WorldWideScience

Sample records for reactor safety ebr-i

  1. The roles of EBR-II and TREAT [Transient Reactor Test] in establishing liquid metal reactor safety

    International Nuclear Information System (INIS)

    Sackett, J.I.; Lehto, W.K.; Solbrig, C.W.

    1990-01-01

    This paper examines the role of the Experimental Breeder Reactor II (EBR-II) and Transient Reactor Test (TREAT) facilities in contributing to the understanding and resolution of key safety issues in liquid metal reactor safety during the decade of the 80's. Fuels and materials testing has been carried out to address questions on fuels behavior during steady-state and upset conditions. In addition, EBR-II has conducted plant tests to demonstrate passive response to ATWS events and to develop control and diagnostic strategies for safe operation of advanced LMRs. TREAT and EBR-II complement each other and between them provide a transient testing capability that covers the whole range of concerns during overpower conditions. EBR-II, with use of the special Automatic Control Rod Drive System, can generate power change rates that overlap the lower end of the TREAT capability. 21 refs

  2. LMFBR operational safety: the EBR-II experience

    International Nuclear Information System (INIS)

    Sackett, J.I.; Allen, N.L.; Dean, E.M.; Fryer, R.M.; Larson, H.A.; Lehto, W.K.

    1978-01-01

    The mission of the Experimental Breeder Reactor II (EBR-II) has evolved from that of a small LMFBR demonstration plant to a major irradiation-test facility. Because of that evolution, many operational-safety issues have been encountered. The paper describes the EBR-II operational-safety experience in four areas: protection-system design, safety-document preparation, tests of off-normal reactor conditions, and tests of elements with breached cladding

  3. The physics design of EBR-II; Physique du reacteur EBR-II; Fizicheskij raschet ehksperimental'nogo reaktora - razmnozhitelya EVR-II; Aspectos fisicos del reactor EBR-II

    Energy Technology Data Exchange (ETDEWEB)

    Loewenstein, W. B. [Argonne National Laboratory, Argonne, IL (United States)

    1962-03-15

    The physics design oi EBR-II. Calculations of the static, dynamic and long-term reactivity behaviour of EBR-II are reported together with results and analysis of EBR-II dry critical and ZPR-III mock-up experiments. Particular emphasis is given to reactor-physics design problems which arise after the conceptual design is established and before the reactor is built or placed into operation. Reactor-safety analyses and hazards-evaluation considerations are described with their influence on the reactor design. The manner of utilizing the EBR-II mock-up on ZPR-III data and the EBR-II dry critical data is described. These experiments, their analysis and theoretical predictions are the basis for predetermining the physics behaviour of the reactor system. The limitations inherent in applying the experimental data to the performance of the power-reactor system are explored in some detail. This includes the specification of reactor core size and/or fuel-alloy enrichment, provisions for adequate operating and shut-down reactivity, determination of operative temperature and power coefficients of reactivity, and details of power- and flux-distribution as a function of position within the reactor structure. The overall problem of transferring information from simple idealized analytical or experimental geometry to actual hexagonal reactor geometry is described. Nuclear performance, including breeding, of the actual reactor system is compared with that of the idealized conceptual system. The long-term reactivity and power behaviour of the reactor blanket is described within the framework of the proposed cycling of the fuel and blanket alloy. Safety considerations, including normal and abnormal rates of reactivity-insertion, the implication of postulated reactivity effects based on the physical behaviour of the fuel alloy and reactor structure as well as extrapolation of TREAT experiments to the EBR-II system are analysed. The EBR-II core melt-down problem is reviewed. (author

  4. Safety analysis report. Decontamination and decommissioning of the EBR-I Complex

    International Nuclear Information System (INIS)

    Commander, J.C.; Macbeth, P.J.; Michels, D.E.

    1975-06-01

    The safety aspects of the planned EBR-I Complex decontamination and decommissioning operations are assessed. The major operations are: (1) removal of NaK from the EBR-I primary and secondary coolant systems, (2) processing of the NaK to produce solid caustic for disposal, (3) decontamination of contaminated areas of EBR-I and ZPR-III, (4) removal of items that cannot be decontaminated economically to acceptably safe levels, (5) isolation of contaminated areas, (6) demolition of the AFSR Shielding, and (7) removal of contaminated vessels from the NaK storage pit. It may be concluded that although potential hazards do exist from explosion, chemical burns and low-level radioactive exposure from the D and D operation, these hazards represent acceptable risks provided that the established procedures and precautions are followed. (U.S.)

  5. Demonstration of passive safety features in EBR-II

    International Nuclear Information System (INIS)

    Planchon, H.P. Jr.; Golden, G.H.; Sackett, J.I.

    1987-01-01

    Two tests of great importance to the design of future commercial nuclear power plants were carried out in the Experimental Breeder Reactor-II on April 3, 1986. These tests, (viewed by about 60 visitors, including 13 foreign LMR specialists) were a loss of flow without scram and a loss of heat sink without scram, both from 100% initial power. In these tests, inherent feedback shut the reactor down without damage to the fuel or other reactor components. This resulted primarily from advantageous characteristics of the metal driver fuel used in EBR-II. Work is currently underway at EBR-II to develop a control strategy that promotes inherent safety characteristics, including survivability of transient overpower accidents. In parallel, work is underway at EBR-II on the development of state-of-the-art plant diagnostic techniques

  6. EBR-II operating experience

    International Nuclear Information System (INIS)

    Smith, C.R.F.

    1978-07-01

    Operation of the EBR-2 reactor is presented concerning the performance of the heat removal system; reactor materials; fuel handling system; sodium purification and sampling system; cover-gas purification; plant diagnostics and instrumentation; recent improvements in identifying fission product sources in EBR-2; and EBR-2 safety

  7. The EBR-II fuel cycle story

    International Nuclear Information System (INIS)

    Stevenson, C.E.

    1987-01-01

    This volume on the history of the Experimental Breeder Reactor (EBR) program and the Fuel Cycle Facility (FCF) offers both the historical perspective and ''reasons why'' the project was so successful. The operation of the FCF in conjunction with the EBR-II was prepared because of the unique nature of the pyrmetallurgical processing system that was demonstrated at the time. Following brief descriptions and histories of the EBR-I and EBR-II reactors, the FCF and its process requirements are described. The seven principal process steps are presented, including for each one, the development, equipment used, operating procedures, results, problems and other data. Scrap and waste disposition, analytical control, safety, management, and cost of the FCF are also included

  8. Transforming criticality control methods for EBR-II fuel handling during reactor decommissioning

    International Nuclear Information System (INIS)

    Eberle, C.S.; Dean, E.M.; Angelo, P.L.

    1995-01-01

    A review of the Department of Energy (DOE) request to decommission the Experimental Breeder Reactor-II (EBR-II) was conducted in order to develop a scope of work and analysis method for performing the safety review of the facility. Evaluation of the current national standards, DOE orders, EBR-II nuclear safeguards and criticality control practices showed that a decommissioning policy for maintaining criticality safety during a long term fuel transfer process did not exist. The purpose of this research was to provide a technical basis for transforming the reactor from an instrumentation and measurement controlled system to a system that provides both physical constraint and administrative controls to prevent criticality accidents. Essentially, this was done by modifying the reactor core configuration, reactor operations procedures and system instrumentation to meet the safety practices of ANS-8.1-1983. Subcritical limits were determined by applying established liquid metal reactor methods for both the experimental and computational validations

  9. Experimental studies of U-Pu-Zr fast reactor fuel pins in EBR-II [Experimental Breeder Reactor

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Lahm, C.E.; Hofman, G.L.

    1988-01-01

    The Integral Fast Reactor (IFR) is a generic reactor concept under development by Argonne National Laboratory. Much of the technology for the IFR is being demonstrated at the Experimental Breeder Reactor II (EBR-II) on the Department of Energy site near Idaho Falls, Idaho. The IFR concept relies on four technical features to achieve breakthroughs in nuclear power economics and safety: (1) a pool-type reactor configuration, (2) liquid sodium cooling, (3) metallic fuel, and (4) an integral fuel cycle with on-site reprocessing. The purpose of this paper will be to summarize our latest results of irradiation testing uranium-plutonium-zirconium (U-Pu-Zr) fuel in the EBR-II. 10 refs., 13 figs., 2 tabs

  10. Results and implications of the EBR-II inherent safety demonstration tests

    International Nuclear Information System (INIS)

    Planchon, H.P.; Golden, G.H.; Sackett, J.I.; Mohr, D.; Chang, L.K.; Feldman, E.E.; Betten, P.R.

    1987-01-01

    On April 3, 1986 two milestone tests were conducted in Experimental Breeder Reactor-2 (EBR-II). The first test was a loss of flow without scram and the second was a loss of heat sink without scram. Both tests were initiated from 100% power and in both tests the reactor was shut down by natural processes, principally thermal expansion, without automatic scram, operator intervention or the help of special in-core devices. The temperature transients during the tests were mild, as predicted, and there was no damage to the core or reactor plant structures. In a general sense, therefore, the tests plus supporting analysis demonstrated the feasibility of inherent passive shutdown for undercooling accidents in metal-fueled LMRs. The results provide a technical basis for future experiments in EBR-II to demonstrate inherent safety for overpower accidents and provide data for validation of computer codes used for design and safety analysis of inherently safe reactor plants

  11. The physics design of EBR-II

    International Nuclear Information System (INIS)

    Loewenstein, W.B.

    1962-01-01

    The physics design oi EBR-II. Calculations of the static, dynamic and long-term reactivity behaviour of EBR-II are reported together with results and analysis of EBR-II dry critical and ZPR-III mock-up experiments. Particular emphasis is given to reactor-physics design problems which arise after the conceptual design is established and before the reactor is built or placed into operation. Reactor-safety analyses and hazards-evaluation considerations are described with their influence on the reactor design. The manner of utilizing the EBR-II mock-up on ZPR-III data and the EBR-II dry critical data is described. These experiments, their analysis and theoretical predictions are the basis for predetermining the physics behaviour of the reactor system. The limitations inherent in applying the experimental data to the performance of the power-reactor system are explored in some detail. This includes the specification of reactor core size and/or fuel-alloy enrichment, provisions for adequate operating and shut-down reactivity, determination of operative temperature and power coefficients of reactivity, and details of power- and flux-distribution as a function of position within the reactor structure. The overall problem of transferring information from simple idealized analytical or experimental geometry to actual hexagonal reactor geometry is described. Nuclear performance, including breeding, of the actual reactor system is compared with that of the idealized conceptual system. The long-term reactivity and power behaviour of the reactor blanket is described within the framework of the proposed cycling of the fuel and blanket alloy. Safety considerations, including normal and abnormal rates of reactivity-insertion, the implication of postulated reactivity effects based on the physical behaviour of the fuel alloy and reactor structure as well as extrapolation of TREAT experiments to the EBR-II system are analysed. The EBR-II core melt-down problem is reviewed. (author

  12. Thermal-structural response of EBR-II major components under reactor operational transients

    International Nuclear Information System (INIS)

    Chang, L.K.; Lee, M.J.

    1983-01-01

    Until recently, the LMFBR safety research has been focused primarily on severe but highly unlikely accident, such as hypothetical-core-disruptive accidents (HCDA's), and not enough attention has been given to accident prevention, which is less severe but more likely sequence. The objective of the EBR-II operational reliability testing (ORT) is to demonstrate that the reactor can be designed and operated to prevent accident. A series of mild duty cycles and overpower transients were designed for accident prevention tests. An assessment of the EBR-II major plant components has been performed to assure structural integrity of the reactor plant for the ORT program. In this paper, the thermal-structural response and structural evaluation of the reactor vessel, the reactor-vessel cover, the intermediate heat exchanger (IHX) and the superheater are presented

  13. EBR-II: summary of operating experience

    International Nuclear Information System (INIS)

    Perry, W.H.; Leman, J.D.; Lentz, G.L.; Longua, K.J.; Olson, W.H.; Shields, J.A.; Wolz, G.C.

    1978-01-01

    Experimental Breeder Reactor II (EBR-II) is an unmoderated, sodium-cooled reactor with a design power of 62.5 MWt. The primary cooling system is a submerged-pool type. The early operation of the reactor successfully demonstrated the feasibility of a sodium-cooled fast breeder reactor operating as an integrated reactor, power plant, and fuel-processing facility. In 1967, the role of EBR-II was reoriented from a demonstration plant to an irradiation facility. Many changes have been made and are continuing to be made to increase the usefulness of EBR-II for irradiation and safety tests. A review of EBR-II's operating history reveals a plant that has demonstrated high availability, stable and safe operating characteristics, and excellent performance of sodium components. Levels of radiation exposure to the operating and maintenance workers have been low; and fission-gas releases to the atmosphere have been minimal. Driver-fuel performance has been excellent. The repairability of radioactive sodium components has been successfully demonstrated a number of times. Recent highlights include installation and successful operation of (1) the hydrogen-meter leak detectors for the steam generators, (2) the cover-gas-cleanup system and (3) the cesium trap in the primary sodium. Irradiations now being conducted in EBR-II include the run-beyond-cladding breach fuel tests for mixed-oxide and carbide elements. Studies are in progress to determine EBR-II's capability for conducting important ''operational safety'' tests. These tests would extend the need and usefulness of EBR-II into the 1980's

  14. EBR-2 [Experimental Breeder Reactor-2] test programs

    International Nuclear Information System (INIS)

    Sackett, J.I.; Lehto, W.K.; Lindsay, R.W.; Planchon, H.P.; Lambert, J.D.B.; Hill, D.J.

    1990-01-01

    The Experimental Breeder Reactor-2 (EBR-2) is a sodium cooled power reactor supplying about 20 MWe to the Idaho National Engineering Laboratory (INEL) grid and, in addition, is the key component in the development of the Integral Fast Reactor (IFR). EBR-2's testing capability is extensive and has seen four major phases: (1) demonstration of LMFBR power plant feasibility, (2) irradiation testing for fuel and material development, (3) testing the off-normal performance of fuel and plant systems and (4) operation as the IFR prototype, developing and demonstrating the IFR technology associated with fuel and plant design. Specific programs being carried out in support of the IFR include advanced fuels and materials development, advanced control system development, plant diagnostics development and component testing. This paper discusses EBR-2 as the IFR prototype and the associated testing programs. 29 refs

  15. Decontamination and decommissioning of the EBR-I Complex. Final report

    International Nuclear Information System (INIS)

    Kendall, E.W.; Wang, D.K.

    1975-07-01

    This final report covers the Decontamination and Decommissioning (D and D) of the Experimental Breeder Reactor No. 1 (EBR-I) Complex funded under Contract No. AT(10-1)-1375. The major effort consisted of removal and processing of 5500 gallons of sodium/potassium (NaK) coolant from the EBR-I reactor system. Tests were performed to assess the explosive hazards of NaK and KO 2 in various environments and in contact with various contaminants likely to be encountered in the removal and processing operations. A NaK process plant was designed and constructed and the operation was successfully completed. Lesser effort was required for D and D of the Zero Power Reactor (ZPR-III) Facility, the Argonne Fast Source Reactor (AFSR) Shielding, and removal of contaminated NaK from the storage pit. The D and D effort was completed by 13 June 1975, ahead of schedule. (auth)

  16. Stability Analysis of the EBR-I Mark-II Core Meltdown Accident

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jae-Yong; Kang, Chang Mu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The purpose of this paper is to analyze the stability of the EBR-I core meltdown accident using the NuSTAB code. The result of NuSTAB analysis is compared with previous stability analysis by Sandmeier using the root locus method. The Experimental Breeder Reactor I (EBR-1) at Argonne National Laboratory was designed to demonstrate fast reactor breeding and to prove the use of liquid-metal coolant for power production and reached criticality in August 1951. The EBR-I reactor was undergoing a series of physics experiments and the Mark-II core was melted accidentally on Nov. 29, 1955. The experiment was going to increase core temperature to 500C to see if the reactor loses reactivity, and scram when the power reached 1500 kW or doubling of fission rate per second. However the operator scrammed with a slow moving control and missed the shutdown by two seconds and caused the core meltdown. The NuSTAB code has an advantage of analyzing space-dependent fast reactors and predicting regional oscillations compared to the point kinetics. Also, NuSTAB can be useful when the coupled neutronic-thermal-hydraulic codes cannot be used for stability analysis. Future work includes analyses of the PGSFR for various operating conditions as well as further validation of the NuSTAB calculations against SFR stability experiments when such experiments become available.

  17. EBR-2 [Experimental Breeder Reactor-2], IFR [Integral Fast Reactor] prototype testing programs

    International Nuclear Information System (INIS)

    Lehto, W.K.; Sackett, J.I.; Lindsay, R.W.; Planchon, H.P.; Lambert, J.D.B.

    1990-01-01

    The Experimental Breeder Reactor-2 (EBR-2) is a sodium cooled power reactor supplying about 20 MWe to the Idaho National Engineering Laboratory (INEL) grid and, in addition, is the key component in the development of the Integral Fast Reactor (IFR). EBR-2's testing capability is extensive and has seen four major phases: (1) demonstration of LMFBR power plant feasibility, (2) irradiation testing for fuel and material development. (3) testing the off-normal performance of fuel and plant systems and (4) operation as the IFR prototype, developing and demonstrating the IFR technology associated with fuel and plant design. Specific programs being carried out in support of the IFR include advanced fuels and materials development and component testing. This paper discusses EBR-2 as the IFR prototype and the associated testing programs. 29 refs

  18. Experimental Breeder Reactor I Preservation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun

    2006-10-01

    Experimental Breeder Reactor I (EBR I) is a National Historic Landmark located at the Idaho National Laboratory, a Department of Energy laboratory in southeastern Idaho. The facility is significant for its association and contributions to the development of nuclear reactor testing and development. This Plan includes a structural assessment of the interior and exterior of the EBR I Reactor Building from a preservation, rather than an engineering stand point and recommendations for maintenance to ensure its continued protection.

  19. Interaction of CREDO [Centralized Reliability Data Organization] with the EBR-II [Experimental Breeder Reactor II] PRA [probabilistic risk assessment] development

    International Nuclear Information System (INIS)

    Smith, M.S.; Ragland, W.A.

    1989-01-01

    The National Academy of Sciences review of US Department of Energy (DOE) class 1 reactors recommended that the Experimental Breeder Reactor II (EBR-II), operated by Argonne National Laboratory (ANL), develop a level 1 probabilistic risk assessment (PRA) and make provisions for level 2 and level 3 PRAs based on the results of the level 1 PRA. The PRA analysis group at ANL will utilize the Centralized Reliability Data Organization (CREDO) at Oak Ridge National Laboratory to support the PRA data needs. CREDO contains many years of empirical liquid-metal reactor component data from EBR-II. CREDO is a mutual data- and cost-sharing system sponsored by DOE and the Power Reactor and Nuclear Fuels Development Corporation of Japan. CREDO is a component based data system; data are collected on components that are liquid-metal specific, associated with a liquid-metal environment, contained in systems that interface with liquid-metal environments, or are safety related for use in reliability/availability/maintainability (RAM) analyses of advanced reactors. The links between the EBR-II PRA development effort and the CREDO data collection at EBR-II extend beyond the sharing of data. The PRA provides a measure of the relative contribution to risk of the various components. This information can be used to prioritize future CREDO data collection activities at EBR-II and other sites

  20. Current status of experimental breeder reactor-II [EBR-II] shutdown planning

    International Nuclear Information System (INIS)

    McDermott, M. D.; Griffin, C. D.; Michelbacher, J. A.; Earle, O. K.

    2000-01-01

    The Experimental Breeder Reactor--II (EBR-II) at Argonne National Laboratory--West (ANL-W) in Idaho, was shutdown in September, 1994 as mandated by the US Department of Energy. This sodium cooled reactor had been in service since 1964, and was to be placed in an industrially and radiologically safe condition for ultimate decommissioning. The deactivation of a liquid metal reactor presents unique concerns. The first major task associated with the project was the removal of all fueled assemblies. In addition, sodium must be drained from systems and processed for ultimate disposal. Residual quantities of sodium remaining in systems must be deactivated or inerted to preclude future hazards associated with pyrophoricity and generation of potentially explosive hydrogen gas. A Sodium Process Facility was designed and constructed to react the elemental sodium from the EBR-II primary and secondary systems to sodium hydroxide for disposal. This facility has a design capacity to allow the reaction of the complete inventory of sodium at ANL-W in less than two years. Additional quantities of sodium from the Fermi-1 reactor are also being treated at the Sodium Process Facility. The sodium environment and the EBR-II configuration, combined with the radiation and contamination associated with thirty years of reactor operation, posed problems specific to liquid metal reactor deactivation. The methods being developed and implemented at EBR-II can be applied to other similar situations in the US and abroad

  1. Safety philosophy in upgrading the EBR-II plant protection system

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1976-01-01

    The EBR-II plant protection system (PPS) has been substantially modified, upgrading its performance to more fully comply with modern safety philosophy and criteria. The upgrading effort required that the total reactor system be evaluated for possible faults and that a PPS be designed to accommodate them. The result was deletion of a number of existing trip functions and upgrading of others. Particular attention was given to loss of primary pumping power and reactivity insertion events. The design and performance criteria for the PPS has been more firmly established, understanding of the PPS function has been improved and the reactor has been subjected to fewer spurious trips, improving operational reliability

  2. Considerations for advanced reactor design based on EBR-II experience

    International Nuclear Information System (INIS)

    King, R. W.

    1999-01-01

    The long-term success of the Experimental Breeder Reactor-II (EBR-II) provides several insights into fundamental characteristics and design features of a nuclear generating station that enhance safety, operability, and maintainability. Some of these same characteristics, together with other features, offer the potential for operational lifetimes well beyond the current licensing time frame, and improved reliability that could potentially reduce amortized capital costs as well as overall operation and maintenance costs if incorporated into advanced plant designs. These features and characteristics are described and the associated benefits are discussed

  3. Reliability and extended-life potential of EBR-II

    International Nuclear Information System (INIS)

    King, R.W.

    1985-01-01

    Although the longlife potential of liquid-metal-cooled reactors (LMRs) has been only partially demonstrated, many factors point to the potential for exceptionally long life. EBR-II has the opportunity to become the first LMR to achieve an operational lifetime of 30 years or more. In 1984 a study of the extended-life potential of EBR-II identified the factors that contribute to the continued successful operation of EBR-II as a power reactor and experimental facility. Also identified were factors that could cause disruptions in the useful life of the facility. Although no factors were found that would inherently limit the life of EBR-II, measures were identified that could help ensure continued plant availability. These measures include the implementation of more effective surveillance, diagnostic, and control systems to complement the inherent safety and reliability features of EBR-II. An operating lifetime of well beyond 30 years is certainly feasible

  4. Design of a reactor inlet temperature controller for EBR-2 using state feedback

    International Nuclear Information System (INIS)

    Vilim, R.B.; Planchon, H.P.

    1990-01-01

    A new reactor inlet temperature controller for pool type liquid-metal reactors has been developed and will be tested in EBR-II. The controller makes use of modern control techniques to take into account stratification and mixing in the cold pool during normal operation. Secondary flowrate is varied so that the reactor inlet temperature tracks a setpoint while reactor outlet temperature, primary flowrate and secondary cold leg temperature are treated as exogenous disturbances and are free to vary. A disturbance rejection technique minimizes the effect of these disturbances on inlet temperature. A linear quadratic regulator improves inlet temperature response. Tests in EBR-II will provide experimental data for assessing the performance improvements that modern control can produce over the existing EBR-II analog inlet temperature controller. 10 refs., 8 figs

  5. Safety and operating experience at EBR-II: lessons for the future

    International Nuclear Information System (INIS)

    Sackett, J.I.; Golden, G.H.

    1981-01-01

    EBR-II is a small LMFBR power plant that has performed safely and reliably for 16 years. Much has been learned from operating it to facilitate the design, licensing, and operation of large commercial LMFBR power plants in the US. EBR-II has been found relatively easy to keep in conformity with evolving safety requirements, largely because of inherent safety features of the plant. Such features reduce dependence on active safety systems to protect against accidents. EBR-II has experienced a number of plant-transient incidents, some planned, others inadvertent; none has resulted in any significant plant damage. The operating experience with EBR-II has led to the formulation of an Operational Reliability Test Program (ORTP), aimed at showing inherently safe performance of fuel and plant systems

  6. Applications of the EBR-II Probabilistic Risk Assessment

    International Nuclear Information System (INIS)

    Roglans, J.: Ragland, W.A.; Hill, D.J.

    1993-01-01

    A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor 11 (EBR-11), a Department of Energy (DOE) Category A research reactor, has recently been completed at Argonne National Laboratory (ANL), and has been performed with close collaboration between PRA analysts and engineering and operations staff. A product of this Involvement of plant personnel has been a excellent acceptance of the PRA as a tool, which has already resulted In a variety of applications of the EBR-11 PRA. The EBR-11 has been used in support of plant hardware and procedure modifications and In new system design work. A new application in support of the refueling safety analysis will be completed in the near future

  7. Experience with automatic reactor control at EBR-II

    International Nuclear Information System (INIS)

    Lehto, W.K.; Larson, H.A.; Christensen, L.J.

    1985-01-01

    Satisfactory operation of the ACRDS has extended the capabilities of EBR-II to a transient test facility, achieving automatic transient control. Test assemblies can now be irradiated in transient conditions overlapping the slower transient capability of the TREAT reactor

  8. Evolution of thermal-hydraulics testing in EBR-II

    International Nuclear Information System (INIS)

    Golden, G.H.; Planchon, H.P.; Sackett, J.I.; Singer, R.M.

    1987-01-01

    A thermal-hydraulics testing and modeling program has been underway at the Experimental Breeder Reactor-II (EBR-II) for 12 years. This work culminated in two tests of historical importance to commercial nuclear power, a loss of flow without scram and a loss of heat sink wihout scram, both from 100% initial power. These tests showed that natural processes will shut EBR-II down and maintain cooling without automatic control rod action or operator intervention. Supporting analyses indicate that these results are characteristic of a range of sizes of liquid metal cooled reactors (LMRs), if these reactors use metal driver fuel. This type of fuel is being developed as part of the Integral Fast Reactor Program at Argonne National Laboratory. Work is now underway at EBR-II to exploit the inherent safety of metal-fueled LMRs with regard to development of improved plant control strategies. (orig.)

  9. Data handling at EBR-II [Experimental Breeder Reactor II] for advanced diagnostics and control work

    International Nuclear Information System (INIS)

    Lindsay, R.W.; Schorzman, L.W.

    1988-01-01

    Improved control and diagnostics systems are being developed for nuclear and other applications. The Experimental Breeder Reactor II (EBR-II) Division of Argonne National Laboratory has embarked on a project to upgrade the EBR-II control and data handling systems. The nature of the work at EBR-II requires that reactor plant data be readily available for experimenters, and that the plant control systems be flexible to accommodate testing and development needs. In addition, operational concerns require that improved operator interfaces and computerized diagnostics be included in the reactor plant control system. The EBR-II systems have been upgraded to incorporate new data handling computers, new digital plant process controllers, and new displays and diagnostics are being developed and tested for permanent use. In addition, improved engineering surveillance will be possible with the new systems

  10. Embedded computer systems for control applications in EBR-II

    International Nuclear Information System (INIS)

    Carlson, R.B.; Start, S.E.

    1993-01-01

    The purpose of this paper is to describe the embedded computer systems approach taken at Experimental Breeder Reactor II (EBR-II) for non-safety related systems. The hardware and software structures for typical embedded systems are presented The embedded systems development process is described. Three examples are given which illustrate typical embedded computer applications in EBR-II

  11. Experience with lifetime limits for EBR-II core components

    International Nuclear Information System (INIS)

    Lambert, J.D.B.; Smith, R.N.; Golden, G.H.

    1987-01-01

    The Experimental Breeder Reactor No. 2 (EBR-II) is operated for the US Department of Energy by Argonne National Laboratory and is located on the Idaho National Engineering Laboratory where most types of American reactor were originally tested. EBR-II is a complete electricity-producing power plant now in its twenty-fourth year of successful operation. During this long history the reactor has had several concurrent missions, such as demonstration of a closed Liquid-Metal Reactor (LMR) fuel cycle (1964-69); as a steady-state irradiation facility for fuels and materials (1970 onwards); for investigating effects of operational transients on fuel elements (from 1981); for research into the inherent safety aspects of metal-fueled LMR's (from 1983); and, most recently, for demonstration of the Integral Fast Reactor (IFR) concept using U-Pu-Zr fuels. This paper describes experience gained at EBR-II in defining lifetime limits for LMR core components, particularly fuel elements

  12. Surveillance application using patten recognition software at the EBR-II Reactor Facility

    International Nuclear Information System (INIS)

    Olson, D.L.

    1992-01-01

    The System State Analyzer (SSA) is a software based pattern recognition system. For the past several year this system has been used at Argonne National Laboratory's Experimental Breeder Reactor 2 (EBR-2) reactor for detection of degradation and other abnormalities in plant systems. Currently there are two versions of the SSA being used at EBR-2. One version of SSA is used for daily surveillance and trending of the reactor delta-T and startups of the reactor. Another version of the SSA is the QSSA which is used to monitor individual systems of the reactor such as the Secondary Sodium System, Secondary Sodium Pumps, and Steam Generator. This system has been able to detect problems such as signals being affected by temperature variations due to a failing temperature controller

  13. Potential safety enhancements to nuclear plant control: proof testing at EBR-II

    International Nuclear Information System (INIS)

    Lindsay, R.W.; Chisholm, G.H.

    1984-01-01

    Future changes in nuclear plant control and protective systems will reflect an evolutionary improvement through increased use of computers coupled with a better integration of man and machine. Before improvements can be accepted into the licensed commercial plant environment, significant testing must be accomplished to answer safety questions and to prove the worth of new ideas. The Experimental Breeder Reactor-II (EBR-II) is being used as a test-bed for both in-house development and testing for others in a DOE sponsored Man-Machine Integration program. The ultimate result of the development and testing would be a control system for which safety credit could be taken in the licensing process

  14. Safety related considerations for operation with defected elements in EBR-II

    International Nuclear Information System (INIS)

    Fryer, R.M.; Sackett, J.I.; Lambert, J.D.B.

    1976-01-01

    Traditionally, EBR-II has employed the 'shutdown and remove' philosophy when breached fuel elements are encountered. This mode of operation maintained in-plant inventories of fission products at low levels and allowed certain fission product detection systems to be employed as automatic plant shutdown devices. Information from fuel failure propagation studies and fast reactor operation indicates that shutdown under these conditions is unwarranted. Analytical studies, as well as fast reactor experience, further indicate that failure propagation, if it occurs at all, will not cross adjacent subassembly boundaries. Therefore, the 'shutdown and remove' philosophy can be liberalized to allow the demonstration of safety during a run-beyond-clad-breach mode of operation. This mode of operation is essential to the demonstration of the economics of commercial LMFBR systems

  15. Experimental and design experience with passive safety features of liquid metal reactors

    International Nuclear Information System (INIS)

    Lucoff, D.M.; Waltar, A.E.; Sackett, J.I.; Salvatores, M.; Aizawa, K.

    1992-10-01

    Liquid metal cooled reactors (LMRs) have already been demonstrated to be robust machines. Many reactor designers now believe that it is possible to include in this technology sufficient passive safety that LMRs would be able to survive loss of flow, loss of heat sink, and transient overpower events, even if the plant protective system fails completely and do so without damage to the core. Early whole-core testing in Rapsodie, EBR-II. and FFTF indicate such designs may be possible. The operational safety testing program in EBR-II is demonstrating benign response of the reactor to a full range of controls failures. But additional testing is needed if transient core structural response under major accident conditions is to be properly understood. The proposed international Phase IIB passive safety tests in FFTF, being designed with a particular emphasis on providing, data to understand core bowing extremes, and further tests planned in EBR-11 with processed IFR fuel should provide a substantial and unique database for validating the computer codes being used to simulate postulated accident conditions

  16. Operating and test experience of EBR-II

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1991-01-01

    EBR-II has operated for 27 years, the longest for any Liquid Metal Reactor (LMR) power plant. During that time, much has been learned about successful LMR operation and design. The basic lesson is that conservatism in design can pay significant dividends in operating reliability. Furthermore, such conservatism need not mean high cost. The EBR-II system emphasizes simplicity, minimizing the number of valves in the heat transport system, for example, and simplifying the primary heat-transport-system layout. Another lesson is that emphasizing reliability of the steam generating system at the sodium-water interface (by using duplex tubes in the case of EBR-II) has been well worth the higher initial costs; no problems with leakage have been encountered in EBR-II's operating history. Locating spent fuel storage in the primary tank and providing for decay heat removal by natural connective flow have also been contributors to EBR-II's success. The ability to accommodate loss of forced cooling or loss of heat sink passively has resulted in benefits for simplification, primarily through less reliance on emergency power and in not requiring the secondary sodium or steam systems to be safety grade. Also, the 'piped-pool' arrangement minimizes thermal stress to the primary tank and enhances natural convective flow. These benefits have been realized through a history of operation that has seen EBR-II evolve through four major phases in its test programs, culminating in its present mission as the Integral Fast Reactor (IFR) prototype. (author)

  17. Deactivation of the EBR-II complex

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Earle, O.K.; Henslee, S.P.; Wells, P.B.; Zahn, T.P.

    1996-01-01

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D and D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D and D plan has necessitated this current action

  18. Deactivation of the EBR-II complex

    Energy Technology Data Exchange (ETDEWEB)

    Michelbacher, J A; Earle, O K; Henslee, S P; Wells, P B; Zahn, T P

    1996-01-01

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D and D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D and D plan has necessitated this current action.

  19. EBR-II Data Digitization

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su-Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sackett, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    1. Objectives To produce a validation database out of those recorded signals it will be necessary also to identify the documents need to reconstruct the status of reactor at the time of the beginning of the recordings. This should comprehends the core loading specification (assemblies type and location and burn-up) along with this data the assemblies drawings and the core drawings will be identified. The first task of the project will be identify the location of the sensors, with respect the reactor plant layout, and the physical quantities recorded by the Experimental Breeder Reactor-II (EBR-II) data acquisition system. This first task will allow guiding and prioritizing the selection of drawings needed to numerically reproduce those signals. 1.1 Scopes and Deliverables The deliverables of this project are the list of sensors in EBR-II system, the identification of storing location of those sensors, identification of a core isotopic composition at the moment of the start of system recording. Information of the sensors in EBR-II reactor system was summarized from the EBR-II system design descriptions listed in Section 1.2.

  20. A transient overpower experiment in EBR-II

    International Nuclear Information System (INIS)

    Herzog, J.P.; Tsai, H.; Dean, E.M.; Aoyama, T.; Yamamoto, K.

    1994-01-01

    The TOPI-IE test was a transient overpower test on irradiate mixed-oxide fuel pins in the Experimental Breeder Reactor-II (EBR-II). The test, the fifth in a series, was part of a cooperative program between the US Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan to conduct operational transient testing on mixed-oxide fuel pins in the metal-fueled EBR-II. The principle objective of the TOPI-1E test was to assess breaching margins for irradiated mixed-oxide fuel pins over the Plant Protection System (PPS) thresholds during a slow, extended overpower transient. This paper describes the effect of the TOPI-1E experiment on reactor components and the impact of the experiment on the long-term operability of the reactor. The paper discusses the role that SASSYS played in the pre-test safety analysis of the experiment. The ability of SASSYS to model transient overpower events is detailed by comparisons of data from the experiment with computed reactor variables from a SASSYS post-test simulation of the experiment

  1. EBR-II: twenty years of operating experience

    International Nuclear Information System (INIS)

    Lentz, G.L.; Buschman, H.W.; Smith, R.N.

    1985-01-01

    Experimental Breeder Reactor No. 2 (EBR-II) is an unmoderated, sodium-cooled reactor with a design power of 62.5 MWt. For the last 20 years EBR-II has operated safely, has demonstrated stable operating characteristics, has shown excellent performance of its sodium components, and has had an excellent plant factor. These years of operating experience provide a valuable resource to the nuclear community for the development and design of future liquid metal fast reactors. This report provides a brief description of the EBR-II plant and its early operating experience, describes some recent problems of interest to the nuclear community, and also mentions some of the significant operating achievements of EBR-II. Finally, a few words and speculations on EBR-II's future are offered. 4 figs., 1 tab

  2. Behavior of EBR-II Mk-V-type fuel elements in simulated loss-of-flow tests

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tsai, H.; Billone, M.C.; Kramer, J.M.

    1992-01-01

    The next step in the development of metal fuels for the integral fast reactor (IFR) is the conversion of the Experimental Breeder Reactor II (EBR-II) core to one containing the ternary U-20 Pu-10 Zr alloy clad with HT-9 cladding, i.e., the Mk-V core. This paper presents results of three hot-cell furnace simulation tests on irradiated Mk-V-type fuel elements (U-19 Pu-10 Zr/HT-9), which were performed to support the safety case for the Mk-V core. These tests were designed to envelop an umbrella (bounding) unlikely loss-of-flow (LOF) event in EBR-II during which the calculated peak cladding temperature would reach 776 degree C for < 2 min. The principal objectives of these tests were (a) demonstration of the safety margin of the fuel element, (b) investigation of cladding breaching behavior, and (c) provision of data for validation of the FPIN2 and LIFE-METAL codes

  3. Operating experience of the EBR-II steam generating system

    International Nuclear Information System (INIS)

    Buschman, H.W.; Penney, W.H.; Quilici, M.D.; Radtke, W.H.

    1981-01-01

    The Experimental Breeder Reactor II (EBR-II) is a Liquid Metal Fast Breeder Reactor (LMFBR) with integrated power producing capability. Superheated steam is produced by eight natural circulation evaporators, two superheaters, and a conventional steam drum. Steam throttle conditions are 438 C (820 F) and 8.62 MPa (1250 psi). The designs of the evaporators and superheaters are essentially identical; both are counterflow units with low pressure nonradioactive sodium on the shell side. Safety and reliability are maximized by using duplex tubes and tubesheets. The performance of the system has been excellent and essentially trouble free. The operating experience of EBR-II provides confidence that the technology can be applied to commercial LMFBR's for an abundant supply of energy for the future. 5 refs

  4. Deactivation of the EBR-II complex

    Energy Technology Data Exchange (ETDEWEB)

    Michelbacher, J.A.; Earle, O.K.; Henslee, S.P. [and others

    1997-12-31

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D&D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D&D plan has necessitated this current action. The EBR-II is a pool-type reactor. The primary system contains approximately 87,000 gallons of sodium, while the secondary system has 13,000 gallons. In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility has been built to react the sodium to a dry carbonate powder in a two stage process. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in the primary and secondary systems must be either reacted or inerted to preclude future concerns with sodium-air reactions that generate explosive mixtures of hydrogen and leave corrosive compounds. Residual amounts of sodium on components will effectively {open_quotes}solder{close_quotes} components in place, making future operation or removal unfeasible.

  5. Deactivation of the EBR-II complex

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Earle, O.K.; Henslee, S.P.

    1997-01-01

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D ampersand D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D ampersand D plan has necessitated this current action. The EBR-II is a pool-type reactor. The primary system contains approximately 87,000 gallons of sodium, while the secondary system has 13,000 gallons. In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility has been built to react the sodium to a dry carbonate powder in a two stage process. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in the primary and secondary systems must be either reacted or inerted to preclude future concerns with sodium-air reactions that generate explosive mixtures of hydrogen and leave corrosive compounds. Residual amounts of sodium on components will effectively open-quotes solderclose quotes components in place, making future operation or removal unfeasible

  6. EBR-II: search for the lost subassembly

    International Nuclear Information System (INIS)

    King, R.W.; Buschman, H.W.; Poloncsik, J.; Remsburg, J.S.; Sine, H.W.

    1983-01-01

    Experimental Breeder Reactor II (EBR-II) has been operating for nearly 20 years as part of the foundation of the US Department of Energy's LMFBR development program. During that time, the EBR-II fuel-handling system has performed extremely well, especially considering the conditions under which much of the system operates and the reliability required to maintain the high plant factor routinely demonstrated by EBR-II. Since EBR-II is a pool-type reactor, much of the fuel handling is done remotely within the sodium-filled primary tank at 371 0 C. Activities involved in locating a misplaced fuel subassembly in the primary tank are described

  7. Simulation and operation of the EBR-II automatic control rod drive system

    International Nuclear Information System (INIS)

    Lehto, W.K.; Larson, H.A.; Dean, E.M.; Christensen, L.J.

    1985-01-01

    An automatic control rod drive system (ACRDS) installed at EBR-II produces shaped power transients from 40% to full reactor power at a linear ramp rate of 4 MWt/s. A digital computer and modified control-rod-drive provides this capability. Simulation and analysis of ACRDS experiments establish the safety envelope for reactor transient operation. Tailored transients are required as part of USDOE Operational Reliability Testing program for prototypic fast reactor fuel cladding breach behavior studies. After initial EBR-II driver fuel testing and system checkout, test subassemblies were subjected to both slow and fast transients. In addition, the ACRDS is used for steady-state operation and will be qualified to control power ascent from initial critical to full power

  8. Simulation and operation of the EBR-II automatic control rod drive system

    International Nuclear Information System (INIS)

    Lehto, W.K.; Larson, H.A.; Dean, E.M.; Christensen, L.J.

    1985-01-01

    An automatic control rod drive system (ACRDS) installed at EBR-II produces shaped power transients from 40% to full reactor power at a linear ramp rate of 4 MWt/s. A digital computer and modified control-rod-drive provides this capability. Simulation and analysis of ACRDS experiments establish the safety envelope for reactor transient operation. Tailored transients are required as part of USDOE Operational Reliability Testing program for prototypic fast reactor fuel cladding breach behavior studies. After initial EBR-II driver fuel testing and system checkout, test subassemblies were subjected to both slow and fast transients. In additions, the ACRDS is used for steady-state operation and will be qualified to control power ascent from initial critical to full power

  9. The EBR-II Probabilistic Risk Assessment: lessons learned regarding passive safety

    International Nuclear Information System (INIS)

    Hill, D.J.; Ragland, W.A.; Roglans, J.

    1998-01-01

    This paper summarizes the results from the EBR-II Probabilistic Risk Assessment (PRA) and provides an analysis of the source of risk of the operation of EBR-II from both internal and external initiating events. The EBR-II PRA explicitly accounts for the role of reactivity feedbacks in reducing fuel damage. The results show that the expected core damage frequency from internal initiating events at EBR-II is very low, 1.6 10 -6 yr -1 , even with a wide definition of core damage (essentially that of exceeding Technical Specification limits). The annual frequency of damage, primarily due to liquid metal fires, from externally initiated events (excluding earthquakes) is 3.6 10 -6 yr -1 and the contribution of seismic events is 1.7 10 -5 yr -1 . Overall these results are considerably better than results for other research reactors and the nuclear industry in general and stem from three main sources: low likelihood of loss of coolant due to low system pressure and top entry double vessels; low likelihood of loss of decay heat removal due to reliance on passive means; and low likelihood of power/flow mismatch due to both passive feedbacks and reliability of rod scram capability

  10. The EBR-II Probabilistic Risk Assessment: lessons learned regarding passive safety

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D J; Ragland, W A; Roglans, J

    1998-11-01

    This paper summarizes the results from the EBR-II Probabilistic Risk Assessment (PRA) and provides an analysis of the source of risk of the operation of EBR-II from both internal and external initiating events. The EBR-II PRA explicitly accounts for the role of reactivity feedbacks in reducing fuel damage. The results show that the expected core damage frequency from internal initiating events at EBR-II is very low, 1.6 10{sup -6} yr{sup -1}, even with a wide definition of core damage (essentially that of exceeding Technical Specification limits). The annual frequency of damage, primarily due to liquid metal fires, from externally initiated events (excluding earthquakes) is 3.6 10{sup -6} yr{sup -1} and the contribution of seismic events is 1.7 10{sup -5} yr{sup -1}. Overall these results are considerably better than results for other research reactors and the nuclear industry in general and stem from three main sources: low likelihood of loss of coolant due to low system pressure and top entry double vessels; low likelihood of loss of decay heat removal due to reliance on passive means; and low likelihood of power/flow mismatch due to both passive feedbacks and reliability of rod scram capability.

  11. The EBR-II probabilistic risk assessment lessons learned regarding passive safety

    International Nuclear Information System (INIS)

    Hill, D.J.; Ragland, W.A.; Roglans, J.

    1994-01-01

    This paper summarizes the results from the recently completed EBR-II Probabilistic Risk Assessment (PRA) and provides an analysis of the source of risk of the operation of EBR-II from both internal and external initiating events. The EBR-II PRA explicitly accounts for the role of reactivity feedbacks in reducing fuel damage. The results show that the expected core damage frequency from internal initiating events at EBR-II is very low, 1.6 10 -6 yr -1 , even with a wide definition of core damage (essentially that of exceeding Technical Specification limits). The annual frequency of damage, primarily due to liquid metal fires, from externally initiated events (excluding earthquakes) is 3.6 10 -6 yr -1 and the contribution of seismic events is 1.7 10 -5 yr -1 . Overall these results are considerably better than results for other research reactors and the nuclear industry in general and stem from three main sources: low likelihood of loss of coolant due to low system pressure and top entry double vessels; low likelihood of loss of decay heat removal due to reliance on passive means; and low likelihood of power/flow mismatch due to both passive feedbacks and reliability of rod scram capability

  12. Decontamination and decommissioning of the EBR-I complex. Topical report No. 3. NAK disposal pilot plant test

    International Nuclear Information System (INIS)

    Commander, J.C.; Lewis, L.; Hammer, R.

    1975-06-01

    Decontamination and decommissioning of the Experimental Breeder Reactor No. 1 (EBR-I) requires processing of the primary coolant, an eutectic solution of sodium and potassium (NaK), remaining in the EBR-I primary and secondary coolant systems. While developing design criteria for the NaK processing system, reasonable justification was provided for the development of a pilot test plant for field testing some of the process concepts and proposed hardware. The objective of this activity was to prove the process concept on a low-cost, small-scale test bed. The pilot test plant criteria provided a general description of the test including: the purpose, location, description of test equipment available, waste disposal requirements, and a flow diagram and conceptual equipment layout. The pilot plant test operations procedure provided a detailed step-by-step procedure for operation of the pilot plant to obtain the desired test data and operational experience. It also spelled out the safety precautions to be used by operating personnel, including the requirement for alkali metals training certification, use of protective clothing, availability of fire protection equipment, and caustic handling procedures. The pilot plant test was performed on May 16, 1974. During the test, 32.5 gallons or 240 lb of NaK was successfully converted to caustic by reaction with water in a caustic solution. (auth)

  13. Experience with EBR-II [Experimental Breeder Reactor] driver fuel

    International Nuclear Information System (INIS)

    Seidel, B.R.; Porter, D.L.; Walters, L.C.; Hofman, G.L.

    1986-01-01

    The exceptional performance of Experimental Breeder Reactor-II (EBR-II) metallic driver fuel has been demonstrated by the irradiation of a large number of elements under steady-state, transient overpower, and loss-of-flow conditions. High burnup with high reliability has been achieved by a close coupling of element design and materials selection. Quantification of reliability has allowed full utilization of element lifetime. Improved design and duct materials currently under test are expected to increase the burnup from 8 to 14 at.%

  14. Experience with advanced driver fuels in EBR-II

    International Nuclear Information System (INIS)

    Lahm, C.E.; Koenig, J.F.; Pahl, R.G.; Porter, D.L.; Crawford, D.C.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) is a complete nuclear power plant, incorporating a pool-type liquid-metal reactor (LMR) with a fuel-power thermal output of 62.5 MW and an electrical output of 20 MW. Initial criticality was in 1961, utilizing a metallic driver fuel design called the Mark-I. The fuel design has evolved over the last 30 yr, and significant progress has been made on improving performance. The first major innovations were incorporated into the Mark-II design, and burnup then increased dramatically. This design performed successfully, and fuel element lifetime was limited by subassembly hardware performance rather than the fuel element itself. Transient performance of the fuel was also acceptable and demonstrated the ability of EBR-II to survive severe upsets such as a loss of flow without scram. In the mid 1980s, with renewed interest in metallic fuels and Argonne's integral fast reactor (IFR) concept, the Mark-II design was used as the basis for new designs, the Mark-III and Mark-IV. In 1987, the Mark-III design began qualification testing to become a driver fuel for EBR-II. This was followed in 1989 by the Mark-IIIA and Mark-IV designs. The next fuel design, the Mark-V, is being planned to demonstrate the utilization of recycled fuel. The fuel cycle facility attached to EBR-II is being refurbished to produce pyroprocessed recycled fuel as part of the demonstration of the IFR

  15. Safety aspects of advanced fuels irradiations in EBR-II

    International Nuclear Information System (INIS)

    Lehto, W.K.

    1975-09-01

    Basic safety questions such as MFCI, loss-of-Na bond, pin behavior during design basis transients, and failure propagation were evaluated as they pertain to advanced fuels in EBR-II. With the exception of pin response to the unlikely loss-of-flow transient, the study indicates that irradiation of significant numbers of advanced fueled subassemblies in EBR-II should pose no safety problems. The analysis predicts, however, that Na boiling may occur during the postulated design basis unlikely loss-of-flow transient in subassemblies containing He-bonded fuel pins with the larger fuel-clad gaps. The calculations indicate that coolant temperatures at top of core in the limiting S/A's, containing the He bonded pins, would reach approximately 1480 0 F during the transient without application of uncertainty factors. Inclusion of uncertainties could result in temperature predictions which approach coolant boiling temperatures (1640 0 F). Further analysis of He-bonded pins is being done in this potential problem area, e.g., to apply best estimates of uncertainty factors and to determine the sensitivity of the preliminary results to gap conductance

  16. Operating and test experience of EBR-II

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1991-01-01

    EBR-2 has operated for 27 years, the longest for any Liquid Metal Reactor (LMR) power plant. During that time, much has been learned about successful LMR operation and design. The basic lesson is that conversatism in design can pay significant dividends in operating reliability. Furthermore, such conservatism need not mean high cost. The EBR-2 system emphasizes simplicity, minimizing the number of valves in the heat transport system, for example, and simplifying the primary heat-transport-system layout. Another lesson is that emphasizing reliability of the steam generating system at the sodium-water interface (by using duplex tubes in the case of EBR-2) has been well worth the higher initial costs; no problems with leakage have been encountered in EBR-2's operating history. Locating spent fuel storage in the primary tank and providing for decay heat removal by natural connective flow have also been contributors to EBR-2's success. The ability to accommodate loss of forced cooling or loss of heat sink passively has resulted in benefits for simplification, primarily through less reliance on emergency power and in not requiring the secondary sodium or steam systems to be safety grade. Also, the ''piped-pool '' arrangement minimizes thermal stress to the primary tank and enhances natural convective flow. These benefits have been realized through a history of operation that has seen EBR-2 evolve through four major phases in its test programs, culminating in its present mission as the Integral Fast Rector (IFR) prototype. 20 refs., 8 figs., 1 tab

  17. Tightly coupled transient analysis of EBR-II

    International Nuclear Information System (INIS)

    Makowitz, H.; Lehto, W.K.; Sackett, J.I.

    1988-01-01

    A Tightly Coupled transient analysis system for the Experimental Breeder Reactor-II (EBR-II) is currently being tested. The system consists of a faster than real time high fidelity reactor simulation, advanced graphics displays, expert system coupling, and real time data coupling via the EBR-II data acquisition system to and from the plant and the control system. The base, first generation software has been developed and is presently being tested. Various subsystem couplings and the total system integration are being checked out. This system should enhance the diagnostic and prognostic capability of EBR-II in the near term and provide automatic control during startup and power maneuvering in the future, as well as serve as a testbed for new control system development for advanced reactors

  18. Improvements in EBR-2 core depletion calculations

    International Nuclear Information System (INIS)

    Finck, P.J.; Hill, R.N.; Sakamoto, S.

    1991-01-01

    The need for accurate core depletion calculations in Experimental Breeder Reactor No. 2 (EBR-2) is discussed. Because of the unique physics characteristics of EBR-2, it is difficult to obtain accurate and computationally efficient multigroup flux predictions. This paper describes the effect of various conventional and higher order schemes for group constant generation and for flux computations; results indicate that higher-order methods are required, particularly in the outer regions (i.e. the radial blanket). A methodology based on Nodal Equivalence Theory (N.E.T.) is developed which allows retention of the accuracy of a higher order solution with the computational efficiency of a few group nodal diffusion solution. The application of this methodology to three-dimensional EBR-2 flux predictions is demonstrated; this improved methodology allows accurate core depletion calculations at reasonable cost. 13 refs., 4 figs., 3 tabs

  19. SASSYS validation with the EBR-II shutdown heat removal tests

    International Nuclear Information System (INIS)

    Herzog, J.P.

    1989-01-01

    SASSYS is a coupled neutronic and thermal hydraulic code developed for the analysis of transients in liquid metal cooled reactors (LMRs). The code is especially suited for evaluating of normal reactor transients -- protected (design basis) and unprotected (anticipated transient without scram) transients. Because SASSYS is heavily used in support of the IFR concept and of innovative LMR designs, such as PRISM, a strong validation base for the code must exist. Part of the validation process for SASSYS is analysis of experiments performed on operating reactors, such as the metal fueled Experimental Breeder Reactor -- II (EBR-II). During the course of a series of historic whole-plant experiments, EBR-II illustrated key safety features of metal fueled LMRs. These experiments, the Shutdown Heat Removal Tests (SHRT), culminated in unprotected loss of flow and loss of heat sink transients from full power and flow. Analysis of these and earlier SHRT experiments constitutes a vital part of SASSYS validation, because it facilitates scrutiny of specific SASSYS models and of integrated code capability. 12 refs., 11 figs

  20. Safety characteristics of the integral fast reactor concept

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Cahalan, J.E.; Sevy, R.H.; Wright, A.E.

    1985-01-01

    The Integral Fast Reactor (IFR) concept is an innovative approach to liquid metal reactor design which is being studied by Argonne National Laboratory. Two of the key features of the IFR design are a metal fuel core design, based on the fuel technology developed at EBR-II, and an integral fuel cycle with a colocated fuel cycle facility based on the compact and simplified process steps made possible by the use of metal fuel. The paper presents the safety characteristics of the IFR concept which derive from the use of metal fuel. Liquid metal reactors, because of the low pressure coolant operating far below its boiling point, the natural circulation capability, and high system heat capacities, possess a high degree of inherent safety. The use of metallic fuel allows the reactor designer to further enhance the system capability for passive accommodation of postulated accidents

  1. Relevance of passive safety testing at the fast flux test facility to advanced liquid metal reactors - 5127

    International Nuclear Information System (INIS)

    Wootan, D.W.; Omberg, R.P.

    2015-01-01

    Significant cost and safety improvements can be realized in advanced liquid metal reactor (LMR) designs by emphasizing inherent or passive safety through crediting the beneficial reactivity feedbacks associated with core and structural movement. This passive safety approach was adopted for the Fast Flux Test Facility (FFTF), and an experimental program was conducted to characterize the structural reactivity feedback. Testing at the Rapsodie and EBR-II reactors had demonstrated the beneficial effect of reactivity feedback caused by changes in fuel temperature and core geometry mechanisms in a liquid metal fast reactor in a holistic sense. The FFTF passive safety testing program was developed to examine how specific design elements influenced dynamic reactivity feedback in response to a reactivity input and to demonstrate the scalability of reactivity feedback results from smaller cores like Rapsodie and EBR-II to reactor cores that were more prototypic in scale to reactors of current interest. The U.S. Department of Energy, Office of Nuclear Energy Advanced Reactor Technology program is in the process of preserving, protecting, securing, and placing in electronic format information and data from the FFTF, including the core configurations and data collected during the passive safety tests. Evaluation of these actual test data could provide insight to improve analytical methods which may be used to support future licensing applications for LMRs. (authors)

  2. Seventeen years of LMFBR experience: Experimental Breeder Reactor II (EBR-II)

    International Nuclear Information System (INIS)

    Perry, W.H.; Lentz, G.L.; Richardson, W.J.; Wolz, G.C.

    1982-01-01

    Operating experience at EBR-II over the past 17 years has shown that a sodium-cooled pool-type reactor can be safely and efficiently operated and maintained. The reactor has performed predictably and benignly during normal operation and during both unplanned and planned plant upsets. The duplex-tube evaporators and superheaters have never experienced a sodium/water leak, and the rest of the steam-generating system has operated without incident. There has been no noticeable degradation of the heat transfer efficiency of the evaporators and superheaters, except for the one superheater replaced in 1981. There has been no need to perform any chemical cleaning of steam-system components

  3. Time constants and feedback transfer functions of EBR-II [Experimental Breeder Reactor] subassembly types

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1986-09-01

    Time constants, feedback reactivity transfer functions and power coefficients are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a reactor kinetic code analysis for a step change in power. Due to the multiplicity of eigenvalues, there are several time constants for each nodal position in a subassembly. Compared with these calculated values are analytically derived values for the initial node of a given channel

  4. EBR-II high-ramp transients under computer control

    International Nuclear Information System (INIS)

    Forrester, R.J.; Larson, H.A.; Christensen, L.J.; Booty, W.F.; Dean, E.M.

    1983-01-01

    During reactor run 122, EBR-II was subjected to 13 computer-controlled overpower transients at ramps of 4 MWt/s to qualify the facility and fuel for transient testing of LMFBR oxide fuels as part of the EBR-II operational-reliability-testing (ORT) program. A computer-controlled automatic control-rod drive system (ACRDS), designed by EBR-II personnel, permitted automatic control on demand power during the transients

  5. Operational-safety advantages of LMFBR's: the EBR-II experience and testing program

    International Nuclear Information System (INIS)

    Sackett, J.I.; Lindsay, R.W.; Golden, G.H.

    1982-01-01

    LMFBR's contain many inherent characteristics that simplify control and improve operating safety and reliability. The EBR-II design is such that good advantage was taken of these characteristics, resulting in a vary favorable operating history and allowing for a program of off-normal testing to further demonstrate the safe response of LMFBR's to upsets. The experience already gained, and that expected from the future testing program, will contribute to further development of design and safety criteria for LMFBR's. Inherently safe characteristics are emphasized and include natural convective flow for decay heat removal, minimal need for emergency power and a large negative reactivity feedback coefficient. These characteristics at EBR-II allow for ready application of computer diagnosis and control to demonstrate their effectiveness in response to simulated plant accidents. This latter testing objective is an important part in improvements in the man-machine interface

  6. Irradiation of microphones in the EBR-II core

    International Nuclear Information System (INIS)

    Gavin, A.P.; Anderson, T.T.; Bobis, J.P.

    1976-06-01

    Six ANL developed high temperature microphone (acoustic detectors) have been exposed in flowing sodium in the In-Core Instrument Test Facility (INCOT) in the Experimental Breeder Reactor-II (EBR-II) for seven months without any indications of serious degradation of signal output due to the exposure. The YY05 experiment (EBR-II INCOT experiment designation) was performed to obtain data which would be useful in evaluating the ability of the microphones whose active elements are lithium niobate to serve as sensors for acoustic surveillance of fast breeder reactors. The reactor was at full power for 136 days of the experiment exposure period. The microphone temperatures varied from 371 0 C (700 0 F) to 621 0 C (1150 0 F). Neutron exposure varied from 2.64 x 10 22 nvt for the microphone at the elevation of the bottom of the EBR-II core to 0.24 x 10 22 nvt for the microphone at the elevation of the top of an EBR-II fuel assembly. The maximum gamma dose was 5 x 10 12 rads

  7. A status report on the integral fast reactor fuels and safety program

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Seidel, B.R.

    1990-01-01

    The integral fast reactor (IFR) is an advanced liquid-metal-cooled reactor (ALMR) concept being developed at Argonne National Laboratory. The IFR program is specifically responsible for the irradiation performance, advanced core design, safety analysis, and development of the fuel cycle for the US Department of Energy's ALMR program. The basic elements of the IFR concept are (a) metallic fuel, (b) liquid-sodium cooling, (c) modular, pool-type reactor configuration, (d) an integral fuel cycle based upon pyrometallurgical processing. The most significant safety aspects of the IFR program result from its unique fuel design, a ternary alloy of uranium, plutonium, and zirconium. This fuel is based on experience gained through > 25 yr operation of the Experimental Breeder Reactor II (EBR-II) with a uranium alloy metallic fuel. The ultimate criteria for fuel pin design is the overall integrity at the target burnup. The probability of core meltdown is remote; however, a theoretical possibility of core meltdown remains. The next major step in the IFR development program will be a full-scale pyroprocessing demonstration to be carried out in conjunction with EBR-II. The IFR fuel cycle closure based on pyroprocessing will also have a dramatic impact on waste management options and on actinide recycling

  8. EBR-II [Experimental Breeder Reactor-II] system surveillance using pattern recognition software

    International Nuclear Information System (INIS)

    Mott, J.E.; Radtke, W.H.; King, R.W.

    1986-02-01

    The problem of most accurately determining the Experimental Breeder Reactor-II (EBR-II) reactor outlet temperature from currently available plant signals is investigated. Historically, the reactor outlet pipe was originally instrumented with 8 temperature sensors but, during 22 years of operation, all these instruments have failed except for one remaining thermocouple, and its output had recently become suspect. Using pattern recognition methods to compare values of 129 plant signals for similarities over a 7 month period spanning reconfiguration of the core and recalibration of many plant signals, it was determined that the remaining reactor outlet pipe thermocouple is still useful as an indicator of true mixed mean reactor outlet temperature. Application of this methodology to investigate one specific signal has automatically validated the vast majority of the 129 signals used for pattern recognition and also highlighted a few inconsistent signals for further investigation

  9. Power and power-to-flow reactivity transfer functions in EBR-II [Experimental Breeder Reactor II] fuel

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1989-01-01

    Reactivity transfer functions are important in determining the reactivity history during a power transient. Overall nodal transfer functions have been calculated for different subassembly types in the Experimental Breeder Reactor II (EBR-II). Steady-state calculations for temperature changes and, hence, reactivities for power changes have been separated into power and power-to-flow-dependent terms. Axial nodal transfer functions separated into power and power-to-flow-dependent components are reported in this paper for a typical EBR-II fuel pin. This provides an improved understanding of the time dependence of these components in transient situations

  10. Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 1: Laboratory Experiments and Application to EBR-II Secondary Sodium System

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Sherman

    2005-04-01

    Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/or to comply with decommissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidified carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, U.S.A. This report is Part 1 of a two-part report. It is divided into three sections. The first section describes the chemistry of carbon dioxide-water-sodium reactions. The second section covers the laboratory experiments that were conducted in order to develop the residual sodium deactivation process. The third section discusses the application of the deactivation process to the treatment of residual sodium within the EBR-II secondary sodium cooling system. Part 2 of the report, under separate cover, describes the application of the technique to residual sodium

  11. Fast reactor operation in the United States

    International Nuclear Information System (INIS)

    Smith, R.R.; Cissel, D.W.

    1978-01-01

    Of the many American facilities dedicated to fast reactor technology, six qualify as liquid-metal-cooled fast reactors. All of these satisfy the following criteria: an unmoderated neutron spectrum, highly enriched fuel material, substantial heat production, and the use of a liquid metal coolant. These include the following: EBR-I Clementine, LAMPRE, EBR-II, EFFBR, and SEFOR. Collectively, these facilities encompassed all of the more important features of liquid-metal-cooled fast reactor technology. Coolant types ranged from mercury in Clementine, to NaK in EBR-I, and sodium in the others. Fuels included enriched-uranium metallic alloys in EBR-I, EBR-II, and EFFBR; metallic plutonium in Clementine; molten plutonium alloy in LAMPRE; and a mixed UO 2 -PuO 2 ceramic in SEFOR. Heat removal techniques ranged from air-blast cooling in LAMPRE and SEFOR; steam-electrical generation in EBR-I, EBR-II, and EFFBR; to a mercury-to-water heat dump in Clementine. Operational experience with such diverse systems has contributed heavily to the U.S. Each of the six systems is described from the viewpoints of purpose, history, design, and operation. Attempts are made to limit descriptive material to the most important features and to refer the reader to a few select references if additional information is needed

  12. Behavior of EBR-II Mk-V-type fuel elements in simulated loss-of-flow tests

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tsai, H.; Billone, M.C.; Holland, J.W.; Kramer, J.M.

    1993-01-01

    Three furnace heating tests were conducted with irradiated, HT9-clad and U-19wt%Pu-10wt%Zr-alloy, EBR-II Mk-V-type fuel elements to evaluate the behavior that could be expected during a loss-of-flow event in the reactor. In general, very significant safety margins for cladding breaching have been demonstrated in these tests, under conditions that would envelop a bounding unlikely loss-of-flow event in EBR-II. Highlights of the test results are presented, as are discussions of the cladding breaching mechanisms, axial fuel motion, and fuel surface liquefaction that were found in these tests. (orig.)

  13. Remote, under-sodium fuel handling experience at EBR-II

    International Nuclear Information System (INIS)

    King, R.W.; Planchon, H.P.

    1995-01-01

    The EBR-II is a pool-type design; the reactor fuel handling components and entire primary-sodium coolant system are submerged in the primary tank, which is 26 feet in diameter, 26 feet high, and contains 86,000 gallons of sodium. Since the reactor is submerged in sodium, fuel handling operations must be performed blind, making exact positioning and precision control of the fuel handling system components essential. EBR-II operated for 30 years, and the fuel handling system has performed approximately 25,000 fuel transfer operations in that time. Due to termination of the IFR program, EBR-II was shut down on September 30, 1994. In preparation for decommissioning, all fuel in the reactor will be transferred out of EBR-II to interim storage. This intensive fuel handling campaign will last approximately two years, and the number of transfers will be equivalent to the fuel handling done over about nine years of normal reactor operation. With this demand on the system, system reliability will be extremely important. Because of this increased demand, and considering that the system has been operating for about 32 years, system upgrades to increase reliability and efficiency are proceeding. Upgrades to the system to install new digital, solid state controls, and to take advantage of new visualization technology, are underway. Future reactor designs using liquid metal coolant will be able to incorporate imaging technology now being investigated, such as ultraviolet laser imaging and ultrasonic imaging

  14. In-reactor cladding breach of EBR-II driver-fuel elements

    International Nuclear Information System (INIS)

    Seidel, B.R.; Einziger, R.E.

    1977-01-01

    Knowledge of performance and minimum useful element lifetime of Mark-II driver-fuel elements is required to maintain a high plant operating capacity factor with maximum fuel utilization. To obtain such knowledge, intentional cladding breach has been obtained in four run-to-cladding-breach Mark-II experimental driver-fuel subassemblies operating under normal conditions in EBR-II. Breach and subsequent fission-product release proved benign to reactor operations. The breaches originated on the outer surface of the cladding in the root of the restrainer dimples and were intergranular. The Weibull distribution of lifetime accurately predicts the observed minimum useful element lifetime of 10 at.% burnup, with breach ensuing shortly thereafter

  15. Feedback components of a U20Pu10Zr-fueled compared to a U10Zr-fueled EBR-II

    International Nuclear Information System (INIS)

    Meneghetti, D.; Kucera, D.A.

    1988-01-01

    Calculated feedback components of the regional contributions of the power reactivity decrements (PRDs) and of the temperature coefficients of reactivity of a U20Pu10Zr-fueled and of a U10Zr-fueled Experimental Breeder Reactor II (EBR-II) are compared. The PRD components are also separated into power-to-flow dependent and solely power dependent parts. The effects of these values upon quantities useful for indicating the comparative potential inherent safety characteristics of these EBR-II loadings are presented

  16. Operating limits for subassembly deformation in EBR-II

    International Nuclear Information System (INIS)

    Bottcher, J.H.

    1977-01-01

    The deformation of a subassembly in response to the core environment is frequently the life limiting factor for that component in an LMFBR. Deformation can occur as diametral and axial growth or bowing of the subassembly. Such deformation has caused several handling problems in both the core and the storage basket of EBR-II and may also have contributed to reactivity anomalies during reactor operation. These problems generally affect plant availability but the reactivity anomalies could lead to a potential safety hazard. Because of these effects the deformation mechanisms must be understood and modeled. Diametral and axial growth of subassembly ducts in EBR-II is due to swelling and creep and is a function of temperature, neutron fluence and stress. The source of stress in a duct is the hydraulic pressure difference across the wall. By coupling the calculated subassembly growth rate to the available clearance in the core or storage basket a limiting neutron fluence, or exposure, can be established

  17. Alternate form and placement of short lived reactor waste and associated fuel hardware for decommissioning of EBR-II

    Energy Technology Data Exchange (ETDEWEB)

    Planchon, H.P.; Singleterry, R.C. Jr.

    1995-12-01

    Upon the termination of EBR-II operation in 1994, the mission has progressed to decommissioning and waste cleanup of the facility. The simplest method to achieve this goal is to bury the raw fuel and activated steel in an approved burial ground or deep geologic repository. While this might be simple, it could be very expensive, consume much needed burial space for other materials, and leave large amounts of fissile easily available to future generations. Also, as with any operation, an associated risk to personnel and the public from the buried waste exists. To try and reduce these costs and risks, alternatives to burial are sought. One alternative explored here for EBR-II is to condition the fuel and store the fission products and steel either permanently or temporarily in the sealed primary boundary of the decommissioned reactor. The first problem is to identify which subassemblies are going to be conditioned and their current composition and decay time. The next problem is to identify the conditioning process and determine the composition and form of the waste streams. The volume, mass, heat, and curie load of the waste streams needs to be determined so a waste-assembly can be designed. The reactor vessel and internals need to be analyzed to determine if they can handle these loads. If permanent storage is the goal, then mechanisms for placing the waste-assembly in the reactor vessel and sealing the vessel are needed. If temporary storage is the goal, then mechanisms for waste-assembly placement and retrieval are needed. This paper answers the technical questions of volume, mass, heat, and curie loads while just addressing the other questions found in a safety analysis. The final conclusion will compare estimated risks from the burial option and this option.

  18. History of fast reactor development in U.S.A.-I

    International Nuclear Information System (INIS)

    Ninokata, Hisashi; Sasao, Nobuyki

    2007-01-01

    History and present state of fast reactor was reviewed in series. As a history of fast reactor development in U.S.A. - I, this third lecture presented the dawn of the fast reactor development in the USA. The first fast reactor was the Clementine reactor with plutonium fuels and mercury coolant. The LAMPRE-1 reactor was the first sodium cooled and molten plutonium reactor. Experimental breeder reactor (EBR-1) was the first reactor to produce electricity and four kinds of fuels were loaded. Zero-power reactors were constructed to conduct reactor physics experiments on fast reactors. Today there are renewed interests in fast reactors due to their ability to fission actinides and reduce radioactive wastes. (T. Tanaka)

  19. I. Reactor safety (including comments on criticisms of WASH-1400)

    International Nuclear Information System (INIS)

    1976-01-01

    A major concern in any nuclear power programme is a reactor accident resulting in a large release of radioactivity to the environment. Serious reactor accidents are possible and the risk of such accidents cannot be reduced to zero i.e. absolute safety cannot be assured. All that can be expected is that the measures used to ensure safety in the design and operation of a reactor are such that the risk of accident is reduced to acceptably low levels. No member of the general public is known to have died or been injured as a result of an accident in over 1000 commercial nuclear power reactor-years. Some accidents in power reactors in operation today have come close enough to an environmental release of radioactivity to cause serious public concern about future safety. Apparent inadequacies in safety practices disclosed by former members of the nuclear power industry have added to this concern. To obtain an objective appraisal of the reactor safety issue this report examines the measures taken in the design and operation of nuclear reactors to reduce the probability of accident to acceptably low levels

  20. Treatment of EBR-I NaK mixed waste at Argonne National Laboratory and subsequent land disposal at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Herrmann, S. D.; Buzzell, J. A.; Holzemer, M. J.

    1998-01-01

    Sodium/potassium (NaK) liquid metal coolant, contaminated with fission products from the core meltdown of Experimental Breeder Reactor I (EBR-I) and classified as a mixed waste, has been deactivated and converted to a contact-handled, low-level waste at Argonne's Sodium Component Maintenance Shop and land disposed at the Radioactive Waste Management Complex. Treatment of the EBR-I NaK involved converting the sodium and potassium to its respective hydroxide via reaction with air and water, followed by conversion to its respective carbonate via reaction with carbon dioxide. The resultant aqueous carbonate solution was solidified in 55-gallon drums. Challenges in the NaK treatment involved processing a mixed waste which was incompletely characterized and difficult to handle. The NaK was highly radioactive, i.e. up to 4.5 R/hr on contact with the mixed waste drums. In addition, the potential existed for plutonium and toxic characteristic metals to be present in the NaK, resultant from the location of the partial core meltdown of EBR-I in 1955. Moreover, the NaK was susceptible to degradation after more than 40 years of storage in unmonitored conditions. Such degradation raised the possibility of energetic exothermic reactions between the liquid NaK and its crust, which could have consisted of potassium superoxide as well as hydrated sodium/potassium hydroxides

  1. Treatment of EBR-I NaK mixed waste at Argonne National Laboratory and subsequent land disposal at the Idaho National Engineering and Environmental Laboratory.

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, S. D.; Buzzell, J. A.; Holzemer, M. J.

    1998-02-03

    Sodium/potassium (NaK) liquid metal coolant, contaminated with fission products from the core meltdown of Experimental Breeder Reactor I (EBR-I) and classified as a mixed waste, has been deactivated and converted to a contact-handled, low-level waste at Argonne's Sodium Component Maintenance Shop and land disposed at the Radioactive Waste Management Complex. Treatment of the EBR-I NaK involved converting the sodium and potassium to its respective hydroxide via reaction with air and water, followed by conversion to its respective carbonate via reaction with carbon dioxide. The resultant aqueous carbonate solution was solidified in 55-gallon drums. Challenges in the NaK treatment involved processing a mixed waste which was incompletely characterized and difficult to handle. The NaK was highly radioactive, i.e. up to 4.5 R/hr on contact with the mixed waste drums. In addition, the potential existed for plutonium and toxic characteristic metals to be present in the NaK, resultant from the location of the partial core meltdown of EBR-I in 1955. Moreover, the NaK was susceptible to degradation after more than 40 years of storage in unmonitored conditions. Such degradation raised the possibility of energetic exothermic reactions between the liquid NaK and its crust, which could have consisted of potassium superoxide as well as hydrated sodium/potassium hydroxides.

  2. Recent operating experiences and programs at EBR-II

    International Nuclear Information System (INIS)

    Lentz, G.L.

    1984-01-01

    Experimental Breeder Reactor No. II (EBR-II) is a pool-type, unmoderated, sodium-cooled reactor with a design power of 62.5 MWt and an electrical generation capability of 20 MW. It has been operated by Argonne National Laboratory for the US government for almost 20 years. During that time, it has operated safely and has demonstrated stable operating characteristics, high availability, and excellent performance of its sodium components. The 20 years of operating experience of EBR-II is a valuable resource to the nuclear community for the development and design of future LMFBR's. Since past operating experience has been extensively reported, this report will focus on recent programs and events

  3. Review process and quality assurance in the EBR-II probabilistic risk assessment

    International Nuclear Information System (INIS)

    Roglans, J.; Hill, D.J.; Ragland, W.A.

    1992-01-01

    A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor II (EBR-II), a Department of Energy (DOE) Category A reactor, has recently been completed at Argonne National Laboratory (ANL). Within the scope of the ANL QA Programs, a QA Plan specifically for the EBR-II PRA was developed. The QA Plan covered all aspects of the PRA development, with emphasis on the procedures for document and software control, and the internal and external review process. The effort spent in the quality assurance tasks for the EBR-II PRA has reciprocated by providing acceptance of the work and confidence in the quality of the results

  4. EBR-II argon cooling system restricted fuel handling I and C upgrade

    International Nuclear Information System (INIS)

    Start, S.E.; Carlson, R.B.; Gehrman, R.L.

    1995-01-01

    The instrumentation and control of the Argon Cooling System (ACS) restricted fuel handling control system at Experimental Breeder Reactor II (EBR-II) is being upgraded from a system comprised of many discrete components and controllers to a computerized system with a graphical user interface (GUI). This paper describes the aspects of the upgrade including reasons for the upgrade, the old control system, upgrade goals, design decisions, philosophies and rationale, and the new control system hardware and software

  5. Liquid metal reactor cover gas purification and analysis in the USA

    International Nuclear Information System (INIS)

    Allen, K.J.; Meadows, G.E.; Schuck, W.J.

    1986-09-01

    Two sodium cooled reactors are currently being operated in the United States of America for the US Department of Energy. These are Experimental Breeder Reactor 11, EBR-11, and the Fast Flux Test Facility, FFTF. EBR-11 is located near Idaho Falls, Idaho, and the FFTF is near Richland, Washington. These reactors are currently engaged in a wide range of testing including fuels and materials tests, and plant system performance and safety development. The US DOE program also includes designs of a next generation sodium cooled power reactor. The FFTF and EBR-11 communities are providing input to these designs. This paper discusses the efforts to develop and operate cover gas systems for the sodium cooled nuclear reactor program in the USA

  6. Nuclear instrumentation system operating experience and nuclear instrument testing in the EBR-II

    International Nuclear Information System (INIS)

    Yingling, G.E.; Curran, R.N.

    1980-01-01

    In March of 1972 three wide range nuclear channels were purchased from Gulf Atomics Corporation and installed in EBR-II as a test. The three channels were operated as a test until April 1975 when they became a permanent part of the reactor shutdown system. Also described are the activities involved in evaluating and qualifying neutron detectors for LMFBR applications. Included are descriptions of the ANL Components Technology Division Test Program and the EBR-II Nuclear Instrument Test Facilities (NITF) used for the in-reactor testing and a summary of program test results from EBR-II

  7. Experience with advanced driver fuels in EBR-II

    International Nuclear Information System (INIS)

    Lahm, C.E.; Koenig, J.F.; Pahl, R.G.; Porter, D.L.; Crawford, D.C.

    1992-01-01

    This paper discusses several metallic fuel element designs which have been tested and used as driver fuel in Experimental Breeder Reactor II (EBR-II). The most recent advanced designs have all performed acceptably in EBR-H and can provide reliable performance to high burnups. Fuel elements tested have included use of U-l0Zr metallic fuel with either D9, 316 or HT9 stainless steel cladding; the D9 and 316-clad designs have been used as standard driver fuel. Experimental data indicate that fuel performance characteristics are very similar for the various designs tested. Cladding materials can be selected that optimize performance based on reactor design and operational goals

  8. System modeling and simulation at EBR-II

    International Nuclear Information System (INIS)

    Dean, E.M.; Lehto, W.K.; Larson, H.A.

    1986-01-01

    The codes being developed and verified using EBR-II data are the NATDEMO, DSNP and CSYRED. NATDEMO is a variation of the Westinghouse DEMO code coupled to the NATCON code previously used to simulate perturbations of reactor flow and inlet temperature and loss-of-flow transients leading to natural convection in EBR-II. CSYRED uses the Continuous System Modeling Program (CSMP) to simulate the EBR-II core, including power, temperature, control-rod movement reactivity effects and flow and is used primarily to model reactivity induced power transients. The Dynamic Simulator for Nuclear Power Plants (DSNP) allows a whole plant, thermal-hydraulic simulation using specific component and system models called from libraries. It has been used to simulate flow coastdown transients, reactivity insertion events and balance-of-plant perturbations

  9. Transient behaviour and inherent safety research of LMFBR power plants

    International Nuclear Information System (INIS)

    Zhu Jizhou; Wang Ping; Yu Baoan

    1995-06-01

    Fast Breeder Reactor will be the next generation reactor for nuclear electricity production, the development of FBR will give the profits of efficient utilization of nuclear resources. The fast reactor safety analysis is the foundation and key of FBR research work. Therefore, a block-oriented mathematical model for the primary system of LMFBRs was constructed, and the dynamic simulating results which have been carried out on micro-computer are presented for various transients, i.e. TOP, LOFS, LOHS. The results agree well with the corresponding results of the code NATDEMO and experiment results of EBR-II. Based on previous analysis, various methods are discussed to confirm the inherent safety of LMFBR

  10. Experimental and theoretical investigations on the dynamic response of EBR-II ducts under pressure pulse loading

    International Nuclear Information System (INIS)

    Chopra, P.S.; Srinivas, S.

    1975-01-01

    In order to assess the potential damage to hexagonal subassembly ducts (cans) that may result from rapid gas release from a failed element the EBR-II project has conducted experiments and analyses. Additional experimental and analytical investigations are now being conducted to assure fail-safety of the ducts. Fail-safety is defined as the ability of a duct to withstand pressure pulses from failed elements during all reactor conditions without damage to adjacent ducts or any other problems in fuel handling. The results of 93 EBR-II duct tests conducted primarily by Koenig have been reported previously. The results of empirical correlations of some of these tests to determine the influence of several variables on the pressure pulse experienced by a duct and on the duct deformation are presented. The variables include the type of gas contained in the simulated element (tube), the element and duct materials, the presence or absence of flow restrictors in the element, and the way gas was released. 8 references. (auth)

  11. Advanced liquid metal reactor development at Argonne National Laboratory during the 1980s

    International Nuclear Information System (INIS)

    Wade, D.C.

    1990-01-01

    Argonne National Laboratory's (ANL'S) effort to pursue the exploitation of liquid metal cooled reactor (LMR) characteristics has given rise to the Integral Fast Reactor (IFR) concept, and has produced substantial technical advancement in concept implementation which includes demonstration of high burnup capability of metallic fuel, demonstration of injection casting fabrication, integral demonstration of passive safety response, and technical feasibility of pyroprocessing. The first half decade of the 90's will host demonstration of the IFR closed fuel cycle technology at the prototype scale. The EBR-II reactor will be fueled with ternary alloy fuel in HT-9 cladding and ducts, and pyroprocessing and injection casting refabrication of EBR-II fuel will be conducted using near-commercial sized equipment at the Fuel cycle Facility (FCF) which is co-located adjacent to EBR-II. Demonstration will start in 1992. The demonstration of passive safety response achievable with the IFR design concept, (already done in EBR-II in 1986) will be repeated in the mid 90's using the IFR prototype recycle fuel from the FCF. The demonstration of scrubbing of the reprocessing fission product waste stream, with recycle of the transuranics to the reactor for consumption, will also occur in the mid 90's. 30 refs

  12. Development of a graphical user interface allowing use of the SASSYS LMR systems analysis code as an EBR-II interactive simulator

    International Nuclear Information System (INIS)

    Garner, P.L.; Briggs, L.L.; Gross, K.C.; Ku, J.Y.; Staffon, J.D.

    1994-01-01

    The SASSYS computer program for safety analyses of liquid-metal- cooled fast reactors has been adapted for use as the simulation engine under the graphical user interface provided by the GRAFUN and HIST programs and the Data Views software package under the X Window System on UNIX-based computer workstations to provide a high fidelity, real-time, interactive simulator of the Experimental Breeder Reactor Number II (EBR-II) plant. In addition to providing analysts with an interactive way of performing safety case studies, the simulator can be used to investigate new control room technologies and to supplement current operator training

  13. The EBR-II steam generating system - operation, maintenance, and inspection

    International Nuclear Information System (INIS)

    Buschman, H.W.; Penney, W.H.; Longua, K.J.

    2002-01-01

    The Experimental Breeder Reactor II (EBR-II) has operated for 20 years at the Idaho National Engineering Laboratory near Idaho Falls. EBR-II is a Liquid Metal Fast Breeder Reactor (LMFBR) with integrated power producing capability. EBR-II has operated at a capacity factor over 70% in the past few years. Superheated steam is produced by eight natural circulation evaporators, two superheaters, and a conventional steam drum. Steam throttle conditions are 438 C and 8.62 MPa. The designs of the evaporators and superheaters are essentially identical; both are counterflow units with low pressure nonradioactive sodium on the shell side. During the 20 years of operation, components of the steam generator have been subjected to a variety of inspections including visual, dimensional, and ultrasonic. One superheater was removed from service because of anomalous performance and was replaced with an evaporator which was removed, examined, and converted into a superheater. Overall operating experience of the system has been excellent and essentially trouble free. Inspections have not revealed any conditions that are performance or life limiting. (author)

  14. X447 EBR-II Experiment Benchmark for Verification of Audit Code of SFR Metal Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Won; Bae, Moo-Hoon; Shin, Andong; Suh, Namduk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    In KINS (Korea Institute of Nuclear Safety), to prepare audit calculation of PGSFR licensing review, the project has been started to develop the regulatory technology for SFR system including a fuel area. To evaluate the fuel integrity and safety during an irradiation, the fuel performance code must be used for audit calculation. In this study, to verify the new code system, the benchmark analysis is performed. In the benchmark, X447 EBR-II experiment data are used. Additionally, the sensitivity analysis according to mass flux change of coolant is performed. In case of LWR fuel performance modeling, various and advanced models have been proposed and validated based on sufficient in-reactor test results. However, due to the lack of experience of SFR operation, the current understanding of SFR fuel behavior is limited. In this study, X447 EBR-II Experiment data are used for benchmark. The fuel composition of X447 assembly is U-10Zr and PGSFR also uses this composition in initial phase. So we select X447 EBR-II experiment for benchmark analysis. Due to the lack of experience of SFR operation and data, the current understanding of SFR fuel behavior is limited. However, in order to prepare the licensing of PGSFR, regulatory audit technologies of SFR must be secured. So, in this study, to verify the new audit fuel performance analysis code, the benchmark analysis is performed using X447 EBR-II experiment data. Also, the sensitivity analysis with mass flux change of coolant is performed. In terms of verification, it is considered that the results of benchmark and sensitivity analysis are reasonable.

  15. X447 EBR-II Experiment Benchmark for Verification of Audit Code of SFR Metal Fuel

    International Nuclear Information System (INIS)

    Choi, Yong Won; Bae, Moo-Hoon; Shin, Andong; Suh, Namduk

    2016-01-01

    In KINS (Korea Institute of Nuclear Safety), to prepare audit calculation of PGSFR licensing review, the project has been started to develop the regulatory technology for SFR system including a fuel area. To evaluate the fuel integrity and safety during an irradiation, the fuel performance code must be used for audit calculation. In this study, to verify the new code system, the benchmark analysis is performed. In the benchmark, X447 EBR-II experiment data are used. Additionally, the sensitivity analysis according to mass flux change of coolant is performed. In case of LWR fuel performance modeling, various and advanced models have been proposed and validated based on sufficient in-reactor test results. However, due to the lack of experience of SFR operation, the current understanding of SFR fuel behavior is limited. In this study, X447 EBR-II Experiment data are used for benchmark. The fuel composition of X447 assembly is U-10Zr and PGSFR also uses this composition in initial phase. So we select X447 EBR-II experiment for benchmark analysis. Due to the lack of experience of SFR operation and data, the current understanding of SFR fuel behavior is limited. However, in order to prepare the licensing of PGSFR, regulatory audit technologies of SFR must be secured. So, in this study, to verify the new audit fuel performance analysis code, the benchmark analysis is performed using X447 EBR-II experiment data. Also, the sensitivity analysis with mass flux change of coolant is performed. In terms of verification, it is considered that the results of benchmark and sensitivity analysis are reasonable

  16. EBR-II experience with sodium cleaning and radioactivity decontamination

    International Nuclear Information System (INIS)

    Ruther, W.E.; Smith, C.R.F.

    1978-01-01

    The EBR-II is now in Its 13th year of operation. During that period more than 2400 subassemblies have been cleaned of sodium without a serious incident of any kind by a two-step process developed at Argonne. Sodium cleaning and decontamination of other reactor components has been performed only on the relatively few occasions in which a repair or replacement has been required. A summary of the EBR-II experience will be presented. A new facility will be described for the improved cleaning and maintenance of sodium-wetted primary components

  17. EBR-II experience with sodium cleaning and radioactivity decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Ruther, W E; Smith, C R.F. [Argonne National Laboratory, Argonne (United States)

    1978-08-01

    The EBR-II is now in Its 13th year of operation. During that period more than 2400 subassemblies have been cleaned of sodium without a serious incident of any kind by a two-step process developed at Argonne. Sodium cleaning and decontamination of other reactor components has been performed only on the relatively few occasions in which a repair or replacement has been required. A summary of the EBR-II experience will be presented. A new facility will be described for the improved cleaning and maintenance of sodium-wetted primary components.

  18. Liquid metal reactor cover gas purification and analysis in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Allen, K J [Argonne National Laboratory, EBR-II Division, Idaho Falls, ID (United States); Meadows, G E; Schuck, W J [Westinghouse Hanford Company, Richland, WA (United States)

    1987-07-01

    Two sodium cooled reactors are currently being operated In the United States of America for the U.S. Department of Energy. These are Experimental Breeder Reactor II, EBR-ll, and the Fast Flux Test Facility, FFTF. EBR-ll is located near Idaho Falls, Idaho and the FFTF is near Rich land, Washington. These reactors are currently engaged In a wide range of testing including fuels and materials tests, and plant system performance and safety development. The U.S. DOE program also includes designs of a next generation sodium cooled power reactor. This paper discusses the efforts to develop and operate cover gas systems for the sodium cooled nuclear reactor program in the USA.

  19. Liquid metal reactor cover gas purification and analysis in the USA

    International Nuclear Information System (INIS)

    Allen, K.J.; Meadows, G.E.; Schuck, W.J.

    1987-01-01

    Two sodium cooled reactors are currently being operated In the United States of America for the U.S. Department of Energy. These are Experimental Breeder Reactor II, EBR-ll, and the Fast Flux Test Facility, FFTF. EBR-ll is located near Idaho Falls, Idaho and the FFTF is near Rich land, Washington. These reactors are currently engaged In a wide range of testing including fuels and materials tests, and plant system performance and safety development. The U.S. DOE program also includes designs of a next generation sodium cooled power reactor. This paper discusses the efforts to develop and operate cover gas systems for the sodium cooled nuclear reactor program in the USA

  20. Evidence of fast non-linear feedback in EBR-II rod-drop measurements

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1987-06-01

    Feedback reactivities determine the time dependence of a reactor during and after a transient initiating event. Recent analysis of control-rod drops in the Experimental Breeder Reactor II (EBR-II) Reactor has indicated that some relatively fast feedback may exist which cannot be accounted for by the linear feedback mechanisms. The linear and deduced non-linear feedback reactivities from a control-rod drop in EBR-II run 93A using detailed temperature coefficients of reactivity in the EROS kinetics code have been reported. The transient analyses have now been examined in more detail for times close to the drop to ascertain if additional positive reactivity is being built-in early in the drop which could be gradually released later in the drop

  1. Studies related to emergency decay heat removal in EBR-II

    International Nuclear Information System (INIS)

    Singer, R.M.; Gillette, J.L.; Mohr, D.; Tokar, J.V.; Sullivan, J.E.; Dean, E.M.

    1979-01-01

    Experimental and analytical studies related to emergency decay heat removal by natural circulation in the EBR-II heat transport circuits are described. Three general categories of natural circulation plant transients are discussed and the resultant reactor flow and temperature response to these events are presented. these categories include the following: (1) loss of forced flow from decay power and low initial flow rates; (2) reactor scram with a delayed loss of forced flow; and (3) loss of forced flow with a plant protective system activated scram. In all cases, the transition from forced to natural convective flow was smooth and the peak in-core temperature rises were small to moderate. Comparisons between experimental measurements in EBR-II and analytical predictions of the NATDEMO code are included

  2. Tightly coupled transient analysis of EBR-II: An INEL [Idaho National Engineering Laboratory] Engineering Simulation Center Project

    International Nuclear Information System (INIS)

    Makowitz, H.; Barber, D.G.; Dean, E.M.

    1989-01-01

    A ''Tightly Coupled'' transient analysis system for the Experimental Breeder Reactor-II (FBR-II) is presently under development. The system consists of a faster-than-real-time high fidelity reactor simulation, advanced graphics displays, expert system coupling, and real-time data coupling via the EBR-II data acquisition system to and from the plant and the control system. The first generation software has been developed and tested. Various subsystem couplings and the total system integration have been checked out. A ''Lightly Coupled'' EBR-II reactor startup was conducted in August of 1988 as a demonstration of the system. This system should enhance the diagnostic and prognostic capability of EBR-II in the near term and provide automatic control during startup and power maneuvering in the future, as well as serve as a testbed for new control system development for advanced reactors. 8 refs., 7 figs., 1 tab

  3. Off-normal performance of EBR-II [Experimental Breeder Reactor] driver fuel

    International Nuclear Information System (INIS)

    Seidel, B.R.; Batte, G.L.; Lahm, C.E.; Fryer, R.M.; Koenig, J.F.; Hofman, G.L.

    1986-09-01

    The off-normal performance of EBR-II Mark-II driver fuel has been more than satisfactory as demonstrated by robust reliability under repeated transient overpower and undercooled loss-of-flow tests, by benign run-beyond-cladding-breach behavior, and by forgiving response to fabrication defects including lack of bond. Test results have verified that the metallic driver fuel is very tolerant of off-normal events. This behavior has allowed EBR-II to operate in a combined steady-state and transient mode to provide test capability without limitation from the metallic driver fuel

  4. Performance of advanced oxide fuel pins in EBR-II

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Jensen, S.M.; Hales, J.W.; Karnesky, R.A.; Makenas, B.J.

    1986-05-01

    The effects of design and operating parameters on mixed-oxide fuel pin irradiation performance were established for the Hanford Engineering Development Laboratory (HEDL) advanced oxide EBR-II test series. Fourteen fuel pins breached in-reactor with reference 316 SS cladding. Seven of the breaches are attributed to FCMI. Of the remaining seven breached pins, three are attributed to local cladding over-temperatures similar to the breach mechanism for the reference oxide pins irradiated in EBR-II. FCCI was found to be a contributing factor in two high burnup, i.e., 11.7 at. % breaches. The remaining two breaches were attributed to mechanical interaction of UO 2 fuel and fission products accumulated in the lower cladding insulator gap, and a loss of cladding ductility possibly due to liquid metal embrittlement. Fuel smear density appears to have the most significant impact on lifetime. Quantitative evaluations of cladding diameter increases attributed to FCMI, established fuel smear density, burnup, and cladding thickness-to-diameter ratio as the major parameters influencing the extent of cladding strain

  5. In-pile experiments and test facilities proposed for fast reactor safety

    International Nuclear Information System (INIS)

    Grolmes, M.A.; Avery, R.; Goldman, A.J.; Fauske, H.K.; Marchaterre, J.F.; Rose, D.; Wright, A.E.

    1976-01-01

    The role of in-pile experiments in support of the resolution of fast breeder reactor safety and licensing issues has been re-examined, with emphasis on key safety issues. Experiment needs have been related to the specific characteristics of these safety issues and to realistic requirements for additional test facility capabilities which can be achieved and utilized within the next ten years. It is found that those safety issues related to the energetics of core disruptive accidents have the largest impact on new facility requirements. However, utilization of existing facilities with modifications can provide for a continuing increase in experiment capability and experiment results on a timely bases. Emphasis has been placed upon maximum utilization of existing facilities and minimum requirements for new facilities. This evaluation has concluded that a new Safety Test Facility, STF, along with major modifications to the EBR II facility, improvement in TREAT capabilities, the existing Sodium Loop Safety Facility and corresponding Support Facilities provide the essential elements of the Safety Research Experiment Facilities (SAREF) required for resolution of key issues

  6. Planning for closure and deactivation of the EBR-II complex

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Henslee, S.P.; Poland, H.F.; Wells, P.B.

    1997-01-01

    In January 1994, DOE terminated the Integral Fast Reactor (IFR) Program. Argonne National Laboratory-West (ANL-W) prepared a detailed plan to put Experimental Breeder Reactor-II (EBR-II) in a safe condition, including removal of irradiated fueled subassemblies from the plant, transfer of subassemblies, and removal and stabilization of primary and secondary sodium liquid heat transfer metal. The goal of deactivation is to stabilize the EBR-II complex until decontamination and decommissioning (D ampersand D) is implemented, thereby minimizing maintenance and surveillance. Deactivation of a sodium cooled reactor presents unique concerns. Residual sodium in the primary and secondary systems must be either reacted or inerted to preclude concerns with explosive sodium-air reactions. Also, residual sodium on components will effectively solder these items in place, making removal unfeasible. Several special cases reside in the primary system, including primary cold traps, a cesium trap, a cover gas condenser, and systems containing sodium-potassium alloy. The sodium or sodium-potassium alloy in these components must be reacted in place or the components removed. The Sodium Components Maintenance Shop at ANL-W provides the capability for washing primary components, removing residual quantities of sodium while providing some decontamination capacity. Considerations need to be given to component removal necessary for providing access to primary tank internals for D ampersand D activities, removal of hazardous materials, and removal of stored energy sources. ANL-W's plan for the deactivation of EBR-II addresses these issues, providing for an industrially and radiologically safe complex, requiring minimal surveillance during the interim period between deactivation and D ampersand D. Throughout the deactivation and closure of the EBR-II complex, federal environmental concerns will be addressed, including obtaining the proper permits for facility condition and waste processing

  7. The EBR-II Probabilistic Risk Assessment: Results and insights

    International Nuclear Information System (INIS)

    Hill, D.J.; Ragland, W.A.; Roglans, J.

    1993-01-01

    This paper summarizes the results from the recently completed EBR-II Probabilistic Risk Assessment (PRA) and provides an analysis of the source of risk of the operation of EBR-II from both internal and external initiating events. The EBR-II PRA explicitly accounts for the role of reactivity feedbacks in reducing fuel damage. The results show that the expected core damage frequency from internal initiating events at EBR-II is very low, 1. 6 10 -6 yr -1 , even with a wide definition of core damage (essentially that of exceeding Technical Specification limits). The probability of damage, primarily due to liquid metal fires, from externally initiated events (excluding earthquake) is 3.6 10 -6 yr -1 . overall these results are considerably better than results for other research reactors and the nuclear industry in general and stem from three main sources: low likelihood of loss of coolant due to low system pressure and top entry double, vessels; low likelihood of loss of decay heat removal due to reliance on passive means; and low likelihood of power/flow mismatch due to both passive feedbacks and reliability of rod scram capability

  8. CSER 94-014: Storage of metal-fuel loaded EBR-II casks in concrete vault on PFP grounds

    International Nuclear Information System (INIS)

    Hess, A.L.

    1994-01-01

    A criticality safety evaluation is presented to permit EBR-2 spent fuel casks loaded with metallic fuel rods to be stored in an 8-ft diameter, cylindrical concrete vault inside the PFP security perimeter. The specific transfer of three casks with Pu alloy fuel from the Los Alamos Molten Plutonium Reactor Experiment from the burial grounds to the vault is thus covered. Up to seven casks may be emplaced in the casing with 30 inches center to center spacing. Criticality safety is assured by definitive packaging rules which keep the fissile medium dry and at a low effective volumetric density

  9. EBR-II and TREAT Digitization Project

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, George W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Digitizing the technical drawings for EBR-II and TREAT provides multiple benefits. Moving the scanned or hard copy drawings to modern 3-D CAD (Computer Aided Drawing) format saves data that could be lost over time. The 3-D drawings produce models that can interface with other drawings to make complex assemblies. The 3-D CAD format can also include detailed material properties and parametric coding that can tie critical dimensions together allowing easier modification. Creating the new files from the old drawings has found multiple inconsistencies that are being flagged or corrected improving understanding of the reactor(s).

  10. EBR-II and TREAT Digitization Project

    International Nuclear Information System (INIS)

    Griffith, George W.; Rabiti, Cristian

    2015-01-01

    Digitizing the technical drawings for EBR-II and TREAT provides multiple benefits. Moving the scanned or hard copy drawings to modern 3-D CAD (Computer Aided Drawing) format saves data that could be lost over time. The 3-D drawings produce models that can interface with other drawings to make complex assemblies. The 3-D CAD format can also include detailed material properties and parametric coding that can tie critical dimensions together allowing easier modification. Creating the new files from the old drawings has found multiple inconsistencies that are being flagged or corrected improving understanding of the reactor(s).

  11. EBR-II Primary Tank Wash-Water Alternatives Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Demmer, R. L.; Heintzelman, J. B.; Merservey, R. H.; Squires, L. N.

    2008-05-01

    The EBR-II reactor at Idaho National Laboratory was a liquid sodium metal cooled reactor that operated for 30 years. It was shut down in 1994; the fuel was removed by 1996; and the bulk of sodium metal coolant was removed from the reactor by 2001. Approximately 1100 kg of residual sodium remained in the primary system after draining the bulk sodium. To stabilize the remaining sodium, both the primary and secondary systems were treated with a purge of moist carbon dioxide. Most of the residual sodium reacted with the carbon dioxide and water vapor to form a passivation layer of primarily sodium bicarbonate. The passivation treatment was stopped in 2005 and the primary system is maintained under a blanket of dry carbon dioxide. Approximately 670 kg of sodium metal remains in the primary system in locations that were inaccessible to passivation treatment or in pools of sodium that were too deep for complete penetration of the passivation treatment. The EBR-II reactor was permitted by the Idaho Department of Environmental Quality (DEQ) in 2002 under a RCRA permit that requires removal of all remaining sodium in the primary and secondary systems by 2022. The proposed baseline closure method would remove the large components from the primary tank, fill the primary system with water, react the remaining sodium with the water and dissolve the reaction products in the wash water. This method would generate a minimum of 100,000 gallons of caustic, liquid, low level radioactive, hazardous waste water that must be disposed of in a permitted facility. On February 19-20, 2008, a workshop was held in Idaho Falls, Idaho, to look at alternatives that could meet the RCRA permit clean closure requirements and minimize the quantity of hazardous waste generated by the cleanup process. The workshop convened a panel of national and international sodium cleanup specialists, subject matter experts from the INL, and the EBR-II Wash Water Project team that organized the workshop. The

  12. Development and testing of a diagnostic system for intelligen distributed control at EBR-2

    International Nuclear Information System (INIS)

    Edwards, R.M.; Ruhl, D.W.; Klevans, E.H.; Robinson, G.E.

    1990-01-01

    A diagnostic system is under development for demonstration of Intelligent Distributed Control at the Experimental Breeder Reactor (EBR--II). In the first phase of the project a diagnostic system is being developed for the EBR-II steam plant based on the DISYS expert systems approach. Current testing uses recorded plant data and data from simulated plant faults. The dynamical simulation of the EBR-II steam plant uses the Babcock and Wilcox (B ampersand W) Modular Modeling System (MMS). At EBR-II the diagnostic system operates in the UNIX workstation and receives live plant data from the plant Data Acquisition System (DAS). Future work will seek implementation of the steam plant diagnostic in a distributed manner using UNIX based computers and Bailey microprocessor-based control system. 10 refs., 6 figs

  13. Seismic response of the EBR-II to the Mt. Borah earthquake

    International Nuclear Information System (INIS)

    Gale, J.G.; Lehto, W.K.

    1985-01-01

    On October 28, 1983, an earthquake of magnitude 7.3 occurred in the mountains of central Idaho at a distance of 114-km from the ANL-West site. The earthquake tripped the seismic sensors in the EBR-II reactor shutdown system causing a reactor scram. Visual and operability checks of structures, components, and systems showed no indication of damage or system abnormalities and reactor restart was initiated. As a result of the earthquake, questions arose as to the magnitude of the actual stress levels in critical components and what value of ground acceleration could be experienced without damage to reactor structures. EBR-II was designed prior to implementation of present day requirements for seismic qualification and appropriate analyses had not been conducted. A lumped-mass, finite element model of the primary tank, support structure, and the reactor was generated and analyzed using the response spectrum technique. The analysis showed that the stress levels in the primary tank system were very low during the Mount Borah earthquake and that the system could experience seismic loadings three to four times those of the Mount Borah earthquake without exceeding yield stresses in any of the components

  14. Sodium technology at EBR-II

    International Nuclear Information System (INIS)

    Holmes, J.T.; Smith, C.R.F.; Olson, W.H.

    1976-01-01

    Since the installation of purity monitoring systems in 1967, the control of the purity of the primary and secondary sodium and cover gas systems at the Experimental Breeder Reactor II (EBR-II) has been excellent. A rigorous monitoring program is being used to assure that operating limits for more than 25 chemical and radioactive impurities are not exceeded. The program involves the use of sophisticated sampling and analysis techniques and on-line monitors for both sodium and cover gas systems. Sodium purity control is accomplished by essentially continuous cold trapping of a small side stream of the total circulating sodium. The cold traps have been found to be very effective for the removal of the major chemical impurities (oxygen and hydrogen) and tritium but are almost ineffective for 131 I and 137 Cs that enter the sodium from fuel cladding breaks. Purging with pure argon maintains the cover gas purity

  15. A qualified safety I and C for application in reactors of all kinds

    International Nuclear Information System (INIS)

    Stimler, M.

    2001-01-01

    Advanced I and C systems for nuclear power plants have to meet increasing demands for safety and availability. Specific requirements coming from the nuclear qualification have to be fulfilled. To meet both subjects adequately, Siemens has developed the advanced digital I and C technology for safety applications TELEPERM XS. National and international codes and standards impose special requirements on the safety I and C of a nuclear power plant. These concern: fault tolerance; robustness; qualification. In order to be able to meet these requirements to the full without making operational automation tasks unnecessarily expensive by excessive conservatism, the TELEPERM XS I and C system platform was developed. It is largely based on standard Hardware devices selected for their quality characteristics and adapted by specific design measures. In the Software area a complete new development had to be undertaken in order to meet the stringent qualification requirements. In 1992 the GRS (Gesellschaft fuer Reaktorsicherheit - Association for Reactor Safety) confirmed the suitability and licensibility of the underlying TELEPERM XS concepts. Subsequently, the development and qualification of the system software and the engineering tools as well as the type testing of the hardware components was performed. Operationally proven hardware components were selected for utilization, among others from the system families SIMATIC and SINEC. The first integration tests were performed successfully in mid-1996. Field testing of the first application projects could be finalised in 1997. In many countries, the nuclear industry bases its licensing process for nuclear power plants on the US-NRC procedures. For this reason, and in order to ensure world-wide utilization of the TXS technology, it was decided in 1998 to submit a licensing application to the US-NRC. In May 2000, Siemens has received a Safety Evaluation Report (SER) from the US-NRC approving use of its TELEPERM XS (TXS) platform

  16. Safety evaluation of the Dalat research reactor operation

    International Nuclear Information System (INIS)

    Long, V.H.; Lam, P.V.; An, T.K.

    1989-01-01

    After an introduction presenting the essential characteristics of the Dalat Nuclear Research Reactor, the document presents i) The safety assurance condition of the reactor, ii) Its safety behaviour after 5 years of operation, iii) Safety research being realized on the reactor. Following is questionnaire of safety evaluation and a list of attachments, which concern the reactor

  17. Guidelines for nuclear reactor equipments safety-analysis

    International Nuclear Information System (INIS)

    1978-01-01

    The safety analysis in approving the applications for nuclear reactor constructions (or alterations) is performed by the Committee on Examination of Reactor Safety in accordance with various guidelines prescribed by the Atomic Energy Commission. In addition, the above Committee set forth its own regulations for the safety analysis on common problems among various types of nuclear reactors. This book has collected and edited those guidelines and regulations. It has two parts: Part I includes the guidelines issued to date by the Atomic Energy Commission: and Part II - regulations of the Committee. Part I has collected 8 categories of guidelines which relate to following matters: nuclear reactor sites analysis guidelines and standards for their applications; standard exposure dose of plutonium; nuclear ship operation guidelines; safety design analysis guidelines for light-water type, electricity generating nuclear reactor equipments; safety evaluation guidelines for emergency reactor core cooling system of light-water type power reactors; guidelines for exposure dose target values around light-water type electricity generating nuclear reactor equipments, and guidelines for evaluation of above target values; and meteorological guidelines for the safety analysis of electricity generating nuclear reactor equipments. Part II includes regulations of the Committee concerning - the fuel assembly used in boiling-water type and in pressurized-water type reactors; techniques of reactor core heat designs, etc. in boiling-water reactors; and others

  18. Analysis of carbon transport in the EBR-II and FFTF primary sodium systems

    International Nuclear Information System (INIS)

    Snyder, R.B.; Natesan, K.; Kassner, T.F.

    1976-01-01

    An analysis of the carburization-decarburization behavior of austenitic stainless steels in the primary heat-transport systems of the EBR-II and FFTF has been made that is based upon a kinetic model for the diffusion process and the surface area of steel in contact with flowing sodium at various temperatures in the two systems. The analysis was performed for operating conditions that result in sodium outlet temperatures of 474 and 566 0 C in the FFTF and 470 0 C in the EBR-II. If there was no external source of carbon to the system, i.e., other than the carbon initially present in the steel and the sodium, the dynamic-equilibrium carbon concentrations calculated for the FFTF primary sodium were approximately 0.025 and approximately 0.065 ppm for the 474 and 566 0 C outlet temperatures, respectively, and approximately 0.018 ppm for the EBR-II primary system. The analysis indicated that a carbon-source rate of approximately 250 g/y would be required to increase the carbon concentration of the EBR-II sodium to the measured range of approximately 0.16--0.19 ppm. An evaluation of possible carbon sources and the amount of carbonaceous material introduced into the reactor cover gas and sodium suggests that the magnitude of the calculated contamination rate is reasonable. For a 566 0 C outlet temperature, carbonaceous material would have to be introduced into the FFTF primary system at a rate approximately 4--6 times higher than in EBR-II to achieve the same carbon concentration in the sodium in the two systems. Since contamination rates of approximately 1500 g/y are unlikely, high-temperature fuel cladding in the FFTF should exhibit decarburization similar to that observed in laboratory loop systems, in contrast to the minimal compositional changes that result after exposure of Type 316 stainless steel to EBR-II sodium at temperatures between approximately 625 and 650 0 C

  19. Advances in criticality predictions for EBR-II

    International Nuclear Information System (INIS)

    Schaefer, R.W.; Imel, G.R.

    1994-01-01

    Improvements to startup criticality predictions for the EBR-II reactor have been made. More exact calculational models, methods and data are now used, and better procedures for obtaining experimental data that enter into the prediction are in place. Accuracy improved by more than a factor of two and the largest ECP error observed since the changes is only 18 cents. An experimental method using subcritical counts is also being implemented

  20. System modelling to support accelerated fuel transfer rate at EBR-II

    International Nuclear Information System (INIS)

    Imel, G.R.; Houshyar, A.; Planchon, H.P.; Cutforth, D.C.

    1995-01-01

    The Experimental Breeder Reactor-II (EBR-II) ia a 62.5 MW(th) liquid metal reactor operated by Argonne National Laboratory for The United States Department of Energy. The reactor is located near Idaho Falls, Idaho at the Argonne-West site (ANL-W). Full power operation was achieved in 1964,- the reactor operated continuously since that time until October 1994 in a variety of configurations depending on the programmatic mission. A three year program was initiated in October, 1993 to replace the 330 depleted uranium blanket subassemblies (S/As) with stainless steel reflectors. It was intended to operate the reactor during the three year blanket unloading program, followed by about a half year of driver fuel unloading. However, in the summer of 1994, Congress dictacted that EBR-II be shut down October 1, and complete defueling without operation. To assist in the planning for resources needed for this defueling campaign, a mathematical model of the fuel handling sequence was developed utilizing the appropriate reliability factors and inherent mm constraints of each stage of the process. The model allows predictions of transfer rates under different scenarios. Additionally, it has facilitated planning of maintenance activities, as well as optimization of resources regarding manpower and modification effort. The model and its application is described in this paper

  1. Overview of the fast reactors fuels program

    International Nuclear Information System (INIS)

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides

  2. Final report-passive safety optimization in liquid sodium-cooled reactors

    International Nuclear Information System (INIS)

    Cahalana, J. E.; Hahn, D.

    2007-01-01

    This report summarizes the results of a three-year collaboration between Argonne National Laboratory (ANL) and the Korea Atomic Energy Research Institute (KAERI) to identify and quantify the performance of innovative design features in metallic-fueled, sodium-cooled fast reactor designs. The objective of the work was to establish the reliability and safety margin enhancements provided by design innovations offering significant potential for construction, maintenance, and operating cost reductions. The project goal was accomplished with a combination of advanced model development (Task 1), analysis of innovative design and safety features (Tasks 2 and 3), and planning of key safety experiments (Task 4). Task 1--Computational Methods for Analysis of Passive Safety Design Features: An advanced three-dimensional subassembly thermal-hydraulic model was developed jointly and implemented in ANL and KAERI computer codes. The objective of the model development effort was to provide a high-accuracy capability to predict fuel, cladding, coolant, and structural temperatures in reactor fuel subassemblies, and thereby reduce the uncertainties associated with lower fidelity models previously used for safety and design analysis. The project included model formulation, implementation, and verification by application to available reactor tests performed at EBR-II. Task 2--Comparative Analysis and Evaluation of Innovative Design Features: Integrated safety assessments of innovative liquid metal reactor designs were performed to quantify the performance of inherent safety features. The objective of the analysis effort was to identify the potential safety margin enhancements possible in a sodium-cooled, metal-fueled reactor design by use of passive safety mechanisms to mitigate low-probability accident consequences. The project included baseline analyses using state-of-the-art computational models and advanced analyses using the new model developed in Task 1. Task 3--Safety

  3. Use of EBR-II as a principal fast breeder reactor irradiation test facility in the U.S

    International Nuclear Information System (INIS)

    Staker, R.G.; Seim, O.S.; Beck, W.N.; Golden, G.H.; Walters, L.C.

    1975-01-01

    The EBR-II as originally designed and operated by the Argonne National Laboratory was successful in demonstrating the operation of a sodium-cooled fast breeder power plant with a closed fuel reprocessing cycle. Subsequent operation has been as an experimental facility where thousands of irradiation tests have been performed. Conversion to this application entailed the design and fabrication of special irradiation subassemblies for in-core irradiations, additions to existing facilities for out-of-core irradiations, and additions to existing facilities for out-of-core experiments. Experimental subassemblies now constitute about one third of the core, and changes in the core configuration occur about monthly, requiring neutronic and thermal-hydraulics analyses and monitoring of the reactor dynamic behavior. The surveillance programs provided a wealth of information on irradiation induced swelling and creep, in-reactor fracture behavior, and the compatibility of materials with liquid sodium. (U.S.)

  4. Study of reactor parameters of on critical systems, Phase I: Safety report for RB zero power reactor

    International Nuclear Information System (INIS)

    Raisic, N.

    1962-09-01

    In addition to the safety analysis for the zero power RB reactor, this report contains a general description of the reactor, reactor components, auxiliary equipment and the reactor building. Reactor Rb has been reconstructed during 1961-1962 and supplied with new safety-control system as well as with a complete dosimetry instrumentation. Since RB reactor was constructed without shielding special attention is devoted to safety and protection of the staff performing experiments. Due to changed circumstances in the Institute ( start-up of the RA 7 MW power reactor) the role of the RB reactor was redefined

  5. Overview of the fast reactors fuels program. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides.

  6. Integrating the fuel cycle at IFR [Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1992-01-01

    During the past few years Argonne National Laboratory has been developing the Integral Fast Reactor (IFR), an advanced liquid metal reactor. Much of the IFR technology stems from Argonne National Laboratory's experience with the Experimental Breeder Reactors, EBR 1 and 2. The unique aspect of EBR 2 is its success with high-burnup metallic fuel. Irradiation tests of the new U-Pu-Zr fuel for the IFR have now reached a burnup level of 20%. The results to date have demonstrated excellent performance characteristics of the metallic fuel in both steady-state and off-normal operating conditions. EBR 2 is now fully loaded with the IFR fuel alloys and fuel performance data are being generated. In turn, metallic fuel becomes the key factor in achieving a high degree of passive safety in the IFR. These characteristics were demonstrated dramatically by two landmark tests conducted at EBR 2 in 1986: loss of flow without scram; and loss of heat sink without scram. They demonstrated that the combination of high heat conductivity of metallic fuel and thermal inertia of the large sodium pool can shut the reactor down during potentially severe accidents without depending on human intervention or the operation of active engineered components. The IFR metallic fuel is also the key factor in compact pyroprocessing. Pyroprocessing uses high temperatures, molten salt and metal solvents to process metal fuels. The result is suitable for fabrication into new fuel elements. Feasibility studies are to be conducted into the recycling of actinides from light water reactor spent fuel in the IFR using the pyroprocessing approach to extract the actinides (author)

  7. Time constants and feedback transfer functions of EBR-II subassembly types

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1986-01-01

    Time constants, feedback reactivity transfer functions and power coefficients are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a reactor kinetic code analysis for a step change in power. Due to the multiplicity of eigenvalues, there are several time constants for each nodal position in a subassembly. Compared with these calculated values are analytically derived values for the initial node of a given channel

  8. Time constants and feedback transfer functions of EBR-II subassembly types

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1987-01-01

    Time constants, feedback reactivity transfer functions and power coefficients are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a reactor kinetic code analysis for a step change in power. Due to the multiplicity of eigenvalues, there are several time constants for each nodal position in a subassembly. Compared with these calculated values are analytically derived values for the initial node of a given channel. (author)

  9. Reactor safety

    International Nuclear Information System (INIS)

    Butz, H.P.; Heuser, F.W.; May, H.

    1985-01-01

    The paper comprises an introduction into nuclear physics bases, the safety concept generally speaking, safety devices of pwr type reactors, accident analysis, external influences, probabilistic safety assessment and risk studies. It further describes operational experience, licensing procedures under the Atomic Energy Law, research in reactor safety and the nuclear fuel cycle. (DG) [de

  10. Using level-I PRA for enhanced safety of the advanced neutron source reactor

    International Nuclear Information System (INIS)

    Ramsey, C.T.; Linn, M.A.

    1995-01-01

    The phase-1, level-I probabilistic risk assessment (PRA) of the Advanced Neutron Source (ANS) reactor has been completed as part of the conceptual design phase of this proposed research facility. Since project inception, PRA and reliability concepts have been an integral part of the design evolutions contributing to many of the safety features in the current design. The level-I PRA has been used to evaluate the internal events core damage frequency against project goals and to identify systems important to safety and availability, and it will continue to guide and provide support to accident analysis, both severe and nonsevere. The results also reflect the risk value of defense-in-depth safety features in reducing the likelihood of core damage

  11. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the integral fast reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics also makes possible a simplified close fuel cycle and waste process improvements. The paper describes the IFR concept, the inherent safety, tests, and status of IFR development today

  12. Implementation of multivariable control techniques with application to Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Berkan, R.C.

    1990-06-01

    After several successful applications to aerospace industry, the modern control theory methods have recently attracted many control engineers from other engineering disciplines. For advanced nuclear reactors, the modern control theory may provide major advantages in safety, availability, and economic aspects. This report is intended to illustrate the feasibility of applying the linear quadratic Gaussian (LQG) compensator in nuclear reactor applications. The LQG design is compared with the existing classical control schemes. Both approaches are tested using the Experimental Breeder Reactor 2 (EBR-2) as the system. The experiments are performed using a mathematical model of the EBR-2 plant. Despite the fact that the controller and plant models do not include all known physical constraints, the results are encouraging. This preliminary study provides an informative, introductory picture for future considerations of using modern control theory methods in nuclear industry. 10 refs., 25 figs

  13. Swelling and tensile properties of EBR-II-irradiated tantalum alloys for space reactor applications

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Wiffen, F.W.

    1985-01-01

    The tantalum alloys T-111, ASTAR-811C, Ta-10 W, and unalloyed tantalum were examined following EBR-II irradiation to a fluence of 1.7 x 10 26 neutrons/m 2 (E > 0.1 MeV) at temperatures from 650 to 950 K. Swelling was found to be negligible for all alloys; only tantalum was found to exhibit swelling, 0.36%. Tensile testing revealed that irradiated T-111 and Ta-10 W are susceptible to plastic instability, but ASTAR-811C and tantalum were not. The tensile properties of ASTAR-811C appeared adequate for current SP-100 space nuclear reactor designs. Irradiated, oxygen-doped T-111 exhibited no plastic deformation, and the abrupt failure was intergranular in nature. The absence of plastic instability in ASTAR-811C is encouraging for alloys containing carbide precipitates. These fine precipitates might prevent dislocation channeling, which leads to plastic instability in many bcc metals after irradiation. 10 refs., 13 figs., 8 tabs

  14. Computer imaging of EBR-II handling equipment

    International Nuclear Information System (INIS)

    Hansen, L.H.; Peters, G.G.

    1994-10-01

    This paper describes a three-dimensional graphics application used to visualize the positions of remotely operated fuel handling equipment in the EBR-II reactor. The system described in this paper uses actual signals to move a three-dimensional graphics model in real-time in response to movements of equipment in the plant. A three-dimensional (3D) visualization technique is necessary to simulate direct visual observation of the transfers of fuel and experiments into and out of the reactor because the fuel handling equipment is submerged in liquid sodium and therefore is not visible to the operator. This paper will present details on how the 3D model was created and how real-time dynamic behavior was added to each of the moving components

  15. Safety analysis of RA Reactor operation I-III; Analiza sigurnosti rada Reaktora RA I - III, IZ-213-0322-1963

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1963-02-15

    This safety analysis report covers the following three parts: Technical and operational characteristics of the RA reactor; Accidents analysis; and Environmental effects of the maximum possible accident. [Serbo-Croat] Ovaj izvestaj o analizi sigurnosti rada reaktora RA sastoji se od tri dela: Tehnicke i pogonske karakteristike reaktora RA; Analiza akcidenta; i Posledice maksimalno moguceg akcidenta na okolinu reaktora.

  16. The integral fast reactor

    International Nuclear Information System (INIS)

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two dramatic demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the Integral Fast Reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics and also makes possible a simplified closed fuel cycle and waste process improvements

  17. Instrumentation and control improvements at Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Christensen, L.J.; Planchon, H.P.

    1993-01-01

    The purpose of this paper is to describe instrumentation and control (I ampersand C) system improvements at Experimental Breeder Reactor 11 (EBR-11). The improvements are focused on three objectives; to keep the reactor and balance of plant (BOP) I ampersand C systems at a high level of reliability, to provide diagnostic systems that can provide accurate information needed for analysis of fuel performance, and to provide systems that will be prototypic of I ampersand C systems of the next generation of liquid metal reactor (LMR) plants

  18. Breached fuel pin contamination from Run Beyond Cladding Breach (RBCB) tests in EBR-II

    International Nuclear Information System (INIS)

    Colburn, R.P.; Strain, R.V.; Lambert, J.D.B.; Ukai, S.; Shibahara, I.

    1988-09-01

    Studies indicate there may be a large economic incentive to permit some continued reactor operation with breached fuel pin cladding. A major concern for this type of operation is the potential spread of contamination in the primary coolant system and its impact on plant maintenance. A study of the release and transport of contamination from naturally breached mixed oxide Liquid Metal Reactor (LMR) fuel pins was performed as part of the US Department of Energy/Power Reactor and Nuclear Fuel Development Corporation (DOE/PNC) Run Beyond Cladding Breach (RBCB) Program at EBR-II. The measurements were made using the Breached Fuel Test Facility (BFTF) at EBR-II with replaceable deposition samplers located approximately 1.5 meters from the breached fuel test assemblies. The effluent from the test assemblies containing the breached fuel pins was routed up through the samplers and past dedicated instrumentation in the BFTF before mixing with the main coolant flow stream. This paper discusses the first three contamination tests in this program. 2 refs., 5 figs., 2 tabs

  19. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  20. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  1. Operation, safety and utilization of the RA reactor in 1978 - Report; Prilog I - Rad, sigurnost i iskoriscenost reaktora RA u 1978. godini - Izvestaj

    Energy Technology Data Exchange (ETDEWEB)

    Martinc, R; Stanic, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1978-12-15

    This report includes a review of work related to development of reactor operation capacities and increase of the RA reactor safety and economic operation. Statistical data about reactor operation and utilization are included as well. Introducing of the new 80% enriched fuel into the the reactor core enabled increase of the neutron flux, i.e. increase of its production capabilities. Safety and optimization analyses concerned with introduction of the new fuel have shown that the most safe and economic procedure was gradual introducing of the highly enriched fuel. This procedure was based on the concept of mixed core configuration with 2% and 80% enriched fuel elements. By applying this original concept the following significant savings were achieved: fuel elements savings, shortening of the annual period of reactor operation, savings in spent fuel casks, electric power savings, slowing down of heavy water degradation. [Serbo-Croat] Ovaj izvestaj sadrzi pregled o radu na razvoju eksploatacionih mogucnosti i povecanju sigurnosti i ekonomicnosti reaktora RA. Prilozeni su i statisticki podaci o radu i iskoriscenosti reaktora u 1978. godini. Uvodjenje novog 80% obogacenog goriva u jezgro reaktora omogucilo je povecanje neutronskog fluksa tj. povecanje njegovoh proizvodnih mogucnosti. Sigurnosne i optimizacione analize uvodjenja novog goriva pokazale su da je nasigurniji i najekonomicniji postupak postupnog uvodjenja visokoobogacenog goriva koji se zasniva na konceptu mesane resetke sa 2% i 80% obogacenim gorivom. Ovaj originalni koncept omogucio je da se postignu znatne ustede u gorivu, skracivanje godisnjeg rada reaktora, usteda sudova za odlaganje isluzenog goriva, usteda elektricne energije, usporavanje degradacije teske vode.

  2. EBR-II Static Neutronic Calculations by PHISICS / MCNP6 codes

    Energy Technology Data Exchange (ETDEWEB)

    Paolo Balestra; Carlo Parisi; Andrea Alfonsi

    2016-02-01

    The International Atomic Energy Agency (IAEA) launched a Coordinated Research Project (CRP) on the Shutdown Heat Removal Tests (SHRT) performed in the '80s at the Experimental fast Breeder Reactor EBR-II, USA. The scope of the CRP is to improve and validate the simulation tools for the study and the design of the liquid metal cooled fast reactors. Moreover, training of the next generation of fast reactor analysts is being also considered the other scope of the CRP. In this framework, a static neutronic model was developed, using state-of-the art neutron transport codes like SCALE/PHISICS (deterministic solution) and MCNP6 (stochastic solution). Comparison between both solutions is briefly illustrated in this summary.

  3. EBR-II Primary Tank Wash-Water Alternatives Evaluation

    International Nuclear Information System (INIS)

    Demmer, R.; Heintzelman, J.; Squires, L.; Meservey, R.

    2009-01-01

    The EBR-II reactor at Idaho National Laboratory was a liquid sodium metal cooled reactor that operated for 30 years. Approximately 1100 kg of residual sodium remained in the primary system after draining the bulk sodium. To stabilize the remaining sodium, both the primary and secondary systems were treated with a purge of moist carbon dioxide. The passivation treatment was stopped in 2005 and the primary system is maintained under a blanket of dry carbon dioxide. Approximately 670 kg of sodium metal remains in the primary system in locations that were inaccessible to passivation treatment or in pools of sodium that were too deep for complete penetration of the passivation treatment. The EBR-II reactor was permitted by the Idaho Department of Environmental Quality (DEQ) in 2002 under a RCRA permit that requires removal of all remaining sodium. The proposed baseline closure method would remove the large components from the primary tank, fill the primary system with water, react the remaining sodium with the water and dissolve the reaction products in about 100,000 gallons of wash water. On February 19-20, 2008, a workshop was held in Idaho Falls, Idaho, to evaluate alternatives that could meet the RCRA permit clean closure requirements and minimize the quantity of hazardous waste generated by the cleanup process. The workshop convened a panel of national and international sodium cleanup specialists, subject matter experts from the INL, and the EBR-II Wash Water Project team that organized the workshop. The workshop was conducted by a trained facilitator using Value Engineering techniques to elicit the most technically sound solutions from the workshop participants. A brainstorming session was held to identify possible alternative treatment methods that would meet the primary functions and criteria of neutralizing the hazards, maximizing byproduct removal and minimizing waste generation. An initial list of some 20 probable alternatives was evaluated and refined down

  4. Safety of Research Reactors. Safety Requirements

    International Nuclear Information System (INIS)

    2010-01-01

    The main objective of this Safety Requirements publication is to provide a basis for safety and a basis for safety assessment for all stages in the lifetime of a research reactor. Another objective is to establish requirements on aspects relating to regulatory control, the management of safety, site evaluation, design, operation and decommissioning. Technical and administrative requirements for the safety of research reactors are established in accordance with these objectives. This Safety Requirements publication is intended for use by organizations engaged in the site evaluation, design, manufacturing, construction, operation and decommissioning of research reactors as well as by regulatory bodies

  5. The US Liquid Metal Reactor Development Program

    International Nuclear Information System (INIS)

    Till, C.E.; Arnold, W.H.; Griffith, J.D.

    1988-01-01

    The US Liquid Metal Reactor Development Program has been restructured to take advantage of the opportunity today to carry out R and D on truly advanced reactor technology. The program gives particular emphasis to improvements to reactor safety. The new directions are based on the technology of the Integral Fast Reactor (IFR). Much of the basis for superior safety performance using IFR technology has been experimentally verified and aggressive programs continue in EBR-II and TREAT. Progress has been made in demonstrating both the metallic fuel and the new electrochemical processes of the IFR. The FFTF facility is converting to metallic fuel; however, FFTF also maintains a considerable US program in oxide fuels. In addition, generic programs are continuing in steam generator testing, materials development, and, with international cooperation, aqueous reprocessing. Design studies are carried out in conjunction with the IFR technology development program. In summary, the US maintains an active development program in Liquid Metal Reactor technology, and new directions in reactor safety are central to the program

  6. System modeling of spent fuel transfers at EBR-II

    International Nuclear Information System (INIS)

    Imel, G.R.; Houshyar, A.

    1994-01-01

    The unloading of spent fuel from the Experimental Breeder Reactor-II (EBR-II) for interim storage and subsequent processing in the Fuel Cycle Facility (FCF) is a multi-stage process, involving complex operations at a minimum of four different facilities at the Argonne National Laboratory-West (ANL-W) site. Each stage typically has complicated handling and/or cooling equipment that must be periodically maintained, leading to both planned and unplanned downtime. A program was initiated in October, 1993 to replace the 330 depleted uranium blanket subassemblies (S/As) with stainless steel reflectors. Routine operation of the reactor for fuels performance and materials testing occurred simultaneously in FY 1994 with the blanket unloading. In the summer of 1994, Congress dictated the October 1, 1994 shutdown of EBR-2. Consequently, all blanket S/As and fueled drivers will be removed from the reactor tank and replaced with stainless steel assemblies (which are needed to maintain a precise configuration within the grid so that the under sodium fuel handling equipment can function). A system modeling effort was conducted to determine the means to achieve the objective for the blanket and fuel unloading program, which under the current plan requires complete unloading of the primary tank of all fueled assemblies in 2 1/2 years. A simulation model of the fuel handling system at ANL-W was developed and used to analyze different unloading scenarios; the model has provided valuable information about required resources and modifications to equipment and procedures. This paper reports the results of this modeling effort

  7. Safety aspects of the IFR pyroprocess fuel cycle

    International Nuclear Information System (INIS)

    Forrester, R.J.; Lineberry, M.J.; Charak, I.; Tessier, J.H.; Solbrig, C.W.; Gabor, J.D.

    1989-01-01

    This paper addresses the important safety considerations related to the unique Integral Fast Reactor (IFR) fuel cycle technology, the pyroprocess. Argonne has been developing the IFR since 1984. It is a liquid metal cooled reactor, with a unique metal alloy fuel, and it utilizes a radically new fuel cycle. An existing facility, the Hot Fuel Examination Facility-South (HFEF/S) is being modified and equipped to provide a complete demonstration of the fuel cycle. This paper will concentrate on safety aspects of the future HFEF/S operation, slated to begin late next year. HFEF/S is part of Argonne's complex of reactor test facilities located on the Idaho National Engineering Laboratory. HFEF/S was originally put into operation in 1964 as the EBR-II Fuel Cycle Facility (FCF) (Stevenson, 1987). From 1964--69 FCF operated to demonstrate an earlier and incomplete form of today's pyroprocess, recycling some 400 fuel assemblies back to EBR-II. The FCF mission was then changed to one of an irradiated fuels and materials examination facility, hence the name change to HFEF/S. The modifications consist of activities to bring the facility into conformance with today's much more stringent safety standards, and, of course, providing the new process equipment. The pyroprocess and the modifications themselves are described more fully elsewhere (Lineberry, 1987; Chang, 1987). 18 refs., 5 figs., 2 tabs

  8. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  9. I and C safety research at the OECD Halden reactor project

    International Nuclear Information System (INIS)

    Gran, B.A.

    2007-01-01

    The overall objective of the Halden Reactor Project research on software systems dependability is to contribute to the successful introduction of digital I and C systems into NPPs. When celebrating the 50 years of the Halden Project in 2008, about 100 written reports have been delivered within this research. This research covers a number of topics covering safety, reliability, validation and verification, quality assurance, risk assessment, requirement engineering, error propagation, qualitative and quantitative assessment. In the paper some activities are described, pinpointing the importance of good joint projects with organisations in the member countries

  10. Simulated first operating campaign for the Integral Fast Reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Park, K.H.; Ackerman, J.P.

    1993-01-01

    This report discusses the Integral Fast Reactor (IFR) which is an innovative liquid-metal-cooled reactor concept that is being developed by Argonne National Laboratory. It takes advantage of the properties of metallic fuel and liquid-metal cooling to offer significant improvements in reactor safety, operation, fuel cycle-economics, environmental protection, and safeguards. Over the next few years, the IFR fuel cycle will be demonstrated at Argonne-West in Idaho. Spent fuel from the Experimental Breeder Reactor II (EBR-II) win be processed in its associated Fuel Cycle Facility (FCF) using a pyrochemical method that employs molten salts and liquid metals in an electrorefining operation. As part of the preparation for the fuel cycle demonstration, a computer code, PYRO, was developed at Argonne to model the electrorefining operation using thermodynamic and empirical data. This code has been used extensively to evaluate various operating strategies for the fuel cycle demonstration. The modeled results from the first operating campaign are presented. This campaign is capable of processing more than enough material to refuel completely the EBR-II core

  11. Computer imaging of EBR-II fuel handling equipment

    International Nuclear Information System (INIS)

    Peters, G.G.; Hansen, L.H.

    1995-01-01

    This paper describes a three-dimensional graphics application used to visualize the positions of remotely operated fuel handling equipment in the EBR-II reactor. A three-dimensional (3D) visualization technique is necessary to simulate direct visual observation of the transfers of fuel and experiments into and out of the reactor because the fuel handling equipment is submerged in liquid sodium and therefore is not visible to the operator. The system described in this paper uses actual signals to drive a three-dimensional computer-generated model in real-time in response to movements of equipment in the plant This paper will present details on how the 3D model of the intank equipment was created and how real-time dynamic behavior was added to each of the moving components

  12. Reactor safety research program. A description of current and planned reactor safety research sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research

    International Nuclear Information System (INIS)

    1975-06-01

    The reactor safety research program, sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, is described in terms of its program objectives, current status, and future plans. Elements of safety research work applicable to water reactors, fast reactors, and gas cooled reactors are presented together with brief descriptions of current and planned test facilities. (U.S.)

  13. Safety features of the MAPLE-X10 reactor design

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Heeds, W.

    1990-09-01

    The MAPLE-X10 reactor is a D 2 0-reflected, H 2 0-cooled and -moderated pool-type reactor under construction at the Chalk River Nuclear Laboratories. This 10-MW reactor will produce key medical and industrial radio-isotopes such as 99 Mo, 125 I, and 192 Ir. As the prototype for the MAPLE research reactor concept, the reactor incorporates diverse safety features both inherent in the design and in the added engineered systems. The safety requirements are analogous to those of the Canadian CANDU power reactor since standards for the licensing of new research reactors have not been developed yet by the licensing authority in Canada

  14. Fire safety requirements for electrical cables towards nuclear reactor safety

    International Nuclear Information System (INIS)

    Raju, M.R.

    2002-01-01

    Full text: Electrical power supply forms a very important part of any nuclear reactor. Power supplies have been categorized in to class I, II, III and IV from reliability point. The safety related equipment are provided with highly reliable power supply to achieve the safety of very high order. Vast network of cables in a nuclear reactor are grouped and segregated to ensure availability of power to at least one group under all anticipated occurrences. Since fire can result in failures leading to unavailability of power caused by common cause, both passive and active fire protection methods are adopted in addition to fire detection system. The paper describes the requirement for passive fire protection to electrical cables viz. fire barrier and fire breaks. The paper gives an account of the tests required to standardize the products. Fire safety implementation for cables in research reactors is described

  15. Safety analysis for research reactors

    International Nuclear Information System (INIS)

    2008-01-01

    The aim of safety analysis for research reactors is to establish and confirm the design basis for items important to safety using appropriate analytical tools. The design, manufacture, construction and commissioning should be integrated with the safety analysis to ensure that the design intent has been incorporated into the as-built reactor. Safety analysis assesses the performance of the reactor against a broad range of operating conditions, postulated initiating events and other circumstances, in order to obtain a complete understanding of how the reactor is expected to perform in these situations. Safety analysis demonstrates that the reactor can be kept within the safety operating regimes established by the designer and approved by the regulatory body. This analysis can also be used as appropriate in the development of operating procedures, periodic testing and inspection programmes, proposals for modifications and experiments and emergency planning. The IAEA Safety Requirements publication on the Safety of Research Reactors states that the scope of safety analysis is required to include analysis of event sequences and evaluation of the consequences of the postulated initiating events and comparison of the results of the analysis with radiological acceptance criteria and design limits. This Safety Report elaborates on the requirements established in IAEA Safety Standards Series No. NS-R-4 on the Safety of Research Reactors, and the guidance given in IAEA Safety Series No. 35-G1, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, providing detailed discussion and examples of related topics. Guidance is given in this report for carrying out safety analyses of research reactors, based on current international good practices. The report covers all the various steps required for a safety analysis; that is, selection of initiating events and acceptance criteria, rules and conventions, types of safety analysis, selection of

  16. RB research reactor safety report

    International Nuclear Information System (INIS)

    Sotic, O.; Pesic, M.; Vranic, S.

    1979-04-01

    This new version of the safety report is a revision of the safety report written in 1962 when the RB reactor started operation after reconstruction. The new safety report was needed because reactor systems and components have been improved and the administrative procedures were changed. the most important improvements and changes were concerned with the use of highly enriched fuel (80% enriched), construction of reactor converter outside the reactor vessel, improved control system by two measuring start-up channels, construction of system for heavy water leak detection, new inter phone connection between control room and other reactor rooms. This report includes description of reactor building with installations, rector vessel, reactor core, heavy water system, control system, safety system, dosimetry and alarm systems, experimental channels, neutron converter, reactor operation. Safety aspects contain analyses of accident reasons, method for preventing reactivity insertions, analyses of maximum hypothetical accidents for cores with natural uranium, 2% enriched and 80% enriched fuel elements. Influence of seismic events on the reactor safety and well as coupling between reactor and the converter are parts of this document

  17. Functional and operational design requirements for decontamination and decommissioning of the EBR-I Mark-II NaK: Final report

    International Nuclear Information System (INIS)

    Brown, B.W.; Crandall, D.L.; Dafoe, R.E.; Dolenc, M.R.; LaRue, D.M.

    1987-09-01

    Approximately 180 gal of sodium/potassium (NaK) eutectic liquid metal were severely radioactively contaminated during a meltdown of the Mark-II core of the Experimental Breeder Reactor-I (EBR-I) in November 1955. This contaminated NaK, which is contained in four vessels, is currently stored in an underground bunker located at the Army Reentry Vehicle Facility Site (ARVFS) located approximately at the center of the Idaho National Engineering Laboratory (INEL). This document presents the Functional and Operational Requirements (F and ORs) for the D and D of the contaminated NaK and the ARVFS bunker site. This project will chemically deactivate the NaK; dispose of the radioactively contaminated product at a designated burial site; chemically deactivate any residual NaK in the containers, and dispose of the containers at a designated burial site; decontaminate and decommission any contaminated process equipment used in these operations, and decontaminate and decommission the ARVFS bunker site. Completion of the above technical objectives will allow for the effective disposition of the NaK, and will return the ARFVS bunker and immediate area to a reusable condition. Upon completion, the ARVFS NaK, which is now considered a significant potential hazard, will be removed from the Surplus Facilities Management Program priority listing of projects. 33 refs., 8 figs

  18. RB research reactor Safety Report

    International Nuclear Information System (INIS)

    Sotic, O.; Pesic, M.; Vranic, S.

    1979-04-01

    This RB reactor safety report is a revised and improved version of the Safety report written in 1962. It contains descriptions of: reactor building, reactor hall, control room, laboratories, reactor components, reactor control system, heavy water loop, neutron source, safety system, dosimetry system, alarm system, neutron converter, experimental channels. Safety aspects of the reactor operation include analyses of accident causes, errors during operation, measures for preventing uncontrolled activity changes, analysis of the maximum possible accident in case of different core configurations with natural uranium, slightly and highly enriched fuel; influence of possible seismic events

  19. Safety aspects on dependability management for a TRIGA research reactor in Romania

    International Nuclear Information System (INIS)

    Vieru, Gheorghe

    2002-01-01

    Safety on the management for a nuclear research reactor involves a 'good dependability management' of the activities, such as: reliability, availability, maintainability and maintenance support. In order to evaluate the safety management aspects intended to be applied at a research reactor management, the performance dependability indicators and their impact over the availability and reactor safety have to be established. The document ISO 9000-4/IEC 300-1 'Dependability Management' (1995), describes five internationally agreed indicators of the reactor equipment dependability, each of them can be used for corrective maintenance or for preventive maintenance, such as: I 1 - equipment Maintenance Frequency; I 2 - equipment Maintenance Effort; I-3 - equipment Maintenance Downtime Factor; I 4 - equipment Maintenance Contribution to the System Function Downtime Factor; I 5 - equipment Maintenance Contribution to the reactor Capability Loss Factor. The paper presents an evaluation of those 5 mentioned indicators with referring only at the primary circuit of the INR's TRIGA research reactor and conclusion. The analyzed period was stated between 1994-1999. It is to be noted that this type of analyze is performed for the first time for a research reactor. (author)

  20. IAEA safety standards for research reactors

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    The general structure of the IAEA Safety Standards and the process for their development and revision are briefly presented and discussed together with the progress achieved in the development of Safety Standards for research reactor. These documents provide the safety requirements and the key technical recommendations to achieve enhanced safety. They are intended for use by all organizations involved in safety of research reactors and developed in a way that allows them to be incorporated into national laws and regulations. The author reviews the safety standards for research reactors and details their specificities. There are 4 published safety standards: 1) Safety assessment of research reactors and preparation of the safety analysis report (35-G1), 2) Safety in the utilization and modification of research reactors (35-G2), 3) Commissioning of research reactors (NS-G-4.1), and 4) Maintenance, periodic testing and inspection of research reactors (NS-G-4.2). There 5 draft safety standards: 1) Operational limits and conditions and operating procedures for research reactors (DS261), 2) The operating organization and the recruitment, training and qualification of personnel for research reactors (DS325), 3) Radiation protection and radioactive waste management in the design and operation of research reactors (DS340), 4) Core management and fuel handling at research reactors (DS350), and 5) Grading the application of safety requirements for research reactors (DS351). There are 2 planned safety standards, one concerning the ageing management for research reactor and the second deals with the control and instrumentation of research reactors

  1. IFR fuel cycle demonstration in the EBR-II Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; Rigg, R.H.; Benedict, R.W.; Carnes, M.D.; Herceg, J.E.; Holtz, R.E.

    1991-01-01

    The next major milestone of the IFR (Integral Fast Reactor) program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase which includes completion of facility modifications, and installation and cold checkout of process equipment. This paper reviews the design and construction of the facility, the design and fabrication of the process equipment, and the schedule and initial plan for its operation. (author)

  2. Safety features of the MAPLE-X10 reactor design

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Heeds, W.

    1990-01-01

    This paper reports on the MAPLE-X10 reactor D 2 O-reflected, H 2 O-cooled and -moderated pool- type reactor, under construction at the Chalk River Nuclear Laboratories. This 10-MW will produce key medical and industrial radioisotopes such as 99 Mo, 125 I, and 192 Ir. The prototype for the MAPLE research reactor concept, the reactor incorporates diverse safety features both inherent in the design and in the added engineered systems. The safety requirements are analogous to those of the Canadian CANDU power reactor as standards for the licensing of new research reactors have not been developed by the licensing authority in Canada

  3. The EBR-II materials-surveillance program. 4: Results of SURV-4 and SURV-6

    International Nuclear Information System (INIS)

    Ruther, W.E.; Hayner, G.O.; Carlson, B.G.; Ebersole, E.R.; Allen, T.R.

    1998-01-01

    In March of 1965, a set of surveillance (SURV) samples was placed in the EBR-II reactor to determine the effect of irradiation, thermal aging, and sodium corrosion on reactor materials. Eight subassemblies were placed into row 12 positions of EBR-II to determine the effect of irradiation at 370 C. Two subassemblies were placed into the primary sodium basket to determine the effect of thermal aging at 370 C. For both the irradiated and thermally aged samples, one half of all samples were exposed to primary system sodium while one half were sealed in capsules with a helium atmosphere. Fifteen different structural materials were tested in the SURV program. In addition to the fifteen types of metal samples, graphite blocks were irradiated in the SURV subassemblies to determine the effect of irradiation on the graphite neutron shield. In this report, the properties of these materials irradiated at 370 C to a total fluence of 2.2 x 10 22 n/cm 2 (over 2,994 days) are compared with those of similar specimens thermally aged at 370 C for 2,994 days in the storage basket of the reactor. The properties analyzed were weight, density, microstructure, hardness, tensile and yield strength, impact strength, and creep

  4. Dynamic modeling and simulation of EBR-II steam generator system

    International Nuclear Information System (INIS)

    Berkan, R.C.; Upadhyaya, B.R.

    1989-01-01

    This paper presents a low order dynamic model of the Experimental breeder Reactor-II (EBR-II) steam generator system. The model development includes the application of energy, mass and momentum balance equations in state-space form. The model also includes a three-element controller for the drum water level control problem. The simulation results for low-level perturbations exhibit the inherently stable characteristics of the steam generator. The predictions of test transients also verify the consistency of this low order model

  5. Recent metal fuel safety tests in TREAT

    International Nuclear Information System (INIS)

    Wright, A.E.; Bauer, T.H.; Lo, R.K.; Robinson, W.R.; Palm, R.G.

    1986-01-01

    In-reactor safety tests have been performed on metal-alloy reactor fuel to study its response to transient-overpower conditions, in particular, the margin to cladding breach and the axial self-extrusion of fuel within intact cladding. Uranium-fissium EBR-II driver fuel elements of several burnups were tested, some to cladding breach and others to incipient breach. Transient fuel motions were monitored, and time and location of breach were measured. The test results and computations of fuel extrusion and cladding failure in metal-alloy fuel are described

  6. The dual face of reactor safety

    International Nuclear Information System (INIS)

    Merz, L.

    1981-01-01

    Reactor safety is nowadays treated theoretically by a probabilistic approach. This means that events which may lead to accidents are considered as random events, and probability calculus is employed to predict potential damage. However, it has been found in practice that there are also failures in no way connected with chance, i.e., the so-called deterministic ones. This lends a dual face to reactor safety, a probabilistic and a deterministic one. In this contribution, the author resumes studies he had once initiated under the heading of Deterministic and Probabilistic Theses on Reactor Safety. He examines the present state of reactor safety under the aspect of deterministic and probabilistic failures and the significance of active and passive safety systems, estimating whether and to what extent earlier proposals have been incorporated in present technology. The two most prominent studies dealing with the risk of nuclear power plants, the American Rasmussen Study, WASH 1400, and the German Risk Study, were calculated by the most recent probabilistic methods. The causes of deterministic failures can be traced back to deterministic errors. There are errors in planning, in design, in fabrication, errors caused by maloperation, premature aging, sabotage and war. Since they are due to certain causes, it is possible in principle to discover and control them already by mental experiments. (orig./HP) [de

  7. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  8. Fail-safety of the EBR-II steam generator system

    International Nuclear Information System (INIS)

    Chopra, P.S.; Stone, C.C.; Hutter, E.; Barney, W.K.; Staker, R.G.

    1976-01-01

    Fail-safe analyses of the EBR-II steam-generator system show that a postulated non-instantaneous leak of water or steam into sodium, through a duplex tube or a tubesheet, at credible leak rates will not structurally damage the evaporators and superheaters. However, contamination of the system and possible shell wastage by sodium-water reaction products may render the system inoperable for a period exceeding six months. This period would be shortened to three months if the system were modified by adding a remotely operated water dump system, a steam vent system, a secondary sodium superheater relief line, and a tubesheet leak-detection system

  9. Safety of nuclear power reactors

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1982-01-01

    Safety is the major public issue to be resolved or accommodated if nuclear power is to have a future. Probabilistic Risk Analysis (PRA) of accidental releases of low-level radiation, the spread and activity of radiation in populated areas, and the impacts on public health from exposure evolved from the earlier Rasmussen Reactor Safety Study. Applications of the PRA technique have identified design peculiarities in specific reactors, thus increasing reactor safety and establishing a quide for evaluating reactor regulations. The Nuclear Regulatory Commission and reactor vendors must share with utilities the responsibility for reactor safety in the US and for providing reasonable assurance to the public. This entails persuasive public education and information that with safety a top priority, changes now being made in light water reactor hardware and operations will be adequate. 17 references, 2 figures, 2 tables

  10. Independent assessment for new nuclear reactor safety

    Directory of Open Access Journals (Sweden)

    D'Auria Francesco

    2017-01-01

    Full Text Available A rigorous framework for safety assessment is established in all countries where nuclear technology is used for the production of electricity. On the one side, industry, i.e. reactor designers, vendors and utilities perform safety analysis and demonstrate consistency between results of safety analyses and requirements. On the other side, regulatory authorities perform independent assessment of safety and confirm the acceptability of safety of individual reactor units. The process of comparing results from analyses by reactor utilities and regulators is very complex. The process is also highly dependent upon mandatory approaches pursued for the analysis and from very many details which required the knowledge of sensitive proprietary data (e.g. spacer designs. Furthermore, all data available for the design, construction and operation of reactors produced by the nuclear industry are available to regulators. Two areas for improving the process of safety assessment for individual Nuclear Power Plant Units are identified: New details introduced by industry are not always and systematically requested by regulators for the independent assessment; New analytical techniques and capabilities are not necessarily used in the analyses by regulators (and by the industry. The established concept of independent assessment constitutes the way for improving the process of safety assessment. This is possible, or is largely facilitated, by the recent availability of the so-called Best Estimate Plus Uncertainty approach.

  11. Independent assessment for new nuclear reactor safety

    International Nuclear Information System (INIS)

    D'Auria, F.; Glaeser, H.; Debrecin, N.

    2017-01-01

    A rigorous framework for safety assessment is established in all countries where nuclear technology is used for the production of electricity. On one side, industry, i.e. reactor designers, vendors and utilities perform safety analysis and demonstrate consistency between results of safety analyses and requirements. On the other side, regulatory authorities perform independent assessment of safety and confirm the acceptability of safety of individual reactor units. The process of comparing results from analyses by reactor utilities and regulators is very complex. The process is also highly dependent upon mandatory approaches pursued for the analysis and from very many details which required the knowledge of sensitive proprietary data (e.g. spacer designs). Furthermore, all data available for the design, construction and operation of reactors produced by the nuclear industry are available to regulators. Two areas for improving the process of safety assessment for individual Nuclear Power Plant Units are identified: New details introduced by industry are not always and systematically requested by regulators for the independent assessment; New analytical techniques and capabilities are not necessarily used in the analyses by regulators (and by the industry). The established concept of independent assessment constitutes the way for improving the process of safety assessment. This is possible, or is largely facilitated, by the recent availability of the so-called Best Estimate Plus Uncertainty (BEPU) approach. (authors)

  12. Nuclear reactors safety issues

    International Nuclear Information System (INIS)

    Barre, Francois; Seiler, Nathalie

    2008-01-01

    fuels as well as the applied methodologies. The IRSN proceeds in a relevant and independent assessment of the submitted safety reports. To achieve this goal and maintain over time an independent and relevant assessment capability, the IRSN relies on the excellence of its experts and on state of art techniques and knowledge. The IRSN contributes by its work in key area to cutting edge research and development in order to drive nuclear industry towards making the best use of scientific and technological progress for improving safety, environmental protection and health. To maintain at all times the state of the art knowledge and the operational expertise necessary to deal efficiently with major nuclear accident consequences, the IRSN carries out, on the one hand, its own research and development programs to gain accurate knowledge on still unknown phenomena for safety analysis. On the other hand, the IRSN works out its own scientific calculation methodologies involving industrial calculation chain. Concerning more particularly the 'two-phase flows' thematic, The ISRN must correctly simulate the primary fluid behavior in the reactor in normal operation as well as in accidental situations, to estimate if, in such situations, the core reactor state is fully safe and any safety risk is undergone The research and development programs launched at the ISRN on two-phase flows gather work on advanced thermohydraulic configurations encounter in various reactor states (normal operation or accidental situations), in particular: (i)The estimation of the margin to the critical heat flux in normal operation (DNBR), (ii) The pressurized thermal shock, which is due to mechanical important constraints in the reactor vessel resulting from the injection of a cold fluid in case of emergency cooling (PTS), (iii) The reactivity insertion accident (RIA), (iv) The loss of coolant accident (LOCA), (vi) The accidents in spent-fuel pools and (vii) The severe accident, which could lead to core

  13. The safety characteristics of the HTR 500 reactor plant

    International Nuclear Information System (INIS)

    Wachholz, W.

    1987-01-01

    The HTR is a reactor having a passive safety. It is equipped with the usual active engineered safety systems in simplified form. Due to its inherent safety characteristics and the burst-safe prestressed concrete reactor vessel activity containment is ensured even without the effect of active safety systems. Even in the event of extremely hypothetical accidents the effect on the environment is low enough so that evacuation or relocation of the population is not required. Therefore large-scale damage of agricultural land and industrially used areas is safely ruled out. Thus the site selection for this type of reactor is not restricted i.e. an HTR can be constructed near industrial and urban center. (author)

  14. Proposed fuel cycle for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Burris, L.; Walters, L.C.

    1985-01-01

    One of the key features of ANL's Integral Fast Reactor (IFR) concept is a close-coupled fuel cycle. The proposed fuel cycle is similar to that demonstrated over the first five to six years of operation of EBR-II, when a fuel cycle facility adjacent to EBR-II was operated to reprocess and refabricate rapidly fuel discharged from the EBR-II. Locating the IFR and its fuel cycle facility on the same site makes the IFR a self-contained system. Because the reactor fuel and the uranium blanket are metals, pyrometallurgical processes (shortned to ''pyroprocesses'') have been chosen. The objectives of the IFR processes for the reactor fuel and blanket materials are to (1) recover fissionable materials in high yield; (2) remove fission products adequately from the reactor fuel, e.g., a decontamination factor of 10 to 100; and (3) upgrade the concentration of plutonium in uranium sufficiently to replenish the fissile-material content of the reactor fuel. After the fuel has been reconstituted, new fuel elements will be fabricated for recycle to the reactor

  15. Expert system applications in support of system diagnostics and prognostics at EBR-II

    International Nuclear Information System (INIS)

    Lehto, W.K.; Gross, K.C.

    1989-01-01

    Expert systems have been developed to aid in the monitoring and diagnostics of the Experimental Breeder Reactor-II (EBR-II) at the Idaho National Engineering Laboratory (INEL) in Idaho Falls, Idaho. Systems have been developed for failed fuel surveillance and diagnostics and reactor coolant pump monitoring and diagnostics. A third project is being done jointly by ANL-W and EG ampersand G Idaho to develop a transient analysis system to enhance overall plant diagnostic and prognostic capability. The failed fuel surveillance and diagnosis system monitors, processes, and interprets information from nine key plant sensors. It displays to the reactor operator diagnostic information needed to make proper decisions regarding technical specification conformance during reactor operation with failed fuel. 8 refs., 9 figs., 2 tabs

  16. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of four main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents, the development of an expert system for the aid to diagnosis; the development and application of a probabilistic reactor dynamics method. Main achievements in 1999 are reported

  17. Nordic studies in reactor safety

    International Nuclear Information System (INIS)

    Pershagen, N.

    1993-01-01

    The Nordic Nuclear Safety Research Programme SIK programme in reactor safety is part of a major joint Nordic research effort in nuclear safety. The report summarizes the achievements of the SIK programme, which was carried out during 1990-1993 in collaboration between Nordic nuclear utilities, safety authorities, and research institutes. Three main projects were successfully completed dealing with: 1) development and application of a living PSA concept for monitoring the risk of core damage, and of safety indicators for early warning of possible safety problems; 2) review and intercomparison of severe accident codes, case studies of potential core melt accidents in nordic reactors, development of chemical models for the MAAP code, and outline of a system for computerized accident management support; 3) compilation of information about design and safety features of neighbouring reactors in Germany, Lithuania and Russia, and for naval reactors and nuclear submarines. The report reviews the state-of-the-art in each subject matter as an introduction to the individual project summaries. The main findings of each project are highlighted. The report also contains an overview of reactor safety research in the Nordic countries and a summary of fundamental reactor safety principles. (au) (69 refs.)

  18. Bowing-reactivity trends in EBR-II assuming zero-swelling ducts

    International Nuclear Information System (INIS)

    Meneghetti, D.

    1994-01-01

    Predicted trends of duct-bowing reactivities for the Experimental Breeder Reactor II (EBR-II) are correlated with predicted row-wise duct deflections assuming use of idealized zero-void-swelling subassembly ducts. These assume no irradiation induced swellings of ducts but include estimates of the effects of irradiation-creep relaxation of thermally induced bowing stresses. The results illustrate the manners in which at-power creeps may affect subsequent duct deflections at zero power and thereby the trends of the bowing component of a subsequent power reactivity decrement

  19. Safety of Research Reactors. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This Safety Requirements publication establishes requirements for all main areas of safety for research reactors, with particular emphasis on requirements for design and operation. It explains the safety objectives and concepts that form the basis for safety and safety assessment for all stages in the lifetime of a research reactor. Technical and administrative requirements for the safety of new research reactors are established in accordance with these objectives and concepts, and they are to be applied to the extent practicable for existing research reactors. The safety requirements established in this publication for the management of safety and regulatory supervision apply to site evaluation, design, manufacturing, construction, commissioning, operation (including utilization and modification), and planning for decommissioning of research reactors (including critical assemblies and subcritical assemblies). The publication is intended for use by regulatory bodies and other organizations with responsibilities in these areas and in safety analysis, verification and review, and the provision of technical support.

  20. Fusion reactor safety

    International Nuclear Information System (INIS)

    1987-12-01

    Nuclear fusion could soon become a viable energy source. Work in plasma physics, fusion technology and fusion safety is progressing rapidly in a number of Member States and international collaboration continues on work aiming at the demonstration of fusion power generation. Safety of fusion reactors and technological and radiological aspects of waste management are important aspects in the development and design of fusion machines. In order to provide an international forum to review and discuss the status and the progress made since 1983 in programmes related to operational safety aspects of fusion reactors, their waste management and decommissioning concepts, the IAEA had organized the Technical Committee on ''Fusion Reactor Safety'' in Culham, 3-7 November 1986. All presentations of this meeting were divided into four sessions: 1. Statements on National-International Fusion Safety Programmes (5 papers); 2. Operation and System Safety (15 papers); 3. Waste Management and Decommissioning (5 papers); 4. Environmental Impacts (6 papers). A separate abstract was prepared for each of these 31 papers. Refs, figs, tabs

  1. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    2000-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of two main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents. Main achievements in 1999 are reported

  2. Comparisons of PRD [power-reactivity-decrements] components for various EBR-II configurations

    International Nuclear Information System (INIS)

    Meneghetti, D.; Kucera, D.A.

    1986-01-01

    Comparison of detailed calculations of contributions by region and component of the power-reactivity-decrements (PRD) for four differing loading configurations of the Experimental Breeder Reactor-II (EBR-II) are given. The linear components and Doppler components are calculated. The non-linear (primarily subassembly bowing) components are deduced by differences relative to measured total PRD values. Variations in linear components range from about 10% to as much as about 100% depending upon the component. The deduced non-linear components differ both in magnitude and sign as functions of reactor power. Effects of differing assumptions of the nature of the fuel-to-clad interactions upon the PRD components are also calculated

  3. Safety Evaluation of Kartini Reactor Based on Instrumentation System Design

    International Nuclear Information System (INIS)

    Tjipta Suhaemi; Djen Djen Dj; Itjeu K; Johnny S; Setyono

    2003-01-01

    The safety of Kartini reactor has been evaluated based on instrumentation system aspect. The Kartini reactor is designed by BATAN. Design power of the reactor is 250 kW, but it is currently operated at 100 kW. Instrumentation and control system function is to monitor and control the reactor operation. Instrumentation and control system consists of safety system, start-up and automatic power control, and process information system. The linear power channel and logarithmic power channel are used for measuring power. There are 3 types of control rod for controlling the power, i.e. safety rod, shim rod, and regulating rod. The trip and interlock system are used for safety. There are instrumentation equipment used for measuring radiation exposure, flow rate, temperature and conductivity of fluid The system of Kartini reactor has been developed by introducing a process information system, start-up system, and automatic power control. It is concluded that the instrumentation of Kartini reactor has followed the requirement and standard of IAEA. (author)

  4. The ARIES-I tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses the following topics on the Aries-I Tokamak: Design description; systems studies and economics; reactor plasma physics; magnet engineering; fusion-power-ore engineering; and environmental and safety features

  5. Nuclear Reactor RA Safety Report, Vol. 14, Safety protection measures

    International Nuclear Information System (INIS)

    1986-11-01

    Nuclear reactor accidents can be caused by three type of errors: failure of reactor components including (1) control and measuring instrumentation, (2) errors in operation procedure, (3) natural disasters. Safety during reactor operation are secured during its design and construction and later during operation. Both construction and administrative procedures are applied to attain safe operation. Technical safety features include fission product barriers, fuel elements cladding, primary reactor components (reactor vessel, primary cooling pipes, heat exchanger in the pump), reactor building. Safety system is the system for safe reactor shutdown and auxiliary safety system. RA reactor operating regulations and instructions are administrative acts applied to avoid possible human error caused accidents [sr

  6. Safety inspections to TRIGA reactors

    International Nuclear Information System (INIS)

    Byszewski, W.

    1988-01-01

    The operational safety advisory programme was created to provide useful assistance and advice from an international perspective to research reactor operators and regulators on how to enhance operational safety and radiation protection on their reactors. Safety missions cover not only the operational safety of reactors themselves, but also the safety of associated experimental loops, isotope laboratories and other experimental facilities. Safety missions are also performed on request in other Member States which are interested in receiving impartial advice and assistance in order to enhance the safety of research reactors. The results of the inspections have shown that in some countries there are problems with radiation protection practices and nuclear safety. Very often the Safety Analysis Report is not updated, regulatory supervision needs clarification and improvement, maintenance procedures should be more formalised and records and reports are not maintained properly. In many cases population density around the facility has increased affecting the validity of the original safety analysis

  7. Selecting of key safety parameters in reactor nuclear safety supervision

    International Nuclear Information System (INIS)

    He Fan; Yu Hong

    2014-01-01

    The safety parameters indicate the operational states and safety of research reactor are the basis of nuclear safety supervision institution to carry out effective supervision to nuclear facilities. In this paper, the selecting of key safety parameters presented by the research reactor operating unit to National Nuclear Safety Administration that can express the research reactor operational states and safety when operational occurrence or nuclear accident happens, and the interrelationship between them are discussed. Analysis shows that, the key parameters to nuclear safety supervision of research reactor including design limits, operational limits and conditions, safety system settings, safety limits, acceptable limits and emergency action level etc. (authors)

  8. Nuclear Reactor RA Safety Report, Vol. 14, Safety protection measures; Izvestaj o sigurnosti nuklearnog reaktora RA, Knjiga 14, Sigurnosne zastitne mere

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-11-01

    Nuclear reactor accidents can be caused by three type of errors: failure of reactor components including (1) control and measuring instrumentation, (2) errors in operation procedure, (3) natural disasters. Safety during reactor operation are secured during its design and construction and later during operation. Both construction and administrative procedures are applied to attain safe operation. Technical safety features include fission product barriers, fuel elements cladding, primary reactor components (reactor vessel, primary cooling pipes, heat exchanger in the pump), reactor building. Safety system is the system for safe reactor shutdown and auxiliary safety system. RA reactor operating regulations and instructions are administrative acts applied to avoid possible human error caused accidents. [Serbo-Croat] Uzroci udesa na nuklearnim reaktorima mogu se svrstati u jednu od sledece tri grupe: (1) otkaz pojedinih delova opreme, ukljucujuci mernu i kontrolnu instrumentaciju, (2) greske u pogonu i eksploataciji, (3) prirodne nepogode, katastrofe. Bezbednost i sigurnost u radu nuklearnog reaktora osiguravaju se odredjenim merama koje se preduzimaju pri njegovoj izgradnji i kasnije njegovoj elsploataciji. Te mere se mogu podeliti u sledece dve kategorije: (1) mere tehnicke zastite, i (2) administrativne mere. Mere tehnicke zastite sastoje se od barijere fissionih produkata, kosuljice gorivnih elemenata, primarnog kola reaktora RA (reaktorski sud, cevovod primarnog kola, toploizmenjivac u pimpi), zgrada reaktora. Sigurnosni sistem cini sistem za sigurnosno zaustavljanje reaktora i pomocni sigurnosni sistem. Kroz odgovarajuce propise i uputstva za rad na reaktoru RA primenjene su administrativne mere neophodne za sprecavanje udes koji bi mogao nastati kao posledica ljudskog faktora.

  9. Inherent safety characteristics of innovative reactors

    International Nuclear Information System (INIS)

    Heil, J.A.

    1995-11-01

    The added safety value of innovative or third generation reactor designs has been evaluated in order to determine the most suitable candidate for Dutch government funded research and development support. To this end, four innovative reactor concepts, viz. PIUS (Process Inherent Ultimate Safety), PRISM (Power Reactor Innovative Small), HTR-M (High Temperature Reactor Module) and MHTGR (Modular High Temperature Gas-cooled Reactor), have been studied and their passive and inherent safety characteristics have been outlined. Also the outlook for further technological and industrial development has been considered. The results of the study confirm the perspective of the innovative reactors for reduced dependence on active safety provisions and for a further reduced vulnerability to technical failures and human errors. The accident responses to generic accident initiators, viz. reactivity and cooling accidents, and also to reactor specific accidents show that neither active safety systems nor short term operator actions are required for maintaining the reactor core in a controlled and coolable condition. Whether this gives rise to a higher total safety of the innovative reactor designs, compared to evolutionary or advanced reactors, cannot be concluded. Supplementary experimental and analytical analyses of reactor specific accidents are required to be able to assess the safety of these innovative designs in a more quantitative manner. It is believed that the safety case of innovative reactors, which are less dependent on active safety systems, can be communicated with the general public in a more transparent way. Considering the perspective for further technological and industrial development it is not expected that any of the considered innovative reactor concepts will become commercially available within the next one to two decades. However, they could be made available earlier if they would receive sufficient financial backing. Considering the added safety perspectives

  10. Commissioning of research reactors. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    The objective of this Safety Guide is to provide recommendations on meeting the requirements for the commissioning of research reactors on the basis of international best practices. Specifically, it provides recommendations on fulfilling the requirements established in paras 6.44 and 7.42-7.50 of International Atomic Energy Agency, Safety of Research Reactors, IAEA Safety Standards Series No. NS-R-4, IAEA, Vienna (2005) and guidance and specific and consequential recommendations relating to the recommendations presented in paras 615-621 of International Atomic Energy Agency, Safety in the Utilization and Modification of Research Reactors, Safety Series No. 35-G2, IAEA, Vienna (1994) and paras 228-229 of International Atomic Energy Agency, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, Safety Series No. 35-G1, IAEA, Vienna (1994). This Safety Guide is intended for use by all organizations involved in commissioning for a research reactor, including the operating organization, the regulatory body and other organizations involved in the research reactor project

  11. Small nuclear reactor safety design requirements for autonomous operation

    International Nuclear Information System (INIS)

    Kozier, K.S.; Kupca, S.

    1997-01-01

    Small nuclear power reactors offer compelling safety advantages in terms of the limited consequences that can arise from major accident events and the enhanced ability to use reliable, passive means to eliminate their occurrence by design. Accordingly, for some small reactor designs featuring a high degree of safety autonomy, it may be-possible to delineate a ''safety envelope'' for a given set of reactor circumstances within which safe reactor operation can be guaranteed without outside intervention for time periods of practical significance (i.e., days or weeks). The capability to operate a small reactor without the need for highly skilled technical staff permanently present, but with continuous remote monitoring, would aid the economic case for small reactors, simplify their use in remote regions and enhance safety by limiting the potential for accidents initiated by inappropriate operator action. This paper considers some of the technical design options and issues associated with the use of small power reactors in an autonomous mode for limited periods. The focus is on systems that are suitable for a variety of applications, producing steam for electricity generation, district heating, water desalination and/or marine propulsion. Near-term prospects at low power levels favour the use of pressurized, light-water-cooled reactor designs, among which those having an integral core arrangement appear to offer cost and passive-safety advantages. Small integral pressurized water reactors have been studied in many countries, including the test operation of prototype systems. (author)

  12. Reactor safety analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    Risk assessments of nuclear installations require accurate safety and reliability analyses to estimate the consequences of accidental events and their probability of occurrence. The objective of the work performed in this field at the Belgian Nuclear Research Centre SCK-CEN is to develop expertise in probabilistic and deterministic reactor safety analysis. The four main activities of the research project on reactor safety analysis are: (1) the development of software for the reliable analysis of large systems; (2) the development of an expert system for the aid to diagnosis; (3) the development and the application of a probabilistic reactor-dynamics method, and (4) to participate in the international PHEBUS-FP programme for severe accidents. Progress in research during 1997 is described

  13. SRP reactor safety evolution

    International Nuclear Information System (INIS)

    Rankin, D.B.

    1984-01-01

    The Savannah River Plant reactors have operated for over 100 reactor years without an incident of significant consequence to on or off-site personnel. The reactor safety posture incorporates a conservative, failure-tolerant design; extensive administrative controls carried out through detailed operating and emergency written procedures; and multiple engineered safety systems backed by comprehensive safety analyses, adapting through the years as operating experience, changes in reactor operational modes, equipment modernization, and experience in the nuclear power industry suggested. Independent technical reviews and audits as well as a strong organizational structure also contribute to the defense-in-depth safety posture. A complete review of safety history would discuss all of the above contributors and the interplay of roles. This report, however, is limited to evolution of the engineered safety features and some of the supporting analyses. The discussion of safety history is divided into finite periods of operating history for preservation of historical perspective and ease of understanding by the reader. Programs in progress are also included. The accident at Three Mile Island was assessed for its safety implications to SRP operation. Resulting recommendations and their current status are discussed separately at the end of the report. 16 refs., 3 figs

  14. Safety of light water reactors. Risks of nuclear technology

    International Nuclear Information System (INIS)

    Veser, Anke; Schlueter, Franz-Hermann; Raskob, Wolfgang; Landman, Claudia; Paesler-Sauer, Juergen; Kessler, Guenter

    2012-01-01

    The book on the safety of light-water reactors includes the following chapters: Part I: Physical and technical safety concept of actual German and future European light-water reactors: (1) Worldwide operated nuclear power plants in 2011, (2) Some reactor physical fundamentals. (3) Nuclear power plants in Germany. (4) Radioactive exposure due to nuclear power plants. (5) Safety concept of light-water reactors. (6) Probabilistic analyses and risk studies. (7) Design of light-water reactors against external incidents. (8) Risk comparison of nuclear power plants and other energy systems. (9) Evaluation of risk studies using the improved (new) safety concept for LWR. (19) The severe reactor accidents of Three Mile Island, Chernobyl and Fukushima. Part II: Safety of German LWR in case of a postulated aircraft impact. (11) Literature. (12) Review of requirements and actual design. (13) Incident scenarios. (14) Load approach for aircraft impact. (15) Demonstration of the structural behavior in case of aircraft impact. (16) Special considerations. (17) Evaluation of the safety state of German and foreign nuclear power plants. Part III: ROSOS as example for a computer-based decision making support system for the severe accident management. (19) Literature. (20) Radiological fundamentals, accident management, modeling of the radiological situation. (21) The decision making support system RODOS. (22) RODOS and the Fukushima accident. (23) Recent developments in the radiological emergency management in the European frame.

  15. Reactor safety method

    International Nuclear Information System (INIS)

    Vachon, L.J.

    1980-01-01

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature

  16. Development of safety analysis technology for integral reactor; evaluation on safety concerns of integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Chul; Kim, Woong Sik; Lee, J. H. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2002-03-01

    The Nuclear Desalination Plant (NDP) is being developed to produce electricity and fresh water, and is expected to locate near population zone. In the aspect of safety, it is required to protect the public and environment from the possible releases of fission products and to prevent the fresh water from the contamination of radioactivity. Thus, in this study, the safety characteristics of the integral reactor adopting passive and inherent safety features significantly different from existing nuclear power plants were investigated. Also, safety requirements applicable to the NDP were analyzed based on the regulatory requirements for current light water reactor and advanced reactor designs, and user requirements for small-medium size reactors. Based on these analyses, some safety concerns to be considered in the design stage have been identified and discussed. They include the use of proven technology for new safety features, systematic event classification and selection, strengthening containment function, and the safety impacts on desalination-related systems. The study presents the general safety requirements applicable to licensing of an integral reactor and suggests additional regulatory requirements, which need to be developed, based on the direction to resolution of the safety concerns. The efforts to identify and technically resolve the safety concerns in the design stage will provide the early confidence of SMART safety and the technical basis to evaluate the safety to designers and reviewers in the future. Suggestion on the development of additional regulatory requirements will contribute for the regulator to taking actions for licensing of an integral reactor. 66 refs., 5 figs., 24 tabs. (Author)

  17. Multi-dimensional Code Development for Safety Analysis of LMR

    International Nuclear Information System (INIS)

    Ha, K. S.; Jeong, H. Y.; Kwon, Y. M.; Lee, Y. B.

    2006-08-01

    A liquid metal reactor loaded a metallic fuel has the inherent safety mechanism due to the several negative reactivity feedback. Although this feature demonstrated through experiments in the EBR-II, any of the computer programs until now did not exactly analyze it because of the complexity of the reactivity feedback mechanism. A multi-dimensional detail program was developed through the International Nuclear Energy Research Initiative(INERI) from 2003 to 2005. This report includes the numerical coupling the multi-dimensional program and SSC-K code which is used to the safety analysis of liquid metal reactors in KAERI. The coupled code has been proved by comparing the analysis results using the code with the results using SAS-SASSYS code of ANL for the UTOP, ULOF, and ULOHS applied to the safety analysis for KALIMER-150

  18. Safety of VVER-440 reactors

    CERN Document Server

    Slugen, Vladimir

    2011-01-01

    Safety of VVER-440 Reactors endeavours to promote an increase in the safety of VVER-440 nuclear reactors via the improvement of fission products limitation systems and the implementation of special non-destructive spectroscopic methods for materials testing. All theoretical and experimental studies performed the by author over the last 25 years have been undertaken with the aim of improving VVER-440 defence in depth, which is one of the most important principle for ensuring safety in nuclear power plants. Safety of VVER-440 Reactors is focused on the barrier system through which the safety pri

  19. Guidelines for the review research reactor safety. Reference document for IAEA Integrated Safety Assessment of Research Reactors (INSARR)

    International Nuclear Information System (INIS)

    1997-01-01

    In 1992, the IAEA published new safety standards for research reactors as part of the set of publications considered by its Research Reactor Safety Programme (RRSP). This set also includes publications giving guidance for all safety aspects related to the lifetime of a research reactor. In addition, the IAEA has also revised the Safety Standards for radiation protection. Consequently, it was considered advisable to revise the Integrated Safety Assessment of Research Reactors (INSARR) procedures to incorporate the new requirements and guidance as well as to extend the scope of the safety reviews to currently operating research reactors. The present report is the result of this revision. The purpose of this report is to give guidance on the preparation, execution, reporting and follow-up of safety review mission to research reactors as conducted by the IAEA under its INSARR missions safety service. However, it will also be of assistance to operators and regulators in conducting: (a) ad hoc safety assessments of research reactors to address individual issues such as ageing or safety culture; and (b) other types of safety reviews such as internal and peer reviews and regulatory inspections

  20. Problems in the assessment of inherent safety characteristics of nuclear reactors

    International Nuclear Information System (INIS)

    Garribba, S.F.; Vivante, C.

    1988-01-01

    A number of proposals are being made for an increased RD and D effort on advanced nuclear power reactors that would display outstanding safety performance. A common characteristic of the different reactor concepts would be their limited reliance upon active engineered systems under major accident conditions. However, when submitted to a more close scrutiny reactor concept options may reveal diverging safety behaviors and also development opportunities. In this respect, three issues are explored in this paper. A first question is the meaning of non-active, i.e. inherent and passive safety features. Next, is the ranking of advanced and new reactor concepts from the viewpoint of inherent and passive safety. Multiple correspondence analysis may provide a simple tool, whose use is shown for the case of HTR-500, AP600 and PRISM. Conversely, probabilistic risk assessment would allow quantitative comparisons, although lack of information and data is an obstacle. Finally, is demonstration of safety performances as a step toward market deployment of the new reactor systems

  1. Experimental Breeder Reactor II (EBR-II) Fuel-Performance Test Facility (FPTF)

    International Nuclear Information System (INIS)

    Pardini, J.A.; Brubaker, R.C.; Veith, D.J.; Giorgis, G.C.; Walker, D.E.; Seim, O.S.

    1982-01-01

    The Fuel-Performance Test Facility (FPTF) is the latest in a series of special EBR-II instrumented in-core test facilities. A flow control valve in the facility is programmed to vary the coolant flow, and thus the temperature, in an experimental-irradiation subassembly beneath it and coupled to it. In this way, thermal transients can be simulated in that subassembly without changing the temperatures in surrounding subassemblies. The FPTF also monitors sodium flow and temperature, and detects delayed neutrons in the sodium effluent from the experimental-irradiation subassembly beneath it. This facility also has an acoustical detector (high-temperature microphone) for detecting sodium boiling

  2. Safety analysis of RA reactor operation, I-II, Part I - RA reactor technical and operation characteristics; Analiza sigurnosti rada reaktora RA - I-III, I deo - Tehnicke i pogonske karakteristike reaktora RA

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1963-02-15

    RA research reactor is a thermal, heavy water moderated system with graphite reflector having nominal power 6.5 MW. The 2% enriched metal uranium fuel in the reactor core produces mean thermal neutron flux of 2.9 10{sup 13} neutrons/cm{sup 2} s, and maximum neutron flux 5.5 10{sup 13} neutrons/cm{sup 2} s. main components of the reactor described in this report are: rector core, reflector, biological shield, heavy water cooling system, ordinary water cooling system, helium system, reactor control system, reactor safety system, dosimetry system, power supply system, and fuel transport system. Detailed reactor properties and engineering drawings of all the system are part of this volume.

  3. Safety philosophy and safety technology of the Soviet RBMK reactors

    International Nuclear Information System (INIS)

    Zuend, H.; Jarvis, A.S.; Haennis, H.P.; Tikal, J.

    1986-01-01

    Safety requirements and control in USSR are outlined. Safety criteria and practical application in the case of the RBMK type reactor Chernobyl-4 are discussed. An overview of the Chernobyl-4 reactor accident including its causes is given. Measures to improve the safety of RBMK reactors are described

  4. Safety culture and quality management of Kartini research reactor

    International Nuclear Information System (INIS)

    Syarip; Hauptmanns, Ulrich

    1999-01-01

    The evaluation for assessing the safety culture and quality of safety management of Kartini research reactor is presented. The method is based on the concept of management control of safety (audit) as well as by using the developed method i.e. the questionnaires concerning areas of relevance which have to be answered with value statements. There are seven statements or qualifiers in answering the questions. Since such statements are vague, they are represented by fuzzy numbers. The weaknesses can be identified from the different areas contemplated. The evaluation result show that the quality of safety management of Kartini research reactor is globally rated as 'Average'. The operator behavior in the implementation of 'safety culture' concept is found as a weakness, therefore this area should be improved. (author)

  5. The IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    According to the research reactor database of IAEA (RRDB), 250 reactors are operating worldwide, 248 have been shut down and 170 have been decommissioned. Among the 248 reactors that do not run, some will resume their activities, others will be dismantled and the rest do not face a clear future. The analysis of reported incidents shows that the ageing process is a major cause of failures, more than two thirds of operating reactors are over 30 years old. It also appears that the lack of adequate regulations or safety standards for research reactors is an important issue concerning reactor safety particularly when reactors are facing re-starting or upgrading or modifications. The IAEA has launched a 4-axis program: 1) to set basic safety regulations and standards for research reactors, 2) to provide IAEA members with an efficient help for the application of these safety regulations to their reactors, 3) to foster international exchange of information on research reactor safety, and 4) to provide IAEA members with a help concerning safety issues linked to malicious acts or sabotage on research reactors

  6. The safety of light water reactors

    International Nuclear Information System (INIS)

    Pershagen, B.

    1986-04-01

    The book describes the principles and practices of reactor safety as applied to the design, regulation and operation of both pressurized water reactors and boiling water reactors. The central part of the book is devoted to methods and results of safety analysis. Some significant events are described, notably the Three Mile Island accident. The book concludes with a chapter on the PIUS principle of inherent reactor safety as applied to the SECURE type of reactor developed in Sweden. (G.B.)

  7. Study of reactor parameters of on critical systems, Phase I: Safety report for RB zero power reactor; Ispitivanje reaktorskih parametara na kriticnim sistemima, I faza: Izvestaj o sigurnosti reaktora nulte snage RB

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N [Boris Kidric Institute of Nuclear Sciences Vinca, Belgrade (Yugoslavia)

    1962-09-15

    In addition to the safety analysis for the zero power RB reactor, this report contains a general description of the reactor, reactor components, auxiliary equipment and the reactor building. Reactor Rb has been reconstructed during 1961-1962 and supplied with new safety-control system as well as with a complete dosimetry instrumentation. Since RB reactor was constructed without shielding special attention is devoted to safety and protection of the staff performing experiments. Due to changed circumstances in the Institute ( start-up of the RA 7 MW power reactor) the role of the RB reactor was redefined.

  8. The ARIES-I tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    This report contains an overview of the Aries-I tokamak reactor study. The following topics are discussed on this tokamak: Systems studies; equilibrium, stability, and transport; summary and conclusions; current drive; impurity control system; tritium systems; magnet engineering; fusion-power-core engineering; power conversion; Aries-I safety design and analysis; design layout and maintenance; and start-up and operations

  9. IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Alcala, F.; Di Meglio, A.F.

    1995-01-01

    This paper describes the IAEA programme on research reactor safety and includes the safety related areas of conversions to the use of low enriched uranium (LEU) fuel. The program is based on the IAEA statutory responsibilities as they apply to the requirements of over 320 research reactors operating around the world. The programme covers four major areas: (a) the development of safety documents; (b) safety missions to research reactor facilities; (c) support of research programmes on research reactor safety; (d) support of Technical Cooperation projects on research reactor safety issues. The demand for these activities by the IAEA member states has increased substantially in recent years especially in developing countries with increasing emphasis being placed on LEU conversion matters. In response to this demand, the IAEA has undertaken an extensive programme for each of the four areas above. (author)

  10. EBR-II fuel handling console digital upgrade

    International Nuclear Information System (INIS)

    Peters, G.G.; Wiege, D.D.; Christensen, L.J.

    1995-01-01

    The main fuel handling console and control system at the Experimental Breeder Reactor II (EBR-II) are being upgraded to a computerized system using high-end workstations for the operator interface and a programmable logic controller (PLC) for the control system. Two-dimensional (2D) and three-dimensional (3D) computer graphics will be provided for the operator which will show the relative position of under-sodium fuel handling equipment. This equipment is operated remotely with no means of directly viewing the transfer. This paper describes various aspects of the modification including reasons for the upgrade, capabilities the new system provides over the old control system, philosophies and rationale behind the new design, testing and simulation work, diagnostic features, and the advanced graphics techniques used to display information to the operator

  11. Performance Test Results of Safety I and C Systems of SMART MMIS

    International Nuclear Information System (INIS)

    Suh, Yong Suk; Keum, Jong Yong; Jeong, Kwang Il; Lee, Joon Ku; Lee, Sang Seok; Kim, Kwan Woong

    2011-01-01

    KAERI has developed SMART (System-integrated Modular Advanced ReacTor), a 330MWt integral pressurized light water reactor that integrates four reactor coolant pumps, one pressurizer, eight steam generators, and one reactor core into a reactor vessel, since 1997 and submitted a SSAR (Standard design Safety Analysis Report) to Korea institute of nuclear safety (KINS) at the end of 2010 for the purpose of achieving the standard design approval (SDA) by the end of 2011. SMART MMIS has been designed with fully digitalized systems. Non-safety instrumentation and control (I and C) systems are designed based on the commercial distributed control systems. The safety I and C systems are designed using a new platform that was developed and validated by KAERI. Safety I and C systems are modularized using the platform. In the protection systems (PSs), datalinks are used to transmit data in a one-way direction in order to meet the independency requirement. In the engineered safety features-component control system (ESF-CCS), network switch devices (NSDs) are used to connect the group and loop controllers. The NSD was also newly developed and validated by KAERI. After validating the platform and NSD, a test facility was developed using the platform and NSDs to validate the performance of safety I and C systems. This paper presents the development and test results from the test facility

  12. Identification and management of plant aging and life extension issues for a liquid-metal-cooled reactor

    International Nuclear Information System (INIS)

    King, R.W.; Perry, W.H.

    1991-06-01

    Experimental Breeder Reactor 2 (EBR-2) is a pool-type sodium-cooled fast reactor that supports extensive experimental, test and demonstration programs while providing electrical power to the local grid. EBR-2 is a US Department of Energy Facility located at the Idaho National Engineering Laboratory and operated by Argonne National Laboratory (ANL). The current mission of EBR-2 is to serve as the operational prototype for the Integral Fast Reactor demonstration program. This mission and other programs require EBR-2 to operate reliability to a 40-year lifetime, a significant extension beyond the five to ten year life originally planned for the facility. The benefits of operating EBR-2 in the extended-life mode are important for providing long-term operational performance data for a sodium-cooled fast reactor that is not available elsewhere. Identification and preliminary assessment of potential life-limiting factors indicate that, with appropriate consideration given in the design phase, the sodium-cooled plant has potential for a very long operational lifetime. Achievement of a 40-year lifetime with high reliability is important not only for achieving the near-term goals of the EBR-2/IFR programs, but for the advancement of the liquid-metal-cooled reactor concept to the demonstration/commercialization phase. Key features make extended-life operation feasible based on the use of sodium as the primary coolant: low-pressure, high thermal capacity primary system and a low-pressure secondary system requiring no active valves; and limited corrosion of components. 2 refs

  13. Guidelines for the Review of Research Reactor Safety: Revised Edition. Reference Document for IAEA Integrated Safety Assessment of Research Reactors (INSARR)

    International Nuclear Information System (INIS)

    2013-01-01

    The Integrated Safety Assessment of Research Reactors (INSARR) is an IAEA safety review service available to Member States with the objective of supporting them in ensuring and enhancing the safety of their research reactors. This service consists of performing a comprehensive peer review and an assessment of the safety of the respective research reactor. The reviews are based on IAEA safety standards and on the provisions of the Code of Conduct on the Safety of Research Reactors. The INSARR can benefit both the operating organizations and the regulatory bodies of the requesting Member States, and can include new research reactors under design or operating research reactors, including those which are under a Project and Supply Agreement with the IAEA. The first IAEA safety evaluation of a research reactor operated by a Member State was completed in October 1959 and involved the Swiss 20 MW DIORIT research reactor. Since then, and in accordance with its programme on research reactor safety, the IAEA has conducted safety review missions in its Member States to enhance the safety of their research reactor facilities through the application of the Code of Conduct on the Safety of Research Reactors and the relevant IAEA safety standards. About 320 missions in 51 Member States were undertaken between 1972 and 2012. The INSARR missions and other limited scope safety review missions are conducted following the guidelines presented in this publication, which is a revision of Guidelines for the Review of Research Reactor Safety (IAEA Services Series No. 1), published in December 1997. This publication details those IAEA safety standards and guidance publications relevant to the safety of research reactors that have been revised or published since 1997. The purpose of this publication is to give guidance on the preparation, implementation, reporting and follow-up of safety review missions. It is also intended to be of assistance to operators and regulators in conducting

  14. Reactivity-induced time-dependencies of EBR-II linear and non-linear feedbacks

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1988-01-01

    Time-dependent linear feedback reactivities are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a kinetic code analysis of an experiment in which the change in power resulted from the dropping of a control rod. Shown with these linear reactivities are the reactivity associated with the control-rod shaft contraction and also time-dependent non-linear (mainly bowing) component deduced from the inverse kinetics of the experimentally measured fission power and the calculated linear reactivities. (author)

  15. Reactor Safety Commission Code of Practice for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    1990-01-01

    The Reactor Safety Commission of the Federal German Republic has summarized in the form of Official Guidelines the safety requirements which, in the Commission's view, have to be met in the design, construction and operation of a nuclear power station equipped with a pressurized water reactor. The Third Edition of the RSK Guidelines for pressurized water reactors dated 14.10.81. is a revised and expanded version of the Second Edition dated 24.1.79. The Reactor Safety Commission will with effect from October 1981 use these Guidelines in consultations on the siting of and safety concept for the installation approval of future pressurized water reactors and will assess these nuclear power stations during their erection in the light of these Guidelines. They have not however been immediately conceived for the adaptation of existing nuclear power stations, whether under construction or in operation. The scope of application of these Guidelines to such nuclear power stations will have to be examined for each individual case. The main aim of the Guidelines is to simplify the consultation process within the reactor Safety Commission and to provide early advice on the safety requirements considered necessary by the Commission. (author)

  16. Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program

    International Nuclear Information System (INIS)

    1987-05-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions

  17. Safety issues at the defense production reactors

    International Nuclear Information System (INIS)

    1987-01-01

    The United States produces plutonium and tritium for use in nuclear weapons at the defense production reactors - the N Reactor in Washington and the Savannah River reactors in South Carolina. This report reaches general conclusions about the management of those reactors and highlights a number of safety and technical issues that should be resolved. The report provides an assessment of the safety management, safety review, and safety methodology employed by the Department of Energy and the private contractors who operate the reactors for the federal government. This report examines the safety objective established by the Department of Energy for the production reactors and the process the Department of its contractors use to implement the objective; focuses on a variety of uncertainties concerning the production reactors, particularly those related to potential vulnerabilities to severe accidents; and identifies ways in which the DOE approach to management of the safety of the production reactors can be improved

  18. Reactor operation safety information document

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  19. Safety culture and quality management of Kartini research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syarip [Yogyakarta Nuclear Research Centre, Yogyakarta (Indonesia); Hauptmanns, Ulrich [Department of Plant Design and Safety, Otto-Von-Guericke-University, Magdeburg (Germany)

    1999-10-01

    The evaluation for assessing the safety culture and quality of safety management of Kartini research reactor is presented. The method is based on the concept of management control of safety (audit) as well as by using the developed method i.e. the questionnaires concerning areas of relevance which have to be answered with value statements. There are seven statements or qualifiers in answering the questions. Since such statements are vague, they are represented by fuzzy numbers. The weaknesses can be identified from the different areas contemplated. The evaluation result show that the quality of safety management of Kartini research reactor is globally rated as 'Average'. The operator behavior in the implementation of 'safety culture' concept is found as a weakness, therefore this area should be improved. (author)

  20. Safety regulations concerning instrumentation and control systems for research reactors

    International Nuclear Information System (INIS)

    El-Shanshoury, A.I.

    2009-01-01

    A brief study on the safety and reliability issues related to instrumentation and control systems in nuclear reactor plants is performed. In response, technical and strategic issues are used to accomplish instrumentation and control systems safety. For technical issues there are ; systems aspects of digital I and C technology, software quality assurance, common-mode software, failure potential, safety and reliability assessment methods, and human factors and human machine interfaces. The strategic issues are the case-by-case licensing process and the adequacy of the technical infrastructure. The purpose of this work was to review the reliability of the safety systems related to these technical issues for research reactors

  1. Nuclear reactor safety research in Idaho

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1983-01-01

    Detailed information about the performance of nuclear reactor systems, and especially about the nuclear fuel, is vital in determining the consequences of a reactor accident. Fission products released from the fuel during accidents are the ultimate safety concern to the general public living in the vicinity of a nuclear reactor plant. Safety research conducted at the Idaho National Engineering Laboratory (INEL) in support of the U.S. Nuclear Regulatory Commission (NRC) has provided the NRC with detailed data relating to most of the postulated nuclear reactor accidents. Engineers and scientists at the INEL are now in the process of gathering data related to the most severe nuclear reactor accident - the core melt accident. This paper describes the focus of the nuclear reactor safety research at the INEL. The key results expected from the severe core damage safety research program are discussed

  2. On-line sodium and cover as purity monitors gas operating tools at EBR-II

    International Nuclear Information System (INIS)

    Smith, C.R.F.; Richardson, W.J.; Holmes, J.T.

    1976-01-01

    Plugging temperature indicators, electrochemical oxygen meters and hydrogen diffusion meters are the on-line sodium purity monitors now in use at EBR-II. On-line gas chromatographs are used to monitor helium, hydrogen, oxygen and nitrogen impurities in the argon cover gases. Monitors for tritium-in-sodium and for hydrocarbons-in-cover gas have been developed and are scheduled for installation in the near future. An important advantage of on-line monitors over the conventional grab-sampling techniques is the speed of response to changing reactor conditions. This helps us to identify the source of the impurity, whether the cause may be transient or constant, and take corrective action as necessary. The oxygen meter is calibrated monthly against oxygen in sodium determined by the vanadium wire equilibration method. The other instruments either do not require calibration or are self-calibrating. The ranges, sensitivity and response times of all of the on-line purity monitors has proven satisfactory under EBR-II operating conditions

  3. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards

  4. Chemical surveillance of commercial fast breeder reactors

    International Nuclear Information System (INIS)

    Stamm, H.H.; Stade, K.Ch.

    1988-01-01

    After BN-600 (USSR) and SUPERPHENIX (France) were started succesfully, the international development of LMFBRs is standing at the doorstep of commercial use. For commercial use of LMFBRs cost reductions for construction and operation are highly desirable and necessary. Several nations developing breeder reactors have joined in a common effort in order to reach this aim by standardization and harmonization. On the base of more than 20 years of operation experience of experimental reactors (EBR-II, FFTF, RAPSODIE, DFR, BR-5/BR-10, BOR-60, JOYO, KNK-II) and demonstration plants (PHENIX, PFR, BN-350), possibilities for standardization in chemical surveillance of commercial breeder reactors without any loss of availability, reliability and reactor safety will be discussed in the following chapters. Loop-type reactors will be considered as well as pool-type reactors, although all commercial plants under consideration so far (SUPERPHENIX II, BN-800, BN-1600, CFBR, SNR-2, EFR) include pool-type reactors only. Table 1 gives a comparison of the Na inventories of test reactors, prototype plants and commercial LMFBRs

  5. Relationship between general safety requirements and safety culture in the improvement of safe operation of I.N.R. TRIGA reactor facilities

    International Nuclear Information System (INIS)

    Ciocanescu, M.; Preda, M.; Chiritescu, M.; Dumitru, M.

    1996-01-01

    Acquiring of the basic principles of ''safety culture'' by a large number of profesionals in the nuclear field drew the attention of the decision factors in the INR managerial structure, who decided to promote certain practical actions at each level in order to improve nuclear safety. Starting from the ''Republican Standards for Nuclear Safety'' issued by CSEN in 1975, where general safety criteria are defined for nuclear reactors and NPPs, the specialists at the TRIGA reactor originated and implemented a coherent and secure system to ensure nuclear safety over all steps of nuclear activities: research, conception, execution, commissioning and operation. This system has been continuosly corrected so that now it is completely integrated in a modern safety system. The paper presents the way in which a modern system for nuclear safety at the TRIGA reactor has been implemented and developed, in accordance to specific criteria and requirements imposed by related National Regulations and with the principles of safety culture. Starting from the definition of specific responsabilities, there are presented the internal stipulations and practical actions at all levels in order to enhance nuclear safety. (orig.)

  6. Modern design and safety analysis of the University of Florida Training Reactor

    International Nuclear Information System (INIS)

    Jordan, K.A.; Springfels, D.; Schubring, D.

    2015-01-01

    Highlights: • A new safety analysis of the University of Florida Training Reactor is presented. • This analysis uses modern codes and replaces the NRC approved analysis from 1982. • Reduction in engineering margin confirms that the UFTR is a negligible risk reactor. • Safety systems are not required to ensure that safety limits are not breached. • Negligible risk reactors are ideal for testing digital I&C equipment. - Abstract: A comprehensive series of neutronics and thermal hydraulics analyses were conducted to demonstrate the University of Florida Training Reactor (UFTR), an ARGONAUT type research reactor, as a negligible risk reactor that does not require safety-related systems or components to prevent breach of a safety limit. These analyses show that there is no credible UFTR accident that would result in major fuel damage or risk to public health and safety. The analysis was based on two limiting scenarios, whose extremity bound all other accidents of consequence: (1) the large step insertion of positive reactivity and (2) the release of fission products due to mechanical damage to a spent fuel plate. The maximum step insertion of positive reactivity was modeled using PARET/ANL software and shows a maximum peak fuel temperature of 283.2 °C, which is significantly below the failure limit of 530 °C. The exposure to the staff and general public was calculated for the worst-case fission product release scenario using the ORIGEN-S and COMPLY codes and was shown to be 6.5% of the annual limit. Impacts on reactor operations and an Instrumentation & Control System (I&C) upgrade are discussed

  7. Modern design and safety analysis of the University of Florida Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K.A., E-mail: kjordan@ufl.edu [University of Florida, 106 UFTR Bldg., PO Box 116400, Gainesville, FL 32611-6400 (United States); Springfels, D., E-mail: dspringfels@ufl.edu [University of Florida, 106 UFTR Bldg., PO Box 116400, Gainesville, FL 32611-6400 (United States); Schubring, D., E-mail: dlschubring@ufl.edu [University of Florida, 202 Nuclear Science Building, PO Box 118300, Gainesville, FL 32611-8300 (United States)

    2015-05-15

    Highlights: • A new safety analysis of the University of Florida Training Reactor is presented. • This analysis uses modern codes and replaces the NRC approved analysis from 1982. • Reduction in engineering margin confirms that the UFTR is a negligible risk reactor. • Safety systems are not required to ensure that safety limits are not breached. • Negligible risk reactors are ideal for testing digital I&C equipment. - Abstract: A comprehensive series of neutronics and thermal hydraulics analyses were conducted to demonstrate the University of Florida Training Reactor (UFTR), an ARGONAUT type research reactor, as a negligible risk reactor that does not require safety-related systems or components to prevent breach of a safety limit. These analyses show that there is no credible UFTR accident that would result in major fuel damage or risk to public health and safety. The analysis was based on two limiting scenarios, whose extremity bound all other accidents of consequence: (1) the large step insertion of positive reactivity and (2) the release of fission products due to mechanical damage to a spent fuel plate. The maximum step insertion of positive reactivity was modeled using PARET/ANL software and shows a maximum peak fuel temperature of 283.2 °C, which is significantly below the failure limit of 530 °C. The exposure to the staff and general public was calculated for the worst-case fission product release scenario using the ORIGEN-S and COMPLY codes and was shown to be 6.5% of the annual limit. Impacts on reactor operations and an Instrumentation & Control System (I&C) upgrade are discussed.

  8. Reactor containment and reactor safety in the United States

    International Nuclear Information System (INIS)

    Kouts, H.

    1986-01-01

    The reactor safety systems of two reactors are studied aiming at the reactor containment integrity. The first is a BWR type reactor and is called Peachbottom 2, and the second is a PWR type reactor, and is called surry. (E.G.) [pt

  9. EBR-II spent fuel treatment demonstration project

    International Nuclear Information System (INIS)

    Benedict, R.W.; Henslee, S.P.

    1997-01-01

    For approximately 10 years, Argonne National Laboratory was developed a fast reactor fuel cycle based on dry processing. When the US fast reactor program was canceled in 1994, the fuel processing technology, called the electrometallurgical technique, was adapted for treating unstable spent nuclear fuel for disposal. While this technique, which involves electrorefining fuel in a molten salt bath, is being developed for several different fuel categories, its initial application is for sodium-bonded metallic spent fuel. In June 1996, the Department of Energy (DOE) approved a radiation demonstration program in which 100 spent driver assemblies and 25 spent blanket assemblies from the Experimental Breeder Reactor-II (EBR-II) will be treated over a three-year period. This demonstrated will provide data that address issues in the National Research Council's evaluation of the technology. The planned operations will neutralize the reactive component (elemental sodium) in the fuel and produce a low enriched uranium product, a ceramic waste and a metal waste. The fission products and transuranium elements, which accumulate in the electrorefining salt, will be stabilized in the glass-bonded ceramic waste form. The stainless steel cladding hulls, noble metal fission products, and insoluble residues from the process will be stabilized in a stainless steel/zirconium alloy. Upon completion of a successful demonstration and additional environmental evaluation, the current plans are to process the remainder of the DOE sodium bonded fuel

  10. Space reactor safety, 1985--1995 lessons learned

    International Nuclear Information System (INIS)

    Marshall, A.C.

    1995-01-01

    Space reactor safety activities and decisions have evolved over the last decade. Important safety decisions have been made in the SP-100, Space Exploration Initiative, NEPSTP, SNTP, and Bimodal Space Reactor programs. In addition, international guidance on space reactor safety has been instituted. Space reactor safety decisions and practices have developed in the areas of inadvertent criticality, reentry, radiological release, orbital operation, programmatic, and policy. In general, the lessons learned point out the importance of carefully reviewing previous safety practices for appropriateness to space nuclear programs in general and to the specific mission under consideration

  11. Space reactor safety, 1985--1995 lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, A.C.

    1995-12-31

    Space reactor safety activities and decisions have evolved over the last decade. Important safety decisions have been made in the SP-100, Space Exploration Initiative, NEPSTP, SNTP, and Bimodal Space Reactor programs. In addition, international guidance on space reactor safety has been instituted. Space reactor safety decisions and practices have developed in the areas of inadvertent criticality, reentry, radiological release, orbital operation, programmatic, and policy. In general, the lessons learned point out the importance of carefully reviewing previous safety practices for appropriateness to space nuclear programs in general and to the specific mission under consideration.

  12. The influence of mechanical deformation on the irradiation creep of AISI 316 stainless steel irradiated in the EBR-II and FFTF fast reactors

    International Nuclear Information System (INIS)

    Garner, F.A.; Gilbert, E.R.

    2007-01-01

    Irradiation creep of stainless steels is thought not to be very responsive to material and environmental variables. To test this perception earlier unpublished experiments conducted in the EBR-II reactor on AISI 316 have been analyzed. While swelling is dependent on the cold-work level at 400-480 o C, the post-transient irradiation creep rate, often called the creep compliance B0, is not dependent on cold-work level. If the tube reaches pressures on reactor start-up that generate above-yield stresses in unirradiated steel, then plastic strains occur prior to significant irradiation, but the post-transient strain rate is identical to that of material that did not exceed the yield stress on start-up. It is shown that both stress-free and stress-affected swelling are isotropic and that the Soderberg relationship is maintained. At temperatures above ∼540 o C thermal creep and stored energy begin to assert themselves, with creep rates accelerating with cold-work and becoming non-linear with stress. These results are in agreement with a similar study on titanium-modified 316 steel in FFTF. (author)

  13. Swelling and swelling resistance possibilities of austenitic stainless steels in fusion reactors

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1983-01-01

    Fusion reactor helium generation rates in stainless steels are intermediate to those found in EBR-II and HFIR, and swelling in fusion reactors may differ from the fission swelling behavior. Advanced titanium-modified austenitic stainless steels exhibit much better void swelling resistance than AISI 316 under EBR-II (up to approx. 120 dpa) and HFIR (up to approx. 44 dpa) irradiations. The stability of fine titanium carbide (MC) precipitates plays an important role in void swelling resistance for the cold-worked titanium-modified steels irradiated in EBR-II. Futhermore, increased helium generation in these steels can (a) suppress void conversion, (b) suppress radiation-induced solute segregation (RIS), and (c) stabilize fine MC particles, if sufficient bubble nucleation occurs early in the irradation. The combined effects of helium-enhanced MC stability and helium-suppressed RIS suggest better void swelling resistance in these steels for fusion service than under EBR-II irradiation

  14. Safety Management and Safety Culture Self Assessment of Kartini Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syarip, S., E-mail: syarip@batan.go.id [Centre for Accelerator and Material Process Technology, National Nuclear Energy Agency (BATAN), Yogyakarta (Indonesia)

    2014-10-15

    The self-assessment of safety culture and safety management status of Kartini research reactor is a step to foster safety culture and management by identifying good practices and areas for improvement, and also to improve reactor safety in a whole. The method used in this assessment is based on questionnaires provided by the Forum for Nuclear Cooperation in Asia (FNCA), then reviewed by experts. Based on the assessment and evaluation results, it can be concluded that there were several good practices in maintaining the safety status of Kartini reactor such as: reactor operators and radiation protection workers were aware and knowledgeable of the safety standards and policies that apply to their operation, readily accept constructive criticism from their management and from the inspectors of regulatory body that address safety performance. As a proof, for the last four years the number of inspection/audit findings from Regulatory Body (BAPETEN) tended to decrease while the reactor utilization and its operating hour increased. On the other hands there were also some comments and recommendations for improvement of reactor safety culture, such as that there should be more frequent open dialogues between employees and managers, to grow and attain a mutual support to achieve safety goals. (author)

  15. The safety of future reactors

    International Nuclear Information System (INIS)

    Tanguy, P.

    1992-01-01

    To sum up, I would like to underline once again the importance of experience feedback. This issue can only be properly handled by reversing the thought process which lay behind the construction of the current NPP's. The design was the springboard for building the reactors and then operating them. Throughout construction and at times during operation, many difficulties arose, which were overcome by modifications. The need today is to go back down the line in the opposite direction : to use operational and constructional experience to restructure the design. Furthermore, the design of future reactors appears to me as a process which must be founded upon two guiding principles : defense in depth and a PSA-type probabilistic approach. They seem to me ideally fitted to underpin such a process, especially in the case of an evolutionary-type reactor project. Such a strategy requires the cooperation of many participants supported by a high level of safety culture, as defined in the report published by the IAEA in 1991 : a permanent questioning attitude, a prudent approach and efficient communication between all of the individuals and organizations involved. Failure to make such an effort might well compromise the safety goals mentioned earlier in this paper. (author) any other organization. (author)

  16. Reactor Safety Assessment System

    International Nuclear Information System (INIS)

    Sebo, D.E.; Bray, M.A.; King, M.A.

    1987-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (USNRC). RSAS is designed for use at the USNRC Operations Center in the event of a serious incident at a licensed nuclear power plant. RSAS is a situation assessment expert system which uses plant parametric data to generate conclusions for use by the NRC Reactor Safety Team. RSAS uses multiple rule bases and plant specific setpoint files to be applicable to all licensed nuclear power plants in the United States. RSAS currently covers several generic reactor categories and multiple plants within each category

  17. Reactor safety assessment system

    International Nuclear Information System (INIS)

    Sebo, D.E.; Bray, M.A.; King, M.A.

    1987-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (USNRC). RSA is designed for use at the USNRC Operations Center in the event of a serious incident at a licensed nuclear power plant. RSAS is a situation assessment expert system which uses plant parametric data to generate conclusions for use by the NRC Reactor Safety Team. RSAS uses multiple rule bases and plant specific setpoint files to be applicable to all licensed nuclear power plants in the United States. RSAS currently covers several generic reactor categories and multiple plants within each category

  18. Safety of research reactors - A regulator's perspective

    International Nuclear Information System (INIS)

    Rahman, M.S.

    2001-01-01

    Due to historical reasons research reactors have received less regulatory attention in the world than nuclear power plants. This has given rise to several safety issues which, if not addressed immediately, may result in an undesirable situation. However, in Pakistan, research reactors and power reactors have received due attention from the regulatory authority. The Pakistan Research Reactor-1 has been under regulatory surveillance since 1965, the year of its commissioning. The second reactor has also undergone all the safety reviews and checks mandated by the licensing procedures. A brief description of the regulatory framework, the several safety reviews carried out have been briefly described in this paper. Significant activities of the regulatory authority have also been described in verifying the safety of research reactors in Pakistan along with the future activities. The views of the Pakistani regulatory authority on the specific issues identified by the IAEA have been presented along with specific recommendations to the IAEA. We are of the opinion that there are more Member States operating nuclear research reactors than nuclear power plants. Therefore, there should be more emphasis on the research reactor safety, which somehow has not been the case. In several recommendations made to the IAEA on the specific safety issues the emphasis has been, in general, to have a similar documentation and approach for maintaining and verifying operational safety at research reactors as is currently available for nuclear power reactors and may be planned for nuclear fuel cycle facilities. (author)

  19. Advanced power reactors with improved safety characteristics

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1994-01-01

    The primary objective of nuclear safety is the protection of individuals, society and environment against radiological hazards from accidental releases of radioactive materials contained in nuclear reactors. Hereto, these materials are enclosed by several successive barriers and the barriers protected against mishaps and accidents by a multi-level system of safety precautions. The evolution of reactor technology continuously improves this concept and its implementation. At a world-wide scale, several advanced reactor concepts are currently being considered, some of them already at a design stage. Essential safety objectives include both further strengthening the prevention of accidents and improving the containment of fission products should an accident occur. The proposed solutions differ considerably with regard to technical principles, plant size and time scales considered for industrial application. Two typical approaches can be distinguished: The first approach basically aims at an evolution of power reactors currently in use, taking into account the findings from safety research and from operation of current plants. This approach makes maximum use of proven technology and operating experience but may nevertheless include new safety features. The corresponding designs are often termed 'large evolutionary'. The second approach consists in more fundamental changes compared to present designs, often with strong emphasis on specific passive features protecting the fuel and fuel cladding barriers. Owing to the nature and capability of those passive features such 'innovative designs' are mostly smaller in power output. The paper describes the basic objectives of such developments and illustrates important technical concepts focusing on next generation plants, i.e. designs to be available for industrial application until the end of this decade. 1 tab. (author)

  20. Liquid metal reactor deactivation as applied to the experimental breeder reactor - II

    International Nuclear Information System (INIS)

    Earle, O. K.; Michelbacher, J. A.; Pfannenstiel, D. F.; Wells, P. B.

    1999-01-01

    The Experimental Breeder Reactor-II (EBR-II) at Argonne National Laboratory-West (ANL-W) was shutdown in September, 1994. This sodium cooled reactor had been in service since 1964, and by the US Department of Energy (DOE) mandate, was to be placed in an industrially and radiologically safe condition for ultimate decommissioning. The deactivation of a liquid metal reactor presents unique concerns. The first major task associated with the project was the removal of all fueled assemblies. In addition, sodium must be drained from systems and processed for ultimate disposal. Residual quantities of sodium remaining in systems must be deactivated or inerted to preclude future hazards associated with pyrophoricity and generation of potentially explosive hydrogen gas. A Sodium Process Facility (SPF) was designed and constructed to react the elemental sodium from the EBR-II primary and secondary systems to sodium hydroxide for disposal. This facility has a design capacity to allow the reaction of the complete inventory of sodium at ANL-W in less than two years. Additional quantities of sodium from the Fermi-1 reactor are also being treated at the SPF

  1. Fabrication of preliminary fuel rods for SFR

    International Nuclear Information System (INIS)

    Kim, Sun Ki; Oh, Seok Jin; Ko, Young Mo; Woo, Youn Myung; Kim, Ki Hwan

    2012-01-01

    Metal fuels was selected for fueling many of the first reactors in the US, including the Experimental Breeder Reactor-I (EBR-I) and the Experimental Breeder Reactor-II (EBR-II) in Idaho, the FERMI-I reactor, and the Dounreay Fast Reactor (DFR) in the UK. Metallic U.Pu.Zr alloys were the reference fuel for the US Integral Fast Reactor (IFR) program. Metallic fuel has advantages such as simple fabrication procedures, good neutron economy, high thermal conductivity, excellent compatibility with a Na coolant and inherent passive safety. U-Zr-Pu alloy fuels have been used for SFR (sodium-cooled fast reactor) related to the closed fuel cycle for managing minor actinides and reducing a high radioactivity levels since the 1980s. Fabrication technology of metallic fuel for SFR has been in development in Korea as a national nuclear R and D program since 2007. For the final goal of SFR fuel rod fabrication with good performance, recently, three preliminary fuel rods were fabricated. In this paper, the preliminary fuel rods were fabricated, and then the inspection for QC(quality control) of the fuel rods was performed

  2. The safety features of an integrated maritime reactor

    International Nuclear Information System (INIS)

    Miyakoshi, Junichi; Yamada, Nobuyuki; Kuwahara, Shin-ichi

    1975-01-01

    The EFDR-80, a typical integrated maritime reactor, which is being developed in West Germany is outlined. The safety features of the integrated maritime reactor are presented with the analysis of reactor accidents and hazards, and are compared with those of the separated maritime reactor. Furthermore, the safety criteria of maritime reactors in Japan and West Germany are compared, and some of the differences are presented from the viewpoint of reactor design and safety analysis. In this report the authors express an earnest desire that the definite and reasonable safety criteria of the integrated maritime reactor should be established and that the safety criteria of the nuclear ship should be standardized internationally. (auth.)

  3. Safety analysis calculations for research and test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S Y; MacDonald, R; MacFarlane, D [Argonne National Laboratory, Argonne, IL (United States)

    1983-08-01

    The goal of the RERTR (Reduced Enrichment in Research and Test Reactor) Program at ANL is to provide technical means for conversion of research and test reactors from HEU (High-Enrichment Uranium) to LEU (Low-Enrichment Uranium) fuels. In exploring the feasibility of conversion, safety considerations are a prime concern; therefore, safety analyses must be performed for reactors undergoing the conversion. This requires thorough knowledge of the important safety parameters for different types of reactors for both HEU and LEU fuel. Appropriate computer codes are needed to predict transient reactor behavior under postulated accident conditions. In this discussion, safety issues for the two general types of reactors i.e., the plate-type (MTR-type) reactor and the rod-type (TRIGA-type) reactor, resulting from the changes associated with LEU vs. HEU fuels, are explored. The plate-type fuels are typically uranium aluminide (UAl{sub x}) compounds dispersed in aluminum and clad with aluminum. Moderation is provided by the water coolant. Self shut-down reactivity coefficients with EU fuel are entirely a result of coolant heating, whereas with LEU fuel there is an additional shut down contribution provided by the direct heating of the fuel due to the Doppler coefficient. In contrast, the rod-type (TRIGA) fuels are mixtures of zirconium hydride, uranium, and erbium. This fuel mixture is formed into rods ( {approx} 1 cm diameter) and clad with stainless steel or Incoloy. In the TRIGA fuel the self-shutdown reactivity is more complex, depending on heating of the fuel rather than the coolant. The two most important mechanisms in providing this feedback are: spectral hardening due to neutron interaction with the ZrH moderator as it is heated and Doppler broadening of resonances in erbium and U-238. Since these phenomena result directly from heating of the fuel, and do not depend on heat transfer to the moderator/coolant, the coefficients are prompt acting. Results of transient

  4. Safety of research reactors (Design and Operation)

    International Nuclear Information System (INIS)

    Dirar, H. M.

    2012-06-01

    The primary objective of this thesis is to conduct a comprehensive up-to-date literature review on the current status of safety of research reactor both in design and operation providing the future trends in safety of research reactors. Data and technical information of variety selected historical research reactors were thoroughly reviewed and evaluated, furthermore illustrations of the material of fuel, control rods, shielding, moderators and coolants used were discussed. Insight study of some historical research reactors was carried with considering sample cases such as Chicago Pile-1, F-1 reactor, Chalk River Laboratories,. The National Research Experimental Reactor and others. The current status of research reactors and their geographical distribution, reactor category and utilization is also covered. Examples of some recent advanced reactors were studied like safety barriers of HANARO of Korea including safety doors of the hall and building entrance and finger print identification which prevent the reactor from sabotage. On the basis of the results of this research, it is apparent that a high quality of safety of nuclear reactors can be attained by achieving enough robust construction, designing components of high levels of efficiency, replacing the compounds of the reactor in order to avoid corrosion and degradation with age, coupled with experienced scientists and technical staffs to operate nuclear research facilities.(Author)

  5. EBR-II Reactor Physics Benchmark Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Chad L. [Idaho State Univ., Pocatello, ID (United States); Lum, Edward S [Idaho State Univ., Pocatello, ID (United States); Stewart, Ryan [Idaho State Univ., Pocatello, ID (United States); Byambadorj, Bilguun [Idaho State Univ., Pocatello, ID (United States); Beaulieu, Quinton [Idaho State Univ., Pocatello, ID (United States)

    2017-12-28

    This report provides a reactor physics benchmark evaluation with associated uncertainty quantification for the critical configuration of the April 1986 Experimental Breeder Reactor II Run 138B core configuration.

  6. Test Results of a Platform for Safety I and C Systems of SMART MMIS

    International Nuclear Information System (INIS)

    Suh, Yong Suk; Keum, Jong Yong; Jeong, Kwang Il; Lee, Joon Ku; Lee, Sang Seok; Kim, Kwan Woong

    2011-01-01

    SMART (System-integrated Modular Advanced ReacTor), a 330MWt integral pressurized light water reactor that integrates four reactor coolant pumps, one pressurizer, eight steam generators, and one reactor core into a reactor vessel, has been under development at KAERI since 1997. A standard design safety analysis report of the SMART prepared by KAERI was submitted to Korea institute of nuclear safety (KINS) at the end of 2010. KAERI aims to achieve standard design approval (SDA) from KINS by the end of 2011. SMART MMIS has been designed using digital systems. It has digital-based compact control rooms. Its instrumentation and control (I and C) systems are designed using modular equipment connected through datalinks. Non-safety I and C systems are designed based on the commercial distributed control systems. Safety I and C systems are based on a new platform developed by KAERI. The platform is a high-speed digital signal processor (DSP)-based control unit. It plays the role of a module that provides control functions of the safety I and C systems. The test facilities have been developed at KAERI since 2009. This paper presents the development and test results of the platform

  7. Sodium fast reactor safety and licensing research plan - Volume II

    International Nuclear Information System (INIS)

    Ludewig, H.; Powers, D.A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A.; Phillips, J.; Zeyen, R.; Clement, B.; Garner, Frank; Walters, Leon; Wright, Steve; Ott, Larry J.; Suo-Anttila, Ahti Jorma; Denning, Richard; Ohshima, Hiroyuki; Ohno, S.; Miyhara, S.; Yacout, Abdellatif; Farmer, M.; Wade, D.; Grandy, C.; Schmidt, R.; Cahalen, J.; Olivier, Tara Jean; Budnitz, R.; Tobita, Yoshiharu; Serre, Frederic; Natesan, Ken; Carbajo, Juan J.; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Thomas, Justin; Wei, Tom; Sofu, Tanju; Flanagan, George F.; Bari, R.; Porter D.

    2012-01-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  8. Sodium fast reactor safety and licensing research plan. Volume II.

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  9. Safety aspect of long-life small safe power reactors

    International Nuclear Information System (INIS)

    Zaki, S.; Sekimoto, H.

    1995-01-01

    Safety aspects of several design options of long-life small safe fast power reactors using nitride fuel and lead-bismuth as coolant are discussed. In the present study hypothetical accidents are simulated for these reactors, i.e., unprotected simultaneous ULOF (total loss of primary pumping system) and UTOP (rod run out transient over power) accidents, caused by the simultaneous withdrawal of all control rods. The proposed designs have some important safety characteristics as low reactivity swing (only 0.2-0.25$), and negative coolant void coefficient over whole burnup period. Effectively negative value of all components of reactivity during an accident is observed. The safety performances of the balance, pancake, and tall slender type of core, each of them satisfy reactivity and negative coolant void coefficient constraint, against the above accident are compared. The simulation results show that all of the design options can survive the above accidents without the help of reactor scram and without the need of operator actions. (author)

  10. Systematic variation of threshold reaction rates in EBR-II

    International Nuclear Information System (INIS)

    Lippincott, E.P.; Combs, B.L.; Davis, A.I.

    1976-01-01

    Characterization of neutron flux, fluence, and spectra in fast reactor irradiation environments is presently being carried out at HEDL utilizing the multiple foil technique. These fluences and spectra are then used to correlate damage effects data to produce damage functions or equations to predict materials effects under future irradiation conditions. The neutron flux and spectrum, then, act as a transfer function to relate present observations to future effects in the same or different environments and thus consistent fluence evaluations are of utmost importance. As part of a continuing program to establish the data base to meet consistency requirements, a systematic correlation of data from a recent dosimetry test in EBR-II is being made. The paper presents preliminary results of some of these correlations involving threshold reactions

  11. IAEA activities on research reactor safety

    International Nuclear Information System (INIS)

    Alcala-Ruiz, F.

    1995-01-01

    Since its inception in 1957, the International Atomic Energy Agency (IAEA) has included activities in its programme to address aspects of research reactors such as safety, utilization and fuel cycle considerations. These activities were based on statutory functions and responsibilities, and on the current situation of research reactors in operation around the world; they responded to IAEA Member States' general or specific demands. At present, the IAEA activities on research reactors cover the above aspects and respond to specific and current issues, amongst which safety-related are of major concern to Member States. The present IAEA Research Reactor Safety Programme (RRSP) is a response to the current situation of about 300 research reactors in operation in 59 countries around the world. (orig.)

  12. Performance improvement of the Annular Core Pulse Reactor for reactor safety experiments

    International Nuclear Information System (INIS)

    Reuscher, J.A.; Pickard, P.S.

    1976-01-01

    The Annular Core Pulse Reactor (ACPR) is a TRIGA type reactor which has been in operation at Sandia Laboratories since 1967. The reactor is utilized in a wide variety of experimental programs which include radiation effects, neutron radiography, activation analysis, and fast reactor safety. During the past several years, the ACPR has become an important experimental facility for the United States Fast Reactor Safety Research Program and questions of interest to the safety of the LMFBR are being addressed. In order to enhance the capabilities of the ACPR for reactor safety experiments, a project to improve the performance of the reactor was initiated. It is anticipated that the pulse fluence can be increased by a factor of 2.0 to 2.5 utilizing a two-region core concept with high heat capacity fuel elements around the central irradiation cavity. In addition, the steady-state power of the reactor will be increased by about a factor of two. The new features of the improvements are described

  13. Ageing Management for Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    This Safety Guide was developed under the IAEA programme for safety standards for research reactors, which covers all the important areas of research reactor safety. It supplements and elaborates upon the safety requirements for ageing management of research reactors that are established in paras 6.68-6.70 and 7.109 of the IAEA Safety Requirements publication, Safety of Research Reactors. The safety of a research reactor requires that provisions be made in its design to facilitate ageing management. Throughout the lifetime of a research reactor, including its decommissioning, ageing management of its structures, systems and components (SSCs) important to safety is required, to ensure continued adequacy of the safety level, reliable operation of the reactor, and compliance with the operational limits and conditions. Managing the safety aspects of research reactor ageing requires implementation of an effective programme for the monitoring, prediction, and timely detection and mitigation of degradation of SSCs important to safety, and for maintaining their integrity and functional capability throughout their service lives. Ageing management is defined as engineering, operation, and maintenance strategy and actions to control within acceptable limits the ageing degradation of SSCs. Ageing management includes activities such as repair, refurbishment and replacement of SSCs, which are similar to other activities carried out at a research reactor in maintenance and testing or when a modification project takes place. However, it is important to recognize that effective management of ageing requires the use of a methodology that will detect and evaluate ageing degradation as a consequence of the service conditions, and involves the application of countermeasures for prevention and mitigation of ageing degradation. The objective of this Safety Guide is to provide recommendations on managing ageing of SSCs important to safety at research reactors on the basis of international

  14. Ageing Management for Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide was developed under the IAEA programme for safety standards for research reactors, which covers all the important areas of research reactor safety. It supplements and elaborates upon the safety requirements for ageing management of research reactors that are established in paras 6.68-6.70 and 7.109 of the IAEA Safety Requirements publication, Safety of Research Reactors. The safety of a research reactor requires that provisions be made in its design to facilitate ageing management. Throughout the lifetime of a research reactor, including its decommissioning, ageing management of its structures, systems and components (SSCs) important to safety is required, to ensure continued adequacy of the safety level, reliable operation of the reactor, and compliance with the operational limits and conditions. Managing the safety aspects of research reactor ageing requires implementation of an effective programme for the monitoring, prediction, and timely detection and mitigation of degradation of SSCs important to safety, and for maintaining their integrity and functional capability throughout their service lives. Ageing management is defined as engineering, operation, and maintenance strategy and actions to control within acceptable limits the ageing degradation of SSCs. Ageing management includes activities such as repair, refurbishment and replacement of SSCs, which are similar to other activities carried out at a research reactor in maintenance and testing or when a modification project takes place. However, it is important to recognize that effective management of ageing requires the use of a methodology that will detect and evaluate ageing degradation as a consequence of the service conditions, and involves the application of countermeasures for prevention and mitigation of ageing degradation. The objective of this Safety Guide is to provide recommendations on managing ageing of SSCs important to safety at research reactors on the basis of international

  15. Pattern-recognition system application to EBR-II plant-life extension

    International Nuclear Information System (INIS)

    King, R.W.; Radtke, W.H.; Mott, J.E.

    1988-01-01

    A computer-based pattern-recognition system, the System State Analyzer (SSA), is being used as part of the EBR-II plant-life extension program for detection of degradation and other abnormalities in plant systems. The SSA is used for surveillance of the EBR-II primary system instrumentation, primary sodium pumps, and plant heat balances. Early results of this surveillance indicate that the SSA can detect instrumentation degradation and system performance degradation over varying time intervals, and can provide derived signal values to replace signals from failed critical sensors. These results are being used in planning for extended-life operation of EBR-II

  16. Safety issues at the defense production reactors

    International Nuclear Information System (INIS)

    1987-01-01

    The United States produces plutonium and tritium for use in nuclear weapons at the defense production reactors endash the N Reactor in Washington and the Savannah River reactors in South Carolina. This report reaches general conclusions about the management of those reactors and highlights a number of safety and technical issues that should be resolved. The report provides an assessment of the safety management, safety review, and safety methodology employed by the Department of Energy and the private contractors who operate the reactors for the federal government. The report is necessarily based on a limited review of the defense production reactors. It does not address whether any of the reactors are ''safe,'' because such an analysis would involve a determination of acceptable risk endash a matter of obvious importance, but one that was beyond the purview of the committee. It also does not address whether the safety of the production reactors is comparable to that of commercial nuclear power stations, because even this narrower question extended beyond the charge to the committee and would have involved detailed analyses that the committee could not undertake

  17. Safety device for nuclear reactor

    International Nuclear Information System (INIS)

    Jacquelin, Roland.

    1977-01-01

    This invention relates to a safety device for a nuclear reactor, particularly a liquid metal (generally sodium) cooled fast reactor. This safety device includes an absorbing element with a support head connected by a disconnectable connector formed by the armature of an electromagnet at the end of an axially mobile vertical control rod. This connection is so designed that in the event of it becoming disconnected, the absorbing element gravity slides in a passage through the reactor core into an open container [fr

  18. The Birth of Nuclear-Generated Electricity

    Science.gov (United States)

    1999-09-01

    The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public.

  19. The Birth of Nuclear-Generated Electricity

    International Nuclear Information System (INIS)

    Claflin, D.J. POC

    1999-01-01

    The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public

  20. Criticality safety requirements for transporting EBR-II fuel bottles stored at INTEC

    International Nuclear Information System (INIS)

    Lell, R. M.; Pope, C. L.

    2000-01-01

    Two carrier/shipping cask options are being developed to transport bottles of EBR-II fuel elements stored at INTEC. Some fuel bottles are intact, but some have developed leaks. Reactivity control requirements to maintain subcriticality during the hypothetical transport accident have been examined for both transport options for intact and leaking bottles. Poison rods, poison sleeves, and dummy filler bottles were considered; several possible poison materials and several possible dummy filler materials were studied. The minimum number of poison rods or dummy filler bottles has been determined for each carrier for transport of intact and leaking bottles

  1. Gas-cooled reactor safety and accident analysis

    International Nuclear Information System (INIS)

    1985-12-01

    The Specialists' Meeting on Gas-Cooled Reactor Safety and Accident Analysis was convened by the International Atomic Energy Agency in Oak Ridge on the invitation of the Department of Energy in Washington, USA. The meeting was hosted by the Oak Ridge National Laboratory. The purpose of the meeting was to provide an opportunity to compare and discuss results of safety and accident analysis of gas-cooled reactors under development, construction or in operation, to review their lay-out, design, and their operational performance, and to identify areas in which additional research and development are needed. The meeting emphasized the high safety margins of gas-cooled reactors and gave particular attention to the inherent safety features of small reactor units. The meeting was subdivided into four technical sessions: Safety and Related Experience with Operating Gas-Cooled Reactors (4 papers); Risk and Safety Analysis (11 papers); Accident Analysis (9 papers); Miscellaneous Related Topics (5 papers). A separate abstract was prepared for each of these papers

  2. EBR-II Cover Gas Cleanup System upgrade process control system structure

    International Nuclear Information System (INIS)

    Carlson, R.B.; Staffon, J.D.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) Cover Gas Cleanup System (CGCS) control system was upgraded in 1991 to improve control and provide a graphical operator interface. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper briefly describes the Cover Gas Cleanup System and the overall control system; describes the main control computer hardware and system software features in more detail; and, then, describes the real-time control tasks, and how they interact with each other, and how they interact with the operator interface task

  3. Verification of reactor safety codes

    International Nuclear Information System (INIS)

    Murley, T.E.

    1978-01-01

    The safety evaluation of nuclear power plants requires the investigation of wide range of potential accidents that could be postulated to occur. Many of these accidents deal with phenomena that are outside the range of normal engineering experience. Because of the expense and difficulty of full scale tests covering the complete range of accident conditions, it is necessary to rely on complex computer codes to assess these accidents. The central role that computer codes play in safety analyses requires that the codes be verified, or tested, by comparing the code predictions with a wide range of experimental data chosen to span the physical phenomena expected under potential accident conditions. This paper discusses the plans of the Nuclear Regulatory Commission for verifying the reactor safety codes being developed by NRC to assess the safety of light water reactors and fast breeder reactors. (author)

  4. Research reactor safety - an overview of crucial aspects

    International Nuclear Information System (INIS)

    Laverie, M.

    1998-01-01

    Chronology of the commissioning orders of the French research reactors illustrates the importance of the time factor. When looking at older reactors, one must, on one hand, demonstrate, not only the absence of risks tied to the reactor's ageing, but, on the other hand, adapt the reactor's original technical designs to today's safety practices and standards. The evolution of reactor safety requirements over the last twenty years sometimes makes this adaptation difficult. The design of the next research reactors, after a one to two decades pause in construction, will require to set up new safety assessment bases that will have to take into account the nuclear power plant safety evolution. As a general statement, research reactor safety approaches will require the incorporation of specific design rules for research reactors: experience feedback for one of a kind design, frequent modifications required by research programmes, special operational requirements with operators/researchers interfaces. (author)

  5. Reactor safety-a New Approach

    International Nuclear Information System (INIS)

    Machiels, A.J.; Marston, T.U.; Taylor, J.J.

    1993-01-01

    Since 1982, the U.S. utilities have been leading to an industry-wide effort to establish a technical foundation for the design of the next generation of light water reactors (LWRs) in the United States. Since 1985, the utility initiative has been effected through a major technical program managed by the Electric Power Research Institute (EPRI): the Advanced Light Water Reactor (ALWR) Program. In addition to the U.S. utility leadership and sponsorship, the ALWR Program has also greatly benefitted from the participation and sponsorship of numerous international utility companies and from the close cooperation with the U.S. Department of Energy (DOE). One of the main goals of the ALWR Program has been to develop a comprehensive set of design requirements for the advanced LWRs. The Utility Requirement Document (URD) defines the technical basis for improved and standardized future LWR designs. The URD covers the entire plant up to the grid interface. Therefore, it is the basis for an integrated plant design, i.e., nuclear steam supply system and balance of plant. It emphasizes those areas which are most important to the objective of achieving an advanced LWR that is excellent with respect to safety, performance, constructibility, and economics. There are numerous basic design policies underlying the ALWR URD. Of particular interest is the treatment of reactor safety

  6. Automated start-up of EBR-II

    International Nuclear Information System (INIS)

    Kisner, R.A.

    1989-01-01

    Oak Ridge National Laboratory (ORNL) and Argonne National Laboratory (ANL) are undertaking a joint project to develop control philosophies, strategies, and algorithms for computer control of the start-up mode of the Experimental Breeder Reactor II (EBR-II). The major objective of this project is to show that advanced liquid-metal reactor (LMR) plants can be operated from low power to full power using computer control. Development of an automated control system with this objective in view will help resolve specific issues and provide proof through demonstration that automatic control for plant start-up is feasible. This paper describes the approach that will be used to develop such a system and some of the features it is expected to have. Structured, rule-based methods, which will provide start-up capability from a variety of initial plant conditions and degrees of equipment operability, will be used for accomplishing mode changes during plant start-up. Several innovative features will be incorporated such as signal, command, and strategy validation to maximize reliability, flexibility to accommodate a wide range of plant conditions, and overall utility. Continuous control design will utilize figures of merit to evaluate how well the controller meets the mission requirements. The operator interface will have unique ''look ahead'' features to let the operator see what will happen next. 15 refs., 7 figs., 1 tab

  7. Philosophy of safety evaluation on fast breeder reactor

    International Nuclear Information System (INIS)

    1981-01-01

    This is the report submitted from the special subcommittee on reactor safety standard to the Nuclear Safety Commission on October 14, 1980, and it was decided to temporarily apply this concept to the safety examination on fast breeder reactors. The examination and discussion of this report were performed by taking the prototype reactor ''Monju'' into consideration, which is to be the present target, referring to the philosophy of the safety evaluation on fast breeder reactors in foreign countries and based on the experiences in the fast experimental reactor ''Joyo''. The items applicable to the safety evaluation for liquid metal-cooled fast breeder reactors (LMFBR) as they are among the existing safety examination guidelines are applied. In addition to the existing guidelines, the report describes the matters to be considered specifically for core, fuel, sodium, sodium void, reactor shut-down system, reactor coolant boundary, cover gas boundary and others, intermediate cooling system, removal of decay heat, containment vessels, high temperature structures, and aseismatic property in the safety design of LMFBR's. For the safety evaluation for LMFBR's, the abnormal transient changes in operation and the phenomena to be evaluated as accidents are enumerated. In order to judge the propriety of the criteria of locating LMFBR facilities, the serious and hypothetical accidents are decided to be evaluated in accordance with the guideline for reactor location investigation. (Wakatsuki, Y.)

  8. The safety of pressurized water reactors

    International Nuclear Information System (INIS)

    Panossian, J.; Tanguy, P.

    1991-01-01

    In this paper we present a review of the status of the safety level of modern pressurized water reactors, that is to say those that meet the safety criteria accepted today by the international nuclear community. We will mainly rely on the operating experience and the Probabilistic Safety Assessments concerning French reactors. We will not back over the basic safety concepts of these reactors, which are well known. We begin with a brief review of some of the lessons learned from the two main accidents discussed in the present meeting. Three Mile Island and Chernobyl, without entering into details presented in previous papers. The presentation ends with a rather lengthy conclusion, aimed more at those not directly involved in the technical details of nuclear safety matters

  9. Component configuration control system development at EBR-II

    International Nuclear Information System (INIS)

    Monson, L.R.; Stratton, R.C.

    1984-01-01

    One ofthe major programs being pursued by the EBR-II Division of Argonne National Laboratory is to improve the reliability of plant control and protection systems. This effort involves looking closely at the present state of the art and needs associated with plant diagnostic, control and protection systems. One of the areas of development at EBR-II involves a component configuration control system (CCCS). This system is a computerized control and planning aid for the nuclear power operator

  10. The safety of the fast reactor

    International Nuclear Information System (INIS)

    Matthews, R.R.

    1977-01-01

    Verbatim of an address by R.R. Matthews, Chief Nuclear Health and Safety Officer, UK Central Electricity Generating Board given on January 15th 1977. The object of this address was to give some opinions on the safety issues of fast reactors as seen from an operational point of view. An outline of the basic responsibilities for nuclear safety is first given, and it is emphasized that the Central Electricity Generating Board has a statutory responsibility for the safe operation of its nuclear plant. The Nuclear Installations Act places absolute responsibility on the operator for ensuring that injury to persons and damage to property do not occur, and the new Health and Safety at Work Act does likewise. In addition the Board has a Nuclear Health and Safety Department that has to ensure that adequate provision for safety is made in the design, construction, and operation of nuclear plant, and safety at operational stations is monitored continuously by inspectors. In addition the requirements of the Nuclear Installations Inspectorate, laid down in the site licence conditions, must be satisfied. All these requirements are here discussed in the light of application to commercial fast reactors. It is considered that the hazards to fast reactor operating personnel are small and little different from those of other types of reactor, and in some respects the fast reactor has advantages, particularly in regard to the use of a Na coolant. The possibility of various types of accident is considered. Radioactive effluent discharge is also considered. The fast reactor as an international problem is discussed, including security matters. The extensive experience gained in operation of the experimental and prototype fast reactors at Dounreay is emphasized. (U.K.)

  11. Safety Analysis for Medium/Small Size Integral Reactor: Evaluation of Safety Characteristics for Small and Medium Integral Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hho jung; Seul, K W; Ahn, S K; Bang, Y S; Park, D G; Kim, B K; Kim, W S; Lee, J H; Kim, W K; Shim, T M; Choi, H S; Ahn, H J; Jung, D W; Kim, G I; Park, Y M; Lee, Y J [Korea Inst. of Nuclear Safety, Taejon (Korea, Republic of)

    1997-07-01

    The Small and medium integral reactor is developed to be utilized for non-electric areas such as district heating and steam production for desalination and other industrial purposes, and then these applications may typically imply a closeness between the reactor and the user. It requires the reactor to be designed with the adoption of special functional and inherent safety features to ensure and promote a high level of safety and reliability, in comparison with the existing nuclear power plants. The objective of the present study is to establish the bases for the development of regulatory requirements and technical guides to address the special safety characteristics of the small and medium integral reactor. In addition, the study aims to identify and to propose resolutions to the possible safety concerns in the design of the small and medium integral reactor. 34 refs., 20 tabs. (author)

  12. IRSN research programs concerning reactor safety

    International Nuclear Information System (INIS)

    Bardelay, J.

    2005-01-01

    This paper is made up of 3 parts. The first part briefly presents the missions of IRSN (French research institute on nuclear safety), the second part reviews the research works currently led by IRSN in the following fields : -) the assessment of safety computer codes, -) thermohydraulics, -) reactor ageing, -) reactivity accidents, -) loss of coolant, -) reactor pool dewatering, -) core meltdown, -) vapor explosion, and -) fission product release. In the third part, IRSN is shown to give a major importance to experimental programs led on research or test reactors for collecting valid data because of the complexity of the physical processes that are involved. IRSN plans to develop a research program concerning the safety of high or very high temperature reactors. (A.C.)

  13. Safety assessment of research reactors and preparation of the safety analysis report

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide presents guidelines, approved by international consensus, for the preparation, review and assessment of safety documentation for research reactors such as the Safety Analysis Report. While the Guide is most applicable to research reactors in the design and construction stage, it is also recommended for use during relicensing or reassessment of existing reactors

  14. Research reactor safety - an overview of crucial aspects

    Energy Technology Data Exchange (ETDEWEB)

    Laverie, M. [Atomic Energy Commission, Saclay, F-91191 Gif sur Yvette (France)

    1998-07-01

    Chronology of the commissioning orders of the French research reactors illustrates the importance of the time factor. When looking at older reactors, one must, on one hand, demonstrate, not only the absence of risks tied to the reactor's ageing, but, on the other hand, adapt the reactor's original technical designs to today's safety practices and standards. The evolution of reactor safety requirements over the last twenty years sometimes makes this adaptation difficult. The design of the next research reactors, after a one to two decades pause in construction, will require to set up new safety assessment bases that will have to take into account the nuclear power plant safety evolution. As a general statement, research reactor safety approaches will require the incorporation of specific design rules for research reactors: experience feedback for one of a kind design, frequent modifications required by research programmes, special operational requirements with operators/researchers interfaces. (author)

  15. Experience in the implementation of quality assurance program and safety culture assessment of research reactor operation and maintenance

    International Nuclear Information System (INIS)

    Syarip; Suryopratomo, K.

    2001-01-01

    The implementation of quality assurance program and safety culture for research reactor operation are of importance to assure its safety status. It comprises an assessment of the quality of both technical and organizational aspects involved in safety. The method for the assessment is based on judging the quality of fulfillment of a number of essential issues for safety i.e. through audit, interview and/or discussions with personnel and management in plant. However, special consideration should be given to the data processing regarding the fuzzy nature of the data i.e. in answering the questionnaire. To accommodate this situation, the SCAP, a computer program based on fuzzy logic for assessing plant safety status, has been developed. As a case study, the experience in the assessment of Kartini research reactor safety status shows that it is strongly related to the implementation of quality assurance program in reactor operation and awareness of reactor operation staffs to safety culture practice. It is also shown that the application of the fuzzy rule in assessing reactor safety status gives a more realistic result than the traditional approach. (author)

  16. High temperature reactor safety and environment

    International Nuclear Information System (INIS)

    Brisbois, J.; Charles, J.

    1975-01-01

    High-temperature reactors are endowed with favorable safety and environmental factors resulting from inherent design, main-component safety margins, and conventional safety systems. The combination of such characteristics, along with high yields, prove in addition, that such reactors are plagued with few problems, can be installed near users, and broaden the recourse to specific power, therefore fitting well within a natural environment [fr

  17. Distinctive safety aspects of the CANDU-PHW reactor design

    International Nuclear Information System (INIS)

    Kugler, G.

    1980-01-01

    Two lectures are presented in this report. They were prepared in response to a request from IAEA to provide information on the 'Special characteristics of the safety analysis of heavy water reactors' to delegates from member states attending the Interregional Training Course on Safety Analysis Review, held at Karlsruhe, November 19 to December 20, 1979. The CANDU-PHW reactor is used as a model for discussion. The first lecture describes the distinctive features of the CANDU reactor and how they impact on reactor safety. In the second lecture the Canadian safety philosophy, the safety design objective, and other selected topics on reactor safety analysis are discussed. The material in this report was selected with a view to assisting those not familiar with the CANDU heavy water reactor design in evaluating the distinctive safety aspects of these reactors. (auth)

  18. Probabilistic safety assessment for research reactors

    International Nuclear Information System (INIS)

    1986-12-01

    Increasing interest in using Probabilistic Safety Assessment (PSA) methods for research reactor safety is being observed in many countries throughout the world. This is mainly because of the great ability of this approach in achieving safe and reliable operation of research reactors. There is also a need to assist developing countries to apply Probabilistic Safety Assessment to existing nuclear facilities which are simpler and therefore less complicated to analyse than a large Nuclear Power Plant. It may be important, therefore, to develop PSA for research reactors. This might also help to better understand the safety characteristics of the reactor and to base any backfitting on a cost-benefit analysis which would ensure that only necessary changes are made. This document touches on all the key aspects of PSA but placed greater emphasis on so-called systems analysis aspects rather than the in-plant or ex-plant consequences

  19. Multimegawatt Space Reactor Safety

    International Nuclear Information System (INIS)

    Stanley, M.L.

    1989-01-01

    The Multimegawatt (MMW) Space Reactor Project supports the Strategic Defense Initiative Office requirement to provide reliable, safe, cost-effective, electrical power in the MMW range. Specifically, power may be used for neutral particle beams, free electron lasers, electromagnetic launchers, and orbital transfer vehicles. This power plant technology may also apply to the electrical power required for other uses such as deep-space probes and planetary exploration. The Multimegawatt Space Reactor Project, the Thermionic Fuel Element Verification Program, and Centaurus Program all support the Multimegawatt Space Nuclear Power Program and form an important part of the US Department of Energy's (DOE's) space and defense power systems activities. A major objective of the MMW project is the development of a reference flight system design that provides the desired levels of public safety, health protection, and special nuclear material (SNM) protection when used during its designated missions. The safety requirements for the MMW project are a hierarchy of requirements that consist of safety requirements/regulations, a safety policy, general safety criteria, safety technical specifications, safety design specifications, and the system design. This paper describes the strategy and philosophy behind the development of the safety requirements imposed upon the MMW concept developers. The safety organization, safety policy, generic safety issues, general safety criteria, and the safety technical specifications are discussed

  20. International standardization of safety requirements for fast reactors

    International Nuclear Information System (INIS)

    2011-06-01

    Japan Atomic Energy Agency (JAEA) is conducting the FaCT (Fast Reactor Cycle Technology Development) project in cooperation with Japan Atomic Power Company (JAPC) and Mitsubishi FBR systems inc. (MFBR), where an advanced loop-type fast reactor named JSFR (Japan Sodium-cooled Fast Reactor) is being developed. It is important to develop software technologies (a safety guideline, safety design criteria, safety design standards etc.) of FBRs as well as hardware ones (a reactor plant itself) in order to address prospective worldwide utilization of FBR technology. Therefore, it is expected to establish a rational safety guideline applicable to the JSFR and harmonized with national nuclear-safety regulations as well, including Japan, the United States and the European Union. This report presents domestic and international status of safety guideline development for sodium-cooled fast reactors (SFRs), results of comparative study for safety requirements provided in existing documents and a proposal for safety requirements of future SFRs with a roadmap for their refinement and worldwide utilization. (author)

  1. Safety probabilistic study of Almirante Alvaro Alberto nuclear power plant-Unit I

    International Nuclear Information System (INIS)

    Lederman, L.; Arrieta, L.A.I.; Fernandes Filho, T.L.; Gibelli, S.M.O.; Berthoud, J.S.; Ambros, P.C.; Soares, H.V.; Camargo, C.T.M.

    1985-04-01

    The phase A of probabilistic safety study of Angra I nuclear power plant is presented, to be used by CNEN and FURNAS Centrais Eletricas S.A. as standard model in operational and safety analysis. The methodology applied is a modernization of WASH 1400/2.11/ study. Angra I safety systems are described. The selection and qualification of initiating sequence accident events which can damage the reactor core are done. The accident scenes are developed using the method of event trees. The reactor in subcritical condition (pressure, fuel temperature within limits and controlled level of reactor vessel) is studied during 24 hours. The uncertainness in failure probabilities of systems and in the determination of sequence frequencies for core danification are evaluated. Total frequency of sequences which cause the fusion of reactor core are presented. (M.C.K.) [pt

  2. Mark I containment, short term program. Safety evaluation report

    International Nuclear Information System (INIS)

    1977-12-01

    Presented is a Safety Evaluation Report (SER) prepared by the Office of Nuclear Reactor Regulation addressing the Short Term Program (STP) reassessment of the containment systems of operating Boiler Water Reactor (BWR) facilities with the Mark I containment system design. The information presented in this SER establishes the basis for the NRC staff's conclusion that licensed Mark I BWR facilities can continue to operate safely, without undue risk to the health and safety of the public, during an interim period of approximately two years while a methodical, comprehensive Long Term Program (LTP) is conducted. This SER also provides one of the basic foundations for the NRC staff review of the Mark I containment systems for facilities not yet licensed for operation

  3. Nuclear safety as applied to space power reactor systems

    International Nuclear Information System (INIS)

    Cummings, G.E.

    1987-01-01

    Current space nuclear power reactor safety issues are discussed with respect to the unique characteristics of these reactors. An approach to achieving adequate safety and a perception of safety is outlined. This approach calls for a carefully conceived safety program which makes uses of lessons learned from previous terrestrial power reactor development programs. This approach includes use of risk analyses, passive safety design features, and analyses/experiments to understand and control off-design conditions. The point is made that some recent accidents concerning terrestrial power reactors do not imply that space power reactors cannot be operated safety

  4. Toward a Mechanistic Source Term in Advanced Reactors: A Review of Past U.S. SFR Incidents, Experiments, and Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, Matthew; Brunett, Acacia J.; Grabaskas, David

    2016-04-17

    In 2015, as part of a Regulatory Technology Development Plan (RTDP) effort for sodium-cooled fast reactors (SFRs), Argonne National Laboratory investigated the current state of knowledge of source term development for a metal-fueled, pool-type SFR. This paper provides a summary of past domestic metal-fueled SFR incidents and experiments and highlights information relevant to source term estimations that were gathered as part of the RTDP effort. The incidents described in this paper include fuel pin failures at the Sodium Reactor Experiment (SRE) facility in July of 1959, the Fermi I meltdown that occurred in October of 1966, and the repeated melting of a fuel element within an experimental capsule at the Experimental Breeder Reactor II (EBR-II) from November 1967 to May 1968. The experiments described in this paper include the Run-Beyond-Cladding-Breach tests that were performed at EBR-II in 1985 and a series of severe transient overpower tests conducted at the Transient Reactor Test Facility (TREAT) in the mid-1980s.

  5. Nuclear power reactors: reactor safety and military and civil defence

    International Nuclear Information System (INIS)

    Hvinden, T.

    1976-01-01

    The formation of fission products and plutonium in reactors is briefly described, followed by a short general discussion of reactor safety. The interaction of reactor safety and radioactive release considerations with military and civil defence is thereafter discussed. Reactors and other nuclear plants are factors which must be taken into account in the defence of the district around the site, and as potential targets of both conventional and guerilla attacks and sabotage, requiring special defence. The radiological hazards arising from serious damage to a power reactor by conventional weapons are briefly discussed, and the benefits of underground siting evaluated. Finally the author discusses the significance of the IAEA safeguards work as a preventive factor. (JIW)

  6. Reactor safety research. The CEC contribution

    International Nuclear Information System (INIS)

    Krischer, W.

    1990-01-01

    The involvement of the EC Commission in the reactor safety research dates back almost to the implementation of the EURATOM Treaty and has thus lasted for thirty years. The need for close collaboration and for general consensus on some crucial problems of concern to the public, has made the role of international organizations and, as far as Europe is concerned, the role of the European Community particularly important. The areas in which the CEC has been active during the last five years are widespread. This is partly due to the fact that, after TMI and Chernobyl, the effort and the interest of the different countries in reactor safety was considerable. Reactor Safety Research represents the proceedings of a seminar held by the Commission at the end of its research programme 1984-88 on reactor safety. As such it gives a comprehensive overview of the recent activities and main results achieved in the CEC Joint Research Centre and in national laboratories throughout Europe on the basis of shared cost actions. In a concluding chapter the book reports on the opinions, expressed during a panel by a group of major exponents, on the needs for future research. The main topics addressed are, with particular reference to Light Water Reactors (LWRS): reliability and risk evaluation, inspection of steel components, primary circuit components end-of-life prediction, and abnormal behaviour of reactor cooling systems. As far as LMFBRs are concerned, the topics covered are: severe accident modelling, material properties and structural behaviour studies. There are 67 pages, all of which are indexed separately. Reactor Safety Research will be of particular interest to reliability and safety engineers, nuclear engineers and technicians, and mechanical and structural engineers. (author)

  7. RSAS: a Reactor Safety Assessment System

    International Nuclear Information System (INIS)

    Sebo, D.E.; Dixon, B.W.; Bray, M.A.

    1985-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (NRC). RSAS is being developed for use at the NRC's Operations Center in the event of a serious incident at a licensed nuclear power plant. The system generates situation assessments for the NRC Reactor Safety Team based on a limited number of plant parameters, known operator actions, and plant status data. The RSAS rule base currently covers one reactor type. The extension of the rule base to other reactor types is also discussed

  8. Assessment calculation of MARS-LMR using EBR-II SHRT-45R

    Energy Technology Data Exchange (ETDEWEB)

    Choi, C.; Ha, K.S.

    2016-10-15

    Highlights: • Neutronic and thermal-hydraulic behavior predicted by MARS-LMR is validated with EBR-II SHRT-45R test data. • Decay heat model of ANS-94 give better prediction of the fission power. • The core power is well predicted by reactivity feedback during initial transient, however, the predicted power after approximately 200 s is over-estimated. The study of the reactivity feedback model of the EBR-II is necessary for the better calculation of the power. • Heat transfer between inter-subassemblies is the most important parameter, especially, a low flow and power subassembly, like non-fueled subassembly. - Abstract: KAERI has designed a prototype Gen-IV SFR (PGSFR) with metallic fuel. And the safety analysis code for the PGSFR, MARS-LMR, is based on the MARS code, and supplemented with various liquid metal related features including sodium properties, heat transfer, pressure drop, and reactivity feedback models. In order to validate the newly developed MARS-LMR, KAERI has joined the International Atomic Energy Agency (IAEA) coordinated research project (CRP) on “Benchmark Analysis of an EBR-II Shutdown Heat Removal Test (SHRT)”. Argonne National Laboratory (ANL) has technically supported and participated in this program. One of benchmark analysis tests is SHRT-45R, which is an unprotected loss of flow test in an EBR-II. So, sodium natural circulation and reactivity feedbacks are major phenomena of interest. A benchmark analysis was conducted using MARS-LMR with original input data provided by ANL. MARS-LMR well predicts the core flow and power change by reactivity feedbacks in the core. Except the results of the XX10, the temperature and flow in the XX09 agreed well with the experiments. Moreover, sensitivity tests were carried out for a decay heat model, reactivity feedback model, inter-subassembly heat transfer, internal heat structures and so on, to evaluate their sensitivity and get a better prediction. The decay heat model of ANS-94 shows

  9. Assessment calculation of MARS-LMR using EBR-II SHRT-45R

    International Nuclear Information System (INIS)

    Choi, C.; Ha, K.S.

    2016-01-01

    Highlights: • Neutronic and thermal-hydraulic behavior predicted by MARS-LMR is validated with EBR-II SHRT-45R test data. • Decay heat model of ANS-94 give better prediction of the fission power. • The core power is well predicted by reactivity feedback during initial transient, however, the predicted power after approximately 200 s is over-estimated. The study of the reactivity feedback model of the EBR-II is necessary for the better calculation of the power. • Heat transfer between inter-subassemblies is the most important parameter, especially, a low flow and power subassembly, like non-fueled subassembly. - Abstract: KAERI has designed a prototype Gen-IV SFR (PGSFR) with metallic fuel. And the safety analysis code for the PGSFR, MARS-LMR, is based on the MARS code, and supplemented with various liquid metal related features including sodium properties, heat transfer, pressure drop, and reactivity feedback models. In order to validate the newly developed MARS-LMR, KAERI has joined the International Atomic Energy Agency (IAEA) coordinated research project (CRP) on “Benchmark Analysis of an EBR-II Shutdown Heat Removal Test (SHRT)”. Argonne National Laboratory (ANL) has technically supported and participated in this program. One of benchmark analysis tests is SHRT-45R, which is an unprotected loss of flow test in an EBR-II. So, sodium natural circulation and reactivity feedbacks are major phenomena of interest. A benchmark analysis was conducted using MARS-LMR with original input data provided by ANL. MARS-LMR well predicts the core flow and power change by reactivity feedbacks in the core. Except the results of the XX10, the temperature and flow in the XX09 agreed well with the experiments. Moreover, sensitivity tests were carried out for a decay heat model, reactivity feedback model, inter-subassembly heat transfer, internal heat structures and so on, to evaluate their sensitivity and get a better prediction. The decay heat model of ANS-94 shows

  10. Part I. Fuel-motion diagnostics in support of fast-reactor safety experiments. Part II. Fission product detection system in support of fast reactor safety experiments

    International Nuclear Information System (INIS)

    Devolpi, A.; Doerner, R.C.; Fink, C.L.; Regis, J.P.; Rhodes, E.A.; Stanford, G.S.; Braid, T.H.; Boyar, R.E.

    1986-05-01

    In all destructive fast-reactor safety experiments at TREAT, fuel motion and cladding failure have been monitored by the fast-neutron/gamma-ray hodoscope, providing experimental results that are directly applicable to design, modeling, and validation in fast-reactor safety. Hodoscope contributions to the safety program can be considered to fall into several groupings: pre-failure fuel motion, cladding failure, post-failure fuel motion, steel blockages, pretest and posttest radiography, axial-power-profile variations, and power-coupling monitoring. High-quality results in fuel motion have been achieved, and motion sequences have been reconstructed in qualitative and quantitative visual forms. A collimated detection system has been used to observe fission products in the upper regions of a test loop in the TREAT reactor. Particular regions of the loop are targeted through any of five channels in a rotatable assembly in a horizontal hole through the biological shield. A well-type neutron detector, optimized for delayed neutrons, and two GeLi gamma ray spectrometers have been used in several experiments. Data are presented showing a time history of the transport of Dn emitters, of gamma spectra identifying volatile fission products deposited as aerosols, and of fission gas isotopes released from the coolant

  11. An approach to the verification of a fault-tolerant, computer-based reactor safety system: A case study using automated reasoning: Volume 1: Interim report

    International Nuclear Information System (INIS)

    Chisholm, G.H.; Kljaich, J.; Smith, B.T.; Wojcik, A.S.

    1987-01-01

    The purpose of this project is to explore the feasibility of automating the verification process for computer systems. The intent is to demonstrate that both the software and hardware that comprise the system meet specified availability and reliability criteria, that is, total design analysis. The approach to automation is based upon the use of Automated Reasoning Software developed at Argonne National Laboratory. This approach is herein referred to as formal analysis and is based on previous work on the formal verification of digital hardware designs. Formal analysis represents a rigorous evaluation which is appropriate for system acceptance in critical applications, such as a Reactor Safety System (RSS). This report describes a formal analysis technique in the context of a case study, that is, demonstrates the feasibility of applying formal analysis via application. The case study described is based on the Reactor Safety System (RSS) for the Experimental Breeder Reactor-II (EBR-II). This is a system where high reliability and availability are tantamount to safety. The conceptual design for this case study incorporates a Fault-Tolerant Processor (FTP) for the computer environment. An FTP is a computer which has the ability to produce correct results even in the presence of any single fault. This technology was selected as it provides a computer-based equivalent to the traditional analog based RSSs. This provides a more conservative design constraint than that imposed by the IEEE Standard, Criteria For Protection Systems For Nuclear Power Generating Stations (ANSI N42.7-1972)

  12. The EBR-II materials-surveillance program. 5: Results of SURV-5

    International Nuclear Information System (INIS)

    Ruther, W.E.; Staffon, J.D.; Carlson, B.G.; Allen, T.R.

    1998-01-01

    In March of 1965, a set of surveillance (SURV) samples was placed in the EBR-II reactor to determine the effect of irradiation, thermal aging, and sodium corrosion on reactor materials. Eight subassemblies were placed into row 12 positions of EBR-II to determine the effect of irradiation at 370 C. Two subassemblies were placed into the primary sodium basket to determine the effect of thermal aging at 370 C. One half of all samples were exposed to primary system sodium while one half were sealed in capsules with a helium atmosphere. Fifteen different structural materials were tested in the SURV program. In this work, the properties of these materials irradiated at 370 C to a total fluence of 3.2 x 10 22 n/cm 2 were determined. These materials are the fifth set of irradiated subassemblies to be examined as part of the SURV program (SURV-5). The properties analyzed were weight, density, microstructure, hardness, tensile and yield strength, and fracture resistance. Of all the alloys examined in SURV-5, only Berylco-25 showed any significant weight loss. Stainless steel (both 304 and 347) had the largest density decrease, although the density decrease from irradiation for all alloys was less than 0.4 percent. The microstructure of both Berylco-25 and the aluminum-bronze alloy was altered significantly. Iron- and nickel-base alloys showed little change in microstructure. Austenitic steels (304 and 347) harden with irradiation. The hardness of Inconel X750 did not change significantly with irradiation. The ultimate tensile strength of Inconel X750, 304 stainless steel, 420 stainless steel and welded 304 changed little due to a fluence increase from 2.2 x 10 22 n/cm 2 (the maximum fluence of the SURV-4 samples) to 3.2 x 10 22 n/cm 2

  13. An overview-probabilistic safety analysis for research reactors

    International Nuclear Information System (INIS)

    Liu Jinlin; Peng Changhong

    2015-01-01

    For long-term application, Probabilistic Safety Analysis (PSA) has proved to be a valuable tool for improving the safety and reliability of power reactors. In China, 'Nuclear safety and radioactive pollution prevention 'Twelfth Five Year Plan' and the 2020 vision' raises clearly that: to develop probabilistic safety analysis and aging evaluation for research reactors. Comparing with the power reactors, it reveals some specific features in research reactors: lower operating power, lower coolant temperature and pressure, etc. However, the core configurations may be changed very often and human actions play an important safety role in research reactors due to its specific experimental requirement. As a result, there is a necessary to conduct the PSA analysis of research reactors. This paper discusses the special characteristics related to the structure and operation and the methods to develop the PSA of research reactors, including initiating event analysis, event tree analysis, fault tree analysis, dependent failure analysis, human reliability analysis and quantification as well as the experimental and external event evaluation through the investigation of various research reactors and their PSAs home and abroad, to provide the current situation and features of research reactors PSAs. (author)

  14. Fast Reactor Knowledge Preservation Efforts. An Overview

    International Nuclear Information System (INIS)

    Grandy, Christopher

    2013-01-01

    • ARC-AFR Program is involved in a number of knowledge preservation activities; • Recovery of Information from EBR-II, FFTF, and TREAT is very important; • Recovery of Information from Office of Scientific and Technical Information (OSTI) and conversion to electronic format; • Organizing some data into electronic databases – EBR-II Plant Testing Data, FFTF Plant Testing Data, TREAT Test Data, SFR Fuels and Materials Irradiation Data, etc.; • Information is being used to support existing U.S. SFR programs along with international programs such as the IAEA CRP EBR-II Safety Benchmark

  15. Overview of fusion reactor safety

    International Nuclear Information System (INIS)

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Use of deuterium-tritium burning fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control, (2) neutron activation of structural materials, fluid streams and reactor hall environment, (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions, (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices, and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power

  16. Light water reactor safety research project

    International Nuclear Information System (INIS)

    Markoczy, G.; Aksan, S.N.; Behringer, K.; Prodan, M.; Stierli, F.; Ullrich, G.

    1980-07-01

    The research and development activities for the safety of Light Water Power Reactors carried out 1979 at the Swiss Federal Institute for Reactor Research are described. Considerations concerning the necessity, objectives and size of the Safety Research Project are presented, followed by a detailed discussion of the activities in the five tasks of the program, covering fracture mechanics and nondestructive testing, thermal-hydraulics, reactor noise analysis and pressure vessel steel surveillance. (Auth.)

  17. Evaluation of reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-04-15

    Although the operation of nuclear reactors has a remarkably good record of safety, the prevention of possible reactor accidents is one of the major factors that atomic planners have to contend with. At the same time, excessive caution may breed an attitude that hampers progress, either by resisting new development or by demanding unnecessarily elaborate and expensive precautions out of proportion to the actual hazards involved. The best course obviously is to determine the possible dangers and adopt adequate measures for their prevention, providing of course, for a reasonable margin of error in judging the hazards and the effectiveness of the measures. The greater the expert understanding and thoroughness with which this is done, the narrower need the margin be. This is the basic idea behind the evaluation of reactor safety

  18. Meeting on reactor safety research

    International Nuclear Information System (INIS)

    1982-09-01

    The meeting 'Reactor Safety Research' organized for the second time by the GRS by order of the BMFT gave a review of research activities on the safety of light water reactors in the Federal Repulbic of Germany, international co-operation in this field and latest results of this research institution. The central fields of interest were subjects of man/machine-interaction, operational reliability accident sequences, and risk. (orig.) [de

  19. Methods and strategies for future reactor safety goals

    Science.gov (United States)

    Arndt, Steven Andrew

    There have been significant discussions over the past few years by the United States Nuclear Regulatory Commission (NRC), the Advisory Committee on Reactor Safeguards (ACRS), and others as to the adequacy of the NRC safety goals for use with the next generation of nuclear power reactors to be built in the United States. The NRC, in its safety goals policy statement, has provided general qualitative safety goals and basic quantitative health objectives (QHOs) for nuclear reactors in the United States. Risk metrics such as core damage frequency (CDF) and large early release frequency (LERF) have been used as surrogates for the QHOs. In its review of the new plant licensing policy the ACRS has looked at the safety goals, as has the NRC. A number of issues have been raised including what the Commission had in mind when it drafted the safety goals and QHOs, how risk from multiple reactors at a site should be combined for evaluation, how the combination of a new and old reactor at the same site should be evaluated, what the criteria for evaluating new reactors should be, and whether new reactors should be required to be safer than current generation reactors. As part of the development and application of the NRC safety goal policy statement the Commissioners laid out the expectations for the safety of a nuclear power plant but did not address the risk associated with current multi-unit sites, potential modular reactor sites, and hybrid sites that could contain current generation reactors, new passive reactors, and/or modular reactors. The NRC safety goals and the QHOs refer to a "nuclear power plant," but do not discuss whether a "plant" refers to only a single unit or all of the units on a site. There has been much discussion on this issue recently due to the development of modular reactors. Additionally, the risk of multiple reactor accidents on the same site has been largely ignored in the probabilistic risk assessments (PRAs) done to date, and in most risk

  20. Evaluation of neutronic characteristics of in-pile test reactor for fast reactor safety research

    Energy Technology Data Exchange (ETDEWEB)

    Uto, N.; Ohno, S.; Kawata, N. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1996-09-01

    An extensive research program has been carried out at the Power Reactor and Nuclear Fuel Development Corporation for the safety of future liquid-metal fast breeder reactors to be commercialized. A major part of this program is investigation and planning of advanced safety experiments conducted with a new in-pile safety test facility, which is larger and more advanced than any of the currently existing test reactors. Such a transient safety test reactor generally has unique neutronic characteristics that require various studies from the reactor physics point of view. In this paper, the outcome of the neutronics study is highlighted with presenting a reference core design concept and its performance in regard to the safety test objectives. (author)

  1. Summary view on demonstration reactor safety

    International Nuclear Information System (INIS)

    Satoh, Kazuziro; Kotake, Shoji; Tsukui, Yutaka; Inagaki, Tatsutoshi; Miura, Masanori

    1991-01-01

    This work presents a summary view on safety design approaches for the demonstration fast breeder reactor (DFBR). The safety objective of DFBR is to be at lea as safe as a LWR. Major safety issues discussed in this paper are; reduction of sodium void reactivity worth, adoption of self-actuated mechanism in the backup shutdown system, use of the direct reactor auxiliary cooling system (DRACS), provision of the containment system. (author)

  2. Westinghouse independent safety review of Savannah River production reactors

    International Nuclear Information System (INIS)

    Leggett, W.D.; McShane, W.J.; Liparulo, N.J.; McAdoo, J.D.; Strawbridge, L.E.; Call, D.W.

    1989-01-01

    Westinghouse Electric Corporation has performed a safety assessment of the Savannah River production reactors (K, L, and P) as requested by the US Department of Energy. This assessment was performed between November 1, 1988, and April 1, 1989, under the transition contract for the Westinghouse Savannah River Company's preparations to succeed E.I. du Pont de Nemours ampersand Company as the US Department of Energy contractor for the Savannah River Project. The reviewers were drawn from several Westinghouse nuclear energy organizations, embody a combination of commercial and government reactor experience, and have backgrounds covering the range of technologies relevant to assessing nuclear safety. The report presents the rationale from which the overall judgment was drawn and the basis for the committee's opinion on the phased restart strategy proposed by E.I. du Pont de Nemours ampersand Company, Westinghouse, and the US Department of Energy-Savannah River. The committee concluded that it could recommend restart of one reactor at partial power upon completion of a list of recommended upgrades both to systems and their supporting analyses and after demonstration that the organization had assimilated the massive changes it will have undergone. 37 refs., 1 fig., 3 tabs

  3. Westinghouse independent safety review of Savannah River production reactors

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, W.D.; McShane, W.J. (Westinghouse Hanford Co., Richland, WA (USA)); Liparulo, N.J.; McAdoo, J.D.; Strawbridge, L.E. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Nuclear and Advanced Technology Div.); Toto, G. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Nuclear Services Div.); Fauske, H.K. (Fauske and Associates, Inc., Burr Ridge, IL (USA)); Call, D.W. (Westinghouse Savannah R

    1989-04-01

    Westinghouse Electric Corporation has performed a safety assessment of the Savannah River production reactors (K,L, and P) as requested by the US Department of Energy. This assessment was performed between November 1, 1988, and April 1, 1989, under the transition contract for the Westinghouse Savannah River Company's preparations to succeed E.I. du Pont de Nemours Company as the US Department of Energy contractor for the Savannah River Project. The reviewers were drawn from several Westinghouse nuclear energy organizations, embody a combination of commercial and government reactor experience, and have backgrounds covering the range of technologies relevant to assessing nuclear safety. The report presents the rationale from which the overall judgment was drawn and the basis for the committee's opinion on the phased restart strategy proposed by E.I. du Pont de Nemours Company, Westinghouse, and the US Department of Energy-Savannah River. The committee concluded that it could recommend restart of one reactor at partial power upon completion of a list of recommended upgrades both to systems and their supporting analyses and after demonstration that the organization had assimilated the massive changes it will have undergone.

  4. Nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1980-01-01

    A safety system for shutting down a nuclear reactor under overload conditions is described. The system includes a series of parallel-connected computer memory type look-up tables each of which receives data on a particular reactor parameter and in each of which a precalculated functional value for that parameter is stored indicative of the percentage of maximum reactor load that the parameter contributes. The various functional values corresponding to the actual measured parameters are added together to provide a control signal used to shut down the reactor under overload conditions. (U.K.)

  5. Problems of nuclear reactor safety. Vol. 2

    International Nuclear Information System (INIS)

    Goncharov, L.A.

    1995-01-01

    Theses of proceedings of the 9 Topical Meeting on problems of nuclear power plant safety are presented. Reports include results of neutron-physical experiments carried out for reactor safety justification. Concepts of advanced reactors with improved safety are considered. Results of researches on fuel cycles are given too

  6. Safety considerations concerning light water reactors in Sweden

    International Nuclear Information System (INIS)

    Nilsson, T.

    1977-01-01

    In 1975 the Swedish Nuclear Power Inspectorate was commissioned by the Government to perform a Reactor Safety Study concerning commercial light water reactors. The study will contain an account of: - rules and regulations for reactor designs; - operation experience of the Swedish nuclear power plants with international comparisons; - the development of reactor designs during the last 10 years; - demands and conditions for inspection and inspection methods; - nuclear power plant operation organization; - training of operators; and - the results of research into nuclear safety. The study is scheduled for completion by July 1st, 1977, however, this paper gives a summary of the results of the Reactor Safety Study already available. The paper contains detailed statistics concerning safety related occurrences and reactor scrams in Sweden from July 1st, 1974 until the beginning of 1977

  7. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The integral fast reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: a pool-type primary system, and advanced ternary alloy metallic fuel, and an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  8. Operator reliability study for Probabilistic Safety Analysis of an operating research reactor

    International Nuclear Information System (INIS)

    Mohamed, F.; Hassan, A.; Yahaya, R.; Rahman, I.; Maskin, M.; Praktom, P.; Charlie, F.

    2015-01-01

    Highlights: • Human Reliability Analysis (HRA) for Level 1 Probabilistic Safety Analysis (PSA) is performed on research nuclear reactor. • Implemented qualitative HRA framework is addressed. • Human Failure Events of significant impact to the reactor safety are derived. - Abstract: A Level 1 Probabilistic Safety Analysis (PSA) for the TRIGA Mark II research reactor of Malaysian Nuclear Agency has been developed to evaluate the potential risk in its operation. In conjunction to this PSA development, Human Reliability Analysis (HRA) is performed in order to determine human contribution to the risk. The aim of this study is to qualitatively analyze human actions (HAs) involved in the operation of this reactor according to the qualitative part of the HRA framework for PSA which is namely the identification, qualitative screening and modeling of HAs. By performing this framework, Human Failure Events (HFEs) of significant impact to the reactor safety are systematically analyzed and incorporated into the PSA structure. A part of the findings in this study will become the input for the subsequent quantitative part of the HRA framework, i.e. the Human Error Probability (HEP) quantification

  9. Issues affecting advanced passive light-water reactor safety analysis

    International Nuclear Information System (INIS)

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-01-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented

  10. IAEA safety standards and approach to safety of advanced reactors

    International Nuclear Information System (INIS)

    Gasparini, M.

    2004-01-01

    The paper presents an overview of the IAEA safety standards including their overall structure and purpose. A detailed presentation is devoted to the general approach to safety that is embodied in the current safety requirements for the design of nuclear power plants. A safety approach is proposed for the future. This approach can be used as reference for a safe design, for safety assessment and for the preparation of the safety requirements. The method proposes an integration of deterministic and risk informed concepts in the general frame of a generalized concept of safety goals and defence in depth. This methodology may provide a useful tool for the preparation of safety requirements for the design and operation of any kind of reactor including small and medium sized reactors with innovative safety features.(author)

  11. Safety analysis of the experimental multi-purpose high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Mitake, Susumu; Ezaki, Masahiro; Suzuki, Katsuo; Takaya, Junichi; Shimazu, Akira

    1976-02-01

    Safety features of the experimental multi-purpose high-temperature gas-cooled reactor being developed in JAERI were studied or the basis of its preliminary conceptual design of the reactor plant. Covered are control of the plant in transients, plant behaviour in accidents, and functions of engineered safeguards, and also dynamics of the uprant and frequencies of the accidents. These studies have shown, (i) the reactor plant can be operated both in plant slave to reactor and reactor slave to plant control, (ii) stable control of

  12. Development of Safety Review Guidance for Research and Training Reactors

    International Nuclear Information System (INIS)

    Oh, Kju-Myeng; Shin, Dae-Soo; Ahn, Sang-Kyu; Lee, Hoon-Joo

    2007-01-01

    The KINS already issued the safety review guidance for pressurized LWRs. But the safety review guidance for research and training reactors were not developed. So, the technical standard including safety review guidance for domestic research and training reactors has been applied mutates mutandis to those of nuclear power plants. It is often difficult for the staff to effectively perform the safety review of applications for the permit by the licensee, based on peculiar safety review guidance. The NRC and NSC provide the safety review guidance for test and research reactors and European countries refer to IAEA safety requirements and guides. The safety review guide (SRG) of research and training reactors was developed considering descriptions of the NUREG- 1537 Part 2, previous experiences of safety review and domestic regulations for related facilities. This study provided the safety review guidance for research and training reactors and surveyed the difference of major acceptance criteria or characteristics between the SRG of pressurized light water reactor and research and training reactors

  13. Perspective channel-type reactor with enhanced safety

    International Nuclear Information System (INIS)

    Adamov, E.O.; Grozdov, I.I.; Kuznetsov, S.P.; Petrov, A.A.; Rozhdestvensky, M.I.; Cherkashov, Yu.M.

    1994-01-01

    Following the search for new design solutions to develop within the framework of channel trends the reactor with enhanced safety the Research and Development Institute of Power Engineering has developed the design of the multiloop boiling water reactor (MKER). The MKER enhanced safety is attained when involving the inherent safety features, passive safety systems as well as the accident consequences confinement devices. The design realizes several advantages which are typical of the channel-type reactors, namely: The design desintegration simplifying the manufacture, control, equipment delivery and decreasing, versus the pressure vessel reactors, the accident effect if it proceeds in an explosive manner; small operating reactivity margin and fuel burnup increased due to continuous refuelling; fuel cycle flexibility allowing comparatively easily to adopt the reactor to the conjuncture of the country fuel balance; multiloop circuit of the main coolant which reduces the degree and effect of the accidents connected with the equipment and pipings rupture; monitoring of the channels and fuel assemblies leak-tightness. (orig.)

  14. Safety aspects of pressurised water reactors

    International Nuclear Information System (INIS)

    1985-01-01

    This submission to the Health and Safety Executive has been prepared by the Institution of Professional Civil Servants (IPCS) as a contribution to the debate on safety aspects associated with Pressurized Water Reactors (PWRs). Although supporting an energy policy which includes the development of nuclear power, assurances are sought on a number of safety issues if it is decided that this should be generated by a PWR-type reactor. These issues are listed. In particular the following are mentioned: the wider publication of design information, the use of elastic-plastic fracture mechanics as the basis for determining pressure vessel integrity, the failure rate of steam generating units, water coolant quality control, greater investigation of two-phase flow accident conditions, the components of the reactor cooling system and training of reactor personnel in the understanding of LOCA effects. (U.K.)

  15. Reactor safety

    International Nuclear Information System (INIS)

    Meneley, D.A.

    The people of Ontario have begun to receive the benefits of a low cost, assured supply of electrical energy from CANDU nuclear stations. This indigenous energy source also has excellent safety characteristics. Safety has been one of the central themes of the CANDU development program from its very beginning. A great deal of work has been done to establish that public risks are small. However, safety design criteria are now undergoing extensive review, with a real prospect of more stringent requirements being applied in the future. Considering the newness of the technology it is not surprising that a consensus does not yet exist; this makes it imperative to discuss the issues. It is time to examine the policies and practice of reactor safety management in Canada to decide whether or not further restrictions are justified in the light of current knowledge

  16. Fast breeder reactor safety : a perspective

    International Nuclear Information System (INIS)

    Kale, R.D.

    1992-01-01

    Taking into consideration India's limited reserves of natural and vast reserves of thorium, the fast reactor route holds a great promise for India's energy supply in future. The fast reactor fueled with 239 Pu/ 238 U (unused or depleted) produces (breeds) more fissionable fuel material 239 Pu than it consumes. Calculations show that a fast breeder reactor (FBR) increases energy potential of natural uranium by about 60 times. As the fast reactor can also convert 232 Th into 233 U which is a fissionable material, it can make India's thorium reserves a source of almost inexhaustible energy supply for a long time to come. Significant advantage of FBR plants cooled by sodium and their world-wide operating experience are reviewed. There are two main safety issues of FBR, one nuclear and the other non-nuclear. The nuclear issue concerns core disruptive accident and the non-nuclear one concerns the high chemical energy potential of sodium. These two issues are analysed and it is pointed that they are manageable by current design, construction and operational practices. Main findings of safety research during the last six to eight years in West European Countries and United States of America (US) are summarised. Three stage engineered safety provision incorporated into the design of the sodium cooled Fast Breeder Test Reactor (FBTR) commissioned at Kalpakkam are explained. The important design safety features of FBTR such as primary system containment, emergency core cooling, plant protection system, inherent safety features achieved through reactivity coefficients, and natural convection cooling are discussed. Theoretical analysis and experimental research in fast reactor safety carried out at the Indira Gandhi Centre for Atomic Research during the past some years are reviewed. (M.G.B.)

  17. Actinide behavior in the integral fast reactor

    International Nuclear Information System (INIS)

    Courtney, J.C.

    1993-05-01

    Goal of this project is to determine the consumption of Np-237, Pu-240, Am-241, and Am-243 in the Integral Fast Reactor (IFR) fuel cycle. These four actinides set the long term waste management criteria for spent nuclear fuel; if it can be demonstrated that they can be efficiently consumed in the IFR, then requirements for nuclear waste repositories can be much less demanding. Irradiations in the Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory's site near Idaho Falls, Idaho, will be conducted to determine fission and transmutation rates for the four nuclides. The experimental effort involves target package design, fabrication, quality assurance, and irradiation. Post irradiation analyses are required to determine the fission rates and neutron spectra in the EBR-II core

  18. Reactor safety training for decision making

    International Nuclear Information System (INIS)

    Scott, C.K.

    2003-01-01

    The purpose of this paper is to describe an approach to reactor safety training for technical staff working at an operating station. The concept being developed is that, when the engineer becomes a registered professional engineer, they have sufficient reactor safety knowledge to perform independent technical work without compromising the safety of the plant. This goal would be achieved with a focused training program while working as an engineer-in-training (four years in NB). (author)

  19. Fusion reactor safety studies, FY 1977

    International Nuclear Information System (INIS)

    Darby, J.B. Jr.

    1978-04-01

    This report reviews the technical progress in the fusion reactor safety studies performed during FY 1977 in the Fusion Power Program at the Argonne National Laboratory. The subjects reported on include safety considerations of the vacuum vessel and first-wall design for the ANL/EPR, the thermal responses of a tokamak reactor first wall, the vacuum wall electrical resistive requirements in relationship to magnet safety, and a major effort is reported on considerations and experiments on air detritiation

  20. Research for enhancing reactor safety

    International Nuclear Information System (INIS)

    1989-05-01

    Recent research for enhanced reactor safety covers extensive and numerous experiments and computed modelling activities designed to verify and to improve existing design requirements. The lectures presented at the meeting report GRS research results and the current status of reactor safety research in France. The GRS experts present results concerning expert systems and their perspectives in safety engineering, large-scale experiments and their significance in the development and verification of computer codes for thermohydraulic modelling of safety-related incidents, the advanced system code ATHLET for analysis of thermohydraulic processes of incidents, the analysis simulator which is a tool for fast evaluation of accident management measures, and investigations into event sequences and the required preventive emergency measures within the German Risk Study. (DG) [de

  1. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: (1) a pool-type primary system, (2) an advanced ternary alloy metallic fuel, and (3) an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by (1) the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and (2) a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  2. IAEA activities in the field of research reactors safety

    International Nuclear Information System (INIS)

    Ciuculescu, C.; Boado Magan, H.J.

    2004-01-01

    IAEA activities in the field of research reactor safety are included in the programme of the Division of Nuclear Installations Safety. Following the objectives of the Division, the results of the IAEA missions and the recommendations from International Advisory Groups, the IAEA has conducted in recent years a certain number of activities aiming to enhance the safety of research reactors. The following activities will be presented: (a) the new Requirements for the Safety of Research Reactors, main features and differences with previous standards (SS-35-S1 and SS-35-S2) and the grading approach for implementation; (b) new documents being developed (safety guides, safety reports and TECDOC's); (c) activities related to the Incident Reporting System for Research Reactor (IRSRR); (d) the new features implemented for the INSARR missions; (e) the Code of Conduct on the Safety of Research Reactors adopted by the Board of Governors on 8 March 2004, following the General Conference Resolution GC(45)/RES/10; and (f) the survey on the safety of research reactors published on the IAEA website on February 2003 and the results obtained. (author)

  3. Degradation of EBR-II driver fuel during wet storage

    International Nuclear Information System (INIS)

    Pahl, R. G.

    2000-01-01

    Characterization data are reported for sodium bonded EBR-II reactor fuel which had been stored underwater in containers since the 1981--1982 timeframe. Ten stainless steel storage containers, which had leaked water during storage due to improper sealing, were retrieved from the ICPP-603 storage basin at the Idaho National Engineering and Environmental Laboratory (INEEL) in Idaho. In the container chosen for detailed destructive analysis, the stainless steel cladding on the uranium alloy fuel had ruptured and fuel oxide sludge filled the bottom of the container. Headspace gas sampling determined that greater than 99% hydrogen was present. Cesium 137, which had leached out of the fuel during the aqueous corrosion process, dominated the radionuclide source term of the water. The metallic sodium from the fuel element bond had reacted with the water, forming a concentrated caustic solution of NaOH

  4. Technical mechanics in constructional reactor safety

    International Nuclear Information System (INIS)

    Matthees, W.

    1979-01-01

    Reactor safety is based on close cooperation between a number of technical and scientific disciplines; most problems of reactor technology can be solved with the aid of technical mechanics. At the 5th International Conference on Structural Mechanics in Reactor Technology (5th SMIRT), one of the biggest conferences in the field of applied technical mechanics, about 800 papers were read giving the latest state of knowledge in the field of constructional reactor safety. The main subject of the conference was the analysis of material behaviour under high loads; the information and methods of these analysis go far beyond what is required in the conventional field. (orig./UA) [de

  5. Experimental study of the transition from forced to natural circulation in EBR-II at low power and flow

    International Nuclear Information System (INIS)

    Gillette, J.L.; Singer, R.M.; Tokar, J.V.; Sullivan, J.E.

    1979-01-01

    A series of tests have been conducted in EBR-II which studied the dynamics of the transition from forced to natural circulation flow in a liquid-metal-cooled fast breeder reactor (LMFBR). Each test was initiated by abruptly tripping an electromagnetic pump which supplies 5 to 6% of the normal full operational primary flow rate. The ensuing flow coast-down reached a minimum value after which the flow increased as natural circulation was established. The effects of secondary system flow through the intermediate heat exchanger and reactor decay power level on the minimum in-core flow rates and maximum in-core temperatures were examined

  6. New perspectives on reactor safety

    International Nuclear Information System (INIS)

    Avery, R.

    1986-01-01

    Over the past few years a number of changes and new perspectives have come about in our approach to reactor safety. These changes have occurred over a period of time extending from as long ago as 1975, when WASH-1400 came out representing the first major application of probabilistic risk analysis (PRA) to US reactor plants. The period of change has extended from that time to the present, and includes new areas of focus such as safety goals, source term studies, and severe accident policy statement and approaches, including the IDCOR Program. It has also included a greatly increased interest in inherent safety. These areas are discussed in this paper

  7. Molten salt reactors - safety options galore

    International Nuclear Information System (INIS)

    Gat, U.; Dodds, H.L.

    1997-01-01

    Safety features and attributes of molten salt reactors (MSR) are described. The unique features of fluid fuel reactors of on-line continuous processing and the ability for so-called external cooling result in simple and safe designs with low excess reactivity, low fission product inventory, and small source term. These, in turn, make a criticality accident unlikely and reduce the severity of a loss of coolant to where they are no longer severe accidents. A melt down is not an accident for a reactor that uses molten fuel. The molten salts are stable, non-reactive and efficient heat transfer media that operate at high temperatures at low pressures and are highly compatible with selected structural materials. All these features reduce the accident plethora. Freeze valves can be used for added safety. An ultimate safe reactor (U.S.R) is described with safety features that are passive, inherent and non-tamperable (PINT)

  8. Safety in decommissioning of research reactors

    International Nuclear Information System (INIS)

    1986-01-01

    This Guide covers the technical and administrative considerations relevant to the nuclear aspects of safety in the decommissioning of reactors, as they apply to the reactor and the reactor site. While the treatment, transport and disposal of radioactive wastes arising from decommissioning are important considerations, these aspects are not specifically covered in this Guide. Likewise, other possible issues in decommissioning (e.g. land use and other environmental issues, industrial safety, financial assurance) which are not directly related to radiological safety are also not considered. Generally, decommissioning will be undertaken after planned final shutdown of the reactor. In some cases a reactor may have to be decommissioned following an unplanned or unexpected event of a series or damaging nature occurring during operation. In these cases special procedures for decommissioning may need to be developed, peculiar to the particular circumstances. This Guide could be used as a basis for the development of these procedures although specific consideration of the circumstances which create the need for them is beyond its scope

  9. Guide to the safety design examination about light water reactor facilities for power generation

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This guide was compiled to evaluate the validity of the design policy when the safety design is examined at the time of the application for approval of the installation of nuclear reactors. About 7 years has elapsed since the existing guide was established, and the more appropriate guide to evaluate the safety should be made on the basis of the knowledge and experience accumulated thereafter. The range of application of this guide is limited to the above described evaluation, and it is not intended as the general standard for the design of nuclear reactors. First, the definition of the words used in this guide is given. Then, the guide to the safety examination is described about the general matters of reactor facilities, nuclear reactors and the measuring and controlling system, reactor-stopping system, reactivity-controlling system and safety protection system, reactor-cooling system, reactor containment vessels, fuel handling and waste treatment system. Several matters which require attention in the application of this guide or the clarification of the significance and interpretation of the guide itself were found, therefore the explanation about them was added at the end of this guide. (Kako, I.)

  10. Space nuclear reactor safety

    International Nuclear Information System (INIS)

    Damon, D.; Temme, M.; Brown, N.

    1990-01-01

    Definition of safety requirements and design features of the SP-100 space reactor power system has been guided by a mission risk analysis. The analysis quantifies risk from accidental radiological consequences for a reference mission. Results show that the radiological risk from a space reactor can be made very low. The total mission risk from radiological consequences for a shuttle-launched, earth orbit SP-100 mission is estimated to be 0.05 Person-REM (expected values) based on a 1 mREM/yr de Minimus dose. Results are given for each mission phase. The safety benefits of specific design features are evaluated through risk sensitivity analyses

  11. Development of Operational Safety Monitoring System and Emergency Preparedness Advisory System for CANDU Reactors (I)

    International Nuclear Information System (INIS)

    Kim, Ma Woong; Shin, Hyeong Ki; Lee, Sang Kyu; Kim, Hyun Koon; Yoo, Kun Joong; Ryu, Yong Ho; Son, Han Seong; Song, Deok Yong

    2007-01-01

    As increase of operating nuclear power plants, an accident monitoring system is essential to ensure the operational safety of nuclear power plant. Thus, KINS has developed the Computerized Advisory System for a Radiological Emergency (CARE) system to monitor the operating status of nuclear power plant continuously. However, during the accidents or/and incidents some parameters could not be provided from the process computer of nuclear power plant to the CARE system due to limitation of To enhance the CARE system more effective for CANDU reactors, there is a need to provide complement the feature of the CARE in such a way to providing the operating parameters using to using safety analysis tool such as CANDU Integrated Safety Analysis System (CISAS) for CANDU reactors. In this study, to enhance the safety monitoring measurement two computerized systems such as a CANDU Operational Safety Monitoring System (COSMOS) and prototype of CANDU Emergency Preparedness Advisory System (CEPAS) are developed. This study introduces the two integrated safety monitoring system using the R and D products of the national mid- and long-term R and D such as CISAS and ISSAC code

  12. A review of experiments and results from the transient reactor test (TREAT) facility

    International Nuclear Information System (INIS)

    Deitrich, L. W.

    1998-01-01

    The TREAT Facility was designed and built in the late 1950s at Argonne National Laboratory to provide a transient reactor for safety experiments on samples of reactor fuels. It first operated in 1959. Throughout its history, experiments conducted in TREAT have been important in establishing the behavior of a wide variety of reactor fuel elements under conditions predicted to occur in reactor accidents ranging from mild off normal transients to hypothetical core disruptive accidents. For much of its history, TREAT was used primarily to test liquid-metal reactor fuel elements, initially for the Experimental Breeder Reactor-II (EBR-II), then for the Fast Flux Test Facility (FFTF), the Clinch River Breeder Reactor Plant (CRBRP), the British Prototype Fast Reactor (PFR), and finally, for the Integral Fast Reactor (IFR). Both oxide and metal elements were tested in dry capsules and in flowing sodium loops. The data obtained were instrumental in establishing the behavior of the fuel under off-normal and accident conditions, a necessary part of the safety analysis of the various reactors. In addition, TREAT was used to test light-water reactor (LWR) elements in a steam environment to obtain fission-product release data under meltdown conditions. Studies are now under way on applications of TREAT to testing of the behavior of high-burnup LWR elements under reactivity-initiated accident (RIA) conditions using a high-pressure water loop

  13. Reactivity requirements and safety systems for heavy water reactors

    International Nuclear Information System (INIS)

    Kati, S.L.; Rustagi, R.S.

    1977-01-01

    The natural uranium fuelled pressurised heavy water reactors are currently being installed in India. In the design of nuclear reactors, adequate attention has to be given to the safety systems. In recent years, several design modifications having bearing on safety, in the reactor processes, protective and containment systems have been made. These have resulted either from new trends in safety and reliability standards or as a result of feed-back from operating reactors of this type. The significant areas of modifications that have been introduced in the design of Indian PHWR's are: sophisticated theoretical modelling of reactor accidents, reactivity control, two independent fast acting systems, full double containment and improved post-accident depressurisation and building clean-up. This paper brings out the evolution of design of safety systems for heavy water reactors. A short review of safety systems which have been used in different heavy water reactors, of varying sizes, has been made. In particular, the safety systems selected for the latest 235 MWe twin reactor unit station in Narora, in Northern India, have been discussed in detail. Research and Development efforts made in this connection are discussed. The experience of design and operation of the systems in Rajasthan and Kalpakkam reactors has also been outlined

  14. Safety Management at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Ligam, A.S.; Zarina Masood; Ahmad Nabil Abdul Rahim

    2011-01-01

    Adequate safety measures and precautions, which follow relevant safety standards and procedures, should be in place so that personnel safety is assured. Nevertheless, the public, visitor, contractor or anyone who wishes to enter or be in the reactor building should be well informed with the safety measures applied. Furthermore, these same elements of safety are also applied to other irradiation facilities within the premises of Nuclear Malaysia. This paper will describes and explains current safety management system being enforced especially in the TRIGA PUSPATI Reactor (RTP) namely radiation monitoring system, safety equipment, safe work instruction, and interconnected internal and external health, safety and security related departments. (author)

  15. Operational safety evaluation for minor reactor accidents

    International Nuclear Information System (INIS)

    Wang, O.S.

    1981-01-01

    The purpose of this paper is to address a concern of applying conservatism in analysing minor reactor incidents. A so-called ''conservative'' safety analysis may exaggerate the system responses and result in a reactor scram tripped by the reactor protective system (RPS). In reality, a minor incident may lead the reactor to a new thermal hydraulic steady-state without scram, and the mitigation or termination of the incident may entirely depend on operator actions. An example on a small steamline break evaluation for a pressurized water reactor recently investigated by the staff at the Washington Public Power Supply System is presented to illustrate this point. A safety evaluation using mainly the safety-related systems to be consistent with the conservative assumptions used in the Safety Analysis Report was conducted. For comparison, a realistic analysis was also performed using both the safety- and control-related systems. The analyses were performed using the RETRAN plant simulation computer code. The ''conservative'' safety analysis predicts that the incident can be turned over by the RPS scram trips without operator intervention. However, the realistic analysis concludes that the reactor will reach a new steady-state at a different plant thermal hydraulic condition. As a result, the termination of the incident at this stage depends entirely on proper operator action. On the basis of this investigation it is concluded that, for minor incidents, ''conservative'' assumptions are not necessary, sometimes not justifiable. A realistic investigation from the operational safety point of view is more appropriate. It is essential to highlight the key transient indications for specific incident recognition in the operator training program

  16. The next generation of power reactors - safety characteristics

    International Nuclear Information System (INIS)

    Modro, S.M.

    1995-01-01

    The next generation of commercial nuclear power reactors is characterized by a new approach to achieving reliability of their safety systems. In contrast to current generation reactors, these designs apply passive safety features that rely on gravity-driven transfer processes or stored energy, such as gas-pressurized accumulators or electric batteries. This paper discusses the passive safety system of the AP600 and Simplified Boiling Water Reactor (SBWR) designs

  17. Development of safety analysis technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Suk K.; Song, J. H.; Chung, Y. J. and others

    1999-03-01

    Inherent safety features and safety system characteristics of the SMART integral reactor are investigated in this study. Performance and safety of the SMART conceptual design have been evaluated and confirmed through the performance and safety analyses using safety analysis system codes as well as a preliminary performance and safety analysis methodology. SMART design base events and their acceptance criteria are identified to develop a preliminary PIRT for the SMART integral reactor. Using the preliminary PIRT, a set of experimental program for the thermal hydraulic separate effect tests and the integral effect tests was developed for the thermal hydraulic model development and the system code validation. Safety characteristics as well as the safety issues of the integral reactor has been identified during the study, which will be used to resolve the safety issues and guide the regulatory criteria for the integral reactor. The results of the performance and safety analyses performed during the study were used to feedback for the SMART conceptual design. The performance and safety analysis code systems as well as the preliminary safety analysis methodology developed in this study will be validated as the SMART design evolves. The performance and safety analysis technology developed during the study will be utilized for the SMART basic design development. (author)

  18. Nuclear reactor safety in the USA

    International Nuclear Information System (INIS)

    Vigil, J.C.

    1983-01-01

    Nuclear reactor safety in the USA has emphasized a defense-in-depth approach to protecting the public from reactor accidents. This approach was severely tested by the Three Mile Island accident and was found to be effective in safeguarding the public health and safety. However, the economic impact of the TMI accident was very large. Consequently, more attention is now being given to plant protection as well as public-health protection in reactor-safety studies. Sophisticated computer simulations at Los Alamos are making major contributions in this area. In terms of public risk, nuclear power plants compare favorably with other large-scale alternatives to electricity generation. Unfortunately, there is a large gulf between the real risks of nuclear power and the present public perception of these risks

  19. Radiation control and safety of fast reactor; Radijaciona kontrola i sigurnost postrojenja sa brzim reaktorom

    Energy Technology Data Exchange (ETDEWEB)

    Pesic, M; Antic, D [Boris Kidric Institute of Nuclear Sciences Vinca, Belgrade (Yugoslavia)

    1983-07-01

    The fundamental activities for safeguard of radiation control and safety and the necessary staff for them for fast reactor plant are shown. The basic systems for the plant radiation control are counted, especially with regards to poisoning of some fuel materials. The particular characteristics of the plant radiation control determined by the fast reactor are pointed out. (author)

  20. Reactor safety in Eastern Europe

    International Nuclear Information System (INIS)

    1995-02-01

    The papers presented to the GRS colloquium refer to the cooperative activities for reactor accident analysis and modification of the GRS computer codes for their application to reactors of the Russian design types of WWER or RBMK. Another topic is the safety of RBMK reactors in particular, and the current status of investigations and studies addressing the containment of unit 4 of the Chernobyl reactor station. All papers are indexed separately in report GRS--117. (HP)

  1. EBR-II secondary sodium loop Plugging Temperature Indicator control system upgrade

    International Nuclear Information System (INIS)

    Carlson, R.B.; Gehrman, R.L.

    1995-01-01

    The Experimental Breeder Reactor II (EBR-II) secondary sodium coolant loop Plugging Temperature Indicator (PTI) control system was upgraded in 1993 to a real-time computer based system. This was done to improve control, to remove obsolete and high maintenance equipment, and to provide a graphical CRT based operator interface. A goal was to accomplish this inexpensively using small, reliable computer and display hardware with a minimum of purchased software. This paper describes the PTI system, the upgraded control system and its operator interface, and development methods and tools. The paper then assesses how well the system met its goals, discusses lessons learned and operational improvements noted, and provides some recommendations and suggestions on applying small real-time control systems of this type

  2. Reactor safety systems

    International Nuclear Information System (INIS)

    Kafka, P.

    1975-01-01

    The spectrum of possible accidents may become characterized by the 'maximum credible accident', which will/will not happen. Similary, the performance of safety systems in a multitude of situations is sometimes simplified to 'the emergency system will/will not work' or even 'reactors are/ are not safe'. In assessing safety, one must avoid this fallacy of reducing a complicated situation to the simple black-and-white picture of yes/no. Similarly, there is a natural tendency continually to improve the safety of a system to assure that it is 'safe enough'. Any system can be made safer and there is usually some additional cost. It is important to balance the increased safety against the increased costs. (orig.) [de

  3. Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; Jim Kinsey; Dave Alberstein

    2014-01-01

    Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

  4. Safety systems I/C equipment reliability analyses of the Kozloduy NPP units 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Halev, G; Christov, N [Risk Engineering Ltd., Sofia (Bulgaria)

    1996-12-31

    The purpose of the analysis is to assess the safety systems I/C equipment reliability. The assessment includes: quantification of the safety systems unavailability due to component failures; definition of the minimal cut sets leading to the analysed safety systems failure; quantification of the I/C equipment importance measures of the dominant contribution components. The safety systems I/C equipment reliability has been analysed using PSAPACK (a code for probabilistic safety assessment). Fault trees for the following safety systems of the Kozloduy-3 and Kozloduy-4 reactors have been constructed: neutron flow control equipment, reactor protection system, main coolant pumps, pressurizer safety valves `Sempell`, steam dump systems, spray system, low pressure injection system, emergency feeding water system, essential service water system. THree separate reports have been issued containing the performed analyses and results. 1 ref.

  5. Passive safety features of low sodium void worth metal fueled cores in a bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Chang, Y.I.; Marchaterre, J.F.; Wade, D.C.; Wigeland, R.A.; Kumaoka, Yoshio; Suzuki, Masao; Endo, Hiroshi; Nakagawa, Hiroshi

    1991-01-01

    A study has been performed on the passive safety features of low-sodium-void-worth metallic-fueled reactors with emphasis on using a bottom-supported reactor vessel design. The reactor core designs included self-sufficient types as well as actinide burners. The analyses covered the reactor response to the unprotected, i.e. unscrammed, transient overpower accident and the loss-of-flow accident. Results are given demonstrating the safety margins that were attained. 4 refs., 4 figs., 2 tabs

  6. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1983-01-01

    The invention provides a safety system for a nuclear reactor which uses a parallel combination of computer type look-up tables each of which receives data on a particular parameter (from transducers located in the reactor system) and each of which produces the functional counterpart of that particular parameter. The various functional counterparts are then added together to form a control signal for shutting down the reactor. The functional counterparts are developed by analysis of experimental thermal and hydraulic data, which are used to form expressions that define safe conditions

  7. EPRI program in water reactor safety

    International Nuclear Information System (INIS)

    Loewenstein, W.B.; Gelhaus, F.; Gopalakrishnan, A.

    1975-01-01

    The basis for EPRI's water reactor safety program is twofold. First is compilation and development of fundamental background data necessary for quantified light-water reactor (LWR) safety assurance appraisals. Second is development of realistic and experimentally bench-marked analytical procedures. The results are expected either to confirm the safety margins in current operating parameters, and to identify overly conservative controls, or, in some cases, to provide a basis for improvements to further minimize uncertainties in expected performance. Achievement of these objectives requires the synthesis of related current and projected experimental-analytical projects toward establishment of an experimentally-based analysis for the assurance of safety for LWRs

  8. Introduction to Safety Analysis Approach for Research Reactors

    International Nuclear Information System (INIS)

    Park, Suki

    2016-01-01

    The research reactors have a wide variety in terms of thermal powers, coolants, moderators, reflectors, fuels, reactor tanks and pools, flow direction in the core, and the operating pressure and temperature of the cooling system. Around 110 research reactors have a thermal power greater than 1 MW. This paper introduces a general approach to safety analysis for research reactors and deals with the experience of safety analysis on a 10 MW research reactor with an open-pool and open-tank reactor and a downward flow in the reactor core during normal operation. The general approach to safety analysis for research reactors is described and the design features of a typical open-pool and open-tank type reactor are discussed. The representative events expected in research reactors are investigated. The reactor responses and the thermal hydraulic behavior to the events are presented and discussed. From the minimum CHFR and the maximum fuel temperature calculated, it is ensured that the fuel is not damaged in the step insertion of reactivity by 1.8 mk and the failure of all primary pumps for the reactor with a 10 MW thermal power and downward core flow

  9. Safety shutdowns and failures of the RA reactor equipment; Sigurnosna zaustavljanja i kvarovi opreme na reaktoru RA

    Energy Technology Data Exchange (ETDEWEB)

    Mitrovic, S [Institut za nuklearne nauke ' Boris Kidric' , Vinca, Belgrade (Yugoslavia)

    1966-07-01

    This report is an attempt of statistical analysis of the failures occurred during RA reactor operation. A list of failures occurred on the RA equipment during 1965 is included. Failures were related to the following systems: dosimetry system (22%), safety and control system (7%), heavy water system (2%), technical water (4%), helium system (2%), measuring instruments (30%), transport, ventilation, power supply systems (32%). A review of safety shutdowns from 1962 to 1966 is included as well, as a comparison with three similar reactors. Although the number of events used for statistical analysis was not adequate, it has been concluded that RA reactor operation was stable and reliable.

  10. Reactor safety research and safety technology. Pt. 2

    International Nuclear Information System (INIS)

    Theenhaus, R.; Wolters, J.

    1987-01-01

    The state of HTR safety research work reached permits a comprehensive and reliable answer to be given to questions which have been raised by the reactor accident at Chernobyl, regarding HTR safety. Together with the probability safety analyses, the way to a safety concept suitable for an HTR is cleared; instructions are given for design optimisation with regard to safety technique and economy. The consequences of a graphite fire, the neutron physics design and the consequenes of the lack of a safety containment are briefly described. (DG) [de

  11. Technical assessment of continued wet storage of EBR-II fuel

    International Nuclear Information System (INIS)

    Pahl, R.G.; Franklin, E.M.; Ebner, M.A.

    1996-01-01

    A technical assessment of the continued wet storage of EBR-II fuel has been made. Previous experience has shown that in-basin cladding failure occurs by intergranular attack of sensitized cladding, likely assisted by basin water chlorides. Subsequent fuel oxidation is rapid and leads to loss of configuration and release of fission products. The current inventory of EBR-II fuel stored in the ICPP basins is at risk from similar corrosion reactions

  12. Gas-cooled breeder reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Chermanne, J.; Burgsmueller, P. [Societe Belge pour l' Industrie Nucleaire, Brussels

    1981-01-15

    The European Association for the Gas-cooled Breeder Reactor (G B R A), set-up in 1969 prepared between 1972 and 1974 a 1200 MWe Gas-cooled Breeder Reactor (G B R) commercial reference design G B R 4. It was then found necessary that a sound and neutral appraisal of the G B R licenseability be carried out. The Commission of the European Communities (C E C) accepted to sponsor this exercise. At the beginning of 1974, the C E C convened a group of experts to examine on a Community level, the safety documents prepared by the G B R A. A working party was set-up for that purpose. The experts examined a ''Preliminary Safety Working Document'' on which written questions and comments were presented. A ''Supplement'' containing the answers to all the questions plus a detailed fault tree and reliability analysis was then prepared. After a final study of this document and a last series of discussions with G B R A representatives, the experts concluded that on the basis of the evidence presented to the Working Party, no fundamental reasons were identified which would prevent a Gas-cooled Breeder Reactor of the kind proposed by the G B R A achieving a satisfactory safety status. Further work carried out on ultimate accident have confirmed this conclusion. One can therefore claim that the overall safety risk associated with G B R s compares favourably with that of any other reactor system.

  13. Reactor system safety assurance

    International Nuclear Information System (INIS)

    Mattson, R.J.

    1984-01-01

    The philosophy of reactor safety is that design should follow established and conservative engineering practices, there should be safety margins in all modes of plant operation, special systems should be provided for accidents, and safety systems should have redundant components. This philosophy provides ''defense in depth.'' Additionally, the safety of nuclear power plants relies on ''safety systems'' to assure acceptable response to design basis events. Operating experience has shown the need to study plant response to more frequent upset conditions and to account for the influence of operators and non-safety systems on overall performance. Defense in depth is being supplemented by risk and reliability assessment

  14. Adaptive robust control of the EBR-II reactor

    International Nuclear Information System (INIS)

    Power, M.A.; Edwards, R.M.

    1996-01-01

    Simulation results are presented for an adaptive H ∞ controller, a fixed H ∞ controller, and a classical controller. The controllers are applied to a simulation of the Experimental Breeder Reactor II primary system. The controllers are tested for the best robustness and performance by step-changing the demanded reactor power and by varying the combined uncertainty in initial reactor power and control rod worth. The adaptive H ∞ controller shows the fastest settling time, fastest rise time and smallest peak overshoot when compared to the fixed H ∞ and classical controllers. This makes for a superior and more robust controller

  15. Dependability analysis of proposed I and C architecture for safety systems of a large PWR

    International Nuclear Information System (INIS)

    Kabra, Ashutosh; Karmakar, G.; Tiwari, A.P.; Manoj Kumar; Marathe, P.P.

    2014-01-01

    Instrumentation and Control (I and C) systems in a reactor provide protection against unsafe operation during steady-state and transient power operations. Indian reactors traditionally adopted 2-out-of-3 (2oo3) architecture for safety systems. But, contemporary reactor safety systems are employing 2-out-of-4 (2oo4) architecture in spite of the increased cost due to the additional channel. This motivated us to carry out a comparative study of 2oo3 and 2oo4 architecture, especially for their dependability attributes - safety and availability. Quantitative estimation of safety and availability has been used to adjudge the worthiness of adopting 2oo4 architecture in I and C safety systems of a large PWR. Our analysis using Markov model shows that 2oo4 architecture, even with lower diagnostic coverage and longer proof test interval, can provide better safety and availability in comparison of 2oo3 architecture. This reduces total life cycle cost of system during development phase and complexity and frequency of surveillance test during operational phase. The paper also describes the proposed architecture for Reactor Protection System (RPS), a representative safety system, and determines its dependability using Markov analysis and Failure Mode Effect Analysis (FMEA). The proposed I and C safety system architecture also has been qualitatively analyzed for their effectiveness against common cause failures (CCFs). (author)

  16. Nuclear power reactor safety

    International Nuclear Information System (INIS)

    Pon, G.A.

    1976-10-01

    This report is based on the Atomic Energy of Canada Limited submission to the Royal Commission on Electric Power Planning on the safety of CANDU reactors. It discusses normal operating conditions, postulated accident conditions, and safety systems. The release of radioactivity under normal and accident conditions is compared to the limits set by the Atomic Energy Control Regulations. (author)

  17. PSA in design of passive/active safety reactors

    International Nuclear Information System (INIS)

    Sato, T.; Tanabe, A.; Kondo, S.

    1995-01-01

    PSAs in the design of advanced reactors are applied mainly in level 1 PSA areas. However, even in level 1 PSA, there are certain areas where special care must be taken depending on plant design concepts. This paper identifies these areas both for passive and active safety reactor concepts. For example, 'long-term PSA' and shutdown PSA are very important for a passive safety reactor concept from the standpoint of effectiveness of a grace period and passive safety systems. External events are also important for an active safety reactor concept. These kinds of special PSAs are difficult to conduct precisely in a conceptual design stage. This paper shows methods of conducting these kinds of special PSAs simply and conveniently and the use of acquired insights for the design of advanced reactors. This paper also clarifies the meaning or definition of a grace period from the standpoint of PSA

  18. Comparison of measured and calculated composition of irradiated EBR-II blanket assemblies

    International Nuclear Information System (INIS)

    Grimm, K. N.

    1998-01-01

    In anticipation of processing irradiated EBR-II depleted uranium blanket subassemblies in the Fuel Conditioning Facility (FCF) at ANL-West, it has been possible to obtain a limited set of destructive chemical analyses of samples from a single EBR-II blanket subassembly. Comparison of calculated values with these measurements is being used to validate a depletion methodology based on a limited number of generic models of EBR-II to simulate the irradiation history of these subassemblies. Initial comparisons indicate these methods are adequate to meet the operations and material control and accountancy (MC and A) requirements for the FCF, but also indicate several shortcomings which may be corrected or improved

  19. Development of small reactor safety criteria in Canada

    International Nuclear Information System (INIS)

    Ernst, P.C.; French, P.M.; Axford, D.J.; Snell, V.G.

    1990-01-01

    A number of new small reactor designs have been proposed in Canada over the last several years and some have reached the stage where licensing discussions have been initiated with the Atomic Energy Control Board (AECB). An inter-organizational Small Reactor Criteria (SRC) working group was formed in 1988 to propose safety and licensing criteria for these small reactors. Two levels of criteria are proposed. The first level forms a safety philosophy and the second is a set of criteria for specific reactor applications. The safety philosophy consists of three basic safety objectives together with evaluation criteria, and fourteen fundamental principles measured by specific criteria, which must be implemented to meet the safety objectives. Two of the fourteen principles are prime: defence in depth, and safety culture; the other twelve principles can be seen as deriving from them. A benefit of this approach is that the concepts of defence in depth and safety culture become well-defined. The objectives and principles are presented in the paper and their criteria are summarized. The second level of criteria, under development, will form a safety application set and will provide small reactor criteria in a number of general areas, such as regulatory process and safety assessment, as well as for specific reactor life-cycle activities, from siting through to decommissioning. The criteria are largely deterministic. However, the frequencies and consequences of postulated accidents are assessed against numerical criteria to assist in judging the acceptability of plant design, operation, and proposed siting. All criteria proposed are designed to be testable in some evidentiary fashion, readily enabling an assessment of compliance for a given proposal

  20. Evaluation procedure of software safety plan for digital I and C of KNGR

    International Nuclear Information System (INIS)

    Lee, Jang Soo; Park, Jong Kyun; Lee, Ki Young; Kwon, Ki Choon; Kim, Jang Yeol; Cheon, Se Woo

    2000-05-01

    The development, use, and regulation of computer systems in nuclear reactor instrumentation and control (I and C) systems to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Korean next generation reactor (KNGR) software safety verification and validation (SSVV) task, Korea Atomic Energy Research Institute, which investigates different aspects of computer software in reactor I and C systems, and describes the engineering procedures for developing such a software. The purpose of this guideline is to give the software safety evaluator the trail map between the code and standards layer and the design methodology and documents layer for the software important to safety in nuclear power plants. Recently, the safety planning for safety-critical software systems is being recognized as the most important phase in the software life cycle, and being developed new regulatory positions and standards by the regulatory and the standardization organizations. The requirements for software important to safety of nuclear reactor are described in such positions and standards, for example, the new standard review plan (SRP), IEC 880 supplements, IEEE standard 1228-1994, IEEE standard 7-4.3.2-1993, and IAEA safety series No. 50-SG-D3 and D8. We presented the guidance for evaluating the safety plan of the software in the KNGR protection systems. The guideline consists of the regulatory requirements for software safety in chapter 2, the evaluation checklist of software safety plan in chapter3, and the evaluation results of KNGR software safety plan in chapter 4

  1. Evaluation procedure of software safety plan for digital I and C of KNGR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Soo; Park, Jong Kyun; Lee, Ki Young; Kwon, Ki Choon; Kim, Jang Yeol; Cheon, Se Woo

    2000-05-01

    The development, use, and regulation of computer systems in nuclear reactor instrumentation and control (I and C) systems to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Korean next generation reactor (KNGR) software safety verification and validation (SSVV) task, Korea Atomic Energy Research Institute, which investigates different aspects of computer software in reactor I and C systems, and describes the engineering procedures for developing such a software. The purpose of this guideline is to give the software safety evaluator the trail map between the code and standards layer and the design methodology and documents layer for the software important to safety in nuclear power plants. Recently, the safety planning for safety-critical software systems is being recognized as the most important phase in the software life cycle, and being developed new regulatory positions and standards by the regulatory and the standardization organizations. The requirements for software important to safety of nuclear reactor are described in such positions and standards, for example, the new standard review plan (SRP), IEC 880 supplements, IEEE standard 1228-1994, IEEE standard 7-4.3.2-1993, and IAEA safety series No. 50-SG-D3 and D8. We presented the guidance for evaluating the safety plan of the software in the KNGR protection systems. The guideline consists of the regulatory requirements for software safety in chapter 2, the evaluation checklist of software safety plan in chapter3, and the evaluation results of KNGR software safety plan in chapter 4.

  2. Safety re-assessment of AECL test and research reactors

    International Nuclear Information System (INIS)

    Winfield, D.J.

    1990-01-01

    Atomic Energy of Canada Limited currently has four operating engineering test/research reactors of various sizes and ages; a new isotope-production reactor Maple-X10, under construction at Chalk River Nuclear Laboratories (CRNL), and a heating demonstration reactor, SDR, undergoing high-power commissioning at Whiteshell Nuclear Research Establishment (WNRE). The company is also performing design studies of small reactors for hot water and electricity production. The older reactors are ZED-2, PTR, NRX, and NRU; these range in age from 42 years (NRX) to 29 years (ZED-2). Since 1984, limited-scope safety re-assessments have been underway on three of these reactors (ZED-2, NRX AND NRU). ZED-2 and PTR are operated by the Reactor Physics Branch; all other reactors are operated by the respective site Reactor Operations Branches. For the older reactors the original safety reports produced were entirely deterministic in nature and based on the design-basis accident concept. The limited scope safety re-assessments for these older reactors, carried out over the past 5 years, have comprised both quantitative probabilistic safety-assessment techniques, such as event tree and fault analysis, and/or qualitative techniques, such as failure mode and effect analysis. The technique used for an individual assessment was dependent upon the specific scope required. This paper discusses the types of analyses carried out, specific insights/recommendations resulting from the analysis, and the plan for future analysis. In addition, during the last four years safety assessments have been carried out on the new isotope-, heat-, and electricity-producing reactors, as part of the safety design review, commissioning and licensing activities

  3. Safety of research reactors. Topical issues paper no. 4

    International Nuclear Information System (INIS)

    Alcala-Ruiz, F.; Ferraz-Bastos, J.L.; Kim, S.C.; Voth, M.; Boeck, H.; Dimeglio, F.; Litai, D.

    2001-01-01

    Assessment of Research Reactors (INSARR) missions. The prime objective of these missions has been to conduct a comprehensive operational safety review of the research reactor facility and to verify compliance with the IAEA Safety Standards. The methods used during an INSARR mission have been collected and analysed. Some of the important issues identified are the following: general ageing of the facility; uncertain status of many research reactors (in extended shutdown); indefinite deferral of return to operation or decommissioning; inadequate regulatory supervision; insufficient systematic (periodic) reassessment of safety; lack of quality assurance (QA) programmes; lack of an international safety convention or arrangement; lack of financial support for safety measures (e.g. safety reassessment, safety upgrading, decommissioning) and utilization; lack of clear utilization programmes; inadequate emergency preparedness; inadequate safety documentation (e.g. safety analysis report, operating rules and procedures, emergency plan); inadequate funding of shutdown reactors; weak safety culture; loss of expertise and corporate memory; loss of information concerning radioactive materials contained in retired experimental devices stored in the facility indefinitely; obsolescence of equipment and lack of spare parts; inadequate training and qualifications of regulators and operators; safety implications of new fuel types. These issues have been addressed by the IAEA Secretariat and the chairman of the International Nuclear Safety Advisory Group (INSAG). INSAG has identified three major safety issues that are: the increasing age of research reactors, the number of research reactors that are not operating anymore but have not been decommissioned, and the number of research reactors in countries that do not have appropriate regulatory authorities. This issue paper discusses the concerns generated by an analysis of the results of INSARR missions and those expressed by INSAG. The

  4. Development of Safety Analysis Technology for Integral Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, S. K. [Korea Atomic Energy Research Institute, Taejeon (Korea); Seul, K. W.; Kim, W. S.; Kim, W. K.; Yun, Y. G.; Ahn, H. J.; Lee, J. S.; Sin, A. D. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2000-03-01

    The Nuclear Desalination Plant(NDP) is being developed to produce electricity and fresh water, and is expected to locate near population zone. In the aspect of safety, it is required to protect the public and environment from the possible releases of fission products and to prevent the fresh water from the contamination of radioactivity. Thus, in a present study, the safety characteristics of the integral reactor adopting passive and inherent safety features significantly different from existing nuclear power plants were investigated based on the design of foreign and domestic integral reactors. Also, safety requirements applicable to the NDP were analyzed based on the regulatory requirements for current and advanced reactor designs, and use requirements for small-medium size reactors. Based on these analyses, some safety concerns to be considered in the design stage have been identified. They includes the use of proven technology for new safety systems, the systematic classification and selection of design basis accidents, and the safety assurance of desalination-related systems. These efforts to identify and resolve the safety concerns in the design stage will provide the early confidence of SMART safety to designers, and the technical basis to evaluate the safety to reviewers in the future. 8 refs., 20 figs., 4 tabs. (Author)

  5. Safety Analysis Of Actinide Recycled Fast Power Reactor

    International Nuclear Information System (INIS)

    Taufik, Mohammad

    2001-01-01

    Simulation for safety analysis of actinide recycled fast power reactor has been performed. The objective is to know reactor response about ULOF and ULOF and UTOP simultaneous accident. From parameter result such reactivity feedback, power, temperature, and cooled flow rate can conclusion that reactor have inherent safety system, which can back to new Equilibrium State

  6. Advanced nuclear reactor safety issues and research needs

    International Nuclear Information System (INIS)

    2002-01-01

    On 18-20 February 2002, the OECD Nuclear Energy Agency (NEA) organised, with the co-sponsorship of the International Atomic Energy Agency (IAEA) and in collaboration with the European Commission (EC), a Workshop on Advanced Nuclear Reactor Safety Issues and Research Needs. Currently, advanced nuclear reactor projects range from the development of evolutionary and advanced light water reactor (LWR) designs to initial work to develop even further advanced designs which go beyond LWR technology (e.g. high-temperature gas-cooled reactors and liquid metal-cooled reactors). These advanced designs include a greater use of advanced technology and safety features than those employed in currently operating plants or approved designs. The objectives of the workshop were to: - facilitate early identification and resolution of safety issues by developing a consensus among participating countries on the identification of safety issues, the scope of research needed to address these issues and a potential approach to their resolution; - promote the preservation of knowledge and expertise on advanced reactor technology; - provide input to the Generation IV International Forum Technology Road-map. In addition, the workshop tried to link advancement of knowledge and understanding of advanced designs to the regulatory process, with emphasis on building public confidence. It also helped to document current views on advanced reactor safety and technology, thereby contributing to preserving knowledge and expertise before it is lost. (author)

  7. Power reactor core safety research

    International Nuclear Information System (INIS)

    Rim, C.S.; Kim, W.C.; Shon, D.S.; Kim, J.

    1981-01-01

    As a part of nuclear safety research program, a project was launched to develop a model to predict fuel failure, to produce the data required for the localizaton of fuel design and fabrication technology, to establish safety limits for regulation of nuclear power plants and to develop reactor operation method to minimize fuel failure through the study of fuel failure mechanisms. During 1980, the first year of this project, various fuel failure mechanisms were analyzed, an experimental method for out-of-pile tests to study the stress corrosion cracking (SCC) behaviour of Zircaloy cladding underiodine environment was established, and characteristics of PWR and CANDU Zircaloy specimens were examined. Also developed during 1980 were the methods and correlations to evaluate fuel failures in the reactor core based on operating data from power reactors

  8. Rekindled interest in pyrometallurgical processing

    International Nuclear Information System (INIS)

    Burris, L.

    1986-01-01

    The IFR with its integral, on-site fuel recycle revived a concept pioneered at EBR-II. The reactor concept has become very attractive due to the advances in metal fuel performance over the past 15 years and in the understanding of the safety of metal-fueled reactors. The proposed fuel cycle carries out Lawroski's call for development of a low-cost fuel cycle for fast reactors to help them become economically competitive. The IFR represents a new direction in breeder developments. The next two years will be devoted to establishing experimentally the chemical feasibility of the pyrometallurgical process. Once it becomes feasible, the EBR-II fuel cycle facility can be refurbished and the process using IFR-type fuel irradiated in EBR-II

  9. Safety requirements in the design of research reactors: A Canadian perspective

    International Nuclear Information System (INIS)

    Lee, A.G.; Langman, V.J.

    2000-01-01

    In Canada, the formal development of safety requirements for the design of research reactors in general began under an inter-organizational Small Reactor Criteria Committee. This committee developed safety and licensing criteria for use by several small reactor projects in their licensing discussions with the Atomic Energy Control Board. The small reactor projects or facilities represented included the MAPLE-X10 reactor, the proposed SES-10 heating reactor and its prototype, the SDR reactor at the Whiteshell Laboratories, the Korea Multipurpose Research Reactor (a.k.a., HANARO) in Korea, the SCORE project, and the McMaster University Nuclear Reactor. The top level set of criteria which form a safety philosophy and serve as a framework for more detailed developments was presented at an IAEA Conference in 1989. AECL continued this work to develop safety principles and design criteria for new small reactors. The first major application of this work has been to the design, safety analysis and licensing of the MAPLE 1 and 2 reactors for the MDS Nordion Medical Isotope Reactor Project. This paper provides an overview of the safety principles and design criteria. Examples of an implementation of these safety principles and design criteria are drawn from the work to design the MAPLE 1 and 2 reactors. (author)

  10. Savannah River Site K-Reactor Probabilistic Safety Assessment

    International Nuclear Information System (INIS)

    Brandyberry, M.D.; Bailey, R.T.; Baker, W.H.; Kearnaghan, D.P.; O'Kula, K.R.; Wittman, R.S.; Woody, N.D.; Amos, C.N.; Weingardt, J.J.

    1992-12-01

    This report gives the results of a Savannah River Site (SRS) K-Reactor Probabilistic Safety Assessment (PSA). Measures of adverse consequences to health and safety resulting from representations of severe accidents in SRS reactors are presented. In addition, the report gives a summary of the methods employed to represent these accidents and to assess the resultant consequences. The report is issued to provide useful information to the U. S. Department of Energy (DOE) on the risk of operation of SRS reactors, for insights into severe accident phenomena that contribute to this risk, and in support of improved bases for other DOE programs in Heavy Water Reactor safety

  11. Reactor engineering and engineered reactor safety in France

    International Nuclear Information System (INIS)

    1987-01-01

    The proceedings give the full text of the lectures held by acknowledged French experts at the KTG Seminar in Mainz on March 10, 1987, all dealing with the leading topic of the current status of reactor engineering and development in France. Although the basic engineering principles and construction lines as well as the safety philosophy are the same in France as in West Germany, there have been distinctive developments over many years in the two countries that by now are not well known even among experts in this field, and hence cannot be properly assessed. Non-availability of relevant surveys or other type of literature in the German language reviewing the French developments is another factor that hitherto was a handicap to mutual exchange of information. The seminar was intended to close this gap. The proceedings should be read by all those in West Germany who wish to be informed about the developments in reactor engineering and reactor safety in France. (orig./DG) [de

  12. Safety features of TR-2 reactor

    International Nuclear Information System (INIS)

    Tuerker, T.

    2001-01-01

    TR-2 is a swimming pool type research reactor with 5 MW thermal power and uses standard MTR plate type fuel elements. Each standard fuel element consist of 23 fuel plates with a meat + cladding thickness of 0.127 cm, coolant channel clearance is 0.21 cm. Originally TR-2 is designed for %93 enriched U-Al. Alloy fuel meat.This work is based on the preparation of the Final Safety Analyses Report (FSAR) of the TR-2 reactor. The main aspect is to investigate the behaviour of TR-2 reactor under the accident and abnormal operating conditions, which cowers the accident spectrum unique for the TR-2 reactor. This presentation covers some selected transient analyses which are important for the safety aspects of the TR-2 reactor like reactivity induced startup accidents, pump coast down (Loss of Flow Accident, LOFA) and other accidents which are charecteristic to the TR-2

  13. Decommissioning of the ICI TRIGA Mark I reactor

    International Nuclear Information System (INIS)

    Parry, D.R.; England, M.R.; Ward, A.; Green, D.

    2000-01-01

    This paper considers the fuel removal, transportation and subsequent decommissioning of the ICI TRIGA Mark I Reactor at Billingham, UK. BNFL Waste Management and Decommissioning carried out this work on behalf of ICI. The decommissioning methodology was considered in the four stages to be described, namely Preparatory Works, Reactor Defueling, Intermediate Level Waste Removal and Low Level Waste Removal. This paper describes the principal methodologies involved in the defueling of the reactor and subsequent decommissioning operations, highlighting in particular the design and safety case methodologies used in order to achieve a solution which was completed without incident or accident and resulted in a cumulative radiation dose to personnel of only 1.57 mSv. (author)

  14. Concept of safety related I and C and power supply systems in the passive safety concept of the HTR-module

    International Nuclear Information System (INIS)

    Juengst, U.

    1990-01-01

    The main motivation for the passive safety concepts is to gain a better quality of safety or at least to achieve higher public acceptance for nuclear power plants. This strategy has been introduced into the European Fast Reactor (EER), a common project of France, UK and Germany is applied stringently to the German high-temperature gas-cooled reactor ''HTR - Module''. The following fields are briefly described in the paper: Safety design features of the HTR - Module, overview of I and C concept, reactor protection system, emergency control room, power supply concept, system arrangement and protection against external hazards, accidents sequence of station black-out. (author). 3 figs

  15. Safety upgrades to the NRU research reactor

    International Nuclear Information System (INIS)

    DeAbreu, B.; Mark, J.M.; Mutterback, E.J.

    1998-01-01

    The NRU (National Research Universal) Reactor is a 135 MW thermal research facility located at Chalk River Laboratories, and is owned and operated by Atomic Energy of Canada Limited. One of the largest and most versatile research reactors in the world, it serves as the R and D workhorse for Canada's CANDU business while at the same time filling the role as one of the world's major producers of medical radioisotopes. AECL plans to extend operation of the NRU reactor to approximately the year 2005 when a new replacement, the Irradiation Research Facility (IRF) will be available. To achieve this, AECL has undertaken a program of safety reassessment and upgrades to enhance the level of safety consistent with modem requirements. An engineering assessment/inspection of critical systems, equipment and components was completed and seven major safety upgrades are being designed and installed. These upgrades will significantly reduce the reactor's vulnerability to common mode failures and external hazards, with particular emphasis on seismic protection. The scheduled completion date for the project is 1999 December at a cost approximately twice the annual operating cost. All work on the NRU upgrade project is planned and integrated into the regular operating cycles of the reactor; no major outages are anticipated. This paper describes the safety upgrades and discusses the technical and managerial challenges involved in extending the operating life of the NRU reactor. (author)

  16. I and C system at TRIGA - ICN reactor after more than 20 years of operation

    International Nuclear Information System (INIS)

    Ionila, M.; Preda, M.

    2002-01-01

    An I and C system that is involved in a nuclear safety function has to be itself safe in operation, strictly performing the survey of those parameters, which are linked to the safety function. The precision of such a system is sufficient for the safety function, but for a more accurate evaluation of the in-core experimental phenomena, the presence of a data acquisition and processing system is needed. The two systems must be together taken into account by the reactor operation. The data acquisition and processing system designated for the monitoring of the stationary or the slow-varying processes allow the safety function evaluation from the point of view of the statistics of the effective reactor operation time along a certain period of time. The evaluation of the unscheduled reactor shutdowns determined by those reactor systems having safety functions with the percentage contribution of each system is presented. The data were selected from the annual operation reports for the reactor and the reactor installations in the period 1981-1999

  17. Experimental facilities for gas-cooled reactor safety studies. Task group on Advanced Reactor Experimental Facilities (TAREF)

    International Nuclear Information System (INIS)

    2009-01-01

    In 2007, the NEA Committee on the Safety of Nuclear Installations (CSNI) completed a study on Nuclear Safety Research in OECD Countries: Support Facilities for Existing and Advanced Reactors (SFEAR) which focused on facilities suitable for current and advanced water reactor systems. In a subsequent collective opinion on the subject, the CSNI recommended to conduct a similar exercise for Generation IV reactor designs, aiming to develop a strategy for ' better preparing the CSNI to play a role in the planned extension of safety research beyond the needs set by current operating reactors'. In that context, the CSNI established the Task Group on Advanced Reactor Experimental Facilities (TAREF) in 2008 with the objective of providing an overview of facilities suitable for performing safety research relevant to gas-cooled reactors and sodium fast reactors. This report addresses gas-cooled reactors; a similar report covering sodium fast reactors is under preparation. The findings of the TAREF are expected to trigger internationally funded CSNI projects on relevant safety issues at the key facilities identified. Such CSNI-sponsored projects constitute a means for efficiently obtaining the necessary data through internationally co-ordinated research. This report provides an overview of experimental facilities that can be used to carry out nuclear safety research for gas-cooled reactors and identifies priorities for organizing international co-operative programmes at selected facilities. The information has been collected and analysed by a Task Group on Advanced Reactor Experimental Facilities (TAREF) as part of an ongoing initiative of the NEA Committee on the Safety of Nuclear Installations (CSNI) which aims to define and to implement a strategy for the efficient utilisation of facilities and resources for Generation IV reactor systems. (author)

  18. Upgrade of VR-1 training reactor I and C

    International Nuclear Information System (INIS)

    Kropik, M.; Matejka, K.; Chab, V.

    2003-01-01

    The contribution describes the upgrade of the VR-1 training reactor I and C (Instrumentation and Control). The reactor was put into operation in the 1990, and its I and C seems to be obsolete now. The new I and C utilises the same digital technology as the old one. The upgrade has been done gradually during holidays in order not to disturb the reactor utilisation during teaching and training. The first stage consisted in the human-machine interface and the control room upgrade in 2001. A new operator's desk, displays, indicators and buttons were installed. Completely new software and communication interface to the present I and C were developed. During the second stage in 2002, new control rod drivers and safety circuits were installed. The rod motors were replaced and necessary mechanical changes on the control rod mechanism, induced by the utilisation of the new motor, were done. The new safety circuits utilise high quality relays with forced contacts to guarantee high reliability of their operation. The third stage, the control system upgrade is being carried out now. The new control system is based on an industrial PC mounted in a 19 inch crate. The operating system of the PC is the Microsoft Windows XP with the real time support RTX of the VentureCom Company. A large amount of work has been devoted to the software requirements to specify all dependencies, modes and permitted actions, safety measures, etc. The Department took an active part in the setting of software requirements and later in verification and validation of the software and the whole control system. Finally, a new protection system consisting of power measuring and power protection channels will be installed in 2004 or 2005. (author)

  19. Guideline for examination concerning the evaluation of safety in light water power reactor installations

    International Nuclear Information System (INIS)

    1978-01-01

    This guideline was drawn up as the guide for examination when the safety evaluation of nuclear reactors is carried out at the time of approving the installation of light water power reactors. Accordingly in case of the examination of safety, it must be confirmed that the contents of application are in conformity with this guideline. If they are in conformity, it is judged that the safety evaluation of the policy in the basic design of a reactor facility is adequate, and also that the evaluation concerning the separation from the public in surroundings is adequate as the condition of location of the reactor facility. This guideline is concerned with light water power reactors now in use, but the basic concept may be the reference for the examination of the other types of reactors. If such a case occurs that the safety evaluation does not conform to this guideline, it is not excluded when the appropriate reason is clarified. The purpose of safety evaluation, the scope to be evaluated, the selection of the events to be evaluated, the criteria for judgement, the matters taken into consideration at the time of analysis, the concrete events of abnormal transient change and accident in operation, and the concrete events of serious accident and hypothetic accident are stipulated. The explanation and two appendices are attached. (Kako, I.)

  20. Problems of nuclear reactor safety. Vol. 1

    International Nuclear Information System (INIS)

    Shal'nov, A.V.

    1995-01-01

    Proceedings of the 9. Topical Meeting 'Problems of nuclear reactor safety' are presented. Papers include results of studies and developments associated with methods of calculation and complex computerized simulation for stationary and transient processes in nuclear power plants. Main problems of reactor safety are discussed as well as rector accidents on operating NPP's are analyzed

  1. EBR-II Cover Gas Cleanup System upgrade distributed control and front end computer systems

    International Nuclear Information System (INIS)

    Carlson, R.B.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) Cover Gas Cleanup System (CGCS) control system was upgraded in 1991 to improve control and provide a graphical operator interface. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper briefly describes the Cover Gas Cleanup System and the overall control system; gives reasons behind the computer system structure; and then gives a detailed description of the distributed control computer, the front end computer, and how these computers interact with the main control computer. The descriptions cover both hardware and software

  2. Observations of in-reactor endurance and rupture life for fueled and unfueled FTR cladding

    International Nuclear Information System (INIS)

    Lovell, A.J.; Christensen, B.Y.; Chin, B.A.

    1979-01-01

    Reactor component endurance limits are important to nuclear experimenters and operators. This paper investigates endurance limits of 316 CW fuel pin cladding. The objective of this paper is to compare and analyze two different sets of FTR fuel pin cladding data. The first data set is from unfueled pressurized cladding irradiated in the Experimental Breeder Reactor No. II (EBR-II). This data set was generated in an assembly in which the temperature was monitored and controlled. The second data set contains observations of breached and unbreached EBR-II test fuel pins covering a large range of temperature, power and burnup conditions

  3. Reactor safety in Eastern Europe. Proceedings

    International Nuclear Information System (INIS)

    1995-02-01

    The papers presented to the GRS colloquium refer to the cooperative activities for reactor accident analysis and modification of the GRS computer codes for their application to reactors of the Russian design types of WWER or RBMK. Another topic is the safety of RBMK reactors in particular, and the current status of investigations and studies addressing the containment of unit 4 of the Chernobyl reactor station. (HP) [de

  4. The organization of research reactor safety in the UKAEA

    International Nuclear Information System (INIS)

    Redpath, W.

    1983-01-01

    The present state of organization and development of research reactor safety in the UKAEA are outlined by addressing the fundamental safety principles which have been adopted in keeping with national health and safety requirement. The organisation, assessment and monitoring of research reactor safety on complex multi-discipline and multi-activity nuclear research and development site are discussed. Methods of safety assessment, such as probabilistic risk assessment and risk acceptance criteria, which have been developed and applied in practice are explained, and some indication of the directions in which some of the current developments in the safety of UKAEA research reactors is also included. (A.J.)

  5. Fast neutron reactors: the safety point of view

    International Nuclear Information System (INIS)

    Laverie, M.; Avenas, M.

    1984-01-01

    All versions of nuclear reactors present favourable and unfavourable characteristics from the point of view of safety. The safety of the installations is obtained by making efforts to utilize in the best possible way those which are favourable and by taking proper steps in the face of those which are unfavourable. The present article shows how this general principle has been applied as regards the fast neutron reactors of integrated design which have been developped in France, taking into account the specific features of this version. A qualitative method to compare the safety of this version with that of pressurized water reactors which has been widely put to the test commercially all over the world is presented. These analyses make, generally speaking, several positive characteristics stand out for these fast neutron reactors from the safety aspects [fr

  6. Request for Naval Reactors Comment on Proposed PROMETHEUS Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to Jet Propulsion Laboratory

    International Nuclear Information System (INIS)

    D. Kokkinos

    2005-01-01

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory

  7. Whole-core damage analysis of EBR-II driver fuel elements following SHRT program

    International Nuclear Information System (INIS)

    Chang, L.K.; Koenig, J.F.; Porter, D.L.

    1987-01-01

    In the Shutdown Heat Removal Testing (SHRT) program in EBR-II, fuel element cladding temperatures of some driver subassemblies were predicted to exceed temperatures at which cladding breach may occur. A whole-core thermal analysis of driver subassemblies was performed to determine the cladding temperatures of fuel elemnts, and these temperatures were used for fuel element damage calculation. The accumulated cladding damage of fuel element was found to be very small and fuel element failure resulting from SHRT transients is unlikely. No element breach was noted during the SHRT transients. The reactor was immediately restarted after the most severe SHRT transient had been completed and no driver fuel breach has been noted to date. (orig.)

  8. Advanced automation concepts applied to Experimental Breeder Reactor-II startup

    International Nuclear Information System (INIS)

    Berkan, R.C.; Upadhyaya, B.R.; Bywater, R.L.

    1991-08-01

    The major objective of this work is to demonstrate through simulations that advanced liquid-metal reactor plants can be operated from low power by computer control. Development of an automatic control system with this objective will help resolve specific issues and provide proof through demonstration that automatic control for plant startup is feasible. This paper presents an advanced control system design for startup of the Experimental Breeder Reactor-2 (EBR-2) located at Idaho Falls, Idaho. The design incorporates recent methods in nonlinear control with advanced diagnostics techniques such as neural networks to form an integrated architecture. The preliminary evaluations are obtained in a simulated environment by a low-order, valid nonlinear model. Within the framework of phase 1 research, the design includes an inverse dynamics controller, a fuzzy controller, and an artificial neural network controller. These three nonlinear control modules are designed to follow the EBR-2 startup trajectories in a multi-input/output regime. They are coordinated by a supervisory routine to yield a fault-tolerant, parallel operation. The control system operates in three modes: manual, semiautomatic, and fully automatic control. The simulation results of the EBR-2 startup transients proved the effectiveness of the advanced concepts. The work presented in this paper is a preliminary feasibility analysis and does not constitute a final design of an automated startup control system for EBR-2. 14 refs., 43 figs

  9. Advanced gas cooled reactors - Designing for safety

    International Nuclear Information System (INIS)

    Keen, Barry A.

    1990-01-01

    The Advanced Gas-Cooled Reactor Power Stations recently completed at Heysham in Lancashire, England, and Torness in East Lothian, Scotland represent the current stage of development of the commercial AGR. Each power station has two reactor turbo-generator units designed for a total station output of 2x660 MW(e) gross although powers in excess of this have been achieved and it is currently intended to uprate this as far as possible. The design of both stations has been based on the successful operating AGRs at Hinkley Point and Hunterston which have now been in-service for almost 15 years, although minor changes were made to meet new safety requirements and to make improvements suggested by operating experience. The construction of these new AGRs has been to programme and within budget. Full commercial load for the first reactor at Torness was achieved in August 1988 with the other three reactors following over the subsequent 15 months. This paper summarises the safety principles and guidelines for the design of the reactors and discusses how some of the main features of the safety case meet these safety requirements. The paper also summarises the design problems which arose during the construction period and explains how these problems were solved with the minimum delay to programme

  10. Advanced gas cooled reactors - Designing for safety

    Energy Technology Data Exchange (ETDEWEB)

    Keen, Barry A [Engineering Development Unit, NNC Limited, Booths Hall, Knutsford, Cheshire (United Kingdom)

    1990-07-01

    The Advanced Gas-Cooled Reactor Power Stations recently completed at Heysham in Lancashire, England, and Torness in East Lothian, Scotland represent the current stage of development of the commercial AGR. Each power station has two reactor turbo-generator units designed for a total station output of 2x660 MW(e) gross although powers in excess of this have been achieved and it is currently intended to uprate this as far as possible. The design of both stations has been based on the successful operating AGRs at Hinkley Point and Hunterston which have now been in-service for almost 15 years, although minor changes were made to meet new safety requirements and to make improvements suggested by operating experience. The construction of these new AGRs has been to programme and within budget. Full commercial load for the first reactor at Torness was achieved in August 1988 with the other three reactors following over the subsequent 15 months. This paper summarises the safety principles and guidelines for the design of the reactors and discusses how some of the main features of the safety case meet these safety requirements. The paper also summarises the design problems which arose during the construction period and explains how these problems were solved with the minimum delay to programme.

  11. RB research reactor safety report; Izvestaj o sigurnsti istrazivackog reaktora RB

    Energy Technology Data Exchange (ETDEWEB)

    Sotic, O; Pesic, M; Vranic, S [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1979-04-15

    This new version of the safety report is a revision of the safety report written in 1962 when the RB reactor started operation after reconstruction. The new safety report was needed because reactor systems and components have been improved and the administrative procedures were changed. the most important improvements and changes were concerned with the use of highly enriched fuel (80% enriched), construction of reactor converter outside the reactor vessel, improved control system by two measuring start-up channels, construction of system for heavy water leak detection, new inter phone connection between control room and other reactor rooms. This report includes description of reactor building with installations, rector vessel, reactor core, heavy water system, control system, safety system, dosimetry and alarm systems, experimental channels, neutron converter, reactor operation. Safety aspects contain analyses of accident reasons, method for preventing reactivity insertions, analyses of maximum hypothetical accidents for cores with natural uranium, 2% enriched and 80% enriched fuel elements. Influence of seismic events on the reactor safety and well as coupling between reactor and the converter are parts of this document.

  12. Refurbishment and safety up-gradation of Cirus Reactor

    International Nuclear Information System (INIS)

    Rao, D.V.H.

    2004-01-01

    Cirus, a 40 MWth, vertical tank type research reactor, having a wide range of research facilities, was commissioned in 1960. This research facility has been operated and utilized extensively for nearly four decades. With a view to assess the residual life of the reactor, detailed ageing studies were carried out. Based on this, refurbishment work for life extension was undertaken. During this work, additional safety features were incorporated to improve the overall safety of the reactor. This lecture details the methodologies used for ageing studies and refurbishment activities for life extension with enhanced safety. (author)

  13. Safety report on WWR-S reactor

    International Nuclear Information System (INIS)

    Horyna, J.; Kaisler, L.; Listik, E.

    1981-04-01

    The present Safety Report of the WWR-S reactor summarizes findings obtained during the trial and partially also permanent operation of the reactor after two stages of its reconstruction implemented between 1974 and 1976. Most data are presented necessary for assessing probable risks of possible accident conditions whose consequences pose health hazards to individuals of the population, radiation personnel and the facilities themselves. Attention is devoted to the description of the locality, to components and systems, heat removal from the core, design aspects, the quality of new and old parts of the technological circuits, the systems of protection and control, the emergency core cooling system, the problems of radiation safety, and to the safety analyses of the abnormal states envisaged. The Report was compiled with regard to IAEA and CMEA recommendations concerning safe operation of research reactors and to the recommendations and binding decisions of the Czechoslovak Atomic Energy Commission. (author)

  14. Safety research needs for Russian-designed reactors. Requirements situation

    International Nuclear Information System (INIS)

    Brown, R. Allan; Holmstrom, Heikki; Reocreux, Michel; Schulz, Helmut; Liesch, Klaus; Santarossa, Giampiero; Hayamizu, Yoshitaka; Asmolov, Vladimir; Bolshov, Leonid; Strizhov, Valerii; Bougaenko, Sergei; Nikitin, Yuri N.; Proklov, Vladimir; Potapov, Alexandre; Kinnersly, Stephen R.; Voronin, Leonid M.; Honekamp, John R.; Frescura, Gianni M.; Maki, Nobuo; Reig, Javier; ); Bekjord, Eric S.; Rosinger, Herbert E.

    1998-01-01

    In June 1995, an OECD Support Group was set up to perform a broad study of the safety research needs of Russian-designed reactors. The emphasis of the study is on the VVER-type reactors in part because of the larger base of knowledge within the NEA Member countries related to LWRs. For the RBMKs, the study does not make the judgement that such reactors can be brought to acceptable levels of safety but focuses on near term efforts that can contribute to reducing the risk to the public. The need for the safety research must be evaluated in context of the lifetime of the reactors. The principal outcome of the work of the Support Group is the identification of a number of research topics which the members believe should receive priority attention over the next several years if risk levels are to be reduced and public safety enhanced. These appear in the Conclusions and Recommendations section of the report, and are the following: - The most important near-term need for VVER and RBMK safety research is to establish a sound technical basis for the emergency operating procedures used by the plant staff to prevent or halt the progression of accidents (i.e., Accident Management) and for plant safety improvements. - Co-operation of Western and Eastern experts should help to avoid East-West know-how gaps in the future, as safety technology continues to improve. - Safety research in Eastern countries will make an important contribution to public safety as it has in OECD countries. - RBMK safety research, including verification of codes, starts from a smaller base of experience than VVER, and is at an earlier stage of development. Technical Conclusions: - Research to improve human performance and operational safety of VVER and RBMK plants is extremely important. - VVER thermal-hydraulic and reactor physics research should focus on full validation of codes to VVER-specific features, and on extension of experimental data base. - Methods of assessing VVER pressure boundary

  15. Reactor safety research in times of change

    International Nuclear Information System (INIS)

    Zipper, Reinhard

    2013-01-01

    Since the early 1970ies reactor safety research sponsored by the German Ministry of Economics an Technology and its predecessors and pursued independently from interests of industry or industrial associations as well as from current licensing issues significantly contributed to the extension of knowledge regarding risks and possible threats associated with the operation of nuclear power plants. The results of these research activities triggered several measures taken by industry and utilities to further enhance the internationally recognized high safety standards of nuclear power plants in Germany. Furthermore, by including especially universities in the distinguished research activities a large number of young scientists were given the opportunity to qualify in the field of nuclear reactor technology and safety thus contributing to the preservation of competence during the demographic change. The nuclear phase out in Germany affects also issues of reactor safety research in Germany. While Germany will progressively decrease and terminate the use of nuclear energy for public power supply other countries in Europe and in other parts of the world are continuing, expanding and even starting the use of nuclear power. As generally recognized, nuclear safety is an international issue and in the wake of the Fukushima disaster there are several initiatives to launch a system of internationally binding safety rules and guide lines. The German Competence Alliance therefore has elaborated a framework of areas were future reactor safety research will still be needed to support German efforts based on own and independent expertise to continuously develop and establish highest safety standards for the use of nuclear power supply domestic and abroad.

  16. Nuclear safety cooperation for Soviet designed reactors

    International Nuclear Information System (INIS)

    Reisman, A.W.; Horak, W.C.

    1995-01-01

    The nuclear accident at the Chernobyl nuclear power plant in 1986 first alerted the West to the significant safety risks of Soviet designed reactors. Five years later, this concern was reaffirmed when the IAEA, as a result of a review by an international team of nuclear safety experts, announced that it did not believe the Kozloduy nuclear power plants in Bulgaria could be operated safely. To address these safety concerns, the G-7 summit in Munich in July 1992 outlined a five point program to address the safety problems of Soviet Designed Reactors: operational safety improvement; near-term technical improvements to plants based on safety assessment; enhancing regulatory regimes; examination of the scope for replacing less safe plants by the development of alternative energy sources and the more efficient use of energy; and upgrading of the plants of more recent design. As of early 1994, over 20 countries and international organizations have pledged hundreds of millions of dollars in financial assistance to improve safety. This paper summarizes these assistance efforts for Soviet designed reactors, draws lessons learned from these activities, and offers some options for better addressing these concerns

  17. Operational reliability testing of FBR fuel in EBR-II

    International Nuclear Information System (INIS)

    Asaga, Takeo; Ukai, Shigeharu; Nomura, Shigeo; Shikakura, Sakae

    1991-01-01

    The operational reliability testing of FBR fuel has been conducting in EBR-II as a DOE/PNC collaboration program. This paper reviews the achieved summary of Phase-I test as well as outline of progressing Phase-II test. In Phase-I test, the reliability of FBR fuel pins including 'MONJU' fuel was demonstrated at the event of operational transient. Continued operation of the failed pins was also shown to be feasible without affecting the plant operation. The objectives of the Phase-II test is to extend the data base relating with the operational reliability for long life fuel, and to supply the highly quantitative evaluation. The valuable insight obtained in Phase-II test are considerably expected to be useful toward the achievement of commercial FBR. (author)

  18. A new safety approach in the design of fast reactors

    International Nuclear Information System (INIS)

    Neuhold, R.J.; Marchaterre, J.F.; Waltar, A.E.

    1987-01-01

    A new approach to achieving fast reactor safety goals is becoming really apparent in the US Fast Reactor Program. Whereas the ''defense is best'' philosophy still prevails, there has been a tangible shift toward emphasizing passive mechanisms to protect the reactor and provide public safety---rather than relying on add-on active, engineered safety systems. This paper reviews the technical basis for this new safety approach and provides discussion on its implementation in current US liquid metal-cooled reactor designs. 4 refs., 4 figs

  19. Discussion on safety analysis approach for sodium fast reactors

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Choo, Yeon Joon; Suh, Nam Duk; Shin, Ahn Dong; Bae, Moo Hoon

    2012-01-01

    Utilization of nuclear energy is increasingly necessary not only because of the increasing energy consumption but also because of the controls on greenhouse emissions against global warming. To keep step with such demands, advanced reactors are now world widely under development with the aims of highly economical advances, and enhanced safety. Recently, further elaborating is encouraged on the research and development program for Generation IV (GEN IV) reactors, and in collaboration with other interested countries through the Generation IV International Forum (GIF). Sodium cooled Fast Reactor (SFR) is a strong contender amongst the GEN IV reactor concepts. Korea also takes part in that program and plans to construct demonstration reactor of SFR. SFR is under the development for a candidate of small modular reactors, for example, PRISM (Power Reactor Innovative Small Module). Understanding of safety analysis approach has also advanced by the demand of increasing comprehensive safety requirement. Reviewing the past development of the licensing and safety basis in the advanced reactors, such approaches seemed primarily not so satisfactory because the reference framework of licensing and safety analysis approach in the advanced reactors was always the one in water reactors. And, the framework is very plant specific one and thereby the advanced reactors and their frameworks don't look like a well assorted couple. Recently as a result of considerable advances in probabilistic safety assessment (PSA), risk informed approaches are increasingly applied together with some of the deterministic approaches like as the ones in water reactors. Technology neutral framework (TNF) can be said to be the utmost works of such risk informed approaches, even though an intensive assessment of the applicability has not been sufficiently accomplished. This study discusses the viable safety analysis approaches for the urgent application to the construction of pool type SFR. As discussed in

  20. SpinlineTM, Benefits of a nuclear specific safety-critical digital I/C platform - 15102

    International Nuclear Information System (INIS)

    Duthou, A.; Mouly, P.; Jegou, H.

    2015-01-01

    Spinline TM is Rolls-Royce modular and digital solution dedicated to developing and/or upgrading safety I/C used in nuclear reactors. From the start, Spinline TM was specifically designed for Nuclear applications. Therefore, its architecture and components satisfy, from design, the most stringent safety standards required by the local Safety authorities, while they can be adapted to various types of reactors. This is a significant advantage over suppliers who tried to adapt industrial systems to the Nuclear constraints and faced unexpected delays and costs to meet Safety authorities requirements. Spinline TM was specifically designed to implement any Class 1E and category A IEC-61226 safety I/C functions. It is qualified according to European and French nuclear standard and more recently by the US NRC, notably thanks to its Fail-safe features, deterministic behavior and Physical and Functional Separation. In 2011 EDF chose Spinline TM as its safety I/C systems technology for the modernization of 20 units of its 1300 MW PWR fleet

  1. Safety aspects of designs for future light water reactors (evolutionary reactors)

    International Nuclear Information System (INIS)

    1993-07-01

    The main purpose of this document is to describe the major innovations of proposed designs of future light water reactors, to describe specific safety characteristics and safety analysis methodologies, and to give a general overview of the most important safety aspects related to future reactors. The reactors considered in this report are limited to those intended for fixed station electrical power production, excluding most revolutionary concepts. More in depth discussion is devoted to those designs that are in a more advanced state of completion and have been more extensively described and analysed in the open literature. Other designs will be briefly described, as evidence of the large spectrum of new proposals. Some designs are similar; others implement unique features and require specific discussion (not all aspects of designs with unique features are fully discussed in this document). 131 refs, 22 figs

  2. Water cooled reactor technology: Safety research abstracts no. 1

    International Nuclear Information System (INIS)

    1990-01-01

    The Commission of the European Communities, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD publish these Nuclear Safety Research Abstracts within the framework of their efforts to enhance the safety of nuclear power plants and to promote the exchange of research information. The abstracts are of nuclear safety related research projects for: pressurized light water cooled and moderated reactors (PWRs); boiling light water cooled and moderated reactors (BWRs); light water cooled and graphite moderated reactors (LWGRs); pressurized heavy water cooled and moderated reactors (PHWRs); gas cooled graphite moderated reactors (GCRs). Abstracts of nuclear safety research projects for fast breeder reactors are published independently by the Nuclear Energy Agency of the OECD and are not included in this joint publication. The intention of the collaborating international organizations is to publish such a document biannually. Work has been undertaken to develop a common computerized system with on-line access to the stored information

  3. The Expert System For Safety Assesment Of Kartini Reactor Operation And Maintenance

    International Nuclear Information System (INIS)

    Syarip

    2000-01-01

    An expert system for safety assessment of Kartini reactor operation and maintenance based on fuzzy logic method has been made. The expert system is developed from the Fuzzy Expert System Tools (FEST), i.e. by developing the knowledge base and data base files of Kartini research reactor system and operations with an inference engine based on FEST. The knowledge base is represented in the procedural knowledge as heuristic rules or generally known as rule-base in the from of If-then rule. The fuzzy inference process and the conclusion of the rule is done by FEST based on direct chaining method with interactive as well as non-interactive modes. The safety assessment of Kartini reactor based on this method gives more realistic value than the conventional method or binary logic

  4. Research and development on next generation reactor (phase I)

    International Nuclear Information System (INIS)

    Park, Jong Kyoon; Chang, Moon Heuy; Hwang, Yung Dong

    1994-10-01

    The objective of the study is to improve the volume of nuclear power plant which adopts passive safety system concept. The passive safety system reactor is characterized by excellent safety and reliability. But the volume of NSSS (Nuclear Steam Supply System) of the passive safety system reactor is so small that it should be upgraded for commercial operation. For volume upgrade, detailed analyses are performed as follows; core design, hydraulics, design and mechnical structures, and safety analysis. In addition to above analysis, some investigations must be supplied as follows: power density vs. DNB margin decrease, outlet temperature vs. EPRI-URD, additional tests for upgraded reactor, dynamic analysis of mechanical vibration according to expanded reactor vessel and expanded in-core structures, and Merit loss of passive safety system reactor according to design margin decrease. (Author)

  5. Research and development on next generation reactor (phase I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyoon; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); and others

    1994-10-01

    The objective of the study is to improve the volume of nuclear power plant which adopts passive safety system concept. The passive safety system reactor is characterized by excellent safety and reliability. But the volume of NSSS (Nuclear Steam Supply System) of the passive safety system reactor is so small that it should be upgraded for commercial operation. For volume upgrade, detailed analyses are performed as follows; core design, hydraulics, design and mechnical structures, and safety analysis. In addition to above analysis, some investigations must be supplied as follows: power density vs. DNB margin decrease, outlet temperature vs. EPRI-URD, additional tests for upgraded reactor, dynamic analysis of mechanical vibration according to expanded reactor vessel and expanded in-core structures, and Merit loss of passive safety system reactor according to design margin decrease. (Author).

  6. Considerations in the development of safety requirements for innovative reactors: Application to modular high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    2003-08-01

    Member States of the IAEA have frequently requested this organization to assess, at the conceptual stage, the safety of the design of nuclear reactors that rely on a variety of technologies and are of a high degree of innovation. However, to date, for advanced and innovative reactors and for reactors with characteristics that are different from those of existing light water reactors, widely accepted design standards and rules do not exist. This TECDOC is an outcome of the efforts deployed by the IAEA to develop a general approach for assessing the safety of the design of advanced and innovative reactors, and of all reactors in general including research reactors, with characteristics that differ from those of light water reactors. This publication puts forward a method for safety assessment that is based on the well established and accepted principle of defence in depth. The need to develop a general approach for assessing the safety of the design of reactors that applies to all kinds of advanced reactors was emphasized by the request to the IAEA by South Africa to review the safety of the South African pebble bed modular reactor. This reactor, as other modular high temperature gas cooled reactors (MHTGRs), adopts very specific design features such as the use of coated particle fuel. The characteristics of the fuel deeply affect the design and the safety of the plant, thereby posing several challenges to traditional safety assessment methods and to the application of existing safety requirements that have been developed primarily for water reactors. In this TECDOC, the MHTGR has been selected as a case study to demonstrate the viability of the method proposed. The approach presented is based on an extended interpretation of the concept of defence in depth and its link with the general safety objectives and fundamental safety functions as set out in 'Safety of Nuclear Power Plants: Design', IAEA Safety Standards No. NS-R.1, issued by the IAEA in 2000. The objective

  7. Development of Safety Review Guide for the Periodic Safety Review of Reactor Vessel Internals

    International Nuclear Information System (INIS)

    Park, Jeongsoon; Ko, Hanok; Kim, Seonjae; Jhung, Myungjo

    2013-01-01

    Aging management of the reactor vessel internals (RVIs) is one of the important issues for long-term operation of nuclear power plants (NPPs). Safety review on the assessment and management of the RVI aging is conducted through the process of a periodic safety review (PSR). The regulatory body should check that reactor facilities sustain safety functions in light of degradation due to aging and that the operator of a nuclear power reactor establishes and implements management program to deal with degradation due to aging in order to guarantee the safety functions and the safety margin as a result of PSR. KINS(Korea Institute of Nuclear Safety) has utilized safety review guides (SRG) which provide guidance to KINS staffs in performing safety reviews in order to assure the quality and uniformity of staff safety reviews. The KINS SRGs for the continued operation of pressurized water reactors (PWRs) published in 2006 contain areas of review regarding aging management of RVIs in chapter 2 (III.2.15, Appendix 2.0.1). However unlike the SRGs for the continued operation, KINS has not officially published the SRGs for the PSR of PWRs, but published them as a form of the research report. In addition to that, the report provides almost same review procedures for aging assessment and management of RVIs with the ones provided in the SRGs for the continued operation, it cannot provide review guidance specific to PSRs. Therefore, a PSR safety review guide should be developed for RVIs in PWRs. In this study, a draft PSR safety review guide for reactor vessel internals in PWRs is developed and provided. In this paper, a draft PSR safety review guide for reactor vessel internals (PSR SRG-RVIs) in PWRs is introduced and main contents of the draft are provided. However, since the PSR safety review guides for areas other than RVIs in the pressurized water reactors (PWRs) are expected to be developed in the near future, the draft PSR SRG-RVIs should be revisited to be compatible with

  8. Frequency response testing at Experimental Breeder Reactor II using discrete-level periodic signals

    International Nuclear Information System (INIS)

    Rhodes, W.D.; Larson, H.A.

    1990-01-01

    The Experimental Breeder Reactor 2 (EBR-2) reactivity-to-power frequency-response function was measured with pseudo-random, discrete-level, periodic signals. The reactor power deviation was small with insignificant perturbation of normal operation and in-place irradiation experiments. Comparison of results with measured rod oscillator data and with theoretical predictions show good agreement. Moreover, measures of input signal quality (autocorrelation function and energy spectra) confirm the ability to enable this type of frequency response determination at EBR-2. Measurements were made with the pseudo-random binary sequence, quadratic residue binary sequence, pseudo-random ternary sequence, and the multifrequency binary sequence. 10 refs., 7 figs., 3 tabs

  9. The emphasis is on reactor safety research

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    For the second time the Association for Reactor Safety mbH (GRS), Koeln, organised on behalf of the BMFT the conference 'Reactor safety research'. About 400 visitors took part. The public who were interested were given a review of the activities which are being undertaken by the BMFT in the programme 'Research and safety of light-water reactors'. The series of conference papers initiated by the BMFT is to be developed into a permanent information source which will be of interest to those working on nuclear questions such as official quarters, industry and high schools, and experts who have to give judgements. The most important statements by various research groups in industry, high schools and also associations of experts, are summarised. (orig.) [de

  10. Research on the reactor physics and reactor safety of VVER reactors. AER Symposium 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, S.

    2017-09-15

    The selected paperscan be attributed to the following main subjects: Reactor start-up tests and use of corresponding data for code validation, code development and application, approaches for safety analyses, closure of nuclear fuel cycle, prospective reactor concepts.

  11. Some considerations for assurance of reactor safety from experiences in research reactors

    International Nuclear Information System (INIS)

    Okamoto, Sunao; Nishihara, Hideaki; Shibata, Toshikazu

    1981-01-01

    For the purpose of assuring reactor safety and strengthening research in the related fields, a multi-disciplinary group was formed among university researchers, including social scientists, with a special allocation of the Grant-in-Aid from the Ministry of Education, Science and Culture. An excerpt from the first year's report (1979 -- 1980) is edited here, which contains an interpretation of Murphy's reliability engineering law, a scope of reactor diagnostic studies to be pursued at universities, and safety measures already implemented or suggested to be implemented in university research reactors. (author)

  12. Proceedings of the international topical meeting on advanced reactors safety: Volume 2

    International Nuclear Information System (INIS)

    1997-01-01

    In this volume, 89 papers are grouped under the following headings: advances in research/test reactor safety; advanced reactor accident management and emergency actions; advanced reactors instrumentation/controls/human factors; probabilistic risk/safety and reliability assessments; steam explosion research and issues; advanced reactor severe accident issues and research (analysis and assessments); advanced reactor thermal hydraulics; accelerator-driven source safety; liquid-metal reactor safety; structural assessments and issues; late papers

  13. The role of SASSYS-1 in LMR [Liquid Metal Reactor] safety analysis

    International Nuclear Information System (INIS)

    Dunn, F.E.; Wei, T.Y.C.

    1988-01-01

    The SASSYS-1 liquid metal reactor systems analysis computer code is currently being used as the principal tool for analysis of reactor plant transients in LMR development projects. These include the IFR and EBR-II Projects at Argonne National Laboratory, the FFTF project at Westinghouse-Hanford, the PRISM project at General Electric, the SAFR project at Rockwell International, and the LSPB project at EPRI. The SASSYS-1 code features a multiple-channel thermal-hydraulics core representation coupled with a point kinetics neutronics model with reactivity feedback, all combined with detailed one-dimensional thermal-hydraulic models of the primary and intermediate heat transport systems, including pipes, pumps, plena, valves, heat exchangers and steam generators. In addition, SASSYS-1 contains detailed models for active and passive shutdown and emergency heat rejection systems and a generalized plant control system model. With these models, SASSYS-1 provides the capability to analyze a wide range of transients, including normal operational transients, shutdown heat removal transients, and anticipated transients without scram events. 26 refs., 16 figs

  14. Safety of RBMK reactors: Major results and prospects

    International Nuclear Information System (INIS)

    Sidorenko, V.A.

    1996-01-01

    The paper considers the following issues: basic reasons for the advent of NPPs with RBMK reactors; the logic of identifying top-priority measures immediately after the accident; top-priority measures for improving the safety and reliability of NPPs with RBMK reactors; upgrading NPPs with RBMK reactors in compliance with the Norms; programmes for retrofitting and upgrading of NPPs of the ''Rosnergoatom'' Concern and progress with their implementation as of April 1996; the safety of RBMK plants and the programmes of its enhancement with regard to modern requirements in the light of national and international assessment; objective indicators of safety, reliability, and economic efficiency of NPPs with RBMK reactors; economics: rationale for continuing plants operation till the end of their design lifetime. 8 refs, 3 figs

  15. Safety research for CANDU reactors

    International Nuclear Information System (INIS)

    Hancox, W.T.

    1982-10-01

    Continuing research to develop and verify computer models of CANDU-PHW reactor process and safety systems is described. It is focussed on loss-of-coolant accidents (LOCAs) because they are the precursors of more serious accidents. Research topics include: (i) fluid-dynamic and heat-transfer processes in the heat transport system during the blowdown and refilling phases of LOCAs; (ii) thermal and mechanical behaviour of fuel elements; (iii) thermal and mechanical behaviour of the fuel and the fuel-channel assembly in situations where the heavy-water moderator is the sink for decay heat produced in the fuel; (iv) chemical behaviour of fission gases that might be released into the reactor coolant and transported to the containment system; and (v) combustion of hydrogen-air-steam mixtures that would be produced if fuel temperatures were sufficiently high to initiate the zirconium-water reaction. The current status of the research on each of these topics is highlighted with particular emphasis on the conclusions reached to date and their impact on the continuing program

  16. Guidelines for Self-assessment of Research Reactor Safety

    International Nuclear Information System (INIS)

    2018-01-01

    Self-assessment is an organization’s internal process to review its current status, processes and performance against predefined criteria and thereby to provide key elements for the organization’s continual development and improvement. Self-assessment helps the organization to think through what it is expected to do, how it is performing in relation to these expectations, and what it needs to do to improve performance, fulfil the expectations and achieve better compliance with the predefined criteria. This publication provides guidelines for a research reactor operating organization to perform a self-assessment of the safety management and the safety of the facility and to identify gaps between the current situation and the IAEA safety requirements for research reactors. These guidelines also provide a methodology for Member States, regulatory bodies and operating organizations to perform a self-assessment of their application of the provisions of the Code of Conduct on the Safety of Research Reactors. This publication also addresses planning, implementation and follow-up of actions to enhance safety and strengthen application of the Code. The guidelines are applicable to all types of research reactor and critical and subcritical assemblies, at all stages in their lifetimes, and to States, regulatory bodies and operating organizations throughout all phases of research reactor programmes. Research reactor operating organizations can use these guidelines at any time to support self-assessments conducted in accordance with the organization’s integrated management system. These guidelines also serve as a tool for an organization to prepare to receive an IAEA Integrated Safety Assessment of Research Reactors (INSARR) mission. An important result of this is the opportunity for an operating organization to identify focus areas and make safety improvements in advance of an INSARR mission, thereby increasing the effectiveness of the mission and efficiency of the

  17. Thermal hydraulic reactor safety analyses and experiments

    International Nuclear Information System (INIS)

    Holmstroem, H.; Eerikaeinen, L.; Kervinen, T.; Kilpi, K.; Mattila, L.; Miettinen, J.; Yrjoelae, V.

    1989-04-01

    The report introduces the results of the thermal hydraulic reactor safety research performed in the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) during the years 1972-1987. Also practical applications i.e. analyses for the safety authorities and power companies are presented. The emphasis is on description of the state-of-the-art know how. The report describes VTT's most important computer codes, both those of foreign origin and those developed at VTT, and their assessment work, VTT's own experimental research, as well as international experimental projects and other forms of cooperation VTT has participated in. Appendix 8 contains a comprehensive list of the most important publications and technical reports produced. They present the content and results of the research in detail.(orig.)

  18. Technology, safety and costs of decommissioning nuclear reactors at multiple-reactor stations

    International Nuclear Information System (INIS)

    Wittenbrock, N.G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWR) and large (1155-MWe) boiling water reactors (BWR) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services

  19. Current safety issues related to research reactor operation

    International Nuclear Information System (INIS)

    Alcala-Ruiz, F.

    2000-01-01

    The Agency has included activities on research reactor safety in its Programme and Budget (P and B) since its inception in 1957. Since then, these activities have traditionally been oriented to fulfil the Agency's functions and obligations. At the end of the decade of the eighties, the Agency's Research Reactor Safety Programme (RRSP) consisted of a limited number of tasks related to the preparation of safety related publications and the conduct of safety missions to research reactor facilities. It was at the beginning of the nineties when the RRSP was upgraded and expanded as a subprogramme of the Agency's P and B. This subprogramme continued including activities related to the above subjects and started addressing an increasing number of issues related to the current situation of research reactors (in operation and shut down) around the world such as reactor ageing, modifications and decommissioning. The present paper discusses some of the above issues as recognised by various external review or advisory groups (e.g., Peer Review Groups under the Agency's Performance Programme Appraisal System (PPAS) or the standing International Nuclear Safety Advisory Group (INSAG)) and the impact of their recommendations on the preparation and implementation of the part of the Agency's P and B relating to the above subject. (author)

  20. Summary of advanced LMR [Liquid Metal Reactor] evaluations: PRISM [Power Reactor Inherently Safe Module] and SAFR [Sodium Advanced Fast Reactor

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Slovik, G.C.; Chan, B.C.; Kennett, R.J.; Cheng, H.S.; Kroeger, P.G.

    1989-10-01

    In support of the US Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) has performed independent analyses of two advanced Liquid Metal Reactor (LMR) concepts. The designs, sponsored by the US Department of Energy (DOE), the Power Reactor Inherently Safe Module (PRISM) [Berglund, 1987] and the Sodium Advanced Fast Reactor (SAFR) [Baumeister, 1987], were developed primarily by General Electric (GE) and Rockwell International (RI), respectively. Technical support was provided to DOE, RI, and GE, by the Argonne National Laboratory (ANL), particularly with respect to the characteristics of the metal fuels. There are several examples in both PRISM and SAFR where inherent or passive systems provide for a safe response to off-normal conditions. This is in contrast to the engineered safety systems utilized on current US Light Water Reactor (LWR) designs. One important design inherency in the LMRs is the ''inherent shutdown'', which refers to the tendency of the reactor to transition to a much lower power level whenever temperatures rise significantly. This type of behavior was demonstrated in a series of unscrammed tests at EBR-II [NED, 1986]. The second key design feature is the passive air cooling of the vessel to remove decay heat. These systems, designated RVACS in PRISM and RACS in SAFR, always operate and are believed to be able to prevent core damage in the event that no other means of heat removal is available. 27 refs., 78 figs., 3 tabs

  1. Proof tests of irradiated and unirradiated EBR-II subassembly ducts

    International Nuclear Information System (INIS)

    Ruther, W.E.; Chopra, P.S.; Lambert, J.D.B.

    1977-01-01

    A series of dynamic pressure tests have been conducted within EBR-II subassembly ducts. The tests were designed to simulate bursting of a driver-fuel element in a cluster of such elements at their burnup limit during off-normal conditions in EBR-II. The major objective of the tests was to assure that such failure, which might cause rapid release of stored fission gas, would not deform or otherwise damage subassembly ducts in a way that would hinder movement of a control rod. The test results are described

  2. Monitoring circuit for reactor safety systems

    Science.gov (United States)

    Keefe, Donald J.

    1976-01-01

    The ratio between the output signals of a pair of reactor safety channels is monitored. When ratio falls outside of a predetermined range, it indicates that one or more of the safety channels has malfunctioned.

  3. RA reactor safety analysis, Part II - Accident analysis; Analiza sigurnosti rada Reaktora RA I-III, Deo II - Analiza akcidenta

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Radanovic, Lj; Milovanovic, M; Afgan, N; Kulundzic, P [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1963-02-15

    This part of the RA reactor safety analysis includes analysis of possible accidents caused by failures of the reactor devices and errors during reactor operation. Two types of accidents are analyzed: accidents resulting from uncontrolled reactivity increase, and accidents caused by interruption of cooling.

  4. Hardware resilience: a way to achieve reliability and safety in new nuclear reactors I and C systems

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Marcos S.; Carvalho, Paulo Victor R. de, E-mail: msantana@ien.gov.br, E-mail: paulov@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Divisão de Engenharia Nuclear. Serviço de Instrumentação; Nedjah, Nadia, E-mail: nadia@eng.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia de Sistemas e Telecomunicações

    2017-07-01

    The idea that systems have a property called ‘resilience’ has emerged in the last decade [1]. In this paper we intend to bring the idea of resilient systems for the hardware applied in safety-critical systems, such as the new nuclear reactor instrumentation and control (I and C) systems. The new systems (based in hardware description language (HDL) programmable devices) have been developed in response to the obsolescence of old analog technologies and current microprocessor-based digital technologies. Although HDL programmable devices have been widely used in various other industries for decades, they are still very new in nuclear reactors systems, which can be seen as a challenge and risk in the safety analyses and licensing efforts for utilities and designers. The goal of this work is to develop and test hardware architectures to tolerate the occurrence of faults, including multiple faults, minimizing the impact of the recovery process on system availability. Basic concepts of resilience in complex systems, as 'return to equilibrium', 'robustness' and 'extra adaptive capacity' were analyzed from the point of view of hardware architectures, leading to linkages between concepts and methods for resilience using an approach that increases reliability and simplifies the licensing process of systems based in HDL programmable devices in nuclear plants. (author)

  5. Hardware resilience: a way to achieve reliability and safety in new nuclear reactors I and C systems

    International Nuclear Information System (INIS)

    Farias, Marcos S.; Carvalho, Paulo Victor R. de; Nedjah, Nadia

    2017-01-01

    The idea that systems have a property called ‘resilience’ has emerged in the last decade [1]. In this paper we intend to bring the idea of resilient systems for the hardware applied in safety-critical systems, such as the new nuclear reactor instrumentation and control (I and C) systems. The new systems (based in hardware description language (HDL) programmable devices) have been developed in response to the obsolescence of old analog technologies and current microprocessor-based digital technologies. Although HDL programmable devices have been widely used in various other industries for decades, they are still very new in nuclear reactors systems, which can be seen as a challenge and risk in the safety analyses and licensing efforts for utilities and designers. The goal of this work is to develop and test hardware architectures to tolerate the occurrence of faults, including multiple faults, minimizing the impact of the recovery process on system availability. Basic concepts of resilience in complex systems, as 'return to equilibrium', 'robustness' and 'extra adaptive capacity' were analyzed from the point of view of hardware architectures, leading to linkages between concepts and methods for resilience using an approach that increases reliability and simplifies the licensing process of systems based in HDL programmable devices in nuclear plants. (author)

  6. Progress report concerning safety research for nuclear reactor facilities

    International Nuclear Information System (INIS)

    1978-01-01

    Examination and evaluation of safety research results for nuclear reactor facilities have been performed, as more than a year has elapsed since the plan had been initiated in April, 1976, by the special sub-committee for the safety of nuclear reactor facilities. The research is carried out by being divided roughly into 7 items, and seems to be steadily proceeding, though it does not yet reach the target. The above 7 items include researches for (1) criticality accident, (2) loss of coolant accident, (3) safety for light water reactor fuel, (4) construction safety for reactor facilities, (5) reduction of release of radioactive material, (6) safety evaluation based on the probability theory for reactor facilities, and (7) aseismatic measures for reactor facilities. With discussions on the progress and the results of the research this time, research on the behaviour on fuel in abnormal transients including in-core and out-core experiments has been added to the third item, deleting the power-cooling mismatch experiment in Nuclear Safety Research Reactor of JAERI. Also it has been decided to add two research to the seventh item, namely measured data collection, classification and analysis, and probability assessment of failures due to an earthquake. For these 7 items, the report describes the concrete contents of research to be performed in fiscal years of 1977 and 1978, by discussing on most rational and suitable contents conceivable at present. (Wakatsuki, Y.)

  7. Run-beyond-clad-breach oxide testing in EBR-2

    International Nuclear Information System (INIS)

    Lambert, J.D.B.; Bottcher, J.H.; Strain, R.V.; Gross, K.C.; Lee, M.J.; Webb, J.P.; Colburn, R.P.; Ukai, S.; Nomura, S.; Odo, T.; Shikakura, S.

    1990-01-01

    Fourteen tests sponsored by the US and Japan were used to study reliability of breached LMR oxide fuel pins during continued operation in EBR-II for a range of conditions and parameters. The fuel-sodium reaction product governed pin behavior. It extended primary breaches by swelling and promoted secondary failures, yet it inhibited loss of fuel and fission products and enhanced release of delayed neutrons used in monitoring breach condition. Fission gas and cesium, the main contaminants from failures, could be adequately controlled. This positive EBR-II experience suggested that limited operation with failed fuel may be feasible in commercial LMR's. 16 refs., 14 figs., 4 tabs

  8. The unique safety challenges of space reactor systems

    International Nuclear Information System (INIS)

    Lanes, S.J.; Marshall, A.C.

    1991-01-01

    Compact reactor systems can provide high levels of power for extended periods in space environments. Their relatively low mass and their ability to operate independently of their proximity to the sun make reactor power systems high desirable for many civilian and military space missions. The US Department of Energy is developing reactor system technologies to provide electrical power for space applications. In addition, reactors are now being considered to provide thermal power to a hydrogen propellant for nuclear thermal rocketry. Space reactor safety issues differ from commercial reactor issues, in some areas, because of very different operating requirements and environments. Accidents similar to those postulated for commercial reactors must be considered for space reactors during their operational phase. Safety strategies will need to be established that account for the consequences of the loss of essential power

  9. Simplified safety and containment systems for the iris reactor

    International Nuclear Information System (INIS)

    Conway, L.E.; Lombardi, C.; Ricotti, M.; Oriani, L.

    2001-01-01

    The IRIS (International Reactor Innovative and Secure) is a 100 - 300 MW modular type pressurized water reactor supported by the U.S. DOE NERI Program. IRIS features a long-life core to provide proliferation resistance and to reduce the volume of spent fuel, as well as reduce maintenance requirements. IRIS utilizes an integral reactor vessel that contains all major primary system components. This integral reactor vessel makes it possible to reduce containment size; making the IRIS more cost competitive. IRIS is being designed to enhance reactor safety, and therefore a key aspect of the IRIS program is the development of the safety and containment systems. These systems are being designed to maximize containment integrity, prevent core uncover following postulated accidents, minimize the probability and consequences of severe accidents, and provide a significant simplification over current safety system designs. The design of the IRIS containment and safety systems has been identified and preliminary analyses have been completed. The IRIS safety concept employs some unique features that minimize the consequences of postulated design basis events. This paper will provide a description of the containment design and safety systems, and will summarize the analysis results. (author)

  10. Software engineering for the EBR-II data acquisition system conversion

    International Nuclear Information System (INIS)

    Schorzman, W.

    1988-01-01

    The original data acquisition system (DAS) for the Experimental Breeder Reactor II (EBR-II) was placed into service with state-of-the-art computer and peripherals in 1970. Software engineering principles for real-time data acquisition were in their infancy, and the original software design was dictated by limited hardware resources. The functional requirements evolved from creative ways to gather and display data. This abstract concept developed into an invaluable tool for system analysis, data reporting, and as a plant monitor for operations. In this paper the approach is outlined to the software conversion project with the restraints of operational transparency and 6 weeks for final conversion and testing. The outline is then compared with the formal principles of software engineering to show the way that bridge the gap can be bridged between the theoretical and real world by analyzing the work and listing the lessons learned

  11. Performance Monitoring for Nuclear Safety Related Instrumentation at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Sabri Minhat

    2015-01-01

    The Reactor TRIGA PUSPATI (RTP) at Malaysia Nuclear Agency is a TRIGA Mark II type reactor and pool type cooled by natural circulation of light water. This paper describe on performance monitoring for nuclear safety related instrumentation in TRIGA PUSPATI Reactor (RTP) of based on various parameter of reactor safety instrument channel such as log power, linear power, Fuel temperature, coolant temperature will take into consideration. Methodology of performance on estimation and monitoring is to evaluate and analysis of reactor parameters which is important of reactor safety and control. And also to estimate power measurement, differential of log and linear power and fuel temperature during reactor start-up, operation and shutdown .This study also focus on neutron power fluctuation from fission chamber during reactor start-up and operation. This work will present result of performance monitoring from RTP which indicated the safety parameter identification and initiate safety action on crossing the threshold set point trip. Conclude that performance of nuclear safety related instrumentation will improved the reactor control and safety parameter during reactor start-up, operation and shutdown. (author)

  12. Historical perspective of thermal reactor safety in light water reactors

    International Nuclear Information System (INIS)

    Levy, S.

    1986-01-01

    A brief history of thermal reactor safety in U.S. light water reactors is provided in this paper. Important shortcomings in safety philosophy evolution versus time are identified and potential corrective actions are suggested. It should be recognized, that this analysis represents only one person's opinion and that most historical accountings reflect the author's biases and specific areas of knowledge. In that sense, many of the examples used in this paper are related to heat transfer and fluid flow safety issues, which explains why it has been included in a Thermal Hydraulics session. One additional note of caution: the value of hindsight and the selective nature of human memory when looking at the past cannot be overemphasized in any historical perspective

  13. Safety status of Russian research reactors

    International Nuclear Information System (INIS)

    Morozov, S.I.

    2001-01-01

    Gosatomnadzor of Russia is conducting the safety regulation and inspection activity related to nuclear and radiation safety at nuclear research facilities, including research reactors, critical assemblies and sub-critical assemblies. It implies implementing three major activities: 1) establishing the laws and safety standards in the field of research reactors nuclear and radiation safety; 2) research reactors licensing; and 3) inspections (or license conditions tracking and inspection). The database on nuclear research facilities has recently been updated based on the actual status of all facilities. It turned out that many facilities have been shutdown, whether temporary or permanently, waiting for the final decision on their decommissioning. Compared to previous years the situation has been inevitably changing. Now we have 99 nuclear research facilities in total under Gosatomnadzor of Russia supervision (compared to 113 in previous years). Their distribution by types and operating organizations is presented. The licensing and conduct of inspection processes are briefly outlined with emphasis being made on specific issues related to major incidents that happened in 2000, spent fuel management, occupational exposure, effluents and emissions, emergency preparedness and physical protection. Finally, a summary of problems at current Russian research facilities is outlined. (author)

  14. Code of Conduct on the Safety of Research Reactors

    International Nuclear Information System (INIS)

    2006-09-01

    The Board of Governors of the International Atomic Energy Agency (IAEA) adopted the Code of Conduct on the Safety of Research Reactors on 8 March 2004. The Board's action was the culmination of several years of work to develop the Code and obtain a consensus on its provisions. The process leading to the Code began in 1998, when the International Nuclear Safety Advisory Group (INSAG) informed the Director General of concerns about the safety of research reactors. In 2000, INSAG recommended that the Secretariat begin developing an international protocol or a similar legal instrument to address those concerns. In September 2000, in resolution GC(44)/RES/14, the General Conference requested the Secretariat ''within its available resources, to continue work on exploring options to strengthen the international nuclear safety arrangements for civil research reactors, taking due account of input from INSAG and the views of other relevant bodies''. A working group convened by the Secretariat pursuant to that request recommended that ''the Agency consider establishing an international action plan for research reactors'' and that the action plan include preparation of a Code of Conduct ''that would clearly establish the desirable attributes for management of research reactor safety''. In September 2001, the Board requested that the Secretariat develop and implement, in conjunction with Member States, an international research reactor safety enhancement plan which included preparation of a Code of Conduct on the Safety of Research Reactors. Subsequently, in resolution GC(45)/RES/10.A, the General Conference endorsed the Board's request. Pursuant to that request, a Code of Conduct on the Safety of Research Reactors was drafted at two meetings of an Open-ended Working Group of Legal and Technical Experts. This draft Code of Conduct was circulated to all Member States for comment. On the basis of the responses received, a revised draft of the Code was prepared by the Secretariat

  15. Safety significance of ATR [Advanced Test Reactor] passive safety response attributes

    International Nuclear Information System (INIS)

    Atkinson, S.A.

    1989-01-01

    The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory was designed with some passive safety response attributes which contribute to the safety posture of the facility. The three passive safety attributes being evaluated in the paper are: (1) In-core and in-vessel natural convection cooling, (2) a passive heat sink capability of the ATR primary coolant system (PCS) for the transfer of decay power from the uninsulated piping to the confinement, and (3) gravity feed of emergency coolant makeup. The safety significance of the ATR passive safety response attributes is that the reactor can passively respond for most transients, given a reactor scram, to provide adequate decay power removal and a significant time for operator action should the normal active heat removal systems and their backup systems both fail. The ATR Interim Level 1 Probabilistic Risk Assessment (PRA) model ands results were used to evaluate the significance to ATR fuel damage frequency (or probability) of the above three passive response attributes. The results of the evaluation indicate that the first attribute is a major safety characteristic of the ATR. The second attribute has a noticeable but only minor safety significance. The third attribute has no significant influence on the ATR Level 1 PRA because of the diversity and redundancy of the ATR firewater injection system (emergency coolant system). 8 refs., 4 figs., 1 tab

  16. Refurbishment and safety upgradation of research reactor Cirus

    International Nuclear Information System (INIS)

    Marik, S.K.; Rao, D.V.H.; Bhatnagar, A.; Pant, R.C.; Tikku, A.C.; Sankar, S.

    2006-01-01

    Cirus, a 40 MW t, vertical tank type research reactor, having wide range of research facilities, was commissioned in the year 1960. This research reactor, situated at Mumbai, India has been operated and utilized extensively for isotope production, material testing and neutron beam research for nearly four decades. With a view to assess the residual life of the reactor, detailed ageing studies were carried out during the early 1990s. Based on these studies, refurbishment of Cirus for its life extension was taken up. During refurbishment, additional safety features were incorporated in various systems to qualify them for the current safety standards. This paper gives the details of the operating experiences, utilization of the reactor along with methodologies followed for carrying out detailed ageing studies, refurbishment and safety upgradation for its life extension

  17. Reactor design and safety approach for a tank-type fast reactor

    International Nuclear Information System (INIS)

    Davies, S.M.; Yamaki, Hideo; Goodman, L.

    1984-06-01

    A tank type plant has been designed that offers compactness, high reliability under seismic and thermal transients, and a safety design approach that provides a balance between public safety and plant availability. This report provides a description of the design philosophy and safety features of the reactor

  18. Licensing procedures and safety criteria for research reactors in France

    International Nuclear Information System (INIS)

    Berry, J.L.; Lerouge, B.

    1983-01-01

    From the very beginning of the CEA up to now, a great deal of work has been devoted to the development and utilization of research reactors in France for the needs of fundamental and applied research, production of radioisotopes, and training. In recent years, new reactors were commissioned while others were decommissioned. Moreover some of the existing facilities underwent important modifications to comply with more severe safety criteria, increase the experimental capabilities or qualify new low-enrichment fuels for research reactors (Osiris and Isis). This paper summarizes the recent evolution of the French research reactor capacity, describes the licensing process, the main safety criteria which are taken into consideration, and associated safety research. At the end, a few considerations are given to the consequences of the Osiris core conversion. Safety of research reactors has been studied in detail and many improvements have been brought due to: implementation of a specific experimental program, and adaptation of safety principles and rules elaborated for power reactors. Research reactors in operation in France have been built within a 22 year period. Meanwhile, safety rules have been improved. Old reactors do not comply with all the new rules but modifications are continuously made: after analysis of incidents, when replacement of equipment has to be carried out, when an important modification (fuel conversion for example) is decided upon

  19. Licensing procedures and safety criteria for research reactors in France

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J L; Lerouge, B [Centre d' Etudes Nucleaires de Saclay (France)

    1983-08-01

    From the very beginning of the CEA up to now, a great deal of work has been devoted to the development and utilization of research reactors in France for the needs of fundamental and applied research, production of radioisotopes, and training. In recent years, new reactors were commissioned while others were decommissioned. Moreover some of the existing facilities underwent important modifications to comply with more severe safety criteria, increase the experimental capabilities or qualify new low-enrichment fuels for research reactors (Osiris and Isis). This paper summarizes the recent evolution of the French research reactor capacity, describes the licensing process, the main safety criteria which are taken into consideration, and associated safety research. At the end, a few considerations are given to the consequences of the Osiris core conversion. Safety of research reactors has been studied in detail and many improvements have been brought due to: implementation of a specific experimental program, and adaptation of safety principles and rules elaborated for power reactors. Research reactors in operation in France have been built within a 22 year period. Meanwhile, safety rules have been improved. Old reactors do not comply with all the new rules but modifications are continuously made: after analysis of incidents, when replacement of equipment has to be carried out, when an important modification (fuel conversion for example) is decided upon.

  20. Safety analysis calculations for research and test reactors

    International Nuclear Information System (INIS)

    Chen, S.Y.; MacDonald, R.; MacFarlane, D.

    1983-01-01

    Safety issues for the two general types of reactors, i.e., the plate-type (MTR-type) reactor and the rod-type (TRIGA-type) reactor, resulting from the changes associated with LEU vs HEU fuels, are explored. The plate-type fuels are typically uranium aluminide (UAl/sub x/) compounds dispersed in aluminum and clad with aluminum. Moderation is provided by the water coolant. Self shut-down reactivity coefficients with HEU fuel are entirely a result of coolant heating, whereas with LEU fuel there is an additional shut down contribution provided by the direct heating of the fuel due to the Doppler coefficient. In contrast, the rod-type (TRIGA) fuels are mixtures of zirconium hydride, uranium, and erbium. This fuel mixture is formed into rods (approx. 1 cm diameter) and clad with stainless steel or Incoloy. In the TRIGA fuel the self-shutdown reactivity is more complex, depending on heating of the fuel rather than the coolant. Results of transient calculations performed with existing computer codes, most suited for each type of reactor, are presented

  1. Safety of intrinsically safe and economical reactor (ISER)

    International Nuclear Information System (INIS)

    Asahi, Y.; Sugawara, I.; Yamanaka, K.

    1988-01-01

    Inherent safety of a reactor may be quantified by the grace period at various safety levels such as maintenance of fuel integrity, maintenance of fuel coolability and avoidance of core-melt. It is important to find out the grace period especially at the safety level of maintenance of fuel integrity. It has been conducted to design the ISER, which is characterized by the steel-made reactor pressure vessel. In addition to the passive nature of the safety design of the reactor itself, the ISER is equipped in the secondary system with a subsystem called the passive safety and shutdown system (PSSS), which will help to increase the grace period. It was found by the null transient analysis that check valves are needed at the top hot/cold interface. The analysis of the station blackout, which is one of the severest accident conceivable for the ISER, was made to examine inherent safety of the ISER with and without the PSSS. This paper reports that found out that the PSSS enhances inherent safety of the ISER

  2. Perspectives on reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  3. Perspectives on reactor safety

    International Nuclear Information System (INIS)

    Haskin, F.E.

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course

  4. Perspectives on reactor safety. Revision 1

    International Nuclear Information System (INIS)

    Haskin, F.E.; Hodge, S.A.

    1997-11-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor safety concepts. The course consists of five modules: (1) the development of safety concepts; (2) severe accident perspectives; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course

  5. Perspectives on reactor safety. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.

    1997-11-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor safety concepts. The course consists of five modules: (1) the development of safety concepts; (2) severe accident perspectives; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  6. VVER Reactor Safety in Eastern Europe and Former Soviet Union

    Science.gov (United States)

    Papadopoulou, Demetra

    2012-02-01

    VVER Soviet-designed reactors that operate in Eastern Europe and former Soviet republics have heightened international concern for years due to major safety deficiencies. The governments of countries with VVER reactors have invested millions of dollars toward improving the safety of their nuclear power plants. Most of these reactors will continue to operate for the foreseeable future since they provide urgently-needed electrical power. Given this situation, this paper assesses the radiological consequences of a major nuclear accident in Eastern Europe. The paper also chronicles the efforts launched by the international nuclear community to improve the safety of the reactors and notes the progress made so far through extensive collaborative efforts in Armenia, Bulgaria, the Czech Republic, Hungary, Kazakhstan, Lithuania, Russia, Slovakia, and Ukraine to reduce the risks of nuclear accidents. Western scientific and technical staff collaborated with these countries to improve the safety of their reactor operations by strengthening the ability of the regulator to perform its oversight function, installing safety equipment and technologies, investing time in safety training, and working diligently to establish an enduring safety culture. Still, continued safety improvement efforts are necessary to ensure safe operating practices and achieve timely phase-out of older plants.

  7. Old and new ways in reactor technology. Reactor concepts and reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Schulten, R

    1989-01-01

    Compared to developments of other technical-scale systems, the period between the recognition of the underlying physics of nuclear fission and the development of a functioning nuclear reactor and its further development to the present level of maturity has been relatively short. The whole development is based on the chain reaction and is rendered safe by the possible auto-stabilization of this reaction. Consequently, the safety of nuclear reactors properly designed is based on automatic mechanisms, which prevent spreads of radioactivity even in major accidents. Controversial opinions about nuclear power uses are mostly based on wrong perceptions both of reactor safety and of radioactive waste, unless they are characterized by sheer ideology. The use of nuclear power worldwide has assumed an important, growing role in the combined uses of a variety energy sources in a surprisingly short period of time and will continue to make a safe, economic, and thus responsible contribution in the long run.

  8. Monitoring circuit for reactor safety systems

    International Nuclear Information System (INIS)

    Keefe, D.J.

    1976-01-01

    The ratio between the output signals of a pair of reactor safety channels is monitored. When ratio falls outside of a predetermined range, it indicates that one or more of the safety channels has malfunctioned. 3 claims, 2 figures

  9. Identification and characterization of passive safety system and inherent safety feature building blocks for advanced light-water reactors

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1989-01-01

    Oak Ridge National Laboratory (ORNL) is investigating passive and inherent safety options for Advanced Light-Water Reactors (ALWRs). A major activity in 1989 includes identification and characterization of passive safety system and inherent safety feature building blocks, both existing and proposed, for ALWRs. Preliminary results of this work are reported herein. This activity is part of a larger effort by the US Department of Energy, reactor vendors, utilities, and others in the United States to develop improved LWRs. The Advanced Boiling Water Reactor (ABWR) program and the Advanced Pressurized Water Reactor (APWR) program have as goals improved, commercially available LWRs in the early 1990s. The Advanced Simplified Boiling Water Reactor (ASBWR) program and the AP-600 program are developing more advanced reactors with increased use of passive safety systems. It is planned that these reactors will become commercially available in the mid 1990s. The ORNL program is an exploratory research program for LWRs beyond the year 2000. Desired long-term goals for such reactors include: (1) use of only passive and inherent safety, (2) foolproof against operator errors, (3) malevolence resistance against internal sabotage and external assault and (4) walkaway safety. The acronym ''PRIME'' [Passive safety, Resilient operation, Inherent safety, Malevolence resistance, and Extended (walkaway) safety] is used to summarize these desired characteristics. Existing passive and inherent safety options are discussed in this document

  10. Monitoring and reviewing research reactor safety in Australia

    International Nuclear Information System (INIS)

    Cairns, R.C.; Greenslade, G.K.

    1990-01-01

    Th research reactors operated by the Australian Nuclear Science and Technology Organization (ANSTO) comprise the 10 MW reactor HIFAR and the 100 kW reactor Moata. Although there are no power reactors in Australia the problems and issues of public concern which arise in the operation of research reactors are similar to those of power reactors although on a smaller scale. The need for independent safety surveillance has been recognized by the Australian Government and the ANSTO Act, 1987, required the Board of ANSTO to establish a Nuclear Safety Bureau (NSB) with responsibility to the Minister for monitoring and reviewing the safety of nuclear plant operated by ANSTO. The Executive Director of ANSTO operates HIFAR subject to compliance with requirements and arrangements contained in a formal Authorization from the Board of ANSTO. A Ministerial Direction to the Board of ANSTO requires the NSB to report to him, on a quarterly basis, matters relating to its functions of monitoring and reviewing the safety of ANSTO's nuclear plant. Experience has shown that the Authorization provides a suitable framework for the operational requirements and arrangements to be organised in a disciplined and effective manner, and also provides a basis for audits by the NSB by which compliance with the Board's safety requirements are monitored. Examples of the way in which the NSB undertakes its monitoring and reviewing role are given. Moata, which has a much lower operating power level and fission product inventory than HIFAR, has not been subject to a formal Authorization to date but one is under preparation

  11. Cost effective safety enhancements for research reactors in Uzbekistan and Kazakhstan - results of a joint program with US DOE

    International Nuclear Information System (INIS)

    Earle, O.K.; Carlson, R.B.; Rakhmanov, A.; Salikhbaev, U.S.; Chernyaev, V.; Chakrov, P.

    2004-01-01

    Full text: The US Department of Energy's Office of International Nuclear Safety and Cooperation established the Integrated Research Reactor Safety Enhancement Program (IRRSEP) in February 2002 to support U.S. nonproliferation goals by (1) implementing safety upgrades, or (2) assisting with the safe shutdown and decommissioning of foreign test and research reactors which present security concerns. IRRSEP's key program components are: Phase I: Self-evaluation by facility using provided checklists followed by prioritization to identify the 20 highest risk facilities; Phase II: Site visits with technical evaluation to finalize a list of projects that will enhance safety consistent with IAEA observations; Phase III: Corrective measures to implement the projects. Phases I, II and III are accomplished on a rolling basis, such that work is ongoing at three or four reactors per year. IRRSEP's key objective is to resolve the highest-priority nuclear safety issues at the most vulnerable foreign research reactors as quickly as possible. The prioritization methodology employed identified which research reactors fell into this category. The corrective measures mutually developed with the host facility are based on the premise of developing a sustainable infrastructure within each country to deal with its own nuclear material safety, security, and response issues in the future. IRRSEP also assists in creating an international framework of cooperation and openness between research and test reactor operators, and national and international regulators. The initial projects under IRRSEP are underway at research reactors in Kazakhstan, Uzbekistan, and Romania. This paper focuses on the projects undertaken at the WWR-K research reactor at the Institute of Nuclear Physics in Alatau, Kazakhstan and the WWR-SM research reactor at the Institute of Nuclear Physics in Ulugbek, Uzbekistan. These projects demonstrate the success and cost effectiveness of the IRRSEP program

  12. Cost effective safety enhancements for research reactors in Uzbekistan and Kazakhstan - results of a joint program with US DOE

    International Nuclear Information System (INIS)

    Earle, O.K.; Carlson, R.B.; Rakhmanov, A.; Salikhbaev, U.S.; Chernyaev, V.; Chakrov, P.

    2004-01-01

    The US Department of Energy's Office of International Nuclear Safety and Cooperation established the Integrated Research Reactor Safety Enhancement Program (IRRSEP) in February 2002 to support U.S. nonproliferation goals by implementing safety upgrades, or assisting with the safe shutdown and decommissioning of foreign test and research reactors which present security concerns. IRRSEP's key program components are: Phase I: Self-evaluation by facility using provided checklists followed by prioritization to identify the 20 highest risk facilities; Phase II: Site visits with technical evaluation to finalize a list of projects that will enhance safety consistent with IAEA observations; Phase III: Corrective measures to implement the projects. Phases I, II and III are accomplished on a rolling basis, such that work is ongoing at three or four reactors per year. IRRSEP's key objective is to resolve the highest-priority nuclear safety issues at the most vulnerable foreign research reactors as quickly as possible. The prioritization methodology employed identified which research reactors fell into this category. The corrective measures mutually developed with the host facility are based on the premise of developing a sustainable infrastructure within each country to deal with its own nuclear material safety, security, and response issues in the future. IRRSEP also assists in creating an international framework of cooperation and openness between research and test reactor operators, and national and international regulators. The initial projects under IRRSEP are underway at research reactors in Kazakhstan, Uzbekistan, and Romania. This paper focuses on the projects undertaken at the WWR-K research reactor at the Institute of Nuclear Physics in Alatau, Kazakhstan and the WWR-SM research reactor at the Institute of Nuclear Physics in Ulugbek, Uzbekistan. These projects demonstrate the success and cost effectiveness of the IRRSEP program

  13. The experiences of research reactor accident to safety improvement

    International Nuclear Information System (INIS)

    Wiranto, S.

    1999-01-01

    The safety of reactor operation is the main factor in order that the nuclear technology development program can be held according the expected target. Several experience with research reactor incidents must be learned and understood by the nuclear program personnel, especially for operators and supervisors of RSG-GA. Siwabessy. From the incident experience of research reactor in the world, which mentioned in the book 'Experience with research reactor incidents' by IAEA, 1995, was concluded that the main cause of research reactor accidents is understandless about the safety culture by the nuclear installation personnel. With learn, understand and compare between this experiences and the condition of RSG GA Siwabessy is expended the operators and supervisors more attention about the safety culture, so that RSG GA Siwabessy can be operated successfull, safely according the expected target

  14. Overview of fusion reactor safety

    International Nuclear Information System (INIS)

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Present trends in magnetic fusion research and development indicate the promise of commercialization of one of a limited number of inexhaustible energy options early in the next century. Operation of the large-scale fusion experiments, such as the Joint European Torus (JET) and Takamak Fusion Test Reactor (TFTR) now under construction, are expected to achieve the scientific break even point. Early design concepts of power producing reactors have provided problem definition, whereas the latest concepts, such as STARFIRE, provide a desirable set of answers for commercialization. Safety and environmental concerns have been considered early in the development of magnetic fusion reactor concepts and recognition of proplem areas, coupled with a program to solve these problems, is expected to provide the basis for safe and environmentally acceptable commercial reactors. First generation reactors addressed in this paper are expected to burn deuterium and tritium fuel because of the relatively high reaction rates at lower temperatures compared to advanced fuels such as deuterium-deuterium. This paper presents an overwiew of the safety and environmental problems presently perceived, together with some of the programs and techniques planned and/or underway to solve these problems. A preliminary risk assessment of fusion technology relative to other energy technologies is made. Improvements based on material selection are discussed. Tritium and neutron activation products representing potential radiological hazards in fusion reactor are discussed, and energy sources that can lead to the release of radioactivity from fusion reactors under accident conditions are examined. The handling and disposal of radioactive waste are discussed; the status of biological effects of magnetic fields are referenced; and release mechanisms for tritium and activation products, including analytical methods, are presented. (orig./GG)

  15. The PEC reactor. Safety analysis: Detailed reports

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In the safety-analysis of the PEC Brasimone reactor (Italy), attention was focused on the role of plant-incident analysis during the design stage and the conclusions reached. The analysis regarded the following: thermohydraulic incidents at full power; incidents with the reactor shut down; reactivity incidents; core local faults; analysis of fuel-handling incidents; engineered safeguards and passive safety features; coolant leakage and sodium fires; research and development studies on the seismic behaviour of the PEC fast reactor; generalized sodium fire; severe accidents, accident sequences with shudown; reference accident. Both the theoretical and experimental analyses demonstrated the adequacy of the design of the PEC fast reactor, aimed at minimizing the consequences of a hypothetical disruptive core accident with mechanical energy release. It was shown that the containment barriers were sized correctly and that the residual heat from a disassembled core would be removed. The re-evaluation of the source term emphasized the conservative nature of the hypotheses assumed in the preliminary safety analysis for calculating the risk to the public.

  16. MAPLE research reactor safety uncertainty assessment methodology

    International Nuclear Information System (INIS)

    Sills, H.E.; Duffey, R.B.; Andres, T.H.

    1999-01-01

    The MAPLE (multipurpose Applied Physics Lattice Experiment) reactor is a low pressure, low temperature, open-tank-in pool type research reactor that operates at a power level of 5 to 35 MW. MAPLE is designed for ease of operation, maintenance, and to meet today's most demanding requirements for safety and licensing. The emphasis is on the use of passive safety systems and environmentally qualified components. Key safety features include two independent and diverse shutdown systems, two parallel and independent cooling loops, fail safe operation, and a building design that incorporates the concepts of primary containment supported by secondary confinement

  17. Physics and safety of advanced research reactors

    International Nuclear Information System (INIS)

    Boening, K.; Hardt, P. von der

    1987-01-01

    Advanced research reactor concepts are presently being developed in order to meet the neutron-based research needs of the nineties. Among these research reactors, which are characterized by an average power density of 1-10 MW per liter, highest priority is now generally given to the 'beam tube reactors'. These provide very high values of the thermal neutron flux (10 14 -10 16 cm -2 s -1 ) in a large volume outside of the reactor core, which can be used for sample irradiations and, in particular, for neutron scattering experiments. The paper first discusses the 'inverse flux trap concept' and the main physical aspects of the design and optimization of beam tube reactors. After that two examples of advanced research reactor projects are described which may be considered as two opposite extremes with respect to the physical optimization principle just mentioned. The present situation concerning cross section libraries and neutronic computer codes is more or less satisfactory. The safety analyses of advanced research reactors can largely be updated from those of current new designs, partially taking advantage of the immense volume of work done for power reactors. The paper indicates a few areas where generic problems for advanced research reactor safety are to be solved. (orig.)

  18. Proceedings of the specialist meeting on the safety of water reactors fuel elements

    International Nuclear Information System (INIS)

    1973-01-01

    This specialist meeting on the safety of water reactors fuel elements was held in Saclay (France) in October 1973, and was organized by CSNI and CEA. It attracted specialists from 14 countries. Session I was devoted to normal operating conditions (coolant-cladding and fuel-cladding interactions, fission product release, effects of cladding deformation on fuel element performances and reactor operating limits); Session II was devoted to operating reactor accidents and failures, anomalous transients and handling accidents; Session III was devoted to modifications to be applied to fuel elements in order to enhance their safety and reliability; Session IV was devoted to Loss-of-Coolant Accidents (LOCA)(cladding behaviour during the accident, assembly behaviour during the accident, criteria to be considered for the study of fuel element behaviour during a LOCA)

  19. Characterization of spent EBR-II driver fuel

    International Nuclear Information System (INIS)

    McKnight, R. D.

    1998-01-01

    Operations and material control and accountancy requirements for the Fuel Conditioning Facility demand accurate prediction of the mass flow of spent EBR-II driver fuel into the facility. This requires validated calculational tools that can predict the burnup and isotopic distribution in irradiated Zr-alloy fueled driver assemblies. Detailed core-follow depletion calculations have been performed for an extensive series of EBR-II runs to produce a database of material inventories for the spent fuel to be processed. As this fuel is processed, comparison of calculated values with measured data obtained from samples of this fuel is producing a growing set of validation data. A more extensive set of samples and measurements from the initial processing of irradiated driver fuel has produced valuable estimates of the biases and uncertainties in both the measured and calculated values. Results of these comparisons are presented herein and indicate the calculated values adequately predict the mass flows

  20. Proposed pyrometallurgical process for rapid recycle of discharged fuel materials from the integral fast reactor

    International Nuclear Information System (INIS)

    Burris, L.; Steindler, M.; Miller, W.

    1984-01-01

    The pool-type Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory includes on-site recycle of discharged core and blanket fuel materials. The process and fabrication steps will be demonstrated in the EBR-II Fuel Cycle Facility with IFR fuel irradiated in EBR-II and the Fast Flux Test Facility. The proposed process consists of two major steps: a halide slagging step and an electrorefining step. The fuel is maintained in the metallic form to yield directly a metal product sufficiently decontaminated to allow recycle to the reactor as new fuel. The process is further described and available information to support its feasibility is presented

  1. Nuclear Reactor RA Safety Report, Vol. 8, Auxiliary system; Izvestaj o sigurnosti nuklearnog reaktora RA, Knjiga 8, Pomocni sistemi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-11-01

    This volume describes RA reactor auxiliary systems, as follows: special ventilation system, special drainage system, hot cells, systems for internal transport. Ventilation system is considered as part of the reactor safety and protection system. Its role is eliminate possible radioactive particles dispersion in the environment. Special drainage system includes pipes and reservoirs with the safety role, meaning absorption or storage of possible radioactive waste water from the reactor building. Hot cells existing in the RA reactor building are designed for production of sealed radioactive sources, including packaging and transport. [Serbo-Croat] Ova knjiga obuhvata opis pomocnih sistem reaktora RA: sistem specijalne ventilacije, sistem specijalne kanalizacije, vruce komore, sistemi za unutrasnji transport. Ventilacioni sistem je znacajan deo sistema zastite i sigurnosti reaktora. Njegova je uloga da onemoguci disperziju radioaktivnih cestica u okolinu. Sistem specijalne kanalizacije sastoji se od agregata, cevovoda i rezervoara sa sigurnosnom armaturom i ima zadatak da prihvata i u sebe deponuje radioaktivne otpadne vode iz objekarta reaktora RA. U zgradi reaktora RA postoje vruce komore koje su namenjene za proizvodnju zatvorenih izvora zracenje, ukljucujuci i mehanicku obradu, prepakivanje i transport.

  2. Safety Design Criteria of Indian Sodium Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Pillai, P.; Chellapandi, P.; Chetal, S.C.; Vasudeva Rao, P.R.

    2013-01-01

    • Important feedback has been gained through the design and safety review of PFBR. • The safety criteria document prepared by AERB and IGCAR would provide important input to prepare the dedicated document for the Sodium cooled Fast Reactors at the national and international level. • A common approach with regard to safety, among countries pursuing fast reactor program, is desirable. • Sharing knowledge and experimental facilities on collaborative basis. • Evolution of strong safety criteria – fundamental to assure safety

  3. Reactor core and passive safety systems descriptions of a next generation pressure tube reactor - mechanical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M.; Gaudet, M.; Rhodes, D.; Hamilton, H.; Pencer, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Canada has been developing a channel-type supercritical water-cooled nuclear reactor concept, often called the Canadian SCWR. The objective of this reactor concept is to meet the technology goals of the Generation IV International Forum (GIF) for the next generation nuclear reactor development, which include enhanced safety features (inherent safe operation and deploying passive safety features), improved resource utilization, sustainable fuel cycle, and greater proliferation resistance than Generation III nuclear reactors. The Canadian SCWR core concept consists of a high-pressure inlet plenum, a separate low-pressure heavy water moderator contained in a calandria vessel, and 336 pressure tubes surrounded by the moderator. The reactor uses supercritical water as a coolant, and a direct steam power cycle to generate electricity. The reactor concept incorporates advanced safety features such as passive core cooling, long-term decay heat rejection to the environment and fuel melt prevention via passive moderator cooling. These features significantly reduce core damage frequency relative to existing nuclear reactors. This paper presents a description of the design concepts for the Canadian SCWR core, reactor building layout and the plant layout. Passive safety concepts are also described that address containment and core cooling following a loss-of coolant accident, as well as long term reactor heat removal at station blackout conditions. (author)

  4. Code on the safety of nuclear research reactors: Design

    International Nuclear Information System (INIS)

    1992-01-01

    The main objective of this publication is to provide a safety basis for the design of a research reactor and for the assessment of the design. Another objective is to cover certain aspects related to regulatory supervision, siting and quality assurance, as far as these are related to activities for the design of a research reactor. These objectives are expressed in terms of requirements and recommendations for the design of research reactors. Emphasis is placed on the safety requirements that shall be met rather than on ways in which they can be met. The requirements and recommendations may form the foundation necessary for a Member State to develop specific regulations and safety criteria for its research reactor programme.

  5. Integral fast reactor concept inherent safety features

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFT development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: 1) a liquid metal (sodium) coolant, 2) a pool-type reactor primary system configuration, 3) an advanced ternary alloy metallic fuel, and 4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS)

  6. Integral Fast Reactor concept inherent safety features

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: (1) a liquid metal (sodium) coolant, (2) a pool-type reactor primary system configuration, (3) an advanced ternary alloy metallic fuel, and (4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS)

  7. Multifrequency tests in the EBR-II reactor plant

    International Nuclear Information System (INIS)

    Feldman, E.E.; Mohr, D.; Gross, K.C.

    1989-01-01

    A series of eight multifrequency tests was conducted on the Experimental Breeder Reactor II. In half of the tests a control rod was oscillated and in the other half the controller input voltage to the intermediate-loop-sodium pump was perturbed. In each test the input disturbance consisted of several superimposed single-frequency sinusoidal harmonics of the same fundamental. The tests are described along with the theoretical and practical aspects of their development and design. Samples of measured frequency responses are also provided for both the reactor and the power plant. 22 refs., 5 figs., 2 tabs

  8. The safety designs for the TITAN reversed-field pinch reactor study

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.T.; Creedon, R.L.; Hoot, C.G.; Schultz, K.R.; Grotz, S.P.; Blanchard, J.; Sharafat, S.; Najmabadi, F.

    1989-01-01

    TITAN is a study to investigate the potential of the reversed-field pinch concept as a compact, high-power density energy system. Two reactor concepts were developed, a self-cooled lithium design with vanadium structure and an aqueous solution loop-in-pool design, both operating at 18 MW/m 2 . The key safety features of the TITAN-I lithium-vanadium blanket design are in material selection, fusion power core configuration selection, lithium piping connections, and passive lithium drain tank system. Based on these safety features and results from accident evaluation, TITAN-I can at least be rated at a level 3 of safety assurance. For the TITAN-II aqueous loop-in-pool design, the key passive feature is the complete submersion of the fusion power core and the corresponding primary coolant loop system into a pool of low temperature water. Based on this key safety design feature, the TITAN-II design can be rated at a level 2 of safety assurance. (orig.)

  9. The safety designs for the TITAN reversed-field pinch reactor study

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.T.; Creedon, R.L.; Hoot, C.G.; Schultz, K.R.; Grotz, S.P.; Blanchard, J.P.; Sharafat, S.; Najmabadi, F.

    1988-01-01

    TITAN is a study to investigate the potential of the reversed-field pinch concept as a compact, high-power density energy system. Two reactor concepts were developed, a self-cooled lithium design with vanadium structure and an aqueous solution loop-in-pool design, both operating at 18 MW/m 2 . The key safety features of the TITAN-I lithium-vanadium blanket design are in material selection, fusion power core configuration selection, lithium piping connections and passive lithium drain tank system. Based on these safety features and results from accident evaluation, TITAN-I can at least be rated as level 3 of safety assurance. For the TITAN-II aqueous loop-in-pool design, the key passive feature is the complete submersion of the fusion power core and the corresponding primary coolant loop system into a pool of low temperature water. Based on this key safety design feature, the TITAN-II design can be rated as level 2 of safety assurance. 7 refs., 2 figs

  10. Development of a risk-based inservice inspection program for a liquid metal reactor

    International Nuclear Information System (INIS)

    King, R.W.; Buschman, H.W.

    1996-01-01

    The emerging application of risk-based assessment technology to the operation and maintenance of nuclear power plants holds considerable promise for improving efficiency and reducing operating costs. EBR-II is liquid-metal-cooled fast reactor which operated for thirty years before shutting down in September 1994 due to program termination. Prior to the shutdown of EBR-II, an in-service inspection (ISI) program was developed that exploited certain advantages of the liquid-metal reactor design, e.g., demonstrated passive response to plant upset events, low pressure primary coolant and compatibility of the coolant and reactor materials. Many of the systems cannot be inspected due to inaccessibility of the components. However, application of a risk-based approach provided the basis for reducing or eliminating inspections in some areas that would otherwise be required. Development and implementation of the risk-based ISI program was interrupted by the DOE-mandated shutdown of EBR-II, so the potential benefits of this approach in terms of reduced O and M costs have yet to be realized. Through the development of this program, however it is clear that there is potential for substantial cost-savings while improving the risk-profile of the facility through this approach

  11. ECORA - Evaluation of Computational Methods for Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Scheuerer, Martina

    2002-01-01

    There were three motivations behind the ECORA Project: - the shortcomings of 0-D system codes in the simulation of 3-D, local flow and heat transfer phenomena, - increased interest in the application of 3-D CFD software as supplement to system codes, - high safety requirements in the nuclear industry required consistent standards for the use and assessment of CFD software. The purpose of ECORA was therefore: - to establish performance criteria for the assessment of CFD software, - to establish Best Practice Guidelines for application and use of CFD software, with the following objectives: - assessment of CFD applications in reactor safety: flows in containment (PANDA experiments) and flows in primary system (UPTF experiments) - Best Practice Guidelines for reactor safety: starting point (ERCOFTAC Best Practice Guidelines), adaptation to CFD application for nuclear safety, extension to assessment of experimental data - recommendations for improvements of CFD software, - network of European 'Centres of Competence for CFD Applications in Reactor Safety'. Currently, there were twelve partners in the ECORA Project, representing nine European countries. The Project was scheduled to last until September 2004. Ms Scheuerer then described the work programme and project structure, the Best Practice Guidelines for CFD simulations, the procedures for quantifying errors, applications of Best Practice Guidelines, Best Practice Guidelines for experimental data, applications to primary system, UPTF and PANDA data. Her conclusions were the following: - the Project had led to the improvement of the quality of CFD calculations in reactor safety, through: the ECORA Best Practice Guidelines, the assessment of shortcomings and the improvement of mathematical models. - It had also led to higher acceptance of CFD in reactor safety. - The next step was the establishment of European 'Centres of Competence for CFD Applications in reactor Safety'

  12. UK experience of safety requirements for thermal reactor stations

    International Nuclear Information System (INIS)

    Matthews, R.R.; Dale, G.C.; Tweedy, J.N.

    1977-01-01

    The paper summarises the development of safety requirements since the first of the Generating Boards' Magnox reactors commenced operation in 1962 and includes A.G.R. safety together with the preparation of S.G.H.W.R. design safety criteria. It outlines the basic principles originally adopted and shows how safety assessment is a continuing process throughout the life of a reactor. Some description is given of the continuous effort over the years to obtain increased safety margins for existing and new reactors, taking into account the construction and operating experience, experimental information, and more sophisticated computer-aided design techniques which have become available. The main safeguards against risks arising from the Generating Boards' reactors are the achievement of high standards of design, construction and operation, in conjunction with comprehensive fault analyses to ensure that adequate protective equipment is provided. The most important analyses refer to faults which can lead to excessive fuel element temperatures arising from an increase in power or a reduction in cooling capacity. They include the possibility of unintended control rod withdrawal at power or at start-up, coolant flow failure, pressure circuit failure, loss of boiler feed water, and failure of electric power. The paper reviews the protective equipment, and the policy for reactor safety assessments which include application of maximum credible accident philosophy and later the limited use of reliability and probability methods. Some of the Generating Boards' reactors are now more than half way through their planned working lives and during this time safety protective equipment has occasionally been brought into operation, often for spurious reasons. The general performance, of safety equipment is reviewed particularly for incidents such as main turbo-alternator trip, circulator failure, fuel element failures and other similar events, and some problems which have given rise to

  13. Overview of fast reactor safety research and development in the USA

    International Nuclear Information System (INIS)

    Neuhold, R.J.; Avery, R.; Marchaterre, J.F.

    1986-01-01

    The liquid metal reactor (LMR) safety R and D program in the U.S. is presently focused on support of two modular innovative reactor concepts: PRISM - the General Electric Power Reactor Inherently Safe Module and SAFR - the Rockwell International Sodium Advanced Fast Reactor. These reactor plant concepts accommodate the use of either oxide fuel or the metal fuel which is under development in the Argonne National Laboratory (ANL) Integral Fast Reactor (IFR) program. Both concepts emphasize prevention of accidents through enhancement of inherent and passive safety characteristics. Enhancement of these characteristics is expected to be a major factor in establishing new and improved safety criteria and licensing arrangements with regulatory authorities for advanced reactors. Limited work is also continuing on the Large Scale Prototype Breeder (LSPB), a large pool plant design. Major elements of the current and restructured safety program are discussed. (author)

  14. Safety classification of systems, structures, and components for pool-type research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ryong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-08-15

    Structures, systems, and components (SSCs) important to safety of nuclear facilities shall be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions. Although SSC classification guidelines for nuclear power plants have been well established and applied, those for research reactors have been only recently established by the International Atomic Energy Agency (IAEA). Korea has operated a pool-type research reactor (the High Flux Advanced Neutron Application Reactor) and has recently exported another pool-type reactor (Jordan Research and Training Reactor), which is being built in Jordan. Korea also has a plan to build one more pool-type reactor, the Kijang Research Reactor, in Kijang, Busan. The safety classification of SSCs for pool-type research reactors is proposed in this paper based on the IAEA methodology. The proposal recommends that the SSCs of pool-type research reactors be categorized and classified on basis of their safety functions and safety significance. Because the SSCs in pool-type research reactors are not the pressure-retaining components, codes and standards for design of the SSCs following the safety classification can be selected in a graded approach.

  15. Nuclear Reactor RA Safety Report, Format and Contents

    International Nuclear Information System (INIS)

    1986-11-01

    This is a new complete version of the safety report of nuclear reactor RA is made according to the recommendations of the IAEA. Report includes all the relevant data needed for evaluation of safe operation of this nuclear facility. Each of seven volumes of this report cover separate topics as follows: (1) introduction; (2) Site characteristics; (3) description of the reactor building and installations; (4) description of the reactor; (5) description of the coolant system; (6) description of the regulation and safety instrumentation; (7) description of the power supply system; (8) description of the auxiliary systems; (9) radiation protection issues; (10) radioactive waste management (11) reactor operation; (12) accident analysis during previous operation; (13) analysis of possible accident causes; (14) safety analysis and preventive actions: (15) analysis of significant accidents; (16) analysis of maximum possible accident; (17) environmental impact analysis in case of accident [sr

  16. The approaches of safety design and safety evaluation at HTTR (High Temperature Engineering Test Reactor)

    International Nuclear Information System (INIS)

    Iigaki, Kazuhiko; Saikusa, Akio; Sawahata, Hiroaki; Shinozaki, Masayuki; Tochio, Daisuke; Honma, Fumitaka; Tachibana, Yukio; Iyoku, Tatsuo; Kawasaki, Kozo; Baba, Osamu

    2006-06-01

    Gas Cooled Reactor has long history of nuclear development, and High Temperature Gas Cooled Reactor (HTGR) has been expected that it can be supply high temperature energy to chemical industry and to power generation from the points of view of the safety, the efficiency, the environment and the economy. The HTGR design is tried to installed passive safety equipment. The current licensing review guideline was made for a Low Water Reactor (LWR) on safety evaluation therefore if it would be directly utilized in the HTGR it needs the special consideration for the HTGR. This paper describes that investigation result of the safety design and the safety evaluation traditions for the HTGR, comparison the safety design and safety evaluation feature for the HTGT with it's the LWR, and reflection for next HTGR based on HTTR operational experiment. (author)

  17. Safety research needs for Russian-designed reactors

    International Nuclear Information System (INIS)

    1998-01-01

    In June 1995, an OECD Support Group was set up to perform a broad study of the safety research needs of Russian-designed reactors. This Support Group was endorsed by the CSNI. The Support Group, which is composed of senior experts on safety research from several OECD countries and from Russia, prepared this Report. The Group reviewed the safety research performed to support Russian-designed reactors and set down its views on future needs. The review concentrates on the following main topics: Thermal-Hydraulics/Plant Transients for VVERs; Integrity of Equipment and Structures for VVERs; Severe Accidents for VVERs; Operational Safety Issues; Thermal-Hydraulics/Plant Transients for RBMKs; Integrity of Equipment and Structures for RBMKs; Severe Accidents for RBMKs. (K.A.)

  18. Proceedings of the international symposium on research reactor safety operations and modifications

    International Nuclear Information System (INIS)

    1990-03-01

    The International Symposium on Research Reactor Safety, Operations and Modifications was organized by the International Atomic Energy Agency in cooperation with Atomic Energy of Canada Limited-Research Company. The main objectives of this Symposium were: (1) to exchange information and to discuss current perspectives and concerns relating to all aspects to research reactor safety, operations, and modifications; and, (2) to present views and to discuss future initiatives and directions for research reactor design, operations, utilization, and safety. The symposium topics included: research reactor programmes and experience; research reactor design safety and analysis; research reactor modifications and decommissioning; research reactor licensing; and new research reactors. These topics were covered during eight oral sessions and three poster sessions. These Proceedings include the full text of the 93 papers presented. The subject of Symposium was quite wide-ranging in that it covered essentially all aspects of research reactor safety, operations, and modifications. This was considered to be appropriate and timely given the 326 research reactors currently in operation in some 56 countries; given the degree of their utilization which ranges from pure and applied research to radioisotopes production to basic training and manpower development; and given that many of these reactors are undergoing extensive modifications, core conversions, power upratings, and are becoming the subject of safety reassessment and regulatory reviews. Although the Symposium covered many topics, the majority of papers and discussions tended to focus mainly on research reactor safety. This was seen as a clear sign of the continuing recognition of the fundamental importance of identifying and addressing, particularly through international cooperation, issues and concerns associated with research reactor safety

  19. Reactor safety research in Sweden

    International Nuclear Information System (INIS)

    Pershagen, B.

    1980-02-01

    Objectives, means and results of Swedish light water reactor safety research during the 1970s are reviewed. The expenditure is about 40 Million Swkr per year excluding industry. Large efforts have been devoted to experimental studies of loss of coolant accidents. Large scale containment response tests for simulated pipe breaks were carried out at the Marviken facility. At Studsvik a method for testing fuel during fast power changes has been developed. Stress corrosion, crack growth and the effect of irradiation on the strength ductility of Zircaloy tube was studied. A method for determining the fracture toughness of pressure vessel steel was developed and it was shown that the fracture toughness was lower than earlier assumed. The release of fission products to reactor water was studied and so was the release, transport and removal of airborne radioactive matter for Swedish BWRs and PWRs. Test methods for iodine filter systems were developed. A system for continuous monitoring of radioactive noble gas stack release was developed for the Ringhals plant. Attention was drawn to the importance of the human factor for reactor safety. Probabilistic methods for risk analysis were applied to the Barsebaeck 2 and Forsmark 3 boiling water reactors. Procedures and working conditions for operator personnel were investigated. (GBn)

  20. Proposal for a technology-neutral safety approach for new reactor designs

    International Nuclear Information System (INIS)

    2007-09-01

    Many states are considering an expansion of their nuclear power generation programmes. Many of the technologies and concepts are new and innovative. The current design and licensing rules are applicable to mostly large water reactors and there are no accepted rules in place for design, safety assessment and licensing for new innovative nuclear power plants. This TECDOC proposes a (new) safety approach and a methodology to generate technology-neutral (i.e. independent of reactor technology) safety requirements and a 'safe design' for advanced and innovative reactors. The experience gained in decades of design and licensing, combined with the development of risk-based concepts, has provided insights that will form the basis for new safety rules and requirements. Many lessons learned acknowledge the importance of such concepts as safety goals and defence in depth and the benefits of integrating risk insights early in an iterative design process. A new safety approach will incorporate many of the new developments in these concepts. For example, the probabilistic elements of defence in depth will help define the cumulative provisions to compensate for uncertainty and incompleteness of our knowledge of accident initiation and progression. This TECDOC also identifies areas of work, which will require further definition, research and development and guidance on application. This publication is to be used as a guide to developing a new technology-neutral safety approach, and as a guide in the application of methodologies to define the safety requirements for an innovative reactor designs. The method proposes an integration of deterministic and probabilistic considerations with established principles and concepts such as safety goals and defence in depth. The TECDOC recommends that the structure of the new technology-neutral main pillars for the design and licensing of innovative nuclear reactors be developed following a top-down approach to reflect a newer risk-informed and

  1. Health physics aspects of processing EBR-I coolant

    International Nuclear Information System (INIS)

    Burke, L.L.; Thalgott, J.O.; Poston, J.W. Jr.

    1998-01-01

    The sodium-potassium reactor coolant removed from the Experimental Breeder Reactor Number One after a partial reactor core meltdown had been stored at the Idaho National Engineering and Environmental Laboratory for 40 years. The State of Idaho considered this waste the most hazardous waste stored in the state and required its processing. The reactor coolant was processed in three phases. The first phase converted the alkali metal into a liquid sodium-potassium hydroxide. The second phase converted this caustic to a liquid sodium-potassium carbonate. The third phase solidified the sodium-potassium carbonate into a form acceptable for land disposal. Health physics aspects and dose received during each phase of the processing are discussed

  2. Chernobyl and the safety of nuclear reactors in OECD countries

    International Nuclear Information System (INIS)

    1987-01-01

    This report assesses the possible bearing of the Chernobyl accident on the safety of nuclear reactors in OECD countries. It discusses analyses of the accident performed in several countries as well as improvements to the safety of RBMK reactors announced by the USSR. Several remaining questions are identified. The report compares RBMK safety features with those of commercial reactors in OECD countries and evaluates a number of issues raised by the Chernobyl accident

  3. Safety considerations in the fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Baker, A.R.; Burton, W.R.; Taylor, H.A.

    1977-01-01

    The fuel cycle safety problems for fast reactors, as compared with thermal reactors, are enhanced by the higher fissile content and heat rating of the fuel. Additionally recycling leads to the build up of substantial isotopes which contribute to the alpha and neutron hazards. The plutonium arisings in a nuclear power reactor programme extending into the next century are discussed. A requirement is to be able to return the product plutonium to a reactor about 9 months after the end of irradiation and it is anticipated that progress will be made slowly towards this fuel cycle, having regard to the necessity for maintaining safe and reliable operations. Consideration of the steps in the fuel cycle has indicated that it will be best to store the irradiated fuel on the reactor sites while I131 decays and decay heat falls before transporting and a suitable transport flask is being developed. Reprocessing development work is aimed at the key area of fuel breakdown, the inter-relation of the fuel characteristics on the dissolution of the plutonium and a solvent extract cycle leading to a product suitable for a co-located fabrication plant. Because of the high activity of recycled fuel it is considered that fabrication must move to a fully remote operation as is already the case for reprocessing, and a gel precipitation process producing a vibro compacted fuel is under development for this purpose. The waste streams from the processing plants must be minimised, processed for recovery of plutonium where applicable and then conditioned so that the final products released from the processing cycle are acceptable for ultimate disposal. The safety aspects reviewed cover protection of operators, containment of radioactive materials, criticality and regulation of discharges to the environment

  4. Reactor safety instrumentation of Paks NPP (experience and perspective)

    International Nuclear Information System (INIS)

    Elo, S.; Hamar, K.

    1993-01-01

    The majority of the existing control and protection systems in nuclear power plants use old analog technology and design philosophy. Maintenance and the procurement of spare parts is becoming increasingly difficult. In general there is an age degradation concern. Aging degradation in nuclear power plants must be effectively managed to avoid a loss of vital safety function, shutdown of the station, a reduced power generation, or any failure leading to expensive repair. Even with the best efforts in developing reliable and long life instrumentation and control systems for nuclear power plants it is expected that these systems for most plants will require replacements during the life of the plants. The instrumentation and control system of the nuclear power plants designed during the 70's and constructed in the 80's went out-of-date since nuclear safety is not a static concept and the digital computer technology has undergone rapid improvements during the 70's and 80's. Simultaneously the operation and the maintenance of the I ampersand C system of those plants described above becomes more and more difficult and expensive. In this context the pure quality of the former Soviet designed process instrumentation system increases the needs of upgrading this system. The author reviews the main design characteristics of the reactor safety instrumentation of the Paks NPP. Further he attempts to convey the perspective on upgrading the reactor safety instrumentation as seen by the HAEC and its Nuclear Safety Inspectorate

  5. Application of Code Of Conduct on the Safety of Research Reactor (RTP)

    International Nuclear Information System (INIS)

    Ligam, A.S.; Ahmad Nabil Abd Rahim; Zarina Masood

    2014-01-01

    The implementation and the practices of the effective safety system at research reactors are important to ensure that the worker, public and environment do not receive any abnormal causes. Many international safety related support agencies for research reactor such as International Atomic Energy Agency (IAEA) providing guidelines that can be applied to enhance and strengthen the enforcement of safety namely Code of Conduct on the Safety of Research Reactor (IAEA/CODEOC/RR/2006). The excellent safety management, reliability, and maintainability of RTP reactor structures, coupled with personnel numerous lessons and experiences learned, Reactor TRIGA PUSPATI research reactor providing Nuclear Malaysia personnel and visitor the very safe working and visiting environment. This paper will discuss the status, practices and improvement strategies over the past few years. (author)

  6. A proposed pyrometallurgical process for rapid recycle of discharged fuel materials from the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Burris, L.; Steindler, M.; Miller, W.

    1984-01-01

    The Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory includes on-site recycle of discharged core and blanket fuel materials. The process and fabrication steps will be demonstrated in the EBR-II Fuel Cycle Facility with IFR fuel irradiated in EBR-II and the Fast Flux Test Facility. The proposed process consists of two major steps -- a halide slagging step and an electrorefining step. The fuel is maintained in the metallic form to yield directly a metal product sufficiently decontaminated to allow recycle to the reactor as new fuel. The process is further described and available information to support its feasibility is presented

  7. Review of light water reactor safety through the Three Mile Island accident

    International Nuclear Information System (INIS)

    Phung, D.L.

    1984-05-01

    This review of light water reactor safety through the Three Mile Island accident has the purpose of establishing the baseline over which safety achievement post-TMI is assessed, and the need for new reactor designs and business direction is judged. Five major areas of reactor safety pre-TMI are examined: (1) safety philosophy and institutions, (2) reactor design criteria, (3) operational problems, (4) the Rasmussen reactor safety study, and (5) the TMI accident and repercussions. Although nuclear power has made spectacular achievements over the period pre-TMI and although TMI is technically a minor accident, this review concludes that there were basic flaws in the technology and in the manner safety philosophy was conceived and carried out. These flaws included (1) a reactor design that has high core power density, low heat capacity, and low system tolerance to upsets, (2) reactor deployment that had been expedited without extensive operational experience, (3) rules and regulations that had to play catch-up with commercial reactor development, (4) an industry that was fragmented, short-sighted, and tended to rely on the Nuclear Regulatory Commission for safety guidance, (5) information that was not effectively shared, and (6) attention that was inadequate to the human aspects of reactor operation and to public reaction to the specter of a reactor accident, major or minor

  8. The impact of WASH-1400 on reactor safety evaluation

    International Nuclear Information System (INIS)

    Tanguy, P.Y.

    1976-01-01

    Trends in reactor safety evaluation in France following the publication of WASH-1400 (the Rasmussen Report) are presented. What is called 'the meteorite case' is first schematically presented as follows: WASH-1400 shows nuclear risk equivalent to meteorite risk and reasonable corrections cannot make many orders of magnitude, consequently present safety rules are adequate. The very impact of WASH-1400 on safety approach is then discussed as for: assistance to deterministic safety analysis, introduction of probabilistic safety criteria, acceptable level of risk, and the use of results in research and reactor operating experience

  9. Considerations on nuclear reactor passive safety systems

    International Nuclear Information System (INIS)

    2016-01-01

    After having indicated some passive safety systems present in electronuclear reactors (control bars, safety injection system accumulators, reactor cooling after stoppage, hydrogen recombination systems), this report recalls the main characteristics of passive safety systems, and discusses the main issues associated with the assessment of new passive systems (notably to face a sustained loss of electric supply systems or of cold water source) and research axis to be developed in this respect. More precisely, the report comments the classification of safety passive systems as it is proposed by the IAEA, outlines and comments specific aspects of these systems regarding their operation and performance. The next part discusses the safety approach, the control of performance of safety passive systems, issues related to their reliability, and the expected contribution of R and D (for example: understanding of physical phenomena which have an influence of these systems, capacities of simulation of these phenomena, needs of experimentations to validate simulation codes)

  10. Safety of NPP with WWER-440 and WWER-1000 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Balabanov, E [Energoproekt, Sofia (Bulgaria); Gledachev, J; Angelov, D [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1996-12-31

    The WWER-440 and WWER-1000 reactors used at the Kozloduy NPP have been analyzed in terms of safety. There are currently 4 reactors WWER-440/230 and 2 reactors WWER-1000/320. The former do not comply completely with the modern safety requirements due to the regulations acted in the sixties when they have been designed. The main features of these reactors are: low power density in the core; three levels of reactor control and protection; six primary loops; horizontal steam generators; two turbines; large number of cross-unit connections. The low thermal density in the core, the low specific thermal loading in the rods and the large coolant inventory enhance the safety, while the major deficiencies are identified as follows: insufficient capabilities for emergency core cooling; low diversification and physical separation of the safety systems; old fashioned control systems; inadequate fire protection; lack of full containment. It is pointed out that several design and operation actions have been completed in the Kozloduy NPP in order to enhance their safety. The WWER-1000 units are 320 model and feature a high safety level, complying completely with OPB-82 regulations and with all current international safety standards. 3 refs., 7 figs., 1 tab.

  11. Safety of NPP with WWER-440 and WWER-1000 reactors

    International Nuclear Information System (INIS)

    Balabanov, E.; Gledachev, J.; Angelov, D.

    1995-01-01

    The WWER-440 and WWER-1000 reactors used at the Kozloduy NPP have been analyzed in terms of safety. There are currently 4 reactors WWER-440/230 and 2 reactors WWER-1000/320. The former do not comply completely with the modern safety requirements due to the regulations acted in the sixties when they have been designed. The main features of these reactors are: low power density in the core; three levels of reactor control and protection; six primary loops; horizontal steam generators; two turbines; large number of cross-unit connections. The low thermal density in the core, the low specific thermal loading in the rods and the large coolant inventory enhance the safety, while the major deficiencies are identified as follows: insufficient capabilities for emergency core cooling; low diversification and physical separation of the safety systems; old fashioned control systems; inadequate fire protection; lack of full containment. It is pointed out that several design and operation actions have been completed in the Kozloduy NPP in order to enhance their safety. The WWER-1000 units are 320 model and feature a high safety level, complying completely with OPB-82 regulations and with all current international safety standards. 3 refs., 7 figs., 1 tab

  12. Trends in fusion reactor safety research

    International Nuclear Information System (INIS)

    Herring, J.S.; Holland, D.F.; Piet, S.J.

    1991-01-01

    Fusion has the potential to be an attractive energy source. From the safety and environmental perspective, fusion must avoid concerns about catastrophic accidents and unsolvable waste disposal. In addition, fusion must achieve an acceptable level of risk from operational accidents that result in public exposure and economic loss. Finally, fusion reactors must control routine radioactive effluent, particularly tritium. Major progress in achieving this potential rests on development of low-activation materials or alternative fuels. The safety and performance of various material choices and fuels for commercial fusion reactors can be investigated relatively inexpensively through reactor design studies. These studies bring together experts in a wide range of backgrounds and force the group to either agree on a reactor design or identify areas for further study. Fusion reactors will be complex with distributed radioactive inventories. The next generation of experiments will be critical in demonstrating that acceptable levels of safe operation can be achieved. These machines will use materials which are available today and for which a large database exists (e.g. for 316 stainless steel). Researchers have developed a good understanding of the risks associated with operation of these devices. Specifically, consequences from coolant system failures, loss of vacuum events, tritium releases, and liquid metal reactions have been studied. Recent studies go beyond next step designs and investigate commercial reactor concerns including tritium release and liquid metal reactions. 18 refs

  13. Nuclear Reactor RA Safety Report, Vol. 8, Auxiliary system

    International Nuclear Information System (INIS)

    1986-11-01

    This volume describes RA reactor auxiliary systems, as follows: special ventilation system, special drainage system, hot cells, systems for internal transport. Ventilation system is considered as part of the reactor safety and protection system. Its role is eliminate possible radioactive particles dispersion in the environment. Special drainage system includes pipes and reservoirs with the safety role, meaning absorption or storage of possible radioactive waste water from the reactor building. Hot cells existing in the RA reactor building are designed for production of sealed radioactive sources, including packaging and transport [sr

  14. Comments on nuclear reactor safety in Ontario

    International Nuclear Information System (INIS)

    1987-08-01

    The Chalk River Technicians and Technologists Union representing 500 technical employees at the Chalk River Nuclear Laboratories of AECL submit comments on nuclear reactor safety to the Ontario Nuclear Safety Review. Issues identified by the Review Commissioner are addressed from the perspective of both a labour organization and experience in the nuclear R and D field. In general, Local 1568 believes Ontario's CANDU nuclear reactors are not only safe but also essential to the continued economic prosperity of the province

  15. Operational safety and reactor life improvements of Kyoto University Reactor

    International Nuclear Information System (INIS)

    Utsuro, M.; Fujita, Y.; Nishihara, H.

    1990-01-01

    Recent important experience in improving the operational safety and life of a reactor are described. The Kyoto University Reactor (KUR) is a 25-year-old 5 MW light water reactor provided with two thermal columns of graphite and heavy water as well as other kinds of experimental facilities. In the graphite thermal column, noticeable amounts of neutron irradiation effects had accumulated in the graphite blocks near the core. Before the possible release of the stored energy, all the graphite blocks in the column were successfully replaced with new blocks using the opportunity provided by the installation of a liquid deuterium cold neutron source in the column. At the same time, special seal mechanisms were provided for essential improvements to the problem of radioactive argon production in the column. In the heavy-water thermal column we have accomplished the successful repair of a slow leak of heavy water through a thin instrumentation tube failure. The repair work included the removal and reconstructions of the lead and graphite shielding layers and welding of the instrumentation tube under radiation fields. Several mechanical components in the reactor cooling system were also exchanged for new components with improved designs and materials. On-line data logging of almost all instrumentation signals is continuously performed with a high speed data analysis system to diagnose operational conditions of the reactor. Furthermore, through detailed investigations on critical components, operational safety during further extended reactor life will be supported by well scheduled maintenance programs

  16. Integral Inherently Safe Light Water Reactor (I2S-LWR)

    International Nuclear Information System (INIS)

    Petrovic, Bojan; Memmott, Matthew; Boy, Guy; Charit, Indrajit; Manera, Annalisa; Downar, Thomas; Lee, John; Muldrow, Lycurgus; Upadhyaya, Belle; Hines, Wesley; Haghighat, Alierza

    2017-01-01

    This final report summarizes results of the multi-year effort performed during the period 2/2013- 12/2016 under the DOE NEUP IRP Project ''Integral Inherently Safe Light Water Reactors (I 2 S-LWR)''. The goal of the project was to develop a concept of a 1 GWe PWR with integral configuration and inherent safety features, at the same time accounting for lessons learned from the Fukushima accident, and keeping in mind the economic viability of the new concept. Essentially (see Figure 1-1) the project aimed to implement attractive safety features, typically found only in SMRs, to a larger power (1 GWe) reactor, to address the preference of some utilities in the US power market for unit power level on the order of 1 GWe.

  17. Aspects of nuclear reactor safety

    International Nuclear Information System (INIS)

    Hardt, P. von der; Rottger, H.

    1980-01-01

    The Colloquium on 'Irradiation Tests for Reactor Safety Programmes' has been organised by JRC Petten in order to determine the present state of technology in the field. The role of research and test reactors for studies of structural material and fuel elements under transient and off-normal conditions was to be explained. The Colloquium has been attended by 110 participants from outside and inside Europe. 27 papers were presented covering the major ongoing projects in Japan, the United States, and in Europe, and elaborating in particular: - design rationale and layout of safety irradiation experiments; - design, manufacture, and performance of irradiation equipment with particular attention to generation and control of transient conditions, fast response in-pile instrumentation and its out-of-pile data retrieval; - post-irradiation evaluation; - results and analytical support

  18. High-temperature gas-cooled reactor safety-reliability program plan

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The purpose of this document is to present a safety plan as part of an overall program plan for the design and development of the High Temperature Gas-Cooled Reactor (HTGR). This plan is intended to establish a logical framework for identifying the technology necessary to demonstrate that the requisite degree of public risk safety can be achieved economically. This plan provides a coherent system safety approach together with goals and success criterion as part of a unifying strategy for licensing a lead reactor plant in the near term. It is intended to provide guidance to program participants involved in producing a technology base for the HTGR that is fully responsive to safety consideration in the design, evaluation, licensing, public acceptance, and economic optimization of reactor systems.

  19. On application of CFD codes to problems of nuclear reactor safety

    International Nuclear Information System (INIS)

    Muehlbauer, Petr

    2005-01-01

    The 'Exploratory Meeting of Experts to Define an Action Plan on the Application of Computational Fluid Dynamics (CFD) Codes to Nuclear Reactor Safety Problems' held in May 2002 at Aix-en-Province, France, recommended formation of writing groups to report the need of guidelines for use and assessment of CFD in single-phase nuclear reactor safety problems, and on recommended extensions to CFD codes to meet the needs of two-phase problems in nuclear reactor safety. This recommendations was supported also by Working Group on the Analysis and Management of Accidents and led to formation oaf three Writing Groups. The first writing Group prepared a summary of existing best practice guidelines for single phase CFD analysis and made a recommendation on the need for nuclear reactor safety specific guidelines. The second Writing Group selected those nuclear reactor safety applications for which understanding requires or is significantly enhanced by single-phase CFD analysis, and proposed a methodology for establishing assesment matrices relevant to nuclear reactor safety applications. The third writing group performed a classification of nuclear reactor safety problems where extension of CFD to two-phase flow may bring real benefit, a classification of different modeling approaches, and specification and analysis of needs in terms of physical and numerical assessments. This presentation provides a review of these activities with the most important conclusions and recommendations (Authors)

  20. Considerations concerning the reliability of reactor safety equipment

    International Nuclear Information System (INIS)

    Furet, J.; Guyot, Ch.

    1967-01-01

    A review is made of the circumstances which favor a good collection of maintenance data at the C.E.A. The large amount of data to be treated has made necessary the use of a computer for analyzing automatically the results collected. Here, only particular aspects of the reliability from the point of view of the electronics used for nuclear reactor control will be dealt with: sale and unsafe failures; probability of survival (in the case of reactor safety); availability. The general diagrams of the safety assemblies which have been drawn up for two types of reactor (power reactor and low power experimental reactor) are given. Results are presented of reliability analysis which could be applied to the use of functional modular elements, developed industrially in France. Improvement of this reliability appears to be fairly limited by an increase in the redundancy; on the other hand it is shown how it may be very markedly improved by the use of automatic tests with different frequencies for detecting unsafe failures rates of measurements for the sub-assemblies and for the logic sub-assemblies. Finally examples are given to show the incidence of the complexity and of the use of different technologies in reactor safety equipment on the reliability. (authors) [fr