steel inserts and flux-tube-expansion divertor for the heat control in tokamak DEMO reactor

    International Nuclear Information System (INIS)

    Takizuka, T.; Tokunaga, S.; Hoshino, K.; Shimizu, K.; Asakura, N.

    2015-01-01

    Edge localized modes (ELMs) in the H-mode operation of tokamak reactors may be suppressed/mitigated by the resonant magnetic perturbation (RMP), but RMP coils are considered incompatible with DEMO reactors under the strong neutron flux. We propose an innovative concept of the RMP without installing coils but inserting ferritic steels of the helical configuration. Helically perturbed field is naturally formed in the axisymmetric toroidal field through the helical ferritic steel inserts (FSIs). When ELMs are avoided, large stationary heat load on divertor plates can be reduced by adopting a flux-tube-expansion (FTE) divertor like an X divertor. Separatrix shape and divertor-plate inclination are similar to those of a simple long-leg divertor configuration. Combination of the helical FSIs and the FTE divertor is a suitable method for the heat control to avoid transient ELM heat pulse and to reduce stationary divertor heat load in a tokamak DEMO reactor

  5. Phase instability and toughness change during high temperature exposure of various steels for the first wall structural materials of a fusion reactor

    International Nuclear Information System (INIS)

    Miyahara, K.; Shimoide, Y.

    1995-01-01

    The objective of the present research is to clarify the phase instability, particularly, the precipitation behavior of carbide and nitride during the long term aging in the non-irradiation state of the materials proposed for the first wall structural component of fusion reactors, such as a type 316 austenitic steel, its modified steels, ferritic heat resisting steels and reduced radio-activation materials. The effect of the precipitation behavior on the toughness is also investigated. It is noticed that the toughness was much deteriorated by the formation of large amounts of coarse carbides within grains and on grain boundaries during 2.88x10 4 ks (8000 h) aging at 873 K and that intergranular fracture occurred by the impact test at room temperature even in the type 316 steel. (orig.)

  6. Advance of investigation of irradiation embrittlement mechanism of nuclear reactor pressure vessel steels. History and future of irradiation embrittlement researches

    International Nuclear Information System (INIS)

    Ishino, Shiori

    2007-01-01

    The nuclear reactor pressure vessel is the most important component of LWR plants required to be safe. This paper describes contents of the title consisting of four chapters. The first chapter states the general theory of irradiation effects, irradiation embrittlement and decreasing of toughness, and some kinds of pressure vessel steels. The second chapter explains history of irradiation embrittlement investigations and the advance of research methods for experiments and calculation. The third chapter contains information of inner structure of irradiated materials and development of prediction equations, recent information of embrittlement mechanism and mechanism guided prediction method, USA model and Central Research Institute of Electric Power Industry (CRIEPI) model. The fourth chapter states recent problems from viewpoints of experimental and analytical approaches. Comparison of standards of LWR pressure vessel steels between Japan and USA, relation between the density of number of cluster and the copper content, effect of flux on clustering of copper atoms, and CRIEPI's way of approaching the prediction method are illustrated. (S.Y.)

  7. Small specimen test technology of fracture toughness in structural material F82H steel for fusion nuclear reactors

    International Nuclear Information System (INIS)

    Wakai, Eiichi; Ohtsuka, Hideo; Jitsukawa, Shiro; Matsukawa, Shingo; Ando, Masami

    2006-03-01

    Small specimen test technology (SSTT) has been developed to investigate mechanical properties of nuclear materials. SSTT has been driven by limited availability of effective irradiation volumes in test reactors and accelerator-based neutron and charged particle sources, and it is very useful for the reduction of waste materials produced in nuclear engineering. In this study new bend test machines have been developed to obtain fracture behaviors of F82H steel for very small bend specimens of pre-cracked t/2-1/3CVN (Charpy V-notch) with 20 mm-length and DFMB (deformation and fracture mini bend specimen) with 9 mm-length and disk compact tension of 0.18DCT type, and fracture behaviors were examined to evaluate DBTT (ductile-brittle transition temperature) at temperature from -180 to 25degC. The effect of specimen size on DBTT of F82H steel was also examined by using Charpy type specimens such as 1/2t-CVN, 1/3CVN and t/2-1/3CVN. In this paper, it also provides the information of the specimens irradiated at 250degC and 350degC to about 2 dpa in the capsule of 04M-67A and 04M-68A of JMTR experiments. (author)

  8. Susceptibility to stress corrosion in stainless steels type AISI 321 and 12X18H10T used in PWR type reactors (WWER)

    International Nuclear Information System (INIS)

    Matadamas C, N.

    1995-01-01

    Titanium stabilized stainless steels have been utilized in sovietic pressurized water reactors (VVER) for avoid the susceptibility to Intergranular Corrosion (IGC) present in other austenitic stainless steels. However the Intergranular Corrosion resistance of this kind of materials has been questioned because of Intergranular Stress Corrosion Cracking failures (IGSCC) have been reported. This paper study the electrochemical behavior of the AISI 321 stainless steel in a H 3 BO 3 Solution contaminated with chlorides and its susceptibility to Intergranular Corrosion.Electrochemical prediction diagrams of the stainless steels AISI 321 and 12X18H10T (sovietic) sensitized (600 Centigrade, 3 h.) were compared. Cylindrical and conical samples were used in Slow Strain Rate Tests (SSRT), to determine the susceptibility to Stress Corrosion Cracking (SCC) in AISI 321 and 12X18H10T stainless steels. The results obtained showed that the temperature of the solution is a very important factor to detect this susceptibility. Fractography studies on the fracture surfaces of the samples obtained in the SSRT at high temperature were realized. Corrosion velocities of both AISI 321 and 12X18H10T stainless steels were determined using conical samples in the CERT system at high temperature. E.D.A.X. analysis was employed in both AISI 321 and 12X18H10T stainless steels in order to explain the degree of sensitization. (Author)

  9. Comparison of high temperature steam oxidation behavior of Zircaloy-4 versus austenitic and ferritic steels under light water reactor safety aspects

    International Nuclear Information System (INIS)

    Leistikow, S.; Schanz, G.; Zurek, Z.

    1985-12-01

    A comparative study of the oxidation behavior of Zy-4 versus steel No. 1.4914 and steel No. 1.4970 was performed in high temperature steam. Reactor typical tube sections of all three materials were exposed on both sides to superheated steam at temperatures ranging from 600 to 1300 0 C for up to 6 h. The specimens were evaluated by gravimetry, metallography, and other methods. The results are presented in terms of weight gain, corresponding metal (wall) penetration and consumption as function of time and temperature. Concerning the corrosion resistance the ranking position of Zy-4 was between the austenitic and the ferritic steel. Because of the chosen wall dimensions Zy-4 and the austenitic steel behaved similarly in that the faster oxidation of the thicker Zy-4 cladding consumed the total wall thickness in a time equivalent to the slower oxidation of the thinner austenitic steel cladding. The ferritic steel cladding however was faster consumed because of the lower oxidation resistance and the thinner wall thickness compared to the austenitic steel. So besides oxide scale formation, oxygen diffusion into the bulk of the metal forming various oxygen-containing phases were evaluated - also in respect to their influence on mechanical cladding properties and the dimensional changes. (orig./HP) [de

  10. Evaluation of ductile-brittle transition behavior with neutron irradiation in nuclear reactor pressure vessel steels using small punch test

    International Nuclear Information System (INIS)

    Kim, M. C.; Lee, B. S.; Oh, Y. J.

    2003-01-01

    A Small Punch (SP) test was performed to evaluate the ductile-brittle transition temperature before and after neutron irradiation in Reactor Pressure Vessel (RPV) steels produced by different manufacturing (refining) processes. The results were compared to the standard transition temperature shifts from the Charpy test and Master Curve fracture toughness test in accordance with the ASTM standard E1921. The samples were taken from 1/4t location of the vessel thickness and machined into a 10x10x0.5mm dimension. Irradiation of the samples was carried out in the research reactor at KAERI (HANARO) at about 290 .deg. C of the different fluence levels respectively. SP tests were performed in the temperature range of RT to -196 .deg. C using a 2.4mm diameter ball. For the materials before and after irradiation, SP transition temperatures (T sp ), which are determined at the middle of the upper and lower SP energies, showed a linear correlation with the Charpy index temperature, T 41J . T sp from the irradiated samples was increased as the fluence level increased and was well within the deviation range of the unirradiated data. The TSP had a correlation with the reference temperature (T 0 ) from the master curve method using a pre-cracked Charpy V-notched (PCVN) specimen

  11. Applications of controlled thermonuclear reactor (CTR) fusion power in the steel industry

    International Nuclear Information System (INIS)

    Jordan, R.K.; Steinberg, M.

    1975-03-01

    A review of the process and economics of basic steel production is presented for the purpose of indicating where CTR fusion energy may be applicable. The present conventional air blown blast furnace produces a relatively low Btu value top gas with limited usefulness. The industry consumes relatively large amounts of natural gas for reheating ingots, plates, etc. A concept is presented wherein oxygen is used in the blast furnace which would double the capacity of the furnace and produce a rich carbon monoxide gas stream useful as synthesis gas for methanol and ammonia production. A CTR supplying high energy radiation in a blanket would disproportionate carbon dioxide to carbon monoxide and oxygen which could be used at high temperatures in the blast furnace in place of an oxygen supply stream. Coke would be used in this scheme. In a second scheme the oxygen is separated from the disproportioned CO 2 stream and CO is used in a direct reduction furnace which is followed by an electric furnace to refine the reduced product. Other schemes include iron ore reduction with electrolytic hydrogen and the use of thermal energy for reforming coal with steam or CO 2 for production of reducing gas. The electrosmelting of scrap metal using CTR power could become an important operation in the future. A complex of steel, fertilizer, fuel and chemical production is presented. Steel capacity and power requirement data are presented and projected to the year 2020. (U.S.)

  12. Diametral strain of fast reactor MOX fuel pins with austenitic stainless steel cladding irradiated to high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Uwaba, Tomoyuki, E-mail: uwaba.tomoyuki@jaea.go.jp [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan); Ito, Masahiro; Maeda, Koji [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan)

    2011-09-30

    Highlights: > We evaluated diametral strain of fast reactor MOX fuel pins irradiated to 130 GWd/t. > The strain was due to cladding void swelling and irradiation creep. > The irradiation creep was caused by internal gas pressure and PCMI. > The PCMI was associated with pellet swelling by rim structure or by cesium uranate. > The latter effect tended to increase the cumulative damage fraction of the cladding. - Abstract: The C3M irradiation test, which was conducted in the experimental fast reactor, 'Joyo', demonstrated that mixed oxide (MOX) fuel pins with austenitic steel cladding could attain a peak pellet burnup of about 130 GWd/t safely. The test fuel assembly consisted of 61 fuel pins, whose design specifications were similar to those of driver fuel pins of a prototype fast breeder reactor, 'Monju'. The irradiated fuel pins exhibited diametral strain due to cladding void swelling and irradiation creep. The cladding irradiation creep strain were due to the pellet-cladding mechanical interaction (PCMI) as well as the internal gas pressure. From the fuel pin ceramographs and {sup 137}Cs gamma scanning, it was found that the PCMI was associated with the pellet swelling which was enhanced by the rim structure formation or by cesium uranate formation. The PCMI due to cesium uranate, which occurred near the top of the MOX fuel column, significantly affected cladding hoop stress and thermal creep, and the latter effect tended to increase the cumulative damage fraction (CDF) of the cladding though the CDF indicated that the cladding still had some margin to failure due to the creep damage.

  13. Creep crack growth behaviour of an AISI 316 steel plate for fast reactor structures

    International Nuclear Information System (INIS)

    D'Angelo, D.; Regis, V.

    1985-01-01

    The paper presents and analyses creep crack growth data obtained at 550, 600 and 650 0 C in air with SENT and CT specimens on type 316 stainless steel plate for LMFBR applications. Crack initiation and crack growth are tentatively correlated to K, sigmasub(net) and J* taking into account the constraint conditions due to specimen geometry. The validity of these parameters is discussed following the concept of transition time from small scale creep at the crack tip to extensive creep within the ligament. Post exposure microstructural and fractographic investigations do evidence that grain deformation processes are mainly responsible for cavity evolution. (orig.)

  14. Irradiation and annealing behavior of 15Kh2MFA reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Popp, K.; Bergmann, U.; Bergner, F.; Hampe, E.; Leonhardt, W.D.; Schuetzler, H.P.; Viehrig, H.W.

    1992-01-01

    This work deals with the mechanical properties of RPV steels used WWER-440. The materials under investigation were a forging (base metal 15Kh2MFA) and the corresponding weld. Charpy V-notch specimens and tensile test specimens were irradiated in the WWER-2 Rheinsberg at about 270 C up to the two neutron fluence levels of 4 x 10 18 and 5 x 10 19 n/cm 2 (E>1MeV). Post-irradiation annealing heat treatments were performed, among others a 475 C/152 h treatment of technical interest. (orig.)

  15. The use of concrete-filled steel structures for modular construction of advanced reactors

    International Nuclear Information System (INIS)

    Braverman, J.; Morante, R.; Hofmayer, C.; Graves, H.

    1997-01-01

    Modular construction techniques have been successfully used in a number of industries, both domestically and internationally. Recently, the use of structural modules has been proposed for advanced nuclear power plants. This paper presents the results of a research program which evaluated the use of modular construction for safety-related structures in advanced nuclear power plant designs. The research program included review of current modular construction technology, development of licensing review criteria for modular construction, and initial validation of currently available analytical techniques applied to concrete-filled steel structural modules

  16. Empirical relations for tensile properties of austenitic stainless steels irradiated in mixed-spectrum reactors

    International Nuclear Information System (INIS)

    Grossbeck, M.L.

    1991-01-01

    An assessment has been made of available tensile property data relevant to the design of fusion reactors, especially near term devices expected to operate at lower temperatures than power reactors. Empirical relations have been developed for the tensile properties as a functions of irradiation temperature for neutron exposures of 10-15, 20, 30, and 50 dpa. It was found that yield strength depends little on the particular austenitic alloy and little on the helium concentration. Strength depends upon initial condition of the alloy only for exposures of less than 30 dpa. Uniform elongation was found to be more sensitive to alloy and condition. It was also more sensitive than strength to helium level. However, below 500deg C, helium only appeared to have an efect at 10-15 dpa. At higher temperatures, helium embrittlement was apparent, and its threshold temperature decreased with increasing neutron exposure level. (orig.)

  17. Mechanical and microstructural characterization of low activation steels as first wall of nuclear fusion reactors

    International Nuclear Information System (INIS)

    Hernandez, M.T.; Lapena, J.; Diego, G. de; Schirra, M.

    1996-01-01

    Currently, the design development of fusion reactors and the possible materials to use in them are being studied in parallel. One of the most critical problems in this research is the structural materials selection for the first wall and blanket. The aim of the present work is to study three low activation alloys designed in Germany in which niobium has been substituted by tantalum or cerium. The mechanical results show that the alloys containing cerium are in the same order of the low activation materials known to date, but the tantalum doped alloy produces TaC 3 precipitation that destabilizes the matrix and provokes large microstructural changes. This causes a decrease of the mechanical properties at about 600 degree centigree. This fact makes this alloy insuitable for the first wall on fusion reactors, because the working temperature is near 550 degree centigree. (Author) 11 refs

  18. In-reactor precipitation and ferritic transformation in neutron-irradiated stainless steels

    International Nuclear Information System (INIS)

    Porter, D.L.; Wood, E.L.

    1979-01-01

    Ferritic transformation (γ→α) was observed in type 304L, 20% cold-worked AISI 316, and solution-annealed AISI 316 stainless steels when subjected to fast neutron irradiation. Each material demonstrated an increasing propensity for transformation with increasing irradiation temperature between 40 and 550 0 C. Irradiation-induced segregation of Ni solute to precipitates was found not to be a controlling factor in the transformation kinetics in 304L. Similar composition data from 316 materials demonstrates a much greater dependence of matrix Ni depletion by precipitation reactions during neutron irradiation. The 316 data establishes a strong link between such depletion and the observed γ→α transformation. Moreover, the lack of correlation between precipitate-related Ni depletion and the γ→α transformation in 304L can be related to the fact that irradiation-induced voids nucleate very quickly in 304L steel during irradiation. These voids present competing sites for Ni segregation through a defect drag mechanism, and hence Ni segregates to voids rather than to precipitates, as evidenced by observed stable γ shells around voids in areas of complete transformation. (Auth.)

  19. In-reactor precipitation and ferritic transformation in neutron--irradiated stainless steels

    International Nuclear Information System (INIS)

    Porter, D.L.; Wood, E.L.

    1978-01-01

    Ferritic transformation (γ → α) was observed in Type 304L, 20% cold-worked AISI 316, and solution-annealed AISI 316 stainless steels subjected to fast neutron irradiation. Each material demonstrated an increasing propensity for transformation with increasing irradiation temperature between 400 and 550 0 C. Irradiation-induced segregation of Ni solute to precipitates was found not to influence the transformation kinetics in 304L. Similar composition data from 316 materials demonstrates a much greater temperature dependence of precipitation reactions in the process of matrix Ni depletion during neutron irradiation. The 316 data establishes a strong link between such depletion and the observed γ → α transformation. Moreover, the lack of correlation between precipitate-related Ni depletion and the γ → α transformation in 304L can be related to the fact that irradiation-induced voids nucleate very quickly in 304L steel during irradiation. These voids present preferential sites for Ni segregation through a defect trapping mechanism, and hence Ni segregates to voids rather than to precipitates, as evidenced by observed stable γ shells around voids in areas of complete transformation

  20. Fracture toughness evaluation in the transition region of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Onizawa, K.; Suzuki, M.

    1995-01-01

    The fracture toughness (K jc and Jc) values at the cleavage fracture initiation in the transition region of a RPV steel were investigated using mainly precracked Charpy specimens. A conventional statistical approach and a fractographic study were applied to analyze the scatter of the fracture toughness values from precracked Charpy specimens. The material used was an ASTM A533B class 1 steel, which was designated as an IAEA correlation monitor material, JRQ. A lower bound transition curve of the fracture toughness for unirradiated condition was determined by the 5% confidence limit from the Weibull and fractographic analyses. The lower bound transition curve after irradiation was evaluated based on the statistics of unirradiated specimens. The results indicated that the shift of the fracture toughness transition curbe were somewhat larger than the Charpy 41J transition temperature. The parameters to determine the lower bound toughness such as the Weibull slope and the amount of ductile crack growth are discussed. The results are also compared with a model based on weakest link theory. (author). 12 refs, 12 figs, 5 tabs

  1. An internal-friction study of reactor-pressure-vessel steel embrittlement

    International Nuclear Information System (INIS)

    Ouytsel, K. van; Fabry, A.; Batist, R. de; Schaller, R.

    1997-01-01

    Within an enhanced commercial surveillance strategy, the nuclear-research institute SCK.CEN in Mol, Belgium is investigating, by means of internal friction, the microstructural processes responsible for embrittlement of pressure-vessel steels. The experiments were carried out using a torsion pendulum at the Ecole Polytechnique Federale de Lausanne in Switzerland. Amplitude-independent internal-friction experiments teach us that neutron irradiation induces defects which interact with mobile dislocations. Thermal ageing of JRQ and Doel-IV steel does not cause major embrittlement effects. Amplitude-dependent internal-friction experiments allow us to determine a critical amplitude which corresponds to the yield stress of the material as obtained from static tensile tests. The results also correspond to a three-component model for the yield strength taking into account both hardening and non-hardening embrittlement. Investigations of Doel-I-II weld material in different conditions reveal that embrittlement due to irradiation or thermal ageing can be interpreted in terms of a fine interplay between long- and short-range phenomena. (author)

  2. Analysis of the micro-structural damages by neutronic irradiation of the steel of reactor vessels of the nuclear power plant of Laguna Verde. Characterization of the design steel; Analisis de los danos micro-estructurales por irradiacion neutronica del acero de la vasija de los reactores de la Central Nuclear de Laguna Verde. Caracterizacion del acero de diseno

    Energy Technology Data Exchange (ETDEWEB)

    Moranchel y Rodriguez, M.; Garcia B, A. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, Av. Luis Enrique Erro s/n, Unidad Profesional Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico); Longoria G, L. C., E-mail: mmoranchel@ipn.m [ININ, Direccion de Investigacion Cientifica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-09-15

    The vessel of a nuclear reactor is one of the safety barriers more important in the design, construction and operation of the reactor. If the vessel results affected to the grade of to have fracture and/or cracks it is very probable the conclusion of their useful life in order to guarantee the nuclear safety and the radiological protection of the exposure occupational personnel, of the public and the environment avoiding the exposition to radioactive sources. The materials of the vessel of a nuclear reactor are exposed continually to the neutronic irradiation that generates the same nuclear reactor. The neutrons that impact to the vessel have the sufficient energy to penetrate certain depth in function of the energy of the incident neutron until reaching the repose or to be absorbed by some nucleus. In the course of their penetration, the neutrons interact with the nuclei, atoms, molecules and with the same crystalline nets of the vessel material producing vacuums, interstitial, precipitate and segregations among other defects that can modify the mechanical properties of the steel. The steel A533-B is the material with which is manufactured the vessel of the nuclear reactors of nuclear power plant of Laguna Verde, is an alloy that, among other components, it contains atoms of Ni that if they are segregated by the neutrons impact this would favor to the cracking of the same vessel. This work is part of an investigation to analyze the micro-structural damages of the reactor vessels of the nuclear power plant of Laguna Verde due to the neutronic irradiation which is exposed in a continuous way. We will show the characterization of the design steel of the vessel, what offers a comprehension about their chemical composition, the superficial topography and the crystalline nets of the steel A533-B. It will also allow analyze the existence of precipitates, segregates, the type of crystalline net and the distances inter-plains of the design steel of the vessel. (Author)

  3. Computational evaluation of the constraint loss on the fracture toughness of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Serrano Garcia, M.

    2007-01-01

    The Master Curve approach is included on the ASME Code through some Code Cases to assess the reactor pressure vessel integrity. However, the margin definition to be added is not defined as is the margin to be added when the Master Curve reference temperature T 0 is obtained by testing pre-cracked Charpy specimens. The reason is that the T 0 value obtained with this specimen geometry is less conservative than the value obtained by testing compact tension specimens possible due to a loss of constraint. The two parameter fracture mechanics, considered as an extension of the classical fracture mechanics, coupled to a micromechanical fracture models is a valuable tool to assess the effect of constraint loss on fracture toughness. The definition of a parameter able to connect the fracture toughens value to the constraint level on the crack tip will allow to quantify margin to be added to the T 0 value when this value is obtained testing the pre-cracked Charpy specimens included in the surveillance capsule of the reactor pressure vessel. The Nuclear Regulatory Commission (NRC) define on the To value obtained by testing compact tension specimens and ben specimens (as pre-cracked Charpy are) bias. the NRC do not approved any of the direct applications of the Master Curve the reactor pressure vessel integrity assessment until this bias will be quantified in a reliable way. the inclusion of the bias on the integrity assessment is done through a margin to be added. In this thesis the bias is demonstrated an quantified empirical and numerically and a generic value is suggested for reactor pressure vessel materials, so that it can be used as a margin to be added to the T 0 value obtained by testing the Charpy specimens included in the surveillance capsules. (Author) 111 ref

  4. The effects of phosphorus and boron on the behavior of a titanium-stabilized austenitic stainless steel developed for fast reactor service

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Johnson, G.D.; Puigh, R.J.; Garner, F.A.; Maziasz, P.J.; Yang, W.J.S.; Abraham, N.

    1988-08-01

    Austenitic stainless steels are used for core component materials in liquid metal cooled reactors (LMRs). To extend the lifetime of LMR fuel assemblies, considerable effort was expended by the US breeder materials program to find ways to minimize radiation-induced dimensional changes (swelling and creep) and to maximize the creep rupture strength. After various elements were shown to strongly affect swelling and creep behavior, compositional modifications to a commercial grade austenitic stainless steel (AISI 316) produced an alloy with significant improvement in swelling resistance over the standard 300 series alloys. Changes were primarily in the concentrations of chromium, nickel, silicon and titanium, ASTM specification A771-83 was approved in 1983 for the new alloy, designated UNS S38660. Substantial improvement can be produced in the creep rupture behavior of this alloy. Elements such as phosphorus and boron, typically present in trace quantities, have a significant influence on the creep strength of austenitic stainless steels. Several heats of alloy S38660 were made that systematically varied the phosphorus and boron contents. Uniaxial creep tests were conducted at 704/degree/C (1300/degree/F) to evaluate the effects of these elements on the creep rate and the rupture life. The results of these tests were used to guide the production of reactor grade fuel pin cladding for further evaluations. Pressurized tube specimens were tested in the laboratory and also in a fast reactor. Results of these investigations have shown that the elements phosphorus and boron, present in minute but controlled amounts, increase both the in- reactor and ex-reactor rupture life and reduce both in-reactor swelling and creep rate. Microstructural evaluations were also conducted to help ascertain the mechanisms by which the improved properties were obtained. 41 refs., 28 figs., 3 tabs

  5. Nanostructure evolution under irradiation of Fe(C)MnNi model alloys for reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Chiapetto, M., E-mail: mchiapet@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Becquart, C.S. [Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Laboratoire commun EDF-CNRS Etude et Modélisation des Microstructures pour le Vieillissement des Matériaux (EM2VM) (France); Domain, C. [EDF R& D, Département Matériaux et Mécanique des Composants, Les Renardières, F-77250 Moret sur Loing (France); Laboratoire commun EDF-CNRS Etude et Modélisation des Microstructures pour le Vieillissement des Matériaux (EM2VM) (France); Malerba, L. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium)

    2015-06-01

    Radiation-induced embrittlement of bainitic steels is one of the most important lifetime limiting factors of existing nuclear light water reactor pressure vessels. The primary mechanism of embrittlement is the obstruction of dislocation motion produced by nanometric defect structures that develop in the bulk of the material due to irradiation. The development of models that describe, based on physical mechanisms, the nanostructural changes in these types of materials due to neutron irradiation are expected to help to better understand which features are mainly responsible for embrittlement. The chemical elements that are thought to influence most the response under irradiation of low-Cu RPV steels, especially at high fluence, are Ni and Mn, hence there is an interest in modelling the nanostructure evolution in irradiated FeMnNi alloys. As a first step in this direction, we developed sets of parameters for object kinetic Monte Carlo (OKMC) simulations that allow this to be done, under simplifying assumptions, using a “grey alloy” approach that extends the already existing OKMC model for neutron irradiated Fe–C binary alloys [1]. Our model proved to be able to describe the trend in the buildup of irradiation defect populations at the operational temperature of LWR (∼300 °C), in terms of both density and size distribution of the defect cluster populations, in FeMnNi model alloys as compared to Fe–C. In particular, the reduction of the mobility of point-defect clusters as a consequence of the presence of solutes proves to be key to explain the experimentally observed disappearance of detectable point-defect clusters with increasing solute content.

  6. Effect of reactor irradiation on long-term strength and creep of 0Kh16N15M3B steel under plane stressed state

    International Nuclear Information System (INIS)

    Khristov, G.P.; Kosov, B.D.

    1982-01-01

    The paper deals with analysis of results of experimental studies in creep of the austenitic OKh16n15m3b steel with various size of initial-structure grain under conditions of high-intensity reactor irradiation and control tests. It is suggested to consider the material initial structure effect on intensity of minimum creep rates both under ordinary and intrareactor conditions of loading by means of the function grain size effect on the equivalent stress. It is shown that the criterial expression previously suggested by the authors is invariant to the type of stressed and structural states and relative to intensity of minimal creep rates. It is established that the creep rate of the irradiated steel may be calculated from dependence for nonirradiated steel using as an argument a certain reduced equivalent stress which is a function of the acting stress and irradiation parameter

  7. Irradiation embrittlement of reactor pressure vessel steels: Considerations for thermal annealing

    International Nuclear Information System (INIS)

    Burke, M.G.; Freyer, P.D.; Mager, T.R.

    1993-01-01

    In this paper, an overview of the irradiation embrittlement phenomenon is presented from a structure-properties viewpoint. Effects of irradiation conditions on embrittlement are first reviewed: irradiation temperature, fluence, flux, and steel or alloy composition. Then, the techniques for identifying/characterizing the irradiation-induced microstructural features are described: TEM/STEM (electron microscopy), small angle neutron scattering, atom probe field-ion microscopy, positron annihilation lifetime spectroscopy. Mechanisms of hardening and embrittlement generally consist of a ''precipitation-type'' and a ''damage-type'' component and the potential of annealing treatments for restoring the most of the original pressure vessel material toughness is examined; its conditions and mechanisms involved are discussed. Feasibility and economic evaluation of annealing costs is also carried out. 90 refs., 4 figs

  8. A weldability study of the structural steel of the Angra II reactor containment

    International Nuclear Information System (INIS)

    Santos Pinto, M. dos.

    1980-01-01

    A weldability study of the german steel WSTE-51 based on mechanical, metallographic, hardness as well as special tests such as the CTS, the Tekken, for cold cracking, and the Vinckier test for reheat cracking is presented. The welding process used was the manual metal arc with low hydrogen eletrodes. In order to broaden the scope of this study the properties of weldments fabricated by submerged arc welding with high and low heat input were analized by means of mechanical and metallographic tests. The results showed that the joints had good quality and emphasize the necessity of special care in order to avoid cold cracking as well as the use of a temperbead in order to avoid reheat cracking. The submerged arc welding study concludes that higher impact resistance in the HAZ is obtained with low heat imput. (Author) [pt

  9. Irradiation embrittlement of reactor pressure vessel steels: Considerations for thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M G; Freyer, P D; Mager, T R

    1994-12-31

    In this paper, an overview of the irradiation embrittlement phenomenon is presented from a structure-properties viewpoint. Effects of irradiation conditions on embrittlement are first reviewed: irradiation temperature, fluence, flux, and steel or alloy composition. Then, the techniques for identifying/characterizing the irradiation-induced microstructural features are described: TEM/STEM (electron microscopy), small angle neutron scattering, atom probe field-ion microscopy, positron annihilation lifetime spectroscopy. Mechanisms of hardening and embrittlement generally consist of a ``precipitation-type`` and a ``damage-type`` component and the potential of annealing treatments for restoring the most of the original pressure vessel material toughness is examined; its conditions and mechanisms involved are discussed. Feasibility and economic evaluation of annealing costs is also carried out. 90 refs., 4 figs.

  10. Study of aged embrittled stainless steels used in the primary circuit of fission reactors

    International Nuclear Information System (INIS)

    Hazarabedian, Alfredo

    1999-01-01

    We checked the damage and fracture mechanisms of duplex stainless steels aged in conditions representative of the actual operating condition of a PWR nuclear power plant. We proved that the fracture mechanisms starts with the fracture of ferrite laths and ends with the fracture of austenite ligaments. We determined by quantitative metallography the average void nucleation rate and the spatial distribution of voids. This information, incorporated to the Gurson-Tvergaard-Joly model of a damaged elastoplastic material, served to predict adequately the distribution of the mean strain at fracture of notched axisymmetric specimens. The model also predicted the lower bound of the experimental distribution of the crack resistance at 0.2 mm of crack extension (J 02 ). (author)

  11. Mechanical properties data of 2-1/4Cr-1Mo steel for the experimental very high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Oku, Tatsuo; Kikuyama, Toshihiko; Fukaya, Kiyoshi; Kodaira, Tsuneo

    1978-11-01

    This is a collection of mechanical properties data of 2-1/4Cr-1Mo steel necessary for structural design and safety analysis of the pressure vessel of the Experimental Very High Temperature Gas-Cooled Reactor (VHTR). These include physical properties, mechanical properties, temper embrittlement, creep with fatigue, fracture toughness and irradiation effects. A review of the data shows the research areas to be carried out particularly in the future for more data. (author)

  12. Usage properties of special steels for presurrized water reactors: influence of composition and of manufacturing parameters

    International Nuclear Information System (INIS)

    Seraphin, L.; Mathern, G.; Crolet, J.-L.; Tricot, R.

    1977-01-01

    The development of pressurized water reactor power stations has led to the choice of suitable materials either for the vessels or for the heat exchangers and auxiliary equipment (pumps for example). The most important problems to be solved, considering the low temperatures involved, concern embrittlement with time, and the different forms of corrosion. The quality of the tubes and plates is of primary importance, in particular as regards the absence of defects, the chemical integrity of the surface and the working properties such as weldability. The efforts of manufacturers to meet these different requirements are examined as regards analysis as well as manufacturing parameters and testing procedures [fr

  13. Formulary for neutron propagation in sodium-steel media for the fast reactor shields

    International Nuclear Information System (INIS)

    Bouteau, F.; Caumette, P.; Khairallah, A.; Oceraies, Y.; Devillers, C.

    1975-01-01

    The simplified calculational tool (''formulary'') for neutron propagation in the shields of fast reactors, being developed at CEA, has two objectives: to reduce the cost of the major part of design calculations, without a significant loss of accuracy; to facilitate the adjustment of the calculational tool with the results of the program of integral propagation experiments, which is conducted in parallel with the development of the calculational method. The version 0 (i.e. before any adjustment) of the formulary and a first test of its validity as compared to the results of integral measurements are presented [fr

  14. Assessment of susceptibility of Type 304 stainless steel to intergranular stress corrosion cracking in simulated Savannah River Reactor environments

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.; Caskey, C.R. Jr.

    1989-01-01

    Intergranular stress corrosion cracking (IGSCC) of Type 304 stainless steel rate tests (CERT) of specimens machined was evaluated by constant extension from Savannah River Plant (SRP) decontaminated process water piping. Results from 12 preliminary CERT tests verified that IGSCC occurred over a wide range of simulated SRP envirorments. 73 specimens were tested in two statistical experimental designs of the central composite class. In one design, testing was done in environments containing hydrogen peroxide; in the other design, hydrogen peroxide was omitted but oxygen was added to the environment. Prediction equations relating IGSCC to temperature and environmental variables were formulated. Temperature was the most important independent variable. IGSCC was severe at 100 to 120C and a threshold temperature between 40C and 55C was identified below which IGSCC did not occur. In environments containing hydrogen peroxide, as in SRP operation, a reduction in chloride concentration from 30 to 2 ppB also significantly reduced IGSCC. Reduction in sulfate concentration from 50 to 7 ppB was effective in reducing IGSCC provided the chloride concentration was 30 ppB or less and temperature was 95C or higher. Presence of hydrogen peroxide in the environment increased IGSCC except when chloride concentration was 11 ppB or less. Actual concentrations of hydrogen peroxide, oxygen and carbon dioxide did not affect IGSCC. Large positive ECP values (+450 to +750 mV Standard Hydrogen Electrode (SHE)) in simulated SRP environments containing hydrogen peroxide and were good agreement with ECP measurements made in SRP reactors, indicating that the simulated environments are representative of SRP reactor environments. Overall CERT results suggest that the most effective method to reduce IGSCC is to reduce chloride and sulfate concentrations

  15. Heavy-Section Steel Irradiation Program on irradiation effects in light-water reactor pressure vessel materials

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Corwin, W.R.; Alexander, D.J.; Haggag, F.M.; Iskander, S.K.; McCabe, D.E.; Sokolov, M.A.; Stoller, R.E.

    1995-01-01

    The safety of commercial light-water nuclear plants is highly dependent on the structural integrity of the reactor pressure vessel (RPV). In the absence of radiation damage to the RPV, fracture of the vessel is difficult to postulate. Exposure to high energy neutrons can result in embrittlement of radiation-sensitive RPV materials. The Heavy-Section Steel Irradiation (HSSI) Program at Oak Ridge National Laboratory, sponsored by the US Nuclear Regulatory Commission (USNRC), is assessing the effects of neutron irradiation on RPV material behavior, especially fracture toughness. The results of these and other studies are used by the USNRC in the evaluation of RPV integrity and regulation of overall nuclear plant safety. In assessing the effects of irradiation, prototypic RPV materials are characterized in the unirradiated condition and exposed to radiation under varying conditions. Mechanical property tests are conducted to provide data which can be used in the development of guidelines for structural integrity evaluations, while metallurgical examinations and mechanistic modeling are performed to improve understanding of the mechanisms responsible for embrittlement. The results of these investigations, in conjunction with results from commercial reactor surveillance programs, are used to develop a methodology for the prediction of radiation effects on RPV materials. This irradiation-induced degradation of the materials can be mitigated by thermal annealing, i.e., heating the RPV to a temperature above that of normal operation. Thus, thermal annealing and evaluation of reirradiation behavior are major tasks of the HSSI Program. This paper describes the HSSI Program activities by summarizing some past and recent results, as well as current and planned studies. 30 refs., 8 figs., 1 tab

  16. Optimization of tungsten-steel joints for plasma facing components in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Heuer, Simon; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik, Juelich (Germany); Weber, Thomas; Linke, Jochen [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Werkstoffstruktur und -eigenschaften, Juelich (Germany); Matejicek, Jiri [Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Prague (Czech Republic)

    2015-07-01

    Tungsten, joint to a martensitic-ferritic EUROFER97 structure, is a promising plasma facing material composite for fusion reactors. Due to the effect of mismatch in thermo-mechanical properties direct bonding is not feasible. Current research is therefore ongoing on interlayer systems. While the adhesion was already improved by the utilization of a discrete Cu, Ti or V interlayer, that is able to relax stresses by plastic deformation, joints still do not resist the expected load cycles in a fusion reactor. Therefore, alternatives for the interface are needed. This contribution presents research on functionally graded materials (FGM). The particular microstructure of a graded interlayer allows re-distributing macro stresses from a discrete interface to a greater volume while avoiding in particular Cu which tends to swell under neutron irradiation. A parameter study on the basis of finite element analysis will be presented as well as first results of several processing routes for FGM that shall be evaluated and benchmarked by mechanical as well as thermal testing.

  17. Post irradiation examination of RAF/M steels after fast reactor irradiation up to 33 dpa and < 340 C (ARBOR1). RAFM steels. Metallurgical and mechanical characterisation. Final report for TW2-TTMS-001b, D9

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, C. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). EURATOM, Inst. fuer Materialforschung, Programm Kernfusion

    2010-07-01

    In an energy generating fusion reactor structural materials will be exposed to very high dpa-levels of about 100 dpa. Due to this fact and because fast reactor irradiation facilities in Europe are not available anymore, a reactor irradiation at the State Scientific Center of the Russian Federation with its Research Institute of Atomic Reactors (SSC RIAR), Dimitrovgrad, had been performed in the fast reactor BOR 60 with an instrumented test rig. This test rig contained tensile, impact and Low Cycle Fatigue type specimens used at FZK since many years. Samples of actual Reduced Activation Ferritic/Martensitic (RAF/M) -steels (e.g. EUROFER 97) had been irradiated in this reactor at a lower temperature (< 340 C) up to a damage of 33 dpa. This irradiation campaign was called ARBOR 1. Starting in 2003 one half of these irradiated samples were post irradiation examined (PIE) by tensile testing, low cycle fatigue testing and impact testing under the ISTC Partner Contract 2781p in the hot cells of SSC RIAR. In the post irradiation instrumented impact tests a significant increase in the Ductile to Brittle Transition Temperature as an effect of irradiation has been detected. During tensile testing the strength values are increasing and the strain values reduced due to substantial irradiation hardening. The hardening rate is decreasing with increasing damage level, but it does not show saturation. The low cycle fatigue behaviour of all examined RAF/M - steels show at total strain amplitudes below 1 % an increase of number of cycles to failure, due to irradiation hardening. From these post irradiation experiments, like tensile, low cycle fatigue and impact tests, radiation induced design data, e.g. for verification of design codes, can be generated.

  18. Influence of temperature histories during reactor startup periods on microstructural evolution and mechanical properties of austenitic stainless steel irradiated with neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kasahara, Shigeki, E-mail: kasahara.shigeki@jaea.go.jp [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kitsunai, Yuji [Nippon Nuclear Fuel Development, 2163 Narita-cho, Oarai-machi, Higashi-ibaraki-gun, Ibaraki 311-1313 (Japan); Chimi, Yasuhiro [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chatani, Kazuhiro; Koshiishi, Masato [Nippon Nuclear Fuel Development, 2163 Narita-cho, Oarai-machi, Higashi-ibaraki-gun, Ibaraki 311-1313 (Japan); Nishiyama, Yutaka [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2016-11-15

    This paper addresses influence of two different temperature profiles during startup periods in the Japan Materials Testing Reactor and a boiling water reactor upon microstructural evolution and mechanical properties of austenitic stainless steel irradiated with neutrons to about 1 dpa and 3 dpa. One of the temperature profiles was that the specimens experienced neutron irradiation in both reactors, under which the irradiation temperature transiently increased to 290 °C from room temperature with increasing reactor power during reactor startup periods. Another was that the specimens were pre-heated to about 150 °C prior to the irradiation to suppress the transient temperature increase. Tensile tests at 290 °C and Vickers hardness tests at room temperature were carried out, and their microstructures were observed by FEG-TEM. Difference of the temperature profiles was observed obviously in interstitial cluster formation, in particular, growth of Frank loops. Although influence of neutron irradiation involving transient temperature increase to 290 °C from room temperature on the yield strength and the Vickers hardness is buried in the trend curves of existing data, the influence was also found certainly in increment of in yield strength, existence of modest yield drop, and loss of strain hardening capacity and ductility. As a result, Frank loops, which were observed in austenitic stainless steel irradiated at doses of 1 dpa or more, seemed to have important implications regarding the interpretation of not irradiation hardening, but deformation of the austenitic stainless steel.

  19. Deuterium ion irradiation damage and deuterium trapping mechanism in candidate stainless steel material (JPCA2) for fusion reactor

    International Nuclear Information System (INIS)

    Ashizuka, Norihiro; Kurita, Takaaki; Yoshida, Naoaki; Fujiwara, Tadashi; Muroga, Takeo

    1987-01-01

    An improved austenitic stainless steel (JPCA), a candidate material for fusion reactor, is irradiated at room temperature with deuterium ion beams. Desorption spectra of deuterium gas is measured at various increased temperatures and defects formed under irradiation are observed by transmission electron microscopy to determine the mechanism of the thermal release of deuteriums and the characteristics of irradiation-induced defects involved in the process. In the deuterium deportion spectra observed, five release stages are found to exist at 90 deg C, 160 deg C, 220 deg C, 300 deg C and 400 deg C, referred to as Stage I, II, III, IV and V, respectively. Stage I is interpreted as representing the release of deuteriums trapped in point defects (presumably vacancies) formed under irradiation. The energy of desorption from the trapping sites is estimated at 0.8 eV. Stage II is concluded to be associated with the release of deuteriums trapped in a certain kind of existing defects. Stage III involves the release of deuteriums that are trapped in dislocations, dislocation loops or dislocated portions of stacking fault tetrahedra. This release occurs significantly in processed materials and other materials irradiated with high energy ion beams that may cause cascade damage. Stage IV is interpreted in terms of thermal decomposition of small deuterium clusters. Stage V is associated with the decomposition of rather large deuterium clusters grown on the {111} plane. (Nogami, K.)

  20. Radiation annealing mechanisms of low-alloy reactor pressure vessel steels dependent on irradiation temperature and neutron fluence

    International Nuclear Information System (INIS)

    Pachur, D.

    1982-01-01

    Heat treatment after irradiation of reactor pressure vessel steels showed annealing of irradiation embrittlement. Depending on the irradiation temperature, the embrittlement started to anneal at about 220 0 C and was completely annealed at 500 0 C with 4 h of annealing time. The annealing behavior was normally measured in terms of the Vickers hardness increase produced by irradiation relative to the initial hardness as a function of the annealing temperature. Annealing results of other mechanical properties correspond to hardness results. During annealing, various recovery mechanisms occur in different temperature ranges. These are characterized by activation energies from 1.5 to 2.1 eV. The individual mechanisms were determined by the different time dependencies at various temperatures. The relative contributions of the mechanisms showed a neutron fluence dependence, with the lower activation energy mechanisms being predominant at low fluence and vice versa. In the temperature range where partial annealing of a mechanism took place during irradiation, an increase in activation energy was observed. Trend curves for the increase in transition temperature with irradiation, for the relative increase of Vickers hardness and yield strength, and for the relative decrease of Charpy-V upper shelf energy are interpreted by the behavior of different mechanisms

  1. Uniaxial low cycle fatigue behavior for pre-corroded 16MND5 bainitic steel in simulated pressurized water reactor environment

    Science.gov (United States)

    Chen, Xu; Ren, Bin; Yu, Dunji; Xu, Bin; Zhang, Zhe; Chen, Gang

    2018-06-01

    The effects of uniaxial tension properties and low cycle fatigue behavior of 16MND5 bainitic steel cylinder pre-corroded in simulated pressurized water reactor (PWR) were investigated by fatigue at room temperature in air and immersion test system, scanning electron microscopy (SEM), energy disperse spectroscopy (EDS). The experimental results indicated that the corrosion fatigue lives of 16MND5 specimen were significantly affected by the strain amplitude and simulated PWR environments. The compositions of corrosion products were complexly formed in simulated PWR environments. The porous corrosion surface of pre-corroded materials tended to generate pits as a result of promoting contact area to the fresh metal, which promoted crack initiation. For original materials, the fatigue cracks initiated at inclusions imbedded in the micro-cracks. Moreover, the simulated PWR environments degraded the mechanical properties and low cycle fatigue behavior of 16MND5 specimens remarkably. Pre-corrosion of 16MND5 specimen mainly affected the plastic term of the Coffin-Manson equation.

  2. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    International Nuclear Information System (INIS)

    Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen; Moon, Se Youn; Hong, Bong Guen

    2014-01-01

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 .deg. C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 .deg. C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI)

  3. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    Science.gov (United States)

    Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen; Moon, Se Youn; Hong, Bong Guen

    2014-10-01

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 °C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 °C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI).

  4. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Moon, Se Youn; Hong, Bong Guen [Chonbuk National University, Jeonju (Korea, Republic of)

    2014-10-15

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 .deg. C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 .deg. C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI)

  5. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Science.gov (United States)

    Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Matsukawa, Y.; Nishiyama, Y.; Onizawa, K.

    2012-06-01

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the δ-ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the δ-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the γ-austenite and δ-ferrite interface. There were no Cr depleted zones around the carbide.

  6. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kameda, J. [National Institute for Materials Science, Sengen, Tsukuba 305-0047 (Japan); Nagai, Y.; Toyama, T.; Matsukawa, Y. [Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Onizawa, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2012-06-15

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the {delta}-ferrite phase but not in the austenitic phase. Thermal aging at 400 Degree-Sign C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the {delta}-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the {gamma}-austenite and {delta}-ferrite interface. There were no Cr depleted zones around the carbide.

  7. Basic visualization experiments on eutectic reaction of boron carbide and stainless steel under sodium-cooled fast reactor conditions

    International Nuclear Information System (INIS)

    Yamano, Hidemasa; Suzuki, Tohru; Kamiyama, Kenji; Kudo, Isamu

    2016-01-01

    This paper describes basic visualization experiments on eutectic reaction and relocation of boron carbide (B 4 C) and stainless steel (SS) under a high temperature condition exceeding 1500degC as well as the importance of such behaviors in molten core during a core disruptive accident in a Generation-IV sodium-cooled fast reactor (750 MWe class) designed in Japan. At first, a reactivity history was calculated using an exact perturbation calculation tool taking into account expected behaviors. This calculation indicated the importance of a relocation behavior of the B 4 C-SS eutectic because its behavior has a large uncertainty in the reactivity history. To clarify this behavior, basic experiments were carried out by visualizing the reaction of a B 4 C pellet contacted with molten SS in a high temperature-heating furnace. The experiments have shown the eutectic reaction visualization as well as freezing and relocation of the B 4 C-SS eutectic in upper part of the solidified test piece due to the density separation. (author)

  8. Characterization of welding of AISI 304l stainless steel similar to the core encircling of a BWR reactor

    International Nuclear Information System (INIS)

    Gachuz M, M.E.; Palacios P, F.; Robles P, E.F.

    2003-01-01

    Plates of austenitic stainless steel AISI 304l of 0.0381 m thickness were welded by means of the SMAW process according to that recommended in the Section 9 of the ASME Code, so that it was reproduced the welding process used to assemble the encircling of the core of a BWR/5 reactor similar to that of the Laguna Verde Nucleo electric plant, there being generated the necessary documentation for the qualification of the one welding procedure and of the welder. They were characterized so much the one base metal, as the welding cord by means of metallographic techniques, scanning electron microscopy, X-ray diffraction, mechanical essays and fracture mechanics. From the obtained results it highlights the presence of an area affected by the heat of up to 1.5 mm of wide and a value of fracture tenacity (J IC ) to ambient temperature for the base metal of 528 KJ/m 2 , which is diminished by the presence of the welding and by the increment in the temperature of the one essay. Also it was carried out an fractographic analysis of the fracture zone generated by the tenacity essays, what evidence a ductile fracture. The experimental values of resistance and tenacity are important for the study of the structural integrity of the encircling one of the core. (Author)

  9. Preparation Femtosecond Laser Prevention for the Cold-Worked Stress Corrosion Crackings on Reactor Grade Low Carbon Stainless Steel

    CERN Document Server

    John Minehara, Eisuke

    2004-01-01

    We report here that the femtosecond lasers like low average power Ti:Sapphire lasers, the JAERI high average power free-electron laser and others could peel off and remove two stress corrosion cracking (SCC) origins of the cold-worked and the cracking susceptible material, and residual tensile stress in hardened and stretched surface of low-carbon stainless steel cubic samples for nuclear reactor internals as a proof of principle experiment except for the third origin of corrosive environment. Because a 143 °C and 43% MgCl2 hot solution SCC test was performed for the samples to simulate the cold-worked SCC phenomena of the internals to show no crack at the laser-peered off strip on the cold-worked side and ten-thousands of cracks at the non-peeled off on the same side, it has been successfully demonstrated that the femtosecond lasers could clearly remove the two SCC origins and could resultantly prevent the cold-worked SCC.

  10. Assessment of models predicting irradiation effects on tensile properties of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Pineau, L.; Landron, C.

    2015-01-01

    In this paper, an analysis of tensile data acquired as part of the French Reactor Vessel Surveillance Program (RVSP) is produced. This program contains amongst other mechanical tests, tensile tests at 20 and 300 C degrees on non irradiated base metals and at 300 C degrees only on irradiated materials. It shows that irradiation leads to an increase in the yield strength and a decrease in the strain hardening. The exploitation of tensile results has permitted to express a relationship between yield strength increase measured and fluence value, as well as between strain hardening decrease and yield strength evolution. The use of these relations in the aim at predicting evolution of tensile properties with irradiation has then permitted to propose a methodology to model entire stress-strain curves of irradiated base metal only based on the non irradiated stress-strain curve. These predictions were successfully compared with an experimental standard case. (authors)

  11. Approach for estimating post-annual reirradiation embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Server, W.L.; Taboada, A.

    1985-01-01

    Thermal annealing of a commercial nuclear reactor pressure vessel is a possible solution for extending lifetime in situations where excessive radiation embrittlement has taken place or when the original design life is approached. Two difficult facets of thermal annealing are the degree of toughness recovery after annealing and the post-anneal reirradiation embrittlement behavior. These aspects of annealing are evaluated in this paper by using simple models and translation of the initial irradiation damage curve either vertically or laterally at the point of residual shift after annealing. Results using this methodology are compared to limited actual weld metal measurements of annealing behavior. A forthcoming ASTM Guide on in-place annealing uses this methodology to assess annealing recovery and re-embrittlement response

  12. Installation method for the steel container and vessel of the nuclear heating reactor

    International Nuclear Information System (INIS)

    Chen Liying; Guo Jilin; Liu Wei

    2000-01-01

    The Nuclear Heating Reactor (NHR) has the advantages of inherent safety and better economics, integrated arrangement, full power natural circulation and dual vessel structure. However, the large thin container presents a new and difficult problem. The characteristics of the dual vessel installation method are analyzed with system engineering theory. Since there is no foreign or domestic experience, a new method was developed for the dual vessel installation for the 5 MW NHR. The result shows that the installation method is safe and reliable. The research on the dual vessel installation method has important significance for the design, manufacture and installation of the NHR dual vessel, as well as the industrialization and standardization of the NHR

  13. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  14. Models for embrittlement recovery due to annealing of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Eason, E.D.; Wright, J.E.; Nelson, E.E.; Odette, G.R.; Mader, E.V.

    1995-05-01

    The reactor pressure vessel (RPV) surrounding the core of a commercial nuclear power plant is subject to embrittlement due to exposure to high energy neutrons. The effects of irradiation embrittlement can be reduced by thermal annealing at temperatures higher than the normal operating conditions. However, a means of quantitatively assessing the effectiveness of annealing for embrittlement recovery is needed. The objective of this work was to analyze the pertinent data on this issue and develop quantitative models for estimating the recovery in 30 ft-lb (41 J) Charpy transition temperature and Charpy upper shelf energy due to annealing. Data were gathered from the Test Reactor Embrittlement Data Base and from various annealing reports. An analysis data base was developed, reviewed for completeness and accuracy, and documented as part of this work. Independent variables considered in the analysis included material chemistries, annealing time and temperature, irradiation time and temperature, fluence, and flux. To identify important variables and functional forms for predicting embrittlement recovery, advanced statistical techniques, including pattern recognition and transformation analysis, were applied together with current understanding of the mechanisms governing embrittlement and recovery. Models were calibrated using multivariable surface-fitting techniques. Several iterations of model calibration, evaluation with respect to mechanistic and statistical considerations, and comparison with the trends in hardness data produced correlation models for estimating Charpy upper shelf energy and transition temperature after irradiation and annealing. This work provides a clear demonstration that (1) microhardness recovery is generally a very good surrogate for shift recovery, and (2) there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes

  15. Estimates of time-dependent fatigue behavior of Type 316 stainless steel subject to irradiation damage in fast breeder and fusion power reactor systems

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Liu, K.C.; Grossbeck, M.L.

    1978-01-01

    Cyclic lives obtained from strain-controlled fatigue tests at 593 0 C of specimens irradiated in the experimental breeder reactor II (EBR-II) to a fluence of 1 to 2.63*10 26 neutrons (n)/m 2 (E>0.1 MeV) were compared with predictions based on the method of strain-range partitioning. It was demonstrated that, when appropriate tensile and creep-rupture ductilities were employed, reasonably good estimates of the influence of hold periods and irradiation damage on the fully reversed fatigue life of Type 316 stainless steel could be made. After applicability of this method was demonstrated, ductility values for 20 percent cold-worked Type 316 stainless steel specimens irradiated in a mixed-spectrum fission reactor were used to estimate fusion reactor first-wall lifetime. The ductility values used were from irradiations that simulate the environment of the first wall of a fusion reactor. Neutron wall loadings ranging from 2 to 5 MW/m 2 were used. 27 refs

  16. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part I: BWR/NWC conditions

    International Nuclear Information System (INIS)

    Ritter, S.; Seifert, H.P.; Devrient, B.; Roth, A.; Ehrnsten, U.; Ernestova, M.; Zamboch, M.; Foehl, J.; Weissenberg, T.; Gomez-Briceno, D.; Lapena, J.

    2004-01-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWR) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It was focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of EAC crack growth behaviour/mechanism of LAS in high-temperature water under steady-state power operation (constant load) and transient operating conditions (e.g., start-up/shut-down, transients in water chemistry and load). Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurised water reactor (VVER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (VVER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarises the most important crack growth results obtained under simulated BWR/NWC conditions. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  17. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part I: BWR/NWC conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H.P. [Paul Scherrer Institute, PSI, Villigen (Switzerland); Devrient, B.; Roth, A. [Framatome ANP GmbH, Erlangen (Germany); Ehrnsten, U. [VTT Industrial Systems, Espoo (Finland); Ernestova, M.; Zamboch, M. [Nuclear Research Institute, NRI, Rez (Czech Republic); Foehl, J.; Weissenberg, T. [Staatliche Materialpruefungsanstalt, MPA, Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, CIEMAT, Madrid (Spain)

    2004-07-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWR) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It was focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of EAC crack growth behaviour/mechanism of LAS in high-temperature water under steady-state power operation (constant load) and transient operating conditions (e.g., start-up/shut-down, transients in water chemistry and load). Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurised water reactor (VVER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (VVER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarises the most important crack growth results obtained under simulated BWR/NWC conditions. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  18. Influence of localized plasticity on Stress Corrosion Cracking of austenitic stainless steel. Application to IASCC of internals reactor core vessels

    International Nuclear Information System (INIS)

    Cisse, Sarata

    2012-01-01

    The surface conditions of the 316L screw connecting vessel internals of the primary circuit of PWR (pressurized water reactor) corresponds to a grinding condition. These screws are affected by the IASCC (Irradiation Assisted Stress Corrosion Cracking). Initiation of cracking depends on the surface condition but also on the external oxidation and interactions of oxide layer with the deformation bands. The first objective of this study is to point the influence of surface condition on the growth kinetic of oxide layer, and the surface reactivity of 304, 316 stainless steel grade exposed to PWR primary water at 340 C. The second objective is to determine influence of strain localization on the SCC of austenitic stainless steels in PWR primary water. Indeed, the microstructure of irradiated 304, 316 grades correspond to a localized deformation in deformation bands free of radiation defects. In order to reproduce that microstructure without conducting irradiations, low cycle fatigue tests at controlled stain amplitude are implemented for the model material of the study (A286 austenitic stainless steel hardened by the precipitation of phase γ'Ni3(Ti, Al)). During the mechanical cycling (after the first hardening cycles), the precipitates are dissolved in slip bands leading to the localization of the deformation. Once the right experimental conditions in low cycle fatigue obtained (for localized microstructure), interactions oxidation / deformation bands are studied by oxidizing pre deformed samples containing deformation bands and non deformed samples. The tensile tests at a slow strain rate of 8 x 10 -8 /s are also carried out on pre deformed samples and undeformed samples. The results showed that surface treatment induces microstructural modifications of the metal just under the oxide layer, leading to slower growth kinetics of the oxide layer. However, surface treatment accelerates development of oxides penetrations in metal under the oxide layer. As example, for

  19. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  20. The restart of Belgium reactors of Doel 3 and Tihange 2. Doel 3 and Tihange 2: indications of defects in vessel steel

    International Nuclear Information System (INIS)

    2015-01-01

    In a first part, an IRSN report comments the issue of restarting some Belgium reactors after the detection of defects (due to the presence of hydrogen) in the vessel steel of reactors during the third decennial inspection by Electrabel. The report describes the procedure followed by Electrabel and the Belgium nuclear authority (AFCN) to confirm that the detected defects were not harmful. It comments the defect detection and characterisation, the origin and potential evolution of defects, the assessment of mechanical characteristics of some components, the assessment of the defect harmfulness in terms of failure risk, and additional measurements. The second part contains the AFCN report which addresses: the chronology and scientific context, the actors, the situation of other Belgium reactors, an indication of published reports and press releases

  1. Conceptual design for Japan Sodium-Cooled Fast Reactor. (4) Developmental study of steel plate reinforced concrete containment vessel for JSFR

    International Nuclear Information System (INIS)

    Hosoya, Takusaburo; Negishi, Kazuo; Satoh, Kenichiro; Somaki, Takahiro; Matsuo, Ippei; Shimizu, Katsusuke

    2009-01-01

    An innovative containment vessel, namely Steel plate reinforced Concrete Containment Vessel (SCCV) is developed for Japan Sodium-Cooled Fast Reactor (JSFR). Reducing plant construction cost is one of the most important issues for commercialization of fast reactors. This study investigated construction issues including the building structure and the construction method as well as design issues in terms of the applicability of SCCV to fast reactors. An experimental study including loading and/or heating tests has been carried out to investigate the fundamental structural features, which would be provided to develop methodology to evaluate the feasibility of SCCV under the severe conditions. In this paper, the test plan is described as well as the first test results. (author)

  2. Environmental-assisted fatigue in austenitic stainless steels under light water reactor conditions

    International Nuclear Information System (INIS)

    Seifert, H.P.; Ritter, S.; Spaetig, P.

    2015-01-01

    The environmental-assisted fatigue (EAF) initiation and subsequent short crack growth behaviour of different austenitic stainless steels were characterised under simulated BWR/HWC and primary PWR conditions by cyclic fatigue tests with sharply notched fracture mechanics specimens. After a brief summary overview on the previous PSI observations, an update with new and preliminary results about the effect of pH, dissolved hydrogen, load ratio/mean stress, long static load hold times and load sequences is given in this paper. At low electrochemical corrosion potentials (ECP), the physical EAF initiation life moderately decreases with increasing dissolved hydrogen content and decreasing pH. Both parameters have little effect on the subsequent short EAF crack growth within the investigated range. Notch strain amplitude thresholds for environmental effects on physical EAF crack initiation decrease with increasing load ratio and mean stress. At small notch strain amplitudes, the effect of mean stress is more pronounced in BWR/HWC environment than in air and predicted by typical fatigue life mean stress corrections. Under certain loading conditions, long static load hold times result in an increase of the physical EAF initiation life, which saturates for very long hold times. On the other hand, little effect of hold times on subsequent stationary short EAF crack growth rates is observed. The physical EAF initiation life under load sequence loading in high-temperature water may be moderately shorter or significantly longer than predicted by a linear damage accumulation rule and corresponding constant load amplitude tests depending on the load history. (authors)

  3. A passively-safe fusion reactor blanket with helium coolant and steel structure

    Energy Technology Data Exchange (ETDEWEB)

    Crosswait, Kenneth Mitchell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1994-04-01

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  4. Estimation of fast neutron fluence in steel specimens type Laguna Verde in TRIGA Mark III reactor; Estimacion de la fluencia de neutrones rapidos en probetas de acero tipo Laguna Verde en el reactor Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Galicia A, J.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Aguilar H, F., E-mail: blink19871@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The main purpose of this work is to obtain the fluence of fast neutrons recorded within four specimens of carbon steel, similar to the material having the vessels of the BWR reactors of the nuclear power plant of Laguna Verde when subjected to neutron flux in a experimental facility of the TRIGA Mark III reactor, calculating an irradiation time to age the material so accelerated. For the calculation of the neutron flux in the specimens was used the Monte Carlo code MCNP5. In an initial stage, three sheets of natural molybdenum and molybdenum trioxide (MoO{sub 3}) were incorporated into a model developed of the TRIGA reactor operating at 1 M Wth, to calculate the resulting activity by setting a certain time of irradiation. The results obtained were compared with experimentally measured activities in these same materials to validate the calculated neutron flux in the model used. Subsequently, the fast neutron flux received by the steel specimens to incorporate them in the experimental facility E-16 of the reactor core model operating at nominal maximum power in steady-state was calculated, already from these calculations the irradiation time required was obtained for values of the neutron flux in the range of 10{sup 18} n/cm{sup 2}, which is estimated for the case of Laguna Verde after 32 years of effective operation at maximum power. (Author)

  5. Internal attachment of laser beam welded stainless steel sheathed thermocouples into stainless steel upper end caps in nuclear fuel rods for the LOFT Reactor

    International Nuclear Information System (INIS)

    Welty, R.K.; Reid, R.D.

    1980-01-01

    The Exxon Nuclear Company, Inc., acting as a subcontractor to EG and G Idaho Inc., Idaho National Engineering Laboratory, Idaho Falls, Idaho, conducted a laser beam welding study to attach internal stainless steel thermocouples into stainless steel upper end caps in nuclear fuel rods. The objective of this study was to determine the feasibility of laser welding a single 0.063 inch diameter stainless steel (304) sheathed thermocouple into a stainless steel (316) upper end cap for nuclear fuel rods. A laser beam was selected because of the extremely high energy input in unit volume that can be achieved allowing local fusion of a small area irrespective of the difference in material thickness to be joined. A special weld fixture was designed and fabricated to hold the end cap and the thermocouple with angular and rotational adjustment under the laser beam. A commercial pulsed laser and energy control system was used to make the welds

  6. Microstructural evolution in an austenitic stainless steel fusion reactor first wall

    International Nuclear Information System (INIS)

    Stoller, R.E.; Odette, G.R.

    1986-01-01

    A detailed rate-theory-based model of microstructural evolution under fast neutron irradiation has been developed. The prominent new aspect of this model is a treatment of dislocation evolution in which Frank faulted loops nucleate, grow and unfault to provide a source for network dislocations while the dislocation network can be simultaneously annihilated by a climb/glide process. The predictions of this model compare very favorably with the observed dose and temperature dependence of these key microstructural features over a broad range. This new description of dislocation evolution has been coupled with a previously developed model of cavity evolution and good agreement has been obtained between the predictions of the composite model and fast reactor swelling data as well. The results from the composite model also reveal that the various components of the irradiation-induced microstructure evolve in a highly coupled manner. The predictions of the composite model are more sensitive to parametric variations than more simple models. Hence, its value as a tool in data analysis and extrapolation is enhanced

  7. Review of recent studies on neutron irradiation embrittlement in light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Sudo, Akira; Miyazono, Shohachiro

    1983-06-01

    Recent studies in foreign countries (USA, France, FRG and UK) on neutron irradiation embrittlement have been reviewed. These studies are classified into four areas, such as 1) effect of chemical composition on irradiation embrittlement sensitivity, 2) postirradiation heat treatment for embrittlement relief, 3) fracture toughness evaluation of irradiated materials based on fracture mechanics analysis, and 4) effect of irradiation on fatigue crack propagation behavior. The first area mainly includes the studies related to the effects of copper, phosphorus impurities and nickel alloying and synergistic effect of these components, and furthermore, evaluation of Regulatory Guide 1.99 Rev.l. Studies in the second area show the effects of annealing condition (temperature and time) and metallugical condition on embrittlement relief, and evaluation of periodic annealing in the period of irradiation as a promising method for embrittlement control. Studies in the third area show the correlation between fracture toughness and Cv notch ductility changes with neutron irradiation, and J-R curves of irradiated materials based on the elasto-plastic fracture mechanics. In the forth area, most of studies are investigated in air condition but a few studies in reactor-grade water at high temperature and pressure. (author)

  8. Size effects on failure behaviour of reactor pressure vessel steel and their dependence on deformation inhomogeneity

    International Nuclear Information System (INIS)

    Aktaa, J.; Klotz, M.; Schmitt, R.

    2003-01-01

    The investigation of the size dependence of the material behaviour and particularly of the failure strain is the main objective of the European research project LISSAC (Limit Strains for Severe Accident Conditions). Within our activities in LISSAC, tensile test series with specimens of similar geometry and different sizes are performed. The specimens, cut from the wall of a real reactor vessel, are flat with a central hole, flat with a double edge notch as well as round with a circumferential notch in order to obtain inhomogeneous deformation with high strain gradients, which will be higher in the smaller specimens and might be responsible for size effects. An additional variation of the strain gradient is obtained by varying the central hole radius of the flat specimens, with three different hole geometries being considered: round hole, increased round hole and slot. During the tests optical methods are used for measuring local deformations and partly local strain gradients. The results obtained show a size effect neither on the global nor on the local deformation behaviour, whereas the damage and failure behaviour is influenced significantly by the size of the specimen. On the basis of the surface deformation measurements, finite element calculations are performed to estimate the local failure strains as well as the corresponding strain gradients. A clear dependence of local failure strains on strain gradients is obtained. (author)

  9. Estimates of time-dependent fatigue behavior of type 316 stainless steel subject to irradiation damage in fast breeder and fusion power reactor systems

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Liu, K.C.; Grossbeck, M.L.

    1979-01-01

    Cyclic lives obtained from strain-controlled fatigue tests at 593 0 C of specimens irraidated in the experimental breeder reactor II (EBR-II) to a fluence of 1 to 2.63 x 10 26 neutrons (n)/m 2 E > 0.1 MeV) were compared with predictions based on the method of strain-range partitioning. It was demonstrated that, when appropriate tensile and creep-rupture ductilities were employed, reasonably good estimates of the influence of hold periods and irradiation damage on the fully reversed fatigue life of Type 316 stainless steel could be made. After applicability of this method was demonstrated, ductility values for 20% cold-worked Type 316 stainless steel specimens irradiated in a mixed-spectrum fission reactor were used to estimate fusion reactor first-wall lifetime. The ductility values used were from irradations that simulate the environment of the first wall of a fusion reactor. Neutron wall loadins ranging from 2 to 5 MW/m 2 were used. Results, although conjectural because of the many assumptions, tended to show that 20% cold-worked Type 316 stainless steel could be used as a first-wall material meeting a 7.5 go 8.5 MW-year/m 2 lifetime goal provided the neutron wall loading does not exceed more than about 2 MW/m 2 . These results were obtained for an air environment, ant it is expected that the actual vacuum environment will extend lifetime beyond 10 MW-year/m 2

  10. Reactor container

    International Nuclear Information System (INIS)

    Naruse, Yoshihiro.

    1990-01-01

    The thickness of steel shell plates in a reactor container embedded in sand cussions is monitored to recognize the corrosion of the steel shell plates. That is, the reactor pressure vessel is contained in a reactor container shell and the sand cussions are disposed on the lower outside of the reactor container shell to elastically support the shell. A pit is disposed at a position opposing to the sand cussions for measuring the thickness of the reactor container shell plates. The pit is usually closed by a closing member. In the reactor container thus constituted, the closing member can be removed upon periodical inspection to measure the thickness of the shell plates. Accordingly, the corrosion of the steel shell plates can be recognized by the change of the plate thickness. (I.S.)

  11. Trends in steel technology

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Dual phase steels, composite products, and microalloyed steels are making inroads in the automotive industry applications for bumpers, automotive parts, bodies, mechanical parts, suspension and steering equipment and truck bumpers. New steels are also used to support solar mirrors and cells, in corrosive environments in the oil and gas industry, fusion reactors, and pressure vessels in nuclear power plants

  12. Crack growth behaviour of low alloy steels for pressure boundary components under transient light water reactor operating conditions (CASTOC)

    International Nuclear Information System (INIS)

    Foehl, J.; Weissenberg, T.; Gomez-Briceno, D.; Lapena, J.; Ernestova, M.; Zamboch, M.; Seifert, H.P.; Ritter, S.; Roth, A.; Devrient, B.; Ehrnsten, U.

    2004-01-01

    The CASTOC project addresses environmentally assisted cracking (EAC) phenomena in low alloy steels used for pressure boundary components in both Western type boiling water reactors (BWR) and Russian type pressurised water reactors (VVER). It comprises the four work packages (WP): inter-laboratory comparison test (WP1); EAC behaviour under static load (WP2), EAC behaviour under cyclic load and load transients (WP3); evaluation of the results with regard to their relevance for components in practice (WP4). The use of sophisticated test facilities and measurement techniques for the on-line detection of crack advances have provided a more detailed understanding of the mechanisms of environmentally assisted cracking and provided quantitative data of crack growth rates as a function of loading events and time, respectively. The effect of several major parameters controlling EAC was investigated with particular emphasis on the transferability of the results to components in service. The obtained crack growth rate data were reflected on literature data and on commonly applied prediction curves as presented in the appropriate Code. At relevant stress intensity factors it could be shown that immediate cessation of growing cracks occurs after changing from cyclic to static load in high purity oxygenated BWR water and oxygen-free VVER water corresponding to steady state operation conditions. Susceptibility to environmentally assisted cracking under static load was observed for a heat affected zone material in oxygenated high purity water and also in base materials during a chloride transient representing BWR water condition below Action Level 1 of the EPRI Water Chemistry Guidelines according to the lectrical conductivity of the water but in the range of Action Level 2 according to the content of chlorides. Time based crack growth was also observed in one Russian type base material in oxygenated VVER water and in one Western type base material in oxygenated high purity BWR

  13. The influence of mechanical deformation on the irradiation creep of AISI 316 stainless steel irradiated in the EBR-II and FFTF fast reactors

    International Nuclear Information System (INIS)

    Garner, F.A.; Gilbert, E.R.

    2007-01-01

    Irradiation creep of stainless steels is thought not to be very responsive to material and environmental variables. To test this perception earlier unpublished experiments conducted in the EBR-II reactor on AISI 316 have been analyzed. While swelling is dependent on the cold-work level at 400-480 o C, the post-transient irradiation creep rate, often called the creep compliance B0, is not dependent on cold-work level. If the tube reaches pressures on reactor start-up that generate above-yield stresses in unirradiated steel, then plastic strains occur prior to significant irradiation, but the post-transient strain rate is identical to that of material that did not exceed the yield stress on start-up. It is shown that both stress-free and stress-affected swelling are isotropic and that the Soderberg relationship is maintained. At temperatures above ∼540 o C thermal creep and stored energy begin to assert themselves, with creep rates accelerating with cold-work and becoming non-linear with stress. These results are in agreement with a similar study on titanium-modified 316 steel in FFTF. (author)

  14. Development of high nickel austenitic steels for the application to fast reactor cores, (I). Alloy design with the aid of the d-electrons concept

    International Nuclear Information System (INIS)

    Murata, Yoshinori; Morinaga, Masahiko; Yukawa, Natsuo; Ukai, Shigeharu; Nomura, Shigeo; Okuda, Takanari; Harada, Makoto

    1999-01-01

    The design of high nickel austenitic steels for the core materials of the fast reactors was performed following the d-electrons concept devised on the basis of molecular orbital calculations of transition-metal based alloys. In this design two calculated parameters are mainly utilized. The one is the d-orbital energy level (Md) of alloying transition elements, and the other is the bond order (Bo) that is a measure of the covalent bond strength between atoms. Using the Md-bar - Bo-bar phase stability diagram accurate prediction become possible for the phase stability of the austenite phase and 5% swelling at 140 dpa for nickel ions. Here, Md-bar and Bo-bar are the compositional average of Md and Bo parameters, respectively. On the basis of the phase stability diagram and preliminary experiments, guidelines for the alloy design of carbo-nitrides precipitated high nickel austenitic steels were constructed. Following the guidelines several new austenitic steels were designed for the fast reactors core material. (author)

  15. Time-dependent temper embrittlement of reactor pressure vessel steel: Correlation between microstructural evolution and mechanical properties during tempering at 650 °C

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanwei; Han, Lizhan; Yan, Guanghua; Liu, Qingdong; Luo, Xiaomeng; Gu, Jianfeng, E-mail: gujf@sjtu.edu.cn

    2016-11-15

    The microstructural evolution of reactor pressure vessel (RPV) steel and its effect on the mechanical properties during tempering at 650 °C were studied to reveal the time-dependent toughness and temper embrittlement. The results show that the toughening of the material should be attributed to the decomposition of the martensite/austenite constituents and uniform distribution of carbides. When the tempering duration was 5 h, the strength of the investigated steel decreased to strike a balance with the material impact toughness that reached a plateau. As the tempering duration was further increased, the material strength was slightly reduced but the material impact toughness deteriorated drastically. This time-dependent temper embrittlement is different from traditional temper embrittlement, and it can be partly attributed to the softening of the matrix and the broadening of the ferrite laths. Moreover, the dimensions and distribution of the grain carbides are the most important factors of the impact toughness. - Highlights: • The fracture mechanism of reactor pressure vessel (RPV) steels under impact load was investigated. • The Charpy V-notch impact test and the hinge model were employed for the study. • Grain boundary carbides play a key role in the impact toughness and fracture toughness. • The dependence of the deterioration of impact toughness on tempering time was analyzed for the first time.

  16. Reactor pressure boundary material - A study on evaluation and improvement of non-radiational characteristics low alloy steel weld

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. H.; Kim, K. S.; Ahn, H. J. [Hanyang University, Seoul (Korea)

    2000-04-01

    Metallurgical factors influencing on the toughness of the Intercritically Reheated Coarse-Grained Heat Affected Zone (ICCGHAZ) of multiple welded SA508-c1.3 Reactor Pressure vessel steel was evaluated. The ICCGAZ is formed when the CGHZ is reheated to the intercritical temperature range(between A{sub C1} and A{sub C3} temperature) in which {gamma} phase and {alpha} phase coexist. During heating, austenite was formed along the prior austenite grain boundaries and lath interface. On cooling, the newly formed austenite was transformed into bainite and/or martensite. The newly formed martensite always included some retained austenite(M-A constituents). The characteristics(amount, hardness, density, and size) of M-A constituents were found to be strongly associated with the last pass peak temperature and cooling time ({delta} t{sub 8/592)}). Toughness in the ICCGHAZ was deteriorated with increasing amount of M-A constituents of with was increased with increasing the last peak temperature within the intercritical temperature range. Meanwhile, for the same intercritical peak temperature, toughness decreased with increasing cooling time. When cooling time was short, the dominant factor influencing on the toughness of the ICCGHAZ was amount of M-A constituents. However, when the cooling time was long, the dominant factor was found to be the hardness difference between M-A constituents and softened matrix (tempered martensite). When the restraint was applied, restraint didn't affect on transformation temperature of martensite. But the transformation in austenite to banitic ferrite was found to be greatly affected. This austenited {gamma}-bainitic phase transformation was lowered hardness but raised toughness. Slightly, especially, when the cooling rate was relatively fast, toughness was greatly improved, but a longer cooling time did not change the characteristics considerably. 23 refs., 81 figs., 7 tabs. (Author)

  17. Low Temperature (320 deg C and 340 deg C) Creep Crack Growth in Low Alloy Reactor Pressure Vessel Steel

    International Nuclear Information System (INIS)

    Rui Wu; Sandstroem, Rolf; Seitisleam, Facredin

    2004-02-01

    Uni-axial creep and creep crack growth (CCG) tests at 320 deg C and 340 deg C as well as post test metallography have been carried out in a low alloy reactor pressure vessel steel (ASTM A508 class 2) having simulated coarse grained heat affected zone microstructure. The CCG behaviour is studied in terms of steady crack growth rate, creep fracture parameter C*, stress intensity factor and reference stress at given testing conditions. It has been found that CCG does occur at both tested temperatures. The lifetimes for the CCG tests are considerably shorter than those for the uni-axial creep tests. This is more pronounced at longer lifetimes or lower stresses. Increasing temperature from 320 deg C to 340 deg C causes a reduction of lifetime by approximately a factor of five and a corresponding increase of steady crack growth rate. For the CCG tests, there are three regions when the crack length is plotted against time. After incubation, the crack grows steadily until it accelerates when rupture is approached. Notable crack growth takes place at later stage of the tests. No creep cavitation is observed and transgranular fracture is dominant for the uni-axial creep specimens. In the CT specimens the cracks propagate intergranularly, independent of temperature and time. Some relations between time to failure, reference stress and steady crack growth rate are found for the CCG tests. A linear extrapolation based on the stress-time results indicates that the reference stress causing failure due to CCG at a given lifetime of 350,000 hours at 320 deg C is clearly lower than both yield and tensile strengths, on which the design stress may have based. Therefore, caution must be taken to prevent premature failure due to low temperature CCG. Both uni-axial and CCG tests on real welded joint at 320 deg C, study of creep damage zone at crack tip as well as numerical simulation are recommended for future work

  18. A mechanistic model for predicting flow-assisted and general corrosion of carbon steel in reactor primary coolants

    Energy Technology Data Exchange (ETDEWEB)

    Lister, D. [University of New Brunswick, Fredericton, NB (Canada). Dept. of Chemical Engineering; Lang, L.C. [Atomic Energy of Canada Ltd., Chalk River Lab., ON (Canada)

    2002-07-01

    Flow-assisted corrosion (FAC) of carbon steel in high-temperature lithiated water can be described with a model that invokes dissolution of the protective oxide film and erosion of oxide particles that are loosened as a result. General corrosion under coolant conditions where oxide is not dissolved is described as well. In the model, the electrochemistry of magnetite dissolution and precipitation and the effect of particle size on solubility move the dependence on film thickness of the diffusion processes (and therefore the corrosion rate) away from reciprocal. Particle erosion under dissolving conditions is treated stochastically and depends upon the fluid shear stress at the surface. The corrosion rate dependence on coolant flow under FAC conditions then becomes somewhat less than that arising purely from fluid shear (proportional to the velocity squared). Under non-dissolving conditions, particle erosion occurs infrequently and general corrosion is almost unaffected by flow For application to a CANDU primary circuit and its feeders, the model was bench-marked against the outlet feeder S08 removed from the Point Lepreau reactor, which furnished one value of film thickness and one of corrosion rate for a computed average coolant velocity. Several constants and parameters in the model had to be assumed or were optimised, since values for them were not available. These uncertainties are no doubt responsible for the rather high values of potential that evolved as steps in the computation. The model predicts film thickness development and corrosion rate for the whole range of coolant velocities in outlet feeders very well. In particular, the detailed modelling of FAC in the complex geometry of one outlet feeder (F11) is in good agreement with measurements. When the particle erosion computations are inserted in the balance equations for the circuit, realistic values of crud level are obtained. The model also predicts low corrosion rates and thick oxide films for inlet

  19. A mechanistic model for predicting flow-assisted and general corrosion of carbon steel in reactor primary coolants

    International Nuclear Information System (INIS)

    Lister, D.

    2002-01-01

    Flow-assisted corrosion (FAC) of carbon steel in high-temperature lithiated water can be described with a model that invokes dissolution of the protective oxide film and erosion of oxide particles that are loosened as a result. General corrosion under coolant conditions where oxide is not dissolved is described as well. In the model, the electrochemistry of magnetite dissolution and precipitation and the effect of particle size on solubility move the dependence on film thickness of the diffusion processes (and therefore the corrosion rate) away from reciprocal. Particle erosion under dissolving conditions is treated stochastically and depends upon the fluid shear stress at the surface. The corrosion rate dependence on coolant flow under FAC conditions then becomes somewhat less than that arising purely from fluid shear (proportional to the velocity squared). Under non-dissolving conditions, particle erosion occurs infrequently and general corrosion is almost unaffected by flow For application to a CANDU primary circuit and its feeders, the model was bench-marked against the outlet feeder S08 removed from the Point Lepreau reactor, which furnished one value of film thickness and one of corrosion rate for a computed average coolant velocity. Several constants and parameters in the model had to be assumed or were optimised, since values for them were not available. These uncertainties are no doubt responsible for the rather high values of potential that evolved as steps in the computation. The model predicts film thickness development and corrosion rate for the whole range of coolant velocities in outlet feeders very well. In particular, the detailed modelling of FAC in the complex geometry of one outlet feeder (F11) is in good agreement with measurements. When the particle erosion computations are inserted in the balance equations for the circuit, realistic values of crud level are obtained. The model also predicts low corrosion rates and thick oxide films for inlet

  20. Microstructural characterization of stainless steel 17-4 PH used in the control element of PWR-Type reactors submitted to different heat treatments

    International Nuclear Information System (INIS)

    Ferreira, Douglas F.A.; Rezende, Renato P.; Turcarelli, Tiago

    2017-01-01

    The Control Element is a set of mechanical components of pressurized water cooled nuclear reactors (PWR), with the function of modifying the reactivity of the nucleus by insertion and withdrawal of neutron absorptive rod, in order to change the flow of neutrons (power) to the necessary and desired levels. The control element also has a safety function when there is a need to have negative reactivity available to shut down the reactor in normal operating or accident situations. In this situation, the control element descends instantly and inserts the rods with absorptive material into the fuel element thus shutting down the reactor. The control element consists of control rods, which carry the neutron absorption material and is supported by the spider, pin, spring and spring retainer assembly. The control element has some components that need to have high resistance to impacts when the safety function is activated, so the material of this component must have high mechanical strength and toughness. One of the materials in which can be specified for this application is martensitic stainless steel 17- 4PH (UNS 17400). This steel, when subjected to the aging heat treatment, has its mechanical properties altered due to the precipitation of dispersed intermetallic compounds in the matrix. In all heat treatments performed the predominant microstructure is lath martensite. The heat treatment of the 620 °C / 4 h presented lower hardness when compared to the other treatments and when increase time and temperature the material presents Nb precipitates that increase the hardness. (author)

  1. Microstructural characterization of stainless steel 17-4 PH used in the control element of PWR-Type reactors submitted to different heat treatments

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Douglas F.A.; Rezende, Renato P.; Turcarelli, Tiago, E-mail: ferreira@marinha.mil.br, E-mail: renato.rezende@marinha.mil.br, E-mail: tiago.turcarelli@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (DDNM/CTMSP), São Paulo, SP (Brazil). Diretoria de Desenvolvimento Nuclear da Marinha

    2017-07-01

    The Control Element is a set of mechanical components of pressurized water cooled nuclear reactors (PWR), with the function of modifying the reactivity of the nucleus by insertion and withdrawal of neutron absorptive rod, in order to change the flow of neutrons (power) to the necessary and desired levels. The control element also has a safety function when there is a need to have negative reactivity available to shut down the reactor in normal operating or accident situations. In this situation, the control element descends instantly and inserts the rods with absorptive material into the fuel element thus shutting down the reactor. The control element consists of control rods, which carry the neutron absorption material and is supported by the spider, pin, spring and spring retainer assembly. The control element has some components that need to have high resistance to impacts when the safety function is activated, so the material of this component must have high mechanical strength and toughness. One of the materials in which can be specified for this application is martensitic stainless steel 17- 4PH (UNS 17400). This steel, when subjected to the aging heat treatment, has its mechanical properties altered due to the precipitation of dispersed intermetallic compounds in the matrix. In all heat treatments performed the predominant microstructure is lath martensite. The heat treatment of the 620 °C / 4 h presented lower hardness when compared to the other treatments and when increase time and temperature the material presents Nb precipitates that increase the hardness. (author)

  2. The influence of ppb levels of chloride impurities on the stress corrosion crack growth behaviour of low-alloy steels under simulated boiling water reactor conditions

    International Nuclear Information System (INIS)

    Seifert, H.P.; Ritter, S.

    2016-01-01

    Highlights: • Chloride effects on SCC crack growth in RPV steels under boiling water reactor conditions. • ppb-levels of chloride may result in fast SCC in normal water chemistry environment. • Much higher chloride tolerance for SCC in hydrogen water chemistry environment. • Potential long-term (memory) effects after severe and prolonged temporary chloride transients. - Abstract: The effect of chloride on the stress corrosion crack (SCC) growth behaviour in low-alloy reactor pressure vessel steels was evaluated under simulated boiling water reactor conditions. In normal water chemistry environment, ppb-levels of chloride may result in fast SCC after rather short incubation periods of few hours. After moderate and short-term chloride transients, the SCC crack growth rates return to the same very low high-purity water values within few 100 h. Potential long-term (memory) effects on SCC crack growth cannot be excluded after severe and prolonged chloride transients. The chloride tolerance for SCC in hydrogen water chemistry environment is much higher.

  3. Historical summary of the heavy-section steel technology program and some related activities in light-water reactor pressure vessel safety research

    International Nuclear Information System (INIS)

    Whitman, G.D.

    1986-03-01

    The accomplishments of the Heavy-Section Steel Technology Program and other programs having a close relationship to the development of information used in the assessment of light-water reactor pressure vessel integrity are reviewed. The early Pressure Vessel Research Committee planning, the principals contributing to program formulation, the role of the US Atomic Energy Commission, and the developments under the US Nuclear Regulatory Commission sponsorship are identified. The need for major research and development accomplishments in fracture mechanics, heavy-section steel procurement, materials properties, irradiation effects, fatigue crack growth, and structural testing are summarized. The impact of program results on regulatory issues and the development of data used in the preparation of codes, standards, and guides are discussed. Continuing activities and recommendations for future research and development in support of pressure vessel integrity assessments are presented

  4. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels

    Science.gov (United States)

    Bergner, F.; Gillemot, F.; Hernández-Mayoral, M.; Serrano, M.; Török, G.; Ulbricht, A.; Altstadt, E.

    2015-06-01

    Dislocation loops, nanovoids and Cu-rich clusters (CRPs) are known to represent obstacles for dislocation glide in neutron-irradiated reactor pressure vessel (RPV) steels, but a consistent experimental determination of the respective obstacle strengths is still missing. A set of Cu-bearing low-Ni RPV steels and model alloys was characterized by means of SANS and TEM in order to specify mean size and number density of loops, nanovoids and CRPs. The obstacle strengths of these families were estimated by solving an over-determined set of linear equations. We have found that nanovoids are stronger than loops and loops are stronger than CRPs. Nevertheless, CRPs contribute most to irradiation hardening because of their high number density. Nanovoids were only observed for neutron fluences beyond typical end-of-life conditions of RPVs. The estimates of the obstacle strength are critically compared with reported literature data.

  5. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects

    International Nuclear Information System (INIS)

    Meslin-Chiffon, E.

    2007-11-01

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  6. Neutron activation analysis and activity in the vessel steel of a BWR reactor for their study without radiological risks in microscopy and spectrometry

    International Nuclear Information System (INIS)

    Moranchel, M.; Garcia B, A.; Longoria G, L. C.

    2012-01-01

    The vessel material of nuclear reactors is subject to irradiation damage induced by the bombardment of neutrons coming from the reactor core. Neutrons are classified as fast and thermal, which produce different effects. Fast neutrons cause damage to the material by dislocation or displacement of atoms in the crystal structure, while the effect of thermal neutrons is a nuclear transmutation that can significantly change the properties of the material. The type and intensity of damage is based on the characteristics of the material, the flow of neutrons and the modes of neutrons interaction with the atomic structures of the material, among others. This work, alluding to nuclear transmutation, makes an analysis of neutron activation of all isotopes in a steel boiling water nuclear reactor (BWR) vessel. An analytical expression is obtained in order to model activity of steel, on the basis of the weight percentage of its atomic components. Its activity is theoretically estimated in a witness sample of the same material as that of the vessel, placed within the nuclear reactor since the beginning of its commercial operation in April 1995, up to August 2010. It was theoretically determined that the witness sample, with a 0.56 g mass (1 x 1 x 0.07 cm 3 dimensions or equivalent) does not present a radiological risks during the stage of preparation, observation and analysis of it in electron microscopy and X-ray diffraction equipment s. The theoretical results were checked experimentally by measuring the activity of the sample by means of gamma spectrometry, measurement of the exposure levels around the sample, as well as the induced level to whole body and limbs, using thermo-luminescent dosimetry (TLD). As a result of the theoretical analysis, new chemical elements are predicted, as a result of the activation phenomena and radioactive decay, whose presence can be a fundamental factor of change in the properties of the vessel. This work is a preamble to the investigation of

  7. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part II: WWER conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ernestova, M.; Zamboch, M. [Nuclear Research Institute, NRI, Rez (Czech Republic); Devrient, B.; Roth, A. [Framatome ANP GmbH, Erlangen (Germany); Ehrnsten, U. [VTT Industrial Systems, Espoo (Finland); Foehl, J.; Weissenberg, T. [Staatliche Materialpruefungsanstalt, MPA, Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, CIEMAT, Madrid (Spain); Ritter, S.; Seifert, H.P. [Paul Scherrer Institute, PSI, Villigen (Switzerland)

    2004-07-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWRs) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of crack growth behavior of LAS in high-temperature water due to EAC under constant load (steady-state power operation), to study the effect of transient conditions (during operation or start-up/shut-down of a plant) using their impact on time-based and cycle-based crack growth rates and to a more detailed understanding of the acting mechanisms. Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurized water reactor (WWER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (WWER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarizes the most important crack growth results obtained under simulated WWER conditions. The influence of oxygen content and the effect of specimen size (C(T)25 versus C(T)50 specimens) on the crack growth rates are shown. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  8. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part II: WWER conditions

    International Nuclear Information System (INIS)

    Ernestova, M.; Zamboch, M.; Devrient, B.; Roth, A.; Ehrnsten, U.; Foehl, J.; Weissenberg, T.; Gomez-Briceno, D.; Lapena, J.; Ritter, S.; Seifert, H.P.

    2004-01-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWRs) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of crack growth behavior of LAS in high-temperature water due to EAC under constant load (steady-state power operation), to study the effect of transient conditions (during operation or start-up/shut-down of a plant) using their impact on time-based and cycle-based crack growth rates and to a more detailed understanding of the acting mechanisms. Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurized water reactor (WWER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (WWER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarizes the most important crack growth results obtained under simulated WWER conditions. The influence of oxygen content and the effect of specimen size (C(T)25 versus C(T)50 specimens) on the crack growth rates are shown. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  9. Corrosion properties of modified PNC1520 austenitic stainless steel in supercritical water as a fuel cladding candidate material for supercritical water reactor

    International Nuclear Information System (INIS)

    Nakazono, Yoshihisa; Iwai, Takeo; Abe, Hiroaki

    2009-01-01

    The supercritical water-cooled reactor (SCWR) has been designed and investigated because of its high thermal efficiency and plant simplification. There are some advantages including the use of a single phase coolant with high enthalpy. Supercritical Water (SCW) has never been used in nuclear power applications. There are numerous potential problems, particularly with materials. As the operating temperature of SCWR will be between 553 K and 893 K with a pressure of 25 MPa, the selection of materials is difficult and important. The PNC1520 austenitic stainless steel has been developed by Japan Atomic Energy Agency (JAEA) as a nuclear fuel cladding material for a Na-cooled fast breeder reactor. Austenitic Fe-base steels were selected for possible use in supercritical water systems because of their corrosion resistance and radiation resistance. The PNC1520 austenitic stainless steel was selected for possible use in supercritical water systems. The corrosion data of PNC1520 in SCW is required but does not exist. The purpose of the present study is to research the corrosion properties for PNC1520 austenitic stainless steel in SCW. The SCW corrosion test was performed for the standard PNC1520 (1520S) and the Ti-additional type of PNC1520 (1520T) by using a SCW autoclave. The 1520S and 1520T are the first trial production materials of SCWR cladding candidate material in our group. Corrosion and compatibility tests on the austenitic 1520S and 1520T steels in supercritical water were performed at 673, 773 and 600degC with exposures up to 1000 h. We have evaluated the amount of weight gain, weight loss and weight of scale after the corrosion test in SCW for 1520S and 1520T austenitic steels. After 1000 h corrosion test performed, the weight gains of both austenitic stainless steels were less than 2 g/m 2 at 400degC and 500degC. But 1520T weight increases more and weight loss than 1520S at 600degC. The SEM observation result of the surface after 1000 h corrosion of an test

  10. Thermal-Fatigue Analysis of W-joined Ferritic-Martensitic Steel Mockup for Fusion Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Kim, Suk Kwon; Park, Seong Dae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Moon, Se Yeon; Hong, Bong Guen [Chonbuk National University, Chonbuk (Korea, Republic of)

    2015-10-15

    Through the ITER blanket first wall (BFW) development project in Korea, the joining methods were developed with a beryllium (Be) layer as a plasma-facing material, a copper alloy (CuCrZr) layer as a heat sink, and type 316L austenitic stainless steel (SS316L) as a structural material. And joining methods were developed such as Be as an armor and FMS as a structural material, or W as an armor and FMS as a structural material were developed through the test blanket module (TBM) program. As a candidate of PFC for DEMO, W/FMS joining methods have been developed and a new Ti interlayer was applied differently from the previous work. In the present study, the W/FMS PFC development was introduced with the following procedure to apply to the PFCs for a fusion reactor: (1) Three W/FMS mockups were fabricated using the developed HIP followed by a post-HIP heat treatment (PHHT). (2) Because the High Heat Flux (HHF) test should be performed over the thermal lifetime of the mockup under the proper test conditions to confirm the joint's integrity, the test conditions were determined through a preliminary analysis. In this study, commercial ANSYS-CFX for thermalhydraulic analysis and ANSYS-mechanical for the thermo-mechanical analysis are used to evaluate the thermal-lifetime of the mockup to determine the test conditions. Also, the Korea Heat Load Test facility with an Electron Beam (KoHLT-EB) will be used and its water cooling system is considered to perform the thermal-hydraulic analysis especially for considering the two-phase analysis with a higher heat flux conditions. From the analysis, the heating and the cooling conditions were determined for 0.5- and 1.0-MW/m{sup 2} heat fluxes, respectively. Elastic-plastic analysis is performed to determine the lifetime and finally, the 1.0 MW/m{sup 2} heat flux conditions are determined up to 4,306 cycles. The test will be done in the near future and the measured temperatures will be compared with the present simulation results.

  11. Effect of chemical composition on irradiation embrittlement and annealing in Ni-Cr-Mo-V reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Novosad, P [Czech Nuclear Society, Prague (Czech Republic)

    1994-12-31

    Results concerning copper and phosphorus influence on radiation-induced changes in the Ni-Cr-Mo-V steel mechanical properties, are presented. Correlations between different mechanical properties for steels with different chemical composition, are presented. A comparison of transition temperature shifts obtained for static and dynamic fracture toughness tests and Charpy impact tests, is discussed. Recovery of radiation hardening, measured by hardness test after isochronal annealing of steels with different compositions, is also shown. Copper content strongly affects irradiation-induced changes of mechanical properties, but phosphorus content in connection with variable copper content has only a small effect. (author). 4 refs., 4 figs., 4 tabs.

  12. Behavior to the fracture of an AISI 304 stainless steel sensitized in BWR reactor conditions (288 degrees Centigrade and 80 Kg/cm2)

    International Nuclear Information System (INIS)

    Hernandez C, R.; Diaz S, A.; Garcia R, R.; Aguilar T, A.; Gachuz M, M.; Arganis J, C.; Merino C, J.

    1999-01-01

    It is a knew fact that ductility of a lot of structural alloys can be deteriorated by the environment effect which are exposed, and that their consequent embrittlement can put in doubt the safety of their functioning; such is the case of austenitic stainless steels used in internal components of the BWR type reactors which not only is subjected to the effect combined of the aggressive environment which surround it (pressure, temperature, corrosion potential, conductivity medium, local state of efforts, etc.), but also to the action of present neutron radiation, manifesting microstructural changes which are reflected in the augmentation of its susceptibility to the intergranular cracking, phenomena generally known as IASCC ''Irradiation Assisted Stress Corrosion Cracking''. Once appeared the cracking in the material, the useful life of a component is limited by the rapidity to growth of these cracking, making necessary evaluations which can to predict its behavior, therefore the present work shows the preliminary results for determining the behavior to the fracture of an AISI 304 stainless steel sensitized, in a dynamic recirculation circuit which allows to simulate the operation conditions of a BWR reactor (288 Centigrade and 80 kg/cm 2 ). (Author)

  13. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, F., E-mail: f.bergner@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Gillemot, F. [Centre for Energy Research of the Hungarian Academy of Sciences, 29-33 Konkoly-Thege street, 1121 Budapest XII (Hungary); Hernández-Mayoral, M.; Serrano, M. [Division of Materials, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Török, G. [Wigner Research Center for Physics of the Hungarian Academy of Sciences, 29-33 Konkoly-Thege street, 1121 Budapest XII (Hungary); Ulbricht, A.; Altstadt, E. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany)

    2015-06-15

    Highlights: • TEM and SANS were applied to estimate mean size and number density of loops, nanovoids and Cu-rich clusters. • A three-feature dispersed-barrier hardening model was applied to estimate the yield stress increase. • The values and errors of the dimensionless obstacle strength were estimated in a consistent way. • Nanovoids are stronger obstacles for dislocation glide than dislocation loops, loops are stronger than Cu-rich clusters. • For reactor-relevant conditions, Cu-rich clusters contribute most to hardening due to their high number density. - Abstract: Dislocation loops, nanovoids and Cu-rich clusters (CRPs) are known to represent obstacles for dislocation glide in neutron-irradiated reactor pressure vessel (RPV) steels, but a consistent experimental determination of the respective obstacle strengths is still missing. A set of Cu-bearing low-Ni RPV steels and model alloys was characterized by means of SANS and TEM in order to specify mean size and number density of loops, nanovoids and CRPs. The obstacle strengths of these families were estimated by solving an over-determined set of linear equations. We have found that nanovoids are stronger than loops and loops are stronger than CRPs. Nevertheless, CRPs contribute most to irradiation hardening because of their high number density. Nanovoids were only observed for neutron fluences beyond typical end-of-life conditions of RPVs. The estimates of the obstacle strength are critically compared with reported literature data.

  14. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  15. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  16. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  17. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  18. Stress-assisted, microbial-induced corrosion of stainless steel primary piping and other aging issues at the Omega West Reactor

    International Nuclear Information System (INIS)

    Andrade, A.

    1995-01-01

    After the discovery of cooling system leak of about 284 liters per twenty-four (24) hour period, an investigation determined that the 76.2-cm diameter, 33.5-m long stainless-steel (304) OWR delay line was losing water at the same nominal rate. An excavation effort revealed that a circumferential crack, approximately 0.0025 cm in width, extended around the bottom half of the delay line. In addition, other evidence of what appeared to be microcracking and pitting that originated at random nucleated sites around the pipe were also found. Results of destructive analysis and nondestructive testing allowed Los Alamos staff to conclude that the direct cause for the main crack and other pitting resulted from stress-assisted, microbial-induced corrosion of the stainless steel primary piping. The results also indicated that microbial action from bacteria that are normally present in earth can be extremely harmful to stainless- steel piping under certain conditions. Other potential problems that could have also eventually led to a permanent shutdown of the OWR were discussed. These problems, although never encountered nor associated with the current shutdown, were identified in aging studies and are associated with: (1) the water-cooled, bismuth gamma-ray shield and, (2) the aluminum thermal column head seal that prevents reactor vessel water from entering into the graphite-filled thermal column

  19. Reactors

    DEFF Research Database (Denmark)

    Shah, Vivek; Vaz Salles, Marcos António

    2018-01-01

    The requirements for OLTP database systems are becoming ever more demanding. Domains such as finance and computer games increasingly mandate that developers be able to encode complex application logic and control transaction latencies in in-memory databases. At the same time, infrastructure...... engineers in these domains need to experiment with and deploy OLTP database architectures that ensure application scalability and maximize resource utilization in modern machines. In this paper, we propose a relational actor programming model for in-memory databases as a novel, holistic approach towards......-level function calls. In contrast to classic transactional models, however, reactors allow developers to take advantage of intra-transaction parallelism and state encapsulation in their applications to reduce latency and improve locality. Moreover, reactors enable a new degree of flexibility in database...

  20. Evaluation of the Steel Creek ecosystem in relation to the propsed restart of the L-reactor: interim report

    International Nuclear Information System (INIS)

    1982-04-01

    The ecological assessment of the Steel Creek ecosystempresents information concerning the fall and winter utilization of Steel Creek habitats. An understanding of the wintering behavior of these species is necessary to assess the impact of thermal effluents on these species. Waterfowl use of the Steel Creek habitats was extensive during winter 1981-1982. The habitat was used for both foraging and roosting. Mallards and wood ducks were the most important local game species. Observations of the thermal deltas indicated substantial migratory waterfowl use of areas near Four Mile Creek, while no ducks were observed in the vicinity of Pen Branch. Studies of the American alligator through the winter of 1981-1982 indicated that this species remains active through the winter. It has also been established that the Florida mud turtle, occurs in Steel Creek. Fish collections through the fall of 1981 and winter of 1981-1982 yielded 49 species. Considerable differences in overall fish species diversity and changes in fish species composition were observed. Substantial variations in radiocesium concentrations exist among species although all species were exposed to the same concentrations of radiocesium in water. Substantially less radiocesium remains in the system than was anticipated. Substantial differences occur in different stream segments as well as the vertical distribution of the isotope through the soil profile. The studies to date document that animal use of the Steel Creek cosystems is substantial

  1. Steel alloys

    International Nuclear Information System (INIS)

    Bloom, E.E.; Stiegler, J.O.; Rowcliffe, A.F.; Leitnaker, J.M.

    1977-01-01

    The invention deals with a fuel element for fast breeder reactors. It consits essentially of a uranium oxide, nitride, or carbide or a mixture of these fuels with a plutonium or thorium oxide, nitride, or carbide. The fuel elements are coated with an austenitic stainless steel alloy. Inside the fuel elements, vacancies or small cavities are produced by neutron effects which causes the steel coating to swell. According to the invention, swelling is prevented by a modification of type 304, 316, 321, or 12 K 72HV commercial steels. They consist mainly of Fe, Cr, and Ni in a ratio determined by a temary diagram. They may also contain 1.8 to 2.3% by weight of Mo and a fraction of Si (0.7 to 2% by weight) and Ti(0.10 to 0.5% by weight) to prevent cavity formation. They are structurally modified by cold working. (IHOE) [de

  2. Manufacturing of welded polyblock turbine rotors for pressurized water reactor nuclear plants; Optimization of the steel grade; Effect of impurities

    International Nuclear Information System (INIS)

    Pisseloup, J.; Poitrault, I.S.; De Badereau, A.; Bocquet, P.G.

    1986-01-01

    Le Creusot Heavy Forge has been manufacturing low-pressure (LP) disks and shaft ends for 1300-MW nuclear power plants. These forgings, in weldable 1.8Cr-1Ni-0.8Mo steel, are welded by Alsthom Atlantique. With the aim of improved quality, homogeneity of mechanical properties, hardenability, and weldability, this metallurgical research has been carried out: 1. Optimization of the steel grade (the effect of silicon, manganese, and molybdenum). 2. The influence of tempering and stress relief treatment parameters. 3. The effect of impurities. These studies have led the Steel Melting Shop of Creusot-Loire Factory to invest in a high-performance process of steelmaking: the heating ladle refining process. This new process has had spectacular results that have been confirmed by investigations on cut-up industrial forgings

  3. Evaluation of the magnetic and mechanical properties of reactor pressure vessel steels by incremental permeability change curve measurements

    International Nuclear Information System (INIS)

    Ebine, N.; Suzuki, M.

    2001-01-01

    Incremental permeability measurement was performed for two types of structural steels along with the magnetization of their hysteresis minor-loop. The obtained incremental permeability change curve has two sharp peaks, and the width between the two peaks is correlated with the coercivity. Hence the existence of good correlation was verified. On the basis of this result, nondestructive measurement experiments were carried out with planar coils to evaluate changes in the material properties of ferromagnetic structural steel plates. Changes in output voltages from planar coils with different test plates were correlated with their mechanical and magnetic properties. The correlation is so good that the measurement method adopted in this work could be used for nondestructive evaluation of material degradation in ferromagnetic structural steels. (author)

  4. Reactor

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1976-01-01

    Object: To provide a boiling water reactor which can enhance a quake resisting strength and flatten power distribution. Structure: At least more than four fuel bundles, in which a plurality of fuel rods are arranged in lattice fashion which upper and lower portions are supported by tie-plates, are bundled and then covered by a square channel box. The control rod is movably arranged within a space formed by adjoining channel boxes. A spacer of trapezoidal section is disposed in the central portion on the side of the channel box over substantially full length in height direction, and a neutron instrumented tube is disposed in the central portion inside the channel box. Thus, where a horizontal load is exerted due to earthquake or the like, the spacers come into contact with each other to support the channel box and prevent it from abnormal vibrations. (Furukawa, Y.)

  5. Dissimilar welding in nuclear reactors: review of the main aspects related to dissimilar welding of carbon steel and stainless steel with addition of nickel alloys

    International Nuclear Information System (INIS)

    Ribeiro, Vladimir Soler

    2015-01-01

    This work presents a review of the literature about Stress Corrosion Cracking, which is one of the main damage mechanisms that affect PWR and BWR type nuclear reactor. It deals with issues related to one of the sources of the problem, which are the trative residual stress caused by the thermal cycle of welding. It also addressed measurement techniques of residual stresses, with emphasis on technique the center hole drilling. It is shown that, once found the problem, there are means to mitigate the damage, which allow prolonging the life of the component. (author)

  6. Mechanical properties and microstructure of copper alloys and copper alloy-stainless steel laminates for fusion reactor high heat flux applications

    Science.gov (United States)

    Leedy, Kevin Daniel

    A select group of copper alloys and bonded copper alloy-stainless steel panels are under consideration for heat sink applications in first wall and divertor structures of a planned thermonuclear fusion reactor. Because these materials must retain high strengths and withstand high heat fluxes, their material properties and microstructures must be well understood. Candidate copper alloys include precipitate strengthened CuNiBe and CuCrZr and dispersion strengthened Cu-Alsb2Osb3 (CuAl25). In this study, uniaxial mechanical fatigue tests were conducted on bulk copper alloy materials at temperatures up to 500sp°C in air and vacuum environments. Based on standardized mechanical properties measurement techniques, a series of tests were also implemented to characterize copper alloy-316L stainless steel joints produced by hot isostatic pressing or by explosive bonding. The correlation between mechanical properties and the microstructure of fatigued copper alloys and the interface of copper alloy-stainless steel laminates was examined. Commercial grades of these alloys were used to maintain a degree of standardization in the materials testing. The commercial alloys used were OMG Americas Glidcop CuAl25 and CuAl15; Brush Wellman Hycon 3HP and Trefimetaux CuNiBe; and Kabelmetal Elbrodur and Trefimetaux CuCrZr. CuAl25 and CuNiBe alloys possessed the best combination of fatigue resistance and microstructural stability. The CuAl25 alloy showed only minimal microstructural changes following fatigue while the CuNiBe alloy consistently exhibited the highest fatigue strength. Transmission electron microscopy observations revealed that small matrix grain sizes and high densities of submicron strengthening phases promoted homogeneous slip deformation in the copper alloys. Thus, highly organized fatigue dislocation structure formation, as commonly found in oxygen-free high conductivity Cu, was inhibited. A solid plate of CuAl25 alloy hot isostatically pressed to a 316L stainless steel

  7. Positron annihilation spectroscopy and small angle neutron scattering characterization of nanostructural features in high-nickel model reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Glade, Stephen C. [Nuclear Engineering Department, University of California, Berkeley, CA 94720-1730 (United States); Wirth, Brian D. [Nuclear Engineering Department, University of California, Berkeley, CA 94720-1730 (United States)]. E-mail: bdwirth@nuc.berkeley.edu; Odette, G. Robert [University of California, Santa Barbara, CA (United States); Asoka-Kumar, P. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2006-06-01

    Irradiation embrittlement in nuclear reactor pressure vessel steels results from the hardening by a high number density of nanometer scale features. In steels with more than {approx}0.10% Cu, the dominant features are often Cu-rich precipitates typically alloyed with Mn, Ni and Si. At low-Cu and low-to-intermediate Ni levels, so-called matrix hardening features are believed to be vacancy-solute cluster complexes, or their remnants. However, Mn-Ni-Si rich precipitates, with Mn plus Ni contents greater than Cu, can form at high alloy Ni contents and are promoted at irradiation temperatures lower than the nominal 290 deg. C. Even at very low-Cu levels, late blooming Mn-Ni-Si rich precipitates are a significant concern due to their potential to form large volume fractions of hardening features. Positron annihilation spectroscopy (PAS) and small angle neutron scattering neutron (SANS) measurements were used to characterize the fine-scale microstructure in split-melt A533B steels with varying Ni and Cu contents, irradiated at selected conditions from 270 to 310 deg. C between {approx}0.04 and 1.6 x 10{sup 23} n m{sup -2}. The objective was to assess the character, composition and magnetic properties of Cu-rich precipitates, as well as to gain insight on the matrix features. The results suggest that the irradiated very low-Cu and intermediate Ni steel contains small vacancy-Mn-Ni-Si cluster complexes, but not large, well-formed and highly enriched Mn-Ni-Si phases. The hardening features in steels containing 0.2% and 0.4% Cu, and 0.8% and 1.6% Ni are consistent with well-formed, non-magnetic Cu-Ni-Mn precipitates. The precipitate number densities and volume fractions increase, while their sizes decrease, with increasing Ni and decreasing irradiation temperature. The precipitates evolve with fluence in stages of nucleation, growth and limited coarsening.

  8. Information system of corrosion and mechanical properties for steels used in nuclear power plants with PWR reactors

    International Nuclear Information System (INIS)

    Lahodova, M.; Novotny, R.; Sajdl, P.

    1998-01-01

    This paper gives information about a new developed database system which contains information about chemical constitution of steels used in nuclear power plants. It enables to hold data from corrosion tests and allows to insert graphs and pictures into the form. This system is an application of MS Access. (orig.)

  9. Accumulation of radioactive corrosion products on steel surfaces of VVER type nuclear reactors. I. 110mAg

    CSIR Research Space (South Africa)

    Hirschberg, G

    1999-03-01

    Full Text Available contaminants in the passive layer formed on austenitic stainless steel. In the first part of the series the accumulation of 110mAg has been investigated. Potential dependent sorption of Ag+. ions (cementation) is found to be the predominant process...

  10. Information system of corrosion and mechanical properties for steels used in nuclear power plants with PWR reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lahodova, M.; Novotny, R.; Sajdl, P. [Inst. of Chemical Technology, Prague (Czech Republic). Dept. of Power Engineering

    1998-11-01

    This paper gives information about a new developed database system which contains information about chemical constitution of steels used in nuclear power plants. It enables to hold data from corrosion tests and allows to insert graphs and pictures into the form. This system is an application of MS Access. (orig.)

  11. Monitoring of irradiation effects on the pressure vessel steels of Calder, Chapelcross and Windscale Advanced Gas Cooled Reactor (WAGR) nuclear reactors

    International Nuclear Information System (INIS)

    Turner, F.

    1980-01-01

    Tensile, Charpy and bend specimens of plate, forging and weld metal are exposed in the lower and upper zones of the reactors to neutron fluxes covering the range experienced by the vessels. The test conditions are described, the results presented and discussed. (author)

  12. Analytical modeling of the effect of crack depth, specimen size, and biaxial stress on the fracture toughness of reactor vessel steels

    International Nuclear Information System (INIS)

    Chao, Yuh-Jin

    1995-01-01

    Fracture, toughness values for A533-B reactor pressure vessel (RPV) steel obtained from test programs at Oak Ridge National Laboratory (ORNL) and University of Kansas (KU) are interpreted using the J-A 2 analytical model. The analytical model is based on the critical stress concept and takes into consideration the constraint effect using the second parameter A 2 in addition to the generally accepted first parameter J which represents the loading level. It is demonstrated that with the constraint level included in the model effects of crack depth (shallow vs deep), specimen size (small vs. large), and loading type (uniaxial vs biaxial) on the fracture toughness from the test programs can be interpreted and predicted

  13. Correlation of yield stress and microhardness in 08Cr16Ni11Mo3 stainless steel irradiated to high dose in the BN-350 fast reactor

    International Nuclear Information System (INIS)

    Gusev, M.N.; Maksimkin, O.P.; Tivanova, O.V.; Silnaygina, N.S.; Garner, F.A.

    2006-01-01

    The relationship between the microhardness and the engineering yield stress in 08Cr16Ni11Mo3 steel after irradiation in the BN-350 reactor has been experimentally derived and agrees with a previously published correlation developed by Toloczko for unirradiated 316 in a variety of cold-work conditions. Even more importantly, when the correlation is derived in the K Δ format where the correlation involves changes in the two properties, excellent agreement is found with a universal K Δ correlation developed by Busby and coworkers. Additionally, this report points out that microhardness measurements must take into account that sodium exposure at high temperature and neutron fluence alters the metal surface to produce ferrite, and therefore the altered layers should be removed prior to testing

  14. The near-threshold high R-ratio fatigue crack growth characteristics of SA508 cl III reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Achilles, R.D.; Bulloch, J.H.

    1989-01-01

    This paper describes the effect of frequency and environment on the near-threshold fatigue crack growth behaviour of SA508 cl III reactor pressure vessel (RPV) steel. The study has shown that in the near-threshold regime microstructure and environment markedly affect fatigue crack growth behaviour. In an aqueous environment, fatigue crack growth behaviour became even more sensitive to microstructure, and the fatigue crack growth rate increased by a factor of four in the case of the 3Hz test, while that for the 0.3Hz test was increased by a factor of approximately sixteen. This environmental enhancement manifested itself in the form of intergranular failure. For the 0.3Hz test the percentage intergranular failure decreased from 18% to <1% with an increase in ΔK level. The transition from microstructure-sensitive to microstructure-insensitive occurs when the cyclic plastic zone size is of the order of the prior austenite grain size. (author)

  15. Hydrogen permeability, diffusivity, and solubility of SUS 316L stainless steel in the temperature range 400 to 800 .deg. C for fusion reactor applications

    International Nuclear Information System (INIS)

    Lee, S. K.; Kim, H. S.; Noh, S. J.; Han, J. H.

    2011-01-01

    Tritium permeation is one of the critical issues for the economy and safety of fusion power plants. As an initial step in tritium permeation research for fusion reactor applications, experiments were initiated by using hydrogen as a tritium substitute. An experimental system for hydrogen permeation and related behaviors in solid materials was designed and constructed. A continuous flow method was adopted with a capacity for high temperatures up to ∼1,000 .deg. C under ultra-high vacuums of ∼10 -7 Pa. The hydrogen permeation behavior in SUS 316L stainless steel was investigated in the temperature range from 400 .deg. C to 800 .deg. C. As a result, the permeability, diffusivity and solubility of hydrogen were determined. The results were compared with the previously existing reference data. Changes in the sample's surface morphology after the hydrogen permeation experiment are also addressed.

  16. Some loop experiments in the NRX reactor to study the corrosion of mild steel by flowing water at 90oF

    International Nuclear Information System (INIS)

    Allison, G.M.

    1956-11-01

    This work was undertaken to find the water conditions necessary for minimum corrosion in the mild steel thermal shield recirculating systems in NRX and NRU. This report contains the chemical and corrosion results obtained by operating three mild steel loops in which water at 85-95 o F was recirculated through test sections located in J-rod positions in the NRX reactor. Lowest corrosion rates were found when the water was maintained at pH 10.5 with or without oxygen being present. In both cases the corrosion was general in nature and no pitting occurred. At pH 7 with oxygen present in the water severe pitting took place and the corrosion rate was several times higher than similar conditions without oxygen in the water. Under oxygen-free conditions the corrosion product was Fe 3 O 4 . At pH 7 and with 3-5 ppm of O 2 in the water the corrosion product was a mixture of Fe 3 O 4 and γ-Fe 2 O 3 . At high pH with oxygen present Fe 3 O 4 predominated with some traces of Fe 2 O 3 . The systems tested may he listed in order of increasing corrosiveness: High pH with or without O 2 in the water 2 present and continual purification 2 present and no purification or pH control 2 present. (author)

  17. Reactor pressure tank

    International Nuclear Information System (INIS)

    Dorner, H.; Scholz, M.; Jungmann, A.

    1975-01-01

    In a reactor pressure tank for a nuclear reactor, self-locking hooks engage a steel ring disposed over the removable cover of the steel vessel. The hooks exert force upon the cover to maintain the cover in a closed position during operation of the reactor pressure tank. The force upon the removal cover is partly the result of the increasing temperature and thermal expansion of the steel vessel during operation. The steel vessel is surrounded by a reinforced-concrete tank. (U.S.)

  18. Comparison of applicability of current transition temperature shift models to SA533B-1 reactor pressure vessel steel of Korean nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Hyun; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-08-15

    The precise prediction of radiation embrittlement of aged reactor pressure vessels (RPVs) is a prerequisite for the long-term operation of nuclear power plants beyond their original design life. The expiration of the operation licenses for Korean reactors the RPVs of which are made from SA533B-1 plates and welds is imminent. Korean regulatory rules have adopted the US Nuclear Regulatory Commission's transition temperature shift (TTS) models to the prediction of the embrittlement of Korean reactor pressure vessels. The applicability of the TTS model to predict the embrittlement of Korean RPVs made of SA533B-1 plates and welds was investigated in this study. It was concluded that the TTS model of 10 CFR 50.61a matched the trends of the radiation embrittlement in the SA533B-1 plates and welds better than did that of Regulatory Guide (RG) 1.99 Rev. 2. This is attributed to the fact that the prediction performance of 10 CFR 50.61a was enhanced by considering the difference in radiation embrittlement sensitivity among the different types of RPV materials.

  19. Stress corrosion cracking and oxidation of austenitic stainless steel 316 L and model alloy in supercritical water reactor

    International Nuclear Information System (INIS)

    Saez-Maderuelo, A.; Gomez-Briceno, D.; Diego, G.

    2015-01-01

    In this work, an austenitic stainless steel type 316 L was tested in deaerated supercritical water at 400 deg. C and 500 deg. C and 25 MPa to determine how variations in water conditions influence its stress corrosion cracking behaviour and to make progress in the understanding of mechanisms involved in SCC processes in this environment. Moreover, the influence of plastic deformation in the resistance of the material to SCC was also studied at both temperatures. In addition to this, previous oxidation experiments at 400 deg. C and 500 deg. C and at 25 MPa were taken into account to gain some insight in this kind of processes. Furthermore, a cold worked model alloy based on the stainless steel 316 L with some variations in the chemical composition in order to simulate the composition of the grain boundary after irradiation was tested at 400 deg. C and 25 MPa in deaerated supercritical water. (authors)

  20. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME.

  1. Concomitant formation of different nature clusters and hardening in reactor pressure vessel steels irradiated by heavy ions

    International Nuclear Information System (INIS)

    Fujii, K.; Fukuya, K.; Hojo, T.

    2013-01-01

    Specimens of A533B steels containing 0.04, 0.09 and 0.21 wt%Cu were irradiated at 290 °C to 3 dpa with 3 MeV Fe ions and subjected to atom probe analyses, transmission electron microscopy observations and hardness measurements. The atom probe analysis results showed that two types of solute clusters were formed: Cu-enriched clusters containing Mn, Ni and Si atoms as irradiation-enhanced solute atom clusters and Mn/Ni/Si-enriched clusters as irradiation-induced solute atom clusters. Both cluster types occurred in the highest Cu-content steel and the ratio of Mn/Ni/Si-enriched clusters to Cu-enriched clusters increased with irradiation doses. It was confirmed that the cluster formation was a key factor in the microstructure evolution until the high dose irradiation was reached even in the low Cu content steels though the dislocation loops with much lower density than that of the clusters were observed as matrix damage. The difference in the hardening efficiency due to the difference in the nature of the clusters was small. The irradiation-induced clustering of undersized Si atoms suggested that a clustering driving force other than vacancy-driven diffusion, probably an interstitial mechanism, may become important at higher dose rates

  2. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    International Nuclear Information System (INIS)

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME

  3. Concomitant formation of different nature clusters and hardening in reactor pressure vessel steels irradiated by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K., E-mail: fujiik@inss.co.jp [Institute of Nuclear Safety System, Inc., Mihama 919-1205 (Japan); Fukuya, K. [Institute of Nuclear Safety System, Inc., Mihama 919-1205 (Japan); Hojo, T. [Japan Nuclear Energy Safety Organization, Toranomon, Minato-ku, Tokyo 105-0001 (Japan)

    2013-11-15

    Specimens of A533B steels containing 0.04, 0.09 and 0.21 wt%Cu were irradiated at 290 °C to 3 dpa with 3 MeV Fe ions and subjected to atom probe analyses, transmission electron microscopy observations and hardness measurements. The atom probe analysis results showed that two types of solute clusters were formed: Cu-enriched clusters containing Mn, Ni and Si atoms as irradiation-enhanced solute atom clusters and Mn/Ni/Si-enriched clusters as irradiation-induced solute atom clusters. Both cluster types occurred in the highest Cu-content steel and the ratio of Mn/Ni/Si-enriched clusters to Cu-enriched clusters increased with irradiation doses. It was confirmed that the cluster formation was a key factor in the microstructure evolution until the high dose irradiation was reached even in the low Cu content steels though the dislocation loops with much lower density than that of the clusters were observed as matrix damage. The difference in the hardening efficiency due to the difference in the nature of the clusters was small. The irradiation-induced clustering of undersized Si atoms suggested that a clustering driving force other than vacancy-driven diffusion, probably an interstitial mechanism, may become important at higher dose rates.

  4. Electrochemical behaviour of stainless steel under radiation and exposed to representative chemistry in pressurised water reactor conditions

    International Nuclear Information System (INIS)

    Wang, Mi

    2013-01-01

    The dissertation focuses on the behaviour of stainless steel under irradiation and exposed to primary PWR conditions. The electrochemical potential of austenitic 316L stainless steel and the environmental parameters (hydrogen pressure, temperature, etc.,) have been measured continuously at high temperature (HT) and high pressure (HP) under irradiation, using a unique experimental HTHP working cell. Two sources of irradiation, proton and electron beams, have been employed in the study. A high similarity of electrochemical behaviour under both types of irradiations has been observed: (i) an oxidative potential response under irradiation (few tens of milli-volts); (ii) an increase in the hydrogen pressure reduces the oxidative potential response; (iii) a synergetic effect of thermal ageing and fluence leading to a decrease of the oxidative response under irradiation. The observations of the oxide film showed that without irradiation, metallic nickel in the inner and outer oxide films has been observed under a high hydrogen pressure. Under irradiation, um scale cavities (pits) have been observed in the strongly electron irradiated oxide film formed on 316L stainless steel. These defects are induced by the effect of irradiation of the passive film and water radiolysis. It is also shown that water radiolysis influences the PWR water chemistry by making it become a stronger oxidant at the oxide/solution interface. As a result, the release of metallic cations is increased and a-Fe 2 O 3 hematite has been observed on the irradiated outer oxide film where cavities were formed. (author) [fr

  5. Microstructural characterization and model of hardening for the irradiated austenitic stainless steels of the internals of pressurized water reactors; Caracterisation microstructurale et modelisation du durcissement des aciers austenitiques irradies des structures internes des reacteurs a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Pokor, C

    2003-07-01

    The core internals of Pressurized Water Reactors (PWR) are composed of SA 304 stainless steel plates and CW 316 stainless steel bolts. These internals undergo a neutron flux at a temperature between 280 deg C and 380 deg C which modifies their mechanical properties. These modifications are due to the changes in the microstructure of these materials under irradiation which depend on flux, dose and irradiation temperature. We have studied, by Transmission Electron Microscopy, the microstructure of stainless steels SA 304, CW 316 and CW 316Ti irradiated in a mixed flux reactor (OSIRIS at 330 deg C between 0,8 dpa et 3,4 dpa) and in a fast breeder reactor at 330 deg C (BOR-60) up to doses of 40 dpa. Moreover, samples have been irradiated at 375 deg C in a fast breeder reactor (EBR-II) up to doses of 10 dpa. The microstructure of the irradiated stainless steels consists in faulted Frank dislocation loops in the [111] planes of austenitic, with a Burgers vector of [111]. It is possible to find some voids in the solution annealed samples irradiated at 375 deg C. The evolution of the dislocations loops and voids has been simulated with a 'cluster dynamic' model. The fit of the model parameters has allowed us to have a quantitative description of our experimental results. This description of the microstructure after irradiation was coupled together with a hardening model by Frank loops that has permitted us to make a quantitative description of the hardening of SA 304, CW 316 and CW 316Ti stainless steels after irradiation at a certain dose, flux and temperature. The irradiation doses studied grow up to 90 dpa, dose of the end of life of PWR internals. (author)

  6. In-air and pressurized water reactor environment fatigue experiments of 316 stainless steel to study the effect of environment on cyclic hardening

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov; Soppet, William K., E-mail: soppet@anl.gov; Majumdar, Saurindranath, E-mail: majumdar@anl.gov; Natesan, Krishnamurti, E-mail: natesan@anl.gov

    2016-05-15

    Argonne National Laboratory (ANL), under the sponsorship of Department of Energy's Light Water Reactor Sustainability (LWRS) program, is trying to develop a mechanistic approach for more accurate life estimation of LWR components. In this context, ANL has conducted many fatigue experiments under different test and environment conditions on type 316 stainless steel (316 SS) material which is widely used in the US reactors. Contrary to the conventional S ∼ N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to develop an understanding of the material ageing issues more mechanistically (e.g. time dependent hardening and softening) under different test and environmental conditions. Better mechanistic understanding will help develop computer-based advanced modeling tools to better extrapolate stress-strain evolution of reactor components under multi-axial stress states and hence help predict their fatigue life more accurately. Mechanics-based modeling of fatigue such as by using finite element (FE) tools requires the time/cycle dependent material hardening properties. Presently such time-dependent material hardening properties are hardly available in fatigue modeling literature even under in-air conditions. Getting those material properties under PWR environment, are even harder. Through this work we made preliminary attempt to generate time/cycle dependent stress-strain data both under in-air and PWR water conditions for further study such as for possible development of material models and constitutive relations for FE model implementation. Although, there are open-ended possibility to further improve the discussed test methods and related material estimation techniques we anticipate that the data presented in this paper will help the metal fatigue research community particularly, the researchers who are dealing with mechanistic modeling of metal fatigue such as using FE tools. In this paper the fatigue

  7. Oxide fuel fabrication technology development of the FaCT project (5). Current status on 9Cr-ODS steel cladding development for high burn-up fast reactor fuel

    International Nuclear Information System (INIS)

    Ohtsuka, Satoshi; Kaito, Takeji; Yano, Yasuhide; Yamashita, Shinichiro; Ogawa, Ryuichiro; Uwaba, Tomoyuki; Koyama, Shinichi; Tanaka, Kenya

    2011-01-01

    This paper describes evaluation results of in-reactor integrity of 9Cr and 12Cr-ODS steel cladding tubes and the plan for reliability improvement in homogeneous tube production, both of which are key points for the commercialized use of ODS steels as long-life fuel cladding tubes. A fuel assembly in the BOR-60 irradiation test including 9Cr and 12Cr-ODS fuel pins has achieved the highest burn-up, i.e. peak burn-up of 11.9at% and peak neutron dose of 51dpa, without any fuel pin rupture and microstructure instability. In another fuel assembly containing 9Cr and 12Cr-ODS steel fuel pins whose peak burn-up was 10.5at%, one 9Cr-ODS steel fuel pin failed near the upper end of the fuel column. A peculiar microstructure change occurred in the vicinity of the ruptured area. The primary cause of this fuel pin rupture and microstructure change was shown to be the presence of metallic Cr inclusions in the 9Cr-ODS steel tube, which had passed an ultrasonic inspection test for defects. In the next stage from 2011 to 2013, the fabrication technology of full pre-alloy 9Cr-ODS steel cladding tube will be developed, where the handling of elemental powder is prohibited in the process. (author)

  8. Leakage Tests of the Stainless Steel Vessels of the Antineutrino Detectors in the Daya Bay Reactor Neutrino Experiment

    OpenAIRE

    Chen, Xiaohui; Luo, Xiaolan; Heng, Yuekun; Wang, Lingshu; Tang, Xiao; Ma, Xiaoyan; Zhuang, Honglin; Band, Henry; Cherwinka, Jeff; Xiao, Qiang; Heeger, Karsten M.

    2012-01-01

    The antineutrino detectors in the Daya Bay reactor neutrino experiment are liquid scintillator detectors designed to detect low energy particles from antineutrino interactions with high efficiency and low backgrounds. Since the antineutrino detector will be installed in a water Cherenkov cosmic ray veto detector and will run for 3 to 5 years, ensuring water tightness is critical to the successful operation of the antineutrino detectors. We choose a special method to seal the detector. Three l...

  9. Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Roychowdhury, S.; Seifert, H.-P.; Spätig, P.; Que, Z.

    2016-01-01

    Structural integrity of reactor pressure vessels (RPV) is critical for safety and lifetime. Possible degradation of fracture resistance of RPV steel due to exposure to coolant and hydrogen is a concern. In this study tensile and elastic-plastic fracture mechanics (EPFM) tests in air (hydrogen pre-charged) and EFPM tests in hydrogenated/oxygenated high-temperature water (HTW) was done, using a low-alloy RPV steel. 2–5 wppm hydrogen caused embrittlement in air tensile tests at room temperature (25 °C) and at 288 °C, effects being more significant at 25 °C and in simulated weld coarse grain heat affected zone material. Embrittlement at 288 °C is strain rate dependent and is due to localized plastic deformation. Hydrogen pre-charging/HTW exposure did not deteriorate the fracture resistance at 288 °C in base metal, for investigated loading rate range. Clear change in fracture morphology and deformation structures was observed, similar to that after air tests with hydrogen. - Highlights: • Hydrogen content, microstructure of LAS, and strain rate affects tensile properties at 288 °C. • Strength affects hydrogen embrittlement susceptibility to a greater extent than grain size. • Hydrogen in LAS leads to strain localization and restricts cross-slip at 288 °C. • Possible hydrogen pickup due to exposure to 288 °C water alters fracture surface appearance without affecting fracture toughness in bainitic base material. • Simulated weld heat affected zone microstructure shows unstable crack propagation in 288 °C water.

  10. Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, S., E-mail: sroy27@gmail.com [Paul Scherrer Institut, Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen, PSI (Switzerland); Materials Processing & Corrosion Engineering Division, Mod-Lab, D-Block, Bhabha Atomic Research Centre, Mumbai 400085 (India); Seifert, H.-P.; Spätig, P.; Que, Z. [Paul Scherrer Institut, Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen, PSI (Switzerland)

    2016-09-15

    Structural integrity of reactor pressure vessels (RPV) is critical for safety and lifetime. Possible degradation of fracture resistance of RPV steel due to exposure to coolant and hydrogen is a concern. In this study tensile and elastic-plastic fracture mechanics (EPFM) tests in air (hydrogen pre-charged) and EFPM tests in hydrogenated/oxygenated high-temperature water (HTW) was done, using a low-alloy RPV steel. 2–5 wppm hydrogen caused embrittlement in air tensile tests at room temperature (25 °C) and at 288 °C, effects being more significant at 25 °C and in simulated weld coarse grain heat affected zone material. Embrittlement at 288 °C is strain rate dependent and is due to localized plastic deformation. Hydrogen pre-charging/HTW exposure did not deteriorate the fracture resistance at 288 °C in base metal, for investigated loading rate range. Clear change in fracture morphology and deformation structures was observed, similar to that after air tests with hydrogen. - Highlights: • Hydrogen content, microstructure of LAS, and strain rate affects tensile properties at 288 °C. • Strength affects hydrogen embrittlement susceptibility to a greater extent than grain size. • Hydrogen in LAS leads to strain localization and restricts cross-slip at 288 °C. • Possible hydrogen pickup due to exposure to 288 °C water alters fracture surface appearance without affecting fracture toughness in bainitic base material. • Simulated weld heat affected zone microstructure shows unstable crack propagation in 288 °C water.

  11. Some loop experiments in the NRX reactor to study the corrosion of mild steel by flowing water at 90{sup o}F

    Energy Technology Data Exchange (ETDEWEB)

    Allison, G. M.

    1956-11-15

    This work was undertaken to find the water conditions necessary for minimum corrosion in the mild steel thermal shield recirculating systems in NRX and NRU. This report contains the chemical and corrosion results obtained by operating three mild steel loops in which water at 85-95{sup o}F was recirculated through test sections located in J-rod positions in the NRX reactor. Lowest corrosion rates were found when the water was maintained at pH 10.5 with or without oxygen being present. In both cases the corrosion was general in nature and no pitting occurred. At pH 7 with oxygen present in the water severe pitting took place and the corrosion rate was several times higher than similar conditions without oxygen in the water. Under oxygen-free conditions the corrosion product was Fe{sub 3}O{sub 4}. At pH 7 and with 3-5 ppm of O{sub 2} in the water the corrosion product was a mixture of Fe{sub 3}O{sub 4} and {gamma}-Fe{sub 2}O{sub 3}. At high pH with oxygen present Fe{sub 3}O{sub 4} predominated with some traces of Fe{sub 2}O{sub 3}. The systems tested may he listed in order of increasing corrosiveness: High pH with or without O{sub 2} in the water < water at pH 7 with no O{sub 2} present and continual purification < water with no O{sub 2} present and no purification or pH control < water at pH 7 with 3-5 ppm of O{sub 2} present. (author)

  12. TEM [transmission electron microscopy], APFIM [atom-probe field ion microscopy], and SANS [small-angle neutron scattering] examination of aged duplex stainless steel components from some decommissioned reactors

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.

    1987-12-01

    The present investigation indicates that the primary embrittlement processes of the CF-8 grade cast stainless steel components during extended reactor service are spinodal decomposition of the ferrite phase and M 23 C 6 carbide precipitation on the austenite-ferrite boundaries. The ferrite hardness measured for the Shippingport reactor valves appears to reflect the different extent of spinodal decomposition among the different valves which contain slightly different Cr contents. G-phase precipitation was minimal compared to that during accelerated aging of CF-8 steel in the laboratory (i.e., near 400/degree/C). This indicates that the activation energy may be strongly influenced by the synergism among the G-phase precipitation, carbide formation, and spinodal decomposition. 13 refs., 2 figs

  13. Retrofitting the Structure of the Catalytic Cracking Reactor, from Petrobrazi Refinery, Ploieşti by Transforming the Steel Structure into a Moment Resisting Frame and Enhancing the Damping of the Structure by Means of Viscous Dampers

    Directory of Open Access Journals (Sweden)

    Vasilescu Ionuţ

    2015-12-01

    Full Text Available The present paper presents the structural and seismic retrofit solution for the structure of the Catalytic Cracking Reactor, from Petrobrazi Refinery, Ploiești, Romania. The spatial truss type steel structure was designed and built during 1965-1968, following United States codes of that time. The capacity of the reactor is intended to be increased, thus its weight increases by approx. 43%. The retrofit solution had to take into consideration many criteria, not only technical, but also technological. After analyzing several possibilities, it was decided that the only feasible solution in order to fulfill all these requirements was to significantly increase the viscous damping of the structure – by introducing viscous dampers in its diagonals, accompanied by the strengthening of steel structure and changing the structural system into a moment resisting frame.

  14. Development of PWR pressure vessel steels

    International Nuclear Information System (INIS)

    Druce, S.; Edwards, B.

    1982-01-01

    Requirements to be met by vessel steels for pressurized water reactors are analyzed. Chemicat composition of low-alloyed steels, mechanical properties of sheets and forgings made of these steels and changes in the composition and properties over the wall thickness of the reactor vessel are presented. Problems of the vessel manufacturing including welding and heat treatment processes of sheets and forgings are considered. Special attention is paid to steel embrittlement during vessel fabrication and operation (radiation embrittlement, thermal embrittlement). The role of non-metal inclusions and their effect on anisotropy of fracture toughness is discussed. Possible developments of vessel steels and procedures for producing reactor vessels are reviewed

  15. Development of PWR pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Druce, S.; Edwards, B.

    1982-01-01

    Requirements to be met by vessel steels for pressurized water reactors are analyzed. Chemicat composition of low-alloyed steels, mechanical properties of sheets and forgings made of these steels and changes in the composition and properties over the wall thickness of the reactor vessel are presented. Problems of the vessel manufacturing including welding and heat treatment processes of sheets and forgings are considered. Special attention is paid to steel embrittlement during vessel fabrication and operation (radiation embrittlement, thermal embrittlement). The role of non-metal inclusions and their effect on anisotropy of fracture toughness is discussed. Possible developments of vessel steels and procedures for producing reactor vessels are reviewed.

  16. The Change of the Seebeck Coefficient Due to Neutron Irradiation and Thermal Fatigue of Nuclear Reactor Pressure Vessel Steel and its Application to the Monitoring of Material Degradation

    International Nuclear Information System (INIS)

    Niffenegger, M.; Reichlin, K.; Kalkhof, D.

    2002-05-01

    The monitoring of material degradation, that might be caused by neutron irradiation and thermal fatigue, is an important topic in lifetime extension of nuclear power plants. We therefore investigated the application of the Seebeck effect for determining material degradation of common reactor pressure vessel steel. The Seebeck coefficient (SC) of several irradiated Charpy specimens made from Japanese JRQ-steel were measured. The specimens suffered a fluence from 0 up to 4.5 x 10 19 neutrons per cm 2 with energies higher than 1 MeV. The measured changes of the SC within this range were about 500 nV, increasing continuously in the range under investigation. Some indications of saturation appeared at fluencies larger than 4.55 x 10 19 neutrons per cm 2 . We obtained a linear dependency between the SC and the temperature shift ΔT 41 of the Charpy-Energy- Temperature curve which is widely used to characterize material embrittlement. Similar measurements were performed on specimens made from the widely used austenitic steel X6CrNiTi18-10 (according to DIN 1.4541) that were fatigued by applying a cyclic strain amplitude of 0.28%. For this kind of fatigue the observed change of SC was somewhat smaller than for the irradiated specimens. Further investigations were made to quantify the size of the gage volume in which the thermoelectric power is generated. It appeared that the information gathered from a Thermo Electric Power (TEP) measurement is very local. To overcome this problem we propose a novel TEP-method using a Thermoelectric Scanning Microscope (TSM). We finally conclude that the change of the SC has a potential for monitoring of material degradation due to neutron irradiation and thermal fatigue, but it has to be taken into account that several influencing parameters could contribute to the TEP in either an additional or extinguishing manner. A disadvantage of the method is the requirement of a clean surface without any oxide layer. A part of this disadvantage can

  17. Creep behaviour of austenitic stainless steels, base and weld metals used in liquid metal fast breeder reactors, during temperature variations

    International Nuclear Information System (INIS)

    Felsen, M.F.

    1982-07-01

    Creep rupture and deformation during temperature variations have been studied for 316 austenitic steel, base and weld metals. Loaded specimens were heated to 900 0 C or 1000 0 C and maintained at this temperature for different durations. The heating rate to these temperatures was between 5 and 50 0 C h -1 , whilst the cooling rate was between 5 and 20 0 C h -1 . The above tests were coupled with short time creep and tensile tests (straining rate 10 -2 h -1 to 10 3 h -1 ) at constant temperature. These tests were used for predicting the creep behaviour of the materials under changing temperature condition. The predictions were in good agreement with the changing temperature and creep experimental results. In addition, a correlation between certains tensile properties, such as the rupture time as a function of stress was observed at high temperature

  18. Susceptibility to stress corrosion in stainless steels type AISI 321 and 12X18H10T used in PWR type reactors (WWER); Susceptibilidad a la corrosion bajo esfuerzo de barras de acero inoxidable AISI 321 y 12X18H10T en ambientes utilizados en reactores VVER

    Energy Technology Data Exchange (ETDEWEB)

    Matadamas C, N

    1996-12-31

    Titanium stabilized stainless steels have been utilized in sovietic pressurized water reactors (VVER) for avoid the susceptibility to Intergranular Corrosion (IGC) present in other austenitic stainless steels. However the Intergranular Corrosion resistance of this kind of materials has been questioned because of Intergranular Stress Corrosion Cracking failures (IGSCC) have been reported. This paper study the electrochemical behavior of the AISI 321 stainless steel in a H{sub 3}BO{sub 3} Solution contaminated with chlorides and its susceptibility to Intergranular Corrosion.Electrochemical prediction diagrams of the stainless steels AISI 321 and 12X18H10T (sovietic) sensitized (600 Centigrade, 3 h.) were compared. Cylindrical and conical samples were used in Slow Strain Rate Tests (SSRT), to determine the susceptibility to Stress Corrosion Cracking (SCC) in AISI 321 and 12X18H10T stainless steels. The results obtained showed that the temperature of the solution is a very important factor to detect this susceptibility. Fractography studies on the fracture surfaces of the samples obtained in the SSRT at high temperature were realized. Corrosion velocities of both AISI 321 and 12X18H10T stainless steels were determined using conical samples in the CERT system at high temperature. E.D.A.X. analysis was employed in both AISI 321 and 12X18H10T stainless steels in order to explain the degree of sensitization. (Author).

  19. Study on feasibility of replacing 321 with 316LN stainless steel for main reactor coolant pipe material

    International Nuclear Information System (INIS)

    Luo Yijun

    2013-01-01

    The metallurgical, physical and mechanical performance, and the corrosion and welding properties of 00Cr17Ni12Mo2 (controlled Nitrogen, ANSI316LN) and 0Cr18Ni10Ti (ANSI321SS) for main pipe material were analyzed comparatively in this paper. The feasibility of 316LN pipe material manufacturing was studied too. The analysis results showed that under the operation condition of the nuclear reactor, the general properties of 316LN are better than that of 321SS. Therefore, 316LN could be used for main pipe material, replacing 321SS. (authors)

  20. Effects of phosphate addition on biofilm bacterial communities and water quality in annular reactors equipped with stainless steel and ductile cast iron pipes.

    Science.gov (United States)

    Jang, Hyun-Jung; Choi, Young-June; Ro, Hee-Myong; Ka, Jong-Ok

    2012-02-01

    The impact of orthophosphate addition on biofilm formation and water quality was studied in corrosion-resistant stainless steel (STS) pipe and corrosion-susceptible ductile cast iron (DCI) pipe using cultivation and culture-independent approaches. Sample coupons of DCI pipe and STS pipe were installed in annular reactors, which were operated for 9 months under hydraulic conditions similar to a domestic plumbing system. Addition of 5 mg/L of phosphate to the plumbing systems, under low residual chlorine conditions, promoted a more significant growth of biofilm and led to a greater rate reduction of disinfection by-products in DCI pipe than in STS pipe. While the level of THMs (trihalomethanes) increased under conditions of low biofilm concentration, the levels of HAAs (halo acetic acids) and CH (chloral hydrate) decreased in all cases in proportion to the amount of biofilm. It was also observed that chloroform, the main species of THM, was not readily decomposed biologically and decomposition was not proportional to the biofilm concentration; however, it was easily biodegraded after the addition of phosphate. Analysis of the 16S rDNA sequences of 102 biofilm isolates revealed that Proteobacteria (50%) was the most frequently detected phylum, followed by Firmicutes (10%) and Actinobacteria (2%), with 37% of the bacteria unclassified. Bradyrhizobium was the dominant genus on corroded DCI pipe, while Sphingomonas was predominant on non-corroded STS pipe. Methylobacterium and Afipia were detected only in the reactor without added phosphate. PCR-DGGE analysis showed that the diversity of species in biofilm tended to increase when phosphate was added regardless of the pipe material, indicating that phosphate addition upset the biological stability in the plumbing systems.

  1. Reactor container

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Saba, Kazuhisa.

    1979-01-01

    Purpose: To improve the earthquake resistance as well as reduce the size of a container for a nuclear reactor with no adverse effects on the decrease of impact shock to the container and shortening of construction step. Constitution: Reinforcing profile steel materials are welded longitudinally and transversely to the inner surface of a container, and inner steel plates are secured to the above profile steel materials while keeping a gap between the materials and the container. Reactor shielding wall planted to the base concrete of the container is mounted to the pressure vessel, and main steam pipeways secured by the transverse beams and led to the outside of container is connected. This can improve the rigidity earthquake strength and the safetiness against the increase in the inside pressure upon failures of the container. (Yoshino, Y.)

  2. Diffusion Couple Alloying of Refractory Metals in Austenitic and Ferritic/Martensitic Steels

    Science.gov (United States)

    2012-03-01

    stainless steel and ferritic/ martensitic steel can vary from structural and support components in the reactor core to reactor fuel...of ferritic/ martensitic steels compared to type 316 stainless steel after irradiation in Experimental Breeder Reactor-II at 420 ºC to ~80dpa (From...ferritic martensitic steel at Sandia National Laboratories. The 316 stainless steel had a certified composition of:

  3. Development and application of a material law for steel-fibre-reinforced concrete with regard to its use for pre-stressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Schimmelpfennig, K.; Borgerhoff, M.

    1995-01-01

    On the basis of the evaluation of many publications on the mechanical behaviour of steel fibre reinforced concrete (SFRC) and on the results of experiments using an SFRC especially developed for pre-stressed concrete reactor vessels (PCRVs), a material law for SFRC including general multiaxial stress conditions has been developed. From fibre pull-out tests described in the literature and by use of the experimental results, relations describing the capable tensile stress in SFRC after cracking, as a function of crack width, have been derived. There is a significant increase in the biaxial compressive strength of SFRC compared with plain concrete. The improved behaviour under multiaxial stress conditions, with one of the principal stresses being tensile, is outlined in comparison with different formulations of failure envelopes of plain concrete. For the purpose of verifying the material law implemented in the computer program used, analyses have been carried out for experiments with SFRC beams. After some modification concerning the shear behaviour, load-displacement curves and realistic crack propagations which correspond well have been obtained. In the stand-tube area in the centre of a PCRV top cap the use of SFRC is advantageous because of the difficulties concerning the arrangement of reinforcement in the concrete between the tubes. (orig.)

  4. The effect of a single tensile overload on stress corrosion cracking growth of stainless steel in a light water reactor environment

    International Nuclear Information System (INIS)

    Xue He; Li Zhijun; Lu Zhanpeng; Shoji, Tetsuo

    2011-01-01

    Research highlights: → The affect of a single tensile overload on SCC growth rate is investigated. → A single tensile overload would produce a residual plastic strain in the SCC tip. → The residual plastic strain would decrease the plastic strain rate in the SCC tip. → A single tensile overload would cause crack growth rate retardation in the SCC tip. → SCC growth rate in the quasi-stationary crack tip is relatively lower. - Abstract: It has been found that a single tensile overload applied during constant load amplitude might cause crack growth rate retardation in various crack propagating experiments which include fatigue test and stress corrosion cracking (SCC) test. To understand the affecting mechanism of a single tensile overload on SCC growth rate of stainless steel or nickel base alloy in light water reactor environment, based on elastic-plastic finite element method (EPFEM), the residual plastic strain in both tips of stationary and growing crack of contoured double cantilever beam (CDCB) specimen was simulated and analyzed in this study. The results of this investigation demonstrate that a residual plastic strain in the region immediately ahead of the crack tips will be produced when a single tensile overload is applied, and the residual plastic strain will decrease the plastic strain rate level in the growing crack tip, which will causes crack growth rate retardation in the tip of SCC.

  5. Steels for nuclear power. I

    International Nuclear Information System (INIS)

    Bohusova, O.; Brumovsky, M.; Cukr, B.; Hatle, Z.; Protiva, K.; Stefec, R.; Urban, A.; Zidek, M.

    1976-01-01

    The principles are listed of nuclear reactor operation and the reactors are classified by neutron energy, fuel and moderator designs, purpose and type of moderator. The trend and the development of light-water reactor applications are described. The fundamental operating parameters of the WWER type reactors are indicated. The effect is discussed of neutron radiation on reactor structural materials. The characteristics are described of steel corrosion due to the contact of the steel with steam or sodium in the primary coolant circuit. The reasons for stress corrosion are given and the effects of radiation on corrosion are listed. The requirements and criteria are given for the choice of low-alloy steel for the manufacture of pressure vessels, volume compensators, steam generators, cooling conduits and containment. A survey is given of most frequently used steels for pressure vessels and of the mechanical and structural properties thereof. The basic requirements for the properties of steel used in the primary coolant circuit are as follows: sufficient strength in operating temperature, toughness, good weldability, resistance to corrosion and low brittleness following neutron irradiation. The materials are listed used for the components of light-water and breeder reactors. The production of corrosion-resistant steels is discussed with a view to raw materials, technology, steel-making processes, melting processes, induction furnace steel-making, and to selected special problems of the chemical composition of steels. The effects are mainly discussed of lead, bismuth and tin as well as of some other elements on hot working of high-alloy steels and on their structure. The problems of corrosion-resistant steel welding and of pressure vessel cladding are summed up. Also discussed is the question of the concept and safeguards of the safety of nuclear installation operation and a list is presented of most commonly used nondestructive materials testing methods. The current

  6. Near-surface non-destructive examination of reactor steels: a state-of-the-art report

    International Nuclear Information System (INIS)

    Launay, J.P.

    1985-06-01

    A Working Group has been set up to deal with nondestructive testing reliability within the OECD/CSNI framework. One of its activities was to initiate consideration on near surface defect inspection, especially inner surfaces of reactors. The purpose of the survey was to clarify the three following points: present regulations of safety authorities and implementation of these regulations concerning manufacturing examinations and in-service inspection; results of R and D work already performed in this field; R and D work in progress and proposal for an expansion within the framework of the CSNI Special Working Group. This document summarizes information received from the following countries: USA, Spain, the Netherlands, France, United Kingdom, Belgium, Switzerland

  7. SNPDL work in support of collaborative programmes to study fatigue crack propagation in light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    McMinn, A.

    1981-07-01

    Work performed at Springfields Nuclear Power Development Laboratories (SNL) in support of United Kingdom and international cooperative groups is described. For the UK collaborative group crack growth tests have been performed on A533-B pressure vessel steel in air at 1 Hz, and in a simulated PWR environment at 1 Hz and 0.0167 Hz, all tests being at a stress ratio (R) of 0.7. Tests were performed at SNL at ambient temperature and pressure. The results showed that enhancements in crack growth rates were obtained because of the aqueous environment and the lower cyclic frequency. Good inter-laboratory agreement was obtained for the air test, indicating that there was little variation in the mechanical control between laboratories. There was also good agreement between the results from laboratories where tests were performed under high temperature wet conditions at 1 Hz. SNL room temperature data demonstrated an effect of temperature, as the crack growth rates found were up to a factor of four lower than the high temperature data. Although crack growth could be maintained at 0.0167 Hz and low cyclic stress intensity levels at ambient temperature, this was not found to be possible by the laboratories performing the test at 288 0 C. The first international 'round robin' test at R = 0.2 and 0.0167 Hz (1 cycle/min) in an aqueous environment gave a significant amount of scatter in the results. (author)

  8. Tensile stress-strain and work hardening behaviour of P9 steel for wrapper application in sodium cooled fast reactors

    Science.gov (United States)

    Christopher, J.; Choudhary, B. K.; Isaac Samuel, E.; Mathew, M. D.; Jayakumar, T.

    2012-01-01

    Tensile flow behaviour of P9 steel with different silicon content has been examined in the framework of Hollomon, Ludwik, Swift, Ludwigson and Voce relationships for a wide temperature range (300-873 K) at a strain rate of 1.3 × 10 -3 s -1. Ludwigson equation described true stress ( σ)-true plastic strain ( ɛ) data most accurately in the range 300-723 K. At high temperatures (773-873 K), Ludwigson equation reduces to Hollomon equation. The variations of instantaneous work hardening rate ( θ = dσ/ dɛ) and θσ with stress indicated two-stage work hardening behaviour. True stress-true plastic strain, flow parameters, θ vs. σ and θσ vs. σ with respect to temperature exhibited three distinct temperature regimes and displayed anomalous behaviour due to dynamic strain ageing at intermediate temperatures. Rapid decrease in flow stress and flow parameters, and rapid shift in θ- σ and θσ- σ towards lower stresses with increase in temperature indicated dominance of dynamic recovery at high temperatures.

  9. Mechanical properties of brazing joints of alumina dispersion strengthened copper to 316 stainless steel for fusion reactor divertor

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Araki, Toshiaki.

    1994-01-01

    Brazing of alumina dispersion strengthened copper to 316 stainless steel was carried out with the brazing parameters such as brazing alloy, clearance and time to investigate the influence of brazing conditions on the joint strength. Tensile and Charpy impact tests of the joint specimens were performed to evaluate their strength. Microstructure and hardness of the brazed zone were examined with an optical microscope and a Vickers hardness tester. The excellent brazing joint strength was achieved with BAu-2 brazing alloy. The tensile strength of the joint with the brazing clearance of 0.2mm and the brazing time of 300s was as large as that of the diffusion bonding joint. However, Charpy absorbed energy of the brazing was lower than that of the diffusion bonding. Alumina dispersion strengthened copper remelted near the brazed zone because of diffusion of the brazing alloy, and the specimens fractured at the remelted zone. The brazed zone included many voids, which caused a scattering of the strength. (author)

  10. Thermal-Fatigue Analysis of W-coated Ferritic-Martensitic Steel Mockup for Fusion Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Kim, Suk Kwon; Park, Seong Dae; Kim, Dong Jun [KAERI, Daejeon (Korea, Republic of); Moon, Se Yeon; Hong, Bong Guen [Chonbuk University, Jeonju (Korea, Republic of)

    2016-05-15

    In this study, commercial ANSYS-CFX for thermalhydraulic analysis and ANSYS-mechanical for the thermo-mechanical analysis are used to evaluate the thermal-lifetime of the mockup to determine the test conditions. Also, the Korea Heat Load Test facility with an Electron Beam (KoHLT-EB) will be used and its water cooling system is considered to perform the thermal-hydraulic analysis especially for considering the two-phase analysis with a higher heat flux conditions. Through the ITER blanket first wall (BFW) development project in Korea, the joining methods were developed with a beryllium (Be) layer as a plasma-facing material, a copper alloy (CuCrZr) layer as a heat sink, and type 316L austenitic stainless steel (SS316L) as a structural material. And joining methods were developed such as Be as an armor and FMS as a structural material, or W as an armor and FMS as a structural material were developed through the test blanket module (TBM) program. As a candidate of PFC for DEMO, a new W/FMS joining methods, W coating with plasma torch, have been developed. The HHF test conditions are found by performing a thermal-hydraulic and thermo-mechanical analysis with the conventional codes such as ANSYSCFX and .mechanical especially for considering the two-phase condition in cooling tube.

  11. Fractographic observations of cleavage initiation in the ductile-brittle transition region of a reactor-pressure-vessel steel

    International Nuclear Information System (INIS)

    Rosenfield, A.R.; Shetty, D.K.; Skidmore, A.J.

    1983-01-01

    This note reports the results of a fractographic study conducted on a group of 1T compact fracture toughness specimens of a heavy-section A508 steel denoted TSE6 tested in the ductile-brittle transition region (22 and 82 0 C). The fatigue-precracked specimens were loaded at a rapid rate (760 or 550 mm per second) to promote cleavage-crack growth and lower-bound toughness behavior. All specimens experienced unstable cleavage fracture prior to reaching a maximum in the load displacement curve. Some ductile crack growth occurred in half of the specimens. The objective of fractographic examinations was to understand the observed statistical variations in cleavage initiation by (a) locating the origins of unstable cleavage fracture in the vicinity of the fatigue-precrack or ductilerupture crack fronts, (b) identifying microstructural features associated with the triggering of cleavage, and (c) documenting characteristic fracture surface dimensions such as the extent of stable-crack growth prior to unstable cleavage (Δα) and the distance of the cleavage origin from the ductilerupture front, /chi/ (or fatigue-crack front when Δα = 0)

  12. Characterization of welding of AISI 304l stainless steel similar to the core encircling of a BWR reactor; Caracterizacion de soldaduras de acero inoxidable AISI 304L similares a las de la envolvente del nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gachuz M, M.E.; Palacios P, F.; Robles P, E.F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    Plates of austenitic stainless steel AISI 304l of 0.0381 m thickness were welded by means of the SMAW process according to that recommended in the Section 9 of the ASME Code, so that it was reproduced the welding process used to assemble the encircling of the core of a BWR/5 reactor similar to that of the Laguna Verde Nucleo electric plant, there being generated the necessary documentation for the qualification of the one welding procedure and of the welder. They were characterized so much the one base metal, as the welding cord by means of metallographic techniques, scanning electron microscopy, X-ray diffraction, mechanical essays and fracture mechanics. From the obtained results it highlights the presence of an area affected by the heat of up to 1.5 mm of wide and a value of fracture tenacity (J{sub IC}) to ambient temperature for the base metal of 528 KJ/m{sup 2}, which is diminished by the presence of the welding and by the increment in the temperature of the one essay. Also it was carried out an fractographic analysis of the fracture zone generated by the tenacity essays, what evidence a ductile fracture. The experimental values of resistance and tenacity are important for the study of the structural integrity of the encircling one of the core. (Author)

  13. Tensile stress–strain and work hardening behaviour of P9 steel for wrapper application in sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Christopher, J.; Choudhary, B.K.; Isaac Samuel, E.; Mathew, M.D.; Jayakumar, T.

    2012-01-01

    Highlights: ► σ–ε behaviour has been adequately described by Ludwigson and Hollomon equations. ► Instantaneous work hardening rate (θ) exhibited two-stage behaviour. ► σ–ε, flow parameters, θ and θσ vs.σ exhibited three distinct temperature regimes. ► Influence of dynamic strain ageing at intermediate temperatures has been identified. ► Dominance of dynamic recovery at high temperatures was demonstrated. - Abstract: Tensile flow behaviour of P9 steel with different silicon content has been examined in the framework of Hollomon, Ludwik, Swift, Ludwigson and Voce relationships for a wide temperature range (300–873 K) at a strain rate of 1.3 × 10 −3 s −1 . Ludwigson equation described true stress (σ)–true plastic strain (ε) data most accurately in the range 300–723 K. At high temperatures (773–873 K), Ludwigson equation reduces to Hollomon equation. The variations of instantaneous work hardening rate (θ = dσ/dε) and θσ with stress indicated two-stage work hardening behaviour. True stress–true plastic strain, flow parameters, θ vs. σ and θσ vs. σ with respect to temperature exhibited three distinct temperature regimes and displayed anomalous behaviour due to dynamic strain ageing at intermediate temperatures. Rapid decrease in flow stress and flow parameters, and rapid shift in θ–σ and θσ–σ towards lower stresses with increase in temperature indicated dominance of dynamic recovery at high temperatures.

  14. Results of charpy V-notch impact testing of structural steel specimens irradiated at ∼30 degrees C to 1 x 1016 neutrons/cm2 in a commercial reactor cavity

    International Nuclear Information System (INIS)

    Iskander, S.K.; Stoller, R.E.

    1997-04-01

    A capsule containing Charpy V-notch (CVN) and mini-tensile specimens was irradiated at ∼ 30 degrees C (∼ 85 degrees F) in the cavity of a commercial nuclear power plant to a fluence of 1 x 10 16 neutrons/cm 2 (> 1MeV). The capsule included six CVN impact specimens of archival High Flux Isotope Reactor A212 grade B ferritic steel and five CVN impact specimens of a well-studied A36 structural steel. This irradiation was part of the ongoing study of neutron-induced damage effects at the low temperature and flux experienced by reactor supports. The plant operators shut down the plant before the planned exposure was reached. The exposure of these specimens produced no significant irradiation-induced embrittlement. Of interest were the data on unirradiated specimens in the L-T orientation machined from a single plate of A36 structural steel, which is the same specification for the structural steel used in some reactor supports. The average CVN energy of five unirradiated specimens obtained from one region of the plate and tested at room temperature was ∼ 99 J, while the energy of 11 unirradiated specimens from other locations of the same plate was 45 J, a difference of ∼ 220%. The CVN impact energies for all 18 specimens ranged from a low of 32 J to a high of 111 J. Moreover, it appears that the University of Kansas CVN impact energy data of the unirradiated specimens at the 100-J level are shifted toward higher temperatures by about 20 K. The results were an example of the extent of scatter possible in CVN impact testing. Generic values for the CVN impact energy of A36 should be used with caution in critical applications

  15. Development of Mini-Compact Tension Test Method for Determining Fracture Toughness Master Curves for Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Mikhail A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    Small specimens are playing the key role in evaluating properties of irradiated materials. The use of small specimens provides several advantages. Typically, only a small volume of material can be irradiated in a reactor at desirable conditions in terms of temperature, neutron flux, and neutron dose. A small volume of irradiated material may also allow for easier handling of specimens. Smaller specimens reduce the amount of radioactive material, minimizing personnel exposures and waste disposal. However, use of small specimens imposes a variety of challenges as well. These challenges are associated with proper accounting for size effects and transferability of small specimen data to the real structures of interest. Any fracture toughness specimen that can be made out of the broken halves of standard Charpy specimens may have exceptional utility for evaluation of reactor pressure vessels (RPVs) since it would allow one to determine and monitor directly actual fracture toughness instead of requiring indirect predictions using correlations established with impact data. The Charpy V-notch specimen is the most commonly used specimen geometry in surveillance programs. Validation of the mini compact tension specimen (mini-CT) geometry has been performed on previously well characterized Midland beltline Linde 80 (WF-70) weld in the unirradiated condition. It was shown that the fracture toughness transition temperature, To, measured by these Mini-CT specimens is almost the same as To value that was derived from various larger fracture toughness specimens. Moreover, an International collaborative program has been established to extend the assessment and validation efforts to irradiated Linde 80 weld metal. The program is underway and involves the Oak Ridge National Laboratory (ORNL), Central Research Institute for Electrical Power Industry (CRIEPI), and Electric Power Research Institute (EPRI). The irradiated Mini-CT specimens from broken halves of previously tested Charpy

  16. Reactor building for a nuclear reactor

    International Nuclear Information System (INIS)

    Haidlen, F.

    1976-01-01

    The invention concerns the improvement of the design of a liner, supported by a latticed steel girder structure and destined for guaranteeing a gastight closure for the plant compartments in the reactor building of a pressurized water reactor. It is intended to provide the steel girder structure on their top side with grates, being suited for walking upon, and to hang on their lower side diaphragms in modular construction as a liner. At the edges they may be sealed with bellows in order to avoid thermal stresses. The steel girder structure may at the same time serve as supports for parts of the steam pipe. (RW) [de

  17. Future directions for ferritic/martensitic steels for nuclear applications

    International Nuclear Information System (INIS)

    Klueh, R.L.; Swindeman, R.W.

    2000-01-01

    High-chromium (7-12% Cr) ferritic/martensitic steels are being considered for nuclear applications for both fission and fusion reactors. Conventional 9-12Cr Cr-Mo steels were the first candidates for these applications. For fusion reactors, reduced-activation steels were developed that were patterned on the conventional steels but with molybdenum replaced by tungsten and niobium replaced by tantalum. Both the conventional and reduced-activation steels are considered to have an upper operating temperature limit of about 550degC. For improved reactor efficiency, higher operating temperatures are required. For ferritic/martensitic steels that could meet such requirements, oxide dispersion-strengthened (ODS) steels are being considered. In this paper, the ferritic/martensitic steels that are candidate steels for nuclear applications will be reviewed, the prospect for ODS steel development and the development of steels produced by conventional processes will be discussed. (author)

  18. Process flow sheet evaluation of a nuclear hydrogen steelmaking plant applying very high temperature reactors for efficient steel production with less CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kasahara, Seiji, E-mail: kasahara.seiji@jaea.go.jp; Inagaki, Yoshiyuki; Ogawa, Masuro

    2014-05-01

    Highlights: • CO{sub 2} emissions from a nuclear hydrogen steelmaking system was 13–21% of that from a blast furnace steelmaking system. • Heat input to shaft furnace in hydrogen steelmaking was large with much H{sub 2} consumption in the part. • Though hydrogen production thermal efficiency had influence on total heat input to hydrogen steelmaking, the effect on the CO{sub 2} emissions was small. • Steelmaking scale of a nuclear hydrogen steelamking plant with 2 VHTRs was a little smaller than that of the largest Midrex{sup ®} steelmaking plants. - Abstract: Recently, CO{sub 2} reduction is an important problem for steelmaking. Substitution of coal, presently used as a reducing agent of iron ore in blast furnaces, to hydrogen produced by non-fossil energy is a way to reduce CO{sub 2} emissions. In this study, the idea of nuclear hydrogen steelmaking (NHS) system was investigated using very high temperature reactor (VHTR) and thermochemical hydrogen production iodine–sulfur (IS) process. Heat input and CO{sub 2} emissions including material production, material transportation, and electricity generation were evaluation criteria. Results of the NHS system were compared with those of a conventional blast furnace steelmaking (BFS) system. Influence of heat input options to the steelmaking process and hydrogen production thermal efficiency of IS process were investigated for the NHS system. Though heat input to the NHS system was 130–142% of that to the BFS system, CO{sub 2} emissions of the system were 13–21%. Pre-heating of hydrogen by coal combustion before blowing to a shaft furnace was effective to decrease heat input, although CO{sub 2} emissions increased. Direct pre-heating by nuclear heat was also effective without increase of CO{sub 2} emissions if close location of the nuclear reactor to the steelmaking plant was publicly accepted. Hydrogen production thermal efficiency had a significant influence on the heat input. Conceptual design of a

  19. Qualification of the LF-eddy current technique for the inspection of stainless steel cladding and applications on the reactor pressure vessel

    International Nuclear Information System (INIS)

    Weiss, R.; Becker, R.; Lucht, B.; Mohr, F.; Hartwig, K.

    2001-01-01

    As part of the re-inspection of the reactor pressure vessel of the nuclear power plant, the low-frequency-eddy current technique was implemented during the 1995 outage. Since then, this inspection technique and the testing equipment have seen steady further development. Therefore, optimization of the entire testing system, including qualification based on the 1995 results, was conducted. The eddy current testing system was designed as a ten-channel test system with sensors having separate transmitter and receiver coils. The first qualification of the testing technique and sensors was performed using a single-channel system; a second qualification was then carried out using the new testing electronics. The sensor design allows for a simultaneous detection of surface and subsurface flaws. This assumes that testing is performed simultaneously using four frequencies. Data analysis and evaluation are performed using a digital multi-frequency regression analysis technique The detection limits determined using this technique led to the definition of the following recording limits for testing in which the required signal-to-noise ratio of 6 dB was reliably observed. - Detection of surface connected longitudinal and transverse flaws: - notch, 3 mm deep and 10 mm long, for weave bead cladding; - notch, 2 mm deep and 20 mm long, for strip weld cladding. - Detection of embedded planar longitudinal and transverse flaws: - ligament of 7 mm for 8 mm clad thickness and 3 mm; - ligament for 4 mm clad thickness, notch starting at the carbon steel base material with a length of 20 mm. - Detection of embedded volumetric longitudinal and transverse flaws: - 3 mm diameter side-drilled hole (SDH) for 8 mm clad thickness; ligament, 4 mm. For 4 mm clad thickness: diameter, 2 mm SDH; ligament, 2 mm. All SDHs are 55 mm deep

  20. Steels and welding nuclear

    International Nuclear Information System (INIS)

    Sessa, M.; Milella, P.P.

    1987-01-01

    This ENEA Data-Base regards mechanical properties, chemical composition and heat treatments of nuclear pressure vessel materials: type A533-B, A302-B, A508 steel plates and forgings, submerged arc welds and HAZ before and after nuclear irradiation. Irradiation experiments were generally performed in high flux material test reactors. Data were collected from international available literature about water nuclear reactors pressure vessel materials embrittlement

  1. Reactor-vessel-sectioning demonstration

    International Nuclear Information System (INIS)

    Lundgren, R.A.

    1981-07-01

    A successful technical demonstration of simulated reactor vessel sectioning was completed using the combined techniques of air arc gouging and flame cutting. A 4-ft x 3-ft x 9-in. thick sample was fabricated of A36 carbon steel to simulate a reactor vessel wall. A 1/4-in layer of stainless steel (SS) was tungsten inert gas (TIG)-welded to the carbon steel. Several techniques were considered to section the simulated reactor vessel: an air arc gouger was chosen to penetrate the stainless steel, and flame cutting was selected to sever the carbon steel. After the simulated vessel was successfully cut from the SS side, another cut was made, starting from the carbon steel side. This cut was also successful. Cutting from the carbon steel side has the advantages of cost reduction since the air arc gouging step is eliminated and contamination controlled because the molten metal is blown inward

  2. Correlation of radiation-induced changes in microstructure/microchemistry, density and thermo-electric power of type 304L and 316 stainless steels irradiated in the Phénix reactor

    Energy Technology Data Exchange (ETDEWEB)

    Renault Laborne, Alexandra, E-mail: alexandra.renault@cea.fr [CEA, DEN, SRMA, F-91191 Gif-sur-Yvette (France); Gavoille, Pierre [CEA, DEN, SEMI, F-91191 Gif-sur-Yvette (France); Malaplate, Joël [CEA, DEN, SRMA, F-91191 Gif-sur-Yvette (France); Pokor, Cédric [EDF R& D, MMC, Site des Renardières, F-77818 Morêt-sur-Loing cedex (France); Tanguy, Benoît [CEA, DEN, SEMI, F-91191 Gif-sur-Yvette (France)

    2015-05-15

    Annealed specimens of type 304L and 316 stainless steel and cold-worked 316 specimens were irradiated in the Phénix reactor in the temperature range 381–394 °C and to different damage doses up to 39 dpa. The microstructure and microchemistry of both 304L and 316 have been examined using the combination of the different techniques of TEM to establish the void swelling and precipitation behavior under neutron irradiation. TEM observations are compared with results of measurements of immersion density and thermo-electric power obtained on the same irradiated stainless steels. The similarities and differences in their behavior on different scales are used to understand the factors in terms of the chemical composition and metallurgical state of steels, affecting the precipitation under irradiation and the swelling behavior. Irradiation induces the formation of some precipitate phases (e.g., M{sub 6}C and M{sub 23}C{sub 6}-type carbides, and γ’- and G-phases), Frank loops and cavities. According to the metallurgical state and chemical composition of the steel, the amount of each type of radiation-induced defects is not the same, affecting their density and thermo-electric power.

  3. Correlation of radiation-induced changes in microstructure/microchemistry, density and thermo-electric power of type 304L and 316 stainless steels irradiated in the Phénix reactor

    Science.gov (United States)

    Renault Laborne, Alexandra; Gavoille, Pierre; Malaplate, Joël; Pokor, Cédric; Tanguy, Benoît

    2015-05-01

    Annealed specimens of type 304L and 316 stainless steel and cold-worked 316 specimens were irradiated in the Phénix reactor in the temperature range 381-394 °C and to different damage doses up to 39 dpa. The microstructure and microchemistry of both 304L and 316 have been examined using the combination of the different techniques of TEM to establish the void swelling and precipitation behavior under neutron irradiation. TEM observations are compared with results of measurements of immersion density and thermo-electric power obtained on the same irradiated stainless steels. The similarities and differences in their behavior on different scales are used to understand the factors in terms of the chemical composition and metallurgical state of steels, affecting the precipitation under irradiation and the swelling behavior. Irradiation induces the formation of some precipitate phases (e.g., M6C and M23C6-type carbides, and γ'- and G-phases), Frank loops and cavities. According to the metallurgical state and chemical composition of the steel, the amount of each type of radiation-induced defects is not the same, affecting their density and thermo-electric power.

  4. Correlation of radiation-induced changes in microstructure/microchemistry, density and thermo-electric power of type 304L and 316 stainless steels irradiated in the Phénix reactor

    International Nuclear Information System (INIS)

    Renault Laborne, Alexandra; Gavoille, Pierre; Malaplate, Joël; Pokor, Cédric; Tanguy, Benoît

    2015-01-01

    Annealed specimens of type 304L and 316 stainless steel and cold-worked 316 specimens were irradiated in the Phénix reactor in the temperature range 381–394 °C and to different damage doses up to 39 dpa. The microstructure and microchemistry of both 304L and 316 have been examined using the combination of the different techniques of TEM to establish the void swelling and precipitation behavior under neutron irradiation. TEM observations are compared with results of measurements of immersion density and thermo-electric power obtained on the same irradiated stainless steels. The similarities and differences in their behavior on different scales are used to understand the factors in terms of the chemical composition and metallurgical state of steels, affecting the precipitation under irradiation and the swelling behavior. Irradiation induces the formation of some precipitate phases (e.g., M 6 C and M 23 C 6 -type carbides, and γ’- and G-phases), Frank loops and cavities. According to the metallurgical state and chemical composition of the steel, the amount of each type of radiation-induced defects is not the same, affecting their density and thermo-electric power

  5. REACTOR SHIELD

    Science.gov (United States)

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  6. Using NJOY99 and MCNP4B2 to Estimate the Radiation Damage Displacements per Atom per Second in Steel Within the Boiling Water Reactor Core Shroud and Vessel Wall from Reactor-Grade Mixed-Oxide/Uranium Oxide Fuel for the Nuclear Power Plant at Laguna Verde, Veracruz, Mexico

    International Nuclear Information System (INIS)

    Vickers, Lisa

    2003-01-01

    The government of Mexico has expressed interest in utilizing the Laguna Verde boiling water reactor (BWR) nuclear power plant for the disposition of reprocessed spent uranium oxide (UOX) fuel in the form of reactor-grade mixed-oxide (MOX) fuel. MOX fuel would replace spent UOX fuel as a fraction in the core from 18 to 30% depending on the fuel loading cycle. MOX fuel is expected to increase the neutron fluence, flux, fuel centerline temperature, reactor core pressure, and yield higher energy neutrons.There is concern that a core with a fraction of MOX fuel (i.e., increased 239 Pu wt%) would increase the radiation damage displacements per atom per second (dpa-s -1 ) in steel within the core shroud and vessel wall as compared to only conventional, enriched UOX fuel in the core. The evaluation of radiation damage within the core shroud and vessel wall is a concern because of the potentially adverse affect to personnel and public safety, environment, and operating life of the reactor.The primary uniqueness of this paper is the computation of radiation damage (dpa-s -1 ) using NJOY99-processed cross sections for steel within the core shroud and vessel wall. Specifically, the unique radiation damage results are several orders of magnitude greater than results of previous works. In addition, the conclusion of this paper was that the addition of the maximum fraction of one-third MOX fuel to the LV1 BWR core did significantly increase the radiation damage in steel within the core shroud and vessel wall such that without mitigation of radiation damage by periodic thermal annealing or reduction in operating parameters such as neutron fluence, core temperature, and pressure, it posed a potentially adverse affect to the personnel and public safety, environment, and operating life of the reactor

  7. Lay-out and construction of a pressure vessel built-up of cast steel segments for a pebble-bed high temperature reactor with a thermal power of 3000 MW

    International Nuclear Information System (INIS)

    Voigt, J.

    1978-03-01

    The prestressed cast vessel is an alternative to the prestressed concrete vessel for big high temperature reactors. In this report different cast steel vessel concepts for an HTR for generation of current with 3000 MW(th) are compared concerning their realization and economy. The most favourable variant serves as a base for the lay-out of the single vessel components as cast steel segments, bracing, cooling and outer sealing. Hereby the actual available possibilities of production and transport are considered. For the concept worked out possibilities of inspection and repair are suggested. A comparison of costs with adequate proposititons of the industry for a prestressed concrete and a cast iron pressure vessel investigates the economical competition. (orig.) [de

  8. Heterogeneity of structure and properties of 12Cr18Ni10Ti and 08Cr16Ni11Mo3 stainless steels irradiated up to high damaging doses in reactor Bn-350

    International Nuclear Information System (INIS)

    Maksimkin, O.P.; Tivanova, O.V.; Turubarova, L.G.; Silnyagina, N.S.; Doronina, T.A.

    2006-01-01

    Full text: Earlier, during investigation of post-operating properties and structure of responsible units of fast neutron reactors there was shown /1, 2/ that depending on character of preliminary treatment of austenite stainless steel (austenization, cold deformation, mechanical and thermal treatment) radiation effects could be different. In /2/ one could observe heterogeneity at swelling of cold- worked hexahedral ducts along perimeter, in particular, the swelling of corners was less than plates'. At the same time after mechanical-thermal treatment the corners swell in 3-5 times of magnitude higher than plates. By the present there are several assumptions about nature of this phenomenon. One of them is a difference of deformation degree of material in corners and plates of the duct. It is known that /3/ external effects (including deformation) induce martensitic γ→α transformation in austenitic steels, due to which the structure and properties of steel are changed. In particular, paramagnetic FCC matrix reveals sites with ferromagnetic BCC structure. Steel heating, containing martensitic α-phase higher than ∼ 450-800 deg C, results in reverse γ→α transformation in material, which in its turn leads to formation of phase phase-hardened austenite. We can expect that only peculiarities of processes of direct and reverse martensitic transformations, which took place during preliminary austenitic steel treatment, will predetermine its behavior under irradiation. Taking into account the above mentioned there have been carried out complex material-scientific investigations of 12Cr18Ni10Ti and 08Cr16Ni11Mo3 steel samples cut off from different sites (both adjacent to corners and far from them) of hexagonal ducts of spent fuel assemblies of BN-350 reactor. There were used samples in the form of plates of different sizes: 5x10x2 mm - for metallographic investigations (microscope Neophot-2) and determination of microhardness (PMT-3); 2x20x0,3 mm - for mechanical

  9. Nanostructures in a ferritic and an oxide dispersion strengthened steel induced by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Zhang, Zhenbo

    fission and fusion reactors. In this study, two candidate steels for nuclear reactors, namely a ferritic/martensitic steel (modified 9Cr-1Mo steel) and an oxide dispersion strengthened (ODS) ferritic steel (PM2000), were nanostructured by dynamic plastic deformation (DPD). The resulting microstructure...

  10. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2001-01-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  11. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  12. High temperature oxidation behavior of ODS steels

    Science.gov (United States)

    Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.

    2004-08-01

    Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.

  13. Effects of Ti and Ta addition on microstructure stability and tensile properties of reduced activation ferritic/martensitic steel for nuclear fusion reactors

    Science.gov (United States)

    Kim, Han Kyu; Lee, Ji Won; Moon, Joonoh; Lee, Chang Hoon; Hong, Hyun Uk

    2018-03-01

    The effects of Ti and Ta addition on microstructure stability and tensile properties of a reduced activation ferritic/martensitic (RAFM) steel have been investigated. Ti addition of 0.06 wt% to conventional RAFM reference base steel (Fe-9.3Cr-0.93W-0.22V-0.094Ta-0.1C) was intended to promote the precipitation of nano-sized (Ti,W) carbides with a high resistance to coarsening. In addition, the Ti addition was substituted for 0.094 wt% Ta. The Ti-added RAFM steel (Ti-RAFM) exhibited a higher yield strength (ΔYS = 32 MPa) at 600 °C than the reference base steel due to additional precipitation hardening by (Ti,W)-rich MX with an average size of 6.1 nm and the area fraction of 2.39%. However, after thermal exposure at 600 °C for 1000 h, this Ti-RAFM was more susceptible to degradation than the reference base steel; the block width increased by 77.6% in Ti-RAFM after thermal exposure while the reference base steel showed only 9.1% increase. In order to suppress diffusion rate during thermal exposure, the large-sized Ta element with low activation was added to Ti-RAFM. The Ta-added Ti-RAFM steel exhibited good properties with outstanding microstructure stability. Quantitative comparison in microstructures was discussed with a consideration of Ti and Ta addition.

  14. Ferritic/martensitic steels: Promises and problems

    International Nuclear Information System (INIS)

    Klueh, R.L.; Ehrlich, K.; Abe, F.

    1992-01-01

    Ferritic/martensitic steels are candidate structural materials for fusion reactors because of their higher swelling resistance, higher thermal conductivity, lower thermal expansion, and better liquid-metal compatibility than austenitic steels. Irradiation effects will ultimately determine the applicability of these steels, and the effects of irradiation on microstructure and swelling, and on the tensile, fatigue, and impact properties of the ferritic/martensitic steels are discussed. Most irradiation studies have been carried out in fast reactors, where little transmutation helium forms. Helium has been shown to enhance swelling and affect tensile and fracture behavior, making helium a critical issue, since high helium concentrations will be generated in conjunction with displacement damage in a fusion reactor. These issues are reviewed to evaluate the status of ferritic/martensitic steels and to assess the research required to insure that such steels are viable candidates for fusion applications

  15. Stress corrosion cracking (Standard Astm G 30-90) in stainless steel 08X18H10T of swimming-pool that contain nuclear fuel in reactors V.V.E.R.-440

    International Nuclear Information System (INIS)

    Zamora R, L.; Herrera, V.

    1998-01-01

    The standard recommended practice for making and using 'U' bend stress corrosion test specimens; Designation G30-90 has been used as a laboratory tool to study the susceptibility of austenitic stainless steels and the other materials of test of intergranular stress corrosion cracking (IGSCC). The experiment has been development in a similar conditions of the chemical regime, the swimming-pool that containing nuclear fuel in borated water reactors VVER-440 in general this cladding by two films, one of carbon steel (04T26) and other with austenitic stainless steel 08X18HT (similar type 321) stabilized with titanium, the thickness of filler metals was to 4 to 8 mm. The specimens was prepare one plate with this characteristics, the welding was put in the part central with the following measurements of 160x15x5 mm. The specimens strips bent approximately 180 degrees around radius of curvature of R=14.5 mm and ε 1 = 17.2% and maintained in this plastically deformed condition during the test. And then preparing metallographically and exposure in environment of 12 and 40 gr./l of H 3 BO 3 70 Centigrade with or noting contaminants of NaCl. The results showed the initial cracks. (Author)

  16. Stress corrosion (Astm G30-90 standard) in 08x18H10T stainless steel of nuclear fuel storage pool in WWER reactors

    International Nuclear Information System (INIS)

    Herrera, V.; Zamora R, L.

    1997-01-01

    At the water storage of the irradiated nuclear fuel has been an important factor in its management. The actual pools have its walls covered with inoxidable steel and heat exchangers to dissipate the residual heat from fuel. It is essential to control the water purity to eliminate those conditions which aid to the corrosion process in fuel and at related components. The steel used in this research was obtained from an austenitic inoxidizable steel standardized with titanium 08x18H10T (Type 321) similar to one of the two steel coatings used to cover walls and the pools floor. the test consisted in the specimen deformation through an U ply according to the Astm G30-90 standard. The exposition of the deformed specimen it was realized in simulated conditions to the chemical regime used in pools. (Author)

  17. A study of the prospects for development of low-activation martensitic stainless steels for first-wall and blanket structures in fusion reactors

    International Nuclear Information System (INIS)

    Tupholme, K.W.; Orr, J.; Dulieu, D.; Butterworth, G.J.

    1986-04-01

    This study examines the potential of the elemental substitution approach to the design of low-activity martensitic stainless steels, subject to the requirement that the contact γ dose rate falls to a value that would allow essentially unrestricted handling of discarded material after a cooling period of 100 years. The factors governing the structure and properties of the 9-12%Cr martensitic steels are reviewed. Practicable substitutes for the proscribed elements molybdenum, nickel and niobium include tungsten, tantalum and an increased vanadium content in conjunction with optimised carbon, nitrogen and boron levels. Given the generally attractive combination of properties offered by the martensitic steels, the prospects for developing a satisfactory low-activity composition appear favourable. A series of experimental compositions and a programme of investigations are proposed to explore possible alloys with the objective of reproducing, as far as possible, the characteristics of existing fully martensitic high strength stainless steels. (author)

  18. Clean steels for fusion

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1995-03-01

    Fusion energy production has an inherent advantage over fission: a fuel supply with reduced long term radioactivity. One of the leading candidate materials for structural applications in a fusion reactor is a tungsten stabilized 9% chromium Martensitic steel. This alloy class is being considered because it offers the opportunity to maintain that advantage in the reactor structure as well as provide good high temperature strength and radiation induced swelling and embrittlement resistance. However, calculations indicate that to obtain acceptable radioactivity levels within 500 years after service, clean steel will be required because the niobium impurity levels must be kept below about 2 appm and nickel, molybdenum, nitrogen, copper, and aluminum must be intentionally restricted. International efforts are addressing the problems of clean steel production. Recently, a 5,000 kg heat was vacuum induction melted in Japan using high purity commercial raw materials giving niobium levels less than 0.7 appm. This paper reviews the need for reduced long term radioactivity, defines the advantageous properties of the tungsten stabilized Martensitic steel class, and describes the international efforts to produce acceptable clean steels

  19. Aircraft Steels

    Science.gov (United States)

    2009-02-19

    component usage. PH 13-8Mo is a precipitation-hardenable martensitic stainless steel combining excellent corrosion resistance with strength. Custom 465 is...a martensitic , age-hardenable stainless steel capable of about 1,724 MPa (250 ksi) UTS when peak-aged (H900 condition). Especially, this steel can...NOTES 14. ABSTRACT Five high strength steels (4340, 300M, AerMet 100, Ferrium S53, and Hy-Tuf) and four stainless steels (High Nitrogen, 13

  20. Neutron activation analysis and activity in the vessel steel of a BWR reactor for their study without radiological risks in microscopy and spectrometry; Analisis de activacion neutronica y actividad en el acero de la vasija de un reactor nuclear tipo BWR para su estudio sin riesgos radiologicos en microscopia y espectrometria

    Energy Technology Data Exchange (ETDEWEB)

    Moranchel, M.; Garcia B, A. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, Unidad Profesional Adolfo Lopez Mateos, Zacatenco, 07738 Mexico D. F. (Mexico); Longoria G, L. C., E-mail: mmoranchel@ipn.mx [IAEA, Department of Technical Cooperation, Division for Latin America, Room B1109 Wagramerstrasse 5, PO Box 100, A-1400, Vienna (Austria)

    2012-07-01

    The vessel material of nuclear reactors is subject to irradiation damage induced by the bombardment of neutrons coming from the reactor core. Neutrons are classified as fast and thermal, which produce different effects. Fast neutrons cause damage to the material by dislocation or displacement of atoms in the crystal structure, while the effect of thermal neutrons is a nuclear transmutation that can significantly change the properties of the material. The type and intensity of damage is based on the characteristics of the material, the flow of neutrons and the modes of neutrons interaction with the atomic structures of the material, among others. This work, alluding to nuclear transmutation, makes an analysis of neutron activation of all isotopes in a steel boiling water nuclear reactor (BWR) vessel. An analytical expression is obtained in order to model activity of steel, on the basis of the weight percentage of its atomic components. Its activity is theoretically estimated in a witness sample of the same material as that of the vessel, placed within the nuclear reactor since the beginning of its commercial operation in April 1995, up to August 2010. It was theoretically determined that the witness sample, with a 0.56 g mass (1 x 1 x 0.07 cm{sup 3} dimensions or equivalent) does not present a radiological risks during the stage of preparation, observation and analysis of it in electron microscopy and X-ray diffraction equipment s. The theoretical results were checked experimentally by measuring the activity of the sample by means of gamma spectrometry, measurement of the exposure levels around the sample, as well as the induced level to whole body and limbs, using thermo-luminescent dosimetry (TLD). As a result of the theoretical analysis, new chemical elements are predicted, as a result of the activation phenomena and radioactive decay, whose presence can be a fundamental factor of change in the properties of the vessel. This work is a preamble to the

  1. Nuclear reactor

    International Nuclear Information System (INIS)

    Jungmann, A.

    1975-01-01

    Between a PWR's reactor pressure vessel made of steel and the biological shield made of concrete there is a gap. This gap is filled up with a heat insulation facting the reactor pressure vessel, for example with insulating concrete segments jacketed with sheet steel and with an additional layer. This layer serves for smooth absorption of compressive forces originating in radial direction from the reactor pressure vessel. It consists of cylinder-segment shaped bricks made of on situ concrete, for instance. The bricks have cooling agent ports in one or several rows which run parallel to the wall of the pressure vessel and in alignment with superposed bricks. Between the layer of bricks and the biological shield or rather the heat insulation, there are joints which are filled, however, with injected mortar. That guarantees a smooth series of connected components resistant tom compression. Besides, a slip foil can be set between the heat insulation and the joining joint filled with mortar for the reduction of the friction at thermal expansions. (TK) [de

  2. Laser cutting of thick steel plates and simulated steel components using a 30 kW fiber laser

    International Nuclear Information System (INIS)

    Tamura, Koji; Ishigami, Ryoya; Yamagishi, Ryuichiro

    2016-01-01

    Laser cutting of thick steel plates and simulated steel components using a 30 kW fiber laser was studied for application to nuclear decommissioning. Successful cutting of carbon steel and stainless steel plates up to 300 mm in thickness was demonstrated, as was that of thick steel components such as simulated reactor vessel walls, a large pipe, and a gate valve. The results indicate that laser cutting applied to nuclear decommissioning is a promising technology. (author)

  3. Evaluation of defects induced by neutron radiation in reactor pressure vessels steels; Evaluacion de los defectos inducidos por la radiacion neutronica en los aceros de vasijas

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Jimenez, J

    1978-07-01

    We have developed a method for calculating the production of neutron induced defects (depleted zone and crowdions) in ferritic pressure vessel steels for different neutron spectra. They have been analysed both the recoil primary atoms produced by elastic and inelastic collisions with fast neutrons and the ones produced by gamma-ray emission by thermal neutron absorption. Theoretical modelling of increasing in the ductile-brittle transition temperature of ferritic steels has been correlated with experimental data at irradiation temperature up to 400 degree centigree (Author) 15 refs.

  4. Positron annihilation studies on structural materials for nuclear reactors

    International Nuclear Information System (INIS)

    Rajaraman, R.; Amarendra, G.; Sundar, C.S.

    2012-01-01

    Structural steels for nuclear reactors have renewed interest owing to the future advanced fission reactor design with increased burn-up goals as well as for fusion reactor applications. While modified austenitic steels continue to be the main cladding materials for fast breeder reactors, Ferritic/martensitic steels and oxide dispersion strengthened ferritic steels are the candidate materials for future reactors applications in India. Sensitivity and selectivity of positron annihilation spectroscopy to open volume type defects and nano clusters have been extensively utilized in studying reactor materials. We have recently reviewed the application of positron techniques to reactor structural steels. In this talk, we will present successful application of positron annihilation spectroscopy to probe various structural materials such as D9, ferritic/martensitic, oxide dispersion strengthened (ODS) steels and related model alloys, highlighting our recent studies. (author)

  5. Fission reactors and materials

    International Nuclear Information System (INIS)

    Frost, B.R.T.

    1981-12-01

    The American-designed boiling water reactor and pressurized water reactor dominate the designs currently in use and under construction worldwide. As in all energy systems, materials problems have appeared during service; these include stress-corrosion of stainless steel pipes and heat exchangers and questions regarding crack behavior in pressure vessels. To obtain the maximum potential energy from our limited uranium supplies is is essential to develop the fast breeder reactor. The materials in these reactors are subjected to higher temperatures and neutron fluxes but lower pressures than in the water reactors. The performance required of the fuel elements is more arduous in the breeder than in water reactors. Extensive materials programs are in progress in test reactors and in large test rigs to ensure that materials will be available to meet these conditions

  6. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  7. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  8. RPV-1: a first virtual reactor to simulate irradiation effects in light water reactor pressure vessel steels; RPV-1: un premier reacteur virtuel pour simuler les effets d'irradiation dans les aciers de cuve des reacteurs a eau legere

    Energy Technology Data Exchange (ETDEWEB)

    Jumel, St

    2005-01-15

    The presented work was aimed at building a first VTR (virtual test reactor) to simulate irradiation effects in pressure vessel steels of nuclear reactor. It mainly consisted in: - modeling the formation of the irradiation induced damage in such steels, as well as their plasticity behavior - selecting codes and models to carry out the simulations of the involved mechanisms. Since the main focus was to build a first tool (rather than a perfect tool), it was decided to use, as much as possible, existing codes and models in spite of their imperfections. - developing and parameterizing two missing codes: INCAS and DUPAIR. - proposing an architecture to link the selected codes and models. - constructing and validating the tool. RPV-1 is made of five codes and two databases which are linked up so as to receive, treat and/or transmit data. A user friendly Python interface facilitates the running of the simulations and the visualization of the results. RPV-1 relies on many simplifications and approximations and has to be considered as a prototype aimed at clearing the way. According to the functionalities targeted for RPV-1, the main weakness is a bad Ni and Mn sensitivity. However, the tool can already be used for many applications (understanding of experimental results, assessment of effects of material and irradiation conditions,....). (O.M.)

  9. Behavior to the fracture of an AISI 304 stainless steel sensitized in BWR reactor conditions (288 degrees Centigrade and 80 Kg/cm{sup 2}); Comportamiento a la fractura de un acero inoxidable AISI 304 sensibilizado en condiciones de reactor BWR (288 grados Centigrados y 80 Kg/cm{sup 2})

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez C, R.; Diaz S, A.; Garcia R, R.; Aguilar T, A.; Gachuz M, M.; Arganis J, C.; Merino C, J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    It is a knew fact that ductility of a lot of structural alloys can be deteriorated by the environment effect which are exposed, and that their consequent embrittlement can put in doubt the safety of their functioning; such is the case of austenitic stainless steels used in internal components of the BWR type reactors which not only is subjected to the effect combined of the aggressive environment which surround it (pressure, temperature, corrosion potential, conductivity medium, local state of efforts, etc.), but also to the action of present neutron radiation, manifesting microstructural changes which are reflected in the augmentation of its susceptibility to the intergranular cracking, phenomena generally known as IASCC ''Irradiation Assisted Stress Corrosion Cracking''. Once appeared the cracking in the material, the useful life of a component is limited by the rapidity to growth of these cracking, making necessary evaluations which can to predict its behavior, therefore the present work shows the preliminary results for determining the behavior to the fracture of an AISI 304 stainless steel sensitized, in a dynamic recirculation circuit which allows to simulate the operation conditions of a BWR reactor (288 Centigrade and 80 kg/cm{sup 2}). (Author)

  10. Material design data of 2.25Cr-1Mo steel and hastelloy-x for the experimental multi-purpose very-high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Kodaira, Tsuneo; Suzuki, Michiaki; Uga, Takeo

    1975-08-01

    The preliminary structural design guidelines for the experimental multi-purpose very-high temperature gas-cooled reactor have recently been prepared. The components of the primary system operating at temperatures of creep dominant range are grouped in those of pressure and temperature boundaries respectively. In the material selection, 2 1/4Cr-1Mo steel is chosen for the former and Hastelloy-X for the latter taking into account of material properties at operating temperature. Deriving from the literature in the field, material design data of the alloys are established in design forms such as Sy, So, Sm, St, 100% of minimum stress to rupture, design fatigue curves, isochronous stress-strain curves, creep-fatigue interaction damage factor and so on, which are defined in ASME Code Section III, Code Case 1592. (auth.)

  11. Steel making

    CERN Document Server

    Chakrabarti, A K

    2014-01-01

    "Steel Making" is designed to give students a strong grounding in the theory and state-of-the-art practice of production of steels. This book is primarily focused to meet the needs of undergraduate metallurgical students and candidates for associate membership examinations of professional bodies (AMIIM, AMIE). Besides, for all engineering professionals working in steel plants who need to understand the basic principles of steel making, the text provides a sound introduction to the subject.Beginning with a brief introduction to the historical perspective and current status of steel making together with the reasons for obsolescence of Bessemer converter and open hearth processes, the book moves on to: elaborate the physiochemical principles involved in steel making; explain the operational principles and practices of the modern processes of primary steel making (LD converter, Q-BOP process, and electric furnace process); provide a summary of the developments in secondary refining of steels; discuss principles a...

  12. Long term integrity of reactor pressure vessel and primary containment vessel after the severe accidents in Fukushima Daiichi Nuclear Power Station. Leaching property of spent oxide fuel segment and corrosion property of a carbon steel under artificial seawater immersion

    International Nuclear Information System (INIS)

    2014-06-01

    Primary containment vessel (PCV), reactor pressure vessel and pedestal in Fukushima Daiichi Nuclear power station units 1 through 3 have been exposed to severe thermal, chemical and mechanical conditions due to core meltdown events and seawater injections for emergent core cooling. These components will be immersed in diluted seawater with dissolved fission products under irradiation until the end of debris removal. Fresh water injected into the cores contacts with debris to cool, dissolves or erodes their constituents, mixed with retained water, and becomes 'accumulated water' with radioactive nuclides. We have focused the leaching of fission products into the accumulated water under lower temperature (323 K). FUGEN spent oxide fuel segments were immersed to determine the leaching factor of fission product and actinide elements. Since PCV made from carbon steel is one of the most important boundaries to prevent from fission products release, corrosion behavior has been paid attention to evaluate their integrity. Carbon steel specimens were immersion- and electrochemical-tested in diluted seawater with simulants of the accumulated water at 323 K in order to evaluate the effect of fission products in particular cesium and radiation. (author)

  13. Stainless steel fabrications: past and present

    International Nuclear Information System (INIS)

    Daniels, R.

    1986-01-01

    The paper deals with stainless steel fabrications of Fairey Engineering Company for the nuclear industry. The manufacture of stainless steel containers for Magnox and Advanced Gas Cooled Reactors, flexible fabrication facility, and welding development, are all briefly described. (U.K.)

  14. Spectral shift reactor

    International Nuclear Information System (INIS)

    Carlson, W.R.; Piplica, E.J.

    1982-01-01

    A spectral shift pressurized water reactor comprising apparatus for inserting and withdrawing water displacer elements having differing neutron absorbing capabilities for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The displacer elements comprise substantially hollow cylindrical low neutron absorbing rods and substantially hollow cylindrical thick walled stainless rods. Since the stainless steel displacer rods have greater neutron absorbing capability, they can effect greater reactivity change per rod. However, by arranging fewer stainless steel displacer rods in a cluster, the reactivity worth of the stainless steel displacer rod cluster can be less than a low neutron absorbing displacer rod cluster. (author)

  15. Tokamak fusion reactor

    International Nuclear Information System (INIS)

    Nohara, Kiyohiko

    2009-01-01

    The structural material is one of key issues for the development of reliable superconducting magnets and peripheral equipments of fusion reactors. Standard stainless steels like SUS 304 and 316 steels available at present do not meet requirements. We are developing a new austenitic steel that has proposed target properties named 'JAERI BOX'. Additions of N and V at different amounts were tested to improve strength and fracture toughness of a base alloy SUS316LN at 4.2 K. Mechanical properties of the developed steel were examined. It is found that the charpy absorbed energy and the fracture toughness of the developed steel at 4.2 K are within JAERI BOX. (T.I.)

  16. Contributions from research on irradiated ferritic/martensitic steels to materials science and engineering

    Science.gov (United States)

    Gelles, D. S.

    1990-05-01

    Ferritic and martensitic steels are finding increased application for structural components in several reactor systems. Low-alloy steels have long been used for pressure vessels in light water fission reactors. Martensitic stainless steels are finding increasing usage in liquid metal fast breeder reactors and are being considered for fusion reactor applications when such systems become commercially viable. Recent efforts have evaluated the applicability of oxide dispersion-strengthened ferritic steels. Experiments on the effect of irradiation on these steels provide several examples where contributions are being made to materials science and engineering. Examples are given demonstrating improvements in basic understanding, small specimen test procedure development, and alloy development.

  17. Corrosion of X18H9T steel after 25 years of operation in steam water environments of the VK-50 reactor

    International Nuclear Information System (INIS)

    Filyakin, G.V.; Shamardin, V.E.; Goncharenko, Yu.D.; Kazakov, V.A.

    2004-01-01

    This paper presents the results from testing a VK-50 reactor measuring channel, removed from the reactor after 25 years of operation without signs of integrity loss. Metallography and electron microscopy as well as Auger spectroscopy of elemental composition were carried out. Intergranular corrosion is revealed in a base metal of the measurement channel tube at the core bottom level. A network of non-through, mainly longitudinal cracks of intergranular nature are located at the level of top and center of the core as well as directly under the reactor cover. The investigation results enable us to draw a conclusion that corrosion damage rate of the channel material depends on axial coolant density in the core. The neutron irradiation impact may be provocative but not chief factor for increasing the base metal sensitivity to intergranular corrosion and corrosion cracking. (authors)

  18. Effect of temper and hydrogen embrittlement on mechanical properties of 2,25Cr–1Mo steel grades – Application to Minimum Pressurizing Temperature (MPT) issues. Part II: Vintage reactors and MPT determination

    International Nuclear Information System (INIS)

    Pillot, Sylvain; Chauvy, Cédric; Corre, Stéphanie; Coudreuse, Lionel; Gingell, Andrew; Héritier, Déborah; Toussaint, Patrick

    2013-01-01

    Standard and Vanadium-alloyed 2,25Cr–1Mo steel grades (EN 10028-2 12CrMo9-10/ASTM A387 gr. 22 and 13CrMoV9-10/ASTM A542 tp. D) are commonly used for the fabrication of heavy pressure vessels for applications in petroleum refining plants. These reactors are made of heavy plates, forged shells, forged nozzles and fittings. They are subjected to thermal cycles (stop and go) and to severe service conditions (high temperatures and high hydrogen partial pressures). A primary concern for end-users is the definition of the Minimum Pressurizing Temperature (MPT) of the equipment. This temperature is the lowest temperature at which the vessel can be repressurized after shutdown and insures no risk of brittle failure of the containment body. The MPT is defined by fracture mechanics and/or CVN approaches and calculations. This second part of the paper presents the methodology of MPT determination and the particular case of vintage reactors. MPT determination methodology is explained by using a virtual pressure vessel representative of vessels found in petroleum refineries. A special focus is also set on the evolution of embedded defects

  19. Possibilities for using higher-tensile, water quenched and tempered AlSiMn fine-grained structural steel for reactor containments

    International Nuclear Information System (INIS)

    Wallner, F.

    1976-01-01

    On water quenching and tempering of weldable AlSiMn structural steels, particularly the grain refining process is made use of, i.e. that measure with the poorest influence on the weldability of steel. Precipitation hardening due to water quenching is, on subsequent tempering, set off to a large extent by means of precipitation resp. coagulation of iron carbides. Minimum yield points up to 580 N/mm 2 and, simultaneously, good viscosity can be obtained by means of water quenching from austeritic temperature and tempering between 550 0 C and 650 0 C, depending on tempering temperatures and sheet thickness. In the paper at hand, results are given, obtained from tests and experience with the steel Aldur 50/65 (the first figure indicates minimum yield points, the second one minimum tensile strength on sheet thickness up to 30 mm). These results are assumed to be essential, also in connection with the construction and working conditions of nuclear power plants. (orig./RW) [de

  20. Fracture mechanics analysis of reactor pressure vessel under pressurized thermal shock - The effect of elastic-plastic behavior and stainless steel cladding -

    International Nuclear Information System (INIS)

    Joo, Jae Hwang; Kang, Ki Ju; Jhung, Myung Jo

    2002-01-01

    Performed here is an assessment study for deterministic fracture mechanics analysis of a pressurized thermal shock (PTS). The PTS event means an event or transient in pressurized water reactors (PWRs) causing severe overcooling (thermal shock) concurrent with or followed by significant pressure in the reactor vessel. The problems consisting of two transients and 10 cracks are solved and maximum stress intensity factors and maximum allowable nil-ductility reference temperatures are calculated. Their results are compared each other to address the general characteristics between transients, crack types and analysis methods. The effects of elastic-plastic material behavior and clad coating on the inner surface are explored

  1. Reactor pressure vessel design

    International Nuclear Information System (INIS)

    Foehl, J.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 2, the general principles of reactor pressure vessel design are elaborated. Crack and fracture initiation and propagation are treated in some detail

  2. STEFINS: a steel freezing integral simulation program

    International Nuclear Information System (INIS)

    Frank, M.V.

    1980-09-01

    STEFINS (STEel Freezing INtegral Simulation) is a computer program for the calculation of the rate of solidification of molten steel on solid steel. Such computations arize when investigating core melt accidents in fast reactors. In principle this problem involves a coupled two-dimensional thermal and hydraulic approach. However, by physically reasonable assumptions a decoupled approach has been developed. The transient solidification of molten steel on a cold wall is solved in the direction normal to the molten steel flow and independent from the solution for the molten steel temperature and Nusselt number along the direction of flow. The solutions to the applicable energy equations have been programmed in cylindrical and slab geometries. Internal gamma heating of steel is included

  3. Effects of corrosion and precipitates on mechanical properties in the ferritic/martensitic steel cladding under ultra-long cycle fast reactor environment at 650 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Yong; Lee, Jeong Hyeon; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of); Shin, Sang Hun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This changes chemical compositions of inter-surface and effects on behavior of precipitations. NaCrO{sub 2} which is ternary sodium compound occurs intergranular corrosion resulting in thickness reduction. This change can cause a degradation of mechanical strength of structure material of UCFR. Therefore, we should consider longterm compatibility with sodium and study about life prediction. The research about ferritic/martensitic steel on effects of long term exposure in liquid sodium at 650 .deg. C, 20ppm oxygen includes weight loss of test material (Gr. 92) by corrosion and mechanism about nucleation and growth of precipitates like Laves-phase in bulk. There are many changes such as segregation of component to nucleate precipitates, affecting into microstructural evolution of the steel. Therefore, the thermochemical reaction research to predict behavior about precipitates should be performed. In a specific procedure, the micro-structure and the surface phenomenon of ferritic/martensitic steels (Gr. 92) that are exposed to liquid sodium at 650 .deg. C, 20 ppm oxygen and aged in high pure Argon gas environment to express bulk have been investigated by using scanning electron microscope (SEM) and transmission electron microscope (TEM). At 10 ppm oxygen designed oxygen value for UCFR, there is 107μm thickness reduction for 30 years. Thus, if there is no degradation of mechanical strength caused by aging effect, the tolerance of load of initial cladding should be higher than real load at least 23.6 %. Compared to specimens exposed to Ar-gas environment, Specimen which solutions are leaded into sodium has degradation of strength by reduction of solution hardening.

  4. Investigation of Y2O3 distribution in the welded joints of the fast reactor fuel claddings made of oxide dispersion strengthened steel

    International Nuclear Information System (INIS)

    Tabakin, E.M.; Kuz'min, S.V.; Ivanovich, Yu.V.; Ukai, Sh.; Kaito, T.; Seki, M.

    2007-01-01

    The study results of Y 2 O 3 distribution in welded joints of claddings from oxide dispersion strengthened steel produced by the technique of powder metallurgy are given in this paper. Change of content and distribution uniformity of yttrium oxide in welds in comparison with metal shell is the result of using flash welding of thin-walled fuel claddings. It is shown that concentration and yttrium oxide distribution uniformity in the cross section of weld, made by pulse laser welding is more high as compared with argon-arc welding [ru

  5. Study of reactions between fuel (mixed oxide (UPu)Osub(2-x)) and cladding (stainless-steel) in reactors: influence of iodine compounds

    International Nuclear Information System (INIS)

    Aubert, Michel.

    1976-03-01

    The influence of iodine compounds on the development of the oxide-cladding reaction was examined. The action of iodine, cesium and cesium iodide on type 316 stainless was determined in the presence or absence of uranium oxide or mixed uranium-plutonium oxide type fuel in a closed system, isothermal or with a temperature gradient. The study of the stainless steel iodine reactions was developed in particular. These experiments showed that cesium combines with uranium oxide to give cesium uranate Cs 2 U 2 O 7 ; it is not unreasonable to suppose that cesium urano-plutonate Cs 2 (U,Pu) 2 O 7 could be formed inside the pile. It was then shown that cesium iodide in the presence of sufficiently non-stoichiometric mixed oxide could contribute towards the degradation of the stainless steel cladding. Under these conditions the reaction is accompained by a transport of manganese, chromium and iron into the hot parts of the fuel by a Van-Arkel type mechanism. This might explain the presence of metallic precipitates in the fuel, but the role assigned to molybdenum iodide in the same phenomenon is considered unlikely. Finally it is proposed to deposit a thin layer of manganese metal on the inner surface of the cladding in order to minimize the action of fission products (CsI, Te) [fr

  6. Manufacturing of ultra-large diameter 20 MnMoNi 5 5 steel forgings for reactor pressure vessels and their properties

    International Nuclear Information System (INIS)

    Onodera, S.; Kawaguchi, S.; Tsukada, H.; Moritani, H.; Suzuki, K.; Sato, I.

    1985-01-01

    As the structural material for RPV typical of increased dimensions, as set of ultra-large diameter steel forgings for a PHWR RPV is presented as outlined below. (1) Material designation: 20 MnMoNi 5 5 (similar to SA508, Cl.3) (2) Size of the forgings: flanges, 8.440 mm OD, a weight of 238 tons for shell flange; shells and torus, 7,920 mm OD, with large height, cover dome, 6,800 mm OD in chord and 460 mm thick; blank before formed to dome is ca. 8,000 mm OD. (3) Chemical composition: particular effort was made for minimizing the tramp elements as P, S, As, Sn, Sb, Cu. (4) Manufacturing, key points: steel making - combined refining and degassing in ladle; ingot making - largest size ingots, including 570 ton and 500 ton ingots; forging - special ''outside-the-press'' forging and forming techniques; heat treatment - prevention of H 2 flaking in normalizing and tempering and handling of the extra-large forgings at water quenching. (5) Metallurgical properties: sufficiently uniform carbon distributions in the forgings; a lowest possible content of hydrogen, non-metallic inclusions and oxygen. Mechanical properties: uniformity in tensile and toughness properties; flaws - only limited number of spots of UT indications under 2 mm EFG (EFS). (orig.)

  7. Crack Growth Rate Properties of Gr.91 Steel for a Defect Assessment of a Component in a Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong-Yeon; Kim, Woo-Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In this study, the crack growth models were derived from a number of crack growth tests for Gr.91 steel specimens under fatigue loading and creep loading at elevated temperature. The test data from the experiments of fatigue crack growth (FCG) and creep crack growth (CCG) were obtained, and the test data were compared with those of the RCC-MRx to investigate conservatism of the crack growth models in RCC-MRx. It was shown that the FCG rate model of RCC-MRx was conservative while the CCG model was non-conservative for Gr.91 steel when compared with present test data. The FCG rate tests were conducted with round bar type single edge crack tension specimens, and standard C(T) specimens with a 12.7mm thickness. The FCG test results were compared with those of the FCG rate models of RCC-MRx that are based on 25.4mm thick C(T) specimens. It was shown that the FCG rate model of RCC-MRx was conservative when compared to the present test data. The CCG rate models were derived from the test data for standard C(T) specimens with 12.7mm thickness. The data were compared with those of the RCC-MRx that are based on 25.4mm thick C(T) specimens. Conservatism of the crack growth models in 2012 edition of the RCC-MRx code was reviewed with the present CCG test data.

  8. Study on microstructural changes in thermally-aged stainless steel weld-overlay cladding of nuclear reactor pressure vessels by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kameda, J. [National Institute for Materials Science, Sengen, Tsukuba 305-0047 (Japan); Nagai, Y.; Toyama, T. [Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Onizawa, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2011-08-15

    Highlights: > Microstructural changes in stainless steel electroslag weld-overlay cladding. > Thermal aging caused progress of spinodal decomposition and precipitation of G phases in the {delta}-ferrite phase. > The degree of the spinodal decomposition had a linear relationship to the hardness. - Abstract: The effect of thermal aging on microstructural changes was investigated in stainless steel weld-overlay cladding composed of 90% austenite and 10% {delta}-ferrite phases using atom probe tomography (APT). In as-received materials subjected to cooling process after post-welding heat treatments (PWHT), a slight fluctuation of the Cr concentration was already observed due to spinodal decomposition in the ferrite phase but not in the austenitic phase. Thermal aging at 400 deg. C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the ferrite phase. The chemical compositions of M{sub 23}C{sub 6} type carbides seemed to be formed at the austenite/ferrite interface were analyzed. The analyses of the magnitude of the spinodal decomposition and the hardness implied that the spinodal decomposition was the main cause of the hardening.

  9. Fast reactor programme

    International Nuclear Information System (INIS)

    Plakman, J.C.

    1979-10-01

    Various experiments being performed at the SNR reactor are described including: capture cross sections of various nuclei; fuel can failure; creep testing of welded joints; gas leakage through concrete/steel interfaces; testing of the test section of the four rod bundle for Laser Doppler Anemometry

  10. Development of structural steels for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs.

  11. Development of structural steels for nuclear application

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs

  12. Reactor BR2: Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. A safety audit was conduced by the IAEA, the conclusions of which demonstrated the excellent performance of the plant in terms of operational safety. In 1999, the CALLISTO facility was extensively used for various programmes involving LWR pressure vessel materials, IASCC of LWR structural materials, fusion reactor materials and martensic steels for use in ADS systems. In 1999, BR2's commercial programmes were further developed

  13. Corrosion fatigue of pressure vessel steels in PWR environments--influence of steel sulfur content

    International Nuclear Information System (INIS)

    Scott, P.M.; Druce, S.G.; Truswell, A.E.

    1984-01-01

    Large effects of simulated light water reactor environments at 288 C on fatigue crack growth in low alloy pressure vessel steels are observed only when specific mechanical, metallurgical, and electrochemical conditions are satisfied simultaneously. In this paper, the relative importance of three key variables--steel impurity content, water chemistry, and flow rate--and their interaction with loading rate or strain rate are examined. In particular, the results of a systematic examination of the influence of a steel's sulfur content are described

  14. Method of reactor operation