WorldWideScience

Sample records for reactor station unit

  1. The decommissioning of commercial magnox gas cooled reactor power stations in the United Kingdom

    International Nuclear Information System (INIS)

    Holt, G.

    1998-01-01

    There are nine commercial Magnox gas-cooled reactor power stations in the United Kingdom. Three of these stations have been shutdown and are being decommissioning, and plans have also been prepared for the eventual decommissioning of the remaining operational stations. The preferred strategy for the decommissioning of the Magnox power stations has been identified as 'Safestore' in which the decommissioning activities are carried out in a number of steps separated by quiescent periods of care and maintenance. The final clearance of the site could be deferred for up to 135 years following station shutdown so as to obtain maximum benefit from radioactive decay. The first step in the decommissioning strategy is to defuel the reactors and transport all spent and new fuel off the site. This work has been completed at all three shutdown stations. Decommissioning work is continuing on the three sites and has involved activities such as dismantling, decontamination, recycling and disposal of some plant and structures, and the preparation of others for retention on the site for a period of care and maintenance. Significant experience has been gained in the practical application of decommissioning, with successful technologies and processes being identified for a wide range of activities. For example, large and small metallic and concrete structures, some with complex geometries, have been successfully decontaminated. Also, the reactors have been prepared for a long period of care and maintenance, with instrumentation and sampling systems having been installed to monitor their continuing integrity. All of this work has been done under careful safety, technical, and financial control. (author)

  2. Alteration in reactor installation (addition of Unit 2) in Shimane Nuclear Power Station, Chugoku Electric Power Co., Inc. (inquiry)

    International Nuclear Information System (INIS)

    1983-01-01

    An inquiry was made by the Ministry of International Trade and Industry to Nuclear Safety Commission on the addition of Unit 2 in Shimane Nuclear Power Station of The Chugoku Electric Power Co., Inc., concerning the technical capability of Chugoku Electric Power Co., Inc., and the plant safety. The NSC requested the Committee on Examination of Reactor Safety to make a deliberation on this subject. Both the technical capability and the safety of Unit 1 were already confirmed by MITI. Unit 2 to be newly added in the Shimane Nuclear Power Station is a BWR power plant with electric output of 820 MW. The examination made by MITI is described: the technical capability of Chugoku Electric Power Co., Inc., the safety of Unit 2 about its siting, reactor proper, reactor cooling system, radioactive waste management, etc. (J.P.N.)

  3. System Definition Document: Reactor Data Necessary for Modeling Plutonium Disposition in Catawba Nuclear Station Units 1 and 2

    International Nuclear Information System (INIS)

    Ellis, R.J.

    2000-01-01

    The US Department of Energy (USDOE) has contracted with Duke Engineering and Services, Cogema, Inc., and Stone and Webster (DCS) to provide mixed-oxide (MOX) fuel fabrication and reactor irradiation services in support of USDOE's mission to dispose of surplus weapons-grade plutonium. The nuclear station units currently identified as mission reactors for this project are Catawba Units 1 and 2 and McGuire Units 1 and 2. This report is specific to Catawba Nuclear Station Units 1 and 2, but the details and materials for the McGuire reactors are very similar. The purpose of this document is to present a complete set of data about the reactor materials and components to be used in modeling the Catawba reactors to predict reactor physics parameters for the Catawba site. Except where noted, Duke Power Company or DCS documents are the sources of these data. These data are being used with the ORNL computer code models of the DCS Catawba (and McGuire) pressurized-water reactors

  4. Alteration in reactor installations (Unit 1 and 2 reactor facilities) in the Hamaoka Nuclear Power Station of The Chubu Electric Power Co., Inc. (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report by the Nuclear Safety Commission to the Ministry of International Trade and Industry concerning the alteration in Unit 1 and 2 reactor facilities in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., was presented. The technical capabilities for the alteration of reactor facilities in Chubu Electric Power Co., Inc., were confirmed to be adequate. The safety of the reactor facilities after the alteration was confirmed to be adequate. The items of examination made for the confirmation of the safety are as follows: reactor core design (nuclear design, mechanical design, mixed reactor core), the analysis of abnormal transients in operation, the analysis of various accidents, the analysis of credible accidents for site evaluation. (Mori, K.)

  5. MRP-227 Reactor vessel internals inspection planning and initial results at the Oconee nuclear station unit 2

    International Nuclear Information System (INIS)

    Davidsaver, S.B.; Fyfitch, S.; Whitaker, D.E.; Doss, R.L.

    2015-01-01

    The U.S. PWR industry has pro-actively developed generic inspection requirements and standards for reactor vessel (RV) internals. The Electric Power Research Institute (EPRI) Pressurized Water Reactor (PWR) Materials Reliability Program (MRP) has issued MRP-227-A and MRP-228 with mandatory and needed requirements based on the Nuclear Energy Institute (NEI) document NEI 03-08. The inspection and evaluation guidelines contained in MRP-227-A consider eight age-related degradation mechanisms: stress corrosion cracking (SCC), irradiation-assisted stress corrosion cracking (IASCC), wear, fatigue, thermal aging embrittlement, irradiation embrittlement, void swelling and irradiation growth, and thermal and irradiation-enhanced stress relaxation or irradiation-enhanced creep. This paper will discuss the decision planning efforts required for implementing the MRP-227-A and MRP-228 requirements and the results of these initial inspections at the Oconee Nuclear power station (ONS) units. Duke Energy and AREVA overcame a significant technology and NDE challenge by successfully completing the first-of-a-kind MRP-227-A scope requirements at ONS-1 in one outage below the estimated dose and with zero safety issues or events. This performance was repeated at ONS-2 a year later. The remote NDE tooling and processes developed to examine the MRP-227-A scope for ONS-1 and ONS-2 are transferable to other PWRs

  6. Technical evaluation report on the monitoring of electric power to the reactor protection system for the Nine Mile Point Nuclear Station, Unit 1 (Docket No. 50-220)

    International Nuclear Information System (INIS)

    Selan, J.C.

    1984-01-01

    This report documents the technical evaluation of the monitoring of electric power to the reactor protection system (RPS) at the Nine Mile Point Nuclear Station, Unit 1. The evaluation is to determine if the proposed design modification will protect the RPS from abnormal voltage and frequency conditions which could be supplied from the power supplies and will meet certain requirements set forth by the Nuclear Regulatory Commission. The proposed design modifications will protect the RPS from sustained abnormal voltage and frequency conditions from the supplying sources

  7. Damage of the Unit 1 reactor building overhead bridge crane at Onagawa Nuclear Power Station caused by the Great East Japan Earthquake and its repair works

    International Nuclear Information System (INIS)

    Sugamata, Norihiko

    2014-01-01

    The driving shaft bearings of the Unit 1 overhead bridge crane were damaged by the Great East Japan Earthquake at Onagawa Nuclear Power Station. The situation, investigation and repair works of the bearing failure are introduced in this paper. (author)

  8. Handling of views and opinions by staters and others in a public hearing on alteration in reactor installation (addition of Unit 2) in the Sendai Nuclear Power Station of Kyushu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1981-01-01

    A public hearing on the addition of Unit 2 in the Sendai Nuclear Power Station, Kyushu Electric Power Co., Inc., was held on July 17, 1980, in Sendai City, Kagoshima Prefecture. The views and opinions by the local staters and those by the notification of statement were expressed concerning its nuclear safety. The handling of these views and opinions by the Nuclear Safety Commission is explained. The most important in this action is the instruction by the NSC to the Committee on Examination of Reactor Safety to reflect the results of the public hearing to the reactor safety examination of the Unit 2 installation by the CERS. The views and opinions expressed in this connection are summarized as follows: the sitting conditions, the safety design of the reactor plant, and the release of radioactive materials, involving such aspects as earthquakes, accidents and radioactive waste management. (J.P.N.)

  9. Selection of persons expressing opinions etc. and attendants in the public hearing concerning the alteration in reactor installations (addition of Unit 3 and 4) in the Genkai Nuclear Power Station of Kyushu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1984-01-01

    The Nuclear Safety Commission has selected 18 persons expressing opinions etc. and 255 (other) attendants for the public hearing on the alteration of reactor installations (addition of Unit 3 and 4) in Kyushu Electric's Genkai Nuclear Power Station to be held on June 18th, 1984. The order of expressing opinions etc., number of reception, names, addresses, ages and occupations are given of the persons expressing opinions etc. For both the groups, against the selected numbers there are given applicants etc. in number by towns and city. (Mori, K.)

  10. Treatment of opinions, etc. in the public hearing on the alteration of reactor installation (addition of Unit 2) in the Shimane Nuclear Power Station of The Chugoku Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1983-01-01

    The Nuclear Safety Commission has acknowledged the governmental policy, and further decided on the treatment of the opinions expressed by the local people in the public hearing held in May, 1983, in Shimane Prefecture on the addition of Unit 2 to the Shimane Nuclear Power Station, Chugoku Electric Power Co., Inc. The NSC has directed the Committee on Examination of Reactor Safety to take into consideration the opinions in its later examination. The opinions expressed by the local people in the form of question are given as follows: siting conditions (earthquake, ground, weather, etc.), the safety design for reactor installation (general aspect, aseismatic design, core design, ECCS, the teaching of TMI accident, etc.), radioactive wastes, radiation exposure, site evaluation. (Mori, K.)

  11. Considerations of the opinions and others in the public hearing on the alteration in reactor installation (addition of Unit 3) in the Hamaoka Nuclear Power Station of the Chubu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1982-01-01

    A public hearing was held in Hamaoka Town, Shizuoka Prefecture, on the alteration in reactor installation, i.e., the addition of Unit 3 in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., on March 19, 1981, by the Nuclear Safety Commission. The opinions and others stated by the local people were taken into consideration in the governmental examinations on the installation, etc. The considerations of such opinions principally in the examinations by NSC are explained in the form of questions (i.e. opinion, etc.) and answers (i.e. considerations) as follows: site conditions (earthquakes, ground, hydraulic features, etc.), the safety design of the reactor facilities (overall plant, aseismic design, the control of inflammable gas concentration, radioactive waste treatment, the reflection of accident experiences, etc.), radioactive waste management, radiation exposure relation, the technical capabilities of personnel (operation, etc.). (J.P.N.)

  12. Consideration of the opinions and others in the public hearing on the alteration in reactor installation (addition of Unit 2) in the Tsuruga Power Station of the Japan Atomic Power Company

    International Nuclear Information System (INIS)

    1982-01-01

    A public hearing was held in Tsuruga City, Fukui Prefecture, on the alteration in reactor installation, i.e., the addition of Unit 2 in the Tsuruga Power Station, JAPC, on November 20, 1980, by the Nuclear Safety Commission. The opinions and others stated by the local people were taken into consideration in the governmental examinations on the installation, etc. The considerations of such opinions principally in the examinations by NSC are explained in the form of questions (i.e. opinion, etc.) and answers (i.e. consideration) as follows: site conditions (site, earthquakes, ground, meteorology, siting situation, etc.), the safety design of the reactor facilities (overall plant, aseismic design, the teaching by the TMI accident in U.S., ECCS, pre-stressed concrete containment vessel, radioactive waste release, etc.), radioactive waste management, radiation exposure relation, the technical capabilities of personnel (operation, etc.). (J.P.N.)

  13. Treatment and management of opinions stated in and notified to the public hearing on the alteration in reactor installation (addition of Unit 3) in the Hamaoka Nuclear Power Station of The Chubu Electric Power Co., Ltd

    International Nuclear Information System (INIS)

    1981-01-01

    A public hearing was made in Hamaoka Town, Shizuoka Prefecture, on March 19, 1981, on the addition of Unit 3 in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc. Treatment and management of the opinions and others stated and notified by the local people, which are understood and to be carried out by the Nuclear Safety Commission, are: to publish them as the report of the public hearing, to include them in the safety examination report of NSC and to refer to them in the examination by the Committee on Examination of Reactor Safety, etc. The opinions and others stated and notified in the public hearing, to which CERS should refer in its examination, are summarized in the form of the questions on siting conditions, safety design of reactor installation, release of radioactivities, etc. (J.P.N.)

  14. Pressurized-water-reactor station blackout

    International Nuclear Information System (INIS)

    Dobbe, C.A.

    1983-01-01

    The purpose of the Severe Accident Sequence Analysis (SASA) Program was to investigate accident scenarios beyond the design basis. The primary objective of SASA was to analyze nuclear plant transients that could lead to partial or total core melt and evaluate potential mitigating actions. The following summarizes the pressurized water reactor (PWR) SASA effort at the Idaho National Engineering Laboratory (INEL). The INEL is presently evaluating Unresolved Safety Issue A-44 - Station Blackout from initiation of the transient to core uncovery. The balance of the analysis from core uncovery until fission product release is being performed at Sandia National Laboratory (SNL). The current analyses involve the Bellefonte Nuclear Steam Supply System (NSSS), a Babcock and Wilcox (B and W) 205 Fuel Assembly (205-FA) raised loop design to be operated by the Tennessee Valley Authority

  15. Nuclear power station with nuclear reactor accommodated largely secure against catastrophes

    International Nuclear Information System (INIS)

    Rosen, O.

    1987-01-01

    If the nuclear reactor is installed underground near the power station unit, then danger to the environment due to radiation contamination can be largely or nearly completely prevented by a covering of constant thickness or by a covering which can be installed by a catastrophic accident. The extinguishing of a burning reactor is also relatively simple for a reactor accommodated in a pit. The above-mentioned measures can be used individually or combined. (orig./HP) [de

  16. Multi-Unit Aspects of the Pickering Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Morison, W. G. [Atomic Energy of Canada Ltd, Sheridan Park, ON (Canada)

    1968-04-15

    The Pickering nuclear generating station is located on the north shore of Lake Ontario, about 20 miles east of the city of Toronto, Canada. The station has been planned and laid out on an eight-unit station, four units of which have now been authorized for construction. Each of these four units consists of a single heavy-water moderated and cooled CANDU-type reactor and auxiliaries coupled to a single tandem compound turbine generator with a net output of approximately 500 MW(e). The units are identical and are scheduled to come into operation at intervals of one year from 1970 to 1973. The station has been planned with central facilities for: administration maintenance laboratories, stores, change rooms, decontamination and waste management services. A common control centre, cooling water intake and discharge system, and spent fuel storage bay for four units has been arranged. A feature of the multi-unit station is a common containment system. Cost savings in building a number of identical units on the same site result from a single exclusion area, shared engineering costs, equipment purchase contracts for four identical components, and efficient use of construction plant. Operating cost savings are anticipated in the use of a common operating and maintenance staff and spare parts inventory. The plant has been arranged to minimize problems of operating, commissioning and constructing units at the same time on the same site. The layout and construction sequence have been arranged so that the first unit can be commissioned and operated with little or no interference from the construction forces working on succeeding units. During the construction phase barriers will be erected in the common control centre between operating control equipment and that being installed. Operations and construction personnel will enter the plant by separate routes and work in areas separated by physical barriers. (author)

  17. Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Conrad; Spann, Holger [Siempelkamp Nuclear Services: 5229 Sunset Blvd., (Suite M), West Columbia, SC, 29169 (United States)

    2013-07-01

    Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle

  18. Preoperation of Hamaoka Nuclear Power Station Unit No. 4

    International Nuclear Information System (INIS)

    Fukuyo, Tadashi; Kurata, Satoshi

    1994-01-01

    Chubu Electric Power Co. finished preoperation of Hamaoka Nuclear Power Station Unit No. 4 in September, 1993. Although unit 4 has the same reactor design as unit 3, its rated electrical output (1,137MW) is 37MW more than that of unit 3. This increase was achieved mainly by adopting a Moisture Separater Heater in the turbine system. We started preoperation of unit 4 in November 1992 and performed various tests at electrical outputs of 20%, 50%, 75%, and 100%. We finished preoperation without any scram or other major problems and obtained satisfactory results for the functions and performance of the plant. This paper describes the major results of unit 4 preoperation. (author)

  19. Antenna unit and radio base station therewith

    Science.gov (United States)

    Kuwahara, Mikio; Doi, Nobukazu; Suzuki, Toshiro; Ishida, Yuji; Inoue, Takashi; Niida, Sumaru

    2007-04-10

    Phase and amplitude deviations, which are generated, for example, by cables connecting an array antenna of a CDMA base station and the base station, are calibrated in the baseband. The base station comprises: an antenna apparatus 1; couplers 2; an RF unit 3 that converts a receive signal to a baseband signal, converts a transmit signal to a radio frequency, and performs power control; an A/D converter 4 for converting a receive signal to a digital signal; a receive beam form unit 6 that multiplies the receive signal by semi-fixed weight; a despreader 7 for this signal input; a time-space demodulator 8 for demodulating user data; a despreader 9 for probe signal; a space modulator 14 for user data; a spreader 13 for user signal; a channel combiner 12; a Tx calibrater 11 for controlling calibration of a signal; a D/A converter 10; a unit 16 for calculation of correlation matrix for generating a probe signal used for controlling an Rx calibration system and a TX calibration system; a spreader 17 for probe signal; a power control unit 18; a D/A converter 19; an RF unit 20 for probe signal; an A/D converter 21 for signal from the couplers 2; and a despreader 22.

  20. Technology, safety and costs of decommissioning nuclear reactors at multiple-reactor stations

    International Nuclear Information System (INIS)

    Wittenbrock, N.G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWR) and large (1155-MWe) boiling water reactors (BWR) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services

  1. Flux distribution measurements in the Bruce A unit 1 reactor

    International Nuclear Information System (INIS)

    Okazaki, A.; Kettner, D.A.; Mohindra, V.K.

    1977-07-01

    Flux distribution measurements were made by copper wire activation during low power commissioning of the unit 1 reactor of the Bruce A generating station. The distribution was measured along one diameter near the axial and horizontal midplanes of the reactor core. The activity distribution along the copper wire was measured by wire scanners with NaI detectors. The experiments were made for five configurations of reactivity control mechanisms. (author)

  2. FIND: Fort Calhoun Station, Unit 2

    International Nuclear Information System (INIS)

    Williams, W.H.

    1976-07-01

    This index is presented for the microfiche material of Docket 50548 which concerns the application of Omaha Public Power District to build and operate Fort Calhoun Station, Unit 2. The information includes both application and review material dated from September 1975 through March 1976. There are five amendments to the PSAR and one supplement to the ER which have been incorporated by reference into the respective reports. Docket RESAR-3 is used as a reference for portions of the PSAR

  3. Decommissioning of multiple-reactor stations: facilitation by sequential decommissioning

    International Nuclear Information System (INIS)

    Moore, E.B.; Smith, R.I.; Wittenbrock, N.G.

    1982-01-01

    Reductions in cost and radiation dose can be achieved for decommissionings at multiple reactor stations because of factors not necessarily present at a single reactor station: reactors of similar design, the opportunity for sequential decommissioning, a site dedicated to nuclear power generation, and the option of either interim or permanent low-level radioactive waste storage facilities onsite. The cost and radiation dose reductions occur because comprehensive decommissioning planning need only be done once, because the labor force is stable and need only be trained once, because there is less handling of radioactive wastes, and because central stores, equipment, and facilities may be used. The cost and radiation dose reductions are sensitive to the number and types of reactors on the site, and to the alternatives selected for decommissioning. 3 tables

  4. Snubber reduction program at the Byron Station, Unit 1

    International Nuclear Information System (INIS)

    Arterburn, J.; Bakhtiari, S.

    1987-01-01

    Commonwealth Edison Company's (CECo's) Byron Station, unit 1, was originally designed with approximately 1200 snubbers supporting the plant's large- and small-bore piping systems. This relatively large number of snubbers is attributed to excessive conservatism in nuclear piping codes and regulations effective during the original piping design. A recent pilot program at CECo's LaSalle County Station, a boiling water reactor plant, demonstrated that a 50% or greater reduction in total snubber population is achievable in plants of this design vintage. Based on the successful results of the pilot program, CECo initiated a full scale snubber reduction program at Byron, a pressurized water reactor plant of the same vintage at the LaSalle County Station. The benefits from a reduced snubber population are described. To realize the maximum potential benefits, all snubbers in the plant were prioritized in order of desirability for removal. The priority designations are discussed. The major results from phase 1 of the Byron program are summarized. The NRC inspection of the project addressed a variety of issues and is discussed. The conclusions that can be drawn from the phase 1 program are summarized

  5. Station blackout core damage frequency in an advanced nuclear reactor

    International Nuclear Information System (INIS)

    Carvalho, Luiz Sergio de

    2004-01-01

    Even though nuclear reactors are provided with protection systems so that they can be automatically shut down in the event of a station blackout, the consequences of this event can be severe. This is because many safety systems that are needed for removing residual heat from the core and for maintaining containment integrity, in the majority of the nuclear power plants, are AC dependent. In order to minimize core damage frequency, advanced reactor concepts are being developed with safety systems that use natural forces. This work shows an improvement in the safety of a small nuclear power reactor provided by a passive core residual heat removal system. Station blackout core melt frequencies, with and without this system, are both calculated. The results are also compared with available data in the literature. (author)

  6. BN-1200 Reactor Power Unit Design Development

    International Nuclear Information System (INIS)

    Vasilyev, B.A.; Shepelev, S.F.; Ashirmetov, M.R.; Poplavsky, V.M.

    2013-01-01

    Main goals of BN-1200 design: • Develop a reliable new generation reactor plant for the commercial power unit with fast reactor to implement the first-priority objectives in changing over to closed nuclear fuel cycle; • Improve technical and economic indices of BN reactor power unit to the level of those of Russian VVER of equal power; • Enhance the safety up to the level of the requirements for the 4th generation RP

  7. 76 FR 72007 - ZionSolutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security...

    Science.gov (United States)

    2011-11-21

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-295 and 50-304; NRC-2011-0244] ZionSolutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt Pressurized Water Reactor...

  8. Technical Specifications, Seabrook Station, Unit 1 (Docket No. 50-443). Appendix ''A'' to License No. NPF-56

    International Nuclear Information System (INIS)

    1986-10-01

    This report provides specifications for the Seabrook Station Unit 1 reactor concerning: safety limits and limiting safety settings; limiting conditions for operation and surveillance requirements; design features; and administrative controls

  9. Technical specifications, Beaver Valley Power Station, Unit 2 (Docket No. 50-412): Appendix ''A'' to License No. NPF-73

    International Nuclear Information System (INIS)

    1987-08-01

    This report presents information concerning the Beaver Valley Power Station Unit 2 Reactor. Topics under discussion include: safety limits and limiting safety system settings; limiting condition for operation and surveillance requirements; design features; and administrative controls

  10. Station Blackout Analysis of HTGR-Type Experimental Power Reactor

    Science.gov (United States)

    Syarip; Zuhdi, Aliq; Falah, Sabilul

    2018-01-01

    The National Nuclear Energy Agency of Indonesia has decided to build an experimental power reactor of high-temperature gas-cooled reactor (HTGR) type located at Puspiptek Complex. The purpose of this project is to demonstrate a small modular nuclear power plant that can be operated safely. One of the reactor safety characteristics is the reliability of the reactor to the station blackout (SBO) event. The event was observed due to relatively high disturbance frequency of electricity network in Indonesia. The PCTRAN-HTR functional simulator code was used to observe fuel and coolant temperature, and coolant pressure during the SBO event. The reactor simulated at 10 MW for 7200 s then the SBO occurred for 1-3 minutes. The analysis result shows that the reactor power decreases automatically as the temperature increase during SBO accident without operator’s active action. The fuel temperature increased by 36.57 °C every minute during SBO and the power decreased by 0.069 MW every °C fuel temperature rise at the condition of anticipated transient without reactor scram. Whilst, the maximum coolant (helium) temperature and pressure are 1004 °C and 9.2 MPa respectively. The maximum fuel temperature is 1282 °C, this value still far below the fuel temperature limiting condition i.e. 1600 °C, its mean that the HTGR has a very good inherent safety system.

  11. Advances in commercial heavy water reactor power stations

    International Nuclear Information System (INIS)

    Brooks, G.L.

    1987-01-01

    Generating stations employing heavy water reactors have now firmly established an enviable record for reliable, economic electricity generation. Their designers recognize, however, that further improvements are both possible and necessary to ensure that this reactor type remains attractively competitive with alternative nuclear power systems and with fossil-fuelled generation plants. This paper outlines planned development thrusts in a number of important areas, viz., capital cost reduction, advanced fuel cycles, safety, capacity factor, life extension, load following, operator aida, and personnel radiation exposure. (author)

  12. Reactor coolant pump shaft seal stability during station blackout

    International Nuclear Information System (INIS)

    Rhodes, D.B.; Hill, R.C.; Wensel, R.G.

    1987-05-01

    Results are presented from an investigation into the behavior of Reactor Coolant Pump shaft seals during a potential station blackout (loss of all ac power) at a nuclear power plant. The investigation assumes loss of cooling to the seals and focuses on the effect of high temperature on polymer seals located in the shaft seal assemblies, and the identification of parameters having the most influence on overall hydraulic seal performance. Predicted seal failure thresholds are presented for a range of station blackout conditions and shaft seal geometries

  13. Reactor coolant pump shaft seal stability during station blackout

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, D B; Hill, R C; Wensel, R G

    1987-05-01

    Results are presented from an investigation into the behavior of Reactor Coolant Pump shaft seals during a potential station blackout (loss of all ac power) at a nuclear power plant. The investigation assumes loss of cooling to the seals and focuses on the effect of high temperature on polymer seals located in the shaft seal assemblies, and the identification of parameters having the most influence on overall hydraulic seal performance. Predicted seal failure thresholds are presented for a range of station blackout conditions and shaft seal geometries.

  14. Nuclear reactor unit shutdown planning

    International Nuclear Information System (INIS)

    Gardais, J.P.

    1994-01-01

    In order to optimize the reactor maintenance shutdown efficiency and the reactor availability, an audit had been performed on the shutdown organization at EDF: management, skills, methods and experience feedback have been evaluated; several improvement paths have been identified: project management, introduction of shutdown management professionals, shutdown permanent industrialization, and experience feedback engineering

  15. Station blackout with reactor coolant pump seal leakage

    International Nuclear Information System (INIS)

    Evinay, A.

    1993-01-01

    The U.S. Nuclear Regulatory Commission (NRC) amended its regulations in 10CFR50 with the addition of a new section, 50.63, open-quotes Loss of All Alternating Current Power.close quotes The objective of these requirements is to ensure that all nuclear plants have the capability to withstand a station blackout (SBO) and maintain adequate reactor core cooling and containment integrity for a specified period of time. The NRC also issued Regulatory Guide (RG) 1.155, open-quotes Station Blackout,close quotes to provide guidance for meeting the requirements of 10CFR50.63. Concurrent with RG-1.155, the Nuclear Utility Management and Resources Council (NUMARC) has developed NUMARC 87-00 to address SBO-coping duration and capabilities at light water reactors. Licensees are required to submit a topical report based on NUMARC 87-00 guidelines, to demonstrate compliance with the SBO rule. One of the key compliance criteria is the ability of the plant to maintain adequate reactor coolant system (RCS) inventory to ensure core cooling for the required coping duration, assuming a leak rate of 25 gal/min per reactor coolant pump (RCP) seal in addition to technical specification (TS) leak rate

  16. United States Domestic Research Reactor Infrastructure TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    Morrell, Douglas

    2011-01-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  17. Technical specifications: Seabrook Station, Unit 1 (Docket No. 50-443)

    International Nuclear Information System (INIS)

    1990-03-01

    The Seabrook Station, Unit 1 Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public

  18. Hybrid Reactor designs in the United States

    International Nuclear Information System (INIS)

    Wolkenhauer, W.C.

    1978-01-01

    This paper reviews the current, active, interrelated Hybrid Reactor development programs in the United States, and offers a probable future course of action for the technology. The Department of Energy (DOE) program primarily emphasizes development of Hybrid Reactors that are optimized for proliferation resistance. The Electric Power Research Institute (EPRI) program concentrates on avenues for Hybrid Reactor commercialization. The history of electrical generation technology has been one of steady movement toward higher power densities and higher quality fuels. An apparent advantage of the Hybrid Reactor option is that it follows this trend

  19. 76 FR 40754 - Duke Energy Carolinas, LLC Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station, Units...

    Science.gov (United States)

    2011-07-11

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0100; Docket Nos. 50-413 and 50-414; Docket Nos. 50-369 and 50-370; Docket Nos. 50-269, 50-270, And 50-287] Duke Energy Carolinas, LLC Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station, Units 1 and 2; Oconee Nuclear Station, Units 1, 2, and 3; Notice...

  20. Remerschen nuclear power station with BBR pressurized water reactor

    International Nuclear Information System (INIS)

    Hoffmann, J.P.

    1975-01-01

    On the basis of many decades of successful cooperation in the electricity supply sector with the German RWE utility, the Grand Duchy of Luxemburg and RWE jointly founded Societe Luxembourgeoise d'Energie Nucleaire S.A. (SENU) in 1974 in which each of the partners holds a fifty percent interest. SENU is responsible for planning, building and operating this nuclear power station. Following an international invitation for bids on the delivery and turnkey construction of a nuclear power station, the consortium of the German companies of Brown, Boveri and Cie. AG (BBC), Babcock - Brown Boveri Reaktor GmbH (BBR) and Hochtief AG (HT) received a letter of intent for the purchase of a 1,300 MW nuclear power station equipped with a pressurized water reactor. The 1,300 MW station of Remerschen will be largely identical with the Muelheim-Kaerlich plant under construction by the same consortium near Coblence on the River Rhine since early 1975. According to present scheduling, the Remerschen nuclear power station could start operation in 1981. (orig.) [de

  1. Main unit electrical protection at Sizewell 'B' power station

    International Nuclear Information System (INIS)

    Fischer, A.; Keates, T.

    1992-01-01

    For any power station, reliable electrical protection of the main generating units (generators plus generator transformers) has important commercial implications. Spurious trips cause loss of generation and consequent loss of revenue, while failure to rapidly isolate a fault leads to unnecessary damage and again, loss of generation and revenue. While these conditions apply equally to Sizewell B there are additional factors to be taken into consideration. A spurious trip of a main generating unit may lead to a trip of the reactor with an associated challenge to the shutdown and core cooling plant. The generator transformers, besides exporting power from the generators to the 400 kV National Grid, also import power from the Grid to the 11 kV Main Electrical System, which in turn is the preferred source of supply to the Essential Electrical System. The Main Unit Protection is designed to clear generator faults leaving this off-site power route intact. Hence failure to operate correctly could affect the integrity of the Essential Electrical Supplies. (Author)

  2. Technology, safety and costs of decommissioning a reference boiling water reactor power station: Comparison of two decommissioning cost estimates developed for the same commercial nuclear reactor power station

    International Nuclear Information System (INIS)

    Konzek, G.J.; Smith, R.I.

    1990-12-01

    This study presents the results of a comparison of a previous decommissioning cost study by Pacific Northwest Laboratory (PNL) and a recent decommissioning cost study of TLG Engineering, Inc., for the same commercial nuclear power reactor station. The purpose of this comparative analysis on the same plant is to determine the reasons why subsequent estimates for similar plants by others were significantly higher in cost and external occupational radiation exposure (ORE) than the PNL study. The primary purpose of the original study by PNL (NUREG/CR-0672) was to provide information on the available technology, the safety considerations, and the probable costs and ORE for the decommissioning of a large boiling water reactor (BWR) power station at the end of its operating life. This information was intended for use as background data and bases in the modification of existing regulations and in the development of new regulations pertaining to decommissioning activities. It was also intended for use by utilities in planning for the decommissioning of their nuclear power stations. The TLG study, initiated in 1987 and completed in 1989, was for the same plant, Washington Public Supply System's Unit 2 (WNP-2), that PNL used as its reference plant in its 1980 decommissioning study. Areas of agreement and disagreement are identified, and reasons for the areas of disagreement are discussed. 31 refs., 3 figs., 22 tabs

  3. Rate of generation of tritium during the operation of Tsuruga Power Station Unit No. 2

    International Nuclear Information System (INIS)

    Funamoto, Hisao; Yoshinari, Masaharu; Fukuda, Masayuki; Makino, Shinichi; Watari, Tuneo

    1994-01-01

    Total amount of 3 H activity in primary coolant due to the operation of Tsuruga Power Station Unit No. 2 was estimated. The 3 H inventory was measured for samples from the spent fuel pool, primary coolant and miscellaneous tanks. From the result of the measurement and the data of environmental release of 3 H, the rate of generation of 3 H in the reactor was found to be 25 TBq/GWa. Since Tsuruga Power Station Unit No. 2 is a PWR type reactor, we presume that most of the 3 H in primary coolant is formed by 10 B(n, 2α) 3 H reaction. It is necessary to release about 23 TBq/GWa of 3 H to maintain the station inventory at the present level. (author)

  4. The construction of a PWR power station reactor building liner

    International Nuclear Information System (INIS)

    Skirving, N.; Goulding, J.S.; Gibson, J.A.

    1991-01-01

    Cleveland Bridge and Engineering Co Ltd (CBE) are constructing the Reactor Building Liner Plate containment of the Sizewell 'B' Power Station for Nuclear Electric Ltd. This has entailed extensive offsite prefabrication of components and their subsequent erection at Sizewell. It has been necessary to engineer temporary supporting mechanisms to enable manufacture and erection to proceed, yet also to withstand wet concrete forces during the progressive construction. The Reactor Building Liner Plate is a safety related system and as such, in addition to strict compliance with the ASME code, the Quality Assurance (QA) requirements of BS 5882 are applicable. A dedicated Project Team was established by CBE to control and direct the work. Equally important as satisfying the rigorous Q.A. requirements has been the need to meet programme and budget. This paper details CBE execution of the Project. (author)

  5. Reactor coolant pump shaft seal behavior during station blackout

    International Nuclear Information System (INIS)

    Kittmer, C.A.; Wensel, R.G.; Rhodes, D.B.; Metcalfe, R.; Cotnam, B.M.; Gentili, H.; Mings, W.J.

    1985-04-01

    A testing program designed to provide fundamental information pertaining to the behavior of reactor coolant pump (RCP) shaft seals during a postulated nuclear power plant station blackout has been completed. One seal assembly, utilizing both hydrodynamic and hydrostatic types of seals, was modeled and tested. Extrusion tests were conducted to determine if seal materials could withstand predicted temperatures and pressures. A taper-face seal model was tested for seal stability under conditions when leaking water flashes to steam across the seal face. Test information was then used as the basis for a station blackout analysis. Test results indicate a potential problem with an elastomer material used for O-rings by a pump vendor; that vendor is considering a change in material specification. Test results also indicate a need for further research on the generic issue of RCP seal integrity and its possible consideration for designation as an unresolved safety issue

  6. United States Domestic Research Reactor Infrastructure - TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    Morrell, Douglas

    2008-01-01

    The purpose of the United State Domestic Research Reactor Infrastructure Program is to provide fresh nuclear reactor fuel to United States universities at no, or low, cost to the university. The title of the fuel remains with the United States government and when universities are finished with the fuel, the fuel is returned to the United States government. The program is funded by the United States Department of Energy - Nuclear Energy division, managed by Department of Energy - Idaho Field Office, and contracted to the Idaho National Laboratory's Management and Operations Contractor - Battelle Energy Alliance. Program has been at Idaho since 1977 and INL subcontracts with 26 United States domestic reactor facilities (13 TRIGA facilities, 9 plate fuel facilities, 2 AGN facilities, 1 Pulstar fuel facility, 1 Critical facility). University has not shipped fuel since 1968 and as such, we have no present procedures for shipping spent fuel. In addition: floor loading rate is unknown, many interferences must be removed to allow direct access to the reactor tank, floor space in the reactor cell is very limited, pavement ends inside our fence; some of the surface is not finished. The whole approach is narrow, curving and downhill. A truck large enough to transport the cask cannot pull into the lot and then back out (nearly impossible / refused by drivers); a large capacity (100 ton), long boom crane would have to be used due to loading dock obstructions. Access to the entrance door is on a sidewalk. The campus uses it as a road for construction equipment, deliveries and security response. Large trees are on both sides of sidewalk. Spent fuel shipments have never been done, no procedures approved or in place, no approved casks, no accident or safety analysis for spent fuel loading. Any cask assembly used in this facility will have to be removed from one crane, moved on the floor and then attached to another crane to get from the staging area to the reactor room. Reactor

  7. Advanced Reactor Development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Giessing, D. F.; Griffith, J. D.; McGoff, D. J.; Rosen, Sol [U. S. Department of Energy, Texas (United States)

    1990-04-15

    In the United States, three technologies are employed for the new generation of advanced reactors. These technologies are Advanced Light Water Reactors (A LWRs) for the 1990s and beyond, the Modular High Temperature Gas Reactor (M HTGR) for commercial use after the turn of the century, and Liquid Metal Reactors (LWRs) to provide energy production and to convert reactor fission waste to a more manageable waste product. Each technology contributes to the energy solution. Light Water Reactors For The 1990s And Beyond--The U. S. Program The economic and national security of the United States requires a diversified energy supply base built primarily upon adequate, domestic resources that are relatively free from international pressures. Nuclear energy is a vital component of this supply and is essential to meet current and future national energy demands. It is a safe, economically continues to contribute to national energy stability, and strength. The Light Water Reactor (LWR) has been a major and successful contributor to the electrical generating needs of many nations throughout the world. It is being counted upon in the United States as a key to revitalizing nuclear energy option in the 1990s. In recent years, DOE joined with the industry to ensure the availability and future viability of the LWR option. This national program has the participation of the Nation's utility industry, the Electric Power Research Institute (EPRI), and several of the major reactor manufacturers and architect-engineers. Separate but coordinated parts of this program are managed by EPRI and DOE.

  8. Design of a redundant meteorological station for a BWR reactor

    International Nuclear Information System (INIS)

    Ramirez S, R.; Celis del Angel, L.; Bucio, F.; Rivero, T.; Palacios, J.

    2008-01-01

    In this work the design of a meteorological station for a reactor type BWR is proposed. Two independent channels of data acquisition that allow him to have a bigger readiness is exposed. It is incorporate sensors without mobile parts to measure speed, wind direction and pluvial precipitation. It also counts, with sensors of global solar radiation, net radiation, barometric pressure, relative humidity and ambient temperature; with them they are possible to be calculated, moreover, other variables as temperature differential, dew point and atmospheric stability. The sensors are placed on a tower to different heights and send their information (each second) to a local registration system, the one which in turn, it remits the data to the monitoring office so that a computer is linked with the system, display and management the information in real time and automatic way. The redundant structure allows that in the event of maintenance the data acquisition is not interrupted, even if the information is transferred to another place. In all the station sections it is used protocols of standard communication to allow that a great quantity of devices can be connected without major problem. The above-mentioned would allow to the operators in the control room to have reliable information during the whole time of the reactor operation. (Author)

  9. Cooling of nuclear power stations with high temperature reactors and helium turbine cycles

    International Nuclear Information System (INIS)

    Foerster, S.; Hewing, G.

    1977-01-01

    On nuclear power stations with high temperature reactors and helium turbine cycles (HTR-single circuits) the residual heat from the energy conversion process in the primary and intermediate coolers is removed from cycled gas, helium. Water, which is circulated for safety reasons through a closed circuit, is used for cooling. The primary and intermediate coolers as well as other cooling equipment of the power plant are installed within the reactor building. The heat from the helium turbine cycle is removed to the environment most effectively by natural draught cooling towers. In this way a net plant efficiency of about 40% is attainable. The low quantities of residual heat thereby produced and the high (in comparison with power stations with steam turbine cycles) cooling agent pressure and cooling water reheat pressure in the circulating coolers enable an economically favourable design of the overall 'cold end' to be expected. In the so-called unit range it is possible to make do with one or two cooling towers. Known techniques and existing operating experience can be used for these dry cooling towers. After-heat removal reactor shutdown is effected by a separate, redundant cooling system with forced air dry coolers. The heat from the cooling process at such locations in the power station is removed to the environment either by a forced air dry cooling installation or by a wet cooling system. (orig.) [de

  10. Holding of the public hearing concerning the alteration in reactor installations (addition of Unit 3 and 4) in the Genkai Nuclear Power Station of Kyushu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1984-01-01

    The Nuclear Safety Commission held a public hearing concerning the addition of Unit 3 and 4 in Kyushu Electric's Genkai Nuclear Power Station in Karatsu City, Saga prefecture, on June 18th, 1984. The selected persons (and other attendants) expressed opinions etc. and personnel in the Ministry of International Trade and Industry answered them. Results of the public hearing are to be taken into conservation in NSC's safety examination. The following are described concerning the public hearing held: date and place, participants, hearing program, documents distributed, names of the persons expressing opinions etc. and the respective summary items of opinions etc. (Mori, K.)

  11. Analysis of a station blackout transient at the Kori units 3/4

    International Nuclear Information System (INIS)

    Bang, Young Seok; Kim, Hho Jung

    1992-01-01

    A transient analysis of station blackout accident is performed to evaluate the plant specific capability to cope with the accident at the Kori Units 3/4. The RELAP5/MOD3/5m5 code and full three loop modelling scheme are used in the calculation. The leak flow from reactor coolant system due to a failure of reactor coolant pump seal following the accident is assumed to be 25 gpm and the turbine driven aux feedwater unavailable. As a result, it is found that no core uncovery occurs in the plant until 7100 sec following a station blackout, the steam generator has a decay heat removal capability until 3100 sec, and the natural circulation over the reactor coolant loop until the complete loop seal voiding are observed. And the Nuclear Plant Analyzer is used and found to be effective in improving the phenomenological understanding on the accident

  12. Space vehicle field unit and ground station system

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Delapp, Jerry; Proicou, Michael; Seitz, Daniel; Michel, John; Enemark, Donald

    2017-09-19

    A field unit and ground station may use commercial off-the-shelf (COTS) components and share a common architecture, where differences in functionality are governed by software. The field units and ground stations may be easy to deploy, relatively inexpensive, and be relatively easy to operate. A novel file system may be used where datagrams of a file may be stored across multiple drives and/or devices. The datagrams may be received out of order and reassembled at the receiving device.

  13. Black Fox Station, Units 1 and 2. Application for construction permits and operating licenses

    International Nuclear Information System (INIS)

    1975-01-01

    An application to construct and operate Black Fox Station, Units 1 and 2, is presented. The two BWR type reactors will have a rated core thermal power of 3579 MW(t) and a net electrical power of approximately 1150 MW(e). The facility will be located in Inola Township, 23 miles east of Tulsa on the east side of the Verdigris River in Rogers County, Oklahoma

  14. Technical Specifications, Comanche Peak Steam Electric Station, Unit 1 (Docket No. 50-445)

    International Nuclear Information System (INIS)

    1990-04-01

    The Technical Specifications for Comanche Peak Steam Electric Station, Unit 1 were prepared by the US Nuclear Regulatory Commission. They set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility, as set forth in Section 50.36 of Title 10 of the Code of Federal Regulations Part 50, for the protection of the health and safety of the public

  15. Construction of Shika Nuclear Power Station Unit No.2 of the Hokuriku Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Yamanari, Shozo; Miyahara, Ryohei; Umezawa, Takeshi; Teshiba, Ichiro

    2006-01-01

    Construction of the Shika Nuclear Power Station Unit No.2 of the Hokuriku Electric Power Co., Inc. (advanced boiling-water reactor; output: 1.358 mega watts) was begun in August 1999 and it will resume commercial operation in March 2006 as scheduled. Hitachi contributed effectually toward realizing the project with supply of a complete set of the advanced nuclear reactor and turbine-generator system with the latest design and construction technology in harmony. Large-scale modular structures for installation and a computer-aided engineering system for work procedure and schedule management were applied with the utmost priority placed on work efficiency, safety and quality assurance. (T.Tanaka)

  16. Station black out of Fukushima Daiichi Nuclear Power Station Unit 1 was not caused by tsunamis

    International Nuclear Information System (INIS)

    Ito, Yoshinori

    2013-01-01

    Station black out (SBO) of Fukushima Daiichi Nuclear Power Station Unit 1 would be concluded to be caused before 15:37 on March 11, 2011 because losses of emergency ac power A system was in 15:36 and ac losses of B system in 15:37 according to the data published by Tokyo Electric Power Co. (TEPCO) in May 10, 2013. Tsunami attacked the site of Fukushima Daiichi Nuclear Power Station passed through the position of wave amplitude meter installed at 1.5 km off the coast after 15:35 and it was also recognized tsunami arrived at the coast of Unit 4 sea side area around in 15:37 judging from a series of photographs taken from the south side of the site and general knowledge of wave propagation. From a series of photographs and witness testimony, tsunami didn't attack Fukushima Daiichi Nuclear Power Station uniformly and tsunami's arrival time at the site of Unit 1 would be far later than arrival time at the coast of Unit 4 sea side area, which suggested it would be around in 15:39. TEPCO insisted tsunami passed through 1.5 km off the coast around in 15:33 and clock of wave amplitude meter was incorrect, which might be wrong. Thus SBO of Fukushima Daiichi Nuclear Power Station Unit 1 occurred before tsunami's arrival at the site of Unit 1 and was not caused by tsunami. (T. Tanaka)

  17. Experience with reactor power cutback system at Palo Verde nuclear generating station

    International Nuclear Information System (INIS)

    Chari, D.R.; Rec, J.R.; Simoni, L.P.; Eimar, R.L.; Sowers, G.W.

    1987-01-01

    Palo Verde Nuclear Generating Station (PVNGS) is a three unit site which illustrates System 80 nuclear steam supply system (NSSS) design. The System 80 NSSS is the Combustion Engineering (C-E) standard design rated at 3817 Mwth. PVNGS Units 1 and 2 achieved commercial operation on February 13, 1986 and September 22, 1986, respectively, while Unit 3 has a forecast date for commercial operation in the third quarter of 1987. The System 80 design incorporates a reactor power cutback system (RPCS) feature which reduces plant trips caused by two common initiating events: loss of load/turbine trip (LOL) and loss of one main feedwater pump (LOMFWP). The key design objective of the RPCS is to improve overall plant availability and performance, while minimizing challenges to the plant safety system

  18. Control unit of a nuclear reactor

    International Nuclear Information System (INIS)

    Desfontaines, Guy; Le Helloco, Michel.

    1981-01-01

    Control unit comprising multiple leak-tight vessels, in communication with the inside of the reactor vessel, extending this vessel above its cover, in the vertical direction and each one enclosing a mechanism for moving a cluster of material absorbing the neutrons in the reactor core, actuated by a motor. This control unit is of reduced height above the vessel cover and provides efficient protection of the leak tight containments and the mechanisms in the event of earthquakes, easy removal and refitting of the vessel cover, good ventilation of the power devices of the mechanisms without the use of a complex ventilation system, efficient thermal insulation of the leak-tight containments assembly, as well as easy access to the motors and mechanism located in the leak-tight containment for carrying out any maintenance and repairs that might be required [fr

  19. Reactor containment and reactor safety in the United States

    International Nuclear Information System (INIS)

    Kouts, H.

    1986-01-01

    The reactor safety systems of two reactors are studied aiming at the reactor containment integrity. The first is a BWR type reactor and is called Peachbottom 2, and the second is a PWR type reactor, and is called surry. (E.G.) [pt

  20. Culham conceptual Tokamak reactor MkII. Conceptual layout of buildings for a twin reactor power station

    International Nuclear Information System (INIS)

    Guthrie, J.A.S.; Harding, N.H.

    1981-01-01

    This paper discusses the conceptual design of the nuclear complex of a 2400 MWe twin fusion reactor power station utilising common services and a single containment building. The design is based upon environmental and maintenance logistical requirements, the provision of adequate storage, workshop and construction facilities and the constraints imposed by the geometry of the main and auxiliary reactor coolant systems. (author)

  1. Failure investigation of stem of valve disc in reactor recirculation system of TAPS Unit-1

    International Nuclear Information System (INIS)

    Ramadasan, E.; Bahl, J.K.; Sivaramakrishnan, K.S.

    1986-01-01

    Failure analysis was carried out of failed 17-4 PH stainless steel stem of the valve disc in reactor recirculation system of Unit-1 of Tarapur Atomic Power Station. The examination revealed that the stem failed due to fatigue, accelerated by corrosion. Recommendations have been made to avoid such failures. (author)

  2. Summary of commissioning of Hamaoka Nuclear Power Station Unit No.5

    International Nuclear Information System (INIS)

    Wakunaga, T.; Sekine, Y.; Yamada, K.; Nakamura, Y.; Kawahara, M.

    2006-01-01

    The Hamaoka Nuclear Power Station Unit No.5 was put into commercial operation in January 2005, which is the 1380 MWe advanced boiling water reactor (ABWR) incorporating design improvements and latest technologies of safer operation, reliability and maintenance. For example, S-FMCRD (Sealless Fine-Motion Control Rod Drive) was equipped to eliminate the use of seal housing by adopting a magnetic coupling and also ASD (Adjustable Speed Drive- the multiple drive power supply to reactor internal pumps) that can drive two or three Recirculation Internal Pumps with a large-capacity inverter. The reactor start-up tests were performed about for eleven months from February 2004 to confirm the plant's required performance including design change points. (T. Tanaka)

  3. FIND: Douglas Point Nuclear Generating Station, Units 1 and 2

    International Nuclear Information System (INIS)

    Moore, M.M.

    1975-12-01

    This index is presented as a guide to microfiche items 1 through 136 in Docket 50448, which was assigned to Potomac Electric Power Company's Application for Licenses to construct and operate Douglas Point Nuclear Generating Station, Units 1 and 2. Information received from August, 1973 through July, 1975 is included

  4. Technical Specifications: Clinton Power Station, Unit No. 1 (Docket No. 50-461): Appendix ''A'' to License No. NPF-62

    International Nuclear Information System (INIS)

    1987-04-01

    The Clinton Power Station, Unit No. 1 Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR 50 for the protection of the health and safety of the public

  5. Technical Specifications, Seabrook Station, Unit 1 (Docket No. 50-443): Appendix ''A'' to License No. NPF-67

    International Nuclear Information System (INIS)

    1989-05-01

    The Seabrook Station, Unit 1 Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public

  6. Safety evaluation report related to the operation of Shoreham Nuclear Power Station, Unit No. 1. Docket No. 50-322

    International Nuclear Information System (INIS)

    1983-02-01

    Supplement No. 3 to the Safety Evaluation Report of Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have come to light since the previous supplement was issued

  7. CNSS plant concept, capital cost, and multi-unit station economics

    Energy Technology Data Exchange (ETDEWEB)

    1984-07-01

    United Engineers and Constructors (UE and C) and the Babcock and Wilcox Company (B and W) have performed several studies over the last eight years related to small integral pressurized water reactors. These reactors include the 365 MWt (100 MWe) Consolidated Nuclear Steam Generator (CNSG) and the 1200 MWt Consolidated Nuclear Steam System (CNSS). The studies, mostly performed under contract to the Oak Ridge National Laboratory, have led to a 1250 MWt (400 MWe) Consolidated Nuclear Steam System (CNSS) plant concept, with unique design and cost features. This report contains an update of earlier studies of the CNSS reactor and balance-of-plant concept design, capital costs, and multi-unit plant economics incorporating recent design developments, improvements, and post-TMI-2 upgrades. The economic evaluation compares the total system economic impact of a phased, three stage 400 MWe CNSS implementation program, i.e., a three-unit station, to the installation of a single 1200 MWe Pressurized Water Reactor (PWR) into a typical USA utility system.

  8. CNSS plant concept, capital cost, and multi-unit station economics

    International Nuclear Information System (INIS)

    1984-07-01

    United Engineers and Constructors (UE and C) and the Babcock and Wilcox Company (B and W) have performed several studies over the last eight years related to small integral pressurized water reactors. These reactors include the 365 MWt (100 MWe) Consolidated Nuclear Steam Generator (CNSG) and the 1200 MWt Consolidated Nuclear Steam System (CNSS). The studies, mostly performed under contract to the Oak Ridge National Laboratory, have led to a 1250 MWt (400 MWe) Consolidated Nuclear Steam System (CNSS) plant concept, with unique design and cost features. This report contains an update of earlier studies of the CNSS reactor and balance-of-plant concept design, capital costs, and multi-unit plant economics incorporating recent design developments, improvements, and post-TMI-2 upgrades. The economic evaluation compares the total system economic impact of a phased, three stage 400 MWe CNSS implementation program, i.e., a three-unit station, to the installation of a single 1200 MWe Pressurized Water Reactor (PWR) into a typical USA utility system

  9. Socio-economic impacts of nuclear generating stations: Crystal River Unit 3 case study

    International Nuclear Information System (INIS)

    Bergmann, P.A.

    1982-07-01

    This report documents a case study of the socio-economic impacts of the construction and operation of the Crystal River Unit 3 nuclear power station. It is part of a major post-licensing study of the socio-economic impacts at twelve nuclear power stations. The case study covers the period beginning with the announcement of plans to construct the reactor and ending in the period 1980 to 1981. The case study deals with changes in the economy, population, settlement patterns and housing, local government and public services, social structure, and public response in the study area during the construction/operation of the reactor. A regional modeling approach is used to trace the impact of construction/operation on the local economy, labor market, and housing market. Emphasis in the study is on the attribution of socio-economic impacts to the reactor or other causal factors. As part of the study of local public response to the construction/operation of the reactor, the effects of the Three Mile Island accident are examined

  10. United Kingdom and USSR reactor types

    International Nuclear Information System (INIS)

    Lewins, Jeffery

    1988-01-01

    The features of the RBMK reactor operated at Chernobyl are compared with reactor types pertinent to the UK. The UK reactors covered are in three classes: the commercial reactors now built and operated or in commission (Magnox and Advanced Gas-cooled Reactor (AGR)); the prototype Steam Generating Heavy Water Reactor (SGHWR) and Prototype Fast Reactor (PFR) that have comparable performance to commercial reactors; and the proposed Pressurised Water Reactor (PWR) or Sizewell 'B' design which, it will be recollected, is different in detail from PWRs built elsewhere. We do not include research and test reactors nor the Royal Navy PWRs. The appendices explain resonances, Doppler and Xenon effects, the reactor physics of Chernobyl and positive void coefficients all of which are relevant to the comparisons. (author)

  11. 76 FR 24538 - Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station...

    Science.gov (United States)

    2011-05-02

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-413 and 50-414; NRC-2011-0100; Docket Nos. 50-369 and 50-370; Docket Nos. 50-269, 50-270, and 50-287] Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station, Units 1 and 2; Oconee Nuclear Station, Units 1, 2, and 3...

  12. Forced vibration tests on the reactor building of a nuclear power station, 1

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Tsunoda, Tomohiko; Wakamatsu, Kunio; Kaneko, Masataka; Nakamura, Mitsuru; Kunoh, Toshio; Murahashi, Hisahiro

    1988-01-01

    Tsuruga Unit No.2 Nuclear Power Station of the Japan Atomic Power Company is the first PWR-type 4-loop plant constructed in Japan with a prestressed concrete containment vessel (PCCV). This report describes forced vibration tests carried out on the reactor building of this plant. The following were obtained as results: (1) The results of the forced vibration tests corresponded well on the whole with design values. (2) The vibration characteristics of the PCCV observed in the tests after prestressing are no different from the ones before prestressing. This shows that the vibration properties of the PCCV are practically independent of prestressing loads. (3) A seismic response analysis of the design basis earthquake was made on the design model reflecting the test results. The seismic safety of the plant was confirmed by this analysis. (author)

  13. Evaluation of River Bend Station Unit 1 Technical Specifications

    International Nuclear Information System (INIS)

    Baxter, D.E.; Bruske, S.J.

    1985-08-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the River Bend Station Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the requirements of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the River Bend T/S. Several discrepancies were identified and subsequently resolved through discussions with the cognizant NRC reviewer, NRC staff reviewers and/or utility representatives. The River Bend Station Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR and SER

  14. Evaluation of Shoreham Nuclear Power Station, Unit 1 technical specifications

    International Nuclear Information System (INIS)

    Baxter, D.E.; Bruske, S.J.

    1985-08-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Shoreham Nuclear Power Station Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the assumptions of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the Shoreham T/S. Several discrepancies were identified and subsequently resolved through discussions with the cognizant NRC reviewer, NRC staff reviewers and/or utility representatives. The Shoreham Nuclear Power Station Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR and SER

  15. Evaluation of Waterford Steam Electric Station Unit 3 technical specifications

    International Nuclear Information System (INIS)

    Baxter, D.E.; Bruske, S.J.

    1985-09-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Waterford Steam Electric Station Unit 3 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the requirements of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the Waterford T/S. Several discrepancies were identified and subsequently resolved by the cognizant NRC reviewer. Pending completion of the resolutions noted in Part 3 of this report, the Waterford Steam Electric Station Unit 3 T/S, to the extent reviewed, are in conformance with the FSAR and SER

  16. Floating nuclear heat. And power station 'Pevec' with KLT-40S type reactor plant for remote regions of Russia

    International Nuclear Information System (INIS)

    Veshnyakov, K.B.; Kiryushin, A.I.; Panov, Yu.K.; Polunichev, V.I.

    2000-01-01

    Floating small nuclear power plants power for local energy systems of littoral regions of Russia, located far from central energy system, open a new line in nuclear power development. Designing a floating power unit of a lead nuclear heat and power generating station for port Pevec at the Chuckchee national district is currently nearing completion. Most labor-intensive components are being manufactured. The co-generation NPP Pevec is to be created on the basis of a floating power unit with KLT-40S type reactor plant. KLT-40S reactor plant is based on similar propulsion plants, verified at operation of Russia's nuclear-powered civil ships, evolutionary improved by elimination of 'weak points' revealed during its prototypes operation or on the basis of safety analysis. KLT-40S reactor plant uses the most wide-spread and developed in the world practice PWR-type reactor. KLT-40S meets contemporary national and international requirements imposed to future reactor plants. The NHPS description, its main technical-economic data, environmental safety indices, basic characteristics of KLT-40S reactor plant are presented. Prospects of small NPPs utilization outside Russia, particularly as an energy source for sea water desalination, are considered. (author)

  17. 76 FR 19148 - PSEG Nuclear, LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Units 1...

    Science.gov (United States)

    2011-04-06

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-272, 50-311, 50-354; NRC-2009-0390 and NRC-2009-0391] PSEG Nuclear, LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Units 1 and 2..., DPR-70, and DPR-75 for an additional 20 years of operation for the Hope Creek Generating Station (HCGS...

  18. Energy balance and efficiency of power stations with a pulsed Tokamak reactor

    International Nuclear Information System (INIS)

    Davenport, P.A.; Mitchell, J.T.D.; Darvas, J.; Foerster, S.; Sack, B.

    1976-06-01

    The energy balance of a fusion power station based on the TOKAMAK concept is examined with the aid of a model comprising three distinct elements: the reactor, the energy converter and the reactor operation equipment. The efficiency of each element is expressed in terms of the various energy flows and the product of these efficiencies gives the net station efficiency. The analysis takes account of pulsed operation and has general applicability. Numerical values for the net station efficiency are derived from detailed estimates of the energy flows for a TOKAMAK reactor and its auxiliary equipment operating with advanced energy converters. The derivation of these estimates is given in eleven appendices. The calculated station efficiencies span ranges similar to those quoted for the current generation of fission reactors, though lower than those predicted for HTGR and LMFBR stations. Credible parameter domains for pulsed TOKAMAK operation are firmly delineated and factors inimical to improved performance are indicated. It is concluded that the net thermal efficiency of a TOKAMAK reactor power station based on present designs and using advanced thermal converters will be approximately 0.3 and is unlikely to exceed 0.33. (orig.) [de

  19. Manufacture of steam generator units and components for the AGR power stations at Heysham II and Torness

    Energy Technology Data Exchange (ETDEWEB)

    Glasgow, J R; Parkin, K [N.E.I. Nuclear Systems Ltd., Gateshead, Tyne and Wear (United Kingdom)

    1984-07-01

    The current AGR Steam Generator is a development of the successful once-through units supplied for the Oldbury Magnox and Hinkley B/Hunterston B AGR power stations. In this paper a brief outline of the evolution of the steam generator design from the earlier gas cooled reactor stations is presented. A description of the main items of fabrication development is given. The production facilities for the manufacture of the units are described. Reference is also made to some of the work on associated components. The early experience on the construction site of installation of the steam generators is briefly outlined. (author)

  20. Manufacture of steam generator units and components for the AGR power stations at Heysham II and Torness

    International Nuclear Information System (INIS)

    Glasgow, J.R.; Parkin, K.

    1984-01-01

    The current AGR Steam Generator is a development of the successful once-through units supplied for the Oldbury Magnox and Hinkley B/Hunterston B AGR power stations. In this paper a brief outline of the evolution of the steam generator design from the earlier gas cooled reactor stations is presented. A description of the main items of fabrication development is given. The production facilities for the manufacture of the units are described. Reference is also made to some of the work on associated components. The early experience on the construction site of installation of the steam generators is briefly outlined. (author)

  1. French experience in operating pressurized water reactor power stations. Ten years' operation of the Ardennes power station

    International Nuclear Information System (INIS)

    Teste du Bailler, A.; Vedrinne, J.F.

    1978-01-01

    In the paper the experience gained over ten years' operation of the Ardennes (Chooz) nuclear power station is summarized from the point of view of monitoring and control equipment. The reactor was the first pressurized water reactor to be installed in France; it is operated jointly by France and Belgium. The equipment, which in many cases consists of prototypes, was developed for industrial use and with the experience that has now been gained it is possible to evaluate its qualities and defects, the constraints which it imposes and the action that has to be taken in the future. (author)

  2. Reactor Core Internals Replacement of Ikata Units 1 and 2

    International Nuclear Information System (INIS)

    Ikeda, K.; Ishikawa, T.; Miyoshi, T.; Takagi, T.

    2012-01-01

    This paper presents an overview of the reactor core internals replacement project carried out at the Ikata Nuclear Power Station in Japan, which was the first of its kind among PWRs in the world. Failure of baffle former bolts was first reported in 1989 at Bugey 2 in France. Since then, similar incidents have been reported in Belgium and in the U.S., but not in Japan. However, the possibility of these bolts failing in Japanese plants cannot be denied in the future as operating hours increase. Ageing degradation mechanisms for the reactor core internals include irradiation-assisted stress corrosion cracking of baffle former bolts and mechanical wear of control rod guide cards. Two different approaches can be taken to address these ageing issues: to inspect and repair whenever a problem is found; and to replace the entire core internals with those of a new design having advanced features to prevent ageing degradation problems. The choice of our company was the latter. This paper explains the reasons for the choice and summarizes the replacement project activities at Ikata Units 1 and 2 as well as the improvements incorporated in the new design. (author)

  3. Results of the 5th regular inspection of Unit 1 in the Hamaoka Nuclear Power Station

    International Nuclear Information System (INIS)

    1983-01-01

    The 5th regular inspection of Unit 1 in the Hamaoka Nuclear Power Station was carried out from March 27 to July 27, 1982. Inspection was made on the reactor proper, reactor cooling system, instrumentation/control system, radiation control facility, etc. By the examinations of external appearance, leakage, performance, etc., no abnormality was observed. In the regular inspection, personnel exposure dose was all below the permissible level. The works done during the inspection were the following: the replacement of control rod drives, the replacement of core support-plate plugs, the repair of steam piping, steam extraction pipes and feed water heaters, the repair of a waste-liquid concentrator, the installation of barriers and leak detectors, the installation of drain sump monitors in a containment vessel, the replacement of concentrated liquid waste pumps, the employment of type B fuel. (Mori, K.)

  4. Concrete works in Igata Nuclear Power Station Unit-2

    International Nuclear Information System (INIS)

    Yanase, Hidemasa

    1981-01-01

    The construction of Igata Nuclear Power Station Unit-2 was started in February, 1978, and is scheduled to start the commercial operation in March, 1982. Construction works are to be finished by August, 1981. The buildings of Igata Nuclear Power Station are composed of large cross section concrete for the purpose of shielding and the resistance to earth quakes. In response to this, moderate heat Portland cement has been employed, and in particular, the heat of hydration has been controlled. In this report, also fine and coarse aggregates, admixtures and chemical admixtures, and further, the techniques to improve the quality are described. Concrete preparation plant was installed in the power station site. Fresh concrete was carried with agitator body trucks from the preparation plant to the unloading point, and from there with pump trucks. Placing of concrete was carried out, striving to obtain homogeneous and dense concrete by using rod type vibrators. Further, concrete was placed in low slump (8 - 15 cm) to reduce water per unit volume, and its temperature was also carefully controlled, e.g., cold water (temperature of mixing water was about 10 deg C) was used in summer season (end of June to end of September). As a result, the control target was almost satisfied. As for testing and inspection, visual appearance test was done as well as material testing in compliance with JIS and other standards. (Wakatsuki, Y.)

  5. Commerical electric power cost studies. Capital cost addendum multi-unit coal and nuclear stations

    International Nuclear Information System (INIS)

    1977-09-01

    This report is the culmination of a study performed to develop designs and associated capital cost estimates for multi-unit nuclear and coal commercial electric power stations, and to determine the distribution of these costs among the individual units. This report addresses six different types of 2400 MWe (nominal) multi-unit stations as follows: Two Unit PWR Station-1139 MWe Each, Two Unit BWR Station-1190 MWe Each, Two Unit High Sulfur Coal-Fired Station-1232 MWe Each, Two Unit Low Sulfur Coal-Fired Station-1243 MWe Each, Three Unit High Sulfur Coal-Fired Station-794 MWe Each, Three Unit Low Sulfur Coal-Fired Station-801 MWe Each. Recent capital cost studies performed for ERDA/NRC of single unit nuclear and coal stations are used as the basis for developing the designs and costs of the multi-unit stations. This report includes the major study groundrules, a summary of single and multi-unit stations total base cost estimates, details of cost estimates at the three digit account level and plot plan drawings for each multi-unit station identified

  6. UK experience of safety requirements for thermal reactor stations

    International Nuclear Information System (INIS)

    Matthews, R.R.; Dale, G.C.; Tweedy, J.N.

    1977-01-01

    The paper summarises the development of safety requirements since the first of the Generating Boards' Magnox reactors commenced operation in 1962 and includes A.G.R. safety together with the preparation of S.G.H.W.R. design safety criteria. It outlines the basic principles originally adopted and shows how safety assessment is a continuing process throughout the life of a reactor. Some description is given of the continuous effort over the years to obtain increased safety margins for existing and new reactors, taking into account the construction and operating experience, experimental information, and more sophisticated computer-aided design techniques which have become available. The main safeguards against risks arising from the Generating Boards' reactors are the achievement of high standards of design, construction and operation, in conjunction with comprehensive fault analyses to ensure that adequate protective equipment is provided. The most important analyses refer to faults which can lead to excessive fuel element temperatures arising from an increase in power or a reduction in cooling capacity. They include the possibility of unintended control rod withdrawal at power or at start-up, coolant flow failure, pressure circuit failure, loss of boiler feed water, and failure of electric power. The paper reviews the protective equipment, and the policy for reactor safety assessments which include application of maximum credible accident philosophy and later the limited use of reliability and probability methods. Some of the Generating Boards' reactors are now more than half way through their planned working lives and during this time safety protective equipment has occasionally been brought into operation, often for spurious reasons. The general performance, of safety equipment is reviewed particularly for incidents such as main turbo-alternator trip, circulator failure, fuel element failures and other similar events, and some problems which have given rise to

  7. 75 FR 36700 - Exelon Generation Company, LLC; Three Mile Island Nuclear Station, Unit 1; Environmental...

    Science.gov (United States)

    2010-06-28

    ...; Three Mile Island Nuclear Station, Unit 1; Environmental Assessment and Finding of No Significant Impact... Company, LLC (the licensee), for operation of Three Mile Island Nuclear Station, Unit 1 (TMI-1), located... Three Mile Island Nuclear Station, Units 1 and 2, NUREG-0552, dated December 1972, and Generic...

  8. Water electrolysis plants for hydrogen and oxygen production. Shipped to Tsuruga Power Station Unit No.1, and Tokai No.2 power station, the Japan Atomic Power Co

    International Nuclear Information System (INIS)

    Ueno, Syuichi; Sato, Takao; Ishikawa, Nobuhide

    1997-01-01

    Ebara's water electrolysis plants have been shipped to Tsuruga Power Station Unit No.1, (H 2 generation rate: 11 Nm 3 /h), and Tokai No.2 Power Station (H 2 generation rate: 36 Nm 3 /h), Japan Atomic Power Co. An outcome of a business agreement between Nissho Iwai Corporation and Norsk Hydro Electrolysers (Norway), this was the first time that such water electrolysis plants were equipped in Japanese boiling water reactor power stations. Each plant included an electrolyser (for generating hydrogen and oxygen), an electric power supply, a gas compression system, a dehumidifier system, an instrumentation and control system, and an auxiliary system. The plant has been operating almost continuously, with excellent feedback, since March 1997. (author)

  9. Poultry litter power station in the United Kingdom

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Poultry litter has presented a waste disposal problem to the poultry industry in many parts of the United Kingdom. The plant at Eye is a small to medium scale power station, fired using poultry litter. The 12.7 MW of electricity generated is supplied, through the local utility, to the National Grid. The spent litter that constitutes the fuel is made up of excrement and animal bedding (usually 90% excrement and 10% straw or wood shavings). It comes from large climate-controlled buildings (broiler houses) where birds, reared for meat production, are allowed to roam freely. (UK)

  10. A STRONGLY COUPLED REACTOR CORE ISOLATION COOLING SYSTEM MODEL FOR EXTENDED STATION BLACK-OUT ANALYSES

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Laboratory; Zhang, Hongbin [Idaho National Laboratory; Zou, Ling [Idaho National Laboratory; Martineau, Richard Charles [Idaho National Laboratory

    2015-03-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoid overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety

  11. Development of the fuel-cycle costs in nuclear power stations with light-water reactors

    International Nuclear Information System (INIS)

    Brosch, R.; Moraw, G.; Musil, G.; Schneeberger, M.

    1976-01-01

    The authors investigate the fuel-cycle costs in nuclear power stations with light-water reactors in the Federal Republic of Germany in the years 1966 to 1976. They determine the effect of the price development for the individual components of the nuclear fuel cycle on the fuel-cycle costs averaged over the whole power station life. Here account is taken also of inflation rates and the change in the DM/US $ parity. In addition they give the percentage apportionment of the fuel-cycle costs. The authors show that real fuel-cycle costs for nuclear power stations with light-water reactors in the Federal Republic of Germany have risen by 11% between 1966 and 1976. This contradicts the often repeated reproach that fuel costs in nuclear power stations are rising very steeply and are no longer competitive. (orig.) [de

  12. Technical limits on performance reserves and life expectancy in nuclear power stations with light water reactors

    International Nuclear Information System (INIS)

    Wanner, R.; Brosi, S.; Duijvestijn, G.

    1990-01-01

    The safety margin (i.e. the difference between the loads equipment can take and those actually imposed on components) in a reactor pressure vessel is a major factor in the life expectancy of a nuclear power station. This safety margin is reduced considerably by reductions in the toughness of equipment caused by neutron irradiation and growth of cracks. Once the minimum safety margin is infringed, the nuclear power station is at the end of its working life. 13 figs., 11 refs

  13. A large economic liquid metal reactor for United States utilities

    International Nuclear Information System (INIS)

    Rodwell, E.

    1985-01-01

    The United States has demonstrated its ability to build and operate small and medium sized liquid metal reactors and continues to operate the Experimental Breeder Reactor II and the Fast Flux Test Facility to demonstrate long life fuel designs. Similar-sized liquid metal reactors in Europe have been followed by a step-up to the 1200 MWe capacity of the Superphenix plant. To permit the United States to make a similar step-up in capacity, a 1320 MWe liquid metal reactor plant has been designed with the main emphasis on minimizing the specific capital cost in order to be competitive with light water reactor plant and fossil plant alternatives. The design is based on a four parallel heat transport loops arrangement and complies with current regulatory requirements. The primary heat transport loops are now being integrated into the reactor vessel to achieve further reduction in the capital cost

  14. Safety evaluation report related to the operation of Beaver Valley Power Station, Unit 2 (Docket No. 50-412)

    International Nuclear Information System (INIS)

    1987-03-01

    This report, Supplement No. 4 to the Safety Evaluation Report for the application filed by the Duquesne Light Company et al. (the applicant) for a license to operate the Beaver Valley Power Station, Unit 2 (Docket No. 50-412), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved when the Safety Evaluation Report and its Supplements 1, 2, and 3 were published

  15. Safety evaluation report related to the operation of Beaver Valley Power Station, Unit 2 (Docket No. 50-412)

    International Nuclear Information System (INIS)

    1986-05-01

    This report, Supplement No. 1 to the Safety Evaluation Report for the application filed by the Duquesne Light Company et al. (the applicant) for a license to operate the Beaver valley Power Station, Unit 2 (Docket No. 50-412), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time the Safety Evaluation Report was published

  16. Safety Evaluation Report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322)

    International Nuclear Information System (INIS)

    1989-04-01

    Supplement 10 (SSER 10) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  17. 75 FR 6223 - PSEG Nuclear LLC; Hope Creek Generating Station and Salem Nuclear Generating Station, Unit Nos. 1...

    Science.gov (United States)

    2010-02-08

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-272, 50-311 and 50-354; NRC-2010-0043] PSEG Nuclear LLC; Hope Creek Generating Station and Salem Nuclear Generating Station, Unit Nos. 1 and 2...-70, and DPR-75, issued to PSEG Nuclear LLC (PSEG, the licensee), for operation of the Hope Creek...

  18. Loviisa Power Station - final disposal of reactor waste

    International Nuclear Information System (INIS)

    Vaajasaari, Marja

    1987-01-01

    This report is based on the earlier published results of research into the properties and function of the candidate backfill materials. The results of the backfill material research, and the sealing concepts presented in the literature have been evaluatedand applied to sealing the Loviisa Reactor Waste Repository taking into consideration the local rock and groundwater conditions. It is emphasised that the applicability of the presented backfill materials and plugs to repository sealing must still be carefully evaluated on the basis of detailed studies and the local environment. 24 refs

  19. Mathematical modeling of a fast-breeder-reactor generating unit

    International Nuclear Information System (INIS)

    Kim, V.E.; Golovach, E.A.; Senkin, V.I.

    1984-01-01

    Dynamics equations are given for a reactor, intermediate heat exchanger, steam generator, and turbogenerator. The dynamic characteristics of the generating unit are described when perturbations occur in grid frequency, turbine valves, and feedwater consumption

  20. 78 FR 77726 - Exelon Generation Company, LLC Three Mile Island Nuclear Station, Unit 1

    Science.gov (United States)

    2013-12-24

    ... Three Mile Island Nuclear Station, Unit 1 AGENCY: Nuclear Regulatory Commission. ACTION: Exemption... License No. DPR-50, which authorizes operation of the Three Mile Island Nuclear Station, Unit 1 (TMI-1... Facility Operating License No. DPR-50, which authorizes operation of the Three Mile Island Nuclear Station...

  1. Spring unit especially intended for a nuclear reactor core

    International Nuclear Information System (INIS)

    Brown, S.J.; Gorholt, Wilhelm.

    1977-01-01

    This invention relates to a spring unit or a group of springs bearing up a sprung mass against an unsprung mass. For instance, a gas cooled high temperature nuclear reactor includes a core of relatively complex structure supported inside a casing or vessel forming a shielded cavity enclosing the reactor core. This core can be assembled from a large number of graphite blocks of different sizes and shapes joined together to form a column. The blocks of each column can be fixed together so as to form together a loose side support. Under the effect of thermal expansion and contraction, shrinkage resulting from irradiation, the effects of pressure and the contraction and creep of the reactor vessel, it is not possible to confine all the columns of the reactor core in a cylindrical rigid structure. Further, the working of the nuclear reactor requires that the reactivity monitoring components may be inserted at any time in the reactor core. A standard process consists in mounting this loosely assembled reactor core in a floating manner by keeping it away from the vessel enclosure around it by means of a number of springs fitted between the lateral surfaces of the core unit and the reactor vessel. The core may be considered as a spring supported mass whereas, relatively, the reactor vessel is a mass that is not flexibly supported [fr

  2. Site preparation and excavation works for the foundation of station main building among construction works for No. 1 unit in Kashiwazaki-Kariwa Nuclear Pwer Station

    International Nuclear Information System (INIS)

    Ueyama, Koreyasu

    1982-01-01

    Tokyo Electric Power Co., Inc., is planning the nuclear power station of final capacity 8,000 MW (7 units) in the region spread over Kashiwazaki City and Kariwa Village in Niigata Prefecture. For No. 1 unit (1100 MWe BWR), the reactor installation license was obtained in September, 1977, the site preparation and road construction started in April, 1978, and harbour construction works started in August, 1979. The construction works are now at the peak, and the overall progressing rate as of the end of June, 1982, is about 51 %. The site is a hilly region of dune along the coast of the Sea of Japan, and No. 1 unit is located in the southern part of the site. This paper reports on the outline of the project, site preparation and excavation works for the foundation of the station main building. For the site preparation and the excavation works for the foundation the main building, the shape of slope cutting, the design of landslide-preventing wall for the vertical excavation for the reactor complex building, and the construction plan and the result are reported. For underground water impermeable wall works, its outline, groundwater condition, groundwater simulation analysis, the investigation of wall installation, the wall structure and construction are described in detail. Also the outline of the control of slope face measurement, the control standards and the measured results are reported. (Wakatsuki, Y.)

  3. Site preparation and excavation works for the foundation of station main building among construction works for No. 1 unit in Kashiwazaki-Kariwa Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Ueyama, Koreyasu [Tokyo Electric Power Co., Inc. (Japan)

    1982-09-01

    Tokyo Electric Power Co., Inc., is planning the nuclear power station of final capacity 8,000 MW (7 units) in the region spread over Kashiwazaki City and Kariwa Village in Niigata Prefecture. For No. 1 unit (1100 MWe BWR), the reactor installation license was obtained in September, 1977, the site preparation and road construction started in April, 1978, and harbour construction works started in August, 1979. The construction works are now at the peak, and the overall progressing rate as of the end of June, 1982, is about 51 %. The site is a hilly region of dune along the coast of the Sea of Japan, and No. 1 unit is located in the southern part of the site. This paper reports on the outline of the project, site preparation and excavation works for the foundation of the station main building. For the site preparation and the excavation works for the foundation the main building, the shape of slope cutting, the design of landslide-preventing wall for the vertical excavation for the reactor complex building, and the construction plan and the result are reported. For underground water impermeable wall works, its outline, groundwater condition, groundwater simulation analysis, the investigation of wall installation, the wall structure and construction are described in detail. Also the outline of the control of slope face measurement, the control standards and the measured results are reported.

  4. Investigation reactor D-2201 polypropylene production unit using nuclear technique

    International Nuclear Information System (INIS)

    Wibisono; Sugiharto; Jefri Simanjuntak

    2016-01-01

    D-2201 reactor is a unit in the polypropylene production process at Pertamina Refinery Unit III Plaju. Reactor with a capacity of 45 kilo liter is not operated in normal operation condition. The validity of liquid level indicator on the unit is doubtful when refers to the production quality. Gamma source of 150 mCi Cobalt-60 and a scintillation detector had been used to scan the outer wall of the reactor to detect the liquid level during operation with a capacity of 40 %. Measurements were made along the reactor walls with 25 mm scan resolution and 5 seconds time sampling. Experiment result shows that the liquid level at the position of 40 % and at normal level position are not observed. Investigation did not find the liquid level above normal. D-2201 is diagnose not normal operating condition diagnosed with liquid abundant passed the recommended limits. Investigation advised to repair or to calibrate the liquid level indicator which is currently installed. (author)

  5. Analysis of internal events for the Unit 1 of the Laguna Verde nuclear power station

    International Nuclear Information System (INIS)

    Huerta B, A.; Aguilar T, O.; Nunez C, A.; Lopez M, R.

    1993-01-01

    This volume presents the results of the starter event analysis and the event tree analysis for the Unit 1 of the Laguna Verde nuclear power station. The starter event analysis includes the identification of all those internal events which cause a disturbance to the normal operation of the power station and require mitigation. Those called external events stay beyond the reach of this study. For the analysis of the Laguna Verde power station eight transient categories were identified, three categories of loss of coolant accidents (LOCA) inside the container, a LOCA out of the primary container, as well as the vessel break. The event trees analysis involves the development of the possible accident sequences for each category of starter events. Events trees by systems for the different types of LOCA and for all the transients were constructed. It was constructed the event tree for the total loss of alternating current, which represents an extension of the event tree for the loss of external power transient. Also the event tree by systems for the anticipated transients without scram was developed (ATWS). The events trees for the accident sequences includes the sequences evaluation with vulnerable nucleus, that is to say those sequences in which it is had an adequate cooling of nucleus but the remoting systems of residual heat had failed. In order to model adequately the previous, headings were added to the event tree for developing the sequences until the point where be solved the nucleus state. This process includes: the determination of the failure pressure of the primary container, the evaluation of the environment generated in the reactor building as result of the container failure or cracked of itself, the determination of the localization of the components in the reactor building and the construction of boolean expressions to estimate the failure of the subordinated components to an severe environment. (Author)

  6. Extended Station Blackout Analysis for VVER-1000 MWe Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, A. J.; Rao, R. S.; Lakshmanan, S. P.; Gupta, A., E-mail: avinashg@aerb.gov.in [Atomic Energy Regulatory Board, Mumbai (India)

    2014-10-15

    Post Fukushima, the plant behaviour for an extended station black-out (ESBO) scenario with only passive system availability for about 7 days has become imperative. Thermal hydraulic analysis of ESBO with the availability of passive heat removal system (PHRS), passive first stage and second stage hydro accumulators were carried out to demonstrate the design capabilities. Two different cases having primary leak rates of 2.2 tons/hr and 6.6 tons/hr were analyzed to study sustenance of natural circulation. For the study, out of 4 PHRS trains, one PHRS train was assumed to be in failure mode. The objective here is to predict the core cooling capability for a period of 7 days under ESBO conditions with the available water inventories from first and second stage hydroaccumulators only. Over simplified energy balance studies cannot ascertain sustenance of natural circulation in the primary system, steam generators (SGs) and PHRS. The analysis was carried out by using system thermal hydraulic safety code RELAP5/SCDAP/MOD 3.4. It is inferred that the inventory in the first stage accumulators and second stage accumulators compensate the leak and decay heat is removed effectively with the help of passive heat removal systems. It is also observed that even after 7 days of ESBO a large inventory is still available in the second stage accumulators and the primary system remains subcooled. (author)

  7. MINAC radiography performed on susquehanna Steam Electric Station Unit 1

    International Nuclear Information System (INIS)

    Bognet, J.C.

    1986-01-01

    Ten welds were volumetrically examined with a manual and automated ultrasonic (UT) system during a Susquehanna Steam Electric Station (SES) Unit 1 preservice inspection. The automated system had been recently developed and several problems were encountered in this first field application. The ten welds examined had a Sweepolet-to-Risor weld configuration, which further complicated the examination effort. This weld configuration has corrosion-resistant cladding applied to the outside and inside circumference and, as a result of an installation/removal/reinstallation sequence during plant construction, is often referred to as the double weld. After several attempts to obtain interpretable UT data failed (e.g., repeatable data), the examination effort was terminated. PP and L opted to pursue using the Miniature Linear Accelerator (MINAC) to perform radiographic examination. The results were referenced in the Susquehanna SES Unit 1 outage summary report and submitted to the NRC. The total effort was viewed as a complete success with no impact to the overall outage duration. All welds previously attempted by automated and manual UT were successfully examined using the MINAC

  8. Final environmental statement for Shoreham Nuclear Power Station, Unit 1: (Docket No. 50-322)

    International Nuclear Information System (INIS)

    1977-10-01

    The proposed action is the issuance of an Operating License to the Long Island Lighting Company (LILCO) for the startup and operation of the Shoreham Nuclear Power Station, Unit 1 (the plant) located on the north shore of Long Island, the State of New York, County of Suffolk, in the town of Brookhaven. The Shoreham station will employ a boiling-water reactor (BWR), which will operate at a thermal output of 2436 MW leading to a gross output of 846 MWe and a net output of about 820 MWe. The unit will be cooled by once-through flow of water from the Long Island Sound. One nuclear unit with a net capacity of 820 MWe will be added to the generating resources of the Long Island Lighting Company. This will have a favorable effect on reserve margins and provide a cost savings of approximately $62.1 million (1980 dollars) in production costs in 1980 if the unit comes on line as scheduled; additional cost savings will be realized in subsequent years. Approximately 100 acres (40 hectares) of the 500-acre (202-hectare) site of rural (mostly wooded) land owned by the applicant have been cleared. Most of this will be unavailable for other uses during at least the 40-year life of the plant. No offsite acreage has been or will be cleared. Land in the vicinity of the site has undergone some residential development that is typical for all of this area of Long Island. The operation of Shoreham Unit 1 will have insignificant impacts on this and other types of land uses in the vicinity of the site. 33 figs., 56 tabs

  9. Radiological Effluent Technical Specifications (RETS) implementation: Zion Generating Station Units 1 and 2

    International Nuclear Information System (INIS)

    Serrano, W.; Akers, D.W.; Duce, S.W.; Mandler, J.W.; Simpson, F.B.; Young, T.E.

    1985-06-01

    A review of the Radiological Effluent Technical Specifications (RETS) of the Zion Generating Station Units 1 and 2 was performed. The principal review guidelines used were NUREG-0133, ''Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants,'' and Draft 7 of NUREG-0472, Revision 3, ''Radiological Effluent Technical Specifications for Pressurized Water Reactors.'' Draft submittals were discussed with the Licensee by both EG and G and the NRC staff until all items requiring changes to the Technical Specifications were resolved. The Licensee then submitted final proposed RETS to the NRC which were evaluated and found to be in compliance with the NRC review guidelines. The proposed Offsite Dose Calculation Manual was reviewed and generally found to be consistent with the NRC review guidelines. 35 refs., 2 figs., 1 tab

  10. Ergonomic implementation and work station design for quilt manufacturing unit.

    Science.gov (United States)

    Vinay, Deepa; Kwatra, Seema; Sharma, Suneeta; Kaur, Nirmal

    2012-05-01

    Awkward, extreme and repetitive postures have been associated with work related musculoskeletal disorders and injury to the lowerback of workers engaged in quilting manufacturing unit. Basically quilt are made manually by hand stitch and embroidery on the quilts which was done in squatting posture on the floor. Mending, stain removal, washing and packaging were some other associated work performed on wooden table. their work demands to maintain a continuous squatting posture which leads to various injuries related to low back and to calf muscles. The present study was undertaken in Tarai Agroclimatic Zone of Udham Singh Nagar District of Uttarakhand State with the objective to study the physical and physiological parameters as well as the work station layout of the respondent engaged on quilt manufacturing unit. A total of 30 subjects were selected to study the drudgery involved in quilt making enterprise and to make the provision of technology option to reduce the drudgery as well as musculoskeletal disorders, thus enhancing the productivity and comfortability. Findings of the investigation show that majority of workers (93.33 per cent) were female and very few (6.66 per cent) were the male with the mean age of 24.53±6.43. The body mass index and aerobic capacity (lit/min) values were found as 21.40±4.13 and 26.02±6.44 respectively. Forty per cent of the respondents were having the physical fitness index of high average whereas 33.33 per cent of the respondents had low average physical fitness. All the assessed activities involved to make the quilt included a number of the steps which were executed using two types of work station i.e squatting posture on floor and standing posture using wooden table. A comparative study of physiological parameters was also done in the existing conditions as well as in improved conditions by introducing low height chair and wooden spreader to hold the load of quilt while working, to improve the work posture of the worker. The

  11. Loviisa power station - final disposal of reactor waste

    International Nuclear Information System (INIS)

    Kankainen, Tuovi

    1986-10-01

    This study forms a part of the research done to assess the suitability of the rapakivi granitic bedrock of the island of Haestholmen, southern Finland, for the management of reactor waste. The aim is to assess the residence time and the origin of the groundwater. In addition, microfossil analyses and conservative ion data were used in deciphering the origin of the groundwater. Fracture mineral studies were limeted to 13 C determinations on two fracture calcites. Groundwater was sampled at several levels of four drill holes, reaching to a depth of some 200 m. The isotopic results were compared with those of water from a percussion drill hole, shallow dug wells, and the Gulf of Finland. The main conclusions are based on 3 H bundances in groundwater, mean residence time of groundwater deduced from 14 C analyses, and stabile isotope content of groundwater, combined with conservative ion data. Additional information was gained from activity ratios of uranium, and sulphur isotope ratios of sulphate. The groundwater of Haestholmen consists of a surface layer of fresh water, and deeper down, of saline water. The fresh water flows and changes rapidly; most of it has precipitated and infiltrated less than 30 years ago. It intermixes with saline water only at the fresh-saline groundwater interface. The saline water underneath the intermediate zone is relatively stagnant. It mainly consists of sea water from the Litorina Sea stage, intermixed with less than 20% glacial melt water. The evolution of the Haestholmen groundwater towards its present stage began during the melting phase of the Weichselian glaciation. Then the groundwater conditions chanced, and infiltration of melt water along open fractures in the bedrock occured. During the Litorian Sea stage heavy saline Litorina sea water slowly infiltrated in the bedrock and displaced the fresh water almost totally. The Haestholmen island rose above the sea level more than 4000 years ago. Then formation of the surficial layer

  12. Case Study of Multi-Unit Risk: Multi-Unit Station Black-Out

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Kyemin; Jang, Seung-cheol [KAERI, Daejeon (Korea, Republic of); Heo, Gyunyoung [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    After Fukushima Daiichi Accident, importance and public concern for Multi-Unit Risk (MUR) or Probabilistic Safety Assessment (PSA) have been increased. Most of nuclear power plant sites in the world have more than two units. These sites have been facing the problems of MUR or accident such as Fukushima. In case of South Korea, there are generally more than four units on the same site and even more than ten units are also expected. In other words, sites in South Korea also have been facing same problems. Considering number of units on the same site, potential of these problems may be larger than other countries. The purpose of this paper is to perform case study based on another paper submitted in the conference. MUR is depended on various site features such as design, shared systems/structures, layout, environmental condition, and so on. Considering various dependencies, we assessed Multi-Unit Station Black-out (MSBO) accident based on Hanul Unit 3 and 4 model. In this paper, case study for multi-unit risk or PSA had been performed. Our result was incomplete to assess total multi-unit risk because of two challenging issues. First, economic impact had not been evaluated to estimate multi-unit risk. Second, large uncertainties were included in our result because of various assumptions. These issues must be resolved in the future.

  13. Case Study of Multi-Unit Risk: Multi-Unit Station Black-Out

    International Nuclear Information System (INIS)

    Oh, Kyemin; Jang, Seung-cheol; Heo, Gyunyoung

    2015-01-01

    After Fukushima Daiichi Accident, importance and public concern for Multi-Unit Risk (MUR) or Probabilistic Safety Assessment (PSA) have been increased. Most of nuclear power plant sites in the world have more than two units. These sites have been facing the problems of MUR or accident such as Fukushima. In case of South Korea, there are generally more than four units on the same site and even more than ten units are also expected. In other words, sites in South Korea also have been facing same problems. Considering number of units on the same site, potential of these problems may be larger than other countries. The purpose of this paper is to perform case study based on another paper submitted in the conference. MUR is depended on various site features such as design, shared systems/structures, layout, environmental condition, and so on. Considering various dependencies, we assessed Multi-Unit Station Black-out (MSBO) accident based on Hanul Unit 3 and 4 model. In this paper, case study for multi-unit risk or PSA had been performed. Our result was incomplete to assess total multi-unit risk because of two challenging issues. First, economic impact had not been evaluated to estimate multi-unit risk. Second, large uncertainties were included in our result because of various assumptions. These issues must be resolved in the future

  14. Fast-reactor fuel reprocessing in the United Kingdom

    International Nuclear Information System (INIS)

    Allardice, R.H.; Buck, C.; Williams, J.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the United Kingdom since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium-based fast-reactor system, and the importance of establishing at an early stage fast-reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high-burnup thermal-reactor oxide fuel. The United Kingdom therefore decided to reprocess irradiated fuel from the 250MW(e) Prototype Fast Reactor (PFR) as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small-scale fully active demonstration plant has been carried out since 1972, and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste-management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant, a parallel development programme has been initiated to provide the basis for the design of a large-scale fast-reactor fuel-reprocessing plant to come into operation in the late 1980s to support the projected UK fast-reactor installation programme. The paper identifies the important differences between fast-reactor and thermal-reactor fuel-reprocessing technologies and describes some of the development work carried out in these areas for the small-scale PFR fuel-reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast-reactor fuel-reprocessing plant is outlined and the current design philosophy discussed. (author)

  15. Safety Evaluation Report related to the operation of LaSalle County Station, Units 1 and 2. Docket Nos. 50-373 and 50-374

    International Nuclear Information System (INIS)

    1984-03-01

    This supplement to the Safety Evaluation Report of Commonwealth Edison Company's application for a license to operate its La Salle County Station, Unit 2, located in Brookfield Township, La Salle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement is to update evaluations on Unit 2 issues identified in the previous Safety Evaluation Report and Supplements that need resolution prior to issuance of the full power operating license for Unit 2

  16. Fast reactor operation in the United States

    International Nuclear Information System (INIS)

    Smith, R.R.; Cissel, D.W.

    1978-01-01

    Of the many American facilities dedicated to fast reactor technology, six qualify as liquid-metal-cooled fast reactors. All of these satisfy the following criteria: an unmoderated neutron spectrum, highly enriched fuel material, substantial heat production, and the use of a liquid metal coolant. These include the following: EBR-I Clementine, LAMPRE, EBR-II, EFFBR, and SEFOR. Collectively, these facilities encompassed all of the more important features of liquid-metal-cooled fast reactor technology. Coolant types ranged from mercury in Clementine, to NaK in EBR-I, and sodium in the others. Fuels included enriched-uranium metallic alloys in EBR-I, EBR-II, and EFFBR; metallic plutonium in Clementine; molten plutonium alloy in LAMPRE; and a mixed UO 2 -PuO 2 ceramic in SEFOR. Heat removal techniques ranged from air-blast cooling in LAMPRE and SEFOR; steam-electrical generation in EBR-I, EBR-II, and EFFBR; to a mercury-to-water heat dump in Clementine. Operational experience with such diverse systems has contributed heavily to the U.S. Each of the six systems is described from the viewpoints of purpose, history, design, and operation. Attempts are made to limit descriptive material to the most important features and to refer the reader to a few select references if additional information is needed

  17. Modelling of temperature distribution and pulsations in fast reactor units

    International Nuclear Information System (INIS)

    Ushakov, P.A.; Sorokin, A.P.

    1994-01-01

    Reasons for the occurrence of thermal stresses in reactor units have been analyzed. The main reasons for this analysis are: temperature non-uniformity at the output of reactor core and breeder and the ensuing temperature pulsation; temperature pulsations due to mixing of sodium jets of a different temperature; temperature nonuniformity and pulsations resulting from the part of loops (circuits) un-plug; temperature nonuniformity and fluctuations in transient and accidental shut down of reactor or transfer to cooling by natural circulation. The results of investigating the thermal hydraulic characteristics are obtained by modelling the processes mentioned above. Analysis carried out allows the main lines of investigation to be defined and conclusions can be drawn regarding the problem of temperature distribution and fluctuation in fast reactor units

  18. Relap5 Analysis of Processes in Reactor Cooling Circuit and Reactor Cavity in Case of Station Blackout in RBMK-1500

    International Nuclear Information System (INIS)

    Kaliatka, A.

    2007-01-01

    Ignalina NPP is equipped with channel-type boiling-water graphite-moderated reactor RBMK-1500. Results of the level-1 probabilistic safety assessment of the Ignalina NPP have shown that in topography of the risk, the transients with failure of long-term core cooling other than LOCA are the main contributors to the core damage frequency. The total loss of off-site power with a failure to start any diesel generator, that is station blackout, is the event which could lead to the loss of long-term core cooling. Such accident could lead to multiple ruptures of fuel channels with severe consequences and should be analyzed in order to estimate the timing of the key events and the possibilities for accident management. This paper presents the results of the analysis of station blackout at Ignalina NPP. Analysis was performed using thermal-hydraulic state-of-the-art RELAP5/MOD3.2 code. The response of reactor cooling system and the processes in the reactor cavity and its venting system in case of a few fuel-channel ruptures due to overheating were demonstrated. The possible measures for prevention of the development of this beyond design basis accident (BDBA) to a severe accident are discussed

  19. Technical specifications: Susquehanna Steam Electric Station, Unit No. 2 (Docket No. 50-388). Appendix A to License No. NPF-22

    International Nuclear Information System (INIS)

    1984-03-01

    Susquehanna Steam Electric Station, Unit 2 Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public

  20. Technical specifications, Braidwood Station, Unit Nos. 1 and 2 (Docket Nos. STN 50-456 and STN 50-457): Appendix ''A'' to License No. NPF-70

    International Nuclear Information System (INIS)

    1987-05-01

    The Braidwood Station, Unit Nos. 1 and 2, Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public. 18 figs., 55 tabs

  1. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    International Nuclear Information System (INIS)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core

  2. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  3. Analysis of core melt accident in Fukushima Daiichi-Unit 1 nuclear reactor

    International Nuclear Information System (INIS)

    Tanabe, Fumiya

    2011-01-01

    In order to obtain a profound understanding of the serious situation in Unit 1 and Unit 2/3 reactors of Fukushima Daiichi Nuclear Power Station (hereafter abbreviated as 1F1 and 1F2/3, respectively), which was directly caused by tsunami due to a huge earthquake on 11 March 2011, analyses of severe core damage are performed. In the present report, the analysis method and 1F1 analysis are described. The analysis is essentially based on the total energy balance in the core. In the analysis, the total energy vs. temperature curve is developed for each reactor, which is based on the estimated core materials inventory and material property data. Temperature and melt fraction are estimated by comparing the total energy curve with the total stored energy in the core material. The heat source is the decay heat of fission products and actinides together with reaction heat from the zirconium steam reaction. (author)

  4. Thermohydraulic and safety analysis on China advanced research reactor under station blackout accident

    International Nuclear Information System (INIS)

    Tian Wenxi; Qiu Suizheng; Su Guanghui; Jia Dounan; Liu Xingmin; Zhang Jianwei

    2007-01-01

    A thermohydraulic and safety analysis code-TSACC has been developed using Fortran90 language to evaluate the transient thermohydraulic behavior of the China advanced research reactor (CARR) under station blackout accident (SBA). For the development of TSACC, a series of corresponding mathematical and physical models were applied. Point reactor neutron kinetics model was adopted for solving the reactor power. All possible flow and heat transfer conditions under station blackout accident were considered and the optional correlations were supplied. The usual finite difference method was abandoned and the integral technique was adopted to evaluate the temperature field of the plate type fuel elements. A new simple and convenient equation was proposed for the resolution of the transient behaviors of the main pump instead of the complicated four-quadrant model. Gear method and Adams method were adopted alternately for a better solution to the stiff differential equations describing the dynamic behavior of the CARR. The computational result of TSACC showed the adequacy of the safety margin of CARR under SBA. For the purpose of Verification and Validation (V and V), the simulated results of TSACC were compared with those of RELAP5/MOD3 and a good agreement was obtained. The adoption of modular programming techniques enables TASCC to be applied to other reactors by easily modifying the corresponding function modules

  5. 77 FR 50533 - Dominion Nuclear Connecticut, Inc.; Millstone Power Station, Unit 3

    Science.gov (United States)

    2012-08-21

    ....; Millstone Power Station, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and... search, select ``ADAMS Public Documents'' and then select ``Begin Web- based ADAMS Search.'' For problems... Optimized ZIRLO\\TM\\ fuel rod cladding in future core reload applications for Millstone Power Station, Unit 3...

  6. Pioneering SUPER - Small Unit Passively-safe Enclosed Reactor - 15559

    International Nuclear Information System (INIS)

    Bhownik, P.K.; Gairola, A.; Shamim, J.A.; Suh, K.Y.; Suh, K.S.

    2015-01-01

    This paper presents the basic features of the Small Unit Passively-safe Enclosed Reactor abbreviated as SUPER, a new reactor system that has been designed and proposed at the Seoul National University's Department of Energy Systems Engineering. SUPER is a small modular reactor system or SMR that is cooled by sub-cooled as well as supercritical water. As a new member of SMRs, SUPER is a small-scale nuclear plant that is designed to be factory-manufactured and shipped as modules to be assembled at a site. The concept offers promising answers to many questions about nuclear power including proliferation resistance, waste management, safety, and startup costs. SUPER is a customized paradigm of a supercritical water reactor or SCWR, a type sharing commonalities with the current fleet of light water reactors, or LWRs. SUPER has evolved from the System-integrated Modular Advance Reactor, or SMART, being developed at the Korea Atomic Energy Research Institute, or KAERI. SUPER enhanced the safety features for robustness, design/equipment simplification for natural convection, multi-purpose application for co-generation flexibilities, suitable for isolated or small electrical grids, just-in-time capacity addition, short construction time, and last, but not least, lower capital cost per unit. The primary objectives of SUPER is to develop the conceptual design for a safe and economic small, natural circulation SCWR, to address the economic and safety attributes of the concept, and to demonstrate its technical feasibilities. (authors)

  7. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout caused by external flooding using the RISMC toolkit

    International Nuclear Information System (INIS)

    2014-01-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impacts of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This paper focuses on the impacts of power uprate on the safety margin of a boiling water reactor for a flooding induced station black-out event. Analysis is performed by using a combination of thermal-hydraulic codes and a stochastic analysis tool currently under development at the Idaho National Laboratory, i.e. RAVEN. We employed both classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. Results obtained give a detailed investigation of the issues associated with a plant power uprate including the effects of station black-out accident scenarios. We were able to quantify how the timing of specific events was impacted by a higher nominal reactor core power. Such safety insights can provide useful information to the decision makers to perform risk informed margins management.

  8. Towards commercial fast breeder reactors the first 1200 MWe unit

    International Nuclear Information System (INIS)

    Banal, M.; Carle, R.

    The public probably thinks of these fast breeder reactors in terms of their rising unit capacity: RAPSODIE 20 MW (thermal), raised to 40 MW, PHENIX 25 MWe, and now 1200 MWe. However, the purposes of the project and the framework of construction have been fundamentally different in each case. Design parameters and the development program of the LMFBR are presented. (auth)

  9. Safety Evaluation Report related to the operation of Byron Station, Units 1 and 2 (Docket Nos. STN 50-454 and STN 50-455). Supplement No. 7

    International Nuclear Information System (INIS)

    1986-11-01

    Supplement No. 7 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement provides additional information supporting the license for initial criticality and power ascension to full-power operation for Unit 2

  10. Fort Calhoun Station, Unit 2. License application, PSAR, general information

    International Nuclear Information System (INIS)

    1975-09-01

    Application for construction and operating licenses for Calhoun-2 Reactor is presented. Financial data concerning the Omaha Public Power District and the Nebraska Public Power District are included. (DCC)

  11. US central station nuclear electric generating units: significant milestones

    International Nuclear Information System (INIS)

    1979-09-01

    Listings of US nuclear power plants include significant dates, reactor type, owners, and net generating capacity. Listings are made by state, region, and utility. Tabulations of status, schedules, and orders are also presented

  12. Enhanced Hourly Wind Station Data for the Contiguous United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. Enhanced Hourly Wind Station Data is digital data set DSI-6421, archived at the National Centers for Environmental Information (NCEI; formerly National Climatic...

  13. Aging management program of the reactor building concrete at Point Lepreau Generating Station

    Directory of Open Access Journals (Sweden)

    Gendron T.

    2011-04-01

    Full Text Available In order for New Brunswick Power Nuclear (NBPN to control the risks of degradation of the concrete reactor building at the Point Lepreau Generating Station (PLGS the development of an aging management plan (AMP was initiated. The intention of this plan was to determine the requirements for specific structural components of concrete of the reactor building that require regular inspection and maintenance to ensure the safe and reliable operation of the plant. The document is currently in draft form and presents an integrated methodology for the application of an AMP for the concrete of the reactor building. The current AMP addresses the reactor building structure and various components, such as joint sealant and liners that are integral to the structure. It does not include internal components housed within the structure. This paper provides background information regarding the document developed and the strategy developed to manage potential degradation of the concrete of the reactor building, as well as specific programs and preventive and corrective maintenance activities initiated.

  14. Station Blackout Analysis for a 3-Loop Westinghouse PWR Reactor Using Trace

    International Nuclear Information System (INIS)

    El-Sahlamy, N.M.

    2017-01-01

    One of the main concerns in the area of severe accidents in nuclear reactors is that of station blackout (SBO). The loss of offsite electrical power concurrent with the unavailability of the onsite emergency alternating current (AC) power system can result in loss of decay heat removal capability, leading to a potential core damage which may lead to undesirable consequences to the public and the environment. To cope with an SBO, nuclear reactors are provided with protection systems that automatically shut down the reactor, and with safety systems to remove the core residual heat. This paper provides a best estimate assessment of the SBO scenario in a 3-loop Westinghouse PWR reactor. The evaluation is performed using TRACE, a best estimate computer code for thermal-hydraulic calculations. Two sets of scenarios for SBO analyses are discussed in the current work. The first scenario is the short term SBO where it is assumed that in addition to the loss of AC power, there is no DC power; i.e., no batteries are available. In the second scenario, a long term SBO is considered. For this scenario, DC batteries are available for four hours. The aim of the current SBO analyses for the 3-loop pressurized water reactor presented in this paper is to focus on the effect of the availability of a DC power source to delay the time to core uncovers and heatup

  15. Aging management program of the reactor building concrete at Point Lepreau Generating Station

    Science.gov (United States)

    Aldea, C.-M.; Shenton, B.; Demerchant, M. M.; Gendron, T.

    2011-04-01

    In order for New Brunswick Power Nuclear (NBPN) to control the risks of degradation of the concrete reactor building at the Point Lepreau Generating Station (PLGS) the development of an aging management plan (AMP) was initiated. The intention of this plan was to determine the requirements for specific structural components of concrete of the reactor building that require regular inspection and maintenance to ensure the safe and reliable operation of the plant. The document is currently in draft form and presents an integrated methodology for the application of an AMP for the concrete of the reactor building. The current AMP addresses the reactor building structure and various components, such as joint sealant and liners that are integral to the structure. It does not include internal components housed within the structure. This paper provides background information regarding the document developed and the strategy developed to manage potential degradation of the concrete of the reactor building, as well as specific programs and preventive and corrective maintenance activities initiated.

  16. Ring thermal shield piping modification at Pickering Nuclear Generating Station 'A' Unit 1

    International Nuclear Information System (INIS)

    Brown, R.; Cobanoglu, M.M.

    1995-01-01

    Each of the four Pickering Nuclear Generating Station A (PNGSA) CANDU units was constructed with its reactor and dump tank surrounded by a concrete Calandria Vault (CV). The Ring Thermal Shield (RTS) system at PNGSA units is a water cooled structure with internal cooling channels with the purpose of attenuating excessive heat flux from the calandria shell to the end shield rings and adjoining concrete (Figure 1). In newer CANDU units the reactor calandria vessel is surrounded by a large water filled shield tank which eliminates the requirement for the RTS system. The RTS structures are situated in the space between the calandria and the vault walls. Each RTS is assembled from eight flat sided carbon steel segments, tilted towards the calandria and supported from the end shield rings. Cooling water to the RTS is supplied by carbon steel cooling pipes with a portion of the pipe run embedded in the vault walls. Flow through each RTS is divided into two independent circuits, having an inlet and an outlet cooling line. There are four locations of RTS inlet and outlet cooling lines. The inlet lines are located at the bottom and the outlet lines at the top of the RTS. The 'L' shaped section of RTS inlet and outlet cooling lines, from the RTS waterbox to the start of embedded portion at the concrete wall, had become defective due to corrosion induced by excessive Moisture levels in the calandria vaults. An on-line leak sealing capability was developed and placed in service in all four PNGSA units. However, a leak found during the 1994 Unit 1 outage was too large,to seal with the current capability, forcing Ontario Hydro (OH) to develop a method to replace the corroded pipes. The repair project was subject to some lofty performance targets. All tools had to be able to withstand dose rates of up to 3000 Rem/hour. These tools, along with procedures and personnel had to successfully repair the RTS system within 6 months otherwise a costly outage extension would result. This

  17. Safety Evaluation Report related to the operation of Beaver Valley Power Station, Unit 2 (Docket No. 50-412)

    International Nuclear Information System (INIS)

    1987-05-01

    This report, Supplement No. 5 to the Safety Evaluation Report for the application filed by the Duquesne Light Company et al. (the applicant) for a license to operate the Beaver Valley Power Station, Unit 2 (Docket No. 50-412), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved when the Safety Evaluation Report and its Supplements 1, 2, 3, and 4 were published

  18. Safety Evaluation Report related to the operation of Clinton Power Station, Unit No. 1, Docket No. 50-461

    International Nuclear Information System (INIS)

    1983-05-01

    Supplement No. 2 to the Safety Evaluation Report on the application filed by Illinois Power Company, Soyland Power Cooperative, Inc., and Western Illinois Power Cooperative, Inc., as applicants and owners, for a license to operate the Clinton Power Station, Unit No. 1, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Harp Township, DeWitt County, Illinois. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement No. 1

  19. Safety evaluation report related to the operation of Clinton Power Station, Unit No. 1 (Docket No. 50-461)

    International Nuclear Information System (INIS)

    1987-03-01

    Supplement No. 8 to the Safety Evaluation Report on the application filed by Illinois Power Company, Soyland Power Cooperative, Inc., and Western Illinois Power Cooperative, Inc., as applicants and owners, for a license to operate the Clinton Power Station, Unit No. 1, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Harp Township, DeWitt County, Illinois. This supplement reports the status of items that have been resolved by the staff since Supplement No. 7 was issued

  20. Safety evaluation report related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423)

    International Nuclear Information System (INIS)

    1984-07-01

    The Safety Evaluation Report for the application filed by Northeast Nuclear Energy Company, as applicant and agent for the owners, for a license to operate the Millstone Nuclear Power Station Unit 3 (Docket No. 50-423), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in the town of Waterford, New London County, Connecticut, on the north shore of Long Island Sound. Subject to favorable resolution of the items discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  1. Safety Evaluation Report related to the operation of Beaver Valley Power Station, Unit 2 (Docket No. 50-412)

    International Nuclear Information System (INIS)

    1985-10-01

    This Safety Evaluation Report on the application filed by Duquesne Light Company, as applicant and agent for the owners, for a license to operate the Beaver Valley Power Station Unit 2 (Docket No. 50-412) has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Shippingport Borough, Beaver County, Pennsylvania, on the south bank of the Ohio River. Subject to the favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  2. Safety Evaluation Report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382)

    International Nuclear Information System (INIS)

    1985-03-01

    Supplement 10 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the licensee since the Safety Evaluation Report and its nine previous supplements were issued

  3. Safety evaluation report related to the operation of Beaver Valley Power Station, Unit 2 (Docket No. 50-412)

    International Nuclear Information System (INIS)

    1987-08-01

    This report, Supplement No. 6 to the Safety Evaluation Report for the application filed by the Duquesne Light Company et al. (the licensee) for a license to operate the Beaver Valley Power Station, Unit 2 (Docket No. 50-412), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved when the Safety Evaluation Report and its Supplements 1, 2, 3, 4, and 5 were published

  4. Upgrading of fire protection arrangements at Magnox power stations in the United Kingdom

    International Nuclear Information System (INIS)

    Zhu, L.H.

    1998-01-01

    The methodology used in conducting fire hazard assessments at Magnox Reactor power stations operated by Magnox Electric plc is described. The assessments use a deterministic approach. This includes the identification of essential plant and the associated supporting systems required for the safe trip, shutdown and post-trip cooling of the reactor, assessment of the location of the essential plant and the vulnerability of these plant in the presence of a fire, assessment of essential functions against the effects of a fire and identification of improvements to the fire protection arrangements. Practical aspects of fire protection engineering on operating power stations are discussed and examples of improvements in protection described. (author)

  5. Moving into the 21st century - The United States' Research Reactor Spent Nuclear Fuel Acceptance Program

    International Nuclear Information System (INIS)

    Huizenga, David G.; Mustin, Tracy P.; Saris, Elizabeth C.; Reilly, Jill E.

    1999-01-01

    Since 1996, when the United States Department of Energy and the Department of State jointly adopted the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel, twelve shipments totaling 2,985 MTR and TRIGA spent nuclear fuel assemblies from research reactors around the world have been accepted into the United States. These shipments have contained approximately 1.7 metric tons of HEU and 0.6 metric tons of LEU. Foreign research reactor operators played a significant role in this success. A new milestone in the acceptance program occurred during the summer of 1999 with the arrival of TRIGA spent nuclear fuel from Europe through the Charleston Naval Weapons Station via the Savannah River Site to the Idaho National Engineering and Environmental Laboratory. This shipment consisted of five casks of TRIGA spent nuclear fuel from research reactors in Germany, Italy, Slovenia, and Romania. These casks were transported by truck approximately 2,400 miles across the United States (one cask packaged in an ISO container per truck). Drawing upon lessons learned in previous shipments, significant technical, legal, and political challenges were addressed to complete this cross-country shipment. Other program activities since the last RERTR meeting have included: formulation of a methodology to determine the quantity of spent nuclear fuel in a damaged condition that may be transported in a particular cask (containment analysis for transportation casks); publication of clarification of the fee policy; and continued planning for the outyears of the acceptance policy including review of reactors and eligible material quantities. The United States Foreign Research Reactor Spent Nuclear Fuel Acceptance Program continues to demonstrate success due to the continuing commitment between the United States and the research reactor community to make this program work. We strongly encourage all eligible research reactors to decide as soon as possible to

  6. Evaluating Russian space nuclear reactor technology for United States applications

    International Nuclear Information System (INIS)

    Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.

    1994-01-01

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch

  7. Technical Specifications, Byron Station, Unit Nos. 1 and 2 (Docket Nos. STN 50-454 and STN 50-455). Appendix A to license No. NPF-37

    International Nuclear Information System (INIS)

    1985-02-01

    The Byron Station, Unit No. 1 and Unit No. 2 Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public. Specifications are presented for limiting conditions for operation for the reactor control system, power distribution limits, instrumentation, primary coolant circuit, ECCS, containment systems, plant systems, electrical power systems, refueling operations, radioactive effluents, and radiological environmental monitoring

  8. Safety Evaluation Report related to the operation of Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410)

    International Nuclear Information System (INIS)

    1987-07-01

    This report supplements the Safety Evaluation Report (NUREG-1047, February 1985) for the application filed by Niagara Mohawk Power Corporation, as applicant and co-owner, for the license to operate Nine Mile Point Nuclear Station, Unit 2 (Docket No. 50-410). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near Oswego, New York. This report supports the issuance of the full-power license for Nine Mile Point Nuclear Station, Unit No. 2

  9. Safety evaluation report related to the operation of Byron Station, Units 1 and 2 (Docket Nos. STN 50-454 and STN 50-455)

    International Nuclear Information System (INIS)

    1987-03-01

    Supplement No. 8 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by th Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement provides recent information regarding resolution of the license conditions identified in the SER. Because of the favorable resolution of the items discussed in this report, the staff concludes that the Byron Station, Unit 2 can be operated by the licensee at power levels greater than 5% without endangering the health and safety of the public

  10. A review of the United Kingdom fast reactor programme

    International Nuclear Information System (INIS)

    Bramman, J.I.; Hickey, H.B.; Whitlow, W.H.; Frew, J.D.; Gregory, C.V.

    1990-01-01

    Total energy consumption in the UK in 1989 was 340 million tonnes of coal or coal equivalent, made up as follows: coal 31%, petroleum 35%, natural gas 24%, nuclear electricity 8%, hydroelectricity 1% and imported electricity 1%. About half of the nuclear electricity generated came from 14 Advanced Gas-Cooled Reactors (AGRs) and about half from the 24 older gas-cooled Magnox reactors, one Steam-Generating Heavy-Water Reactor (SGHWR) and one fast reactor (the Prototype Fast Reactor, PFR, at Dounreay). The privatization of the Electricity Supply Industry (ESI) in the UK is proceeding. On 9 November 1989, however, it was announced by the Secretary of State for Energy that the privatization plan would be changed and that the CEGB's nuclear stations were to remain in state ownership, through the formation of an additional company, Nuclear Electric. At the same time, the Secretary of State for Scotland announced the formation of a similar state-owned company, Scottish Nuclear. Nuclear Electric was asked, in the interim, to examine priorities in the whole nuclear field with particular reference to the improvement of the economics and performance of existing reactors, to the development of the Sizewell and alternative reactors and to the development of longer-term options such as the fast reactor and fusion. Nuclear Electric has been asked to formulate its new policy by June 1990. The PFR programme will continue to be funded by the UK government until March 1994. AEA Technology is endeavouring to find alternative funding to maintain the operation of the PFR until at least the year 2000. The House of Commons Select Committee on Energy stated in its report that the fast reactor ''is a matter for the British Government to foster as a long-term option for the generation of electricity in this country'', and recommended that in the interim the Government reassesses its position on this new technology in the light of increasing concern about CO 2 emissions and the long

  11. New generation nuclear power units of PWR type integral reactors

    International Nuclear Information System (INIS)

    Mitenkov, F.M.; Kurachen Kov, A.V.; Malamud, V.A.; Panov, Yu.K.; Runov, B.I.; Flerov, L.N.

    1997-01-01

    Design bases of new generation nuclear power units (nuclear power plants - NPP, nuclear co-generation plants - NCP, nuclear distract heating plants - NDHP), using integral type PWPS, developed in OKBM, Nizhny Novgorod and trends of design decisions optimization are considered in this report. The problems of diagnostics, servicing and repair of the integral reactor components in course of operation are discussed. The results of safety analysis, including the problems of several accident localization with postulated core melting and keeping corium in the reactor vessel and guard vessel are presented. Information on experimental substantiation of the suggested plant design decisions is presented. (author)

  12. Draft environmental impact statement. River Bend Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Federal financing of an undivided ownership interest of River Bend Nuclear Power Station Unit 1 on a 3293-acre site near St. Francisville, Louisiana is proposed in a supplement to the final environmental impact statement of September 1974. The facility would consist of a boiling-water reactor that would produce a maximum of 2894 megawatts (MW) of electrical power. A design level of 3015 MW of electric power could be realized at some time in the future. Exhaust steam would be cooled by mechanical cooling towers using makeup water obtained from and discharged to the Mississippi River. Power generated by the unit would be transmitted via three lines totaling 140 circuit miles traversing portions of the parishes of West Feliciana, East Feliciana, East Baton Rouge, West Baton Rouge, Pointe Coupee, and Iberville. The unit would help the applicant meet the power needs of rural electric consumers in the region, and the applicant would contribute significanlty to area tax base and employment rolls during the life of the unit. Construction related activities would disturb 700 forested acres on the site and 1156 acres along the transmission routes. Of the 60 cubic feet per second (cfs) taken from the river, 48 cfs would evaporate during the cooling process and 12 cfs would return to the river with dissolved solids concentrations increased by 500%. The terrace aquifer would be dewatered for 16 months in order to lower the water table at the building site, and Grants Bayou would be transformed from a lentic to a lotic habitat during this period. Fogging and icing due to evaporation and drift from the cooling towers would increase slightly. During the construction period, farming, hunting, and fishing on the site would be suspended, and the social infractructure would be stressed due to the influx of a maximum of 2200 workers

  13. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Unit 2 (Docket No. 50-446)

    International Nuclear Information System (INIS)

    1992-09-01

    This document supplement 25 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Unit 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, 23, and 24 to that report were published. This supplement deals primarily with Unit 2 issues; however, it also references evaluations for several Unit 1 licensing items resolved since Supplement 24 was issued

  14. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Unit 2 (Docket No. 50-446)

    International Nuclear Information System (INIS)

    1993-02-01

    Supplement 26 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Unit 2, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, 23, 24, and 25 to that report were published. This supplement deals primarily with Unit 2 issues; however, it also references evaluations for several licensing issues that relate to Unit 1, which have been resolved since Supplement 25 was issued

  15. Pilgrim Nuclear Power Station, Unit 1. Annual operating report, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Net electrical power generated was 2,587,248 MWH(e) with the reactor on line 6,242.4 hr. Information is presented concerning operations, power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, and reportable occurrences

  16. Life extension of the St. Lucie unit 1 reactor vessel

    International Nuclear Information System (INIS)

    Rowan, G.A.; Sun, J.B.; Mott, S.L.

    1991-01-01

    In late 1989, Florida Power and Light Company (FP and L) established the policy that St. Lucie unit 1 should not be prevented from achieving a 60-yr operating life by reactor vessel embrittlement. A 60-yr operating life means that the plant would be allowed to operate until the year 2036, which is 20 years beyond the current license expiration date of 2016. Since modifications to the reactor vessel and its components are projected to be expensive, the desire of FP and L management was to achieve this lifetime extension through the use of fuel management and proven technology. The following limitations were placed on any acceptable method for achieving this lifetime extension capability: low fuel cycle cost; low impact on safety parameters; very little or no operations impact; and use of normal reactor materials. A task team was formed along with the Advanced Nuclear Fuels Company (ANF) to develop a vessel-life extension program

  17. Ensuring radiation safety during construction of the facility ''Ukrytie'' and restoration of unit 3 of the Chernobyl nuclear power station

    International Nuclear Information System (INIS)

    Belovodsky, L.F.; Panfilov, A.P.

    1997-01-01

    On April 26, 1986, an accident at the fourth power unit of the Chernobyl NPS (ChNPS) destroyed the reactor core and part of the power unit building, whereby sizeable amounts of radioactive materials, stored in reactor at operation, were released into the environment, and there were also highly active fragments of fuel elements and pieces of graphite from reactor spread on ChNPS site near to safety block. Information on the accident at ChNPS, including its cause and consequences, was considered at special meeting, conducted by IAEA on August 25-29, 1986, in Vienna. In final report of International Advisory Group for Nuclear Safety (IAGNS), prepared by results of meeting activities, the main stages of the accident effects elimination (AEE) immediately on the station site according to the data, received before August 1, 1986, were discussed. In 1987-1990 the published materials on the later period of AEE, completed by building ''Ukrytie'' installation at the fourth power unit of ChNPS

  18. Purification and solidification of reactor wastes at a Canadian nuclear generating station

    International Nuclear Information System (INIS)

    Buckley, L.P.; Burt, D.A.

    1981-01-01

    The study aimed at development and demonstration of volume reduction and solidification of CANDU reactor wastes has been underway at Chalk River Nuclear Laboratories in the Province of Ontario, Canada. The study comprises membrane separation processes, evaporator appraisal and immobilization of concentrated wastes in bitumen. This paper discusses the development work with a wiped-film evaporator and the successful completion of demonstration tests at Douglas Point Nuclear Generating Station. Heavy water from the moderator system was purified and wastes arising from pump bowl decontamination were immobilized in bitumen with the wiped-film evaporator that was used in the development tests at Chalk River

  19. Palo Verde Generating Station, Units 4 and 5. License application, general information

    International Nuclear Information System (INIS)

    1978-01-01

    A license application for two more Palo Verde reactors, Units 4 and 5, is presented. The two PWR reactors have a nominal net generating power each of 1,270 MW(e). Containments are steel-lined prestressed cylindrical structures with hemispherical domes. The reactors are replicas of Palo Verde 1, 2 and 3 (see DOCKETS 50528, 50529 and 50530) using the standard Combustion Engineering System 80 (see DOCKET-STN-50470)

  20. A UKAEA review of gas-cooled reactors in the United Kingdom

    International Nuclear Information System (INIS)

    Heath, E.C.; Knowles, A.N.

    1983-01-01

    The commercial use of nuclear power for electrical generation commenced in the UK in the 1950s with the Calder Hall reactors. Based on this concept, eighteen commercial reactor units, with two further units outside the UK, were constructed and have been in operation for periods ranging from 10 to 19 years. The paper reviews this experience mainly from the aspects of safety and the achieved costs, which compare favourably with current figures for fossil fired generation. The further development of the gas-cooled system in the UK commenced with the construction of the Windscale AGR, which came into operation in 1962. This led to the ordering of 14 large commercial AGR units, 4 of which have been in service since 1976, 6 are at an advanced stage of construction and 4 are at an early stage of construction. The paper reviews the main safety features of the AGR and considers the costs, taking achieved costs for the units which are in service and a combination of historical costs and projected costs for the units under construction. Again a clear advantage over fossil fuelled stations is shown. The paper also includes a preliminary account of the use of the prototype AGR at Windscale for the series of experiments concerning plateout, over-temperature in the fuel and simulated fault transients in the core which were carried out earlier in 1981. (author)

  1. 75 FR 52045 - Arizona Public Service Company, Palo Verde Nuclear Generating Station, Unit 3; Environmental...

    Science.gov (United States)

    2010-08-24

    ... Company, Palo Verde Nuclear Generating Station, Unit 3; Environmental Assessment and Finding of No.... NPF-74, issued to Arizona Public Service Company (APS, the licensee), for operation of Palo Verde... Statement for the Palo Verde Nuclear Generating Station, NUREG-0841, dated February 1982. Agencies and...

  2. Method of sharing mobile unit state information between base station routers

    NARCIS (Netherlands)

    Bosch, H.G.P.; Mullender, Sape J.; Polakos, Paul Anthony; Rajkumar, Ajay; Sundaram, Ganapathy S.

    2007-01-01

    The present invention provides a method of operating a first base station router. The method may include transmitting state information associated with at least one inactive mobile unit to at least one second base station router. The state information is usable to initiate an active session with the

  3. Method of sharing mobile unit state information between base station routers

    NARCIS (Netherlands)

    Bosch, H.G.P.; Mullender, Sape J.; Polakos, Paul Anthony; Rajkumar, Ajay; Sundaram, Ganapathy S.

    2010-01-01

    The present invention provides a method of operating a first base station router. The method may include transmitting state information associated with at least one inactive mobile unit to at least one second base station router. The state information is usable to initiate an active session with the

  4. Full scale reactor safety experiments performed in the Marviken Power Station Sweden

    International Nuclear Information System (INIS)

    Thoren, H.G.; Ericson, L.

    1977-01-01

    Since 1972 experiments oriented towards increasing the understanding of reactor safety processes have been performed at the Marviken Power Station. This was originally built as a direct cycle BHWR but was never taken into nuclear operation. In addition to Sweden, the countries represented in these experiments are Denmark, the Federal Republic of Germany, Finland, Norway, the United States, the Netherlands, France and Japan. The first series of sixteen experiments included studies of the response of the PS-containment to simulated ruptures in the pipe systems that are connected to the pressure vessel. These tests were completed in 1973 and also included experimental studies of iodine transport, containment leakage, the behaviour of auxiliary components under accident conditions and pressure fluctuations in the wetwell water pool. One of the more essential findings of the tests was that the containment performance was in accordance with the pre-test calculations. A second series of eight blowdown tests was begun in February 1976. The main purpose of these tests is to provide additional information as to the characteristics of the pressure oscillations inside the containment and primarily in the wetwell water pool under different conditions. These oscillations were observed in the first series of blowdowns but only low frequencies could then be detected due to limitations in the measurement system. The measurement system was therefore substantially extended for this second series of experiments. A summary of the results from these two sets of blowdown tests are given in the paper. In 1976 preparations for a new test program were initiated. The objective of these tests is to improve the understanding of critical flow in the low quality and subcooled flow regions through short length, large diameter pipes. Extensive modifications of the test facility will be necessary in order to allow a discharge flow through openings which are up to 500 mm in diameter. Advanced plans

  5. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout Caused by External Flooding Using the RISMC Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impact of these factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the application of a RISMC detailed demonstration case study for an emergent issue using the RAVEN and RELAP-7 tools. This case study looks at the impact of a couple of challenges to a hypothetical pressurized water reactor, including: (1) a power uprate, (2) a potential loss of off-site power followed by the possible loss of all diesel generators (i.e., a station black-out event), (3) and earthquake induces station-blackout, and (4) a potential earthquake induced tsunami flood. The analysis is performed by using a set of codes: a thermal-hydraulic code (RELAP-7), a flooding simulation tool (NEUTRINO) and a stochastic analysis tool (RAVEN) – these are currently under development at the Idaho National Laboratory.

  6. Salem Nuclear Generating Station, Unit 1. Annual operating report for 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Initial reactor criticality was achieved 12/11/76 and power generation began 12/25/76. Information is presented concerning operation, maintenance, procedure and specification changes, power generation, unit shutdowns and forced power reductions, testing, and personnel radiation exposures

  7. Optimal selection of Orbital Replacement Unit on-orbit spares - A Space Station system availability model

    Science.gov (United States)

    Schwaab, Douglas G.

    1991-01-01

    A mathematical programing model is presented to optimize the selection of Orbital Replacement Unit on-orbit spares for the Space Station. The model maximizes system availability under the constraints of logistics resupply-cargo weight and volume allocations.

  8. Evaluation of High-Performance Rooftop HVAC Unit Naval Air Station Key West, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Howett, Daniel H. [ORNL; Desjarlais, Andre Omer [ORNL; Cox, Daryl [ORNL

    2018-01-01

    This report documents performance of a high performance rooftop HVAC unit (RTU) at Naval Air Station Key West, FL. This report was sponsored by the Federal Energy Management Program as part of the "High Performance RTU Campaign".

  9. Safety-evaluation report related to operation of McGuire Nuclear Station, Units 1 and 2. Docket Nos. 50-369 and 50-370

    International Nuclear Information System (INIS)

    1983-05-01

    This report supplements the Safety Evaluation Report Related to the Operation of McGuire Nuclear Station, Units 1 and 2 (SER (NUREG-0422)) issued in March 1978 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, as applicant and owner, for licenses to operate the McGuire Nuclear Station, Units 1 and 2 (Docket Nos. 50-369 and 50-370). The facility is located in Mecklenburg County, North Carolina, about 17 mi north-northwest of Charlotte, North Carolina. This supplement provides information related to issuance of a full-power authorization for Unit 2. The staff concludes that the McGuire Nuclear Station can be operated by the licensee without endangering the health and safety of the public

  10. 75 FR 8757 - Nebraska Public Power District, Cooper Nuclear Station, Unit 1; Notice of Availability of the...

    Science.gov (United States)

    2010-02-25

    ..., Cooper Nuclear Station, Unit 1; Notice of Availability of the Draft Supplement 41 to the Generic... Renewal of Cooper Nuclear Station, Unit 1 Notice is hereby given that the U.S. Nuclear Regulatory... operating license DPR-46 for an additional 20 years of operation for Cooper Nuclear Station, Unit 1 (CNS-1...

  11. Status of fast breeder reactor development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S

    1979-07-01

    This document was prepared by the Office of the Program Director for Nuclear Energy, U.S. Department of Energy (USDOE). It sets forth the status and current activities for the development of fast breeder technology in the United States. In April 1977 the United States announced a change in its nuclear energy policy. Concern about the potential for the proliferation of nuclear weapons capability emerged as a major issue in considering whether to proceed with the development, demonstration and eventual deployment of breeder reactor energy systems. Plutonium recycle and the commercialization of the fast breeder were deferred indefinitely. This led to a reorientation of the nuclear fuel cycle program which was previously directed toward the commercialization of fuel reprocessing and plutonium recycle to the investigation of a full range of alternative fuel cycle technologies. Two major system evaluation programs, the Nonproliferation Alternative Systems Assessment Program (NASAP), which is domestic, and the International Nuclear Fuel Cycle Evaluation (INFCE), which is international, are assessing the nonproliferation advantages and other characteristics of advanced reactor concepts and fuel cycles. These evaluations will allow a decision in 1981 on the future direction of the breeder program. In the interim, the technologies of two fast breeder reactor concepts are being developed: the Liquid Metal Fast Breeder Reactor (LMFBR) and the Gas Cooled Fast Reactor (CFR). The principal goals of the fast breeder program are: LMFBR - through a strong R and D program, consistent with US nonproliferation objectives and anticipated national electric energy requirements, maintain the capability to commit to a breeder option; investigate alternative fuels and fuel cycles that might offer nonproliferation advantages; GCFR - provide a viable alternative to the LMFBR that will be consistent with the developing U.S. nonproliferation policy; provide GCFR technology and other needed

  12. A feasibility assessment of nuclear reactor power system concepts for the NASA Growth Space Station

    Science.gov (United States)

    Bloomfield, H. S.; Heller, J. A.

    1986-01-01

    A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth Space Station architecture was conducted to address a variety of installation, operational, disposition and safety issues. A previous NASA sponsored study, which showed the advantages of Space Station - attached concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide a feasibility of each combination.

  13. A feasibility assessment of nuclear reactor power system concepts for the NASA growth Space Station

    International Nuclear Information System (INIS)

    Bloomfield, H.S.; Heller, J.A.

    1986-01-01

    A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth space station architecture was conducted to address a variety of installation, operational, disposition and safety issues. A previous NASA sponsored study, which showed the advantages of space station related concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide a feasibility of each combination

  14. Results of the 4th regular inspection in Unit 1 of the Mihama Nuclear Power Station

    International Nuclear Information System (INIS)

    1981-01-01

    The 4th regular inspection of Unit 1 in the Mihama Nuclear Power Station was made from July, 1975, to December, 1980, on its reactor and associated facilities. The respective stages of inspection during the years are described. The inspection by external appearance examination, disassembling leakage inspection and performance tests indicated crackings in piping for fuel-replacement water tank, the container penetration of recirculation pipe for residual-heat removal, and main steam-relief valve, and leakage in one fuel assembly. Radiation exposure of the personnel during the inspection was less than the permissible dose. Radiation exposure data for the personnel are given in tables. The improvements and repairs done accordingly were as follows: reapir of the piping for a fuel-replacement tank and recirculation piping for residual-heat removal, replacement of the main steam-relief valve, plugging of heating tubes for the steam-generator, replacement of pins and covers for control-rod guide pipes, improvement of safety protection system and installation of rare gas monitor. (J.P.N.)

  15. Power raise through improved reactor inlet header temperature measurement at Bruce A Nuclear Generation Station

    International Nuclear Information System (INIS)

    Basu, S.; Bruggemn, D.

    1997-01-01

    Reactor Inlet Header (RIH) temperature has become a factor limiting the performance of the Ontario Hydro Bruce A units. Specifically, the RIH temperature is one of several parameters that is preventing the Bruce A units from returning to 94% power operation. RIH temperature is one of several parameters which affect the critical heat flux in the reactor channel, and hence the integrity of the fuel. Ideally, RIH temperature should be lowered, but this cannot be done without improving the heat transfer performance of the boilers and feedwater pre-heaters. Unfortunately, the physical performance of the boilers and pre-heaters has decayed and continues to decay over time and as a result the RIH temperature has been rising and approaching its defined limit. With an understanding of the current RIH temperature measurement loop and methods available to improve it, a solution to reduce the measurement uncertainty is presented

  16. Maintenance experience on reactor recirculation pumps at Tarapur Atomic Power Station

    International Nuclear Information System (INIS)

    Singh, A.K.

    1995-01-01

    Reactor recirculation pumps at Tarapur Atomic Power Station (TAPS) are vertical, single stage centrifugal pumps having mechanical shaft seals and are driven by vertical mounted 3.3 kV, 3 phase, 1500 h.p. electric motors. During these years of operation TAPS has gained enough experience and expertise on the maintenance of reactor recirculation pumps which are dealt in this article. Failure of mechanical shaft seals, damage on pump carbon bearings, motor winding insulation failures and motor shaft damage have been the main areas of concern on recirculation pump. A detailed procedure step by step with component sketches has helped in eliminating errors during shaft seal assembly and installation. Pressure breakdown devices in seal assembly were rebuilt. Additional coolant water injection for shaft seal cooling was provided. These measures have helped in extending the reactor recirculation pump seal life. Pump bearing problems were mainly due to failure of anti-rotation pins and dowel pins of bearing assembly. These pins were redesigned and strengthened. Motor stator winding insulation failures were detected. Stator winding replacement program has been taken up on regular basis to avoid winding insulation failure due to aging. 3 refs., 2 tabs., 7 figs

  17. Technology, safety, and costs of decommissioning a reference pressurized water reactor power station

    International Nuclear Information System (INIS)

    Smith, R.I.; Konzek, G.J.; Kennedy, W.E. Jr.

    1978-05-01

    Safety and cost information was developed for the conceptual decommissioning of a large [1175 MW(e)] pressurized water reactor (PWR) power station. Two approaches to decommissioning, Immediate Dismantlement and Safe Storage with Deferred Dismantlement, were studied to obtain comparisons between costs, occupational radiation doses, potential radiation dose to the public, and other safety impacts. Immediate Dismantlement was estimated to require about six years to complete, including two years of planning and preparation prior to final reactor shutdown, at a cost of $42 million, and accumulated occupational radiation dose, excluding transport operations, of about 1200 man-rem. Preparations for Safe Storage were estimated to require about three years to complete, including 1 1 / 2 years for planning and preparation prior to final reactor shutdown, at a cost of $13 million and an accumulated occupational radiation dose of about 420 man-rem. The cost of continuing care during the Safe Storage period was estimated to be about $80 thousand annually. Accumulated occupational radiation dose during the Safe Storage period was estimated to range from about 10 man-rem for the first 10 years to about 14 man-rem after 30 years or more. The cost of decommissioning by Safe Storage with Deferred Dismantlement was estimated to be slightly higher than Immediate Dismantlement. Cost reductions resulting from reduced volumes of radioactive material for disposal, due to the decay of the radioactive containments during the deferment period, are offset by the accumulated costs of surveillance and maintenance during the Safe Storage period

  18. Future plans for the design and construction of fast reactor power stations in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Kempken, M.; Koehler, M.; Wolff, M.

    1978-01-01

    Some important design features of future fast reactors in the Federal Republic of Germany (FRG) are presented, in particular for the demonstration plant SNR 2 which is to follow the prototype SNR 300, presently under construction in Kalkar. The SNR 2 conceptual design will be based on the SNR 300 design as far as possible. Programmes for the introduction of fast breeder reactor power stations on the part of the governments, the utilities and suppliers are based on broad international co-operation. The FRG is a country which imports a high proportion of its primary energy and it has rather small resources of natural uranium. The natural uranium realistically available to the FRG will allow nuclear energy to play a substantial role in the long-term energy supply only if present uranium utilization based on LWRs is supplemented and replaced by breeder reactor utilization later. To maintain this option, efforts towards the development, design and construction of fast breeder reactors have to be intensively continued in the FRG. The construction of the first large power station with a fast breeder reactor, SNR 2, will, according to present planning, start in the middle of the 80s. Operation can be expected to start at the beginning of the 90s. The present fast breeder programme in the FRG promises to develop reactors, reprocessing and fuel manufacturing plants to such a degree that by the end of this century the introduction of a substantial number of fast reactor power stations will be possible. (author)

  19. Status of fast breeder reactor development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Horton, K [U.S. Department of Energy, Washington, DC (United States)

    1981-05-01

    The energy policy of the United States is aimed at shifting as rapidly as practicable from an oil dependent economy to one that relies heavily on other fuels and energy sources. Nuclear power Is now and is expected to continue to be an important factor in achieving this goal. If nuclear power is to contribute to a solution of future energy needs, demonstration of the breeder reactor as a viable source of essentially inexhaustible energy supply is essential. The US DOE program for development of the fast breeder reactor has witnessed some notable events in the past year. Foremost among these Is the successful operational testing of the Fast Flux Test Facility (FFTF), located at.the Hanford Engineering Development Laboratory. The reactor reached full design power of 400 MW(t) on December 21, 1980, and has performed remarkably close to design specifications. Design of the Clinch River Breeder Reactor Plant (CRBRP), a 375 MW(e) LMFBR, is now over 80 percent complete. About $530 million in components have been ordered; component deliveries total approximately $124 million; work-in-process totals another $204 million. Construction of the plant, however, has been suspended since 1977. With the concurrence of the U.S. Congress and approvals from the appropriate authorities work on the safety review and site clearing for construction can resume. The Conceptual Design Study for a large, 1000 MW(e) LMFBR Large Developmental Plant was recently completed on a schedule commensurate with submission of a full report to the Congress at the end of March, 1981. This report is the culmination of a study which began in October, 1978 and involved contributions from U.S. reactor manufacturers and US DOE laboratories. The US DOE is carrying forward a comprehensive technology development program. This effort provides direct support to the FFTF and CRBRP projects and to the LDP. It also supports technology development which is generic to the overall LMFBR program. Funding for breeder

  20. Status of fast breeder reactor development in the United States

    International Nuclear Information System (INIS)

    Horton, K.

    1981-01-01

    The energy policy of the United States is aimed at shifting as rapidly as practicable from an oil dependent economy to one that relies heavily on other fuels and energy sources. Nuclear power Is now and is expected to continue to be an important factor in achieving this goal. If nuclear power is to contribute to a solution of future energy needs, demonstration of the breeder reactor as a viable source of essentially inexhaustible energy supply is essential. The US DOE program for development of the fast breeder reactor has witnessed some notable events in the past year. Foremost among these Is the successful operational testing of the Fast Flux Test Facility (FFTF), located at.the Hanford Engineering Development Laboratory. The reactor reached full design power of 400 MW(t) on December 21, 1980, and has performed remarkably close to design specifications. Design of the Clinch River Breeder Reactor Plant (CRBRP), a 375 MW(e) LMFBR, is now over 80 percent complete. About $530 million in components have been ordered; component deliveries total approximately $124 million; work-in-process totals another $204 million. Construction of the plant, however, has been suspended since 1977. With the concurrence of the U.S. Congress and approvals from the appropriate authorities work on the safety review and site clearing for construction can resume. The Conceptual Design Study for a large, 1000 MW(e) LMFBR Large Developmental Plant was recently completed on a schedule commensurate with submission of a full report to the Congress at the end of March, 1981. This report is the culmination of a study which began in October, 1978 and involved contributions from U.S. reactor manufacturers and US DOE laboratories. The US DOE is carrying forward a comprehensive technology development program. This effort provides direct support to the FFTF and CRBRP projects and to the LDP. It also supports technology development which is generic to the overall LMFBR program. Funding for breeder

  1. Accident analysis of Fukushima Daiichi Nuclear Power Station unit 1

    International Nuclear Information System (INIS)

    Kobayashi, Masahide; Narabayashi, Tadashi; Tsuji, Masashi; Chiba, Go; Nagata, Yasunori; Shimoe, Tomohiro

    2015-01-01

    As a result of the Great East Japan Earthquake that occurred on 11 March 2011, all AC and DC power at the Fukushima Daiichi NPP units 1 to 3 were lost soon after the tsunami. The core cooling function was lost, and the cores of units 1 to 3 were damaged. The purpose of this work is to clarify the progress of the accident in unit 1, which was damaged the earliest among the 3 units. Therefore, an original severe accident analysis code was developed, and the progress of the accident was evaluated from the analysis results and the actual data. As a result, the leakage path from a pressure vessel was clarified, and some lessons and knowledge were gained. (author)

  2. Development of remote decontamination technologies improving internal environment of reactor buildings at Fukushima Daiichi Nuclear Power Station

    International Nuclear Information System (INIS)

    Hotta, Koji; Hayashi, Hirotada; Sakai, Hitoshi

    2016-01-01

    The reactor buildings at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc., which was seriously damaged by the Great East Japan Earthquake of March 11, 2011, have been highly contaminated by radioactive materials. To safely and efficiently advance the processes related to the forthcoming decommissioning of the reactors, it is necessary to improve the hazardous environment inside the reactor buildings. During the more than four years that have elapsed since the Great East Japan Earthquake, Toshiba has been implementing various measures to reduce the ambient dose rates inside the reactor buildings through decontamination work and participation in a national project for the development of remote decontamination technologies for reactor buildings. A variety of vehicles and technologies to support decontamination work have been developed through these activities, and are significantly contributing to improvement of the environment inside the reactor buildings. (author)

  3. Culham Conceptual Tokamak Mark II. Design study of the layout of a twin-reactor fusion power station

    International Nuclear Information System (INIS)

    Guthrie, J.A.S.; Harding, N.H.

    1981-07-01

    This report describes the building layout and outline design for the nuclear complex of a fusion reactor power station incorporating two Culham Conceptual Tokamak Reactors Mk.II. The design incorporates equipment for steam generation, process services for the fusion reactors and all facilities for routine and non-routine servicing of the nuclear complex. The design includes provision of temporary facilities for on site construction of the major reactor components and shows that these facilities may be used for disassembly of the reactors either for major repair and/or decommissioning. Preliminary estimates are included, which indicate the cost benefits to be obtained from incorporating two reactors in one nuclear complex and from increased wall loading. (author)

  4. Safety evaluation report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Supplement No. 7

    International Nuclear Information System (INIS)

    1984-09-01

    Supplement 7 to the Safety Evaluation Report for Louisiana Power and Light's application for a license to operate Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Region IV Office of the US Nuclear Regulatory Commission. This supplement provides the results to date of the staff's evaluation of approximately 350 allegations and concerns of poor construction practices at the Waterford 3 facility

  5. Safety-evaluation report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322)

    International Nuclear Information System (INIS)

    1983-09-01

    Supplement 4 (SSER 4) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  6. Safety evaluation report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322). Supplement No. 7

    International Nuclear Information System (INIS)

    1984-09-01

    Supplement 7 (SSER 7) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  7. Safety Evaluation Report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322). Supplement No. 8

    International Nuclear Information System (INIS)

    1984-12-01

    Supplement 8 (SSER 8) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  8. Safety evaluation report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322). Supplement No. 6

    International Nuclear Information System (INIS)

    1984-07-01

    Supplement 6 (SSER 6) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  9. Safety Evaluation Report, related to the operation of Byron Station, Units 1 and 2 (Docket Nos. STN 50-454 and STN 50-455)

    International Nuclear Information System (INIS)

    1983-11-01

    Supplement No. 3 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  10. Safety evaluation report related to the operation of Byron Station, Units 1 and 2. Docket Nos. STN 50-454 and STN 50-455

    International Nuclear Information System (INIS)

    1983-01-01

    Supplement No. 2 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  11. Safety Evaluation Report related to the operation of Byron Station, Units 1 and 2 (Docket Nos. STN 50-454 and STN 50-455)

    International Nuclear Information System (INIS)

    1984-05-01

    Supplement No. 4 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  12. Safety Evaluation Report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322). Supplement No. 9

    International Nuclear Information System (INIS)

    1985-12-01

    Supplement 9 (SSER 9) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  13. Safety Evaluation Report related to the operation of Beaver Valley Power Station, Unit 2 (Docket No. 50-412). Supplement No. 2

    International Nuclear Information System (INIS)

    1986-08-01

    This report, Supplement No. 2 to the the Safety Evaluation Report for the application filed by the Duquesne Light Company, et al. (the applicant) for a license to operate the Beaver Valley Power Station Unit 2 (Docket No. 50-412), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time the Safety Evaluation Report was published

  14. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland

    Energy Technology Data Exchange (ETDEWEB)

    Gryzinski, M.A.; Maciak, M. [National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock-Swierk (Poland)

    2015-07-01

    planned to create fully equipped complex facility possible to perform various experiments on the intensive neutron beam. Epithermal neutron beam enables development across the full spectrum of materials research for example shielding concrete tests or electronic devices construction improvement. Due to recent reports on the construction of the accelerator for the Boron Neutron Capture Therapy (BNCT) it has the opportunity to become useful and successful method in the fight against brain and other types of cancers not treated with well known medical methods. In Europe there is no such epithermal neutron source which could be used throughout the year for training and research for scientist working on BNCT what makes the stand unique in Europe. Also our research group which specializes in mixed radiation dosimetry around nuclear and medical facilities would be able to carry out research on new detectors and methods of measurements for radiological protection and in-beam (therapeutic) dosimetry. Another group of scientists from National Centre for Nuclear Research, where MARIA research reactor is located, is involved in research of gamma detector systems. There is an idea to develop Prompt-gamma Single Photon Emission Computed Tomography (Pg- SPECT). This method could be used as imaging system for compounds emitting gamma rays after nuclear reaction with thermal neutrons e.g. for boron concentration in BNCT. Inside the room, where H2 channel is located, there is another horizontal channel - H1 which is also unused. Simultaneously with the construction of the H2 stand it will be possible to create special pneumatic horizontal mail inside the H1 channel for irradiation material samples in the vicinity of the core i.e. in the distal part of the H1 channel. It might expand the scope of research at the planned neutron station. Secondly it is planned to equip both stands with moveable positioning system, video system and facilities to perform animal experiments (anaesthesia, vital

  15. The United States Advanced Reactor Technologies Research and Development Program

    International Nuclear Information System (INIS)

    O’Connor, Thomas J.

    2014-01-01

    The following aspects are addressed: • Nuclear energy mission; • Reactor research development and deployment (RD&D) programs: - Light Water Reactor Sustainability Program; - Small Modular Reactor Licensing Technical Support; - Advanced Reactor Technologies (ART)

  16. The United States advanced light water reactor (USALWR) development program

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.; Noble, D.M.; Devine, J.C. Jr.; Sugnet, W.R.

    1987-01-01

    For the United States Nuclear Power industry to remain viable, it must be prepared to meet the expected need for a new generation capacity in the late 90s with an improved reactor system. The best hope of meeting this requirement is with revolutionary changes to current LWR systems through simplification and re-evaluation of safety and operational design margins. In addition, the grid characteristics and the difficulty in raising capital for large projects indicate the smaller light water reactors (600 MWe) may play an important role in the next generation. A cooperative and coordinated program between EPRI, U.S. DOE, the major architect engineers, nuclear steam supply vendors, and the NRC in the U.S. has been undertaken with four major goals in mind

  17. The United States Advanced Light Water reactor (USALWR) development program

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.; Noble, D.M.; Devine, Jr.J.C.; Sugnet, W.R.

    1987-01-01

    For the United States Nuclear power industry to remain viable, it must be prepared to meet the expected need for a new generation capacity in the late 90s with an improved reactor system. The best hope of meeting this requirement is with revolutionary changes to current LWR systems through simplification and re-evaluation of safety and operational design margins. In addition, the grid characteristics and the difficulty in raising capital for large projects indicate the smaller light water reactors (600 MWe) may play an important role in the next generation. A cooperative and coordinated program between EPRI, U.S. DOE, the major architect engineers, nuclear steam supply vendors, and the NRC in the U.S. has been undertaken with four major goals in mind. (author)

  18. Status of reactor shielding research in the United States

    International Nuclear Information System (INIS)

    Bartine, D.E.

    1983-01-01

    Shielding research in the United States continues to place emphasis on: (1) the development and refinement of shielding design calculational methods and nuclear data; and (2) the performance of confirmation experiments, both to evaluate specific design concepts and to verify specific calculational techniques and input data. The successful prediction of the radiation levels observed within the now-operating Fast Flux Test Facility (FFTF) has demonstrated the validity of this two-pronged approach, which has since been applied to US fast breeder reactor programs and is now being used to determine radiation levels and possible further shielding needs at operating light water reactors, especially under accident conditions. A similar approach is being applied to the back end of the fission fuel cycle to verify that radiation doses at fuel element storage and transportation facilities and within fuel reprocessing plants are kept at acceptable levels without undue economic penalties

  19. Counter rotating type hydroelectric unit suitable for tidal power station

    International Nuclear Information System (INIS)

    Kanemoto, T; Suzuki, T

    2010-01-01

    The counter rotating type hydroelectric unit, which is composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures,was proposed to utilize effectively the tidal power. In the unit, the front and the rear runners counter drive the inner and the outer armatures of the generator, respectively. Besides, the flow direction at the rear runner outlet must coincide with the flow direction at the front runner inlet, because the angular momentum through the rear runner must coincides with that through the front runner. That is, the flow runs in the axial direction at the rear runner outlet while the axial inflow at the front runner inlet. Such operations are suitable for working at the seashore with rising and falling tidal flows, and the unit may be able to take place of the traditional bulb type turbines. The tandem runners were operated at the on-cam conditions, in keeping the induced frequency constant. The output and the hydraulic efficiency are affected by the adjustment of the front and the blade setting angles. The both optimum angles giving the maximum output and/or efficiency were presented at the various discharges/heads. To promote more the tidal power generation by this type unit, the runners were also modified so as to be suitable for both rising and falling flows. The hydraulic performances are acceptable while the output is determined mainly by the trailing edge profiles of the runner blades.

  20. A charge regulating system for turbo-generator gas-cooled high-temperature reactor power stations

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegtnes, K.O.

    1975-01-01

    The invention relates to a regulating system for gas-cooled high-temperature reactors power stations (helium coolant), equipped with several steam-boilers, each of which deriving heat from a corresponding cooling-gas flow circulating in the reactor, so as to feed superheated steam into a main common steam-manifold and re-superheated steam into a re-superheated hot common manifold [fr

  1. Tests of a new CCD-camera based neutron radiography detector system at the reactor stations in Munich and Vienna

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E; Pleinert, H [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Schillinger, B [Technische Univ. Muenchen (Germany); Koerner, S [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria)

    1997-09-01

    The performance of the new neutron radiography detector designed at PSI with a cooled high sensitive CCD-camera was investigated under real neutronic conditions at three beam ports of two reactor stations. Different converter screens were applied for which the sensitivity and the modulation transfer function (MTF) could be obtained. The results are very encouraging concerning the utilization of this detector system as standard tool at the radiography stations at the spallation source SINQ. (author) 3 figs., 5 refs.

  2. Daily snow depth measurements from 195 stations in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Allison, L.J. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Easterling, D.R.; Jamason, P.; Bowman, D.P.; Hughes, P.Y.; Mason, E.H. [National Oceanic and Atmospheric Administration, Asheville, NC (United States). National Climatic Data Center

    1997-02-01

    This document describes a database containing daily measurements of snow depth at 195 National Weather Service (NWS) first-order climatological stations in the United States. The data have been assembled and made available by the National Climatic Data Center (NCDC) in Asheville, North Carolina. The 195 stations encompass 388 unique sampling locations in 48 of the 50 states; no observations from Delaware or Hawaii are included in the database. Station selection criteria emphasized the quality and length of station records while seeking to provide a network with good geographic coverage. Snow depth at the 388 locations was measured once per day on ground open to the sky. The daily snow depth is the total depth of the snow on the ground at measurement time. The time period covered by the database is 1893--1992; however, not all station records encompass the complete period. While a station record ideally should contain daily data for at least the seven winter months (January through April and October through December), not all stations have complete records. Each logical record in the snow depth database contains one station`s daily data values for a period of one month, including data source, measurement, and quality flags.

  3. Experience in surveillance of the prestress of concrete reactor vessels in Wylfa nuclear power station

    International Nuclear Information System (INIS)

    Dawson, P.; Paton, A.A.; Walsh, S.R.

    1989-01-01

    This paper describes experience gained in the in-service surveillance of the prestressing system for the prestressed concrete reactor vessels (PCRVs) at Wylfa nuclear power station. The paper gives details of results for the prestressing system obtained from the statutory in-service inspection program of the PCRVs. The program includes a detailed examination of a selection of prestressing tendon anchorages, anchorage load checks using a lift-off technique on a one percent sample of tendons and corrosion inspection of samples of prestressing strand and determination of their mechanical properties. The results obtained from the above in-service inspections have shown that the prestressing system continues to function within its design limits

  4. Flux distribution measurements in the Bruce B Unit 6 reactor using a transportable traveling flux detector system

    International Nuclear Information System (INIS)

    Leung, T.C.; Drewell, N.H.; Hall, D.S.; Lopez, A.M.

    1987-01-01

    A transportable traveling flux detector (TFD) system for use in power reactors has been developed and tested at Chalk River Nuclear Labs. in Canada. It consists of a miniature fission chamber, a motor drive mechanism, a computerized control unit, and a data acquisition subsystem. The TFD system was initially designed for the in situ calibration of fixed self-powered detectors in operating power reactors and for flux measurements to verify reactor physics calculations. However, this system can also be used as a general diagnostic tool for the investigation of apparent detector failures and flux anomalies and to determine the movement of reactor internal components. This paper describes the first successful use of the computerized TFD system in an operating Canada deuterium uranium (CANDU) power reactor and the results obtained from the flux distribution measurements. An attempt is made to correlate minima in the flux profile with the locations of fuel channels so that future measurements can be used to determine the sag of the channels. Twenty-seven in-core flux detector assemblies in the 855-MW (electric) Unit 6 reactor of the Ontario Hydro Bruce B Generating Station were scanned

  5. 76 FR 24064 - Arizona Public Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3, Notice...

    Science.gov (United States)

    2011-04-29

    ... Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3, Notice of Issuance of Renewed... Company (licensee), the operator of the Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (PVNGS... Plants: Supplement 43, Regarding Palo Verde Nuclear Generating Station,'' issued January 2011, discusses...

  6. Nuclear power reactor licensing and regulation in the United States

    International Nuclear Information System (INIS)

    Shapar, H.K.

    1979-01-01

    The report is devoted to four subjects: an explanation of the origins, statutory basis and development of the present regulatory system in the United States; a description of the various actions which must be taken by a license applicant and by the Nuclear Regulatory Commission before a nuclear power plant can be constructed and placed on-line, an account of the current regulatory practices followed by the US NRC in licensing nuclear power reactors; an identification of some of the 'lessons learned' from the Three Mile Island accident and some proposed regulatory and legislative solutions. (NEA) [fr

  7. Purification and solidification of reactor wastes at a Canadian nuclear generating station

    International Nuclear Information System (INIS)

    Buckley, L.P.; Burt, D.A.

    1981-06-01

    Chalk River Nuclear Laboratories are developing methods to condition power reactor wastes and to immobilize their radionuclides. Evaporation alone and combined with bituminization has been an important part of the program. After testing at the laboratories a 0.5 m 2 wiped-film evaporator was sent to the Douglas Point Nuclear Generating Station (220 MWe) to demonstrate its suitability to handle typical reactor liquid wastes. Two specific tasks undertaken with the wiped-film evaporator were successfully completed. The first was purification of contaminated heavy water which had leaked from the moderator circuit. The heavy water is normally recovered, cleaned by filters and ion-exchange resin and then upgraded by electrolysis. Cleaning the heavy water with the wiped-film evaporator produced better quality water for upgrading than had been achieved by any previous method and at much lower operating cost. The second task was to concentrate and immobilize a decontamination waste. The waste was generated from the decontamination of pump bowls used in the primary heat transport circuit. The simultaneous addition of the liquid waste and bitumen emulsion to the wiped-film evaporator produced a solid containing 30 wt% waste solids in a bitumen matrix. The volume reduction achieved was 16:1 based on the volumes of initial liquid waste and the final product generated. The quantity sent to storage was 20 times less than had the waste been immobilized in a cement matrix. The successful demonstration has resulted in a proposal to install a wiped-film evaporator at the station to clean heavy water and immobilize decontamination wastes. (author)

  8. Development of an automated system of nuclear materials accounting for nuclear power stations with water-cooled, water-moderated reactors

    International Nuclear Information System (INIS)

    Babaev, N.S.

    1981-06-01

    The results of work carried out under IAEA Contract No. 2336/RB are described (subject: an automated system of nuclear materials accounting for nuclear power stations with water-cooled, water-moderated (VVER) reactors). The basic principles of an accounting system for this type of nuclear power plant are outlined. The general structure and individual units of the information computer program used to achieve automated accounting are described and instructions are given on the use of the program. A detailed example of its application (on a simulated nuclear power plant) is examined

  9. Examination policy concerning the additional installation of No. 3 and No. 4 reactors in Takahama Nuclear Power Station and No. 3 and No. 4 reactors in Fukushima No. 2 Nuclear Power Station

    International Nuclear Information System (INIS)

    1980-01-01

    The Nuclear Safety Commission decided the annual examination policy on the modification of reactor installation in Takahama Nuclear Power Station to construct No. 3 and No. 4 reactors inquired under date of November 26, 1979, by the Minister of International Trade and Industry, so that the examination results of the accident in Three Mile Island nuclear power station are reflected to the examination for the purpose of improving reactor safety. The examination results of the accident in Three Mile Island power station are being investigated by the Committee on Examination of Reactor Safety, based on the policy shown in ''On the second report of the special committee examining the accident in a nuclear power station in the U.S.'' determined by the Nuclear Safety Commission under date of September 13, 1979. Though the Committee will further clarify the past guideline about the items concerning the criteria, design and operation management, the Committee decided the tentative policy to reflect it to safety examination. Further, a table is attached, in which 52 items to be reflected to the security measures are classified from the viewpoint of necessity to reflect them to the final examination. This table includes 13 items of criteria and examination, 7 items related to design, 10 items related to operation management, 10 antidisaster items, and 12 items related to safety research. (Wakatsuki, Y.)

  10. Model engineering for piping layout of boiling water reactor nuclear station

    International Nuclear Information System (INIS)

    Tsukada, Koji; Uchiyama, Masayuki; Wada, Takanao; Jibu, Noboru.

    1977-01-01

    A nuclear power station is made up of a wide variety of equipment, piping, ventilation ducts, conduits, and cable trays, etc. Even if equipment arrangement and piping layout are carefully planned on drawings, troubles such as interference often occur at field installation. Accordingly, it is thought very useful to make thorough examinations with plastic three-dimensional models in addition to drawings in reducing troubles at field, shortening the construction period, and improving economics. Examination with plastic models offers the following features: (1) It permits visual three-dimensional examination. (2) Group thinking and examination is possible. (3) Troubles due to failure to understand complicated drawings can be reduced drastically. Manufacturing a 1/20 scale model of the reactor building of the Tokai No. 2 Power Station of the Japan Atomic Power Co., Hitachi has performed model engineering-solution of interference troubles related to equipment and piping, securing of work space for in-service inspection (ISI), carry-in/installation of various equipment and piping, and determination of the piping route of which only the starting and terminating points were given under the complicated ambient conditions. Success with this procedure has confirmed that model engineering is an effective technique for future plant engineering. (auth.)

  11. Training courses for the staff of the nuclear power station KRSKO conducted at the TRIGA reactor center in Ljubljana

    International Nuclear Information System (INIS)

    Pregl, G.; Najzer, M.

    1976-01-01

    The training program for the Nuclear Power Station Krsko was divided into two modules: fundamentals of nuclear engineering and specialized training according to duties that candidates are supposed to take at the power station. Basic training was organized at the TRIGA Reactor Center in Ljubljana in two different versions. The first version intended for plant operators and all engineers lasted for six months and included about 500 hours of classroom lessons and seminars and 31 laboratory experiments. The educational program was conventional. The following topics were covered: nuclear and atomic physics, reactor theory, reactor dynamics, reactor instrumentation and control, heat transfer in nuclear power plants, nuclear power plant systems, reactor materials, reactor safety, and radiation protection. Until now, two groups, consisting of 37 candidates altogether, have attended this basic course. Plans have been made to conduct two additional courses of about 20 students each for technicians other than operators. The program of this second version will be reduced, with the emphasis on reactor core physics and radiation protection. Classroom lessons will be strongly supported by laboratory experiments. (author)

  12. Instructor station of full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Wu Fanghui

    1996-01-01

    The instructor station of Full Scope Simulator for Qinshan 300 MW Nuclear Power Unit is based on SGI graphic workstation. The operation system is real time UNIX, and the development of man-machine interface, mainly depends on standard X window system, special for X TOOLKITS and MOTIF. The instructor station has been designed to increase training effectiveness and provide the most flexible environment possible to enhance its usefulness. Based on experiences in the development of the instructor station, many new features have been added including I/O panel diagrams, simulation diagrams, graphic operation of malfunction, remote function and I/O overrides etc

  13. Diagnostic testing and repair of Hollingsworth Generating Station`s Unit One

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This paper presents a case history of the diagnosis of a hydroelectric generator problem and the corrections implemented. The problem involved an excessive rotor imbalance coupled with a static air gap imbalance that cause severe load-sensitive vibrations. The problem constrained the plant from operating the generator unit throughout the range of its nameplate rating and caused periodic failure of the generator guide and thrust bearing. The paper describes the vibration survey and mechanical survey of the generator rotor, the pre-overhaul diagnosis, the repairs undertaken to the rotor, and the generator performance after the repair, with comparison to the pre-repair condition. The paper concludes with a discussion of the economic, operational, and logistic issues involved in the overhaul.

  14. Diagnostic testing and repair of Hollingsworth Generating Station`s Unit One

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, R.; Epple, W.; Stevenson, D. [Great Lakes Power Ltd., Sault Ste. Marie, ON (Canada); Brotherton, L.; Crahan, M.; Ghate, A.

    1995-12-31

    A case history of the diagnosis and corrections implemented to resolve vibration problems in a 22,222 kVA hydroelectric generator was presented. The problem prevented the utility from operating the unit throughout the range of its nameplate rating and caused periodic failures of the generator`s guide and thrust bearing. Tests identified that the rim assembly was fastened onto the spider in a manner that resulted in tilting of the rim with respect to the axis of rotation, consequently, there was an unbalanced generator static air gap. A unique repair was implemented to fully restore the rim assembly to its proper position. Problems associated with carrying out such major in-situ repairs in a remote environment and within a scheduled maintenance outage were discussed. Economic benefits and costs associated with the repair were also discussed.

  15. Molten Salt Breeder Reactor Analysis Based on Unit Cell Model

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yongjin; Choi, Sooyoung; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    Contemporary computer codes like the MCNP6 or SCALE are only good for solving a fixed solid fuel reactor. However, due to the molten-salt fuel, MSR analysis needs some functions such as online reprocessing and refueling, and circulating fuel. J. J. Power of Oak Ridge National Laboratory (ORNL) suggested in 2013 a method for simulating the Molten Salt Breeder Reactor (MSBR) with SCALE, which does not support continuous material processing. In order to simulate MSR characteristics, the method proposes dividing a depletion time into short time intervals and batchwise reprocessing and refueling at each step. We are applying this method by using the MCNP6 and PYTHON and NEWT-TRITON-PYTHON and PYTHON code systems to MSBR. This paper contains various parameters to analyze the MSBR unit cell model such as the multiplication factor, breeding ratio, change of amount of fuel, amount of fuel feeding, and neutron flux distribution. The result of MCNP6 and NEWT module in SCALE show some difference in depletion analysis, but it still seems that they can be used to analyze MSBR. Using these two computer code system, it is possible to analyze various parameters for the MSBR unit cells such as the multiplication factor, breeding ratio, amount of material, total feeding, and neutron flux distribution. Furthermore, the two code systems will be able to be used for analyzing other MSR model or whole core models of MSR.

  16. Molten Salt Breeder Reactor Analysis Based on Unit Cell Model

    International Nuclear Information System (INIS)

    Jeong, Yongjin; Choi, Sooyoung; Lee, Deokjung

    2014-01-01

    Contemporary computer codes like the MCNP6 or SCALE are only good for solving a fixed solid fuel reactor. However, due to the molten-salt fuel, MSR analysis needs some functions such as online reprocessing and refueling, and circulating fuel. J. J. Power of Oak Ridge National Laboratory (ORNL) suggested in 2013 a method for simulating the Molten Salt Breeder Reactor (MSBR) with SCALE, which does not support continuous material processing. In order to simulate MSR characteristics, the method proposes dividing a depletion time into short time intervals and batchwise reprocessing and refueling at each step. We are applying this method by using the MCNP6 and PYTHON and NEWT-TRITON-PYTHON and PYTHON code systems to MSBR. This paper contains various parameters to analyze the MSBR unit cell model such as the multiplication factor, breeding ratio, change of amount of fuel, amount of fuel feeding, and neutron flux distribution. The result of MCNP6 and NEWT module in SCALE show some difference in depletion analysis, but it still seems that they can be used to analyze MSBR. Using these two computer code system, it is possible to analyze various parameters for the MSBR unit cells such as the multiplication factor, breeding ratio, amount of material, total feeding, and neutron flux distribution. Furthermore, the two code systems will be able to be used for analyzing other MSR model or whole core models of MSR

  17. Chernobyl reactor accident. A documentation submitted by the Deutsche Welle radio station. Der Fall Tschernobyl. Eine Dokumentation der Deutschen Welle

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The documentation abstracted contains a complete survey of the broadcasts transmitted by the Russian wire service of the Deutsche Welle radio station between April 28 and May 15, 1986 on the occasion of the Chernobyl reactor accident. Access is given to extracts of the remarkable eastern and western echoes on the broadcasts of the Deutsche Welle.

  18. Data book of examination of the ruptured pipe at the Hamaoka Nuclear Power Station Unit-1

    International Nuclear Information System (INIS)

    2002-03-01

    In order to investigate root cause of the pipe rupture, which took place at the Hamaoka Nuclear Power Station Unit-1 of Chubu Electric Power Company on November 7, 2001, a task force was established within the Nuclear and Industrial Safety Agency (NISA) and initiated a detailed investigation of the ruptured pipe. The Japan Atomic Energy Research Institute (JAERI) was asked from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in response to the request from NISA to cooperate as an independent neutral organization with NISA and perform an examination of the ruptured pipe independently from Chubu Electric Power Company. JAERI accepted the request by considering the fact that JAERI is an integrated research institution for nuclear research and development, a prime research institution for nuclear safety research, a research institution with experience of root-cause investigation of various nuclear incidents and accidents of domestic as well as overseas, and a research institution provided with advanced examination facilities necessary for examination of the ruptured pipe. The JAERI examination group was formed at the Tokai Research Establishment and conducted detailed and thorough examination of the pieces taken from the ruptured pipe primarily in the Reactor Fuel Examination Facility (RFEF) with the use of tools such as scanning electron microscopes and other equipments. Purpose of examination was to provide technical information in order to identify causes of the pipe rupture through examination of the pieces taken from the ruptured region of the pipe. The result of the present examination has already been reported to NISA and has also been published as the JAERI-Tech report No.2001-94. This report is a data book containing the detailed data obtained by the present examination. (author)

  19. Report of examination of the ruptured pipe at the Hamaoka Nuclear Power Station Unit-1

    International Nuclear Information System (INIS)

    2001-12-01

    In order to investigate root cause of the pipe rupture, which took place at the Hamaoka Nuclear Power Station Unit-1 of Chubu Electric Power Company on November 7, 2001, a task force was established within the Nuclear and Industrial Safety Agency (NISA) and initiated a detailed investigation of the ruptured pipe. The Japan Atomic Energy Research Institute (JAERI) was asked from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in response to the request from NISA to cooperate as an independent neutral organization with NISA and perform an examination of the ruptured pipe independently from Chubu Electric Power Company. JAERI accepted the request by considering the fact that JAERI is an integrated research institution for nuclear research and development, a prime research institution for nuclear safety research, a research institution with experience of root-cause investigation of various nuclear incidents and accidents of domestic as well as overseas, and a research institution provided with advanced examination facilities necessary for examination of the ruptured pipe. The JAERI examination group was formed at the Tokai Research Establishment and conducted detailed and thorough examination of the pieces taken from the ruptured pipe primarily in the Reactor Fuel Examination Facility (RFEF) with the use of tools such as scanning electron microscopes and other equipments. Purpose of examination was to provide technical information in order to identify causes of the pipe rupture through examination of the pieces taken from the ruptured region of the pipe. The following findings and conclusion were made as the result of the present examination. (1) Wall thickness of the pipe was significantly reduced in the ruptured region. (2) Dimple pattern resulting from ductile fracture by shearing was observed in the fracture surfaces of nearly all of the pieces and no indication of fatigue crack growth was found. (3) Microstructure showed a typical carbon

  20. Retrofitting and operation solid radwaste system Dresden Station, Units 2 and 3

    International Nuclear Information System (INIS)

    Testa, J.; Homer, J.C.

    1982-01-01

    Units 2 and 3 at Dresden Station are twin 794 MW (net) BWR units that became operational in 1970 and 1971. The waste streams are typical of BWR stations, namely, bead resin and filter sludge (powdered resins and diatomaceous earth), evaporator concentrate containing approximately 25% dissolved solids and dry active waste. The original solid radwaste system utilized cement for solidification in open top 55 gallon drums. Remote handling was provided by means of a monorail with moving platforms supporting the drums. A relatively light-weight compactor was used to compact DAW into 55 gallon drums. Difficulties were experienced with this system

  1. Safety Evaluation Report related to the operation of Grand Gulf Nuclear Station, Units 1 and 2 (Docket Nos. 50-416 and 50-417). Supplement 6

    International Nuclear Information System (INIS)

    1984-08-01

    Supplement 6 to the Safety Evaluation Report for Mississippi Power and Light Company et al. joint application for licenses to operate the Grand Gulf Nuclear Station, Units 1 and 2, located on the east bank of the Mississippi River near Port Gibson in Claiborne County, Mississippi, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the NRC staff's evaluation of open items from previous supplements and Technical Specification changes required before authorizing operation of Unit 1 above 5% of rated power

  2. Safety Evaluation Report related to the operation of Grand Gulf Nuclear Station, Units 1 and 2 (Docket Nos. 50-416 and 50-417). Supplement No. 5

    International Nuclear Information System (INIS)

    1984-08-01

    Supplement 5 to the Safety Evaluation Report for Mississippi Power and Light Company, et al., joint application for licenses to operate the Grand Gulf Nuclear Station, Units 1 and 2, located on the east bank of the Mississippi River near Port Gibson in Claiborne County, Mississippi, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status on the resolution of those issues that require further evaluation before authorizing operation of Unit 1 above 5% of rated power

  3. Safety-Evaluation Report related to the operation of Grand Gulf Nuclear Station, Units 1 and 2. Docket Nos. 50-416 and 50-417

    International Nuclear Information System (INIS)

    1983-05-01

    Supplement 4 to the Safety Evaluation Report for Mississippi Power and Light Company, et. al., joint application for licenses to operate the Grand Gulf Nuclear Station, Units 1 and 2, located on the east bank of the Mississippi River near Port Gibson in Claiborne County, Mississippi, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status on the resolution of those issues that required further evaluation before authorizing operation of Unit 1 above 5% rated power and other issues that were to be evaluated during the first cycle of power operation

  4. Safety evaluation report related to the operation of LaSalle County Station, Units 1 and 2, (Docket Nos. 50-373 and 50-374). Supplement No. 7

    International Nuclear Information System (INIS)

    1983-12-01

    Supplement No. 7 to the Safety Evaluation Report of Commonwealth Edison Company's application for a license to operate its La Salle County Station, Unit 2, located on Brookfield Township, La Salle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement is to update our evaluations on Unit 2 issues identified in the previous Safety Evaluation Report and Supplements that need resolution prior to issuance of the operating license for Unit 2

  5. Brayton rotating units for space reactor power systems

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Bruno M.; El-Genk, Mohamed S. [Institute for Space and Nuclear Power Studies and Chemical and Nuclear Engineering Dept., The Univ. of New Mexico, Albuquerque, NM 87131 (United States)

    2009-09-15

    Designs and analyses models of centrifugal-flow compressor and radial-inflow turbine of 40.8kW{sub e} Brayton Rotating Units (BRUs) are developed for 15 and 40 g/mole He-Xe working fluids. Also presented are the performance results of a space power system with segmented, gas cooled fission reactor heat source and three Closed Brayton Cycle loops, each with a separate BRU. The calculated performance parameters of the BRUs and the reactor power system are for shaft rotational speed of 30-55 krpm, reactor thermal power of 120-471kW{sub th}, and turbine inlet temperature of 900-1149 K. With 40 g/mole He-Xe, a power system peak thermal efficiency of 26% is achieved at rotation speed of 45 krpm, compressor and turbine inlet temperatures of 400 and 1149 K and 0.93 MPa at exit of the compressor. The corresponding system electric power is 122.4kW{sub e}, working fluid flow rate is 1.85 kg/s and the pressure ratio and polytropic efficiency are 1.5% and 86.3% for the compressor and 1.42% and 94.1% for the turbine. For the same nominal electrical power of 122.4kW{sub e}, decreasing the molecular weight of the working fluid (15 g/mole) decreases its flow rate to 1.03 kg/s and increases the system pressure to 1.2 MPa. (author)

  6. The chemical energy unit partial oxidation reactor operation simulation modeling

    Science.gov (United States)

    Mrakin, A. N.; Selivanov, A. A.; Batrakov, P. A.; Sotnikov, D. G.

    2018-01-01

    The chemical energy unit scheme for synthesis gas, electric and heat energy production which is possible to be used both for the chemical industry on-site facilities and under field conditions is represented in the paper. The partial oxidation reactor gasification process mathematical model is described and reaction products composition and temperature determining algorithm flow diagram is shown. The developed software product verification showed good convergence of the experimental values and calculations according to the other programmes: the temperature determining relative discrepancy amounted from 4 to 5 %, while the absolute composition discrepancy ranged from 1 to 3%. The synthesis gas composition was found out practically not to depend on the supplied into the partial oxidation reactor (POR) water vapour enthalpy and compressor air pressure increase ratio. Moreover, air consumption coefficient α increase from 0.7 to 0.9 was found out to decrease synthesis gas target components (carbon and hydrogen oxides) specific yield by nearly 2 times and synthesis gas target components required ratio was revealed to be seen in the water vapour specific consumption area (from 5 to 6 kg/kg of fuel).

  7. In core reload design for cycle 4 of Daya Bay nuclear power station both units

    International Nuclear Information System (INIS)

    Zhang Zongyao; Liu Xudong; Xian Chunyu; Li Dongsheng; Zhang Hong; Liu Changwen; Rui Min; Wang Yingming; Zhao Ke; Zhang Hong; Xiao Min

    1998-01-01

    The basic principles and the contents of the reload design for Daya Bay nuclear power station are briefly introduced. The in core reload design results, and the comparison between the calculated values and the measured values of both units the fourth cycle are also given. The reload design results of the two units satisfy all the economic requirements and safety criteria. The experimented results shown that the predicated values are tally good with all the measurement values

  8. Technical specifications, Limerick Generating Station, Unit No. 2 (Docket No. 50-353)

    International Nuclear Information System (INIS)

    1989-07-01

    The Limerick, Unit 2, Technical Specifications were prepared by the US Nuclear Regulatory Commission to set the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public

  9. Technical Specifications, Limerick Generating Station, Unit No. 2 (Docket No. 50-353)

    International Nuclear Information System (INIS)

    1989-08-01

    The Limerick, Unit 2, Technical Specifications were prepared by the US Nuclear Regulatory Commission to set the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public

  10. 76 FR 30204 - Exelon Nuclear, Dresden Nuclear Power Station, Unit 1; Exemption From Certain Security Requirements

    Science.gov (United States)

    2011-05-24

    ... contained in the Responsibility Matrix of the safeguards contingency plan.'' Part 73 of Title 10 of the Code... organization, which will have as its objective to provide high assurance that activities involving special... structures) for DNPS Unit 1 is in a form that does not pose a risk of removal (i.e., an intact reactor...

  11. Temelin-1 reactor unit commissioning and start-up

    International Nuclear Information System (INIS)

    Palecek, K.

    2002-01-01

    The Temelin-1 commissioning process was affected substantially by the change in the Czech political situation in 1989. The effects thereof were both favourable and unfavourable. Among favourable effects are the replacement of the original Instrumentation and Control System by a more advanced system and design changes which have brought about additional improvement of the Temelin NPP design safety, although on the other hand, this had an adverse impact on the time span and price of the power plant construction. Additional adverse effects included an unstable political and economic situation, associated with frequent changes in the management of the utility CEZ, a.s. (owner of the plant) as well as frequent replacement of persons in the position of the managing director of the Temelin plant itself. Despite all the difficulties encountered, Temelin-1 reactor unit could be ultimately put into trial operation in June 2002. (author)

  12. Oconee Nuclear Station, Units 1, 2, and 3. Semiannual operating report, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Information is presented concerning operations, performance characteristics, changes, tests, inspections, containment leak tests, maintenance, primary coolant chemistry, station staff changes, reservoir investigations, plume mapping, and operational environmental radioactivity monitoring data for oconee Units 1, 2, and 3. The non-radiological environmental surveillance program is also described. (FS)

  13. 77 FR 59679 - Central Vermont Public Service Corporation (Millstone Power Station, Unit 3); Order Approving...

    Science.gov (United States)

    2012-09-28

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0044; Docket No. 50-423] Central Vermont Public Service Corporation (Millstone Power Station, Unit 3); Order Approving Application Regarding Corporate Restructuring and Conforming Amendment I Dominion Nuclear Connecticut, Inc. (DNC), Central Vermont Public Service...

  14. Technical specifications, Braidwood Station Unit Nos. 1 and 2 (Docket Nos. STN 50-456 and STN 50-457): Appendix ''A'' to License No. NPF-72, [October 1986-July 1987

    International Nuclear Information System (INIS)

    1987-07-01

    The Braidwood Station, Units 1 and 2, technical specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public

  15. Station black out concurrent with PORV failure using a Generic Pressurized Water Reactor simulator

    International Nuclear Information System (INIS)

    Zubair, Muhammad; Ababneh, Ahmad; Ishag, Ahmed

    2017-01-01

    Highlights: •SBO accident simulation by using a GPWR simulator. •Normal SBO, and SBO with additional failure of Pilot Operated Relief Valve. •The research results will provide help in future for better understanding of accidents in APR 1400 reactors. -- Abstract: Station Black Out (SBO) is an accident situation that refers to the total loss of offsite power, along with the unavailability of onsite power, which results from the failure of all Diesel Generators (DG). Probabilistic Safety Assessment (PSA) spans a number of methods that include modeling of event-trees and simulation of accidents scenarios, aimed to quantify risk and ensure safety in nuclear power plants. PSA also deals with prediction of future accidents and calculation of failure probabilities that has been done in this study. A SBO accident was simulated using a Generic Pressurized Water Reactor (GPWR) simulator from KEYMASTER™. The accident scenario consists of two stages; the first stage belongs to normal SBO, in second stage SBO accident with additional failure of Pilot Operated Relief Valve (PORV) opens and it stuck open has been considered for the pressurizer. A comparison of the two stages was made by plotting variables on the same graph. The research has been carried out to analyze the hot and cold leg temperatures, Steam Generator (SG) pressure, SG Narrow Range (NR) level, SG water-level-percentage (PCT), Pressurizer pressure, Fuel Temperature, and containment pressure. Simulation results suggest that failure in closing PORV has negligible impact on hot and cold leg temperatures, results in an overall less pressure in SGs, but higher pressure in the pressurizer. Additionally, containment pressure did not exceed the maximum approved pressure of 8.7 kg/cm 2 , but was approaching the Advanced Pressurized Water Reactor’s (APR-1400) design pressure of 4.218 kg/cm 2 . Finally, nuclear fuel temperature exceeded Probabilistic Risk Assessment (PRA) limit of 726.7 °C for both scenarios. The

  16. Measurement station for interim inspections of Lightbridge metallic fuel rods at the Halden Boiling Water Reactor

    Science.gov (United States)

    Hartmann, C.; Totemeier, A.; Holcombe, S.; Liverud, J.; Limi, M.; Hansen, J. E.; Navestad, E. AB(; )

    2018-01-01

    Lightbridge Corporation has developed a new Uranium-Zirconium based metallic fuel. The fuel rods aremanufactured via a co-extrusion process, and are characterized by their multi-lobed (cruciform-shaped) cross section. The fuel rods are also helically-twisted in the axial direction. Two experimental fuel assemblies, each containing four Lightbridge fuel rods, are scheduled to be irradiated in the Halden Boiling Water Reactor (HBWR) starting in 2018. In addition to on-line monitoring of fuel rod elongation and critical assembly conditions (e.g. power, flow rates, coolant temperatures, etc.) during the irradiation, several key parameters of the fuel will be measured out-of-core during interim inspections. An inspection measurement station for use in the irradiated fuel handling compartment at the HBWR has therefore been developed for this purpose. The multi-lobed cladding cross section combined with the spiral shape of the Lightbridge metallic fuel rods requires a high-precision guiding system to ensure good position repeatability combined with low-friction guiding. The measurement station is equipped with a combination of instruments and equipment supplied from third-party vendors and instruments and equipment developed at Institute for Energy Technology (IFE). Two sets of floating linear voltage differential transformer (LVDT) pairs are used to measure swelling and diameter changes between the lobes and the valleys over the length of the fuel rods. Eddy current probes are used to measure the thickness of oxide layers in the valleys and on the lobe tips and also to detect possible surface cracks/pores. The measurement station also accommodates gamma scans. Additionally, an eddy-current probe has been developed at IFE specifically to detect potential gaps or discontinuities in the bonding layer between the metallic fuel and the Zirconium alloy cladding. Potential gaps in the bonding layer will be hidden behind a 0.5-1.0 mm thick cladding wall. It has therefore been

  17. Case study on the use of PSA methods: Station blackout risk at Millstone Unit 3

    International Nuclear Information System (INIS)

    1991-04-01

    In Westinghouse pressurized water reactors, severe accidents sequences resulting from station blackout have been recognized to be significant contributors to risk of core damage and public consequences. To properly quantify the risk of station blackout it is necessary to consider all possible types of core damage scenarios. Having obtained an accurate representation of the types of core damage scenarios involved specific areas of vulnerability can be pinpointed for further improvement. In performing this analysis it was decided to use time dependent probabilistic safety assessment method to provide a more realistic treatment of time dependent failure and recovery. Overview of the analysis, calculation procedures and methods, interpretation of the results are discussed. Peer review process is described. 13 refs, 19 figs

  18. Environmental management at the Grand Rapids Generating Station following the Unit No.1 headcover failure

    International Nuclear Information System (INIS)

    Windsor, D.C.

    1993-01-01

    Failure of the headcover of Unit 1 in the Grand Rapids generating station in March, 1992 caused the station to flood, releasing several thousand gallons of oil and removing the station from service for several weeks. Environmental considerations were a considerable part of the station restoration activities, reservoir and flow management programs and responses to public concerns arising from the accident. A major oil spill containment and cleanup program was undertaken, with station cleanup and debris disposal carried out in a manner acceptable to environmental authorities. Reservoir spillage was necessitated by the station shutdown. The spill recreated fish habitat in the spillway and walleye spawning were documented. A compensation program was developed to respond to problems caused by debris flushed from the spillway channel. On spill termination, a fish salvage program removed fish from a scour hole in the spillway channel. A proactive program of public information provided local residents with the facts about the incident and response program, and allayed concerns about public safety. 4 refs., 2 figs

  19. Analysis of station blackout accidents for the Bellefonte pressurized water reactor

    International Nuclear Information System (INIS)

    Gasser, R.D.; Bieniarz, P.P.; Tills, J.L.

    1986-09-01

    An analysis has been performed for the Bellefonte PWR Unit 1 to determine the containment loading and the radiological releases into the environment from a station blackout accident. A number of issues have been addressed in this analysis which include the effects of direct heating on containment loading, and the effects of fission product heating and natural convection on releases from the primary system. The results indicate that direct heating which involves more than about 50% of the core can fail the Bellefonte containment, but natural convection in the RCS may lead to overheating and failure of the primary system piping before core slump, thus, eliminating or mitigating direct heating. Releases from the primary system are significantly increased before vessel breach due to natural circulation and after vessel breach due to reevolution of retained fission products by fission product heating of RCS structures

  20. Status of fast reactor control rod development in the United Kingdom

    International Nuclear Information System (INIS)

    Kelly, B.T.

    1984-01-01

    The two large fast reactors constructed in the United Kingdom, that is the Dounreay Fast Reactor (DFR) and the Prototype Fast Reactor (PFR) differed substantially in their control systems. DFR was controlled by variation of the neutron leakage from the core while PFR uses conventional control rods containing neutron absorbing materials. This paper describes the development of the PFR control systems, the progressive design of the control systems for the prototype Civil Fast Reactor (CFR) and the supporting research and development programmes. (author)

  1. A review of the United Kingdom fast reactor program - March 1983

    International Nuclear Information System (INIS)

    Smith, R.D.

    1983-01-01

    A review of the United Kingdom Fast Reactor Programme was given in March 1983. Operational experience with the Prototype Fast Reactor (PFR) is briefly summarized. The design concept of the Commercial Demonstration Fast Reactor (CDFR), including design codes, engineering components, materials and fuels development, chemical engineering/sodium technology, safety and reactor performance, is reviewed. The problems of PFR and CDFR fuel reprocessing are also discussed

  2. Comparison of the N Reactor and Ignalina Unit No. 2 Level 1 Probabilistic Safety Assessments

    International Nuclear Information System (INIS)

    Coles, G.A.; McKay, S.L.

    1995-06-01

    A multilateral team recently completed a full-scope Level 1 Probabilistic Safety Assessment (PSA) on the Ignalina Unit No. 2 reactor plant in Lithuania. This allows comparison of results to those of the PSA for the U.S. Department of Energy's (DOE) N Reactor. The N Reactor, although unique as a Western design, has similarities to Eastern European and Soviet graphite block reactors

  3. Quality control for the construction of Ikata Nuclear Power Station No. 2 Unit

    International Nuclear Information System (INIS)

    Onishi, Akiyoshi

    1983-01-01

    In the construction of No. 2 unit in Ikata Nuclear Power Station, Shikoku Electric Power Co., the quality control was practiced making effective use of the experience in preceding stations including the Three Mile Island station, U.S., and improving those. The construction works were also performed in consideration of ensuring the safe running of No. 1 unit in commercial operation. In this report, first the outline of No. 2 unit facility and the quality control in the construction processes are described sequentially. For the comprehensive quality control activity over a series of plant design, manufacturing, installation and commissioning processes, the quality control policy was fixed, the system was established, the plan was prepared, and the quality control was promoted as planned and systematically. The outline of the quality control in each stage is described as follows. Design stage: It was implemented for the confirmation of applicable standards and references, the management of drawings submitted for approval, the selection of materials used, the coordination among sub-contractors, design change and the reflection of experience in preceding stations. Manufacturing stage. It was performed for material control, manufacturing management, factory test and control. Installation stage. It was practiced for the management of installation works, the inspection during the installation, and the check-up and control after the installation. Several quality control items were implemented also in the method of construction works and construction management. (Wakatsuki, Y.)

  4. Safety evaluation report related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423). Supplement No. 5

    International Nuclear Information System (INIS)

    1986-01-01

    This report supplements the Safety Evaluation Report (NUREG-1031) issued in July 1984, Supplement 1 issued in March 1985, Supplement 2 issued in September 1985, Supplement 3 issued in November 1985, and Supplement 4 issued in November 1985 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Northeast Nuclear Energy Company (licensee and agent for the owners) for a license to operate Millstone Nuclear Power Station, Unit No. 3 (Docket 50-423). The supplement provides more recent information regarding resolution of license conditions identified in the SER. Because of the favorable resolution of the items discussed in this report, the staff concludes that Millstone Nuclear Power Station, Unit No. 3, can be operated by the licensee at power levels greater than 5% without endangering the health and safety of the public. 13 refs

  5. Integrated Plant Safety Assessment: Systematic Evaluation Program. Millstone Nuclear Power Station, Unit 1, Northeast Nuclear Energy Company, Docket No. 50-245. Final report

    International Nuclear Information System (INIS)

    1983-02-01

    This report documents the review of the Millstone Nuclear Power Station, Unit 1, operated by Northeast Nuclear Energy Company (located in Waterford, Connecticut). Millstone Nuclear Power Station, Unit 1, is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license. This report also addresses the comments and recommendations made by the Advisory Committee on Reactor Safeguards in connection with its review of the Draft Report, issued in November 1982

  6. Characterization of solids in the Three Mile Island Unit 2 reactor defueling water

    International Nuclear Information System (INIS)

    Campbell, D.O.

    1987-12-01

    Because of the impact of poor water clarity on defueling operations at the Three Mile Island Unit 2 Nuclear Power Station, a study was undertaken to characterize suspended particulates in the reactor defueling water. The examination included cascade filtration through Nuclepore filters of progressively smaller pore sizes, using three water samples obtained at different times and after varying degrees of clarification. The solids collected on the filters were examined with a scanning electron microscope and analyzed with energy-dispersive x-ray fluorescence. A wide variety of solids was observed, and 26 elements were detected. These included all the materials expected from the reactor system (uranium, zirconium, silver, cadmium, indium, iron, chromium, and nickel), chemicals and zeolites used to decontaminate the water (aluminum, silicon, sodium), common impurities (potassium, chlorine, sulfur, magnesium, calcium, and others), as well as some unexpected metals (molybdenum, manganese, bromine, and lead). There was also evidence for the presence of organic material. A diverse assortment of particles with widely varying surface properties was found to be present

  7. Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2002-04-01

    Corrective Action Unit (CAU) 490, Station 44 Burn Area is located on the Tonopah Test Range (TTR). CAU 490 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and includes for Corrective Action Sites (CASs): (1) Fire Training Area (CAS 03-56-001-03BA); (2) Station 44 Burn Area (CAS RG-56-001-RGBA); (3) Sandia Service Yard (CAS 03-58-001-03FN); and (4) Gun Propellant Burn Area (CAS 09-54-001-09L2).

  8. Pressurised water reactor operation

    International Nuclear Information System (INIS)

    Birnie, S.; Lamonby, J.K.

    1987-01-01

    The operation of a pressurized water reactor (PWR) is described with respect to the procedure for a unit start-up. The systems details and numerical data are for a four loop PWR station of the design proposed for Sizewell-'B', United Kingdom. A description is given of: the initial conditions, filling the reactor coolant system (RCS), heat-up and pressurisation of the RCS, secondary system preparations, reactor start-up, and reactivity control at power. (UK)

  9. Integrated plant safety assessment, Systematic Evaluation Program: Dresden Nuclear Power Station, Unit 2 (Docket No. 50-237)

    International Nuclear Information System (INIS)

    1989-10-01

    The US Nuclear Regulatory Commission (NRC) has prepared Supplement 1 to the final Integrated Plant Safety Assessment Report (IPSAR) (NUREG-0823), under the scope of the Systematic Evaluation Program (SEP), for the Commonwealth Edison Company (CECo) Dresden Nuclear Power Station, Unit 2 located in Grundy County, Illinois. The NRC initiated the SEP to provide the framework for reviewing the design of older operating nuclear reactor plants to reconfirm and document their safety. This report documents the review completed by means of the SEP for those issues that required refined engineering evaluations or the continuation of ongoing evaluations subsequent to issuing the final IPSAR for Dresden Unit 2. The review was provided for (1) an assessment of the significance of differences between current technical positions on selected issues and those that existed when Dresden Unit 2 was licensed, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. The final IPSAR and this supplement forms part of the bases for considering the conversion of the existing provisional operating license to a full-term operating license. 83 refs., 9 tabs

  10. Fusion reactor design studies: standard unit costs and cost scaling rules

    International Nuclear Information System (INIS)

    Schulte, S.C.; Bickford, W.E.; Willingham, C.E.; Ghose, S.K.; Walker, M.G.

    1979-09-01

    This report establishes standard unit costs and scaling rules for estimating costs of material, equipment, land, and labor components used in magnetic confinement fusion reactor plant construction and operation. Use of the standard unit costs and scaling rules will add uniformity to cost estimates, and thus allow valid comparison of the economic characteristics of various reactor concepts

  11. Socioeconomic impacts of nuclear generating stations: Crystal River Unit 3 case study. Technical report 1 Oct 78-4 Jan 82

    International Nuclear Information System (INIS)

    Bergmann, P.A.

    1982-07-01

    The report documents a case study of the socioeconomic impacts of the construction and operation of the Crystal River Unit 3 nuclear power station. It is part of a major post-licensing study of the socioeconomic impacts at twelve nuclear power stations. The case study covers the period beginning with the announcement of plans to construct the reactor and ending in the period, 1980-81. The case study deals with changes in the economy, population, settlement patterns and housing, local government and public services, social structure, and public response in the study area during the construction/operation of the reactor. A regional modeling approach is used to trace the impact of construction/operation on the local economy, labor market, and housing market. Emphasis in the study is on the attribution of socioeconomic impacts to the reactor or other causal factors. As part of the study of local public response to the construction/operation of the reactor, the effects of the Three Mile Island accident are examined

  12. Reactor pressure vessel integrity of Genkai Unit 1

    International Nuclear Information System (INIS)

    Nakamuta, Y.; Nozaki, G.; Saruwatari, T.; Watanabe, S.; Yamashita, Y.

    2015-01-01

    The structural integrity of reactor pressure vessels (RPVs) of commercial nuclear power plants in Japan has to be confirmed for the continuing operation according to the Japanese technical standards, JEAC4206-2007 and JEAC4201-2007, which specify the procedures to evaluate the structural integrity of RPVs and the embrittlement of RPV materials, respectively. The structural integrity analysis of Genkai Unit 1 RPV was performed based on the 4. surveillance data. Even though the ΔRT(NDT) obtained for the base metal was larger than the prediction of the current embrittlement correlation method of JEAC4201-2007, the structural integrity of the RPV during PTS event was confirmed with a sufficient margin. The reason of the large ΔRT(NDT) in the base metal was investigated thoroughly in terms of the microstructural changes caused by the neutron irradiation. The study showed that the microstructural changes are all as expected for this class of material, no grain boundary fracture occurred, the material is homogeneous in terms of chemical composition, and the chemical compositions which are important for the evaluation of embrittlement are correct. All these results suggested room for improvement of the current embrittlement correlation method in JEAC4201-2007. Using Genkai Unit 1 data as well as other recent surveillance data, the embrittlement correlation method has been modified so that the recent high fluence data can be predicted with higher accuracy, and was issued as JEAC4201-2007, 2013 addendum. It has been demonstrated that the RPV materials of the Genkai Unit 1 meet the requirements of JEAC4206-2007 and can be used for the continuing safe operation up to 60 years

  13. 75 FR 15745 - Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Science.gov (United States)

    2010-03-30

    ...] Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3; Exemption 1.0 Background The Arizona Public Service Company (APS, the licensee) is the holder of Facility... Generating Station (PVNGS), Units 1, 2, and 3, respectively. The licenses provide, among other things, that...

  14. 75 FR 8149 - Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Science.gov (United States)

    2010-02-23

    ...] Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3... NPF-74, issued to the Arizona Public Service Company (APS, or the licensee), for operation of the Palo Verde Nuclear Generating Station (PVNGS, the facility), Units 1, 2, and 3, respectively, located in...

  15. 75 FR 43572 - Duke Energy Carolinas, LLC, McGuire Nuclear Station, Units 1 and 2; Environmental Assessment and...

    Science.gov (United States)

    2010-07-26

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-369 and 50-370; NRC-2010-0259] Duke Energy Carolinas, LLC, McGuire Nuclear Station, Units 1 and 2; Environmental Assessment and Finding of No Significant... Energy Carolinas, LLC (the licensee), for operation of the McGuire Nuclear Station, Units 1 and 2...

  16. 75 FR 43571 - Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; Environmental Assessment And...

    Science.gov (United States)

    2010-07-26

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-413 and 50-414; NRC-2010-0260] Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; Environmental Assessment And Finding of No Significant... Energy Carolinas, LLC (the licensee), for operation of the Catawba Nuclear Station, Units 1 and 2...

  17. Technology, safety and costs of decommissioning a reference pressurized water reactor power station. Classification of decommissioning wastes. Addendum 3

    International Nuclear Information System (INIS)

    Murphy, E.S.

    1984-09-01

    The radioactive wastes expected to result from decommissioning of the reference pressurized water reactor power station are reviewed and classified in accordance with 10 CFR 61. The 17,885 cubic meters of waste from DECON are classified as follows: Class A, 98.0%; Class B, 1.2%; Class C, 0.1%. About 0.7% (133 cubic meters) of the waste would be generally unacceptable for disposal using near-surface disposal methods

  18. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  19. Confirmatory Survey Results for the Reactor Building Dome Upper Structural Surfaces, Rancho Saco Nuclear Generating Station, Herald, California

    International Nuclear Information System (INIS)

    Wade C. Adams

    2006-01-01

    Results from a confirmatory survey of the upper structural surfaces of the Reactor Building Dome at the Rancho Seco Nuclear Generating Station (RSNGS) performed by the Oak Ridge Institute for Science and Education for the NRC. Also includes results of interlaboratory comparison analyses on several archived soil samples that would be provided by RSNGS personnel. The confirmatory surveys were performed on June 7 and 8, 2006

  20. Photovoltaic power stations in Germany and the United States: A comparative study by data envelopment analysis

    International Nuclear Information System (INIS)

    Sueyoshi, Toshiyuki; Goto, Mika

    2014-01-01

    This study compares Photovoltaic (PV) power stations between Germany and the United States to examine which country more efficiently provides renewable energy in their usages. For the comparative analysis, this study utilizes Data Envelopment Analysis (DEA) as a methodology to evaluate the performance of PV power stations from the perspective of both solar and land usages. A total of one hundred sixty PV power stations (eighty in Germany and eighty in the United States) are used for this comparison. The demand for sustainable energy and energy security has been rapidly increasing over the past decade because of concerns about environment and limited resources. PV solutions are one of many renewable technologies that are being developed to satisfy a recent demand of electricity. Germany is the world's top installer and consumer of PV power and the United States is one of the top five nations. Germany leads the way in installed PV capacity even though the nation has less solar resources and land area. Due to limited solar resources, low insolation and sunshine, and land area, the United States should have a clear advantage over Germany. However, the empirical result of this study exhibits that PV power stations in Germany operate more efficiently than those of the United States even if the latter has many solar and land advantages. The surprising result indicates that the United States has room for improvement when it comes to utilizing solar and land resources and needs to reform the solar policy. For such a purpose, Feed-In Tariff (FIT) may be an effective energy policy at the state level in the United States because the FIT provides investors such as utility companies and other types of energy firms with financial incentives to develop large PV power stations and generation facilities for other renewable energy. It may be true that the FIT is a powerful policy tool to promote PV and other renewable installation and support a reduction of an amount of greenhouse

  1. Application of wire electrodes in electric discharge machining of metal samples of reactor blocks of the operative atomic power station

    International Nuclear Information System (INIS)

    Gozhenko, S.V.

    2007-01-01

    Features of application of electroerosive methods are considered during the process of direct definition of properties of metal of the equipment of power units of the atomic power station. Results of development of a complex of the equipment for wire electric discharge machining of metal templet and its use are presented at the control of the basic metal of the main circulating pipelines over blocks of the atomic power station of Ukraine over long terms of operation

  2. Corrective action decision document, Second Gas Station, Tonopah test range, Nevada (Corrective Action Unit No. 403)

    International Nuclear Information System (INIS)

    1997-11-01

    This Corrective Action Decision Document (CADD) for Second Gas Station (Corrective Action Unit [CAU] No. 403) has been developed for the U.S. Department of Energy's (DOE) Nevada Environmental Restoration Project to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO) of 1996 as stated in Appendix VI, open-quotes Corrective Action Strategyclose quotes (FFACO, 1996). The Second Gas Station Corrective Action Site (CAS) No. 03-02-004-0360 is the only CAS in CAU No. 403. The Second Gas Station CAS is located within Area 3 of the Tonopah Test Range (TTR), west of the Main Road at the location of former Underground Storage Tanks (USTs) and their associated fuel dispensary stations. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air and approximately 56 km (35 mi) southeast of Tonopah, Nevada, by road. The TTR is bordered on the south, east, and west by the Nellis Air Force Range and on the north by sparsely populated public land administered by the Bureau of Land Management and the U.S. Forest Service. The Second Gas Station CAS was formerly known as the Underground Diesel Tank Site, Sandia Environmental Restoration Site Number 118. The gas station was in use from approximately 1965 to 1980. The USTs were originally thought to be located 11 meters (m) (36 feet [ft]) east of the Old Light Duty Shop, Building 0360, and consisted of one gasoline UST (southern tank) and one diesel UST (northern tank) (DOE/NV, 1996a). The two associated fuel dispensary stations were located northeast (diesel) and southeast (gasoline) of Building 0360 (CAU 423). Presently the site is used as a parking lot, Building 0360 is used for mechanical repairs of vehicles

  3. Nuclear Power Station Kalkar, 300 MWe Prototype Nuclear Power Plant with Fast Sodium Cooled Reactor (SNR-300), Plant description

    International Nuclear Information System (INIS)

    1984-06-01

    The nuclear power station Kalkar (SNR-300) is a prototype with a sodium cooled fast reactor and a thermal power of 762 MW. The present plant description has been made available in parallel to the licensing procedure for the reactor plant and its core Mark-Ia as supplementary information for the public. The report gives a detailed description of the whole plant including the prevention measures against the impact of external and plant internal events. The radioactive materials within the reactor cooling system and the irradiation protection and surveillance measures are outlined. Finally, the operation of the plant is described with the start-up procedures, power operation, shutdown phases with decay heat removal and handling procedures

  4. Uncertainty and sensitivity analysis for the simulation of a station blackout scenario in the Jules Horowitz Reactor

    International Nuclear Information System (INIS)

    Ghione, Alberto; Noel, Brigitte; Vinai, Paolo; Demazière, Christophe

    2017-01-01

    Highlights: • A station blackout scenario in the Jules Horowitz Reactor is analyzed using CATHARE. • Input and model uncertainties relevant to the transient, are considered. • A statistical methodology for the propagation of the uncertainties is applied. • No safety criteria are exceeded and sufficiently large safety margins are estimated. • The most influential uncertainties are determined with a sensitivity analysis. - Abstract: An uncertainty and sensitivity analysis for the simulation of a station blackout scenario in the Jules Horowitz Reactor (JHR) is presented. The JHR is a new material testing reactor under construction at CEA on the Cadarache site, France. The thermal-hydraulic system code CATHARE is applied to investigate the response of the reactor system to the scenario. The uncertainty and sensitivity study was based on a statistical methodology for code uncertainty propagation, and the ‘Uncertainty and Sensitivity’ platform URANIE was used. Accordingly, the input uncertainties relevant to the transient, were identified, quantified, and propagated to the code output. The results show that the safety criteria are not exceeded and sufficiently large safety margins exist. In addition, the most influential input uncertainties on the safety parameters were found by making use of a sensitivity analysis.

  5. Audit of Wolf Creek Generating Station, Unit 1 technical specifications. Final technical evaluation report

    International Nuclear Information System (INIS)

    Stromberg, H.M.

    1985-07-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Wolf Creek Generating Station Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the assumptions of the Final Safety Analysis Report (FSAR) as amended, the requirements of the Safety Evaluation Report (SER) as supplemented, and the Comments and Responses to the Wolf Creek Technical Specification Draft Inspection Report. A comparative audit of the FSAR as amended, the SER as supplemented, and the Draft Inspection Report was performed with the Wolf Creek T/S. Several discrepancies were identified and subsequently resolved through discussions with the cognizant NRC reviewer, NRC staff reviewers and/or utility representatives. The Wolf Creek Generating Station Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR, SER, and Draft Inspection Report

  6. Marble Hill Nuclear Generating Station, Units 1 and 2. License application, PSAR, general information

    International Nuclear Information System (INIS)

    1975-01-01

    An application is presented for two PWR reactors to be constructed in Salud Township, Jefferson County, Indiana, about six miles northeast of New Washington on the Ohio River. Each unit will have a rated core power level of 3411 MW(t) with a corresponding electrical output of 1130 MW(e). Mechanical draft cooling towers will be provided. The facility, which will replicate the Byron facility will be employed for the generation of electricity for transmission, sale for resale, and distribution

  7. Characterization of the Three Mile Island Unit-2 reactor building atmosphere prior to the reactor building purge

    International Nuclear Information System (INIS)

    Hartwell, J.K.; Mandler, J.W.; Duce, S.W.; Motes, B.G.

    1981-05-01

    The Three Mile Island Unit-2 reactor building atmosphere was sampled prior to the reactor building purge. Samples of the containment atmosphere were obtained using specialized sampling equipment installed through penetration R-626 at the 358-foot (109-meter) level of the TMI-2 reactor building. The samples were subsequently analyzed for radionuclide concentration and for gaseous molecular components (O 2 , N 2 , etc.) by two independent laboratories at the Idaho National Engineering Laboratory (INEL). The sampling procedures, analysis methods, and results are summarized

  8. Safety Evaluation Report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Supplement No. 8

    International Nuclear Information System (INIS)

    1984-12-01

    Supplement 8 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the applicant since the Safety Evaluation Report and its seven previous supplements were issued

  9. Safety-evaluation report related to the operation of Waterford Steam Electric Station, Unit No. 3. Docket No. 50-382

    International Nuclear Information System (INIS)

    1983-06-01

    Supplement 5 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the applicant since the Safety Evaluation Report and its four previous Supplements were issued

  10. Safety evaluation report related to the operation of Clinton Power Station, Unit No. 1 (Docket No. 50-461). Suppl. 3

    International Nuclear Information System (INIS)

    1984-05-01

    Supplement No. 3 to the Safety Evaluation Report on the application filed by Illinois Power Company, Soyland Power Cooperative, Inc., and Western Illinois Power Cooperative, Inc., as applicants and owners, for a license to operate the Clinton Power Station, Unit No. 1, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Harp Township, DeWitt County, Illinois. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report and Supplements No. 1 and 2

  11. Safety evaluation report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Suppl.6

    International Nuclear Information System (INIS)

    1984-06-01

    Supplement 6 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the applicant since the Safety Evaluation Report and its five previous supplements were issued

  12. Safety Evaluation Report related to the operation of Byron Station, Units 1 and 2 (Dockets Nos. STN 50-454 and STN 50-455)

    International Nuclear Information System (INIS)

    1984-10-01

    Supplement No. 5 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report. Because of the favorable resolution of the items discussed in this report, the staff concludes that there is reasonable assurance that the facility can be operated by the applicant without endangering the health and safety of the public

  13. Safety Evaluation Report related to the operation of Clinton Power Station, Unit No. 1 (Docket No. 50-461). Supplement No. 6

    International Nuclear Information System (INIS)

    1986-07-01

    Supplement No. 6 to the Safety Evaluation Report on the application filed by Illinois Power Company, Soyland Power Cooperative, Inc., and Western Illinois Power Cooperative, Inc., as applicants and owners, for a license to operate the Clinton Power Station, Unit No. 1, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Harp Township, DeWitt County, Illinois. This supplement reports the status of items that have been resolved by the staff since Supplement No. 5 was issued

  14. Safety evaluation report related to the operation of Braidwood Station, Units 1 and 2 (Docket Nos. 50-456 and 50-457)

    International Nuclear Information System (INIS)

    1983-11-01

    The Safety Evaluation Report for the application filed by the Commonwealth Edison Company, as applicant and owner, for a license to operate Braidwood Station, Units 1 and 2 (Docket Nos. STN 50-456 and STN 50-457), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Reed Township, Will County, Illinois. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  15. Safety evaluation report related to the operation of Clinton Power Station, Unit No. 1 (Docket No. 50-461). Supplement No. 5

    International Nuclear Information System (INIS)

    1986-01-01

    Supplement No. 5 to the Safety Evaluation Report on the application filed by Illinois Power Company, Soyland Power Cooperative, Inc., and Western Illinois Power Cooperative, Inc. as applicants and owners, for a license to operate the Clinton Power Station, Unit No. 1, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Harp Township, DeWitt County, Illinois. This supplement reports the status of items that have been resolved by the staff since supplement No. 4 was issued

  16. Safety Evaluation Report related to the operation of Clinton Power Station, Unit No. 1 (Docket No. 50-461). Supplement No. 7

    International Nuclear Information System (INIS)

    1986-09-01

    Supplement No. 7 to the Safety Evaluation Report on the application filed by Illinois Power Company, Soyland Power Cooperative, Inc., and Western Illinois Power Cooperative, Inc., as applicants and owners, for a license to operate the Clinton Power Station, Unit No. 1, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Harp Township, DeWitt County, Illinois. This supplement reports the status of items that have been resolved by the staff since Supplement No. 6 was issued

  17. Safety Evaluation Report related to the operation of Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410)

    International Nuclear Information System (INIS)

    1985-02-01

    The Safety Evaluation Report for the application filed by the Niagara Mohawk Power Corporation, as applicant and co-owner, for a license to operate the Nine Mile Point Nuclear Station, Unit 2 (Docket No. 50-410), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near Oswego, New York. Subject to favorable resolution of the items discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  18. Safety Evaluation Report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Supplement 9

    International Nuclear Information System (INIS)

    1984-12-01

    Supplement 9 to the Safety Evaluation Report for Louisiana Power and Light's application for a license to operate Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Region IV Office of the US Nuclear Regulatory Commission. This supplement provides the results of the staff's completion of its evaluation of approximately 350 allegations and concerns of poor construction practices at the Waterford 3 facility

  19. Safety Evaluation Report related to the operation of Clinton Power Station, Unit No. 1 (Docket No. 50-461). Supplement No. 4

    International Nuclear Information System (INIS)

    1985-02-01

    Supplement No. 4 to the Safety Evaluation Report on the application filed by Illinois Power Company, Soyland Power Cooperative, Inc., and Western Illinois Power Cooperative, Inc., as applicants and owners, for a license to operate the Clinton Power Station, Unit No. 1, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Harp Township, DeWitt County, Illinois. This supplement reports the status of items that have been resolved by the staff since Supplement No. 3 was issued

  20. Safety-evaluation report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353)

    International Nuclear Information System (INIS)

    1983-08-01

    The Safety Evaluation Report for the application filed by the Philadelphia Electric Company, as applicant and owner, for licenses to operate the Limerick Generating Station Units 1 and 2 (Docket Nos. 50-352 and 50-353), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near Pottstown, Pennsylvania. Subject to favorable resolution of the items discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  1. NRC Fact-Finding Task Force report on the ATWS event at Salem Nuclear Generating Station, Unit 1, on February 25, 1983

    International Nuclear Information System (INIS)

    1983-03-01

    An NRC Region I Task Force was established on March 1, 1983 to conduct fact finding and data collection with regard to the circumstances which led to an anticipated transient without scram (ATWS) event at the Public Service Electric and Gas Company's Salem Generating Station, Unit 1 on February 25, 1983. The charter of the Task Force was to determine the factual information pertinent to management and administrative controls which should have ensured proper operation of the reactor trip breakers in the solid state protection system. This report documents the findings of the Task Force along with its conclusions

  2. Browns Ferry Nuclear Power Station, Units 1, 2, and 3. Semiannual report, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Browns Ferry units 1 and 2 operated at maximum power from January 1 to March 22 except as limited by thermal margins, fuel preconditioning, optimum power shape, maintenance, and Unit 2 start-up tests. On March 22 a cable tray fire started causing spurious starting of equipment due to faulted control cables. The reactors were manually scrammed and placed in cold shutdown for fire investigation, clean up, and fuel removal. Information is also presented concerning maintenance, radiochemistry, occupational radiation exposure, release of radioactive materials, and non-radiological environmental monitoring

  3. Indian Point Station, Unit 1 and 2. Semiannual operating report No. 24, July--December 1974

    International Nuclear Information System (INIS)

    1975-01-01

    Net electrical power generated by Unit 1 was 519,130 MWH with the reactor critical for 2,400.39 hours and the generator on line for 2,316.14 hours. Unit 2 generated 2,427,828 MWH electrical power, was critical for 3,590.31 hours and the generator was on line for 3,485.41 hours. Operations and maintenance are summarized. Information is presented concerning radioactive effluent releases, occupational personnel radiation protection, primary coolant chemistry, changes, tests, and experiments. Environmental radioactivity is discussed. (U.S.)

  4. Surry Power Station, Units 1 and 2. Semiannual operating report, July--December 1974

    International Nuclear Information System (INIS)

    1974-01-01

    Net electric power generated by Surry Unit 1 was 6,930,353 MWH with the generator on line for 10,417.7 hours. Net electric power generated by Unit 2 was 5,699,299 MWH with the generator on line for 8,384.2 hours. Information is presented concerning operation, radioactive effluent releases, solid radioactive wastes, fuel shipments, occurrences in which temperature limitations on the condenser cooling water discharge were exceeded, changes in station organization, occupational personnel radiation exposure, nonradiological monitoring including thermal, physical, and biological programs, and the radiological environmental monitoring program. (U.S.)

  5. Development of filtered containment venting system and application for Kashiwazaki-Kariwa Nuclear Power Station Unit 6, 7

    International Nuclear Information System (INIS)

    Murai, Soutarou; Hiranuma, Naoki; Kimura, Takeo; Omori, Shuichi; Watanabe, Fumitoshi; Sasa, Daisuke

    2014-01-01

    The Fukushima Dai-ichi Nuclear Power Station (1F) of Tokyo Electric Power Company (TEPCO) had experienced severe radio-active release to the environment in the Tohoku Region Pacific Coast Earthquake (alias: the Great East Japan Earthquake) in 2011. Under the Station Black-Out (SBO) conditions caused by tsunami with the earthquake, the 1F operators had tried to vent the gasses in the Primary Containment Vessels (PCVs) of the unit 1, 2 and 3 to the environment through the water pools in the suppression chambers of the PCVs. Its venting, however, was imperfect and, as a result, major direct radio-active release to the environment was caused. After this disaster, TEPCO launched a project to develop the Filtered Containment Venting System (FCVS), in which our very bitter experiences in the 1F accident as described above are reflected. One of the main purposes of the development of the FCVS is to enhance operability of venting under the severe plant conditions such as the SBO during progressing of severe core damage, and another is to enhance removal performance of radio-nuclides with the newly added filtering equipment, which is installed in the venting line from the PCV to the outer. The Kashiwazaki-Kariwa NPS unit 6 and 7 will be the first reactors applied the FCVSs. In this paper, we show the design concept of the TEPCO's FCVS, the brief overview of the system design and the summary of experiment which has been performed for getting the performance data of the FCVS such as decontamination factor in various conditions. (author)

  6. Flow and pressure profiles for the primary heat transport system of Rajasthan Atomic Power Station for the operation with few isolated reactor channels near the end shield cracks

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, A J; Chaki, S K; Sehgal, R L; Venkat Raj, V [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    The RAPS (Rajasthan Atomic Power Station) unit-1 is now operating at reduced power due to the removal of fifteen fuel channels for repair of south end shield cracks. The power level is restricted to 50% of the full power capacity as a precautionary measure. The relative difference that operation at 50% power and higher power would make to the end shield structure is being currently analysed with a view to operate this reactor at higher power levels. As a prerequisite, a detailed thermal hydraulic analysis is essential to assess the effect of reactor operation with isolated channels on the primary heat transport (PHT) system pressure, flow, temperature. The adequacy of the existing trip set points for the plant operation under this mode is also required to be assessed. In the present study, analysis of the PHT system has been carried out to determine the flow and pressure profiles for the RAPS heat transport system for operation of the reactor with isolated channels. (author). 5 refs., 1 fig., 1 tab.

  7. Centrifugal Compressor Unit-based Heat Energy Recovery at Compressor Stations

    Directory of Open Access Journals (Sweden)

    V. S. Shadrin

    2016-01-01

    Full Text Available About 95% of the electricity consumed by air compressor stations around the world, is transformed into thermal energy, which is making its considerable contribution to global warming. The present article dwells on the re-use (recovery of energy expended for air compression.The article presents the energy analysis of the process of compressing air from the point of view of compressor drive energy conversion into heat energy. The temperature level of excess heat energy has been estimated in terms of a potential to find the ways of recovery of generated heat. It is shown that the temperature level formed by thermal energy depends on the degree of air compression and the number of stages of the compressor.Analysis of technical characteristics of modern equipment from leading manufacturers, as well as projects of the latest air compressor stations have shown that there are two directions for the recovery of heat energy arising from the air compression: Resolving technological problems of compressor units. The use of the excess heat generation to meet the technology objectives of the enterprise. This article examines the schematic diagrams of compressor units to implement the idea of heat recovery compression to solve technological problems: Heating of the air in the suction line during operation of the compressor station in winter conditions. Using compression heat to regenerate the adsorbent in the dryer of compressed air.The article gives an equity assessment of considered solutions in the total amount of heat energy of compressor station. Presented in the present work, the analysis aims to outline the main vectors of technological solutions that reduce negative impacts of heat generation of compressor stations on the environment and creating the potential for reuse of energy, i.e. its recovery.

  8. Final environmental statement related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2: (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1981-09-01

    The proposed action is the issuance of operating licenses to the Texas Utilities Generating Company for the startup and operation of Units 1 and 2 of the Comanche Peak Steam Electric Station located on Squaw Creek Reservoir in Somervell County, Texas, about 7 km north-northeast of Glen Rose, Texas, and about 65 km southwest of Fort Worth in north-central Texas. The information in this environmental statement represents the second assessment of the environmental impact associated with the Comanche Peak Steam Electric Station pursuant to the guidelines of the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51 of the Commission's Regulations. After receiving an application to construct this station, the staff carried out a review of impact that would occur during its construction and operation. This evaluation was issued as a Final Environmental Statement -- Construction Phase. After this environmental review, a safety review, an evaluation by the Advisory Committee on Reactor Safeguards, and public hearings in Glen Rose, Texas, the US Atomic Energy Commission (now US Nuclear Regulatory Commission) issued construction permits for the construction of Units 1 and 2 of the Comanche Peak Steam Electric Station. 16 figs., 34 tabs

  9. Reactor aging research. United States Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Vassilaros, M.G.

    1998-01-01

    The reactor ageing research activities in USA described, are focused on the research of reactor vessel integrity, including regulatory issues and technical aspects. Current emphasis are described for fracture analysis, embrittlement research, inspection capabilities, validation od annealing rule, revision of regulatory guide

  10. Test Results from a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    Science.gov (United States)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.; Godfroy, Thomas J.

    2010-01-01

    Component level testing of power conversion units proposed for use in fission surface power systems has typically been done using relatively simple electric heaters for thermal input. These heaters do not adequately represent the geometry or response of proposed reactors. As testing of fission surface power systems transitions from the component level to the system level it becomes necessary to more accurately replicate these reactors using reactor simulators. The Direct Drive Gas-Brayton Power Conversion Unit test activity at the NASA Glenn Research Center integrates a reactor simulator with an existing Brayton test rig. The response of the reactor simulator to a change in Brayton shaft speed is shown as well as the response of the Brayton to an insertion of reactivity, corresponding to a drum reconfiguration. The lessons learned from these tests can be used to improve the design of future reactor simulators which can be used in system level fission surface power tests.

  11. WIND SPEED AND ATMOSPHERIC STABILITY TRENDS FOR SELECTED UNITED STATES SURFACE STATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R; Allen H. Weber, A

    2006-11-01

    Recently it has been suggested that global warming and a decrease in mean wind speeds over most land masses are related. Decreases in near surface wind speeds have been reported by previous investigators looking at records with time spans of 15 to 30 years. This study focuses on United States (US) surface stations that have little or no location change since the late 1940s or the 1950s--a time range of up to 58 years. Data were selected from 62 stations (24 of which had not changed location) and separated into ten groups for analysis. The group's annual averages of temperature, wind speed, and percentage of Pasquill-Gifford (PG) stability categories were fitted with linear least squares regression lines. The results showed that the temperatures have increased for eight of the ten groups as expected. Wind speeds have decreased for nine of the ten groups. The mean slope of the wind speed trend lines for stations within the coterminous US was -0.77 m s{sup -1} per century. The percentage frequency of occurrence for the neutral (D) PG stability category decreased, while that for the unstable (B) and the stable (F) categories increased in almost all cases except for the group of stations located in Alaska.

  12. Branch-and-Bound algorithm applied to uncertainty quantification of a Boiling Water Reactor Station Blackout

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Joseph, E-mail: joseph.nielsen@inl.gov [Idaho National Laboratory, 1955 N. Fremont Avenue, P.O. Box 1625, Idaho Falls, ID 83402 (United States); University of Idaho, Department of Mechanical Engineering and Nuclear Engineering Program, 1776 Science Center Drive, Idaho Falls, ID 83402-1575 (United States); Tokuhiro, Akira [University of Idaho, Department of Mechanical Engineering and Nuclear Engineering Program, 1776 Science Center Drive, Idaho Falls, ID 83402-1575 (United States); Hiromoto, Robert [University of Idaho, Department of Computer Science, 1776 Science Center Drive, Idaho Falls, ID 83402-1575 (United States); Tu, Lei [University of Idaho, Department of Mechanical Engineering and Nuclear Engineering Program, 1776 Science Center Drive, Idaho Falls, ID 83402-1575 (United States)

    2015-12-15

    state. Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems. Unfortunately DPRA methods introduce issues associated with combinatorial explosion of states. This paper presents a methodology to address combinatorial explosion using a Branch-and-Bound algorithm applied to Dynamic Event Trees (DET), which utilize LENDIT (L – Length, E – Energy, N – Number, D – Distribution, I – Information, and T – Time) as well as a set theory to describe system, state, resource, and response (S2R2) sets to create bounding functions for the DET. The optimization of the DET in identifying high probability failure branches is extended to create a Phenomenological Identification and Ranking Table (PIRT) methodology to evaluate modeling parameters important to safety of those failure branches that have a high probability of failure. The PIRT can then be used as a tool to identify and evaluate the need for experimental validation of models that have the potential to reduce risk. In order to demonstrate this methodology, a Boiling Water Reactor (BWR) Station Blackout (SBO) case study is presented.

  13. Branch-and-Bound algorithm applied to uncertainty quantification of a Boiling Water Reactor Station Blackout

    International Nuclear Information System (INIS)

    Nielsen, Joseph; Tokuhiro, Akira; Hiromoto, Robert; Tu, Lei

    2015-01-01

    state. Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems. Unfortunately DPRA methods introduce issues associated with combinatorial explosion of states. This paper presents a methodology to address combinatorial explosion using a Branch-and-Bound algorithm applied to Dynamic Event Trees (DET), which utilize LENDIT (L – Length, E – Energy, N – Number, D – Distribution, I – Information, and T – Time) as well as a set theory to describe system, state, resource, and response (S2R2) sets to create bounding functions for the DET. The optimization of the DET in identifying high probability failure branches is extended to create a Phenomenological Identification and Ranking Table (PIRT) methodology to evaluate modeling parameters important to safety of those failure branches that have a high probability of failure. The PIRT can then be used as a tool to identify and evaluate the need for experimental validation of models that have the potential to reduce risk. In order to demonstrate this methodology, a Boiling Water Reactor (BWR) Station Blackout (SBO) case study is presented.

  14. Emergency operating instruction improvements at San Onofre Nuclear Generating Station Units 2 and 3

    International Nuclear Information System (INIS)

    Trillo, M.W.; Smith, B.H.

    1989-01-01

    In late 1987, San Onofre nuclear generating station (SONGS) began an extensive upgrade of the units 2 and 3 emergency operating instructions (EOIs). The original intent of this program was to incorporate revised generic guidance and to correct problems that were identified by operators. While this program was in progress, the US Nuclear Regulatory Commission (NRC) conducted a series of audits of emergency operating procedure (EOP) development and maintenance programs as 16 commercial nuclear facilities in the United States. These audits included four stations with Combustion Engineering-designed nuclear steam supply systems. (One of these audits included a review of preupgrade SONGS units 2 and 3 EOIs.) Significant industrywide comments resulted from these audits. The NRC has stated its intent to continue the review and audit of EOIs and the associated maintenance programs at all US commercial nuclear facilities. The units 2 and 3 EOI upgrade program developed procedural improvements and procedural program maintenance improvements that address many of the existing audit comments that have been received by the industry. Other resulting improvements may be useful in minimizing NRC comments in future such audits. Specific improvements are discussed. The upgrade program resulted in benefits that were not originally anticipated. The results of this program can be of significant use by other utilities in addressing the industrywide concerns that have been raised in recent NRC audits of EOP development and maintenance programs

  15. Confirmation test on the dynamic interaction between a model reactor-building foundation and ground in the Sendai Nuclear Power Station

    International Nuclear Information System (INIS)

    Umezu, Hideo; Kisaki, Noboru; Shiota, Mutsumi

    1982-01-01

    On the site of unit 2 (planned) in the Sendai Nuclear Power Station, a model reactor-building foundation of reinforced concrete with diameter of 12 m and height of 5 m was installed. With a vibration generator, its forced vibration tests were carried out in October to December, 1980. Valuable data were able to be obtained on the dynamic interaction between the model foundation and the ground, and also the outlook for the application of theories in hard base rock was obtained. (1) The resonance frequency of the model foundation in horizontal vibration was 35 Hz in both NS and EW directions. (2) Remarkable difference was not observed in the horizontal vibration behavior between NS and EW directions, so that there is not anisotropy in the ground. (3) The model foundation was deformed nearly as a rigid body. (J.P.N.)

  16. Safety Evaluation Report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353). Supplement No. 6

    International Nuclear Information System (INIS)

    1985-08-01

    In August 1983 the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0991) regarding the application of the Philadelphia Electric Company (the licensee) for licenses to operate the Limerick Generating Station, Units 1 and 2, located on a site in Montgomery and Chester Counties, Pennsylvania. A license for the operation of Limerick Unit 1 was issued on October 26, 1984. The license, which was restricted to a five percent power level, contained conditions which required resolution prior to proceeding beyond the five percent power level. Supplement 4, issued in May 1985, addressed some of these issues. Supplement 4 also contained the comments made by the Advisory Committee on Reactor Safeguards in its report dated November 6, 1984, regarding full power operation of Limerick Unit 1. Supplement 5, issued in July 1985, and this Supplement 6 address further issues, principally the status of offsite emergency planning, that require resolution prior to proceeding beyond the five percent power level

  17. Safety evaluation report related to the operation of Catawba Nuclear Station, Units 1 and 2. Docket Nos. 50-413 and 50-414. Suppl. 1

    International Nuclear Information System (INIS)

    1983-04-01

    This reort supplements the Safety Evaluation Report (NUREG-0954) issued in February 1983 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Membership Corporation, and Saluda River Electric Cooperative, Inc. as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414, respectively). The facility is located in York County, South Carolina, approximately 9.6 km (6 mi) north of Rock Hill and adjacent to Lake Wylie. This supplement provides more recent information regarding resolution or updating of some of the open and confirmatory items and license conditions identified in the Safety Evaluation Report, and discusses the recommendations of the Advisory Committee on Reactor Safeguards in its report dated March 15, 1983

  18. Safety evaluation report related to the operation of Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410)

    International Nuclear Information System (INIS)

    1986-07-01

    This report supplements the Safety Evaluation Report (NUREG-1047, February 1985) for the application filed by Niagara Mohawk Power Corporation, as applicant and co-owner, for a license to operate the Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near Oswego, New York. Supplement 1 to the Safety Evaluation Report was published in June 1985 and contained the report from the Advisory Committee on Reactor Safeguards as well as the resolution to a number of outstanding issues from the Safety Evaluation Report. Supplement 2 was published in November 1985 and contained the resolution to a number of outstanding and confirmatory issues. Subject to favorable resolution of the issues discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  19. Operation of the Millstone Nuclear Power Station, Unit No. 3 (NRC Docket No. 50-423) Northeast Nuclear Energy Company et. al., Waterford, New London County, Connecticut

    International Nuclear Information System (INIS)

    1984-07-01

    A draft version of the environmental impact statement (EPA No. 840331D) concerns the proposal to issue an operating license for Unit 3 of the Millstone Nuclear Power Station on Connecticut. The plant would use a four-loop pressurized water reactor to produce up to 3579 MW of thermal energy and a calculated maximum electric output of 1209 MW of electric power. A new line would require clearing about 350 acres. Positive impacts include the addition of new capacity, which would benefit the area economically and employment opportunities. Negative impacts include the loss of some winter flounder, which would be minimized by a fish return system, and some increases in the concentration of chemical constituents that would enter Long Island Sound. Policies relating to coastal areas, water pollution, and reactor regulation provide a legal mandate for the impact statement

  20. A review of the United Kingdom fast reactor programme

    International Nuclear Information System (INIS)

    Bramman, J.I.; Hickey, H.B.; Wheeler, R.C.; Gregory, C.V.

    1989-01-01

    The total electricity generating capacity in the UK is approximately 54 GW. Total electricity generation in 1988 was 288 TW hours, of which just over 20% was nuclear. In Scotland the percentage of electricity generated by nuclear stations was 49% of the total, and will exceed 60% in 1989. The privatization of the Electricity Supply Industry (ESI) in the UK (mentioned in last year's report) is proceeding on schedule. Considerable efforts are being made to ensure that the maximum benefits will be obtained from operating the PFR during the next five years. The main thrust of the UKAEA's programme continues to be towards the requirements of the EFR. Reload 16 included the biennial maintenance and statutory inspection period. It was extended from its original 60 days by the need to carry out modifications aimed at improving the reliability of the protection systems designed to safeguard the components of the secondary circuit, including the IHXs, in the event of a sodium-water reaction in a steam generator unit, and by the need to inspect and repair the vessels of the steam generator units. Good progress was made with the fuel development programme. The leading experimental cluster of PE16-clad 6.6 mm diameter pins is continuing irradiation above 21% burnup and 150 dpa (NRT). The lead subassembly with 5.8 mm pins clad in PE16 has exceeded 17.6% burnup, 130 dpa (NRT). The leading subassembly with pins of the same type to have undergone complete PIE contained fuel at 16% burnup and PE16 clad at 116 dpa; these pins were found to be in very good condition. Radial blanket subassemblies have exceeded 2% burnup without failure. In 1988/89 there was one reprocessing campaign in the PFR Reprocessing Plant lasting from November 1988 to February 1989. Feed material included irradiated fuel from 12 subassemblies irradiated in the PFR, some unirradiated subassemblies and loose pins and residues; in all containing 1.3t of Heavy Metal (HM) containing 242 kg plutonium. The cumulative

  1. Review of tokamak power reactor and blanket designs in the United States

    International Nuclear Information System (INIS)

    Baker, C.; Brooks, J.; Ehst, D.; Gohar, Y.; Smith, D.; Sze, D.

    1986-01-01

    The last major conceptual design study of a tokamak power reactor in the United States was STARFIRE which was carried out in 1979-1980. Since that time US studies have concentrated on engineering test reactors, demonstration reactors, parametric systems studies, scoping studies, and studies of selected critical issues such as pulsed vs. steady-state operation and blanket requirements. During this period, there have been many advancements in tokamak physics and reactor technology, and there has also been a recognition that it is desirable to improve the tokamak concept as a commercial power reactor candidate. During 1984-1985 several organizations participated in the Tokamak Power Systems Study (TPSS) with the objective of developing ideas for improving the tokamak as a power reactor. Also, the US completed a comprehensive Blanket Comparison and Selection Study which formed the basis for further studies on improved blankets for fusion reactors

  2. Start-up test of Fukushima Daini Nuclear Power Station Unit No.3

    International Nuclear Information System (INIS)

    Inomata, Toshio; Umezu, Akira; Kajikawa, Makoto; Koibuchi, Hiroshi; Netsu, Nobuhiko.

    1986-01-01

    In Unit 3 of the Fukushima Nuclear Power Station II (daini), a BWR power plant of output 1,100 MW, commercial operation was started in June 1985. Its start-up test was finished successfully in about nine months. That is, new equipments introduced were demonstration tested. Though the items of testing are increased, the start-up test took short time, resulting in construction period only 54.7 months of the Unit 3, the shortest in the world. During the test, there was no scramming other than the planned. Described are the following: an outline of the Unit 3, the items of its improvement and standardization, including the new equipments, preparations for the start-up test, the start-up test and its evaluation. (Mori, K.)

  3. Review of the United Kingdom fast reactor programme - March 1986

    International Nuclear Information System (INIS)

    Bramman, J.I.; John, C.T.; Wheeler, R.C.

    1986-01-01

    The UK programme in the field of fast reactors has continued successfully towards the following main objectives, details of which are contained in subsequent sections of this report: (2) progress with the prototype fast reactor (PFR) which achieved its design power on 4 March 1985; (3) nuclear fuel reprocessing; (4) commercial design studies; (5) structural integrity of LMFBR during its lifetime; (6) R and D work on components of LMFBR; (7) materials study; (8) sodium chemistry; (9) reactor core and fuel design philosophy; (10) safety problems; (11) plant performance studies

  4. Integrated base stations and a method of transmitting data units in a communications system for mobile devices

    NARCIS (Netherlands)

    Bosch, H.G.P.; Mullender, Sape J.; Narlikar, G.J.; Samuel, L.G.; Yagati, L.N.

    2006-01-01

    Integrated base stations and a method of transmitting data units in a communications system for mobile devices. In one embodiment, an integrated base station includes a communications processor having a protocol stack configured with a media access control layer and a physical layer.

  5. Reactor control and protection of full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Zhu Jinping; Sun Jiliang

    1996-01-01

    The control and protection simulation of Qinshan 300 MW Nuclear Power Unit, including the nuclear control, the pressurizer pressure control, the pressurizer level control, the rod control, the reactor shutdown protection and engineered safety feature etc are briefly introduced

  6. Construction and start-up testing experience of Kashiwazakikariwa Nuclear Power Station Unit No.1

    International Nuclear Information System (INIS)

    Natsume, Nobuo; Murakami, Hideaki

    1986-01-01

    In order to overcome the new location condition in Japan Sea coast, new techniques were developed and adopted to ensure the safety in construction and to shorten the construction period as far as possible. The commercial operation was started on September 18, 1985. This plant is a BWR plant of 1100 MWe output. The results of the improvement and standardization of BWRs and the measures for reliability improvement and radiation dose reduction were fully adopted in this plant. The site of the power station and the layout of the main facilities are explained. As the features of the location condition, the severe weather condition in winter such as snow, wind and lightning and high waves in the sea were considered. The rockbed for installing the foundation of the reactor building was deep, and the aseismatic design condition was made stricter, accordingly, the quantity of materials increased. A tent dome was developed to cover above the reactor containment vessel being assembled, a lightning forecast system was installed, and synchro-lift method was adopted for caisson breakwaters. The countermeasures to the deep rockbed and the measures to shorten the construction period were taken. The results of the trial operation are reported. (Kako, I.)

  7. Determination of neutron energy spectrum at a pneumatic rabbit station of a typical swimming pool type material test research reactor

    International Nuclear Information System (INIS)

    Malkawi, S.R.; Ahmad, N.

    2002-01-01

    The method of multiple foil activation was used to measure the neutron energy spectrum, experimentally, at a rabbit station of Pakistan Research Reactor-1 (PARR-1), which is a typical swimming pool type material test research reactor. The computer codes MSITER and SANDBP were used to adjust the spectrum. The pre-information required by the adjustment codes was obtained by modelling the core and its surroundings in three-dimensions by using the one dimensional transport theory code WIMS-D/4 and the multidimensional finite difference diffusion theory code CITATION. The input spectrum covariance information required by MSITER code was also calculated from the CITATION output. A comparison between calculated and adjusted spectra shows a good agreement

  8. Safety Evaluation Report related to the operation of Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410). Supplement No. 5

    International Nuclear Information System (INIS)

    1986-10-01

    This report supplements the Safety Evaluation Report (NUREG-1047, February 1985) for the application filed by Niagara Mohawk Power Corporation, as applicant and co-owner, for a license to operate Nine Mile Point Nuclear Station, Unit 2 (Docket No. 50-410). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near Oswego, New York. Supplement 1 to the Safety Evaluation Report was published in June 1985 and contained the report from the Advisory Committee on Reactor Safeguards as well as the resolution of a number of outstanding issues from the Safety Evaluation Report. Supplement 2 was published in November 1985 and contained the resolution of a number of outstanding and confirmatory issues. Supplement 3 was published in July 1986 and contained the resolution of a number of outstanding and confirmatory items, one new confirmatory item, the evaluation of the Engineering Assurance Program, and the evaluation of a number of exemption requests. Supplement 4 was published in September 1986 and contained the resolution of a number of outstanding and confirmatory issues and the evaluation of a number of exemption requests. This report contains the resolution of a number of issues that have been resolved since Supplement 4 was issued. It also contains the evaluation of a number of requests for exemption from the applicant. This report also supports the issuance of the low-power license for Nine Mile Point Nuclear Station, Unit 2

  9. Integrated safety assessment report: Integrated Safety Assessment Program: Millstone Nuclear Power Station, Unit 1 (Docket No. 50-245): Draft report

    International Nuclear Information System (INIS)

    1987-04-01

    The Integrated Safety Assessment Program (ISAP) was initiated in November 1984, by the US Nuclear Regulatory Commission to conduct integrated assessments for operating nuclear power reactors. The integrated assessment is conducted in a plant-specific basis to evaluate all licensing actions, licensee initiated plant improvements and selected unresolved generic/safety issues to establish implementation schedules for each item. In addition, procedures will be established to allow for a periodic updating of the schedules to account for licensing issues that arise in the future. This report documents the review of Millstone Nuclear Power Station, Unit No. 1, operated by Northeast Nuclear Energy Company (located in Waterford, Connecticut). Millstone Nuclear Power Station, Unit No. 1, is one of two plants being reviewed under the pilot program for ISAP. This report indicates how 85 topics selected for review were addressed. This report presents the staff's recommendations regarding the corrective actions to resolve the 85 topics and other actions to enhance plant safety. The report is being issued in draft form to obtain comments from the licensee, nuclear safety experts, and the Advisory Committee for Reactor Safeguards (ACRS). Once those comments have been resolved, the staff will present its positions, along with a long-term implementation schedule from the licensee, in the final version of this report

  10. Technical Specifications, Clinton Power Station, Unit No. 1 (Docket No. 50-461). Appendix ''A'' to License No. NPF-55

    International Nuclear Information System (INIS)

    1986-09-01

    This report presents information on the technical specifications of the Clinton Unit No. 1 Reactor in the areas of: safety limits and limiting safety system settings; limiting conditions for operation and surveillance requirements; design features; and administrative controls

  11. State-space model predictive control method for core power control in pressurized water reactor nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guo Xu; Wu, Jie; Zeng, Bifan; Wu, Wangqiang; Ma, Xiao Qian [School of Electric Power, South China University of Technology, Guangzhou (China); Xu, Zhibin [Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou (China)

    2017-02-15

    A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  12. North Anna Power Station - Unit 1: Overview of steam generator replacement project activities

    International Nuclear Information System (INIS)

    Gettler, M.W.; Bayer, R.K.; Lippard, D.W.

    1993-01-01

    The original steam generators at Virginia Electric and Power Company's (Virginia Power) North Anna Power Station (NAPS) Unit 1 have experienced corrosion-related degradation that require periodic inspection and plugging of steam generator tubes to ensure their continued safe and reliable operation. Despite improvements in secondary water chemistry, continued tube degradation in the steam generators necessitated the removal from service of approximately 20.3 percent of the tubes by plugging, (18.6, 17.3, and 25.1 for steam generators A, B, and C, respectively). Additionally, the unit power was limited to 95 % during, its last cycle of operation. Projections of industry and Virginia Power experience indicated the possibility of mid-cycle inspections and reductions in unit power. Therefore, economic considerations led to the decision to repair the steam generators (i.e., replace the steam generator lower assemblies). Three new Model 51F Steam Generator lower assembly units were ordered from Westinghouse. Virginia Power contracted Bechtel Power Corporation to provide the engineering and construction support to repair the Unit 1 steam generators. On January 4, 1993, after an extended coastdown period, North Anna Unit 1 was brought off-line and the 110 day (breaker-to-breaker) Steam Generator Replacement Project (SGRP) outage began. As of this paper, the outage is still in progress

  13. Design and verification of computer-based reactor control system modification at Bruce-A candu nuclear generating station

    International Nuclear Information System (INIS)

    Basu, S.; Webb, N.

    1995-01-01

    The Reactor Control System at Bruce-A Nuclear Generating Station is going through some design modifications, which involve a rigorous design process including independent verification and validation. The design modification includes changes to the control logic, alarms and annunciation, hardware and software. The design (and verification) process includes design plan, design requirements, hardware and software specifications, hardware and software design, testing, technical review, safety evaluation, reliability analysis, failure mode and effect analysis, environmental qualification, seismic qualification, software quality assurance, system validation, documentation update, configuration management, and final acceptance. (7 figs.)

  14. Calculation of the real states of Ignalina NPP Unit 1 and Unit 2 RBMK-1500 reactors in the verification process of QUABOX/CUBBOX code

    International Nuclear Information System (INIS)

    Bubelis, E.; Pabarcius, R.; Demcenko, M.

    2001-01-01

    Calculations of the main neutron-physical characteristics of RBMK-1500 reactors of Ignalina NPP Unit 1 and Unit 2 were performed, taking real reactor core states as the basis for these calculations. Comparison of the calculation results, obtained using QUABOX/CUBBOX code, with experimental data and the calculation results, obtained using STEPAN code, showed that all the main neutron-physical characteristics of the reactors of Unit 1 and Unit 2 of Ignalina NPP are in the safe deviation range of die analyzed parameters, and that reactors of Ignalina NPP, during the process of the reactor core composition change, are operated in a safe and stable manner. (author)

  15. New control and safety rod unit for the training reactor of the Dresden Technical University

    International Nuclear Information System (INIS)

    Adam, E.; Schab, J.; Knorr, J.

    1983-01-01

    The extension of the experimental training of students at the training reactor AKR of the Dresden Technical University requires the reconstruction of the reactor with a new control and safety rod unit. The specific conditions at the AKR led to a new variant. Results of preliminary experiments, design and mode of operation of the first unit as well as hitherto gained operation experiences are presented. (author)

  16. An underground nuclear power station using self-regulating heat-pipe controlled reactors

    Science.gov (United States)

    Hampel, V.E.

    1988-05-17

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

  17. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    Science.gov (United States)

    Hampel, Viktor E.

    1989-01-01

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

  18. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    International Nuclear Information System (INIS)

    Hampel, V.E.

    1989-01-01

    The author presents a nuclear reactor for generating electricity disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor

  19. Systematic evaluation program review of NRC Safety Topic VI-10.A associated with the electrical, instrumentation and control portions of the testing of reactor trip system and engineered safety features, including response time for the Dresden station, Unit II nuclear power plant

    International Nuclear Information System (INIS)

    St Leger-Barter, G.

    1980-11-01

    This report documents the technical evaluation and review of NRC Safety Topic VI-10.A, associated with the electrical, instrumentation, and control portions of the testing of reactor trip systems and engineered safety features including response time for the Dresden II nuclear power plant, using current licensing criteria

  20. Introduction of construction management system for preparation work of Shimane Nuclear Power Station Unit-3

    International Nuclear Information System (INIS)

    Sasaki, Yutaka; Tsumura, Isamu; Hayashi, Minoru; Nakamoto, Kenji

    2005-01-01

    The construction management system aims to have information on the construction management between the Chugoku Electric Power Co. Inc. and each contractor, and to work efficiently. The system has been operating during about half year. The system manages the manufacturing process, safety and quality. The aims, development process, characteristics, network construction of the system are reported. As outline of the construction management system, functions and construction management of each process, safety and quality and ITV camera are explained. The system will be used at construction of Shimane nuclear power station unit-3. (S.Y.)

  1. Probabilistic fire risk assessment for Koeberg Nuclear Power Station Unit 1

    International Nuclear Information System (INIS)

    Grobbelaar, J.F.; Foster, N.A.S.; Luesse, L.J.

    1995-01-01

    A probabilistic fire risk assessment was done for Koeberg Nuclear Power Station Unit 1. Areas where fires are likely to start were identified. Equipment important to safety, as well as their power and/or control cable routes were identified in each fire confinement sector. Fire confinement sectors where internal initiating events could be caused by fire were identified. Detection failure and suppression failure fault trees and event trees were constructed. The core damage frequency associated with each fire confinement sector was calculated, and important fire confinement sectors were identified. (author)

  2. Power unit with GT-MHR reactor plant for electricity production and district heating

    International Nuclear Information System (INIS)

    Kiryushin, A.L.; Kodochigov, N.G.; Kuzavkov, N.G.; Golovko, V.F.

    2000-01-01

    Modular helium reactor with the gas turbine (GT-MHR) is a perspective power reactor plant for the next century. The project reactor is based on experience of operation more than 50 gas-cooled reactors on carbon dioxide and helium, and also on subsequent achievements in the field of realization direct gas turbine Brayton cycle. To the beginning of 90 years, achievements in technology of gas turbines, highly effective recuperators and magnetic bearings made it possible to start development of the reactor plant project combining a safe modular gas cooled reactor and a power conversion system, realizing the highly effective Brayton cycle. The conceptual project of the commercial GT-MHR reactor plant fulfilled in 1997 by joint efforts of international firms, combines a safe modular reactor with an annular active core of prismatic fuel blocks and a power conversion system with direct gas turbine cycle. The efficiency of GT-MHR gas turbine cycle at level of about 48% makes it competitive in the electricity production market in comparison with any fossil or nuclear power stations

  3. Reactor safety in Eastern Europe

    International Nuclear Information System (INIS)

    1995-02-01

    The papers presented to the GRS colloquium refer to the cooperative activities for reactor accident analysis and modification of the GRS computer codes for their application to reactors of the Russian design types of WWER or RBMK. Another topic is the safety of RBMK reactors in particular, and the current status of investigations and studies addressing the containment of unit 4 of the Chernobyl reactor station. All papers are indexed separately in report GRS--117. (HP)

  4. Advance reactor and fuel-cycle systems--potentials and limitations for United States utilities

    International Nuclear Information System (INIS)

    Zebroski, E.L.; Williams, R.F.

    1979-01-01

    This paper reviews the potential benefits and limitations of advance reactor and fuel-cycle systems for United States utilities. The results of the review of advanced technologies show that for the near and midterm, the only advance reactor and fuel-cycle system with significant potential for United States utilities is the current LWR, and evolutionary, not revolutionary, enhancements. For the long term, the liquid-metal breeder reactor continues to be the most promising advance nuclear option. The major factors leading to this conclusion are summarized

  5. Calculating the Unit Cost Factors for Decommissioning Cost Estimation of the Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Jeong, Kwan Seong; Lee, Dong Gyu; Jung, Chong Hun; Lee, Kune Woo

    2006-01-01

    The estimated decommissioning cost of nuclear research reactor is calculated by applying a unit cost factor-based engineering cost calculation method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning cost of nuclear research reactor is composed of labor cost, equipment and materials cost. Labor cost of decommissioning costs in decommissioning works are calculated on the basis of working time consumed in decommissioning objects. In this paper, the unit cost factors and work difficulty factors which are needed to calculate the labor cost in estimating decommissioning cost of nuclear research reactor are derived and figured out.

  6. Reference ZrH reactor power system for NASA space station post-operational reentry analysis

    International Nuclear Information System (INIS)

    Elliott, R.D.

    1970-01-01

    The flight dynamic and heating of a spent ZrH reactor power system returning from orbit at the end of its useful life are analyzed. The results of this analysis indicate that the reactor with a large portion of the lithium shield still surrounding it will impact the earth at a velocity of from 660 to 820 ft/sec, depending upon whether it tumbles or becomes stabilized during the latter part of its trajectory. (U.S.)

  7. The Paks Nuclear Power Station

    International Nuclear Information System (INIS)

    Erdosi, N.; Szabo, L.

    1978-01-01

    As the first stage in the construction of the Paks Nuclear Power Station, two units of 440 MW(e) each will be built. They are operated with two coolant loops each. The reactor units are VVER 440 type water-moderated PWR type heterogeneous power reactors designed in the Soviet Union and manufactured in Czechoslovakia. Each unit operates two Soviet-made K-220-44 steam turbines and Hungarian-made generators of an effective output of 220 MW. The output of the transformer units - also of Hungarian made - is 270 MVA. The radiation protection system of the nuclear power station is described. Protection against system failures is accomplished by specially designed equipment and security measures especially within the primary circuit. Some data on the power station under construction are given. (R.P.)

  8. The diversity and unit of reactor noise theory

    Science.gov (United States)

    Kuang, Zhifeng

    The study of reactor noise theory concerns questions about cause and effect relationships, and utilisation of random noise in nuclear reactor systems. The diversity of reactor noise theory arises from the variety of noise sources, the various mathematical treatments applied and various practical purposes. The neutron noise in zero- energy systems arises from the fluctuations in the number of neutrons per fission, the time between nuclear events, and the type of reactions. It can be used to evaluate system parameters. The mathematical treatment is based on the master equation of stochastic branching processes. The noise in power reactor systems is given rise by random processes of technological origin such as vibration of mechanical parts, boiling of the coolant, fluctuations of temperature and pressure. It can be used to monitor reactor behaviour with the possibility of detecting malfunctions at an early stage. The mathematical treatment is based on the Langevin equation. The unity of reactor noise theory arises from the fact that useful information from noise is embedded in the second moments of random variables, which lends the possibility of building up a unified mathematical description and analysis of the various reactor noise sources. Exploring such possibilities is the main subject among the three major topics reported in this thesis. The first subject is within the zero power noise in steady media, and we reported on the extension of the existing theory to more general cases. In Paper I, by use of the master equation approach, we have derived the most general Feynman- and Rossi-alpha formulae so far by taking the full joint statistics of the prompt and all the six groups of delayed neutron precursors, and a multiple emission source into account. The involved problems are solved with a combination of effective analytical techniques and symbolic algebra codes (Mathematica). Paper II gives a numerical evaluation of these formulae. An assessment of the

  9. Start-up tests of Kashiwazakikariwa Nuclear Power Station Unit No.2 and No.5

    International Nuclear Information System (INIS)

    Fueki, Kensuke; Aoki, Shiro; Tanaka, Yasuhisa; Yahagi, Kimitoshi

    1991-01-01

    The Kashiwazakikariwa Nuclear Power Station Units No.5 and No.2 started commercial operation on April 10 and September 28 of 1990 respectively. As the result of the application of the First and Second LWR Improvement and Standardization Program, the plants were designed aiming at improvement of reliability, operation, and maintenance while maintaining safety. Construction of the plants took 6.5 to 7 years for completion, during which period the last 10 months were spent for the start up tests program. Start up tests were carried out under deliberate management to assure that the plants can operate safely and steadily at the prescribed operating points, and the schedules and tests item modifications adopted in Unit No.2 and No.5 were verified under the start up tests program. (author)

  10. Efficient erection of a piping unit in a nuclear power station

    International Nuclear Information System (INIS)

    Halstrick, V.; Peters, G.

    1986-01-01

    In consideration of the negative experience gathered in the past extensive project logistics are required for the erection of piping units in a nuclear power station in order to be able to recognize and master the numerous influences and different marginal conditions with reasonable certainty and at an early stage. The utilization of requirements from the analysis of experience for the conception of project management begins with the erection planning and results in check lists for the execution of erection. During production planning these check lists are verified for realization. Because of the extensive data, EDP-aided systems are applied for checking and controlling the flow of information and material. A dialogue-aided system is presented for project planning and controlling which enables a transparent and farsighted execution of a project. By means of comparable piping units it is demonstrated that due to the created controlling system a great success becomes obvious in relation to the past. (orig.) [de

  11. Simplified conversions between specific conductance and salinity units for use with data from monitoring stations

    Science.gov (United States)

    Schemel, Laurence E.

    2001-01-01

    The U.S. Geological Survey, Bureau of Reclamation, and the California Department of Water Resources maintain a large number of monitoring stations that record specific conductance, often referred to as “electrical conductivity,” in San Francisco Bay Estuary and the Sacramento-San Joaquin Delta. Specific conductance units that have been normalized to a standard temperature are useful in fresh waters, but conversion to salinity units has some considerable advantages in brackish waters of the estuary and Delta. For example, salinity is linearly related to the mixing ratio of freshwater and seawater, which is not the case for specific conductance, even when values are normalized to a standard temperature. The Practical Salinity Scale 1978 is based on specific conductance, temperature, and pressure measurements of seawater and freshwater mixtures (Lewis 1980 and references therein). Equations and data that define the scale make possible conversions between specific conductance and salinity values.

  12. Safety Evaluation Report related to the operation of Cartawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414). Supplement No. 5

    International Nuclear Information System (INIS)

    1986-02-01

    This report supplements the Safety Evaluation Report (NUREG-0954) issued in February 1983 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Membership Corporation, Saluda River Electric Cooperative, Inc., and Piedmont Municipal Power Agency, as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414, respectively). The facility is located in York County, South Carolina, approximately 9.6 km (6 mi) north of Rock Hill and adjacent to Lake Wylie. This supplement provides additional information supporting the license for initial criticality and power ascension to full-power operation for Unit 2

  13. Safety evaluation report related to the operation of Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414)

    International Nuclear Information System (INIS)

    1984-07-01

    The report supplements the Safety Evaluation Report (NUREG-0954) issued in February 1983 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Membership Corporation, and Saluda River Electric Cooperative, Inc. as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414, respectively). The facility is located in York County, South Carolina, approximately 9.6 km (6 mi) north of Rock Hill and adjacent to Lake Wylie. This supplement provides additional information supporting the license for fuel loading and precriticality testing for Unit 1

  14. Safety Evaluation Report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353). Supplement 3

    International Nuclear Information System (INIS)

    1984-10-01

    In August 1983 the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0991) regarding the application of the Philadelphia Electric Company (the applicant) for licenses to operate the Limerick Generating Station, Units 1 and 2. Supplement 1 was issued in December 1983 and addressed several outstanding issues. Supplement 1 also contains the comments made by the Advisory Committee on Reactor Safeguards in its report dated October 18, 1983. Supplement 2 was issued in October 1984 and addressed fourteen outstanding and fifty-three confirmatory issues and closed them put. This Supplement 3 addresses the remaining issues that require resolution before issuance of the operating license for Unit 1 and closes them out

  15. Final environmental statement related to the operation of Byron Station, Units 1 and 2 (Docket Nos. STN 50-454 and STN 50-455)

    International Nuclear Information System (INIS)

    1982-04-01

    The proposed action is the issuance of an operating license to Commonwealth Edison Company (CECo) of Chicago, Illinois, for startup and operation of the Byron Station, Units 1 and 2 on a 710-ha (1754-acre) site in Ogle County 6 km (4 miles) south-southwest of Byron, Illinois, and 3 km (2 miles) east of the Rock River. Each of the two generating units consists of a pressurized-water reactor, four steam generators, one steam turbine generator, a heat-dissipation system, and associated auxiliary and engineered safeguards. Information is presented under the following topics: purpose and need for the action; alternatives to the proposed action; project description and affected environment; environmental consequences and mitigating actions; evaluation of the proposed action; list of contributors; list of agencies and organizations requested to comment on the draft environmental statement; and responses to comments on the Draft Environmental Statement

  16. Safety evaluation report related to the operation of Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414)

    International Nuclear Information System (INIS)

    1984-12-01

    This report supplements the Safety Evaluation Report (NUREG-0954) issued in February 1983 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Membership Corporation, and Saluda River Electric Cooperative, Inc., as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414, respectively). The facility is located in York County, South Carolina, approximately 9.6 km (6 mi) north of Rock Hill and adjacent to Lake Wylie. This supplement provides additional information supporting the license for initial criticality and power ascension to full-power opertion for Unit 1

  17. Safety Evaluation Report related to the operation of Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414). Supplement No. 6

    International Nuclear Information System (INIS)

    1986-05-01

    This report supplements the Safety Evaluation Report (NUREG-0954) issued in February 1983 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Membership Corporation, Saluda River Electric Cooperative, Inc., and Piedmont Municipal Power Agency, as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414, respectively). The facility is located in York County, South Carolina, approximately 9.6 km (6 miles) north of Rock Hill and adjacent to Lake Wylie. This supplement provides additional information supporting the license for operation above 5% power and power ascension to full-power operation for Unit 2

  18. Economic simplified boiling water reactor (ESBWR) response to an extended station blackout/ loss of all AC power

    International Nuclear Information System (INIS)

    Barrett, A.J.; Marquino, W.

    2013-01-01

    U.S. federal regulations require light water cooled nuclear power plants to cope with Station Blackout for a predetermined amount of time based on design factors for the plant. U.S. regulations define Station Blackout (SBO) as a loss of the offsite electric power system concurrent with turbine trip and unavailability of the onsite emergency AC power system. According to U.S. regulations, typically the coping period for an SBO is 4 hours and can be as long as 16 hours for currently operating BWR plants. Being able to cope with an SBO and loss of all AC power is required by international regulators as well. The U.S. licensing basis for the ESBWR is a coping period of 72 hours for an SBO based on U.S. NRC requirements for passive safety plants. In the event of an extended SBO (viz., greater than 72 hours), the ESBWR response shows that the design is able to cope with the event for at least 7 days without AC electrical power or operator action. ESBWR is a Generation III+ reactor design with an array of passive safety systems. The ESBWR primary success path for mitigation of an SBO event is the Isolation Condenser System (ICS). The ICS is a passive, closed loop, safety system that initiates automatically on a loss of power. Upon Station Blackout or loss of all AC power, the ICS begins removing decay heat from the Reactor Pressure Vessel (RPV) by (i) condensing the steam into water in heat exchangers located in pools of water above the containment, and (ii) transferring the decay heat to the atmosphere. The condensed water is then returned by gravity to cool the reactor again. The ICS alone is capable of maintaining the ESBWR in a safe shutdown condition after an SBO for an extended period. The fuel remains covered throughout the SBO event. The ICS is able to remove decay heat from the RPV for at least 7 days and maintains the reactor in a safe shutdown condition. The water level in the RPV remains well above the top of active fuel for the duration of the SBO event

  19. Reactor vessel assessment and the development of a reactor vessel life extension program for Calvert Cliffs Units One and Two

    International Nuclear Information System (INIS)

    Montgomery, B.; Hijeck, P.J.

    1988-01-01

    A study has been undertaken to provide a general assessment of the life extension capabilities for the Calvert Cliffs Units One and Two reactor pressure vessels. The purpose of the study is to assess the general life extension capabilities for the Calvert Cliffs reactor pressure vessels based upon an extension and variation of the Surry pilot plant life extension study. This assessment provided a detailed reactor vessel surveillance program for plant life extension along with a hierarchy of specific tasks necessary for attaining maximum useful life. The assessment identified a number of critical issues which may impact life attainment and extension along with potential solutions to address these issues to ensure the life extension option is not precluded

  20. Montague Nuclear Power Station, Units 1 and 2: Final environmental statement (Docket Nos. 50-496 and 50-497)

    International Nuclear Information System (INIS)

    1977-02-01

    The proposed action is the issuance of construction permits to the Northeast Nuclear Energy Company for the construction of the Montague Nuclear Power Station, Units 1 and 2, located on the Connecticut River in the Town of Montague, Massachusetts. The plant will employ two identical boiling-water reactors to produce up to 3579 megawatts thermal (MWt) each. Two steam turbine-generators will use this heat to provide 1150 MWe (net) of electrical power capacity from each turbine-generator. A design power level of 3759 MWt (1220 Mwe net) for each unit is anticipated at a future date and is considered in the assessments contained in this statement. The waste heat will be rejected through natural-draft cooling towers using makeup water obtained from and discharged to the Connecticut River. The 1900-acre site is about 90% forest, with the remaining acreage in transmission-line corridor and old-field vegetation. The total loss of mixed-age forest will be 1273 acres. Nodesignated scenic areas will be crossed. Sixty acres of public lands, State forests, and parks will be lost to transmission facilities as well as losses associated with crossings of 2.0 miles of water bodies and 11.9 miles of wetlands. The maximum estimated potential loss of salable wood products will be $849,600. A maximum of 85.8 cfs of cooling water will be withdrawn from the Connecticut River. A maximum of 17.2 cfs will be returned to the river with the dissolved solids concentration increased by a factor of about 5. A maximum of 68.6 cfs will be evaporated to the atmosphere by the cooling towers. 143 refs., 58 figs., 69 tabs

  1. 75 FR 17970 - Nine Mile Point Nuclear Station, LLC; Nine Mile Point Nuclear Station, Unit No. 2; Draft...

    Science.gov (United States)

    2010-04-08

    ... waste streams include filter sludge, spent ion exchange resin, and dry active waste (DAW). DAW includes... filter sludge. The licensee's analysis indicates that the estimated increase in solid radioactive waste... of Transportation of Fuel and Waste to and from One Light-Water-Cooled Nuclear Power Reactor...

  2. 75 FR 13600 - Nine Mile Point Nuclear Station, LLC, Nine Mile Point Nuclear Station, Unit No. 2; Draft...

    Science.gov (United States)

    2010-03-22

    ... waste streams include filter sludge, spent ion exchange resin, and dry active waste (DAW). DAW includes... filter sludge. The licensee's analysis indicates that the estimated increase in solid radioactive waste... Transportation of Fuel and Waste to and from One Light-Water-Cooled Nuclear Power Reactor. Therefore, there would...

  3. 76 FR 73721 - Nine Mile Point Nuclear Station, LLC, Nine Mile Point Nuclear Station, Unit No. 2, Environmental...

    Science.gov (United States)

    2011-11-29

    .... Solid radioactive waste streams include filter sludge, spent ion exchange resin, and dry active waste... Environmental Impact of Transportation of Fuel and Waste to and from One Light-Water-Cooled Nuclear Power... facilities. NMP2 uses a boiling-water reactor and a nuclear steam supply system designed by General Electric...

  4. Development of a Power Electronics Unit for the Space Station Plasma Contactor

    Science.gov (United States)

    Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.

    1994-01-01

    A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.

  5. Study on vibration characteristics and fault diagnosis method of oil-immersed flat wave reactor in Arctic area converter station

    Science.gov (United States)

    Lai, Wenqing; Wang, Yuandong; Li, Wenpeng; Sun, Guang; Qu, Guomin; Cui, Shigang; Li, Mengke; Wang, Yongqiang

    2017-10-01

    Based on long term vibration monitoring of the No.2 oil-immersed fat wave reactor in the ±500kV converter station in East Mongolia, the vibration signals in normal state and in core loose fault state were saved. Through the time-frequency analysis of the signals, the vibration characteristics of the core loose fault were obtained, and a fault diagnosis method based on the dual tree complex wavelet (DT-CWT) and support vector machine (SVM) was proposed. The vibration signals were analyzed by DT-CWT, and the energy entropy of the vibration signals were taken as the feature vector; the support vector machine was used to train and test the feature vector, and the accurate identification of the core loose fault of the flat wave reactor was realized. Through the identification of many groups of normal and core loose fault state vibration signals, the diagnostic accuracy of the result reached 97.36%. The effectiveness and accuracy of the method in the fault diagnosis of the flat wave reactor core is verified.

  6. Comparison of oxide- and metal-core behavior during CRBRP [Clinch River Breeder Reactor Plant] station blackout

    International Nuclear Information System (INIS)

    Polkinghorne, S.T.; Atkinson, S.A.

    1986-01-01

    A resurrected concept that could significantly improve the inherently safe response of Liquid-Metal cooled Reactors (LMRs) during severe undercooling transients is the use of metallic fuel. Analytical studies have been reported on for the transient behavior of metal-fuel cores in innovative, inherently safe LMR designs. This paper reports on an analysis done, instead, for the Clinch River Breeder Reactor Plant (CRBRP) design with the only innovative change being the incorporation of a metal-fuel core. The SSC-L code was used to simulate a protected station blackout accident in the CRBRP with a 943 MWt Integral Fast Reactor (IFR) metal-fuel core. The results, compared with those for the oxide-fueled CRBRP, show that the margin to boiling is greater for the IFR core. However, the cooldown transient is more severe due to the faster thermal response time of metallic fuel. Some additional calculations to assess possible LMR design improvements (reduced primary system pressure losses, extended flow coastdown) are also discussed. 8 refs., 13 figs., 2 tabs

  7. Nuclear power station siting experience in the United Kingdom: past and present and proposals for the future

    International Nuclear Information System (INIS)

    Haire, T.P.; Usher, E.F.F.W.

    1975-01-01

    Foremost of the many factors in site selection considerations are population distribution, cooling-water availability and amenity. Others are safety of potable water sources, geological stability and the risk of external hazards. Where cooling-water supplies are a limiting factor, the choica of reactor system is of major importance. To determine as early as possible the effect a station might have on its environment, desk studies, visual surveys and wind-tunnel tests are carried out. The Central Electricity Generating Board places great importance on obtaining the fullest degree of acceptance by the public for its nuclear stations and ensures that full consultation is provided with the relevant authorities at all stages of power-station development. It also provides public exhibitions, public meetings and liaison with the local inhabitants. Recruitment of station staff where possible from the immediate area of the station and formation of sports and social clubs are two of the practical steps which help to integrate the station into the local community. Whilst the current energy crisis has reinforced the need for a substantial nuclear programme, possible ways of further reducing the impact of nuclear stations on the environment are being considered. The paper concludes that sufficient nuclear sites can be provided for future needs but that continuing effort will be required to ensure public acceptance. (author)

  8. Future plans for the design and construction of fast reactor power stations in Italy

    International Nuclear Information System (INIS)

    Castelli, G.; Ghilardotti, G.

    1978-01-01

    Studies related to fast reactor technology have been pursued in Italy for a long time and this country is now deeply engaged in the demonstration and marketing phases, in accordance with the outlines of the Italian national energy plan. In the paper the following topics are examined: current possibilities for introducing fast reactors in Italy; the main social and political constraints concerning their introduction; the necessary industrial and organizational structures (in the broadest meaning) existing or foreseen; the national programme pertaining to activities towards achieving this goal. (author)

  9. The Text of the Agreement for the Application of Agency Safeguards to United States Reactor Facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-08-14

    The text of the Agreement between the Agency and the Government of the United States of America for the application of Agency safeguards to United States reactor facilities, which was signed on 15 June 1964 and entered into force on 1 August 1964, is reproduced in this document for the information of all Members.

  10. Second periodic safety review of Angra Nuclear Power Station, unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Carlos F.O.; Crepaldi, Roberto; Freire, Enio M., E-mail: ottoncf@tecnatom.com.br, E-mail: emfreire46@gmail.com, E-mail: robcrepaldi@hotmail.com [Tecnatom do Brasil Engenharia e Servicos Ltda, Rio de Janeiro, RJ (Brazil); Campello, Sergio A., E-mail: sacampe@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    This paper describes the second Periodic Safety Review (PSR2-A1) of Angra Nuclear Power Station, Unit 1, prepared by Eletrobras Eletronuclear S.A. and Tecnatom do Brasil Engenharia e Servicos Ltda., during Jul.2013-Aug.2014, covering the period of 2004-2013. The site, in Angra dos Reis-RJ, Brazil, comprises: Unit 1, (640 MWe, Westinghouse PWR, operating), Unit 2 (1300 MWe, KWU/Areva, operating) and Unit 3 (1405 MWe, KWU/Areva, construction). The PSR2-A1 attends the Standards 1.26-Safety in Operation of Nuclear Power Plants, Brazilian Nuclear Regulatory Commission (CNEN), and IAEA.SSG.25-Periodic Safety Review of Nuclear Power Plants. Within 18 months after each 10 years operation, the operating organization shall perform a plant safety review, to investigate the evolution consequences of safety code and standards, regarding: Plant design; structure, systems and components behavior; equipment qualification; plant ageing management; deterministic and probabilistic safety analysis; risk analysis; safety performance; operating experience; organization and administration; procedures; human factors; emergency planning; radiation protection and environmental radiological impacts. The Review included 6 Areas and 14 Safety Parameters, covered by 33 Evaluations.After document evaluations and discussions with plant staff, it was generated one General and 33 Specific Guide Procedures, 33 Specific and one Final Report, including: Description, Strengths, Deficiencies, Areas for Improvement and Conclusions. An Action Plan was prepared by Electronuclear for the recommendations. It was concluded that the Unit was operated within safety standards and will attend its designed operational lifetime, including possible life extensions. The Final Report was submitted to CNEN, as one requisite for renewal of the Unit Permanent Operation License. (author)

  11. Second periodic safety review of Angra Nuclear Power Station, unit 1

    International Nuclear Information System (INIS)

    Martins, Carlos F.O.; Crepaldi, Roberto; Freire, Enio M.; Campello, Sergio A.

    2015-01-01

    This paper describes the second Periodic Safety Review (PSR2-A1) of Angra Nuclear Power Station, Unit 1, prepared by Eletrobras Eletronuclear S.A. and Tecnatom do Brasil Engenharia e Servicos Ltda., during Jul.2013-Aug.2014, covering the period of 2004-2013. The site, in Angra dos Reis-RJ, Brazil, comprises: Unit 1, (640 MWe, Westinghouse PWR, operating), Unit 2 (1300 MWe, KWU/Areva, operating) and Unit 3 (1405 MWe, KWU/Areva, construction). The PSR2-A1 attends the Standards 1.26-Safety in Operation of Nuclear Power Plants, Brazilian Nuclear Regulatory Commission (CNEN), and IAEA.SSG.25-Periodic Safety Review of Nuclear Power Plants. Within 18 months after each 10 years operation, the operating organization shall perform a plant safety review, to investigate the evolution consequences of safety code and standards, regarding: Plant design; structure, systems and components behavior; equipment qualification; plant ageing management; deterministic and probabilistic safety analysis; risk analysis; safety performance; operating experience; organization and administration; procedures; human factors; emergency planning; radiation protection and environmental radiological impacts. The Review included 6 Areas and 14 Safety Parameters, covered by 33 Evaluations.After document evaluations and discussions with plant staff, it was generated one General and 33 Specific Guide Procedures, 33 Specific and one Final Report, including: Description, Strengths, Deficiencies, Areas for Improvement and Conclusions. An Action Plan was prepared by Electronuclear for the recommendations. It was concluded that the Unit was operated within safety standards and will attend its designed operational lifetime, including possible life extensions. The Final Report was submitted to CNEN, as one requisite for renewal of the Unit Permanent Operation License. (author)

  12. Damodar Valley Corporation, Chandrapura Unit 2 Thermal Power Station Residual Life Assessment Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The BHEL/NTPC/PFC/TVA teams assembled at the DVC`s Chadrapura station on July 19, 1994, to assess the remaining life of Unit 2. The workscope was expanded to include major plant systems that impact the unit`s ability to sustain generation at 140 MW (Units 1-3 have operated at average rating of about 90 MW). Assessment was completed Aug. 19, 1994. Boiler pressure parts are in excellent condition except for damage to primary superheater header/stub tubes and economizer inlet header stub tubes. The turbine steam path is in good condition except for damage to LP blading; the spar rotor steam path is in better condition and is recommended for Unit 2. Nozzle box struts are severely cracked from the flame outs; the cracks should not be repaired. HP/IP rotor has surface cracks at several places along the steam seal areas; these cracks are shallow and should be machined out. Detailed component damage assessments for above damaged components have been done. The turbine auxiliary systems have been evaluated; cooling tower fouling/blockage is the root cause for the high turbine back pressure. The fuel processing system is one of the primary root causes for limiting unit capacity. The main steam and hot reheat piping systems were conservatively designed and have at least 30 years left;deficiencies needing resolution include restoration of insulation, replacement of 6 deformed hanger clamp/bolts, and adjustment of a few hanger settings. The cold reheat piping system is generally in good condition; some areas should be re-insulated and the rigid support clamps/bolts should be examined. The turbine extraction piping system supports all appeared to be functioning normally.

  13. Tightening unit EZ 250 for VVER 1000 type reactor pressure vessel head flange joints

    International Nuclear Information System (INIS)

    Ruchar, Miloslav; Nadenik, Tomas; Kroj, Ludek

    2010-01-01

    The programme of flange joints tightening by seals made of expanded graphite for VVER 440 and VVER 1000 reactor head flange joints is highlighted, and tightening units of row EZ 650 and EZ 650 TK and KNI for VVER 440 reactor head flange joints and EZ 250 tightening unit for VVER 1000 reactor head flange joints are described in detail. The main advantages of electronically controlled tightening units include: Precise and uniform compression of the gasket during the tightening procedure; Automated solution to the graphite relaxing problem during tightening; Possibility of diagnosis of the thread status of the joints being tightened; Alleviation of operator's tough work; Shorter time of tensioning associated with a lower collective doses; Quick preparation of tightening procedure report from the data measured; Calibration renewal is possible in advance at time of unit storage without the need to place it on a real joint. (P.A.)

  14. Study on the power control system for NPP power unit with the WWER-440 reactor

    International Nuclear Information System (INIS)

    Aleksandrova, N.D.; Naumov, A.V.

    1981-01-01

    Results of model investigations into basic version of the power control systems (PCS) conformably to the WWER-440 NPP power unit are stated. Transient processes in the power unit system when being two PCS versions during perturbations of different parameters: unit power, vapour pressure or position of control rods have been simulated. Investigations into the different PCS versions show that quality of operation of a traditional scheme with a turbine power controller and reactor pressure controller can be significantly improved with the introduction of a high-speed signal of pressure into the reactor controller. The PCS version with the compensation of interrelations between the turbine and reactor controllers constructed according to the same principles as the standard schemes of power units of thermal electric power plant is perspective as well [ru

  15. The main objectives of lifetime management of reactor unit components

    International Nuclear Information System (INIS)

    Dragunov, Y.; Kurakov, Y.

    1998-01-01

    The main objectives of the work concerned with life management of reactor components in Russian Federation are as follows: development of regulations in the field of NPP components ageing and lifetime management; investigations of ageing processes; residual life evaluation taking into account the actual state of NPP systems, real loading conditions and number of load cycles, results of in-service inspections; development and implementation of measures for maintaining/enhancing the NPP safety

  16. Safety Evaluation Report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353). Supplement No. 5

    International Nuclear Information System (INIS)

    1985-07-01

    In August 1983 the NRC issues its Safety Evaluation Report regarding the application for licenses to operate the Limerick Generating Station, Units 1 and 2 located on a site in Montgomery and Chester Counties, Pennsylvania. Supplement 1 was issued in December 1983 and addressed several outstanding issues. SSER 1 also contains the comments made by the Advisory Committee on Reactor Safeguards in its interim report dated October 18, 1983. Supplement 2 was issued in October 1984. Supplement 3 was issued in October 1984 and addressed the remaining issues that required resolution before issuance of the operating licence for Unit 1. On October 26, 1984 a license (NPF-27) for Unit 1 was issued which was restricted to a five percent power level and contained conditions which required resolution prior to proceeding beyond the five percent power level. Supplement 4 issued in May 1985 addressed some of the technical issues and their associated license conditions, which required resolution prior to proceeding beyond the five percent power level. SSER 4 also contained the comments made by the Advisory Committee on Reactor Safeguards in its report dated November 6, 1984. This Supplement 5 to the SER addresses further issues that require resolution prior to proceeding beyond the five percent power level

  17. Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Docket Nos. STN 50-528, STN 50-529, and STN 50-530): Final environmental statement

    International Nuclear Information System (INIS)

    1982-02-01

    The proposed action is the issuance of operating licenses to the Arizona Public Service Company (APS, applicant) for the startup and operation of PVNGS, Units 1, 2, and 3, located in Maricopa County, about 24 km (15 mi) west of Buckeye, Arizona. The information in this statement represents the second assessment of the environmental impact associated with PVNGS Units 1, 2, and 3 pursuant to the guidelines of the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations (10 CFR) Part 51 of the Commissions's Regulations. After receiving an application in July 1974 to construct this station, the staff carried out a review of impacts that would occur during its construction and operation. That evaluation was issued as a Final Environmental Statement/emdash/Construction Phase (FES-CP). After this environmental review, a safety review, an evaluation by the Advisory Committee on Reactor Safeguards, and public hearings in Phoenix, Arizona, the US Nuclear Regulatory Commission issued Construction Permits Nos. CPPR-141, CPPR-142, and CPPR-143 for the construction of PVNGS Units 1, 2, and 3. As of September 1981, the construction of Unit 1 was about 92 percent complete, Unit 2 was 68 percent complete, and Unit 3 was 26 percent complete. 11 figs., 21 tabs

  18. Venting krypton-85 from the Three Mile Island Unit 2 reactor building

    International Nuclear Information System (INIS)

    Burton, H.M.

    1981-01-01

    To permit the less restricted access to the reactor building necessary to maintain instrumentation and equipment, and to proceed towad the total decontamination of the facility, General Public Utilities, operators of the facility referred to hereafter as GPU, asked the United States Nuclear Regulatory Commission, or NRC, for permission to remove the 85 Kr from the reactor building by venting it to the environment. GPU supported their request with the Safety Analysis and Environmental Assessment Report on the proposed reactor building venting plan. On June 12, 1980, after seven months of licensing deliberations and numerous public hearings, the NRC granted GPU's request. The actual venting took place between June 28 and July 11, 1980. This report presents an overview of the detailed effort involved in the TMI-2 reactor building venting program. The findings reported here are condensed from a published report entitled TMI-2 Reactor Building Purge--Kr-85 Venting

  19. Groundwater Monitoring Plan for the Reactor Technology Complex Operable Unit 2-13

    International Nuclear Information System (INIS)

    Richard P. Wells

    2007-01-01

    This Groundwater Monitoring Plan describes the objectives, activities, and assessments that will be performed to support the on-going groundwater monitoring requirements at the Reactor Technology Complex, formerly the Test Reactor Area (TRA). The requirements for groundwater monitoring were stipulated in the Final Record of Decision for Test Reactor Area, Operable Unit 2-13, signed in December 1997. The monitoring requirements were modified by the First Five-Year Review Report for the Test Reactor Area, Operable Unit 2-13, at the Idaho National Engineering and Environmental Laboratory to focus on those contaminants of concern that warrant continued surveillance, including chromium, tritium, strontium-90, and cobalt-60. Based upon recommendations provided in the Annual Groundwater Monitoring Status Report for 2006, the groundwater monitoring frequency was reduced to annually from twice a year

  20. Burst protection device for largely cylindrical steam raising units, preferably of pressurized water nuclear power stations

    International Nuclear Information System (INIS)

    Mutzl, J.

    1978-01-01

    This burst protection device controls forces to be expected in an accident by resolving them into axial (vertical) and radial (horizontal) components, which are taken by a large number of elements stressed in tension. The steam raising unit is surrounded by a containment, but remains easily accessible. The containment consists of a steel jacket, lid and floor. Several cylindrical sections above one another form the steel jacket, which surrounds the steam raising unit with an intermediate insulating layer of concrete. The insulating concrete cylinder is of several times the thickness of the steel jacket, and also consists of cylindrical sections. An outer supporting ring for the lid and floor of the containment have outside diameters which project beyond the jacket. Prestressed circumferential vertical tension ropes between the supporting ring and floor take any additional tensional forces. The lid is domed with downward curvature towards the upper boiler dome. Internal bursting forces produce compressive stresses in the lid, which thus pass along its outside diameter into the surrounding ring. The lid, which is devided along one diameter, makes dismantling and access to the boiler easy even with a central steam pipe going upwards. The floor of the burst protection is also the floor of the steam raising unit. It is of several times the thickness of the tube floor, which, with its spacing above the floor forms the usual inlet and outlet space for the reactor cooling water. The main coolant pump installed there is driven by an external motor through a floor penetration. (HP) [de

  1. Summary Report of Commercial reactor Criticality Data for Three Mile Island Unit 1

    International Nuclear Information System (INIS)

    Larry B. Wimmer

    2001-01-01

    The objective of the ''Summary Report of Commercial Reactor Criticality Data for Three Mile Island Unit I'' is to present the CRC data for the TMI-1 reactor. Results from the CRC evaluations will support the development and validation of the neutronics models used for criticality analyses involving commercial spent nuclear fuel. These models and their validation are discussed in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000)

  2. Fire Stations

    Data.gov (United States)

    Department of Homeland Security — Fire Stations in the United States Any location where fire fighters are stationed or based out of, or where equipment that such personnel use in carrying out their...

  3. Operation of Beaver Valley Power Station, Unit 2, Docket No. 50-412, Beaver County, Pennsylvania

    International Nuclear Information System (INIS)

    1985-09-01

    The final environmental impact statement (EPA No. 850438F) assesses the effects of operating a pressurized water reactor in Pennsylvania on the south bank of the Ohio River, which would serve as the final heat sink for the cooling system. Operation of Unit 2 would add 836 MW of capacity and increase system reliability. The plant would employ 465 at an $18 million payroll. Facilities for the plant would take up 56 acres of agricultural land. The operation result in both water and noise pollution. There is only a small probability of impacts due to potential radiation exposure. The Federal Water Pollution Control Act of 1972 and Nuclear Regulatory Commission Regulations require the impact statement

  4. Reactor units for power supply to the Russian Arctic regions: Priority assessment of nuclear energy sources

    Directory of Open Access Journals (Sweden)

    Mel'nikov N. N.

    2017-03-01

    Full Text Available Under conditions of competitiveness of small nuclear power plants (SNPP and feasibility of their use to supply power to remote and inaccessible regions the competition occurs between nuclear energy sources, which is caused by a wide range of proposals for solving the problem of power supply to different consumers in the decentralized area of the Russian Arctic power complex. The paper suggests a methodological approach for expert assessment of the priority of small power reactor units based on the application of the point system. The priority types of the reactor units have been determined based on evaluation of the unit's conformity to the following criteria: the level of referentiality and readiness degree of reactor units to implementation; duration of the fuel cycle, which largely determines an autonomy level of the nuclear energy source; the possibility of creating a modular block structure of SNPP; the maximum weight of a transported single equipment for the reactor unit; service life of the main equipment. Within the proposed methodological approach the authors have performed a preliminary ranking of the reactor units according to various criteria, which allows quantitatively determining relative difference and priority of the small nuclear power plants projects aimed at energy supply to the Russian Arctic. To assess the sensitivity of the ranking results to the parameters of the point system the authors have observed the five-point and ten-point scales under variations of importance (weights of different criteria. The paper presents the results of preliminary ranking, which have allowed distinguishing the following types of the reactor units in order of their priority: ABV-6E (ABV-6M, "Uniterm" and SVBR-10 in the energy range up to 20 MW; RITM-200 (RITM-200M, KLT-40S and SVBR-100 in the energy range above 20 MW.

  5. Summary of plant life management evaluation for Onagawa Nuclear Power Station Unit-1

    International Nuclear Information System (INIS)

    Nodate, Kazumi

    2014-01-01

    The Onagawa Nuclear Power Station Unit-1 (Onagawa NPS-1) began commercial operation on June 1, 1984, and has reached 30-year from starting of operation on June of 2014. To that end, we implemented the Plant Life Management (PLM) evaluation for Onagawa NPS-1 as our first experience. We decided on a Long-term Maintenance Management Policy from result of the evaluation, and then applied the Safety-Regulations change approval application on November 6, 2013 and its correcting application on April 16, 2014. Our application was approved on May 21, 2014 through investigation by the Nuclear Regulatory Agency. Also at implementation of the PLM evaluation, we considered effects of the Great East Japan Earthquake that occurred on March 11, 2011 against ageing phenomena. In this paper, we introduce summary of PLM evaluation for Onagawa NPS-1 and the evaluation that considered effects of the Great East Japan Earthquake. (author)

  6. Status of fast breeder reactor development in the United States of America

    International Nuclear Information System (INIS)

    Horton, K.E.

    1983-01-01

    The goal of the United States Liquid Metal Fast Breeder Reactor (LMFBR) program is to develop the technology to the point that the private sector can deploy a safe, economic breeder reactor. The LMFBR will provide virtually inexhaustible supplies of electrical energy for the long term and will provide additional confidence to LWR nuclear deployment in the near term. The LMFBR program consists of a streamlined research and development effort focussing on those actions needed to enable private sector financing of industrial deployment including plant demonstration and technology efforts in reactor fuels, components, materials, physics, and safety

  7. Status of development and licensing support for advanced liquid metal reactors in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, D R [Argonne National Laboratory, Argonne, IL (United States); Gyorey, G [General Electric, San Jose, CA (United States)

    1991-07-01

    The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the ALMR plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the U.S. program is to produce a standard, commercial ALMR, including the associated fuel cycle. The paper addresses the status of the IFR program, the ALMR program and the interaction of the ALMR program with the regulatory environment. (author)

  8. Status of development and licensing support for advanced liquid metal reactors in the United States

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Gyorey, G.

    1991-01-01

    The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the ALMR plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the US program is to produce a standard, commercial ALMR, including the associated fuel cycle. The paper addresses the status of the IFR program, the ALMR program and the interaction of the ALMR program with the regulatory environment

  9. Status of development and licensing support for advanced liquid metal reactors in the United States

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Gyorey, G.

    1991-01-01

    The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the ALMR plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the U.S. program is to produce a standard, commercial ALMR, including the associated fuel cycle. The paper addresses the status of the IFR program, the ALMR program and the interaction of the ALMR program with the regulatory environment. (author)

  10. A flooding induced station blackout analysis for a pressurized water reactor using the RISMC toolkit

    International Nuclear Information System (INIS)

    Mandelli, Diego; Prescott, Steven; Smith, Curtis; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua; Kinoshita, Robert

    2015-01-01

    In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation) and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code called NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. The impact of power uprate is determined in terms of both core damage probability and safety margins

  11. UK regulatory aspects of prestressed concrete pressure vessels for gas-cooled reactor nuclear power stations

    International Nuclear Information System (INIS)

    Watson, P.S.

    1990-01-01

    Safety assessment principles for nuclear power plants and for nuclear chemical plants demand application of best proven techniques, recognised standards, adequacy margins, inspection and maintenance of all the components including prestressed concrete pressure vessels. In service inspection of prestressed concrete pressure vessels includes: concrete surface examination; anchorage inspection; tendon load check; tendon material examination; foundation settlement and tilt; log-term deformation; vessel temperature excursions; coolant loss; top cap deflection. Hartlepool and Heysham 1 power plants prestress shortfall problem is discussed. Main recommendations can be summarised as follows: at all pressure vessel stations prestress systems should be calibrated in a manner which results in all load bearing components being loaded in a representative manner; at all pressure vessel stations load measurements during calibration should be verified by a redundant and diverse system

  12. Prototype fast reactor steam generator unit pressure vessel repairs

    International Nuclear Information System (INIS)

    Daniels, B.D.; Green, D.; Henderson, J.D.C.

    1993-01-01

    The prototype fast reactor at Dounreay has experienced a number of unscheduled shutdowns due to leaking reheater and superheater shell welds. There was a need to determine the cracking mechanism and to design a general repair technique simultaneously. Detailed investigations revealed that the crack locations correlated with the positions of rectification welds made at the time of vessel manufacture. A creep crack growth mechanism was identified; this requires through wall residual stress for through cracks to develop. A repair technique has been devised and successfully applied to the sites of a number of leaks. (author)

  13. A review of the United Kingdom fast reactor programme

    International Nuclear Information System (INIS)

    Bramman, J.I.; Hickey, H.B.; Adam, E.R.; Allan, C.G.; Gregory, C.V.

    1991-01-01

    At the PFR the gross electrical generation for the calendar year 1990 was 23,937 MWd with a load factor of 26.2%. These figures are only about half of the corresponding figures for 1989, mainly as a consequence of an outage extending from 24 April to 23 November, when a leak in the Reheater 1 vessel was being repaired. The plant was unavailable for operation on 264 days. However, prior to the April shut-down, the station had operated with high load factors (up to 85.0%). One reprocessing campaign was undertaken during the year under review. (author). 1 tab

  14. Nuclear power station with a water-cooled reactor pressure vessel

    International Nuclear Information System (INIS)

    Hoffmann, R.; Brunner, G.; Jost, N.

    1987-01-01

    Nuclear radiation produces radiolysis gases, which are undesirable for corrosion and oxyhydrogen gas reasons. To limit the proportion of this radiolysis gas, the invention provides that catalytic surfaces should be introduced into the primary circuit, to produce recombination of hydrogen and oxygen. These surfaces can be accommodated in the upper part of the reactor pressure vessel. The live steam screen can also have a catalytic surface. (orig./HP) [de

  15. Apparatus for controlling a nuclear reactor by vertical displacement of a unit absorbing neutrons

    International Nuclear Information System (INIS)

    Wiart, A.; Defaucheux, J.; Martin, J.; Pasqualini, G.

    1980-01-01

    Apparatus is described for controlling a nuclear reactor by vertical displacement of a unit absorbing neutrons, comprising, inside a sealed enclosure in communication with the interior of the reactor, a movable magnetic piece connected to a control shaft which is itself connected to the absorbent unit. This magnetic piece has at least two radial projections. The magnetic piece is displaced by an inductor with at least two pole shoes corresponding to the projections on the magnetic piece and allowing magnetic coupling between the inductor and the magnetic piece. The inductor and its displacement device are disposed outside the sealed enclosure. A control means allows the control shaft to be uncoupled from a member assuring its suspension so as to drop the absorbent unit in the event of emergency shutdown. The apparatus is particularly applicable to control rods of pressurized water nuclear reactors

  16. Status of liquid metal reactor development in the United States of America

    International Nuclear Information System (INIS)

    Griffith, J.D.; Horton, K.E.

    1991-01-01

    An existing network of government and industry research facilities and engineering test centers in the United States is currently providing test capabilities and the technical expertise required to conduct an aggressive advanced reactor development program. Subsequent to the directive to shut down the Fast Flux Test Facility in early 1990, a variety of activities were undertaken to provide support for continued operation. The United States has made substantial progress in achieving ALMR program objectives. The metal fuel cycle is designed to recycle and burn its own actiniums, and has the potential to be a very effective burner of actiniums generated in the LWRs. The current emphasis in the IFR Program is on the comprehensive development of the IFR (Integral Fast Reactor) technology, to be followed by a period of technology demonstration which would verify the economic feasibility of the concept. The United States has been active in international cooperative activities in the fast reactor sector since 1969. (author). 11 figs, 1 tab

  17. Load factor trends in light water reactor units

    International Nuclear Information System (INIS)

    Lehtinen, E.A.

    1990-01-01

    The Technical Research Centre of Finland follows up and analyses nuclear power plant availability performances worldwide. The results of a trend study for the load factors of the LWR units have been updated to the end of 1987. The whole operating history, in the sense of the annual and cumulative load factors achieved by all the Western commercial LWR units until the end of 1987, has been taken into consideration. Some trends in the load factors have been identified by using an exponential regression model developed. The LWR units form quite an inhomogeneous population with respect to their age, technical characteristics, site country as well as cumulative load factors achieved. The cumulative load factors achieved by all the LWR units until the end of 1987 are presented individually in the scattergrams

  18. Developing reports on safety analysis and probabilistic analysis of safety for operating power units at nuclear power stations with WWER reactors in Russia; Razrabotka otchetov po analizu bezopasnosti i VAB dlya ehkspluatiruyushchikhsya ehnergoblokov AEhS s WWEhR v Rossii

    Energy Technology Data Exchange (ETDEWEB)

    Malyshev, A B; Morozov, V B [ATOMENERGOPROEKT Institute, Moscow (Russian Federation)

    1999-06-01

    Report presents the current state-of art in developing safety reports and probabilistic safety analyses for WWER NPPs operated in Russia. Development of these reports and implementation of PSA is done according to the requirements outlined in the basic document `General Statement on Ensuring safety (OPB). At present submitting safety reports to the regulatory authority GAN RF is mandatory for licensing NPPs. Current state of safety reports for the operating WWER type NPPs meets generally the effective Russian standard engineering documents which are approaching the international standards. A mechanism ensuring correspondence of the safety documentation to the current state of operating units is determined. Modernization of the operating units is underway, it is aimed to eliminate existing deviations from requirements of the modern standards in the field of NPP safety

  19. A continuing success - The United States Foreign Research Reactor Spent Nuclear Fuel Acceptance Program

    International Nuclear Information System (INIS)

    Mustin, Tracy P.; Clapper, Maureen; Reilly, Jill E.

    2000-01-01

    The United States Department of Energy, in consultation with the Department of State, adopted the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel in May 1996. To date, the Foreign Research Reactor (FRR) Spent Nuclear Fuel (SNF) Acceptance Program, established under this policy, has completed 16 spent fuel shipments. 2,651 material test reactor (MTR) assemblies, one Slowpoke core containing less than 1 kilogram of U.S.-origin enriched uranium, 824 Training, Research, Isotope, General Atomic (TRIGA) rods, and 267 TRIGA pins from research reactors around the world have been shipped to the United States so far under this program. As the FRR SNF Acceptance Program progresses into the fifth year of implementation, a second U.S. cross country shipment has been completed, as well as a second overland truck shipment from Canada. Both the cross country shipment and the Canadian shipment were safely and successfully completed, increasing our knowledge and experience in these types of shipments. In addition, two other shipments were completed since last year's RERTR meeting. Other program activities since the last meeting included: taking pre-emptive steps to avoid license amendment pitfalls/showstoppers for spent fuel casks, publication of a revision to the Record of Decision allowing up to 16 casks per ocean going vessel, and the issuance of a cable to 16 of the 41 eligible countries reminding their governments and the reactor operators that the U.S.-origin uranium in their research reactors may be eligible for return to the United States under the Acceptance Program and urging them to begin discussions on shipping schedules. The FRR SNF program has also supported the Department's implementation of the competitive pricing policy for uranium and resumption of shipments of fresh uranium for fabrication into assemblies for research reactors. The United States Foreign Research Reactor Spent Nuclear Fuel Acceptance Program continues

  20. Lessons learned from the seismic reevaluation of San Onofre Nuclear Generating Station, Unit 1

    International Nuclear Information System (INIS)

    Russell, M.J.; Shieh, L.C.; Tsai, N.C.; Cheng, T.M.

    1987-01-01

    A seismic reevaluation program was conducted for the San Onofre Nuclear Generating Station, Unit No. 1 (SONGS 1). SEP was created by the NRC to provide (1) an assessment of the significance of differences between current technical positions on safety issues and those that existed when a particular plant was licensed, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. The Systematic Evaluation Program (SEP) seismic review for SONGS 1 was exacerbated by the results of an evaluation of an existing capable fault near the site during the design review for Units 2 and 3, which resulted in a design ground acceleration of 0.67g. Southern California Edison Company (SCE), the licensee for SONGS 1, realized that a uniform application of existing seismic criteria and methods would not be feasible for the upgrading of SONGS 1 to such a high seismic requirement. Instead, SCE elected to supplement existing seismic criteria and analysis methods by developing criteria and methods closer to the state of the art in seismic evaluation techniques

  1. Theoretical model for investigating the dynamic behaviour of the AST-500 type nuclear heating station reactor

    International Nuclear Information System (INIS)

    Grundmann, U.; Rohde, U.; Naumann, B.

    1985-01-01

    Studies on theoretical simulation of the dynamic behaviour of the AST-500 type reactor primary coolant system are summarized. The first version of a dynamic model in the form of the DYNAST code is described. The DYNAST code is based on a one-dimensional description of the primary coolant circuit including core, draught stack, and intermediate heat exchanger, a vapour dome model, and the point model of neutron kinetics. With the aid of the steady-state computational part of the DYNAST code, studies have been performed on different steady-state operating conditions. Furthermore, some methodological investigations on generalization and improvement of the dynamic model are considered and results presented. (author)

  2. Integrated-plant-safety assessment Systematic Evaluation program. Millstone Nuclear Power Station, Unit 1, Northeast Nuclear Energy Company, Docket No. 50-245

    International Nuclear Information System (INIS)

    1982-11-01

    The Systematic Evaluation Program was initiated in February 1977 to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of the Millstone Nuclear Power Station, Unit 1, operated by Northeast Nuclear Energy Company (located in Waterford, Connecticut). Millstone Nuclear Power Station, Unit 1, is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license

  3. Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    OHara J. M.; Higgins, J.; DAgostino, A.

    2012-01-17

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

  4. Safety evaluation report related to the operation of Seabrook Station, Units 1 and 2. Docket Nos. 50-443 and 50-444. Suppl. 1

    International Nuclear Information System (INIS)

    1983-04-01

    This report supplements the Safety Evaluation Report (NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et. al., for licenses to operate Seabrook Station, Units 1 and 2 (Docket Nos. STN 50-443 and STN 50-444). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  5. Safety Evaluation Report related to the operation of Seabrook Station, Units 1 and 2 (Docket Nos. 50-443 and 50-444)

    International Nuclear Information System (INIS)

    1989-05-01

    This report is Supplement No. 8 to the Safety Evaluation Report (SER) (NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et al., for licenses to operate Seabrook Station, Units 1 and 2 (Docket Nos. STN 50-443 and STN 50-444). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public. 2 figs., 1 tab

  6. Safety Evaluation Report related to the operation of Seabrook Station, Units 1 and 2 (Docket Nos. 50-443 and 50-444). Supplement No. 5

    International Nuclear Information System (INIS)

    1986-07-01

    This report is Supplement No. 5 to the Safety Evaluation Report (NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et al., for licenses to operate Seabrook Station, Units 1 and 2 Docket Nos. STN 50-443 and STN 50-444). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  7. Safety Evaluation Report related to the operation of Seabrook Station, Units 1 and 2 (Docket Nos. 50-443 and 50-444)

    International Nuclear Information System (INIS)

    1990-03-01

    This report is Supplement No. 9 to the Safety Evaluation Report (SER) (NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et al., for licenses to operate Seabrook Station, Units 1 and 2. It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public. 70 refs., 1 fig., 1 tab

  8. Safety Evaluation Report related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423). Supplement No. 3

    International Nuclear Information System (INIS)

    1985-11-01

    This report supplements the Safety Evaluation Report (NUREG-1031) issued in July 1984, Supplement 1 issued in March 1985, and Supplement 2 issued in September 1985 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Northeast Nuclear Energy Company (applicant and agent for the owners) for a license to operate Millstone Nuclear Power Station, Unit No. 3 (Docket 50-423). The facility is located in the Town of Waterford, New London County, Connecticut, on the north shore of Long Island Sound. This supplement provides more recent information regarding resolution or updating of some of the open and confirmatory items and license conditions identified in the Safety Evaluation Report

  9. Safety Evaluation Report related to the operation of Wolf Creek Generating Station, Unit No. 1 (Docket No. STN 50-482). Supplement No. 5

    International Nuclear Information System (INIS)

    1985-03-01

    This report supplements the Safety Evaluation Report (SER) for the application filed by the Kansas Gas and Electric Company, as applicant and agent for the owners, for a license to operate the Wolf Creek Generating Station, Unit 1 (Docket No. STN 50-482). The facility is located in Coffey County, Kansas. This supplement has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information regarding resolution of the open items identified in the SER. Because of the favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  10. Safety Evaluation Report related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423). Supplement No. 4

    International Nuclear Information System (INIS)

    1985-11-01

    This report supplements the Safety Evaluation Report (NUREG-1031) issued in July 1984, Supplement 1 issued in March 1985, Supplement 2 issued in September 1985, and Supplement 3 issued in November 1985, by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Northeast Nuclear Energy Company (applicant and agent for the owners) for a license to operate Millstone Nuclear Power Station, Unit No. 3 (Docket 50-423). The facility is located in the Town of Waterford, New London County, Connecticut, on the north shore of Long Island Sound. This supplement provides more recent information supporting the license for initial criticality and power ascension to 5% power operation for Millstone 3. 37 refs., 10 tabs

  11. Safety Evaluation Report related to the operation of Grand Gulf Nuclear Station, Units 1 and 2 (Docket Nos. 50-416 and 50-417)

    International Nuclear Information System (INIS)

    1984-10-01

    This report supplements the Safety Evaluation Report (NUREG-0831) issued in September 1981 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Mississippi Power and Light (MP and L) Company, Middle South Energy, Inc., and South Mississippi Electric Power Association as applicants and owners, for licenses to operate the Grand Gulf Nuclear Station, Units 1 and 2 (Docket Nos. 50-416 and 50-417, respectively). The facility is located on the east bank of the Mississippi River near Port Gibson in Claiborne County, Mississippi. This supplement provides information on the NRC staff's evaluation of requests for exemptions to NRC regulations pursuant to the Commission's direction in CLI-84-19, dated October 25, 1984

  12. Operation of Nine Mile Point Nuclear Station, Unit No. 2, Docket No. 50-410, Town of Scriba, County of Oswego, New York

    International Nuclear Information System (INIS)

    1984-07-01

    The draft version of an environmental impact statement (EPA No. 840360D) on the proposed licensing of Unit 2 of the Nine Mile Point Nuclear Station in New York describe the plant site, the reactor and support facilities, the cooling system, and procedures for disposing of cooling tower sludge. Construction includes a substation and a new 345kV transmission line that would use an existing right-of-way. Positive impacts include the annual generation of 5.2 billion kWh of baseload capacity and improvements in the state power pool's bulk supply system. The $18 million payroll of 635 workers would benefit the local economy. Negative impacts would be the loss of forest brush land, slight degradation of ambient water quality, and a minor depression of ground water. There would likely be some loss of fish population. The Federal Water Pollution Control Act of 1972 and Nuclear Regulatory Commission Licensing require the impact statement

  13. Safety evaluation report related to the operation of Seabrook Station, Units 1 and 2 (Docket Nos. 50-443 and 50-444)

    International Nuclear Information System (INIS)

    1986-05-01

    This report is Supplement 4 to the Safety Evaluation Report (SER, NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et al., for licenses to operate Seabrook Station, Units 1 and 2 (Docket Nos. STN 50-443 and STN 50-444). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hamphsire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  14. Safety evaluation report related to the operation of Seabrook Station, Units 1 and 2 (Docket Nos. 50-443 and 50-444)

    International Nuclear Information System (INIS)

    1987-10-01

    This report is Supplement No. 7 to the Safety Evaluation Report (NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et al. for licenses to operate Seabrook Station, Units 1 and 2 (Docket Nos. STN 50-443 and STN 50-444). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  15. Safety Evaluation Report related to the full-term operating license for Millstone Nuclear Power Station, Unit No. 1 (Docket No. 50-245)

    International Nuclear Information System (INIS)

    1985-10-01

    The Safety Evaluation Report for the full-term operating license application filed by the Connecticut Light and Power Company, the Hartford Electric Light Company, Western Massachusetts Electric Company and the Millstone Point Company [(now known as Connecticut Light and Power Company (CL and P) and Western Massachusetts Electric Company (WMECO) having authority to possess Millstone-1, 2, and 3, and the Northeast Nuclear Energy Company (NNECO) as the responsible entity for operation of the facilities)] for Millstone Nuclear Power Station Unit 1 has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in the town of Waterford, Connecticut. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can continue to be operated without endangering the health and safety of the public

  16. Technical evaluation report TMI action - NUREG-0737 (II.D.1) relief and safety valve testing for Clinton Power Station Unit 1. (Docket No. 50-461)

    International Nuclear Information System (INIS)

    Burr, T.K.; Magleby, H.L.

    1985-05-01

    Light water reactors operators have experienced a number of occurrences of improper performance by safety and relief valves installed in their primary coolant systems. Because of this, the authors of NUREG-0578 (TMI-2 Lessons Learned Task Force Status Report and Short-Term Recommendations) recommended that programs be developed and completed which would reevaluate the performance capabilities of BWR safety and relief valves. This report has examined the response of the Licensee for the Clinton Power Station, Unit 1 to the requirements of NUREG-0578 and subsequently NUREG-0737 and finds that the Licensee has provided an acceptable response, reconfirming that the General Design Criteria 14, 15 and 30 of Appendix A to 10 CFR-50 have been met

  17. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2. Docket Nos. 50-445 and 50-446

    International Nuclear Information System (INIS)

    1983-03-01

    Supplement No. 3 to the Safety Evaluation Report (SER) related to the operation of the Comanche Peak Steam electric Station, Units 1 and 2, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. the facility is located in Somervell County, Texas. Subject to favorable resolution of the items identified in this supplement, the staff concludes that the facility can be operated by the applicatn without endangering the health and safety of the public. This document provides the NRC staff's evaluation of the outstanding and confirmatory issues that have been resolved since Supplement No. 2 was issued in January 1982, and addresses changes to the SER and its earlier supplements which have resulted from the receipt of additonal information from the applicant during the period of January throught October 1982

  18. Safety-evaluation report related to the operation of Seabrook Station, Units 1 and 2. Docket Nos. 50-443 and 50-444

    International Nuclear Information System (INIS)

    1983-06-01

    This report is Supplement 2 to the Safety Evaluation Report (NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et al., for licenses to operate Seabrook Station, Units 1 and 2 (Docket Nos. STN 50-443 and STN 50-444). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  19. Modeling of a Flooding Induced Station Blackout for a Pressurized Water Reactor Using the RISMC Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Mandelli, Diego; Prescott, Steven R; Smith, Curtis L; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua J; Kinoshita, Robert A

    2011-07-01

    In the Risk Informed Safety Margin Characterization (RISMC) approach we want to understand not just the frequency of an event like core damage, but how close we are (or are not) to key safety-related events and how might we increase our safety margins. The RISMC Pathway uses the probabilistic margin approach to quantify impacts to reliability and safety by coupling both probabilistic (via stochastic simulation) and mechanistic (via physics models) approaches. This coupling takes place through the interchange of physical parameters and operational or accident scenarios. In this paper we apply the RISMC approach to evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., system activation) and to perform statistical analyses (e.g., run multiple RELAP-7 simulations where sequencing/timing of events have been changed according to a set of stochastic distributions). By using the RISMC toolkit, we can evaluate how power uprate affects the system recovery measures needed to avoid core damage after the PWR lost all available AC power by a tsunami induced flooding. The simulation of the actual flooding is performed by using a smooth particle hydrodynamics code: NEUTRINO.

  20. Development of inspection and maintenance program for reactor and reactivity control units in HANARO

    International Nuclear Information System (INIS)

    Cho, Yeong-Garp

    1998-01-01

    This paper summarizes the overall program for inspection and maintenance of reactor structure and Reactivity Control Units (RCU) of HANARO during lifetime. The long-term plan for in-service inspection is introduced in the viewpoint of the structural integrity of reactor and RCU, and the operability of RCU mechanism. This program includes the list of components to be inspected, the schedule of inspection and maintenance, and the development of special tools and test rig that are required for the remote inspection and maintenance of reactor and RCU components. Preliminary results of the evaluation on the lifetime of RCU components are summarized based on the operation history since the installation of reactor. A test rig will be designed and constructed for the purposes of verifying the prolonged lifetime of RCU components being used, the performance of special tools, and the rehearsal of maintenance work as well. (author)

  1. Proposal for Dual Pressurized Light Water Reactor Unit Producing 2000 MWe

    International Nuclear Information System (INIS)

    Kang, Kyoung Min; Noh, Sang Woo; Suh, Kune Yull

    2009-01-01

    The Dual Unit Optimizer 2000 MWe (DUO2000) is put forward as a new design concept for large power nuclear plants to cope with economic and safety challenges facing the 21 st century green and sustainable energy industry. DUO2000 is home to two nuclear steam supply systems (NSSSs) of the Optimized Power Reactor 1000 MWe (OPR1000)-like pressurized water reactor (PWR) in single containment so as to double the capacity of the plant. The idea behind DUO may as well be extended to combining any number of NSSSs of PWRs or pressurized heavy water reactors (PHWRs), or even boiling water reactors (BWRs). Once proven in water reactors, the technology may even be expanded to gas cooled, liquid metal cooled, and molten salt cooled reactors. With its in-vessel retention external reactor vessel cooling (IVR-ERVC) as severe accident management strategy, DUO can not only put the single most querulous PWR safety issue to an end, but also pave the way to very promising large power capacity while dispensing with the huge redesigning cost for Generation III+ nuclear systems. Five prototypes are presented for the DUO2000, and their respective advantages and drawbacks are considered. The strengths include, but are not necessarily limited to, reducing the cost of construction by decreasing the number of containment buildings from two to one, minimizing the cost of NSSS and control systems by sharing between the dual units, and lessening the maintenance cost by uniting the NSSS, just to name the few. The latent threats are discussed as well

  2. Light Water Reactor Sustainability Program Support and Modeling for the Boiling Water Reactor Station Black Out Case Study Using RELAP and RAVEN

    Energy Technology Data Exchange (ETDEWEB)

    Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Riley, Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schroeder, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Aldrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nielsen, Joe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maljovec, Dan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Bie [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pascucci, Valerio [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated. In order to evaluate the impact of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the impact of power uprate on the safety of a boiled water reactor system. The case study considered is a loss of off-site power followed by the loss of diesel generators, i.e., a station black out (SBO) event. Analysis is performed by using a thermo-hydraulic code, i.e. RELAP-5, and a stochastic analysis tool currently under development at INL, i.e. RAVEN. Starting from the event tree models contained in SAPHIRE, we built the input file for RELAP-5 that models in great detail system dynamics under SBO conditions. We also interfaced RAVEN with RELAP-5 so that it would be possible to run multiple RELAP-5 simulation runs by changing specific keywords of the input file. We both employed classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. We also employed advanced data analysis and visualization tools that helped us to correlate simulation outcome such as maximum core temperature with a set of input uncertain parameters. Results obtained gave a detailed overview of the issues associated to power uprate for a SBO accident scenario. We were able to quantify how timing of safety related events were impacted by a higher reactor core power. Such insights can provide useful material to the decision makers to perform risk-infomed safety margins management.

  3. Applicability of AWJ technique for dismantling reactor of the Fukushima Daiichi Nuclear Power Station. Cutting test of imitation of fuel debris and optimization of the cutting condition

    International Nuclear Information System (INIS)

    Maruyama, Shin-ichiro; Watatani, Satoshi

    2016-01-01

    Based on findings during recovery works that followed the accident at Three Mile Island Station 2, it is assumed that the reactor internals at the Fukushima Daiichi Nuclear Power Station (1F) have complex geometries intermixed with melted fuel and confined in limited spaces. Accordingly, abrasive water jet (AWJ) cutting method is considered to be a promising technique that can be safely and reasonably used for cutting and removing reactor internals. The authors conducted tests to examine the possibility of application and to solve the problems of this technique. In the tests imitation of fuel debris and optimization of the cutting condition is used. The test result made the measures for some of the associated issues clear, and demonstrated that AWJ cutting method is assumed as one of the promising techniques for removing reactor internals. (author)

  4. Use of Physio-Hydrological Units for SMOS Validation at the Valencia Anchor Station Study Area

    Science.gov (United States)

    Millán-Scheiding, C.; Antolín, C.; Marco, J.; Soriano, M. P.; Torre, E.; Requena, F.; Carbó, E.; Cano, A.; Lopez-Baeza, E.

    2009-04-01

    The SMOS space mission will soil moisture over the continents and ocean surface salinity with the sufficient resolution to be used in global climate change studies. With the aim of validating SMOS land data and products at the Valencia Anchor Station site (VAS) in a Mediterranean Ecosystem area of Spain, we have designed a sample methodology using a subdivision of the landscape in environmental units related to the spatial variability of soil moisture (Millán-Scheiding, 2006; Lopez-Baeza, et al. 2008). These physio-hydrological units are heterogeneously structured entities which present a certain degree of internal uniformity of hydrological parameters. The units are delimited by integrating areas with the same physio-morphology, soil type, vegetation, geology and topography (Flugel, et al 2003; Millán-Scheiding et al, 2007). Each of these units presented over the same pedological characteristics, vegetation cover, and landscape position should have a certain degree of internal uniformity in its hydrological parameters and therefore similar soil moisture (SM). The main assumption for each unit is that the dynamical variation of the hydrological parameters within one unit should be minimum compared to the dynamics of another unit. This methodology will hopefully provide an effective sampling design consisting of a reduced number of measuring points, sparsely distributed over the area, or alternatively, using SM validation networks where each sampling point is located where it is representative of the mean soil moisture of a complete unit area. The Experimental Plan for the SMOS Validation Rehearsal Campaign at the VAS area of April-May 2008 used this environmental subdivision in the selection and sampling of over 21.000 soil moisture points in a control area of 10 x 10 km2. The ground measurements were carried out during 4 nights corresponding to a drying out period of the soil. The sampling consisted of 700 plots with 4 volumetric SM cylinders and 7 Delta-T Theta

  5. Gas cooled reactor decommissioning. Packaging of waste for disposal in the United Kingdom deep repository

    International Nuclear Information System (INIS)

    Barlow, S.V.; Wisbey, S.J.; Wood, P.

    1998-01-01

    United Kingdom Nirex Limited has been established to develop and operate a deep underground repository for the disposal of the UK's intermediate and certain low level radioactive waste. The UK has a significant Gas Cooled Reactor (GCR) programme, including both Magnox and AGR (Advanced Gas-cooled Reactor) capacity, amounting to 26 Magnox reactors, 15 AGR reactors as well as research and prototype reactor units such as the Windscale AGR and the Windscale Piles. Some of these units are already undergoing decommissioning and Nirex has estimated that some 15,000 m 3 (conditioned volume) will come forward for disposal from GCR decommissioning before 2060. This volume does not include final stage (Stage 3) decommissioning arisings from commercial reactors since the generating utilities in the UK are proposing to adopt a deferred safe store strategy for these units. Intermediate level wastes arising from GCR decommissioning needs to be packaged in a form suitable for on-site interim storage and eventual deep disposal in the planned repository. In the absence of Conditions for Acceptance for a repository in the UK, the dimensions, key features and minimum performance requirements for waste packages are defined in Waste Package Specifications. These form the basis for all assessments of the suitability of wastes for disposal, including GCR wastes. This paper will describe the nature and characteristics of GCR decommissioning wastes which are intended for disposal in a UK repository. The Nirex Waste Package Specifications and the key technical issues, which have been identified when considering GCR decommissioning waste against the performance requirements within the specifications, are discussed. (author)

  6. Compilation of data and descriptions for United States and foreign liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Appleby, E.R.

    1975-08-01

    This document is a compilation of design and engineering information pertaining to liquid metal cooled fast breeder reactors which have operated, are operating, or are currently under construction, in the United States and abroad. All data has been taken from publicly available documents, journals, and books

  7. Nuclear reactors built, being built, or planned in the Unites States as of June 30, 1981

    International Nuclear Information System (INIS)

    Goulden, A.M.

    1983-01-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of June 30, 1981, which are capable of sustaining a nuclear chain reaction. Information is presented in five parts, each of which is categorized by primary function or pupose: civilian, military, production, export, and critical assembly facilities

  8. Nuclear reactors built, being built, or planned in the United States as of December 31, 1980

    International Nuclear Information System (INIS)

    1981-04-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1980, which are capable of sustaining a nuclear chain reaction. Information is presented in five parts, each of which is categorized by primary function or purpose: civilian, military, production, export, and critical assembly facilities

  9. Final Environmental Statement related to the operation of Beaver Valley Power Station, Unit 2 (Docket No. 50-412)

    International Nuclear Information System (INIS)

    1985-09-01

    This Final Environmental Statement contains the second assessment of the environmental impact associated with Beaver Valley Power Station Unit 2 pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environment, environmental consequences and mitigating actions, and environmental benefits and costs, and concludes that the action called for is the issuance of an operating license for Beaver Valley Unit 2

  10. Technology, safety, and costs of decommissioning a reference pressurized water reactor power station. Appendices

    International Nuclear Information System (INIS)

    Smith, R.I.; Konzek, G.J.; Kennedy, W.E. Jr.

    1978-05-01

    Detailed appendices are presented under the following headings: reference PWR facility description, reference PWR site description, estimates of residual radioactivity, alternative methods for financing decommissioning, radiation dose methodology, generic decommissioning activities, intermediate dismantlement activities, safe storage and deferred dismantlement activities, compilation of unit cost factors, and safety assessment details

  11. 78 FR 32278 - Vogtle Electric Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to...

    Science.gov (United States)

    2013-05-29

    ... Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to Information in Tier 1, Table... Nuclear Operating Company, Inc., and Georgia Power Company, Oglethorpe Power Corporation, Municipal... Table 3.3-1, ``Definition of Wall Thicknesses for Nuclear Island Buildings, Turbine Buildings, and Annex...

  12. 75 FR 13606 - Arizona Public Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Science.gov (United States)

    2010-03-22

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. STN 50-528, STN 50-529, and STN 50-530; NRC-2010-0114] Arizona Public Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3; Environmental...-74, issued to Arizona Public Service Company (APS, the licensee), for operation of the Palo Verde...

  13. 75 FR 53985 - Arizona Public Service Company, et al., Palo Verde Nuclear Generating Station, Unit 3; Temporary...

    Science.gov (United States)

    2010-09-02

    ... NUCLEAR REGULATORY COMMISSION [Docket No. STN 50-530; NRC-2010-0281] Arizona Public Service Company, et al., Palo Verde Nuclear Generating Station, Unit 3; Temporary Exemption 1.0 Background Arizona Public Service Company (APS, the licensee) is the holder of Facility Operating License No. NPF-74, which...

  14. 76 FR 79228 - Combined Licenses at William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy...

    Science.gov (United States)

    2011-12-21

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-018 and 52-019; NRC-2008-0170] Combined Licenses at William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy Carolinas, LLC AGENCY: Nuclear.... SUMMARY: Notice is hereby given that the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Army Corps...

  15. 78 FR 77508 - Duke Energy Carolinas, LLC; William States Lee III Nuclear Station, Units 1 and 2; Combined...

    Science.gov (United States)

    2013-12-23

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-018 and 52-019; NRC-2008-0170] Duke Energy Carolinas, LLC; William States Lee III Nuclear Station, Units 1 and 2; Combined Licenses Application Review AGENCY: Nuclear Regulatory Commission. ACTION: Final environmental impact statement; availability...

  16. 78 FR 40200 - Duke Energy Carolinas, LLC, Oconee Nuclear Station Units 1, 2, and 3; Independent Spent Fuel...

    Science.gov (United States)

    2013-07-03

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 72-1004, 72-40, 50-269, 50-270, and 50-287; NRC-2013-0135] Duke Energy Carolinas, LLC, Oconee Nuclear Station Units 1, 2, and 3; Independent Spent Fuel Storage Installation; Environmental Assessment and Finding of No Significant Impact AGENCY: Nuclear...

  17. 78 FR 45575 - Duke Energy Carolinas, LLC; Oconee Nuclear Station Units 1, 2, and 3; Independent Spent Fuel...

    Science.gov (United States)

    2013-07-29

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos.: 72-1004, 72-40, 50-269, 50-270, 50-287; and NRC-2013- 0135] Duke Energy Carolinas, LLC; Oconee Nuclear Station Units 1, 2, and 3; Independent Spent Fuel Storage Installation AGENCY: Nuclear Regulatory Commission. ACTION: Exemption; issuance. SUMMARY: The NRC...

  18. Draft Environmental Statement related to the operation of Beaver Valley Power Station, Unit 2 (Docket No. 50-412)

    International Nuclear Information System (INIS)

    1984-12-01

    This Draft Environmental Statement contains the second assessment of the environmental impact associated with Beaver Valley Power Station Unit 2 pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environment, environmental consequences and mitigating actions, and environmental benefits and costs

  19. Station blackout transient at the Browns Ferry Unit 1 Plant: a severe accident sequence analysis (SASA) program study

    International Nuclear Information System (INIS)

    Schultz, R.R.

    1982-01-01

    Operating plant transients are of great interest for many reasons, not the least of which is the potential for a mild transient to degenerate to a severe transient yielding core damage. Using the Browns Ferry (BF) Unit-1 plant as a basis of study, the station blackout sequence was investigated by the Severe Accident Sequence Analysis (SASA) Program in support of the Nuclear Regulatory Commission's Unresolved Safety Issue A-44: Station Blackout. A station blackout transient occurs when the plant's AC power from a comemrcial power grid is lost and cannot be restored by the diesel generators. Under normal operating conditions, f a loss of offsite power (LOSP) occurs [i.e., a complete severance of the BF plants from the Tennessee Valley Authority (TVA) power grid], the eight diesel generators at the three BF units would quickly start and power the emergency AC buses. Of the eight diesel generators, only six are needed to safely shut down all three units. Examination of BF-specific data show that LOSP frequency is low at Unit 1. The station blackout frequency is even lower (5.7 x 10 - 4 events per year) and hinges on whether the diesel generators start. The frequency of diesel generator failure is dictated in large measure by the emergency equipment cooling water (EECW) system that cools the diesel generators

  20. Conformance to Regulatory Guide 1.97, Beaver Valley Power Station, Unit No. 2 (Docket No. 50-412)

    International Nuclear Information System (INIS)

    Stoffel, J.W.; Udy, A.C.

    1985-11-01

    This EG and G Idaho, Inc., report reviews the submittals for Regulatory Guide 1.97 for Unit No. 2 of the Beaver Valley Power Station and identifies areas of nonconformance to the regulatory guide. Exceptions to Regulatory Guide 1.97 are evaluated and those areas where sufficient basis for acceptability is not provided are identified

  1. 77 FR 35079 - License Renewal Application for Seabrook Station, Unit 1 ; NextEra Energy Seabrook, LLC

    Science.gov (United States)

    2012-06-12

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-443; NRC-2010-0206] License Renewal Application for Seabrook Station, Unit 1 ; NextEra Energy Seabrook, LLC AGENCY: Nuclear Regulatory Commission. ACTION: License renewal application; intent to prepare supplement to draft [[Page 35080

  2. 78 FR 29158 - In the Matter of Zion Solutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Order Approving...

    Science.gov (United States)

    2013-05-17

    ... and DPR-48] In the Matter of Zion Solutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Order... formed for the purpose of acquiring ES, Inc. and is held by certain investment fund entities organized by... Environmental Management Programs, in writing, of such receipt no later than one (1) business day prior to the...

  3. 78 FR 22347 - GPU Nuclear Inc., Three Mile Island Nuclear Power Station, Unit 2, Exemption From Certain...

    Science.gov (United States)

    2013-04-15

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-320; NRC-2013-0065] GPU Nuclear Inc., Three Mile Island Nuclear Power Station, Unit 2, Exemption From Certain Security Requirements AGENCY: Nuclear... and State Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission...

  4. Conformance to Regulatory Guide 1.97, River Bend Station, Unit No. 1 (Docket No. 50-458)

    International Nuclear Information System (INIS)

    Udy, A.C.

    1985-08-01

    This EG and G, Inc., report reviews the submittals for Regulatory Guide 1.97, Revision 3, for the River Bend Station, Unit No. 1. Any exception to Regulatory Guide 1.97 is evaluated and those areas where sufficient basis for acceptability is not provided are identified. 8 refs

  5. Neutron embrittlement of the Kozloduy NPP unit 1 reactor

    International Nuclear Information System (INIS)

    Vodenicharov, S.; Kamenova, Tz.

    1996-01-01

    Activities made in the period 1989-1996 according to the Program for metal state monitoring of the Kozloduy NPP Unit 1 are described. Data on P and Cu content in the welded joint 4 are reported. Determination is made by wet chemical analysis of shavings taken out from the inner side of the wall, direct spectral analysis of the vessel itself and spectroscopy of the inner and outer side of 6 templates. The results obtained from 4 different study teams showed a good agreement. The real average P content is 0.046% and tends to diminish in depth. Microstructural investigation does not show any expressed inter-crystalline mechanism of brittle failure at low temperatures. The data on real P and Cu content, as well as the experimental values of the initial critical temperature of embrittlement (Tk o ), the residual part of temperature shift (Tk r ) and the re-embrittlement temperature after annealing at 475 o (Tk) allow to predict the change in Tk o of the joint 4 during the next refueling cycles. The measured low value of Tk after 18-th refueling cycle is considerably lower than that forecasted by lateral re-embrittlement law. This means that the forecasting of Tk for the next cycles is made with big enough conservatisms, and that a second annealing of the vessel until 26-th cycle is not necessary. So according to the most conservative estimate, the Unit 1 can operate safely until the end of the 26-th refueling cycle. It is also concluded, that in terms of radiation degradation of the vessel metal the operation life time of the Unit 1 can reach and exceed the designed one. 2 tab., 7 ref

  6. Reactor safety in Eastern Europe. Proceedings

    International Nuclear Information System (INIS)

    1995-02-01

    The papers presented to the GRS colloquium refer to the cooperative activities for reactor accident analysis and modification of the GRS computer codes for their application to reactors of the Russian design types of WWER or RBMK. Another topic is the safety of RBMK reactors in particular, and the current status of investigations and studies addressing the containment of unit 4 of the Chernobyl reactor station. (HP) [de

  7. Efforts to perform safe and efficient decommissioning for Tsuruga Power Station Unit 1

    International Nuclear Information System (INIS)

    Saito, Shiro; Yamauchi, Toyoaki; Austin, Colin R.

    2017-01-01

    Tsuruga Power Station Unit-1 (Tsuruga-1) started commercial operation in March 1970, and the decision to terminate operation was made in 2015. In April 2016, JAPC signed an agreement with Energy Solutions (ES) on strategic cooperation for domestic D and D projects for introduction of successful international experiences. As a first step in this cooperation, D and D know-how developed by ES in the US is being applied to Tsuruga-1 with verifying its applicability to domestic D and D projects. One of the efforts is human resource development. JAPC has also started introduction of ES's project management method to the Tsuruga-1 project for solid project management and the base line is currently being prepared. Regarding the waste disposal paths, application document of approval for measurement and evaluation of clearance material was submitted in September 2016. However the disposal paths for waste are not established in Japan. It is necessary to cooperate with the government, utilities and local stakeholders to establish waste disposal paths. Because it is also important to obtain the understanding from local communities, JAPC and ES will try positively to utilize local companies for D and D works. JAPC and ES believe that their relationship will ensure success of the Tsuruga-1 NPP decommissioning project. (author)

  8. Systems for controlling the electric power of a boiling water reactor power station

    International Nuclear Information System (INIS)

    Fukunishi, Koyu; Kiyokawa, Kazuhiro.

    1975-01-01

    Object: To achieve automatic increase and decrease of electric output in accordance with a predetermined rate of increase or decrease in output when the power output is raised or lowered. Structure: An electric output signal from an atomic power plant is led to a differentiating circuit through a smoothing circuit to produce a signal for rate of change of time, and an error signal between this signal and a preset signal produced from a circuit for a preset rate of change of output with time is supplied to an analog adjuster through a limiter. In this way, the flow rate in the reactor core is adjusted by a speed controller to obtain an output of a predetermined rate of increase. The difference signal between the electric output signal and a desired value signal is passed through an absolute circuit to a comparator circuit for comparison with a predetermined threshold value setting signal. The output signal of the comparator is used to operate a relay to open the contact so as to prevent an increase or decrease in the output beyond the required level. (Kamimura, M.)

  9. Review of reactor pressure vessel evaluation report for Yankee Rowe Nuclear Power Station (YAEC No. 1735)

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Dickson, T.L.; Merkle, J.G.; Nanstad, R.K.

    1992-03-01

    The Yankee Atomic Electric Company has performed an Integrated Pressurized Thermal Shock (IPTS)-type evaluation of the Yankee Rowe reactor pressure vessel in accordance with the PTS Rule (10 CFR 50. 61) and a US Regulatory Guide 1.154. The Oak Ridge National Laboratory (ORNL) reviewed the YAEC document and performed an independent probabilistic fracture-mechnics analysis. The review included a comparison of the Pacific Northwest Laboratory (PNL) and the ORNL probabilistic fracture-mechanics codes (VISA-II and OCA-P, respectively). The review identified minor errors and one significant difference in philosophy. Also, the two codes have a few dissimilar peripheral features. Aside from these differences, VISA-II and OCA-P are very similar and with errors corrected and when adjusted for the difference in the treatment of fracture toughness distribution through the wall, yield essentially the same value of the conditional probability of failure. The ORNL independent evaluation indicated RT NDT values considerably greater than those corresponding to the PTS-Rule screening criteria and a frequency of failure substantially greater than that corresponding to the ''primary acceptance criterion'' in US Regulatory Guide 1.154. Time constraints, however, prevented as rigorous a treatment as the situation deserves. Thus, these results are very preliminary

  10. Development of Abnormal Operating Strategies for Station Blackout in Shutdown Operating Mode in Pressurized Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Duk-Joo; Lee, Seung-Chan; Sung, Je-Joong; Ha, Sang-Jun [KHNP CRI, Daejeon (Korea, Republic of); Hwang, Su-Hyun [FNC Tech. Co., Yongin (Korea, Republic of)

    2016-10-15

    Loss of all AC power is classified as one of multiple failure accident by regulatory guide of Korean accident management program. Therefore we need develop strategies for the abnormal operating procedure both of power operating and shutdown mode. This paper developed abnormal operating guideline for loss of all AC power by analysis of accident scenario in pressurized water reactor. This paper analyzed the loss of ultimate heat sink (LOUHS) in shutdown operating mode and developed the operating strategy of the abnormal procedure. Also we performed the analysis of limiting scenarios that operator actions are not taken in shutdown LOUHS. Therefore, we verified the plant behavior and decided operator action to taken in time in order to protect the fuel of core with safety. From the analysis results of LOUHS, the fuel of core maintained without core uncovery for 73 minutes respectively for opened RCS states after the SBO occurred. Therefore, operator action for the emergency are required to take in 73 minutes for opened RCS state. Strategy is to cooldown by using spent fuel pool cooling system. This method required to change the plant design in some plant. In RCS boundary closed state, first abnormal operating strategy in shutdown LOUHS is first abnormal operating strategy in shutdown LOUHS is to remove the residual heat of core by steam dump flow and auxiliary feedwater of SG.

  11. Operation and management of United Central Piping LPG supply stations in Shenzhen

    Energy Technology Data Exchange (ETDEWEB)

    Lai Yankai

    1997-11-01

    Shenzhen has based its city gas development project on the eventual conversion to natural gas supply by way of central piping LPG supply stations. To fully exploit the potential gas supply capability of every central piping station and cut down the total running cost, we have been connecting the existing supply stations and their piping system into a network, which not only provided a more reliable gas supply performance, but can greatly simplify the evacuation of gas stations from the ever-expanding downtown areas to suburbs. Through this way, the periodic gas stock held by individual stations can be transferred to storage terminal or stations of enough holding capability; the supplying distance has been much lengthened and the gas volume held in the piping system increased; gas supply covered by small stations has been shifted to new and large stations. By linking these stations, we are able to provide pipeline LP gas supply for a large area, and in the same time lay down the pipeline infrastructure for the upcoming LNG supply so that an easy conversion to LNG supply can be secured as soon as the projected LNG terminal is put to service. (au)

  12. Development of design procedures for fast reactors in the United Kingdom

    International Nuclear Information System (INIS)

    Rose, R.T.; Tomkins, B.; Townley, C.H.A.

    1989-01-01

    A considerable amount of research has been carried out in the United Kingdom during the past two decades to quantify the factors which control the integrity of structural components. The work which has been aimed at understanding the performance of structures at high temperature, is particularly relevant to the Fast Reactor. At the same time, because of the need to demonstrate the tolerance to defects in the low temperature as well as the high temperature components, defect assessment criteria are also of great importance. Emphasis is now being given to the development of design procedures specifically for Fast Reactors, making use of the research so far completed. The United Kingdom proposals are being integrated with those from France, Federal Republic of Germany and Italy as part of the European collaborative venture. The paper outlines the major developments which are currently in hand, and brings up to date the review of United Kingdom activities presented at Tokyo in 1986. (author)

  13. CLIMATE CHANGE FUEL CELL PROGRAM UNITED STATES COAST GUARD AIR STATION CAPE COD BOURNE, MASSACHUSETTS

    Energy Technology Data Exchange (ETDEWEB)

    John K. Steckel Jr

    2004-06-30

    This report covers the first year of operation of a fuel cell power plant, installed by PPL Spectrum, Inc. (PPL) under contract with the United States Coast Guard (USCG), Research and Development Center (RDC). The fuel cell was installed at Air Station Cape Cod in Bourne, MA. The project had the support of the Massachusetts Technology Collaborative (MTC), the Department of Energy (DOE), and Keyspan Energy. PPL selected FuelCell Energy, Inc. (FCE) and its fuel cell model DFC{reg_sign}300 for the contract. Grant contributions were finalized and a contract between PPL and the USCG for the manufacture, installation, and first year's maintenance of the fuel cell was executed on September 24, 2001. As the prime contractor, PPL was responsible for all facets of the project. All the work was completed by PPL through various subcontracts, including the primary subcontract with FCE for the manufacture, delivery, and installation of the fuel cell. The manufacturing and design phases proceeded in a relatively timely manner for the first half of the project. However, during latter stages of manufacture and fuel cell testing, a variety of issues were encountered that ultimately resulted in several delivery delays, and a number of contract modifications. Final installation and field testing was completed in April and May 2003. Final acceptance of the fuel cell was completed on May 16, 2003. The fuel cell has operated successfully for more than one year. The unit achieved an availability rate of 96%, which exceeded expectations. The capacity factor was limited because the unit was set at 155 kW (versus a nameplate of 250 kW) due to the interconnection with the electric utility. There were 18 shutdowns during the first year and most were brief. The ability of this plant to operate in the island mode improved availability by 3 to 4%. Events that would normally be shutdowns were simply island mode events. The mean time between failure was calculated at 239 hours, or slightly

  14. Electrical Power System Design and Station Blackout (SBO) Management in Indian Fast Breeder Reactors

    International Nuclear Information System (INIS)

    Vijaya, N. M.; Theivarajan, N.; Madhusoodanan, K.

    2015-01-01

    In the nuclear new builds and projects in design stage SBO management measures have significant role. Depending on the onsite and offsite power supply configurations, deterministic SBO duration is established. Design of systems with adequately sized battery capacities for SBO duration, special SBO Diesel Generator Sets, structured load shedding strategy to conserve battery availability to cope with SBO and to monitor the plant safety beyond SBO duration are considered as part of electrical system design now. In the design of PFBR, SBO is given due importance right from conceptual design stage. Both deterministic SBO duration and probabilistic SBO duration versus frequency were established by detailed analysis. Dedicated DC power supply systems and additional SBO DG back-up systems are in place to cope with normal and extended SBO. After the Fukushima event, there is greater requirement to demonstrate plant safety during SBO for a long duration extended over several days. In light of this accident, thermal hydraulic synthesis of PFBR has been carried out to ascertain the capability of the plant to manage a prolonged station blackout event. This has brought out the robustness of the design. Safety design features of PFBR ensure comfortable management of extended SBO. In the design of future FBR projects, current trends in the new nuclear builds and recommendations of international bodies considering Fukushima are duly considered. SBO measures by means of alternate AC power sources, redundant emergency power supply sources with less dependence on other auxiliary systems and dedicated DC power systems are considered to cope with normal and extended SBO beyond design basis. Right from the conceptual design, the system robustness to manage normal and extended SBO will be taken care with the related thermal hydraulic and associated analysis. The paper highlights these SBO management strategies in PFBR and future FBRs. (author)

  15. Acoustic emission monitoring of preservice testing at Watts Bar Unit 1 Nuclear Reactor

    International Nuclear Information System (INIS)

    Hutton, P.H.; Pappas, R.A.; Friesel, M.A.

    1985-02-01

    Acoustic emission (AE) monitoring of selected pressure boundary areas at TVA's Watts Bar, Unit 1 Nuclear Plant in the US during hot functional preservice testing is described. Background, methodology, and results are included. The work discussed here is a major milestone in a program supported by the US NRC to develop and demonstrate application of AE monitoring for continuous surveillance of reactor pressure boundaries to detect and evaluate growing flaws. The subject work demonstrated that anticipated problem areas can be overcome. Work is continuing to AE monitoring during reactor operation. 3 refs., 6 figs

  16. Ageing Management of the reactor internals in Belgian nuclear units in view of Long Term Operation

    International Nuclear Information System (INIS)

    Gerard, R.; Bertolis, D.; Vissers, S.

    2012-01-01

    The reactor internals support the reactor core, distribute the coolant flow through the core, and guide and protect the rod control cluster assemblies and in-core instrumentation. Their integrity must be guaranteed in all operating and accident conditions. They are exposed to specific degradation mechanisms linked to the intense neutron irradiation, like Irradiation Assisted Stress Corrosion Cracking (IASCC) or potentially void swelling, in addition to more classical mechanisms like fatigue, wear and stress corrosion cracking. A rigorous follow-up of in-service degradation and an effective ageing management is therefore of crucial importance and contributes to the safe and economical operation of nuclear PWR units. (author)

  17. Calculation of the effectiveness of manual control rods for the reactor of Ignalina NPP Unit 2

    International Nuclear Information System (INIS)

    Bubelis, E.; Pabarcius, R.

    2001-01-01

    On the basis of one of the recent databases of the reactor of Ignalina NPP Unit 2, calculations of the effectiveness of separate manual control rods, groups of manual control rods and axial characteristic of effectiveness of separate manual control rods were performed. The results of the calculations indicated, that all analyzed separate manual control rods have approximately the same effectiveness, which doesn't depend on the location of a control rod in the reactor core layout Manual control rod of the new design has about 10% greater effectiveness than manual control rod of the old design. (author)

  18. Status of liquid metal reactor development in the United States of America

    International Nuclear Information System (INIS)

    Griffith, J.D.; Horton, K.E.

    1990-01-01

    The United States have made substantial progress in achieving Advanced Liquid Metal Reactor (ALMR) program objectives. A decision was made in 1988 to select the General Electric ALMR concept known as PRISM (Power Reactor Innovative Safe Module) for advanced conceptual design. A 3-year contract was awarded to General Electric in January of last year for concentrated trade-off studies and advanced design development. The strategy is to integrate those advancements that best meet program objectives into a national ALMR system concept. (author). 10 figs, 1 tab

  19. The regulation and licensing of research reactors and associated facilities in the United Kingdom

    International Nuclear Information System (INIS)

    Weightman, M.W.; Willby, C.R.

    1990-01-01

    In the United Kingdom, the Nuclear Installations Inspectorate (NII) licenses nuclear facilities, including research reactors, on behalf of the Health and Safety Executive (HSE). The legislation, the regulatory organizations and the methods of operation that have been developed over the last 30 years result in a largely non-prescriptive form of control that is well suited to research reactors. The most important part of the regulatory system is the license and the attachment of conditions which it permits. These conditions require the licensee to prepare arrangements to control the safety of the facility. In doing so the licensee is encouraged to develop a 'safety culture' within its organization. This is particularly important for research reactors which may have limited staff resources and where the ability, and at times the need, to have access to the core is much greater than for nuclear power plants. Present day issues such as the ageing of nuclear facilities, public access to the rationale behind regulatory decisions, and the emergence of more stringent safety requirements, which include a need for quantified safety criteria, have been addressed by the NII. This paper explores the relevance of such issues to the regulation of research reactors. In particular, it discusses some of the factors associated with research reactors that should be considered in developing criteria for the tolerability of risk from these nuclear facilities. From a consideration of these factors, it is the authors' view that the range of tolerable risk to the public from the operation of new research reactors may be expected to be more stringent than similar criteria for new nuclear power plants, whereas the criteria for tolerable risk for research reactor workers are expected to be about the same as those for power reactor workers

  20. Safety Evaluation Report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353). Supplement No. 4

    International Nuclear Information System (INIS)

    1985-05-01

    In August 1983 the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0991) regarding the application of the Philadelphia Electric Company (the applicant) for licenses to operate the Limerick Generating Station, Units 1 and 2 located on a site in Montgomery and Chester Counties, Pennsylvania. A license (NPF-27) for the operation of Limerick Unit 1 was issued on October 26, 1984. The license, which was restricted to a five percent power level, contained conditions which required resolution prior to proceeding beyond the five percent power level. This Supplement 4 to the SER addresses some of those technical issues and their associated license conditions which require resolution prior to proceeding beyond the five percent power level. The remaining issues to be addressed prior to proceeding beyond the five percent power level will be addressed in a later supplement to this report. This Supplement 4 to the SER also contains the comments made by the Advisory Committee on Reactor Safeguards in its report dated November 6, 1984, regarding full power operation of Limerick Unit 1

  1. Integrated plant safety assessment: Systematic Evaluation Program, San Onofre Nuclear Generating Station, Unit 1 (Docket No. 50-206): Final report

    International Nuclear Information System (INIS)

    1986-12-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues; (2) a basis for deciding on how these differences should be resolved in an integrated plant review; and (3) a documented evaluation of plant safety. This report documents the review of San Onofre Nuclear Generating Station, Unit 1, operated by Southern California Edison Company. The San Onofre plant is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. This report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license. This report also addresses the comments and recommendations made by the Advisory Committee on Reactor Safeguards in connection with its review of the draft report issued in April 1985

  2. A pilot application of risk-based methods to establish in-service inspection priorities for nuclear components at Surry Unit 1 Nuclear Power Station

    International Nuclear Information System (INIS)

    Vo, T.; Gore, B.; Simonen, F.; Doctor, S.

    1994-08-01

    As part of the Nondestructive Evaluation Reliability Program sponsored by the US Nuclear Regulatory Commission, the Pacific Northwest Laboratory is developing a method that uses risk-based approaches to establish in-service inspection plans for nuclear power plant components. This method uses probabilistic risk assessment (PRA) results and Failure Modes and Effects Analysis (FEMA) techniques to identify and prioritize the most risk-important systems and components for inspection. The Surry Nuclear Power Station Unit 1 was selected for pilot applications of this method. The specific systems addressed in this report are the reactor pressure vessel, the reactor coolant, the low-pressure injection, and the auxiliary feedwater. The results provide a risk-based ranking of components within these systems and relate the target risk to target failure probability values for individual components. These results will be used to guide the development of improved inspection plans for nuclear power plants. To develop inspection plans, the acceptable level of risk from structural failure for important systems and components will be apportioned as a small fraction (i.e., 5%) of the total PRA-estimated risk for core damage. This process will determine target (acceptable) risk and target failure probability values for individual components. Inspection requirements will be set at levels to assure that acceptable failure probabilistics are maintained

  3. Safety Evaluation Report related to the operation of Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410). Supplement No. 4

    International Nuclear Information System (INIS)

    1986-09-01

    This report supplements the Safety Evaluation Report (NUREG-1047, February 1985) for the application filed by Niagara Mohawk Power Corporation, as applicant and co-owner, for a license to operate Nine Mile Point Nuclear Station, Unit 2 (Docket No. 50-410). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near Oswego, New York. Supplement 1 to the Safety Evaluation Report was published in June 1985, and contained the report from the Advisory Committee on Reactor Safeguards as well as the resolution of a number of outstanding issues from the Safety Evaluation Report. Supplement 2 was published in November 1985, and contained the resolution of a number of outstanding and confirmatory issues. Supplement 3 was published in July 1986, and contained the resolution of a number of outstanding and confirmatory items, one new confirmatory item, the evaluation of the Engineering Assurance Program, and evaluation of a number of exemption requests

  4. Safety assessment of unit 5 (WWER-440/W-213) of the Greifswald nuclear power station

    International Nuclear Information System (INIS)

    1992-02-01

    The report represents the common results of the program of German-Soviet cooperation in reactor safety and radiation protection. The technical plant and features of type WWER-440/W-213 nuclear power plants, basic legal licensing principles, reactor core and pressurized components, load resulting from accidents, systems engineering, spreading impacts, civil engineering aspects, and the evaluation of operating experience are described. (DG)

  5. 76 FR 23846 - Virginia Electric Power Company, LLC, North Anna Power Station, Unit No. 1; Exemption

    Science.gov (United States)

    2011-04-28

    ... Commission) now or hereafter in effect. The facility consists of a pressurized-water reactor located in... from all potential pressurized and unpressurized leakage sites in the reactor coolant pump lube oil... prevention, detection, control, extinguishment and preservation of safe shutdown capability is addressed for...

  6. Microprocessor control unit of thyristor regulator of microhydroelectric power station ballast load

    International Nuclear Information System (INIS)

    Nomokonova, Yu; Bogdanov, E

    2014-01-01

    The operational principle of microhydroelectric power station ballast load is presented. The comparative overview of the mathematical modeling methods is performed. The ranges of thyristors optimal work are shown as a result of the regulator regimes analysis. Shows the necessity of regulation the ballast load in microhydroelectric power station with help of developed algorithm of the program for microprocessor control

  7. Revised draft environmental statement related to construction of Atlantic Generating Station Units 1 and 2 (Docket Nos. STN 50-477 and STN 50-478)

    International Nuclear Information System (INIS)

    1976-10-01

    The proposed action is the issuance of a construction permit to Public Service Electric and Gas Company (PDE and G) for the construction of the Atlantic Generating Station (AGS), Units 1 and 2. The AGS is the first nuclear power station in the United States proposed for construction in the offshore waters on the continental shelf. The AHS will be located in the Atlantic Ocean 2.8 miles offshore of Atlantic and Ocean countries. New Jersey, 11 miles northeast of Atlantic City, and will consist of two floating nuclear power plants enclosed in a protective rubble-mound breakwater. Both plants will be identical, of standardized design, and will employ pressurized water reactors to produce up to approximately 3425 megawatts thermal (MWt) each. Steam turbine generators will use this heat to produce up to approximately 1150 megawatts of electrical power (MWe) per unit. The main condensers will be cooled by the flow of seawater drawn from within the breakwater and discharged shoreward and external to the breakwater. This statement identifies various environmental aspects and potential adverse effects associated with the construction and operation of the AGS. Based upon an approximate two-year review period which included a multidisciplined assessment of extensive survey and modeling data, these effects are considered by the staff to be of a generally acceptable nature. Breakwater construction will result in the destruction of 100 acres of benthic infauna (burrowing animals) and the development of a reef-type community on the breakwater. The production of new biomass (standing crop) by the reef community is expected to compensate for the infaunal biomass destroyed by dredging and will contribute mainly to the local sport fishery. 93 figs., 110 tabs

  8. TEPCO plans to construct Higashidori Nuclear Power Station

    International Nuclear Information System (INIS)

    Tsuruta, Atsushi

    2008-01-01

    In 2006, TEPCO submitted to the government plans for the construction of Higashidori Nuclear Power Station. The application was filed 41 years after the project approved by the Higashidori Village Assembly. This nuclear power station will be the first new nuclear power plant constructed by TEPCO since the construction of Units No.6 and 7 at the Kashiwazaki Kariwa Nuclear Power Station 18 years ago. Higashidori Nuclear Power Station is to be constructed at a completely new site, which will become the fourth TEPCO nuclear power station. Higashidori Nuclear Power Station Unit No.1 will be TEPCO's 18th nuclear reactor. Unit No.1 will be an advanced boiling water reactor (ABWR), a reactor-type with a proven track record. It will be TEPCO's third ABWR. Alongside incorporating the latest technology, in Higashidori Nuclear Power Station Unit No.1, the most important requirement is for TEPCO to reflect in the new unit information and experience acquired from the operation of other reactors (information and experience acquired through the experience of operating TEPCO's 17 units at Fukushima Daiichi Nuclear Power Station, Fukushima Daini Nuclear Power Station and Kashiwazaki Kashiwa Nuclear Power Station in addition to information on non-conformities at nuclear power stations in Japan and around the world). Higashidori Nuclear Power Station is located in Higashidori-Village (Aomori Prefecture) and the selected site includes a rich natural environment. From an environmental perspective, we will implement the construction with due consideration for the land and sea environment, aiming to ensure that the plant can co-exist with its natural surroundings. The construction plans are currently being reviewed by the Nuclear and Industrial Safety Agency. We are committed to making progress in the project for the start of construction and subsequent commercial operation. (author)

  9. Uncertainty analysis of light water reactor unit fuel pin cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamerow, S.; Ivanov, K., E-mail: sln107@PSU.EDU, E-mail: kni1@PSU.EDU [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, PA (United States); Moreno, C. Arenas, E-mail: cristina.arenas@UPC.EDU [Department of Physics and Nuclear Engineering, Technical University of Catalonia, Barcelona (Spain)

    2011-07-01

    The study explored the calculation of uncertainty based on available covariance data and computational tools. Uncertainty due to temperature changes and different fuel compositions are the main focus of this analysis. Selected unit fuel pin cells were analyzed according to the OECD LWR UAM benchmark specifications. Criticality and uncertainty analyses were performed using TSUNAMI-1D sequence in SCALE 6.0. It was found that uncertainties increase with increasing temperature while k{sub eff} decreases. This increase in the uncertainty is due to the increase in sensitivity of the largest contributor of uncertainty, namely nuclide reaction {sup 238}U (n, gamma). The sensitivity grew larger as the capture cross-section of {sup 238}U expanded due to Doppler broadening. In addition, three different compositions (UOx, MOx, and UOxGd{sub 2}O{sub 3}) of fuel cells were analyzed. It showed a remarkable increase in uncertainty in k{sub eff} for the case of the MOx fuel cell and UOxGd{sub 2}O{sub 3} fuel cell. The increase in the uncertainty of k{sub eff} in UOxGd{sub 2}O{sub 3} fuel was nearly twice of that in MOx fuel and almost four times the amount in UOx fuel. The components of the uncertainties in k{sub eff} in each case were examined and it was found that the neutron-nuclide reaction of {sup 238}U, mainly (n,n'), contributed the most to the uncertainties in the cases of MOx and UOxGd{sub 2}O{sub 3}. At higher energy, the covariance coefficient matrix of {sup 238}U (n,n') to {sup 238}U (n,n') and {sup 238}U (n,n') cross-section showed very large values. Further, examination of the UOxGd{sub 2}O{sub 3} case found that the {sup 238}U (n,n') became the dominant contributor to the uncertainty because most of the thermal neutrons in the cell were absorbed by Gadolinium in UOxGd{sub 2}O{sub 3} case and thus shifting the neutron spectrum to higher energy. For the MOx case on other hand, {sup 239}Pu has a very strong absorption cross-section at low energy

  10. Summary of the fourth conference on United States utility experience in reactor noise analysis

    International Nuclear Information System (INIS)

    Fry, D.N.

    1987-01-01

    The fourth informal conference on United States utility experience in reactor noise analysis and loose-part monitoring was held at the Northeast Utilities Service Company offices in Hartford, Connecticut, May 12-14, 1987. Host and general chairman for the meeting was J.V. Persio of Northeast Utilities. This conference provided a forum where utilities could share information on reactor noise analysis on an informal basis. There were about 60 attendees at the meeting representing 10 utilities, 3 reactor vendors, 8 consulting organizations, and 4 universities and research laboratories. Twenty-three papers were presented at the conference, dealing with various aspects of loose-part monitoring, neutron noise analysis, and standards activities

  11. Investigation of hydrogen-burn damage in the Three Mile Island Unit 2 reactor building

    International Nuclear Information System (INIS)

    Alvares, N.J.; Beason, D.G.; Eidem, G.R.

    1982-06-01

    About 10 hours after the March 28, 1979 Loss-of-Coolant Accident began at Three Mile Island Unit 2, a hydrogen deflagration of undetermined extent occurred inside the reactor building. Examinations of photographic evidence, available from the first fifteen entries into the reactor building, yielded preliminary data on the possible extent and range of hydrogen burn damage. These data, although sparse, contributed to development of a possible damage path and to an estimate of the extent of damage to susceptible reactor building items. Further information gathered from analysis of additional photographs and samples can provide the means for estimating hydrogen source and production rate data crucial to developing a complete understanding of the TMI-2 hydrogen deflagration. 34 figures

  12. Foreign research reactor irradiated nuclear fuel inventories containing HEU and LEU of United States origin

    International Nuclear Information System (INIS)

    Matos, J.E.

    1994-12-01

    This report provides estimates of foreign research reactor inventories of aluminum-based and TRIGA irradiated nuclear fuel elements containing highly enriched and low enriched uranium of United States origin that are anticipated in January 1996, January 2001, and January 2006. These fuels from 104 research reactors in 41 countries are the same aluminum-based and TRIGA fuels that were eligible for receipt under the Department of Energy's Offsite Fuels Policy that was in effect in 1988. All fuel inventory and reactor data that were available as of December 1, 1994, have been included in the estimates of approximately 14,300 irradiated fuel elements in January 1996, 18,800 in January 2001, and 22,700 in January 2006

  13. Inversion of Multi-Station Schumann Resonance Background Records for Global Lightning Activity in Absolute Units

    Science.gov (United States)

    Williams, E. R.; Mushtak, V. C.; Guha, A.; Boldi, R. A.; Bor, J.; Nagy, T.; Satori, G.; Sinha, A. K.; Rawat, R.; Hobara, Y.; Sato, M.; Takahashi, Y.; Price, C. G.; Neska, M.; Alexander, K.; Yampolski, Y.; Moore, R. C.; Mitchell, M. F.; Fraser-Smith, A. C.

    2014-12-01

    Every lightning flash contributes energy to the TEM mode of the natural global waveguide that contains the Earth's Schumann resonances. The modest attenuation at ELF (0.1 dB/Mm) allows for the continuous monitoring of the global lightning with a small number of receiving stations worldwide. In this study, nine ELF receiving sites (in Antarctica (3 sites), Hungary, India, Japan, Poland, Spitsbergen and USA) are used to provide power spectra at 12-minute intervals in two absolutely calibrated magnetic fields and occasionally, one electric field, with up to five resonance modes each. The observables are the extracted modal parameters (peak intensity, peak frequency and Q-factor) for each spectrum. The unknown quantities are the geographical locations of three continental lightning 'chimneys' and their lightning source strengths in absolute units (C2 km2/sec). The unknowns are calculated from the observables by the iterative inversion of an evolving 'sensitivity matrix' whose elements are the partial derivatives of each observable for all receiving sites with respect to each unknown quantity. The propagation model includes the important day-night asymmetry of the natural waveguide. To overcome the problem of multiple minima (common in inversion problems of this kind), location information from the World Wide Lightning Location Network has been used to make initial guess solutions based on centroids of stroke locations in each chimney. Results for five consecutive days in 2009 (Jan 7-11) show UT variations with the African chimney dominating on four of five days, and America dominating on the fifth day. The amplitude variations in absolute source strength exceed that of the 'Carnegie curve' of the DC global circuit by roughly twofold. Day-to-day variations in chimney source strength are of the order of tens of percent. Examination of forward calculations performed with the global inversion solution often show good agreement with the observed diurnal variations at

  14. Coupled study of the Molten Salt Fast Reactor core physics and its associated reprocessing unit

    International Nuclear Information System (INIS)

    Doligez, X.; Heuer, D.; Merle-Lucotte, E.; Allibert, M.; Ghetta, V.

    2014-01-01

    Highlights: • The limit on the reprocessing is due to the redox potential control. • Alkali and Earth-alkaline elements do not have to be extracted. • Criticality risks have to be studied in the reprocessing unit. • The neutronics properties are not sensitive to chemical data. • The reprocessing chemistry, from a pure numerical point of view, is an issue. - Abstract: Molten Salt Reactors (MSRs) are liquid-fuel reactors, in which the fuel is also the coolant and flows through the core. A particular configuration presented in this paper called the Molten Salt Fast Reactor consists in a Molten Salt Reactor with no moderator inside the core and a salt composition that leads to a fast neutron spectrum. Previous studies showed that this concept (previously called Thorium Molten Salt Reactor – Nonmoderated) has very promising characteristics. The liquid fuel implies a special reprocessing. Each day a small amount of the fuel salt is extracted from the core for on-site reprocessing. To study such a reactor, the materials evolution within the core has to be coupled to the reprocessing unit, since the latter cleans the salt quasi continuously and feeds the reactor. This paper details the issues associated to the numerical coupling of the core and the reprocessing. It presents how the chemistry is introduced inside the classical Bateman equation (evolution of nuclei within a neutron flux) in order to carry a numerical coupled study. To achieve this goal, the chemistry has to be modeled numerically and integrated to the equations of evolution. This paper presents how is it possible to describe the whole concept (reactor + reprocessing unit) by a system of equations that can be numerically solved. Our program is a connection between MCNP and a homemade evolution code called REM. Thanks to this tool; constraints on the fuel reprocessing were identified. Limits are specified to preserve the good neutronics properties of the MSFR. In this paper, we show that the limit

  15. The nuclear licensing procedure for unit 2 of the Neckar reactor station, GKN-2

    International Nuclear Information System (INIS)

    Lang, S.

    1989-01-01

    Public participation came up to formal requirements in this case, but in fact the participation procedure had weak points in terms of function, except for the function of indirect protection of the applicant, which in the final analysis is based on the public invitation to assert claims by way of public participation (disciplinary function). This protection could be achieved also if anybody were entitled to raise objections in writing, and if, during the hearing, the potentially affected persons had the right to explain their objections. Apart from that, it must be said that public participation in this case was not very efficiently made use of in the discussions about technical facts, as participation restricted itself to repeated statement of fear and doubt, and reiteration of questions. (orig./HSCH) [de

  16. A Cryogenic Test Station for the Pre-series 2400 W @ 1.8 K Refrigeration Units for the LHC

    CERN Document Server

    Claudet, S; Gully, P; Jäger, B; Millet, F; Roussel, P; Tavian, L

    2002-01-01

    The cooling capacity below 2 K for the superconducting magnets in the Large Hadron Collider (LHC), at CERN, will be provided by eight refrigeration units at 1.8 K, each of them coupled to a 4.5 K refrigerator. The supply of the series units is linked to successful testing and acceptance of the pre-series delivered by the two selected vendors. To properly assess the performance of specific components such as cold compressors and some process specificities a dedicated test station is necessary. The test station is able to process up to 130 g/s between 4.5 & 20 K and aims at simulating the steady and transient operational modes foreseen for the LHC. After recalling the basic characteristics of the 1.8 K refrigeration units and the content of the acceptance tests of the pre-series, the principle of the test cryostat is detailed. The components of the test station and corresponding layout are described. The first testing experience is presented as well as preliminary results of the pre-series units.

  17. SCALE-4 Analysis of LaSalle Unit 1 BWR Commercial Reactor Critical Configurations

    International Nuclear Information System (INIS)

    Gauld, I.C.

    2000-01-01

    Five commercial reactor criticals (CRCs) for the LaSalle Unit 1 boiling-water reactor have been analyzed using KENO V.a, the Monte Carlo criticality code of the SCALE 4 code system. The irradiated fuel assembly isotopics for the criticality analyses were provided by the Waste Package Design team at the Yucca Mountain Project in the US, who performed the depletion calculations using the SAS2H sequence of SCALE 4. The reactor critical measurements involved two beginning-of-cycle and three middle-of-cycle configurations. The CRCs involved relatively low-cycle burnups, and therefore contained a relatively high gadolinium poison content in the reactor assemblies. This report summarizes the data and methods used in analyzing the critical configurations and assesses the sensitivity of the results to some of the modeling approximations used to represent the gadolinium poison distribution within the assemblies. The KENO V.a calculations, performed using the SCALE 44GROUPNDF5 ENDF/B-V cross-section library, yield predicted k eff values within about 1% Δk/k relative to reactor measurements for the five CRCs using general 8-pin and 9-pin heterogeneous gadolinium poison pin assembly models

  18. Progress of the United States foreign research reactor spent nuclear fuel acceptance program

    International Nuclear Information System (INIS)

    Huizenga, D.G.; Clapper, M.; Thrower, A.W.

    2002-01-01

    The United States Department of Energy (DOE), in consultation with the Department of State (DOS), adopted the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel in May 1996. To date, the Foreign Research Reactor (FRR) Spent Nuclear Fuel (SNF) Acceptance Program has completed 23 shipments. Almost 5000 spent fuel assemblies from eligible research reactors throughout the world have been accepted into the United States under this program. Over the past year, another cross-country shipment of fuel was accomplished, as well as two additional shipments in the fourth quarter of calendar year 2001. These shipments attracted considerable safeguards oversight since they occurred post September 11. Recent guidance from the Nuclear Regulatory Commission (NRC) pertaining to security and safeguards issues deals directly with the transport of nuclear material. Since the Acceptance Program has consistently applied above regulatory safety enhancements in transport of spent nuclear fuel, this guidance did not adversely effect the Program. As the Program draws closer to its termination date, an increased number of requests for program extension are received. Currently, there are no plans to extend the policy beyond its current expiration date; therefore, eligible reactor operators interested in participating in this program are strongly encouraged to evaluate their inventory and plan for future shipments as soon as possible. (author)

  19. The United States foreign research reactor spent nuclear fuel acceptance program: Proposal to modify the program

    International Nuclear Information System (INIS)

    Messick, C.E.

    2005-01-01

    The United States Department of Energy (DOE), in consultation with the Department of State (DOS), adopted the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel in May 1996. The policy was slated to expire in May 2009. However, in October 2003, a petition requesting a program extension was delivered to the United States Secretary of Energy from a group of research reactor operators from foreign countries. In April 2004, the Secretary directed DOE undertake an analysis, as required by the National Environmental Policy Act (NEPA), to consider potential extension of the Program. On December 1, 2004, a Federal Register Notice was issued approving the program extension. This paper discusses the findings from the NEPA analysis and the potential changes in the program that may result from implementation of the proposed changes. (author)

  20. Dresden Nuclear Power Station, Units 1, 2, and 3. Annual operating report: January--December 1977

    International Nuclear Information System (INIS)

    1978-01-01

    After a summary of reactor operating experiences, data are presented concerning amendments to the operating licenses and technical specifications, changes, modifications, tests, experiments, and maintenance of safety-related equipment

  1. 78 FR 53482 - Entergy Operations, Inc., River Bend Station, Unit 1; Exemption

    Science.gov (United States)

    2013-08-29

    ... effect on the quality of the human environment (78 FR 50454; August 19, 2013). This exemption is... Regulatory Commission. Michele G. Evans, Director, Division of Operating Reactor Licensing, Office of Nuclear...

  2. 76 FR 63671 - Omaha Public Power District, Fort Calhoun Station, Unit 1; Exemption

    Science.gov (United States)

    2011-10-13

    ... significant effect on the quality of the human environment (January 3, 2011; 76 FR 187). This exemption is... Regulatory Commission. Michele G. Evans, Director, Division of Operating Reactor Licensing, Office of Nuclear...

  3. AECL's participation in the commissioning of Point Lepreau generating station unit 1

    International Nuclear Information System (INIS)

    Chawla, S.; Singh, K.; Yerramilli, S.

    1983-05-01

    Support from Atomic Energy of Canada Ltd. (AECL) to Point Lepreau during the commissioning program has been in the form of: seconded staff for commissioning program management, preparation of commissioning procedures, and hands-on commissioning of several systems; analysis of test results; engineering service for problem solving and modifications; design engineering for changes and additions; procurement of urgently-needed parts and materials; technological advice; review of operational limits; interpretation of design manuals and assistance with and preparation of submissions to regulatory authorities; and development of equipment and procedures for inspection and repairs. This, together with AECL's experience in the commissioning of other 600 MWe stations, Douglas Point and Ontario Hydro stations, provides AECL with a wide range of expertise for providing operating station support services for CANDU stations

  4. Application of a hazard and operability study method to hazard evaluation of a chemical unit of the power station.

    Science.gov (United States)

    Habibi, E; Zare, M; Barkhordari, A; Mirmohammadi, Sj; Halvani, Ghh

    2008-12-28

    The aim of this study was to identify the hazards, evaluate their risk factors and determine the measure for promotion of the process and reduction of accidents in the chemical unit of the power station. In this case and qualitative study, HAZOP technique was used to recognize the hazards and problems of operations on the chemical section at power station. Totally, 126 deviations were documented with various causes and consequences. Ranking and evaluation of identified risks indicate that the majority of deviations were categorized as "acceptable" and less than half of that were "unacceptable". The highest calculated risk level (1B) related to both the interruption of acid entry to the discharge pumps and an increased density of the acid. About 27% of the deviations had the lowest risk level (4B). The identification of hazards by HAZOP indicates that it could, systemically, assess and criticize the process of consumption or production of acid and alkali in the chemical unit of power plant.

  5. Status of liquid metal reactor development in the United States of America

    International Nuclear Information System (INIS)

    Griffith, J.D.; Horton, K.E.

    1989-01-01

    The United States has made substantial progress in achieving LMR programme objectives. A decision was made in 1988 to select the General Electric ALMR concept known as PRISM (Power Reactor Innovative Safe Module) for advanced conceptual design. A 3-year contract was awarded to General Electric in January of this year for concentrated trade-off studies and advanced design development. The strategy is to integrate those advancements that best meet programme objectives into a national ALMR system concept. (author). 8 figs

  6. Technical evaluation report on the monitoring of electric power to the reactor-protection system for the Pilgrim Nuclear Power Station

    International Nuclear Information System (INIS)

    Selan, J.C.

    1982-01-01

    This report documents the technical evaluation of the monitoring of electric power to the reactor protection system (RPS) at the Pilgrim Nuclear Power Station. The evaluation is to determine if the proposed design modification will protect the RPS from abnormal voltage and frequency conditions which could be supplied from the power supplies and will meet certain requirements set forth by the Nuclear Regulatory Commission. The proposed design modifications will protect the RPS from sustained abnormal voltage and frequency conditions from the supplying sources

  7. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    International Nuclear Information System (INIS)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE

  8. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  9. Radiological survey of the area surrounding the National Reactor Testing Station, Idaho Falls, Idaho. Date of survey: 1 and 2 February 1972

    International Nuclear Information System (INIS)

    1974-01-01

    The Aerial Radiological Measuring System (ARMS) was used to survey the National Reactor Testing Station (NRTS) during February 1972. The purpose of the survey was primarily to identify the presence of Ru-106 and Rh-106 in a release from the Chemical Processing Plant at NRTS. Additionally, the gamma-ray terrestrial exposure rate levels were mapped and the distribution of any man-made isotopes was located and defined

  10. Draft environmental statement related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423)

    International Nuclear Information System (INIS)

    1984-07-01

    This Draft Environmental Statement contains the second assessment of the environmental impact associated with the operation of Millstone Nuclear Power Station, Unit 3, pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs

  11. Safety evaluation report related to the operation of Grand Gulf Nuclear Station, Units 1 and 2. Dockets Nos. 50-416 and 50-417, Mississippi Power and Light Company; Middle South Energy, Inc., South Mississippi Electric Power Association

    International Nuclear Information System (INIS)

    1982-06-01

    Supplement 2 to the Safety Evaluation Report for Mississippi Power and Light Company, et. al, joint application for licenses to operate the Grand Gulf Nuclear Station, Units 1 and 2, located on the east bank of the Mississippi River near Port Gibson, in Claiborne County, Mississippi, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  12. Safety Evaluation Report related to the operation of Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Docket Nos. STN 50-528, STN 50-529, and STN 50-530)

    International Nuclear Information System (INIS)

    1984-10-01

    Supplement No. 6 to the Safety Evaluation Report for the application filed by Arizona Public Service Company, et al., for licenses to operate the Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Docket Nos. STN 50-528/529/530), located in Maricopa County, Arizona, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing an evaluation of (1) additional information submitted by the applicant since Supplement No. 5 was issued and (2) matters that the staff had under review when Supplement No. 5 was issued

  13. Safety Evaluation Report related to the operation of Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Docket Nos. STN 50-528, STN 50-529, and STN 50-530). Supplement No. 7

    International Nuclear Information System (INIS)

    1984-12-01

    Supplement No. 7 to the Safety Evaluation Report for the application filed by Arizona Public Service Company et al. for licenses to operate the Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Docket Nos. STN 50-528/529/530), located in Maricopa County, Arizona, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing an evaluation of: (1) additional information submitted by the applicant since Supplement No. 6 was issued; and (2) matters that the staff had under review when Supplement No. 6 was issued

  14. Safety evaluation report: related to the operation of Seabrook Station, Units 1 and 2, Docket Nos. 50-443 and 50-444, Public Service Company of New Hampshire, et al

    International Nuclear Information System (INIS)

    1983-03-01

    The Safety Evaluation Report for the application filed by the Public Service Company of New Hampshire, et al., for licenses to operate Seabrook Station, Units 1 and 2 (Docket Nos. STN 50-443 and STN 50-444), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  15. Dresden Nuclear Power Station, Unit No. 1: Primary cooling system chemical decontamination: Draft environmental statement (Docket No. 50-10)

    International Nuclear Information System (INIS)

    1980-05-01

    The staff has considered the environmental impact and economic costs of the proposed primary cooling system chemical decontamination at Dresden Nuclear Power Station, Unit 1. The staff has focused this statement on the occupational radiation exposure associated with the proposed Unit 1 decontamination program, on alternatives to chemical decontamination, and on the environmental impact of the disposal of the solid radioactive waste generated by this decontamination. The staff has concluded that the proposed decontamination will not significantly affect the quality of the human environment. Furthermore, any impacts from the decontamination program are outweighed by its benefits. 2 figs., 7 tabs

  16. The United States fluoride-salt-cooled high-temperature reactor program

    International Nuclear Information System (INIS)

    Holcomb, David E.

    2013-01-01

    The United States is pursuing the development of fluoride-salt-cooled high-temperature reactors (FHRs) through the Department of Energy's Office of Nuclear Energy (DOE-NE). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. FHRs, in principle, have the potential to economically generate large amounts of electricity while maintaining full passive safety. FHRs, however, remain a longer-term power production option. A principal development focus is, thus, on shortening, to the extent possible, the overall development time by focusing initial efforts on the longest lead-time issues. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid-metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High-temperature gas-cooled reactors provide experience with coated-particle fuel and graphite components. Light-water reactors show the potential of transparent, high-heat-capacity coolants with low chemical reactivity. The FHR development efforts include both reactor concept and technology developments and are being broadly pursued. Oak Ridge National Laboratory (ORNL) provides technical leadership to the effort and is performing concept development on both a large base-load-type FHR as well as a small modular reactor (SMR) in addition to performing a broad scope of technology developments. Idaho National Laboratory (INL) is providing coated-particle fuel irradiation testing as well as developing high-temperature steam generator technology. The Massachusetts Institute of Technology (MIT

  17. The 4th surveillance testing for Kori unit 3 reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwun Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-10-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 4th surveillance testing was performed completely by Korea Atomic Energy Research Institute at Taejeon after the capsule was transported from Kori site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Kori unit 3 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsules U, V, X and W are 4.983E+18, 1.641E+19, 3.158E+19, and 4.469E+19n/cm{sup 2}, respectively. The bias factor, the ratio of calculation/measurement, was 0.840 for the 1st through 4th testing and the calculational uncertainty, 12% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.362E+19n/cm{sup 2} based on the end of 12th fuel cycle and it was predicted that the fluences of vessel inside surface at 32, 40, 48 and 56EFPY would reach 3.481E+19, 4.209E+19, 5.144E+19 and 5.974E+19n/cm{sup 2} based on the current calculation. The result through this analysis for Kori unit 3 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life. 48 refs., 35 figs., 41 tabs. (Author)

  18. The 5th surveillance testing for Kori unit 2 reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwon Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-03-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 5th surveillance testing was performed completely by Korea Atomic Energy Research Institute at Taejeon after the capsule was transported from Kori site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Kori unit 2 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsules V, R, P, T and N are 2.837E+18, 1.105E+19, 2.110E+19, 3.705E+19 and 4.831E+19n/cm{sup 2}, respectively. The bias factor, the ratio of measurement/calculation, was 0.918 for the 1st through 5th testing and the calculational uncertainty, 11.6% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.898E+19n/cm{sup 2} based on the end of 15th fuel cycle and it was predicted that the fluences of vessel inside surface at 32, 40, 48 and 56EFPY would reach 4.203E+19, 5.232E+19, 6.262E+19 and 7.291E+19n/cm{sup 2} based on the current calculation. The result through this analysis for Kori unit 2 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life. 49 refs., 35 figs., 48 tabs. (Author)

  19. Integrated-plant-safety assessment Systematic Evaluation Program. Dresden Nuclear Power Station, Unit 2, Commonwealth Edison Company, Docket No. 50-237

    International Nuclear Information System (INIS)

    1982-10-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues; (2) a basis for deciding on how these differences should be resolved in an integrated plant review; and (3) a documented evaluation of plant safety. This report documents the review of Dresden Nuclear Generating Station, Unit 2 owned and operated by the Commonwealth Edison Company and located in Grundy County, Illinois. Dresden Unit 2 is one of ten plants reviewed under Phase II of this program, which indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license

  20. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    Science.gov (United States)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Edward J.; hide

    2014-01-01

    The International Space Station (ISS) vehicle undergoes spacecraft charging as it interacts with Earth's ionosphere and magnetic field. The interaction can result in a large potential difference developing between the ISS metal chassis and the local ionosphere plasma environment. If an astronaut conducting extravehicular activities (EVA) is exposed to the potential difference, then a possible electrical shock hazard arises. The control of this hazard was addressed by a number of documents within the ISS Program (ISSP) including Catastrophic Safety Hazard for Astronauts on EVA (ISS-EVA-312-4A_revE). The safety hazard identified the risk for an astronaut to experience an electrical shock in the event an arc was generated on an extravehicular mobility unit (EMU) surface. A catastrophic safety hazard, by the ISS requirements, necessitates mitigation by a two-fault tolerant system of hazard controls. Traditionally, the plasma contactor units (PCUs) on the ISS have been used to limit the charging and serve as a "ground strap" between the ISS structure and the surrounding ionospheric plasma. In 2009, a previous NASA Engineering and Safety Center (NESC) team evaluated the PCU utilization plan (NESC Request #07-054-E) with the objective to assess whether leaving PCUs off during non-EVA time periods presented risk to the ISS through assembly completion. For this study, in situ measurements of ISS charging, covering the installation of three of the four photovoltaic arrays, and laboratory testing results provided key data to underpin the assessment. The conclusion stated, "there appears to be no significant risk of damage to critical equipment nor excessive ISS thermal coating damage as a result of eliminating PCU operations during non- EVA times." In 2013, the ISSP was presented with recommendations from Boeing Space Environments for the "Conditional" Marginalization of Plasma Hazard. These recommendations include a plan that would keep the PCUs off during EVAs when the

  1. SEP operating history of the Dresden Nuclear Power Station Unit 2

    International Nuclear Information System (INIS)

    Mays, G.T.; Harrington, K.H.

    1983-01-01

    206 forced shutdowns and power reductions were reviewed, along with 631 reportable events and other miscellaneous documentation concerning the operation of Dresden-2, in order to indicate those areas of plant operation that compromised plant safety. The most serious plant challenge to plant safety occurred on June 5, 1970; while undergoing power testing at 75% power, a spurious signal in the reactor pressure control system caused a turbine trip followed by a reactor scram. Subsequent erratic water level and pressure control in the reactor vessel, compounded by a stuck indicator pen on a water level monitor-recorder and inability of the isolation condenser to function, led to discharge of steam and water through safety valves into the reactor drywell. No significant contamination was discharged. There was no pressure damage or the reactor vessel of the drywell containment walls. Six areas of operation that should be of continued concern are diesel generator failures, control rod and rod drive malfunctions, radioactive waste management/health physics program problems, operator errors, turbine control valve and EHC problems, and HPCI failures. All six event types have continued to recur

  2. Dimethylamine as a Replacement for Ammonia Dosing in the Secondary Circuit of an Advanced Gas-Cooled Reactor (AGR) Power Station

    International Nuclear Information System (INIS)

    Armstrong, C.; Mitchell, M.; Bull, A.; Quirk, G.P.; Rudge, A.

    2012-09-01

    Increasing flow resistance observed over recent years within the helical once-through boilers in the four Advanced Gas-Cooled Reactors (AGRs) at Hartlepool and Heysham 1 Power stations have reduced boiler performance, resulting in reductions in feedwater flow, steam temperatures, power output and the need to carry out periodic chemical cleaning. The root cause is believed to be the development of magnetite deposits with high flow impedance in the 9%Cr evaporator section of the boiler tubing. To prevent continued increases in boiler flow resistance, dimethylamine is being trialled, in one of the four affected units, as a replacement to the conventional ammonia dosing. Dimethylamine increases the pH at temperature around the secondary circuit and, based on full scale boiler rig simulations, is expected to reduce iron transport and prevent flow resistance increases within the evaporator section of the boiler. The dimethylamine plant trial commenced in January 2011 and is ongoing. The feedwater concentration of dimethylamine has been increased progressively towards a final target value of 900 μg kg -1 and its effect on iron transport and boiler pressure loss is being closely monitored. The high steam temperatures (>500 deg. C) of the secondary circuit lead to some decomposition of dimethylamine, which is being carefully monitored at various locations around the circuit. The decomposition products identified with dimethylamine dosing include ammonia, methylamine, formic acid, carbon dioxide and, as yet, unidentified neutral organic species. The effect of dimethylamine dosing on iron transport, boiler pressure drops and its decomposition behaviour around the secondary circuit during the plant trial will be presented in this paper. (authors)

  3. Radiation protection for repairs of reactor's internals at the 2nd Unit of the Nuclear Power Plant Temelin

    International Nuclear Information System (INIS)

    Zapletal, P.; Konop, R.; Koc, J.; Kvasnicka, O.; Hort, M.

    2011-01-01

    This presentation describes the process and extent of repairs of the 2 nd unit of the Nuclear power plant Temelin during the shutdown of the reactor. All works were optimized in terms of radiation protection of workers.

  4. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  5. Research at United States Antarctic stations during the International Magnetosphere Study

    International Nuclear Information System (INIS)

    Rosenberg, T.J.

    1982-01-01

    During the International Magnetospheric Study (IMS) the U.S. operated programs at McMurdo, Siple, South Pole, and Palmer stations and at the Soviet Vostok station. Details concerning measurement locations are considered, and program summaries are provided. The programs are related to the study of geomagnetic variations, magnetic pulsations in the polar cap, cosmic noise absorption, VLF radio waves, auroral photometry, the morphology and dynamics of visible auroral forms, cosmic ray intensity variations, and auroral infrasonic waves. One program is based on the utilization of VHF Doppler auroral radar

  6. Considerations for increasing unit 1 spent fuel pool capacity at the Laguna Verde station

    International Nuclear Information System (INIS)

    Vera, A.

    1992-01-01

    To increase the spent fuel storage capacity at the Laguna Verde Station in a safe and economical manner and assure a continuous operation of the first Mexican Nuclear Plant, Comision Federal de Electricidad (CFE), the Nation's Utility, seeked alternatives considering the overall world situation, the safety and licensing aspects, as well as the economics and the extent of the nuclear program of Mexico. This paper describes the alternatives considered, their evaluation and how the decision taken by CFE in this field, provides the Laguna Verde Station with a maximum of 37 years storage capacity plus full core reserve

  7. Space Station Freedom electrical power system hardware commonality with the United States Polar Platform

    Science.gov (United States)

    Rieker, Lorra L.; Haraburda, Francis M.

    1989-01-01

    Information is presented on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform. The Space Station program and objectives are described, focusing on the test and development responsibilities. The program definition and preliminary design phase and the design and development phase are discussed. The goal of this work is to reduce the program cost.

  8. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  9. Final programmatic environmental impact statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident, Three Mile Island Nuclear Station, Unit 2, Docket No. 50-320

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    A Final Programmatic Environmental Impact Statement (PEIS) related to the decontamination and disposal of radioactive wastes resulting from the March 28, 1979, accident at Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320) has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission in response to a directive issued by the Commission on November 21, 1979. This statement is an overall study of the activities necessary for decontamination of the facility, defueling, and disposition of the radioactive wastes. The available alternatives considered ranged from implementation of full cleanup to no action other than continuing to maintain the reactor in a safe shutdown condition. Also included are comments of governmental agencies, other organizations, and the general public on the Draft PEIS on this project, and staff responses to these comments. (author)

  10. Nine Mile Point Nuclear Station, Unit 1. Annual report of operation, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Net electrical power generated was 3,044,948 MWh(e) with the reactor on line 6,238 hrs. Information is presented concerning power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, reportable occurrences, effluent and waste disposal, meteorological summary, and environmental monitoring

  11. Fort Calhoun Station, Unit 1. Semiannual operating report, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Net electrical power generated was 604,751.4 MHWH(e) with the reactor on line 2,049.9 hrs. Information is presented concerning power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, abnormal occurrences, and environmental monitoring. (FS)

  12. 78 FR 66385 - Omaha Public Power District Fort Calhoun Station, Unit 1; Exemption

    Science.gov (United States)

    2013-11-05

    ... Nuclear Energy Institute (NEI) 06-11, ``Managing Personnel Fatigue at Nuclear Power Reactor Sites...), no environmental impact statement or environmental assessment is required to be prepared in..., regulations, and orders of the U.S. Nuclear Regulatory Commission (NRC) now or hereafter in effect. The...

  13. Nine Mile Point Nuclear Station, Unit 1. Annual report of operation: January--December 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Net electrical power generated was 4,112,827 MWH with the reactor on line 7,727.67 hrs. Information is presented concerning operations, power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, reportable occurrences, and fuel performance

  14. Fort Calhoun Station, Unit 1. Semiannual report, July--December 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Net electrical power generated was 1,562,051.4 MWH(e) with the reactor on line 3,858.6 hrs. Information is presented concerning operations, power generation, shutdowns, corrective maintenance, primary coolant, chemistry, occupational radiation exposure, release of radioactive materials, and environmental monitoring

  15. Millstone Nuclear Power Station, Unit 1. Semiannual operating report, July--December 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Net electrical power generated was 1,525,943 MWh(e) with the reactor on line 2,682 hrs. Information is presented concerning power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, environmental effects monitoring, release of radioactive materials, and reportable occurrences. Occupational personnel radiation exposures will be submitted later

  16. Millstone Nuclear Power Station, Unit 1. Semiannual operating report, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Net electrical power generated was 2,373,130 MWH(e) with the reactor on line 3,915 hrs. Information is presented concerning power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, abnormal occurrences, and environmental radiation monitoring. (FS)

  17. Three Mile Island Nuclear Station, Unit 1. 1976 annual operating report

    International Nuclear Information System (INIS)

    1977-01-01

    Net electrical power generated was 4,335,625 MWh with the reactor on line 5,747.5 hrs. Information is presented concerning operations; specification, procedures, and FSAR changes; corrective maintenance; irradiated fuel examinations; radioactive effluent releases; personnel radiation exposures; shutdowns; and forced power reductions

  18. Peach Bottom Atomic Power Station, Unit 1. Semiannual operations report No. 72, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Defueling of the reactor was completed in June 1975. The fuel will be shipped to Aerojet Nuclear Co. in Idaho for long term storage. The primary coolant and auxiliary helium systems are being shut down. Activities are briefly described concerning health physics and maintenance. (FS)

  19. Pilgrim Nuclear Power Station, Unit 1. Fifth semiannual operating and maintenance report, July--December 1974

    International Nuclear Information System (INIS)

    1974-01-01

    During this period the reactor was critical for 3,550.3 hrs and the net electrical power generated was 1,973,033 MWH. Information is presented concerning operations, maintenance, radioactive effluents, environmental monitoring, and radioactive materials released to unrestricted areas. (U.S.)

  20. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - UNITED STATES NAVAL BASE NORFOLK NAVAL AIR STATION

    Science.gov (United States)

    This report summarizes work conducted at the U.S. Navy's Naval Base Norfolk, Naval Air Station (NAS) located at Sewells Point in Norfolk, Virginia, under the U.S. Environmental Protection Agency's (EPA) Waste Reduction Evaluations at Federal Sites (WREAFS) Program. This project w...