WorldWideScience

Sample records for reactor rapsodie etude

  1. The fast breeder reactor Rapsodie (1962); Le reacteur rapide surregenerateur rapsodie (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Vautrey, L.; Zaleski, C.P. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1962-07-01

    In this report, the authors describe the Rapsodie project, the French fast breeder reactor, as it stands at construction actual start-up. The paper provides informations about: the principal neutronic and thermal characteristics, the reactor and its cooling circuits, the main handling devices of radioactive or contaminated assemblies, the principles and means governing reactor operation, the purposes and locations of miscellaneous buildings. Rapsodie is expected to be critical by 1964. (authors) [French] Dans ce rapport, les auteurs font le point du projet RAPSODIE (reacteur francais surregenerateur a neutrons rapides), au moment du debut effectif de sa construction. On y trouvera decrits: les principales caracteristiques neutroniques et thermiques, le bloc pile et les circuits de refroidissement, les principaux moyens de manutention des ensembles actifs ou contamines, les principes et les moyens qui regissent la conduite du reacteur, les fonctions et l'implantation des divers batiments. La divergence de RAPSODIE est prevue pour 1964. (auteurs)

  2. Experimental study of the Rapsodie protections; Etude experimentale des protections de rapsodie

    Energy Technology Data Exchange (ETDEWEB)

    Chapelet, M.; Edeline, J.; Lhiaubet, G. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    This report gives details of the protection tests which have been carried out by the Protection Sub-Commission during the starting-up trials on the reactor Rapsodie. The main types of tests reported concern the flux measurements in the core, the reflectors, the sodium and the near biological protections, the radio-protection measurements in the premises, and the activation of the principal fluids. In the last part, the results obtained are analyzed and compared to the forecast calculations. (author) [French] Ce rapport rend compte des essais de protection qui ont ete effectues dans le cadre des essais de demarrage de RAPSODIE par la Sous Commission Protection. Les principaux types d'essais rapportes sont les mesures de flux dans le coeur, les reflecteurs, le sodium et les protections biologiques proches, les mesures de radioprotection dans les locaux, et l'activation des principaux fluides. Dans la derniere partie, les resultats obtenus sont analyses et compares aux calculs previsionnels. (auteur)

  3. Fast neutron breeder reactor Rapsodie - situation of physics, hydraulic, thermal and dynamics studies and studies of stability early in 1963; Pile rapide rapsodie - point des etudes neutroniques, hydrauliques, thermiques et dynamiques et des etudes de stabilite au debut de l'annee 1963

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-07-01

    Early in 1963, it was necessary to make a choice among the two fuels examined for Rapsodie: the UPuMo alloy with double cladding, Nb and stainless steel, and the UO{sub 2}-PuO{sub 2} mix oxide. This report presents the results of the studies effected with the two types of fuel. We reconsider at first the different models which have been studied and we give a detailed description of the alloy and oxide cores as they are envisaged early in 1963. We give then the most important physics performances of the two cores: neutron flux and spectrum, reactivity of the compensation find safety rods, neutrons balance, specific power, effective fraction of delayed neutrons, lifetime of the prompt neutrons, reactivity coefficient. We describe the hydraulic studies and experiments which have been done concerning the two cores. We discuss the criteria adopted as basis for the flow calculations. We give the results of pressure drop and sub-assembly lifting, force measurements, and vibration and pin flow distribution experiments. We discuss the constants utilized for the thermal calculations and we give the temperatures of sodium and alloy or oxide fuel, the temperature increases due to the hot points, and the limitation of the oxide fuel burn-up, originated by the pressure of the fission gases. We treat the hypotheses having been utilized for the dynamics calculations and we describe the different accidents which have been studied. We give the results of the calculations for every accident and each fuel, and we show fuel melting or sodium boiling can be avoided, even in case of the most pessimistic hypotheses, by modifying reactor characteristics (shim-rod reactivity or power of the reactor with only one cooling circuit). The reactor stability has been evaluated with the hypotheses utilized for the dynamics calculations, except of the Doppler coefficient which was intentionally increased. We show that the alloy and oxide cores are stable for every envisaged reactor power. (authors

  4. Experiments prior to construction of the Rapsodie reactor (1962); Experiences preliminaires a la construction de la pile rapsodie (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Vautrey, L.; Zaleski, C.P. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1962-07-01

    Before proceeding to the construction of the various reactor components described in the paper 'Fast Breeder Reactor Rapsodie', many experimental studies of a hydraulic, thermal and mechanical character have been carried out, or are under consideration, to test the validity of the principles adopted in the Preliminary Project. This paper deals with the most important of these: 1. Studies of coolant circuit components: sodium pumps (mechanical or electromagnetic), Na-NaK and NaK ir heat exchangers, measuring instruments (flow rates, temperatures), sodium purification circuits, etc. 2. Studies in cooling of fuel and fertile assemblies: a) study of the sodium cooling carried out by means of hydraulic mockups (scale of 1: 1 or over) reproducing the flow of the coolant fluid in the piping, upstream from and inside the fuel and fertile elements. b) study of the cooling by gas and by immersion in lead, employed during handling and storage operations. 3. Studies of special reactor devices: fusible rotating linkage, parts of the control rod mechanisms. 4. Study of the reactor block and coolant circuits as a whole. This study is to begin at the end of the year. The mock-up, now nearing completion, reproduces on a scale of 1: 1 the installation provided in the Preliminary Project and includes: the reactor block, to which is connected a high flow ate sodium circuit, permitting of long-term tests and thermal shocks, and also, a control rod testing circuit; complete installation of the 1 MW and 10 MW coolant circuits, the performances of which it will be possible to check under various operational conditions. 5. A safety study carried out on a 3: 10 scale mock p comprising the whole of the reactor block and shielding, with the object of limiting the effects of any accidental liberation of energy of an explosive character. (authors) [French] Avant d'entreprendre la realisation des divers elements du reacteur decrit dans le rapport 'Reacteur rapide

  5. Study of the seismic behaviour of the fast reactor cores; Etude du comportement sismique des coeurs de reacteurs a neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Cerqueira, E

    1998-12-31

    This work studies the seismic behaviour of fast neutrons reactor cores. It consists in analyzing the tests made on the models Rapsodie and Symphony by using the calculation code Castem 2000. Te difficulty is in the description of connections of the system and the effects of the fluid (calculation in water). The results for the programme Rapsodie are near the experimental results. For the programme Symphony, the calculations in air have allowed to represent the behaviour of fuel assemblies in a satisfying way. It is still to analyze the tests Symphony in water. (N.C.)

  6. The experimental and technological developments reactor; Le reacteur d'etudes et de developpements technologiques

    Energy Technology Data Exchange (ETDEWEB)

    Carbonnier, J.L. [CEA Cadarache, Dept. d' Etudes des Reacteurs (DEN/DER), 13 - Saint-Paul-lez-Durance (France)

    2003-07-01

    THis presentation concerns the REDT, gas coolant reactor for experimental and technological developments. The specifications and the research programs concerning this reactor are detailed;: materials, safety aspects, core physic, the corresponding fuel cycle, the reactor cycle and the program management. (A.L.B.)

  7. Final Report for LDRD Project on Rapid Problem Setup for Mesh-Based Simulation (Rapsodi)

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D L; Henshaw, W; Petersson, N A; Fast, P; Chand, K

    2003-02-07

    Under LLNL Exploratory Research LDRD funding, the Rapsodi project developed rapid setup technology for computational physics and engineering problems that require computational representations of complex geometry. Many simulation projects at LLNL involve the solution of partial differential equations in complex 3-D geometries. A significant bottleneck in carrying out these simulations arises in converting some specification of a geometry, such as a computer-aided design (CAD) drawing to a computationally appropriate 3-D mesh that can be used for simulation and analysis. Even using state-of-the-art mesh generation software, this problem setup step typically has required weeks or months, which is often much longer than required to carry out the computational simulation itself. The Rapsodi project built computational tools and designed algorithms that help to significantly reduce this setup time to less than a day for many realistic problems. The project targeted rapid setup technology for computational physics and engineering problems that use mixed-element unstructured meshes, overset meshes or Cartesian-embedded boundary (EB) meshes to represent complex geometry. It also built tools that aid in constructing computational representations of geometry for problems that do not require a mesh. While completely automatic mesh generation is extremely difficult, the amount of manual labor required can be significantly reduced. By developing novel, automated, component-based mesh construction procedures and automated CAD geometry repair and cleanup tools, Rapsodi has significantly reduced the amount of hand crafting required to generate geometry and meshes for scientific simulation codes.

  8. Experimental study of the hydrodynamic instabilities occurring in boiling-water reactors; Etude experimentale des instabilites hydrodynamiques survenant dans les reacteurs nucleaires a ebullition

    Energy Technology Data Exchange (ETDEWEB)

    Fabreca, S. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-10-01

    The subjects is an experimental out-of pile loop study of the hydrodynamic oscillations occurring in boiling-water reactors. The study was carried out at atmospheric pressure and at pressure of about 8 atmospheres, in channels heated electrically by a constant and uniform specified current. In the test at 8 atmospheres the channel was a round tube of approximately 6 mm interior diameter. At 1 atmosphere a ring-section channel was used, 10 * 20 mm in diameter, with an inner heating tube and an outer tube of pyrex. It was possible to operate with natural convection and also with forced convection with test-channel by-pass. The study consists of 3 parts: 1. Preliminary determination of the laws governing pressure-drop during boiling. 2. Determination of the fronts at which oscillation appears, within a wide range of the parameters involved. 3. A descriptive study of the oscillations and measurement of the periods. The report gives the oscillation fronts with natural and forced convection for various values of the singular pressure drop at the channel inlet and for various riser lengths. The results are presented in non-dimensional form, which is available, in first approximation, for all geometric scales and for all fluids. Besides the following points were observed: - the wall (nature and thickness) can be an important factor ; - oscillation can occur in a horizontal channel. (author) [French] II a ete effectue une etude experimentale, en boucle hors-pile, des oscillations hydrodynamiques survenant dans les reacteurs a ebullition. L'etude a ete effectuee a la pression atmospherique et a une pression voisine de 8 atmospheres dans des canaux chauffes electriquement a puissance imposee constante et uniforme. Dans les essais a 8 atmospheres le canal etait un tube circulaire de diametre interieur 6 mm environ. A 1 atmosphere le canal etait de section annulaire 10 * 20 mm avec un tube interieur chauffant et un tube exterieur en pyrex. Le fonctionnement etait possible

  9. Risk assessment and design of prevention structures for enhanced tsunami disaster resilience (RAPSODI) - Euro-Japan collaboration

    OpenAIRE

    Harbitz, Carl Bonnevie; Y Nakamura; Arikawa, T.; Baykal, C.; Dogan, G.G.; Frauenfelder, Regula; Glimsdal, Sylfest; Guler, H.G.; Issler, Dieter; Kaiser, Gunilla; Kânoǧlu, U.; Kisacik, D.; Kortenhaus, A.; Løvholt, Finn; Maruyama, Y

    2016-01-01

    The 2011 Tōhoku event showed the massive destruction potential of tsunamis. The Euro-Japan “Risk assessment and design of prevention structures for enhanced tsunami disaster resilience (RAPSODI)” project aimed at using data from the event to evaluate tsunami mitigation strategies and to validate a framework for a quantitative tsunami mortality risk analysis. Coastal structures and mitigation strategies against tsunamis in Europe and Japan are compared. Failure mechanisms of coastal protection...

  10. Preliminary studies leading to a conceptual design of a 1000 MWe fast neutron reactor; Etudes preliminaires conduisant a un concept de reacteur a neutrons rapides de 1000 MWe

    Energy Technology Data Exchange (ETDEWEB)

    Vendryes, G.; Zaleski, C.P. [Association Euratom-CEA Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    This report presents the results of studies which seemed important to undertake in connexion with the development of fast neutron reactors. - It points out the advantage of high internal breeding ratios ({approx}1, 1) which are necessary in order to get a small change in time both in power distribution and reactivity (less: than 0.005 {delta}k/k in 18 months). - It shows how to achieve this goal, when simultaneously power distribution flattening is obtained. These results in a higher mean specific power (which is an economic gain) and therefore in a smaller doubling time (about 10 years). - It attempts to find criteria concerning the specific power that should be used in future reactor designs -It presents a conceptional design of a 1000 MWe fast neutron reactor, for the realisation of which no technological impossibility appears. - It shows that the dynamic behaviour seems satisfactory despite a positive total isothermal sodium coefficient. - It tries to predict the development of fast reactors within the future total nuclear program. It does not appear that fissile materials supply problems should in France slow down the development of fast neutron reactors, which will be essentially tied up to its economical ability to produce cheap electric power. (authors) [French] Ce rapport presente les etudes qu'il nous a paru important d'aborder dans le cadre du developpement des reacteurs a neutrons rapides. - Il met en evidence l'interet des taux de regeneration internes eleves ({approx}1, 1) pour obtenir une bonne evolution dans le temps de la distribution de puissance et de la reactivite (moins de 0,005 {delta}k/k pour 18 mois). - Il montre la possibilite d'y parvenir tout en applatissant la distribution des fissions, ce qui se traduit par une puissance specifique moyenne plus elevee (gain economique), et donc un temps de doublement plus faible de l'ordte de 10 ans - Il tente de definir un optimum de la puissance specifique valable pour les

  11. Flica: a code for the thermodynamic study of a reactor or a test loop; Programme FLICA etude thermodynamique d'un reacteur ou d'une boucle d'essai

    Energy Technology Data Exchange (ETDEWEB)

    Fajeau, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    This code handles the thermal problems of water loops or reactor cores under the following conditions: High or low pressure, steady state or transient behavior, one or two phases - Three-dimensional thermodynamic study of the flow in cylindrical geometry - Unidimensional study of heat transfer in heating elements - Neutronic studies can be coupled and a schematic representation of the safety rod behavior is given. The number of cells described in a flow cross-section is presently less than 20. This code is the logical following of FLID and CACTUS of which it constitutes a synthesis. (author) [French] Ce code permet de traiter les problemes thermiques d'une boucle ou d'un coeur de reacteur a eau dans les conditions suivantes: - Haute ou basse pression, regime permanent ou transitoire, simple ou double phase - Etude thermodynamique de l'ecoulement a 3 dimensions dans une geometrie cylindrique - Etude unidimensionnelle du transfert de chaleur dans les masses chauffantes - Possibilite de couplage avec la neutronique (reacteur point) et d'une representation schematique des actions de securite. Ce code dans lequel le nombre de cellules decrites dans une section droite de l'ecoulement est actuellement limite a 20 est la suite logique des codes FLID et CACTUS dont il constitue la synthese. (auteur)

  12. Reactors

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1988-01-01

    This standard applies to the following types of reactors: shunt reactors, current-limiting reactors including neutral-earthing reactors, damping reactors, tuning (filter) reactors, earthing transformers (neutral couplers), arc-suppression reactors, smoothing reactors, with the exception of the following reactors: small reactors with a rating generally less than 2 kvar single-phase and 10 kvar three-phase, reactors for special purposes such as high-frequency line traps or reactors mounted on rolling stock.

  13. Report by the AERES on the unit: Reactor Study Department (DER) under the supervision of the establishments and bodies: Atomic Energy and Alternative Energies Commission (CEA); Rapport de l'AERES sur l'unite: Departement d'Etudes des Reacteurs (DER) sous tutelle des etablissements et organismes: CEA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-02-15

    This report is a kind of audit report on a research laboratory, the DER (Departement d'Etudes des Reacteurs, Reactor Study Department) whose activity if focused on four main themes: neutron transport simulation in reactor cores, thermal-hydraulic simulation of reactors, design and safety of innovative reactors, nuclear instrumentation for reactors. The authors discuss an assessment of the whole unit activities in terms of strengths and opportunities, aspects to be improved, risks and recommendations, productions and publications, scientific quality, influence and attractiveness (awards, recruitment capacity, capacity to obtain financing and to tender, participation to international programs), strategy and governance, and project. These same aspects are then discussed and commented for each theme

  14. Folds and Etudes

    Science.gov (United States)

    Bean, Robert

    2007-01-01

    In this article, the author talks about "Folds" and "Etudes" which are images derived from anonymous typing exercises that he found in a used copy of "Touch Typing Made Simple". "Etudes" refers to the musical tradition of studies for a solo instrument, which is a typewriter. Typing exercises are repetitive attempts to type words and phrases…

  15. Criticality studies; Etudes de criticite

    Energy Technology Data Exchange (ETDEWEB)

    Breton, D.; Lecorche, P.; Clouet d' Orval, Ch. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Criticality studies made at the Commissariat a l'Energie atomique deal on the one hand with experiments on plutonium and uranium solutions, on the other hand with theoretical work on the development and use of computation, methods for the resolution of problems concerning the nuclear safety of chemical and metallurgical plants. I - Since 1958 the experimental studies have dealt with homogeneous media constituted by a fissile salt dissolved in light water. Developed using the reactor Proserpine, the experiments have been carried on at Saclay on the Alecto assemblies where solutions of plutonium or of 90 p.100 - enriched uranium can be made critical. The results already obtained relate to critical masses of cylindrical tanks of diameters from 20 to 50 cm. reflected in several ways (water, concrete, etc. . ) at concentrations up to 100 g/liter. Physical measurements (spectra, reactor noises) and interaction measurements complete the results. Other experiments relating to plutonium solutions were begun in 1963, at the Valduc Center. They deal with the study of critical masses of annular vessels of external diameter 50 cm and internal diameter varying from 10 to 30 cm. These vessels can be water reflected internally, externally, or both. Two of these vessels have been studied in interaction for various geometries. Slabs of various thicknesses were also studied. II - The studies thus undertaken allowed the development of methods of computation which have been tested on several experiments. Particular use has been made of the possibilities of calculations based on transport theory and on Monte Carlo methods. All these theoretical studies are applied to the design and control of industrial plants from the point of view of safety. (authors) [French] Les etudes de criticite effectuees au CEA comportent d'une part des experiences sur des solutions de plutonium et d'uranium enrichi, d'autre part des travaux theoriques portant sur la mise au point et l

  16. Contributions to safety studies for new concepts of nuclear reactors; Contributions aux etudes de surete pour des filieres innovantes de reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Perdu, F

    2003-12-01

    The complete study of molten salt reactors, designed for a massive and durable nuclear energy production, must include neutronics, hydraulics and thermal effects. This coupled study, using the MCNP and Trio{sub U} codes, is undertaken in the case of the MSRE (molten salt reactor experiment) prototype. The obtained results fit very well the experiment. Their extrapolation suggests ways of improving the safety coefficients of power molten salt reactors. A second part is devoted to accelerator driven subcritical reactors, developed to incinerate radioactive waste.We propose a method to measure the prompt reactivity from the decay following a neutron pulse. It relies only on the distribution of times between generations, which is a characteristic of the reactor. This method is implemented on the results of the MUSE 4 experiment, and the obtained reactivity is accurate within 5%. (author)

  17. Improvements in gas supply systems for heavy-water moderated reactors; Etudes de perfectionnements aux systemes d'alimentation en gaz d'un reacteur modere a l'eau lourde

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, G.; Hassig, J.M.; Laurent, N.; Thomas, B. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    In a heavy-water moderated reactor cooled by pressurized gas, an important problem from the point of view, of the reactor block and its economics is the choice of the gas supply system. In the pressure tube solution, the whole of the reactor block structure is at a relatively low temperature, whereas the gas supply equipment is at that of the gas, which is much higher. These parts, through which passes the heat carrying fluid have to present as low a resistance as possible to it so as to avoid costly extra blowing power. Finally, they may only be placed in the reactor block after it has been built; the time required for putting them in position should therefore not be too long. The work reported here concerns the various problems arising in the case of each channel being supplied individually by a tube at the entry and the exit which is connected to a main circuit made up of large size collectors. This individual tubing is sufficiently flexible to absorb the differential expansion and the movement of its ends without stresses or prohibitive reactions being produced; the tubing is also of relatively short length so as to reduce the pressure head of the pressurized gas outside the channels; the small amount of space taken up by the tubing makes it possible to assemble it in a manner which is satisfactory from the point of view both of the time required and of the technical quality. (authors) [French] Dans un reacteur modere a l'eau lourde et refroidi au gaz sous pression, un probleme important du point de vue du trace du bloc pile et de son economie est le choix du systeme d'alimentation en gaz. Pour une solution a tubes de force, l'ensemble des structures du bloc reacteur est a temperature relativement faible, alors que les organes d'alimentation en gaz sont a celle, notablement plus elevee, du gaz. Ces organes, traverses par le debit du caloporteur, doivent lui opposer le minimum de resistance afin de ne pas necessiter un supplement onereux de

  18. Study of trans-uranian incineration in molten salt reactor; Etude de l'incineration des transuraniens en reacteur a sel fondu

    Energy Technology Data Exchange (ETDEWEB)

    Valade, M

    2000-10-27

    With the emergence of new options for nuclear power, molten salt reactors are envisaged for waste management. The aim of this thesis is to show how molten salt reactors can help to solve the transuranics issue. Their high versatility regarding to isotopic vector allows to accommodate large fractions of minor actinides as compared to solid fuel system. In this thesis, a neutronics study of molten salt reactors, MSR, has been conducted. For this purpose, two reference systems were considered, TIER1 and AMSTER. In the case of TIER1, an optimisation was made to reach an equilibrium. The analysis of both systems showed the main characteristics of MSR: their link to chemistry and on line reprocessing. In this work, several methods to drive the system to a state of equilibrium have been implemented and compared. During this process the isotopic composition and neutron spectrum, thus the nuclear reaction cross sections, vary tremendously. It is essential to take these evolutions into account in order to accurately estimate the equilibrium state. This has been accomplished inside the multi-recycling procedure we set with ERANOS. A dedicated calculation schema has been realized to simulate superthermal systems with this computation code. These results were checked through a benchmark against other computer codes. Then, with multi-recycling method, several molten salt systems have been compared in order to define the optimal reactor for transuranics incineration. Nevertheless, a final choice can not only be done using only neutronics characteristics since chemistry and thermal-hydraulics constraints are really important for MSR. Moreover, a complete safety study would be required. (author)

  19. Contribution to the study of thermal-hydraulic problems in nuclear reactors; Contribution a l`etude de problemes de thermohydraulique dans les reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, G

    1998-07-07

    In nuclear reactors, whatever the type considered, Pressurized Water Water Reactors (PWRs), Fast Breeder reactors (FBRs)..., thermal-hydraulics, the science of fluid mechanics and thermal behaviour, plays an essential role, both in nominal operating and accidental conditions. Fluid can either be the primary fluid (liquid or gas) or a very specific fluid called corium, which, in case of severe accident, could result from core and environning structure melting. The work reported here represents a 20-year contribution to thermal-hydraulic issues which could occur in FBRs and PWRs. Working on these two types of reactors, both in nominal and severe accident situations, has allowed me to compare the problems and to realize the importance of communication between research teams. The evolution in the complexity of studied problems, unavoidable in order to reduce costs and significantly improve safety, has led me from numerical modelling of single-phase flow turbulence to high temperature real melt experiments. The difficulties encountered in understanding the observed phenomena and in increasing experimental databases for computer code qualification have often entailed my participation in specific measurement device developments or adaptations, in particular non-intrusive devices generally based on optical techniques. Being concerned about the end-use of this research work, I actively participated in `in-situ` thermalhydraulic experiments in the FBRs: Phenix and Super-Phenix, of which I appreciated their undeniable scientific contribution. In my opinion, the thermal-hydraulic questions related to severe accidents are the most complex as they are at the cross-roads of several scientific specialities. Consequently, they require a multi-disciplinary approach and a continuous see-saw motion between experimentalists and modelling teams. After a brief description of the various problems encountered, the main ones are reported. Finally, the importance for research teams to

  20. Design of the fuel element 'snow-flake' in uranium oxide, canned with aluminium, for the experimental reactor EL 3 (1960); Etude d'un element combustible en oxyde d'uranium gaine d'aluminium, type ''cristal de neige'' pour la pile EL 3 (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Gauthron, M.; Guibert, B. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    This report sums up the main studies have been carried out on the fuel element 'Snowflake' (uranium oxide, canned with aluminium), designed to replace the present element of the experimental reactor EL3 in order to increase the reactivity without modifying the neutron flux/thermal power ratio. (author) [French] Ce rapport resume les principales etudes qui ont ete faites sur l'element combustible 'Cristal de Neige' (a oxyde d'uranium, gaine d'aluminium) destine a remnlacer l'element actuel du reacteur experimental EL3, afin d'en augmenter la reactivite sans modifier le rapport flux neutronique-puissance thermique. (auteur)

  1. Processing Th C{sub 2} - UC{sub 2} fuel extracted from high temperature reactors HTGCR; Etude du traitement des combustibles Th C{sub 2} - UC{sub 2} issus de reacteurs a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Derrien, C.; Lessart, P.; Pianezza, E.; Verry, C.; Villain, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The object of this investigation is solubilisation head-end (from crushing and grinding phase to non included first purification phase) of pulverulent ({sup 233}U/{sup 232}Th)C{sub 2} (200 - 500 microns diameter) contained in a graphite matrix extracted from a 4.10{sup 13} n.cm{sup -2}.s{sup -1} thermalized neutrons average flux with an irradiation of 80000 MWjT{sup -1} HTGCR reactor. After having succinctly described different bibliographic processes we have chosen the burn - leach of reactor fuel and graphite matrix containing it. The technology of burner is original in nuclear field and still more by utilizing ultra-sounds to intensify burning reaction and to minimize the weight of unburnables. The mixture of ThO{sub 2}, U{sub 3}O{sub 8}, and fission products oxides is solubilized by boiling HNO{sub 3} 13 M + HF 0.05 M. This process is profit-learning in a thorium recuperation and reprocessing point of view. In the contrary-case it would be interesting to consider a dry-process which would permit to separate solid ThF{sub 4} from gaseous UF{sub 6}. (authors) [French] Cette etude a pour objet le traitement initial de mise en solution ou 'head-end' (allant de la phase broyag-concassage a la phase de premiere purification exclue) d'un combustible ({sup 233}U/{sup 232}Th)C{sub 2} pulverulent (de 200 a 500 {mu} de diametre) contenu dans une matrice de graphite issu d'un reacteur HTGCR surgenerateur a neutrons thermiques de flux moyen 4. l0{sup 13} n.cm{sup -2}.s{sup -1} et taux d'irradiation 80000 MWjT{sup -1}. Apres exposition succincte des differents procedes bibliographiques decrits, nous avons finalement choisi le traitement par combustion-attaque ('Burn-Leach') du combustible et de la matrice etanche graphite qui le contient. La technologie du bruleur est originale dans le domaine nucleaire d'autant qu'elle utilise les ultra-sons pour ameliorer le rendement de la reaction de combustion et reduire au minimum le poids

  2. Detailed study of transmutation scenarios involving present day reactor technologies; Etude detaillee des scenarios de transmutation faisant appel aux technologies actuelles pour les reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document makes a detailed technical evaluation of three families of separation-transmutation scenarios for the management of radioactive wastes. These scenarios are based on 2 parks of reactors which recycle plutonium and minor actinides in an homogeneous way. A first scenario considers the multi-recycling of Pu and Np and the mono-recycling of Am and Cm using both PWRs and FBRs. A second scenario is based on PWRs only, while a third one considers FBRs only. The mixed PWR+FBR scenario requires innovative options and gathers more technical difficulties due to the americium and curium management in a minimum flux of materials. A particular attention has been given to the different steps of the fuel cycle (fuels and targets fabrication, burnup, spent fuel processing, targets management). The feasibility of scenarios of homogeneous actinides recycling in PWRs-only and in FBRs-only has been evaluated according to the results of the first scenario: fluxes of materials, spent fuel reprocessing by advanced separation, impact of the presence of actinides on PWRs and FBRs operation. The efficiency of the different scenarios on the abatement of wastes radio-toxicity is presented in conclusion. (J.S.)

  3. Reactor

    Science.gov (United States)

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  4. Shutdown channels and fitted interlocks in atomic reactors; Chaines de securite et verrouillages installes sur les piles atomiques

    Energy Technology Data Exchange (ETDEWEB)

    Furet, J.; Landauer, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    This catalogue consists of tables (one per reactor) giving the following information: number and type of detectors, range of the shutdown channels, nature of the associated electronics, thresholds setting off the alarms, fitted interlocks. These cards have been drawn up with a view to an examination of the reactors safety by the 'Reactor Safety Sub-Commission', they take into account the latest decisions. The reactors involved in this review are: Azur, Cabri, Castor-Pollux, Cesar-Marius-2, Edf-2, EL3, EL4, Eole, G1, G2-G3, Harmonie, Isis, Masurca, Melusine, Minerve, Osiris, Pegase, Peggy, PAT, Rapsodie, SENA, Siloe, Siloette, Triton-Nereide, and Ulysse. (authors) [French] Ce catalogue est compose d'un ensemble de tableaux (a raison de un tableau par pile) donnant les renseignements suivants: nombre et nature des detecteurs, dynamique des chaines, nature de l'electronique associee, seuils provoquant des actions de securite, verrouillages installes. Ces fiches ont ete etablies en vue de l'examen de la securite des piles par la 'Sous-Commission de Surete des Piles', et tiennent compte des decisions de celle-ci. Les reacteurs concernes sont: Azur, Cabri, Cator-Pollux, Cesar-Marius-2, Edf-2, EL3, EL4, Eole, G1, G2-G3, Harmonie, Isis, Masurca, Melusine, Minerve, Osiris, Pegase, Peggy, PAT, Rapsodie, SENA, Siloe, Siloette, Triton-Nereide, et Ulysse. (auteurs)

  5. Nuclear study of Melusine; Etude nucleaire de Melusine

    Energy Technology Data Exchange (ETDEWEB)

    Cherot, J. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In this report are reviewed - with respect to starting of experiments - the main nuclear characteristics of a 20 per cent enriched uranium lattice, with light water as moderator and reflector. The reactor is to operate at 1 MW. 1) Study of various critical masses. 2) Control. Effectiveness of cadmium. Control rods and of a stainless steel regulating rod. 3) Study of the effect on reactivity of disturbances in the core center. 4) Study of xenon and samarium poisoning. 5) Temperature factor. 6) Heat exchanges in a fuel element. (author) [French] On etudie, dans ce rapport, les principales proprietes nucleaires d'un reseau a uranium enrichi (20 pour cent), dont le moderateur et le reflecteur sont l'eau legere en vue des experiences de demarrage. Ce reacteur devra fonctionner a 1 MW. 1) Etude de diverses masses critiques. 2) Controle. Efficacite des barres de controle en cadmium et d'une barre de reglage en acier inoxydable. 3) Etude de l'effet sur la reactivite de perturbation au centre du coeur. 4) Etude de l'empoisonnement xenon et samarium. 5) Coefficient de temperature. 6) Echanges thermiques dans un element. (auteur)

  6. Reactive turbulent flow CFD study in supercritical water oxidation process: application to a stirred double shell reactor; Etude par simulation numerique des ecoulements turbulents reactifs dans les reacteurs d'oxydation hydrothermale: application a un reacteur agite double enveloppe

    Energy Technology Data Exchange (ETDEWEB)

    Moussiere, S

    2006-12-15

    Supercritical water oxidation is an innovative process to treat organic liquid waste which uses supercritical water properties to mix efficiency the oxidant and the organic compounds. The reactor is a stirred double shell reactor. In the step of adaptation to nuclear constraints, the computational fluid dynamic modeling is a good tool to know required temperature field in the reactor for safety analysis. Firstly, the CFD modeling of tubular reactor confirms the hypothesis of an incompressible fluid and the use of k-w turbulence model to represent the hydrodynamic. Moreover, the EDC model is as efficiency as the kinetic to compute the reaction rate in this reactor. Secondly, the study of turbulent flow in the double shell reactor confirms the use of 2D axisymmetric geometry instead of 3D geometry to compute heat transfer. Moreover, this study reports that water-air mixing is not in single phase. The reactive turbulent flow is well represented by EDC model after adaptation of initial conditions. The reaction rate in supercritical water oxidation reactor is mainly controlled by the mixing. (author)

  7. The SILENE reactor: an instrument suitable for studying the impact of intermediate and high radiation doses; Reacteur silene : outil adapte aux etudes appliquees a l'effet des moyennes et fortes doses

    Energy Technology Data Exchange (ETDEWEB)

    Verray, B.; Leo, Y.; Fouillaud, P. [Commissariat a l' Energie Atomique, CEA, Service de Recherches en Neutronique et Criticite, SNRC, Valduc, Is sur Tille (France)

    2002-07-01

    Designed in 1974 to study the phenomenology and consequences of a criticality accident, the SILENE experimental reactor, an intense source of mixed neutron and gamma radiation, is also suited to radiobiological studies. (author)

  8. Qualification of the Darwin code for the studies of the fuel cycle relative to the boiling water reactors; Qualification du formulaire Darwin pour les etudes du cycle du combustible pour les reacteurs a eau bouillante

    Energy Technology Data Exchange (ETDEWEB)

    Allais, V

    1998-03-01

    This thesis was carried out in the framework of fuel cycles studies in partnership with COGEMA; the aim is to determine physics parameters characterising Boiling Reactor Assemblies. Those reactors Firstly distinguish themselves from Pressurised Water Reactor by the boiling of the moderator in the core and secondary by the strong neutronics heterogeneity due to complex design. The diphasic mixture formed is characterised by the void fraction parameter. The loss of information, and neutronic studies characteristics of Boiling Water Reactors led us to make preliminary studies having in view to quantify the void fraction impact on the isotopics evolution. Studies on neutronics influence of assemblies and control rods from the immediate environment allows to define the cluster size to describe. The radial description optimisation with APOLLO-2 is necessary to improve the calculation performance and to reduce the errors coming from the modelization. The following points were studied: pellet radial discretization, clustering of cells characterized by a similar behaviour, options in flux spatial calculation (interface current formalism), self-shielding optimisation (specific to each isotopes). The three dimensional modelization with CRONOS-2 and the simplified accounting of the thermohydraulics / neutronics coupling done by a procedure developed and written during this thesis, allow an evaluation of axial distribution of void fraction, power and burn-up during the irradiation. The comparison with experimental analytic results of complete assembly and pin samples dissolutions allows the qualification of this procedure and confirms the necessity to take into account the void fraction axial variation during the evolution. The application of an automatic coupling with the DARWIN cycle code will allow a precise burnup calculation to be utilized in an industrial procedure. (author)

  9. Study of gas-solid contact in an ultra-rapid reactor for cumene catalytic cracking; Etude du contact gaz-solide dans un reacteur a co-courant descendant par la mise en oeuvre du craquage catalytique du cumene

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, J.

    1996-11-05

    Few studies have been carried out on the notion of gas-solid contact in ultra-rapid reactors. Both gas and solid move in the reactor and the contact can be directly estimated when using a chemical reaction such as cumene cracking. It`s a pure and light feedstock whose kinetics can be determined in a fixed bed. The study was carried out on a downflow ultra-rapid reactor (ID = 20 mm, length = 1 m) at the University of Western Ontario. It proved that the quench and the ultra-rapid separation of gas and solid must be carefully designed in the pilot plant. Cumene conversion dropped when reducing gas-solid contact, which led to push the temperature over 550 deg. C and increase the cat/oil ratio at 25 working at solid mass fluxes below 85 kg/m{sup 2}.s. Change of selectivity at very short residence time were also observed due to deactivation effects. Experiments made by Roques (1994) with phosphorescent pigments on the Residence Time Distribution of solids gave Hydrodynamic data on a cold flow copy of the pilot plant. Experiments made on packed bed gave kinetic data on the cracking of cumene. These data were combined to optimize a mono dimensional plug flow model for cumene cracking. (author)

  10. Study of water radiolysis in relation with the primary cooling circuit of pressurized water reactors; Etude sur la radiolyse de l`eau en relation avec le circuit primaire de refroidissement des reacteurs nucleaires a eau sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Pastina, B

    1997-07-01

    This memorandum shows a fundamental study on the water radiolysis in relation with the cooling primary circuit of PWR type reactors. The water of the primary circuit contains boric acid a soluble neutronic poison and also hydrogen that has for role to inhibit the water decomposition under radiation effect. In the aim to better understand the mechanism of dissolved hydrogen action and to evaluate the impact of several parameters on this mechanism, aqueous solutions with boric acid and hydrogen have been irradiated in a experimental nuclear reactor, at 30, 100 and 200 Celsius degrees. It has been found that, with hydrogen, the water decomposition under irradiation is a threshold phenomenon in function of the ratio between the radiation flux `1` B(n, )`7 Li and the gamma flux. When this ratio become too high, the number of radicals is not sufficient to participate at the chain reaction, and then water is decomposed in O{sub 2} and H{sub 2}O{sub 2} in a irreversible way. The temperature has a beneficial part on this mechanism. The iron ion and the copper ion favour the water decomposition. (N.C.). 83 refs.

  11. Turbulent precipitation of uranium oxalate in a vortex reactor - experimental study and modelling; Precipitation turbulente d'oxalate d'uranium en reacteur vortex - etude experimentale et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Sommer de Gelicourt, Y

    2004-03-15

    Industrial oxalic precipitation processed in an un-baffled magnetically stirred tank, the Vortex Reactor, has been studied with uranium simulating plutonium. Modelling precipitation requires a mixing model for the continuous liquid phase and the solution of population balance for the dispersed solid phase. Being chemical reaction influenced by the degree of mixing at molecular scale, that commercial CFD code does not resolve, a sub-grid scale model has been introduced: the finite mode probability density functions, and coupled with a model for the liquid energy spectrum. Evolution of the dispersed phase has been resolved by the quadrature method of moments, first used here with experimental nucleation and growth kinetics, and an aggregation kernel based on local shear rate. The promising abilities of this local approach, without any fitting constant, are strengthened by the similarity between experimental results and simulations. (author)

  12. Contribution of prototypic material tests on the Plinius platform to the study of nuclear reactor severe accident; Contribution des essais en materiaux prototypiques sur la plate-forme Plinius a l'etude des accidents graves de reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Ch

    2008-01-15

    The PLINIUS experimental platform at CEA Cadarache is dedicated to the experimental study of nuclear reactor severe accidents thanks to experiments between 2000 and 3500 K with prototypic corium. Corium is the mixture that would be formed by an hypothetical core melting and its mixing with structural materials. Prototypical corium has the same chemical composition as the corium corresponding to a given accident scenario but has a different isotopic composition (use of depleted uranium,...). Research programs and test series have been performed to study corium thermophysical properties, fission product behaviour, corium spreading, solidification and interaction with concrete as well as its coolability. It was the frame of research training of many students and was realized within national, European and international collaborations. (author)

  13. Heat transfer tests conducted on full-scale model, to investigate cooling conditions of EL.3 experimental reactor; Essais de transmission de chaleur sur maquette pour l'etude du refroidissement de la pile EL 3

    Energy Technology Data Exchange (ETDEWEB)

    Raievski, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Butzbach, M.; Domenjoud, M. [Alsthom, 75 - Paris (France); Bousquet, M. [Chantiers de l' Atlantique (France); Braudeau, M.; Milliat, M. [Electricite de France (EDF), 75 - Paris (France)

    1958-07-01

    For such high heat flux density as is released in the channels of EL3 reactor (2.10{sup 6} kcal/m{sup 2}h on the hottest point) cooling conditions have proved to be satisfactory, that is free from nucleate boiling. The arrangements provided for these tests and the technique used for measurements (of temperature particularly) are specified. Two fields have been investigated: in the former (forced convection without nucleate boiling) a good agreement is found with Colburn's formula. The influence of the ratio L/D is pointed out. The latter field is of forced convection with beginning of nucleate boiling; there the observed raise of the transfer coefficient has been shown occurring with some delay. (author)Fren. [French] A la valeur elevee prevue pour la densite de flux de chaleur (2.10{sup 6} kcal/m{sup 2}h au point le plus chaud) il est verifie que le refroidissement de la pile s'effectue normalement (sans ebullition de paroi). Les essais sont menes sur la maquette grandeur nature d'un canal d'EL3. Les dispositions relatives a la conduite des essais et a la technique des mesures (de temperature en particulier) sont precisees. Deux domaines sont etudies; pour t{sub p} < T{sub sat} (convection forcee sans ebullition de paroi) on constate un bon accord avec la formule de Colburn, avec toutefois l'influence du rapport L/D. Pour t{sub p} < T{sub sat} (debut d'ebullition) l'augmentation prevue du coefficient de transmission presente un certain retard. (auteur)

  14. Etude Sedimentologique et Esquisse Paleoenvironnementale des ...

    African Journals Online (AJOL)

    Etude Sedimentologique et Esquisse Paleoenvironnementale des ... Les analyses sédimentologiques réalisées dans ce travail, sont un prélude d'un projet d'études pluridisciplinaires ... (Crétacé inférieur) à l'océanisation complète (fin.

  15. Oklo: The fossil nuclear reactors. Physics study - Translation of chapters 6, 13 and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Naudet, R. [CEA, Paris (France)

    1996-09-01

    Three parts of the 1991 book `Oklo: reacteurs nucleaires fossiles. Etude physique` have been translated in this report. The chapters bear the titles `Study of criticality`(45 p.), `Some problems with the overall functioning of the reactor zones`(45 p.) and `Conclusions` (15 p.), respectively.

  16. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  17. Les Etudes De Langues Aux Pays-Bas

    NARCIS (Netherlands)

    Zwarts, F.

    1995-01-01

    Les Etudes de Langues dans l'Enseignement Superieur en Europe: Des Rapports Nationaux Préparés pour une Conference sur les Etudes de Langues en Europe et Cooperation dans le Domaine de l'Enseignement Superieur à l'Univerité de Stockholm.

  18. Electronuclear reactors - EDF - Orientations of generic studies to be performed for the safety re-examination of 1300 MWe reactors associated to their third decennial inspection; Reacteurs electronucleaires - EDF - Orientations des etudes generiques a mener pour le reexamen de surete des reacteurs de 1300 MWe associe a leur troisieme visite decennale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report expresses the ASN's opinion on the framework and objectives of the EDF program concerning the generic studies of the safety re-examination of the 1300 MWe reactors associated with their third decennial inspection. This comprises lessons from the Fukushima accident, the improvement of the 'internal explosion' referential by using a probabilistic study, the application of the seismic margin assessment approach as soon as possible, checking the absence of any 'cliff effect' for cooling functions, a deepened re-examination of hurricane frequencies in France. Other request by the ASN concern the verification of the pertinence of release authorizations, taking the TSN law into account, taking the AP1300 project into account, the expansion of the complementary domain, the project of reactor lifetime extension. Some technical requests are discussed in appendix

  19. The reactor Cabri; La pile cabri

    Energy Technology Data Exchange (ETDEWEB)

    Ailloud, J.; Millot, J.P. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    It has become necessary to construct in France a reactor which would permit the investigation of the conditions of functioning of future installations, the choice, the testing and the development of safety devices to be adopted. A water reactor of a type corresponding to the latest CEA constructions in the field of laboratory or university reactors was decided upon: it appeared important to be able to evaluate the risks entailed and to study the possibilities of increasing the power, always demanded by the users; on the other hand, it is particularly interesting to clarify the phenomena of power oscillation and the risks of burn out. The work programme for CABRI will be associated with the work carried out on the American Sperts of the same type, during its construction, very useful contacts were made with the American specialists who designed the se reactors. A brief description of the reactor is given in the communication as well as the work programme for the first years with respect to the objectives up to now envisaged. Rough description of the reactor. CABRI is an open core swimming-pool reactor without any lateral protection, housed in a reinforced building with controlled leakage, in the Centre d'Etudes Nucleaires de Cadarache. It lies alone in the middle of an area whose radius is 300 meters long. Control and measurements equipment stand out on the edge of that zone. It consumes MTR fuel elements. The control-safety rods are propelled by compressed air. The maximum flow rate of cooling circuit is 1500 m{sup 3}/h. Transient measurements are recorded in a RW330 unit. Aims and work programme. CABRI is meant for: - studies on the safety of water reactors - for the definition of the safety margins under working conditions: research of maximum power at which a swimming-pool reactor may operate with respect to a cooling accident, of local boiling effect on the nuclear behaviour of the reactor, performances of the control and safety instruments under

  20. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  1. Technical and harmonic analysis of Carl Czerny op. 299 number 34 etude

    Directory of Open Access Journals (Sweden)

    Mehmet Serkan Umuzdas

    2012-11-01

    Full Text Available In this study, the 34th etude of the book Czerny Op. 299 that is one of the commonly employed books in the piano training was analysed in terms of technique and harmony. The etude was examined in terms of its technical features and contributions to technical development. If an etude is analysed before it is played, time and effort can be amanged much more efficiently. In turn, it may contribute to play the etude or work in accordance with its objectives and to produce outcomes. The aims of this study are to make the students aware of the goals and methods of etudes and to provide them with the suggestions for studying. It is suggested that any etude written with the 2/4 rhythm pattern should be played very vividly and energytically. Any etude written in the octave width of 5.5 is made up of 43 scales in two section. The etude is composed of two sections, each with four sentences and two periods. It also involves 43 scales. Of them, 16 scales are in the first section and the remaining 27 scales are in the second section. The etude has very regular system in terms of harmonic continuity and motives. It has a homogenious pattern in terms of the order of the sentences with half-decsion and those with full-decision.

  2. PENULISAN ETUDE-ETUDE MUSIK TALEMPONG UNGGAN (Sebuah Usaha Pembelajaran Musik Tradisi Berbasis Literatur

    Directory of Open Access Journals (Sweden)

    Asri MK

    2014-12-01

    Full Text Available “Talempong unggan”, a traditional music from Minangkabau community particularly in Unggan, Sumpur Kudus, Sijunjung Regency, West Sumatera Indonesia is classified into genre of “talempong duduak” (rea. Due to its special musical concept and the playing technics, this traditional music is selected as a practising course in the Karawitan Department of Indonesian Institute of Art (ISI Padang Panjang since 1993 till now. In a system of class learning with many students, Talempong Unggan definitely needs supporting methods and learning technics suitable for the course where the students can reach their maximum skills. All the melody of “talempong unggan” that has been made as a material of practice is transcribed to the system of numeric notation and rhythm motive of “gendang” and “aguang” which is written into signs and special notation. All of qualitative data is formulated into finding methods, technics and etude of learning ensamble of Talempong Unggan the traditional music that learned in Karawitan Department of ISI Padang Panjang. Key words: Talempong Unggan, Methods, Technics, Etude

  3. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  4. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  5. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  6. Study of the uniform corrosion of an aluminium alloy used for the fuel cladding of the Jules Horowitz experimental reactor; Etude de la corrosion uniforme d'un alliage d'aluminium utilise comme gainage du combustible nucleaire du reacteur experimental Jules Horowitz

    Energy Technology Data Exchange (ETDEWEB)

    Wintergerst, M. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SEMI), 91 - Gif-sur-Yvette (France)

    2008-07-01

    For the Jules Horowitz new material testing reactor, an aluminium base alloy, AlFeNi, will be used for the cladding of the fuel plates. Taking into account the thermal properties of the alloy and of its oxide, the corrosion of the fuel cans presents many problems. The aim of this thesis is to provide a growing kinetic of the oxide layer at the surface of the AlFeNi fuel can in order to predict the life time of fuel element. Thus the mechanism of degradation of the cladding will be describe in order to integrate the different parameters of the operating reactor. (A.L.B.)

  7. Reactor Neutrinos

    OpenAIRE

    Soo-Bong Kim; Thierry Lasserre; Yifang Wang

    2013-01-01

    We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very ...

  8. BOILING REACTORS

    Science.gov (United States)

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  9. Membrane reactor. Membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Y.; Wakabayashi, K. (National Chemical Laboratory for Industry, Tsukuba (Japan))

    1990-08-05

    Many reaction examples were introduced of membrane reactor, to be on the point of forming a new region in the field of chemical technology. It is a reactor to exhibit excellent function, by its being installed with membrane therein, and is generally classified into catalyst function type and reaction promotion type. What firstly belongs to the former is stabilized zirconia, where oxygen, supplied to the cathodic side of membrane with voltage, impressed thereon, becomes O {sup 2 {minus}} to be diffused through the membrane and supplied, as variously activated oxygenous species, on the anodic side. Examples with many advantages can be given such as methane coupling, propylene oxidation, methanating reaction of carbon dioxide, etc. Apart, palladium film and naphion film also belong to the former. While examples of the latter comprise, among others, decomposition of hydrogen sulfide by porous glass film and dehydrogenation of cyclohexane or palladium alloy film, which are expected to be developed and materialized in the industry. 33 refs., 8 figs.

  10. Study of the properties of the Am-O system in view of the transmutation of Am 241 in fast reactors; Etude des proprietes du systeme Am-O en vue de la transmutation de l`americium 241 en reacteur a neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Casalta, S.

    1996-04-01

    To reduce the long term toxicity of Am 241 it was considered to transmute this isotope in fast reactor. The first part of this thesis is an introduction at this problem. In the second part we give the experimental techniques used for the realisation of an AmO{sub 2}-MgO target (powder metallurgy under inert, oxidizing or reducing atmosphere). The properties of the Am-O system has been analyzed by X diffraction, thermodynamic and ceramography, in the Am{sub 2}O{sub 3}-AmO{sub 2} field. In the third part we study the external exposure risk created by the manufacturing of this target and in the last part the behavior of this target in a fast reactor. 66 refs., 28 figs., 25 tabs., 1 append.

  11. Study of the ruthenium fission-product behavior in the containment, in the case of a nuclear reactor severe accident; Etude du comportement du produit de fission ruthenium dans l'enceinte de confinement d'un reacteur nucleaire, en cas d'accident grave

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Ch

    2007-03-15

    Ruthenium tetroxide is an extremely volatile and highly radio-toxic species. During a severe accident with air ingress in the reactor vessel, ruthenium oxides may reach the reactor containment building in significant quantities. Therefore, a better understanding of the RuO{sub 4}(g) behaviour in the containment atmosphere is of primary importance for the assessment of radiological consequences, in the case of potential releases of this species into the environment. A RuO{sub 4}(g) decomposition kinetic law was determined. Steam seems to play a catalytic role, as well as the presence of ruthenium dioxide deposits. The temperature is also a key parameter. The nature of the substrate, stainless steel or paint, did not exhibit any chemical affinities with RuO{sub 4}(g). This absence of reactivity was confirmed by XPS analyses, which indicate the presence of the same species in the Ru deposits surface layer whatever the substrates considered. It has been concluded that RuO{sub 4}(g) decomposition corresponds to a bulk gas phase decomposition. The ruthenium re-volatilization phenomenon under irradiation from Ru deposits was also highlighted. An oxidation kinetic law was determined. The increase of the temperature and the steam concentration promote significantly the oxidation reaction. The establishment of Ru behavioural laws allowed making a modelling of the Ru source term. The results of the reactor calculations indicate that the values obtained for {sup 106}Ru source term are closed to the reference value considered currently by the IRSN, for 900 MWe PWR safety analysis. (author)

  12. Contribution to the determination of the neutronic parameters uncertainties of a compact heterogeneous core: the material testing Jules Horowitz reactor; Contribution a l'etude des incertitudes des parametres neutroniques d'un coeur compact et heterogene: le reacteur d'irradiation Jules Horowitz

    Energy Technology Data Exchange (ETDEWEB)

    Di Salvo, J

    2002-07-01

    The design studies of the future Material Testing Reactor Jules Horowitz require the development of an adapted neutronic calculation route. To guarantee good accuracy and save time cost, some approximations with deterministic modelling (APOLLO2 / CRONOS2) are needed. As no relevant integral experiments are yet available to ensure the accuracy of the calculation, the results need to be validated by a rigorous methodical approach, which is based on comparison against numerical benchmarks (Monte Carlo TRIPOLI4 code). In order to complete the validation results, sensitivity coefficients of main neutronic parameters to nuclear data are very useful to get an estimate of the final uncertainty on the calculation. Unfortunately, most of covariance information is missing in the recent evaluated files such as JEF-2.2. To generate missing covariance matrices, a method based on the comparison of different independent evaluations is used in this study. Special attention is paid to the determination of sensitivity coefficients, using perturbation methods and direct calculations. This study points out the importance of the non-diagonal elements of the covariance matrices as well as the neutron capture cross section uncertainty of the 27Al in the thermal range. In complement to uncertainty studies, it will be still necessary to obtain integral experimental validation of the Jules Horowitz Reactor neutronic parameters calculations. (author)

  13. Multifunctional reactors

    NARCIS (Netherlands)

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much

  14. Evaluation of uncertainties of key neutron parameters of PWR-type reactors with slab fuel, application to neutronic conformity; Determination des incertitudes liees aux grandeurs neutroniques d'interet des reacteurs a eau pressurisee a plaques combustibles et application aux etudes de conformite

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, D

    2001-12-01

    The aim of this thesis was to evaluate uncertainties of key neutron parameters of slab reactors. Uncertainties sources have many origins, technologic origin for parameters of fabrication and physical origin for nuclear data. First, each contribution of uncertainties is calculated and finally, a factor of uncertainties is associated to key slab parameter like reactivity, isotherm reactivity coefficient, control rod efficiency, power form factor before irradiation and life-time. This factors of uncertainties were computed by Generalized Perturbations Theory in case of step 0 and by directs calculations in case of irradiation problems. One of neutronic conformity applications was about fabrication and nuclear data targets precision adjustments. Statistic (uncertainties) and deterministic (deviations) approaches were studied. Then, neutronics key slab parameters uncertainties were reduced and so nuclear performances were optimized. (author)

  15. Organic chemistry and radiochemistry: study of chemical interactions between iodine and paint of French nuclear reactor in a severe accident situation; Chimie organique et radiochimie. Etude des interactions chimiques iode-peinture dans un reacteur nucleaire (de type R.E.P.) en situation d'accident grave

    Energy Technology Data Exchange (ETDEWEB)

    Aujollet, Y. [Direction Generale de la Surete Nucleaire et de la Radioprotection, 75 - Paris (France)

    2005-01-01

    In Phebus (French in pile facility; PWR scale 1/5000) experiments, performed by the Institut de Radioprotection et de Surete Nucleaire, few quantities of organic iodides were registered after interaction between iodine and reactor containment paint. This study concerns all mechanisms of chemical reactions between iodine and the polymer of the paint in order to estimate the organic iodides released from the paint. At first, all the paint components had been identified. Several models of chemical sites of the polymer were synthesized and tested with iodine in different conditions of temperature and radiation. These experiments showed interactions between iodine and secondary or tertiary amines by charge transfer. In few cases, the complex of tertiary amines creates oxidation reactions. (author)

  16. Simulation of power excursions - Osiris reactor; Simulation des excursions de puissance - pile Osiris

    Energy Technology Data Exchange (ETDEWEB)

    Pascouet, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Following the experimental work accomplished in the U.S.A. on Borax 1 and SPERT 1 and the accident of SL 1, the 'Commissariat a l'Energie Atomique' started a research program about the safety of its own swimming Pool reactors, with regard to power excursions. The first research work led to the design of programmed explosive charges, adapted to the simulation of a power excursion. This report describes the application of these methods to the investigation of Osiris safety. (author) [French] A la suite des essais effectues aux U.S.A. sur BORAX 1 et SPERT 1 et de l'accident survenu a SL 1, le Commissariat a l'Energie Atomique a lance un programme d'etudes sur la surete de ses reacteurs piscines vis-a-vis des excursions de puissance. Les premieres etudes ont abouti A la mise au point de charges programmees capables de simuler une excursion de puissance. On trouvera dans le present rapport l'application de ces methodes a l'etude de la surete d'OSIRIS. (auteur)

  17. Reactor vessel

    OpenAIRE

    Makkee, M.; Kapteijn, F.; Moulijn, J.A

    1999-01-01

    A reactor vessel (1) comprises a reactor body (2) through which channels (3) are provided whose surface comprises longitudinal inwardly directed parts (4) and is provided with a catalyst (6), as well as buffer bodies (8, 12) connected to the channels (3) on both sides of the reactor body (2) and comprising connections for supplying (9, 10, 11) and discharging (13, 14, 15) via the channels (3) gases and/or liquids entering into a reaction with each other and substances formed upon this reactio...

  18. Chemical Reactors.

    Science.gov (United States)

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  19. Reactor Neutrinos

    Directory of Open Access Journals (Sweden)

    Soo-Bong Kim

    2013-01-01

    Full Text Available We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very recently the most precise determination of the neutrino mixing angle θ13. This paper provides an overview of the upcoming experiments and of the projects under development, including the determination of the neutrino mass hierarchy and the possible use of neutrinos for society, for nonproliferation of nuclear materials, and geophysics.

  20. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  1. Reactor Engineering

    Science.gov (United States)

    Lema, Juan M.; López, Carmen; Eibes, Gemma; Taboada-Puig, Roberto; Moreira, M. Teresa; Feijoo, Gumersindo

    In this chapter, the engineering aspects of processes catalyzed by peroxidases will be presented. In particular, a discussion of the existing technologies that utilize peroxidases for different purposes, such as the removal of recalcitrant compounds or the synthesis of polymers, is analyzed. In the first section, the essential variables controlling the process will be investigated, not only those that are common in any enzymatic system but also those specific to peroxidative reactions. Next, different reactor configurations and operational modes will be proposed, emphasizing their suitability and unsuitability for different systems. Finally, two specific reactors will be described in detail: enzymatic membrane reactors and biphasic reactors. These configurations are especially valuable for the treatment of xenobiotics with high and poor water solubility, respectively.

  2. Reactor Neutrinos

    OpenAIRE

    Lasserre, T.; Sobel, H.W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrin...

  3. Modelling the cracking of pressurised water reactor fuel pellets and its consequences on the mechanical behaviour of the fuel rod; Etude de l'impact de la fissuration des combustibles nucleaires oxyde sur le comportement normal et incidentel des crayons combustible

    Energy Technology Data Exchange (ETDEWEB)

    Helfer, Th

    2006-03-15

    This thesis aims to model the cracking of pressurised water reactor fuel pellets and its consequences on the mechanical behaviour of the fuel rod. Fuel cracking has two main consequences. It relieves the stress in the pellet, upon which the majority of the mechanical and physico-chemical phenomena are dependent. It also leads to pellet fragmentation. Taking fuel cracking into account is therefore necessary to adequately predict the mechanical loading of the cladding during the course of an irradiation. The local approach to fracture was chosen to describe fuel pellet cracking. Practical considerations brought us to favour a quasi-static description of fuel cracking by means of a local damage models. These models describe the appearance of cracks by a local loss of rigidity of the material. Such a description leads to numerical difficulties, such as mesh dependency of the results and abrupt changes in the equilibrium state of the mechanical structure during unstable crack propagations. A particular attention was paid to these difficulties because they condition the use of such models in engineering studies. This work was performed within the framework of the ALCYONE fuel performance package developed at CEA/DEC/SESC which relies on the PLEIADES software platform. ALCYONE provides users with various approaches for modelling nuclear fuel behaviour, which differ in terms of the type geometry considered for the fuel rod. A specific model was developed and implemented to describe fuel cracking for each of these approaches. The 2D axisymmetric fuel rod model is the most innovative and was particularly studied. We show that it is able to assess, thanks to an appropriate description of fuel cracking, the main geometrical changes of the fuel rod occurring under normal and off-normal operating conditions. (author)

  4. A numerical study on a lumped-parameter model and a CFD code coupling for the analysis of the loss of coolant accident in a reactor containment; Etude numerique 0D-multiD pour l'analyse de perte de refrigerant dans une enceinte de confinement d'un reacteur nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Y.J.

    2005-12-15

    In the case of PWR severe accident (Loss of Coolant Accident, LOCA), the inner containment ambient properties such as temperature, pressure and gas species concentrations due to the released steam condensation are the main factors that determine the risk. For this reason, their distributions should be known accurately, but the complexity of the geometry and the computational costs are strong limitations to conduct full three-dimensional numerical simulations. An alternative approach is presented in this thesis, namely, the coupling between a lumped-parameter model and a CFD. The coupling is based on the introduction of a 'heat transfer function' between both models and it is expected that large decreases in the CPU-costs may be achieved. First of all, wall condensation models, such as the Uchida or the Chilton-Colburn models which are implemented in the code CAST3M/TONUS, are investigated. They are examined through steady-state calculations by using the code TONUS-0D, based on lumped parameter models. The temperature and the pressure within the inner containment are compared with those reported in the archival literature. In order to build the 'heat transfer function', natural convection heat transfer is then studied by using the code CAST3M for a partitioned cavity which represents a simplified geometry of the reactor containment. At a first step, two-dimensional natural convection heat transfer without condensation is investigated only. Either the incompressible-Boussinesq fluid flow model or the asymptotic low Mach model are considered for solving the time dependent conservation equations. The SUPG finite element method and the implicit scheme are applied for the numerical discretization. The computed results are qualified by the second-order Richardson extrapolation method which allows obtaining the so-called 'Exact values', i.e. grid size independent values. The computations are also validated through non-partitioned cavity case

  5. Bioconversion reactor

    Science.gov (United States)

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  6. Analysis of Coolant Options for Advanced Metal Cooled Nuclear Reactors

    Science.gov (United States)

    2006-12-01

    1992) PFR UK 250 MWe - 14 Shut Down (1994) Rapsodie France 40 MWe - 40 Shut Down (1983) Phenix France 233 MWe - 22 In Operation BOR-60 Russia...107years.98 • Problems with radioactive waste management and coolant disposal during decommissioning .99 O th er • Lead is abundantly available in...is high due to Bi-210, half-life 3.6 106years.102 • Problems with radioactive waste management and coolant disposal during decommissioning . 103 O

  7. Fuel slugs considered for use in the high flux reactor EL3; Elements combustibles envisages pour la pile a haut flux EL 3

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J.A.; Caillat, R.; Gauthron, M.; Montagne, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    EL3 was designed essentially for the study, under irradiation conditions, of materials used in the construction of atomic reactors. The study schedule allocates considerable time and effort to new types of fuel slugs. The present report described the various types of slug being tested or scheduled for tests. After laboratory study, each slug is tested in an experimental cell in the pile. The best are retained and used to charge the reactor (the present charge is purely provisional to permit first criticality and power rise tests)ren. [French] La pile EL3 est essentiellement destinee a l'etude sous irradiation des materiaux utilises dans la construction des reacteurs atomiques. Dans ce programme, une tres large part est reservee a l'etude de nouveaux elements combustibles. Le present rapport decrit les differentes solutions de cartouches dont l'essai est envisage ou en cours. Apres etude en laboratoire, chacune de ces solutions est testee dans une cellule experimentale en pile. Les meilleures seront retenues pour constituer le chargement normal de la pile (le chargement actuel etant essentiellement une solution provisoire qui a permis la divergence de la pile et les premiers essais de montee en puissance). (auteur)

  8. Study of diluting and absorber materials to control reactivity during a postulated core melt down accident in Generation IV reactors; Etude des materiaux sacrificiels absorbants et diluants pour le controle de la reactivite dans le cas d'un accidnet hypothetique de fusion du coeur de reacteurs de quatrieme generation

    Energy Technology Data Exchange (ETDEWEB)

    Plevacova, K.

    2010-12-16

    In order to limit the consequences of a hypothetical core meltdown accident in Generation IV Sodium Fast Reactors, absorber materials in or near the core, such as boron carbide B{sub 4}C, and diluting materials in the core catcher will be used to prevent recriticality within the mixture of molten oxide fuel and molten structures called corium. The aim of the PhD thesis was to select materials of both types and to understand their behaviour during their interaction with corium, from chemical and thermodynamic point of view. Concerning B{sub 4}C, thermodynamic calculations and experiments agree with the formation of two immiscible phases at high temperature in the B{sub 4}C - UO{sub 2} system: one oxide and one boride. This separation of phases can reduce the efficiency of the neutrons absorption inside the molten fuel contained in the oxide phase. Moreover, a volatilization of a part of the boron element can occur. According to these results, the necessary quantity of B{sub 4}C to be introduced should be reconsidered for postulated severe accident sequence. Other solution could be the use of Eu{sub 2}O{sub 3} or HfO{sub 2} as absorber material. These oxides form a solid solution with the oxide fuel. Concerning the diluting materials, mixed oxides Al{sub 2}O{sub 3} - HfO{sub 2} and Al{sub 2}O{sub 3} - Eu{sub 2}O{sub 3} were preselected. These systems being completely unknown to date at high temperature in association with UO{sub 2}, first points on the corresponding ternary phase diagrams were researched. Contrary to Al{sub 2}O{sub 3} - Eu{sub 2}O{sub 3} - UO{sub 2} system, the Al{sub 2}O{sub 3} - HfO{sub 2} - UO{sub 2} mixture presents only one eutectic and thus only one solidification path which makes easier forecasting the behaviour of corium in the core catcher. (author) [French] Resume: Afin de limiter les consequences d'un accident grave avec la fusion du coeur dans un reacteur a neutrons rapides de generation IV refroidi au sodium, la recriticite doit

  9. Sonochemical Reactors.

    Science.gov (United States)

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation.

  10. Monte Carlo modelling of TRIGA research reactor

    Science.gov (United States)

    El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.

    2010-10-01

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  11. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  12. D and DR Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — The world's second full-scale nuclear reactor was the D Reactor at Hanford which was built in the early 1940's and went operational in December of 1944.D Reactor ran...

  13. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  14. Nuclear reactor neutron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  15. Reactor and method of operation

    Science.gov (United States)

    Wheeler, John A.

    1976-08-10

    A nuclear reactor having a flattened reactor activity curve across the reactor includes fuel extending over a lesser portion of the fuel channels in the central portion of the reactor than in the remainder of the reactor.

  16. The study of some thiazinic and indaminic dye syntheses induced by ionising radiation; Etude de quelques syntheses de colorants thianziniques et indaminiques amorcees par les rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Balestic, S. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-03-15

    With a view to finding some radiochemical reactions applicable on an industrial scale for evaluating the radioactive waste from nuclear reactors, a systematic study was made of the radiochemical synthesis of thiazinic dyes such as methylene blue and Lauths' violet, on which the first tests were carried out in 1954. The first part of the study concerned the identification and the dosage, during radiolysis, of dyes by means of their absorption spectra after separation from the reaction medium by adsorption chromatography or ion-exchange; other radiolysis products such as ammonium chloride and hydrogen peroxide were also identified. During a later stage by systematically varying the physico-chemical parameters it was possible to determine the most favourable conditions for radio-synthesis; the maximum radiochemical yields obtained had the following values: G (Lauths' violet) 1,65; G (Methylene blue) = 1,75. Furthermore, the study of the influence of variously substituted aminated products on the radiochemical yield showed the possibility of synthesising Bindsehedlers green and Wursters blue by radiochemical methods. Finally the discovery of a fundamental intermediate product, Wursters red, together with the kinetic study of the chemical synthesis of methylene blue made it possible to determine the main stages of the reaction mechanism and to decide which of these stages could be attributed to ionising radiations in the case of the radiochemical synthesis. (author) [French] Dans le but de trouver des reactions radiochimiques susceptibles d'une application industrielle pour valoriser les dechets radioactifs provenant des reacteurs nucleaires, il a ete entrepris une etude systematique de la synthese radiochimique des colorants thiazimiques tels que le Bleu de Methylene et le Violet de Lauth dont les premiers essais ont ete effectues par Loiseleur en 1954. La premiere partie de l'etude a porte sur l'identification et le dosage des colorants formes

  17. Gruusia loeb kokku venelaste jäetud pomme ja sõjaohvreid / Liisi Poll

    Index Scriptorium Estoniae

    Poll, Liisi, 1980-

    2008-01-01

    Vene vägede lahkumist ootavas Gruusias loetakse kokku sõjakaotusi, milleks on inimkaotused, katkenud kaubandus, purustatud infrastruktuur, mahajäetud lõhkekehad. Punase Risti hinnangust sõjapõgenike kohta. Vt. samas: Vene väed lahkuvad endiselt vaid teoreetiliselt

  18. Profil de l'etudiant du premier cycle des etudes medicales de Lome ...

    African Journals Online (AJOL)

    Profil de l'etudiant du premier cycle des etudes medicales de Lome et sa perception de l'enseignement de l'anatomie. ... Journal de la Recherche Scientifique de l'Universite de Lome ... aux différentes questions des paramètres étudiés.

  19. Synthesis of the IRSN report of general directions to be retained for an evolution of the referential of investigation of core cooling after leakage on the primary circuit of a pressurized water reactor; Synthese du rapport de l'IRSN sur les orientations a retenir en vue d'une evolution du referentiel d'etude du refroidissement du coeur suite a une fuite sur le circuit primaire d'un reacteur a eau sous pression

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    This document from the French Nuclear Safety and Radioprotection Institute (IRSN) describes the accident of loss of primary coolant in a pressurized water reactor, and its consequences with two possible damage modes (ductile and brittle). It describes the present requirement referential associated to this accident, and justifies the need to make this referential evolve. It discusses the main directions and topics to be examined again: scenarios, requirements and criteria, physical phenomena to be taken into account. For each of them, it comments the options proposed by EDF and gives the IRSN opinion on these options

  20. Etude aerodynamique d'un jet turbulent impactant une paroi concave

    Science.gov (United States)

    LeBlanc, Benoit

    Etant donne la demande croissante de temperatures elevees dans des chambres de combustion de systemes de propulsions en aerospatiale (turbomoteurs, moteur a reaction, etc.), l'interet dans le refroidissement par jets impactant s'est vu croitre. Le refroidissement des aubes de turbine permet une augmentation de temperature de combustion, ce qui se traduit en une augmentation de l'efficacite de combustion et donc une meilleure economie de carburant. Le transfert de chaleur dans les au bages est influence par les aspects aerodynamiques du refroidissement a jet, particulierement dans le cas d'ecoulements turbulents. Un manque de comprehension de l'aerodynamique a l'interieur de ces espaces confinees peut mener a des changements de transfert thermique qui sont inattendus, ce qui augmente le risque de fluage. Il est donc d'interet pour l'industrie aerospatiale et l'academie de poursuivre la recherche dans l'aerodynamique des jets turbulents impactant les parois courbes. Les jets impactant les surfaces courbes ont deja fait l'objet de nombreuses etudes. Par contre des conditions oscillatoires observees en laboratoire se sont averees difficiles a reproduire en numerique, puisque les structures d'ecoulements impactants des parois concaves sont fortement dependantes de la turbulence et des effets instationnaires. Une etude experimentale fut realisee a l'institut PPRIME a l'Universite de Poitiers afin d'observer le phenomene d'oscillation dans le jet. Une serie d'essais ont verifie les conditions d'ecoulement laminaires et turbulentes, toutefois le cout des essais experimentaux a seulement permis d'avoir un apercu du phenomene global. Une deuxieme serie d'essais fut realisee numeriquement a l'Universite de Moncton avec l'outil OpenFOAM pour des conditions d'ecoulement laminaire et bidimensionnel. Cette etude a donc comme but de poursuivre l'enquete de l'aerodynamique oscillatoire des jets impactant des parois courbes, mais pour un regime d'ecoulement transitoire, turbulent

  1. Study of the origin of elements of the uranium-235 family observed in excess in the vicinity of the experimental nuclear EL4 reactor under dismantling. Lessons got at this day and conclusions; Etude de l'origine des elements de la famille de l'uranium-235 observes en exces dans les environs du reacteur nucleaire experimental EL4 en cours de demantelement. Enseignements retires a ce jour et conclusion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This study resumes the discovery of an excess of actinium 227 found around by EL4 nuclear reactor actually in dismantling. The search for the origin of this excess revealed a real inquiry of investigation during three years. Because a nuclear reactor existed in this area a particular attention will have concerned this region. The doubt became the line of conduct to find the answer to the human or natural origin of this excess. Finally and against any evidence, it appears that the origin of this phenomenon was natural, consequence of the particular local geology. The detail of the different investigations is given: search of a possible correlation with the composition of elevations constituent of lanes, search (and underlining) of new sites in the surroundings of the Rusquec pond and the Plouenez station, study of the atmospheric deposits under winds of the nuclear power plant and in the east direction, search of a possible relationship with the gaseous effluents of the nuclear power plant in the past, historical study of radioactive effluents releases in the fifty last years by the analysis of the sedimentary deposits in the Saint-Herbiot reservoir, search of a possible correlation between the excess of actinium 227 and the nuclear power plant activity; search of a possible correlation with a human activity without any relationship with the nuclear activities, search of a correlation with the underground waters, search of a correlation with the geological context, collect of information on the possible transfers in direction of the food chain, determination of the radiological composition of the underground waters ( not perturbed by human activity), search of the cause of an excess of actinium 227 in the old channel of liquid effluents release of the nuclear power plant. The results are given and discussed. And contrary to all expectations the origin of the excess of actinium 227 is completely natural. (N.C.)

  2. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  3. Attrition reactor system

    Science.gov (United States)

    Scott, Charles D.; Davison, Brian H.

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  4. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hiroto

    1995-02-07

    A reactor container of the present invention has a structure that the reactor container is entirely at the same temperature as that at the inlet of the reactor and, a hot pool is incorporated therein, and the reactor container has is entirely at the same temperature and has substantially uniform temperature follow-up property transiently. Namely, if the temperature at the inlet of the reactor core changes, the temperature of the entire reactor container changes following this change, but no great temperature gradient is caused in the axial direction and no great heat stresses due to axial temperature distribution is caused. Occurrence of thermal stresses caused by the axial temperature distribution can be suppressed to improve the reliability of the reactor container. In addition, since the laying of the reactor inlet pipelines over the inside of the reactor is eliminated, the reactor container is made compact and the heat shielding structures above the reactor and a protection structure of container walls are simplified. Further, secondary coolants are filled to the outside of the reactor container to simplify the shieldings. The combined effects described above can improve economical property and reliability. (N.H.).

  5. Etude sur les tendons en materiaux composites et leur application aux ancrages postcontraints

    Science.gov (United States)

    Chennouf, Adil

    L'objectif general de la presente these est d'evaluer le comportement a l'arrachement et au fluage d'ancrages injectes constitues de tendons en materiaux composites afin d'etablir des recommandations plus appropriees et realistes pour le dimensionnement et la conception. Quatre types de tendons en materiaux composites, deux a base de fibres d'aramide et deux a base de fibres de carbone, ont ete utilises dans l'etude. Les travaux de recherche de cette these ont porte notamment sur: (I) Une caracterisation physique et mecanique des tendons en materiaux composites utilises dans l'etude. (II) Une etude en laboratoire sur les coulis de scellement. La premiere etape de cette etude a concerne le developpement d'un coulis de scellement performant adapte aux tendons en materiaux composites et a differentes situations d'injection. La seconde etape a traite des essais de caracterisations physique et mecanique du coulis de scellement developpe comparativement a trois coulis de scellement usuels d'un meme rapport E/L de 0,4. (III) Une etude sur des modeles reduits d'ancrages injectes. (IV) Une etude sur des modeles d'ancrages a grande echelle. La synthese de ces etudes a permis d'enoncer les principales conclusions suivantes: (1) Les valeurs moyennes des charges de rupture des tendons en materiaux composites ont ete de 1% a 29% superieures a celles specifiees par les manufacturiers. (2) L'etude sur les coulis de scellement a permis le developpement de coulis de ciment repondant aux criteres fixes, soient une grande stabilite, une bonne fluidite, une legere expansion et de bonnes caracteristiques mecaniques. (3) Les tendons en materiaux composites ont montre des contraintes d'adherence maximum superieures a celles des tendons en acier. (4) Le type de fibre, la configuration et le fini de surface des tendons en materiaux composites gouvernent leur resistance a l'adherence. (5) L'introduction de sable et d'autres ajouts comme les fines de silice et la poudre d'aluminium au coulis

  6. Magnetic resonance studies of solid polymers; Etude des polymeres solides par resonance magnetique

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, R. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    This paper is a review of the application of nuclear magnetic resonance (NMR) to solid polymers. In the first, theoretical part, the elements of the theory of NMR, which are necessary for the study of the properties of solid polymers are discussed: the moments method, nuclear relaxation and the distribution of correlation times. In the second part the experimental results are presented. (author) [French] Cette etude est une recherche bibliographique sur l'application de la resonance magnetique nucleaire (RMN) aux polymeres solides. Dans la premiere partie theorique on discute les elements de la theorie de RMN, necessaires pour l'etude des proprietes des polymeres solides: la methode des moments, la relaxation nucleaire et la distribution des temps de correlation. La deuxieme partie presente les resultats des experiences. (auteur)

  7. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  8. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  9. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  10. Reactor Vessel Surveillance Program for Advanced Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyeong-Hoon; Kim, Tae-Wan; Lee, Gyu-Mahn; Kim, Jong-Wook; Park, Keun-Bae; Kim, Keung-Koo

    2008-10-15

    This report provides the design requirements of an integral type reactor vessel surveillance program for an integral type reactor in accordance with the requirements of Korean MEST (Ministry of Education, Science and Technology Development) Notice 2008-18. This report covers the requirements for the design of surveillance capsule assemblies including their test specimens, test block materials, handling tools, and monitors of the surveillance capsule neutron fluence and temperature. In addition, this report provides design requirements for the program for irradiation surveillance of reactor vessel materials, a layout of specimens and monitors in the surveillance capsule, procedures of installation and retrieval of the surveillance capsule assemblies, and the layout of the surveillance capsule assemblies in the reactor.

  11. Etude theorique des fluctuations structurales dans les composes organiques a dimensionnalite reduite

    Science.gov (United States)

    Dumoulin, Benoit

    Les systemes a dimensionnalite reduite constituent maintenant une branche entiere de la physique de la matiere condensee. Cette derniere s'est developpee rapidement au cours des dernieres annees, avec la decouverte des materiaux organiques qui presentent, justement, des proprietes physiques fortement anisotropes. Cette these presente une etude en trois parties de plusieurs composes organiques qui, bien que tres differents du point de vue de leurs compositions chimiques et de leurs proprietes physiques a haute temperature, subissent tous une instabilite structurale a tres basse temperature. De plus, dans chacun des cas, l'instabilite structurale est precedee d'un important regime fluctuatif a partir duquel les proprietes physiques changent de maniere significative. Notre etude suit un ordre chronologique inverse puisque nous nous attardons en premier lieu au cas de composes recemment decouverts: les composes de la famille des (BCPTTF)2X (X = PF6 , AsF6). Ces derniers sont des isolants magnetiques a la temperature ambiante et subissent une instabilite structurale de type spin-Peierls a une temperature appelee TSP. En particulier, nous nous interessons a l'etude des proprietes physiques de ces systemes dans le regime fluctuatif, qui precede cette instabilite. Notre etude theorique nous permet de comprendre en detail comment ces systemes s'approchent de l'instabilite struturale. Dans la seconde partie de cette these, nous etudions le regime fluctuatif (pre-transitionnel) observe experimentalement dans le compose de (TMTTF)2PF6. Ce compose organique, dont la structure s'apparente aux sels de Bechgaard, subit une instabilite de type spin-Peierls a une temperature T SP = 19K. Bien que ce compose possede la particularite d'etre un bon conducteur a la temperature ambiante, il subit une transition de type Mott-Hubbard a une temperature Trho ≈ 220K et devient alors un isolant magnetique, analogue aux composes de la famille des (BCPTTF)2X. Le regime fluctuatif precedant l

  12. SNTP program reactor design

    Science.gov (United States)

    Walton, Lewis A.; Sapyta, Joseph J.

    1993-06-01

    The Space Nuclear Thermal Propulsion (SNTP) program is evaluating the feasibility of a particle bed reactor for a high-performance nuclear thermal rocket engine. Reactors operating between 500 MW and 2,000 MW will produce engine thrusts ranging from 20,000 pounds to 80,000 pounds. The optimum reactor arrangement depends on the power level desired and the intended application. The key components of the reactor have been developed and are being tested. Flow-to-power matching considerations dominate the thermal-hydraulic design of the reactor. Optimal propellant management during decay heat cooling requires a three-pronged approach. Adequate computational methods exist to perform the neutronics analysis of the reactor core. These methods have been benchmarked to critical experiment data.

  13. Hybrid reactors. [Fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  14. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  15. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Mitsuru

    1997-04-04

    An LMFBR type reactor comprises a plurality of reactor cores in a reactor container. Namely, a plurality of pot containing vessels are disposed in the reactor vessel and a plurality of reactor cores are formed in a state where an integrated-type fuel assembly is each inserted to a pot, and a coolant pipeline is connected to each of the pot containing-vessel to cool the reactor core respectively. When fuels are exchanged, the integrated-type fuel assembly is taken out together with the pot from the reactor vessel in a state where the integrated-type fuel assembly is immersed in the coolants in the pot as it is. Accordingly, coolants are supplied to each of the pot containing-vessel connected with the coolant pipeline and circulate while cooling the integrated-type fuel assembly for every pot. Then, when the fuels are exchanged, the integrated type fuel assembly is taken out to the outside of the reactor together with the pot by taking up the pot from the pot-containing vessel. Then, neutron economy is improved to thereby improve reactor power and the breeding ratio. (N.H.)

  16. INVAP's Research Reactor Designs

    Directory of Open Access Journals (Sweden)

    Eduardo Villarino

    2011-01-01

    Full Text Available INVAP, an Argentine company founded more than three decades ago, is today recognized as one of the leaders within the research reactor industry. INVAP has participated in several projects covering a wide range of facilities, designed in accordance with the requirements of our different clients. For complying with these requirements, INVAP developed special skills and capabilities to deal with different fuel assemblies, different core cooling systems, and different reactor layouts. This paper summarizes the general features and utilization of several INVAP research reactor designs, from subcritical and critical assemblies to high-power reactors.

  17. Multi purpose research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Raina, V.K. [Research Reactor Design and Projects Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)]. E-mail: vkrain@magnum.barc.ernet.in; Sasidharan, K. [Research Reactor Design and Projects Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sengupta, Samiran [Research Reactor Design and Projects Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Singh, Tej [Research Reactor Services Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2006-04-15

    At present Dhruva and Cirus reactors provide the majority of research reactor based facilities to cater to the various needs of a vast pool of researchers in the field of material sciences, physics, chemistry, bio sciences, research and development work for nuclear power plants and production of radio isotopes. With a view to further consolidate and expand the scope of research and development in nuclear and allied sciences, a new 20 MWt multi purpose research reactor is being designed. This paper describes some of the design features and safety aspects of this reactor.

  18. The Pegase reactor loops; Les boucles du reacteur Pegase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-07-01

    After 4 years operation, experimentation and maintenance of the gas loops built especially for the nuclear fuel testing reactor Pegase, it appears desirable not only to gather together in a single document the essential characteristics and particularities of these devices and of their associated equipment, but also to give the reasons for the technical modifications and the way in which they were carried out; this is done here by the persons themselves who were responsible, day after day, for operating these loops. This essentially practically experience thus complements the careful research and preliminary testing carried out on these loops or on their prototypes. It should be of interest to those who deal with problems concerned with the design or operation of irradiation loops in experimental reactors or of similar equipment. (authors) [French] Apres 4 annees de fonctionnement, d'experimentation et d'entretien sur les boucles a gaz, construites specialement pour le reacteur d'essai des combustibles nucleaires Pegase, il a paru souhaitable non seulement de rassembler dans un meme document les caracteristiques et les particularites essentielles de ces dispositifs et des appareillages qui leur sont associes, mais aussi d'y preciser les raisons et les modalites des mises au point techniques, apportees par ceux qui, jour apres jour pendant cette periode, ont eu la charge de mettre en oeuvre ces boucles. Cette experience essentiellement pratique complete donc les etudes minutieuses et les essais preliminaires de ces boucles ou de leurs prototypes. Elle doit etre de quelque interet pour ceux qui sont confrontes aux problemes de conception ou d'exploitation de boucles d'irradiation dans des reacteurs experimentaux ou des dispositifs analogues. (auteurs)

  19. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  20. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  1. Light water reactor program

    Energy Technology Data Exchange (ETDEWEB)

    Franks, S.M.

    1994-12-31

    The US Department of Energy`s Light Water Reactor Program is outlined. The scope of the program consists of: design certification of evolutionary plants; design, development, and design certification of simplified passive plants; first-of-a-kind engineering to achieve commercial standardization; plant lifetime improvement; and advanced reactor severe accident program. These program activities of the Office of Nuclear Energy are discussed.

  2. Status of French reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballagny, A. [Commissariat a l`Energie Atomique, Saclay (France)

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.

  3. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  4. Mirror reactor surface study

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. L.; Damm, C. C.; Futch, A. H.; Hiskes, J. R.; Meisenheimer, R. G.; Moir, R. W.; Simonen, T. C.; Stallard, B. W.; Taylor, C. E.

    1976-09-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included.

  5. Contribution to the study of {sup 233}U production with MOX-ThPu fuel in PWR reactor. Transition scenarios towards Th/{sup 233}U iso-generating concepts in thermal spectrum. Development of the MURE fuel evolution code; Contribution a l'etude de la production d'{sup 233}U en combustible MOX-ThPu en reacteur a eau sous pression. Scenarios de transition vers des concepts isogenerateurs Th/{sup 233}U en spectre thermique. Developpement du code MURE d'evolution du combustible

    Energy Technology Data Exchange (ETDEWEB)

    Michel-Sendis, F

    2006-12-15

    If nuclear power is to provide a significant fraction of the growing world energy demand, only through the breeding concept can the development of sustainable nuclear energy become a reality. The study of such a transition, from present-day nuclear technologies to future breeding concepts is therefore pertinent. Among these future concepts, those using the thorium cycle Th/U-233 in a thermal neutron spectrum are of particular interest; molten-salt type thermal reactors would allow for breeding while requiring comparatively low initial inventories of U-233. The upstream production of U-233 can be obtained through the use of thorium-plutonium mixed oxide fuel in present-day light water reactors. This work presents, firstly, the development of the MURE evolution code system, a C++ object-oriented code that allows the study, through Monte Carlo (M.C.) simulation, of nuclear reactors and the evolution of their fuel under neutron irradiation. The M.C. methods are well-suited for the study of any reactor, whether it'd be an existing reactor using a new kind of fuel or a future concept altogether, the simulation is only dependent on nuclear data. Exact and complex geometries can be simulated and continuous energy particle transport is performed. MURE is an interface with MCNP, the well-known and validated transport code, that allows, among other functionalities, to simulate constant power and constant reactivity evolutions. Secondly, the study of MOX ThPu fuel in a conventional light water reactor (REP) is presented; it explores different plutonium concentrations and isotopic qualities in order to evaluate their safety characteristics. Simulation of their evolution allows us to quantify the production of U-233 at the end of burnup. Last, different french scenarios validating a possible transition towards a park of thermal Th/U-233 breeders, are presented. In these scenarios, U-233 is produced in ThPu moxed light water reactors. (author)

  6. Contributions a L'etude de Dispositifs D'optique Integree

    Science.gov (United States)

    Touam, Tahar

    Cette these contient des contributions a l'etude de deux champs du vaste domaine de l'optique integree. A cet effet, nous avons divise notre travail en deux grandes parties:. Dans une premiere partie, nous traitons le probleme de la realisation d'une nouvelle classe de guides d'onde planaires utilisables dans le domaine de longueur d'onde de l'infrarouge moyen (infrarouge thermique), domaine ou l'apparition anticipee de fibres optiques a pertes extremement faibles rendraient fort interessante l'existence de tels guides d'onde planaires. Dans un premier temps, nous presentons une etude analytique originale d'une structure planaire a profil d'indice gradue, suivie d'une analyse d'un guide canal base sur cette structure. Dans un deuxieme temps, nous decrivons le procede de fabrication par pulverisation atomique d'un guide planaire forme d'arseniure de gallium (AsGa) sur du dioxyde de silicium (SiO_2 ), combinaison de materiau compatible avec l'infrarouge moyen. Finalement, nous presentons une etude de conception d'un reseau de surface destine a coupler la lumiere dans un tel guide, les autres methodes traditionnelles de couplage semblant peu appropriees aux environs de lambda = 10 mum. Dans une deuxieme partie, nous traitons le probleme de la jonction Y en optique integree, jonction qui soufre de pertes tres importantes des que l'angle d'ouverture devient interessant pour le concepteur de circuits integres optiques. L'analyse est basee sur la methode numerique dite BPM (Beam Propagation Method; methode de propagation du faisceau) qui fait l'objet d'un bref rappel. Nous poursuivons avec l'etude et l'optimisation d'une nouvelle jonction Y dont l'essence est l'utilisation du phenomene de diffraction a travers trois fentes de phase. Nous obtenons ainsi une tres bonne jonction, separant proprement le faisceau, a une ouverture de 10 degres. Finalement, nous faisons un rappel d'un profil d'indice dit "ideal" pour guides courbes et nous proposons l'utilisation de tels guides

  7. Bio-metric study of pig karyotype; Etude biometrique du caryotype du porc

    Energy Technology Data Exchange (ETDEWEB)

    Haag, J.; Lacourly, N.; Nizza, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    This study has a twofold purpose, the former is to determine the swine karyotype as accurately as possible, the latter is to try and develop a method of automatic classification and to show its possibilities and limits. (authors) [French] Cette etude a un double objet: d'une part, de definir de la facon aussi precise que possible le caryotype du porc et d'autre part, de tenter une methode de classification automatique et d'en montrer les possibilites ainsi que les limites. (auteurs)

  8. Slurry reactor design studies

    Energy Technology Data Exchange (ETDEWEB)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. (Bechtel Group, Inc., San Francisco, CA (USA)); Akgerman, A. (Texas A and M Univ., College Station, TX (USA)); Smith, J.M. (California Univ., Davis, CA (USA))

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  9. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  10. Gas cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1972-06-01

    Although most of the development work on fast breeder reactors has been devoted to the use of liquid metal cooling, interest has been expressed for a number of years in alternative breeder concepts using other coolants. One of a number of concepts in which interest has been retained is the Gas-Cooled Fast Reactor (GCFR). As presently envisioned, it would operate on the uranium-plutonium mixed oxide fuel cycle, similar to that used in the Liquid Metal Fast Breeder Reactor (LMFBR), and would use helium gas as the coolant.

  11. Microfluidic electrochemical reactors

    Science.gov (United States)

    Nuzzo, Ralph G [Champaign, IL; Mitrovski, Svetlana M [Urbana, IL

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  12. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  13. New reactor type proposed

    CERN Multimedia

    2003-01-01

    "Russian scientists at the Research Institute of Nuclear Power Engineering in Moscow are hoping to develop a new reactor that will use lead and bismuth as fuel instead of uranium and plutonium" (1/2 page).

  14. Reactor Neutrino Spectra

    CERN Document Server

    Hayes, A C

    2016-01-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these and their associated uncertainties are crucial for neutrino oscillation studies. The spectra used to-date have been determined by either conversion of measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that makeup the spectra using modern databases as input. The uncertainties in the subdominant corrections to beta-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  15. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2001-04-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given.

  16. Future Reactor Experiments

    OpenAIRE

    He, Miao

    2013-01-01

    The measurement of the neutrino mixing angle $\\theta_{13}$ opens a gateway for the next generation experiments to measure the neutrino mass hierarchy and the leptonic CP-violating phase. Future reactor experiments will focus on mass hierarchy determination and the precision measurement of mixing parameters. Mass hierarchy can be determined from the disappearance of reactor electron antineutrinos based on the interference effect of two separated oscillation modes. Relative and absolute measure...

  17. Reactor Neutrino Experiments

    OpenAIRE

    Cao, Jun

    2007-01-01

    Precisely measuring $\\theta_{13}$ is one of the highest priority in neutrino oscillation study. Reactor experiments can cleanly determine $\\theta_{13}$. Past reactor neutrino experiments are reviewed and status of next precision $\\theta_{13}$ experiments are presented. Daya Bay is designed to measure $\\sin^22\\theta_{13}$ to better than 0.01 and Double Chooz and RENO are designed to measure it to 0.02-0.03. All are heading to full operation in 2010. Recent improvements in neutrino moment measu...

  18. Department of Reactor Technology

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included.......The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included....

  19. Helias reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Beidler, C.D. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Grieger, G. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Harmeyer, E. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Kisslinger, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Karulin, N. [Nuclear Fusion Institute, Moscow (Russian Federation); Maurer, W. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany); Nuehrenberg, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Rau, F. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Sapper, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Wobig, H. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1995-10-01

    The present status of Helias reactor studies is characterised by the identification and investigation of specific issues which result from the particular properties of this type of stellarator. On the technical side these are issues related to the coil system, while physics studies have concentrated on confinement, alpha-particle behaviour and ignition conditions. The usual assumptions have been made in those fields which are common to all toroidal fusion reactors: blanket and shield, refuelling and exhaust, safety and economic aspects. For blanket and shield sufficient space has been provided, a detailed concept will be developed in future. To date more emphasis has been placed on scoping and parameter studies as opposed to fixing a specific set of parameters and providing a detailed point study. One result of the Helias reactor studies is that physical dimensions are on the same order as those of tokamak reactors. However, it should be noticed that this comparison is difficult in view of the large spectrum of tokamak reactors ranging from a small reactor like Aries, to a large device such as SEAFP. The notion that the large aspect ratio of 10 or more in Helias configurations also leads to large reactors is misleading, since the large major radius of 22 m is compensated by the average plasma radius of 1.8 m and the average coil radius of 5 m. The plasma volume of 1400 m{sup 3} is about the same as the ITER reactor and the magnetic energy of the coil system is about the same or even slightly smaller than envisaged in ITER. (orig.)

  20. INVAP's Research Reactor Designs

    OpenAIRE

    Eduardo Villarino; Alicia Doval

    2011-01-01

    INVAP, an Argentine company founded more than three decades ago, is today recognized as one of the leaders within the research reactor industry. INVAP has participated in several projects covering a wide range of facilities, designed in accordance with the requirements of our different clients. For complying with these requirements, INVAP developed special skills and capabilities to deal with different fuel assemblies, different core cooling systems, and different reactor layouts. This paper ...

  1. The use and evolution of the CEA research reactors; Utilisation et evolution des reacteurs de recherche du C.E.A

    Energy Technology Data Exchange (ETDEWEB)

    Rossillon, F.; Chauvez, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The authors successively examine the different research reactors in use in the French C.E.A. Nuclear Centres. They trace briefly their histories, describing how they have been used up to the present, and how they have been adapted to changes in programme by means of certain modifications. They also describe the reasons which have led to the elaboration of the project for the new reactor Osiris. Zoe, the oldest reactor in the CEA, has been in service in the Centre de Fontenay-aux-Roses since 1948. It is used mainly for measurements of absorption cross-sections in graphite, and for various short irradiations which do not require high fluxes. The reactor EL 2, in service since 1952, was used for the first studies on gas cooling. It has also been widely used for the production of radioisotopes and for a large number of experiments in the fields of physics, metallurgy and physical chemistry. The ageing of certain elements of the reactor has led to the decision to close it down in the near future The reactor EL 3 has been widely used for experiments in physics and in the investigation of fuels. The possibilities of the reactor in fast neutron irradiations will be considerably improved by the adoption of a new type of core (the 'snow crystal' structure). Triton-I, a 2 MW swimming-pool reactor, is used for the most part for fast neutron and gamma irradiations. The modifications being carried out on it at present should result in an increase in the power of the reactor up to 4 or 5 MW. In a neighbouring compartment is housed Triton-II which is of the same general structure, as Triton-I, but whose maximum power is 100 kW. Triton-II is used solely for studies on shielding. Melusine, a 2 MW swimming-pool reactor, has been in use in the Centre d'Etudes Nucleaires de Grenoble since 1959. It has supported a very high programme concerned mainly with solid state physics, fundamental research into refractory fissile materials and special graphites, and the study of

  2. The reactor antineutrino anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Haser, Julia; Buck, Christian; Lindner, Manfred [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    Major discoveries were made in the past few years in the field of neutrino flavour oscillation. Nuclear reactors produce a clean and intense flux of electron antineutrinos and are thus an essential neutrino source for the determination of oscillation parameters. Most currently the reactor antineutrino experiments Double Chooz, Daya Bay and RENO have accomplished to measure θ{sub 13}, the smallest of the three-flavour mixing angles. In the course of these experiments two anomalies emerged: (1) the reanalysis of the reactor predictions revealed a deficit in experimentally observed antineutrino flux, known as the ''reactor antineutrino anomaly''. (2) The high precision of the latest generation of neutrino experiments resolved a spectral shape distortion relative to the expected energy spectra. Both puzzles are yet to be solved and triggered new experimental as well as theoretical studies, with the search for light sterile neutrinos as most popular explanation for the flux anomaly. This talk outlines the two reactor antineutrino anomalies. Discussing possible explanations for their occurrence, recent and upcoming efforts to solve the reactor puzzles are highlighted.

  3. Moon base reactor system

    Science.gov (United States)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  4. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    Energy Technology Data Exchange (ETDEWEB)

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  5. REACTOR GROUT THERMAL PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

    2011-01-28

    Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

  6. Scaleable, High Efficiency Microchannel Sabatier Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Microchannel Sabatier Reactor System (MSRS) consisting of cross connected arrays of isothermal or graded temperature reactors is proposed. The reactor array...

  7. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takeshi; Iida, Masaaki; Moriki, Yasuyuki

    1994-10-18

    A reactor core is divided into a plurality of coolants flowrate regions, and electromagnetic pumps exclusively used for each of the flowrate regions are disposed to distribute coolants flowrates in the reactor core. Further, the flowrate of each of the electromagnetic pumps is automatically controlled depending on signals from a temperature detector disposed at the exit of the reactor core, so that the flowrate of the region can be controlled optimally depending on the burning of reactor core fuels. Then, the electromagnetic pumps disposed for every divided region are controlled respectively, so that the coolants flowrate distribution suitable to each of the regions can be attained. Margin for fuel design is decreased, fuels are used effectively, as well as an operation efficiency can be improved. Moreover, since the electromagnetic pump has less flow resistance compared with a mechanical type pump, and flow resistance of the reactor core flowrate control mechanism is eliminated, greater circulating flowrate can be ensured after occurrence of accident in a natural convection using a buoyancy of coolants utilizable for after-heat removal as a driving force. (N.H.).

  8. Reactor Structural Materials: Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R

    2000-07-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported.

  9. Operation of Reactor

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    3.1 Annual Report of SPR Operation Chu Shaochu Having overseen by National Nuclear Safety Administration and specialists, the reactor restarted up successfully after Safety renovation on April 16, 1996. In August 1996 the normal operation of SPR was approved by the authorities of Naitonal Nuclear Safety Administration. 1 Operation status In 1996, the reactor operated safely for 40 d and the energy released was about 137.3 MW·d. The operation status of SPR is shown in table 1. The reactor started up to higher power (power more than 1 MW) and lower power (for physics experiments) 4 times and 14 times respectively. Measurement of control rod efficiency and other measurement tasks were 2 times and 5 times respectively.

  10. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  11. Thermionic Reactor Design Studies

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

  12. An Overview of Reactor Concepts, a Survey of Reactor Designs.

    Science.gov (United States)

    1985-02-01

    Public Affairs Office and is releasaole to the National Technical Information Services (NTIS). At NTIS, it will be available to the general public...Reactors that use deu- terium (heavy water) as a coolant can use natural uranium as a fuel. The * Canadian reactor, CANDU , utilizes this concept...reactor core at the top and discharged at the Dotton while the reactor is in operation. The discharged fuel can then b inspected to see if it can De used

  13. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  14. Perspectives on reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  15. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  16. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  17. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  18. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  19. Reactor operation safety information document

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  20. REACTOR FUEL ELEMENTS TESTING CONTAINER

    Science.gov (United States)

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  1. Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  2. WATER BOILER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  3. MULTISTAGE FLUIDIZED BED REACTOR

    Science.gov (United States)

    Jonke, A.A.; Graae, J.E.A.; Levitz, N.M.

    1959-11-01

    A multistage fluidized bed reactor is described in which each of a number of stages is arranged with respect to an associated baffle so that a fluidizing gas flows upward and a granular solid downward through the stages and baffles, whereas the granular solid stopsflowing downward when the flow of fluidizing gas is shut off.

  4. Fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  5. Integral Fast Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path.

  6. The First Reactor.

    Science.gov (United States)

    Department of Energy, Washington, DC.

    On December 2, 1942, in a racquet court underneath the West Stands of Stagg Field at the University of Chicago, a team of scientists led by Enrico Fermi created the first controlled, self-sustaining nuclear chain reaction. This updated and revised story of the first reactor (or "pile") is based on postwar interviews (as told to Corbin…

  7. Thermal Reactor Safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  8. Chromatographic and Related Reactors.

    Science.gov (United States)

    1988-01-07

    special information about effects of surface heteroge- neity in the methanation reaction. Studies of an efficient multicolumn assembly for measuring...of organic basic catalysts such as pyridine and 4-methylpicoline. It was demonstrated that the chromatographic reactor gave special information about...Programmed Reaction to obtain special information about surface heterogeneity in the methanation reaction. Advantages of stopped flow over steady state

  9. New concepts for shaftless recycle reactors

    Energy Technology Data Exchange (ETDEWEB)

    Berty, J.M.; Berty, I.J.

    1987-01-01

    Berty Reaction Engineers, Ltd. (BREL) is developing two new laboratory recycle reactors, the ROTOBERTY and the TURBOBERTY. These new reactors are basically improved versions of the original Berty reactor. To understand why the reactors have the features that they do, it is first necessary to briefly review laboratory reactors in general and specifically the original Berty reactor.

  10. Brazilian multipurpose reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Brazilian Multipurpose Reactor (RMB) Project is an action of the Federal Government, through the Ministry of Science Technology and Innovation (MCTI) and has its execution under the responsibility of the Brazilian National Nuclear Energy Commission (CNEN). Within the CNEN, the project is coordinated by the Research and Development Directorate (DPD) and developed through research units of this board: Institute of Nuclear Energy Research (IPEN); Nuclear Engineering Institute (IEN); Centre for Development of Nuclear Technology (CDTN); Regional Center of Nuclear Sciences (CRCN-NE); and Institute of Radiation Protection and Dosimetry (IRD). The Navy Technological Center in Sao Paulo (CTMSP) and also the participation of other research centers, universities, laboratories and companies in the nuclear sector are important and strategic partnerships. The conceptual design and the safety analysis of the reactor and main facilities, related to nuclear and environmental licensing, are performed by technicians of the research units of DPD / CNEN. The basic design was contracted to engineering companies as INTERTHECNE from Brazil and INVAP from Argentine. The research units from DPD/CNEN are also responsible for the design verification on all engineering documents developed by the contracted companies. The construction and installation should be performed by specific national companies and international partnerships. The Nuclear Reactor RMB will be a open pool type reactor with maximum power of 30 MW and have the OPAL nuclear reactor of 20 MW, built in Australia and designed by INVAP, as reference. The RMB reactor core will have a 5x5 configuration, consisting of 23 elements fuels (EC) of U{sub 3}Si{sub 2} dispersion-type Al having a density of up to 3.5 gU/cm{sup 3} and enrichment of 19.75% by weight of {sup 23{sup 5}}U. Two positions will be available in the core for materials irradiation devices. The main objectives of the RMB Reactor and the other nuclear and radioactive

  11. Modeling Chemical Reactors I: Quiescent Reactors

    CERN Document Server

    Michoski, C E; Schmitz, P G

    2010-01-01

    We introduce a fully generalized quiescent chemical reactor system in arbitrary space $\\vdim =1,2$ or 3, with $n\\in\\mathbb{N}$ chemical constituents $\\alpha_{i}$, where the character of the numerical solution is strongly determined by the relative scaling between the local reactivity of species $\\alpha_{i}$ and the local functional diffusivity $\\mathscr{D}_{ij}(\\alpha)$ of the reaction mixture. We develop an operator time-splitting predictor multi-corrector RK--LDG scheme, and utilize $hp$-adaptivity relying only on the entropy $\\mathscr{S}_{\\mathfrak{R}}$ of the reactive system $\\mathfrak{R}$. This condition preserves these bounded nonlinear entropy functionals as a necessarily enforced stability condition on the coupled system. We apply this scheme to a number of application problems in chemical kinetics; including a difficult classical problem arising in nonequilibrium thermodynamics known as the Belousov-Zhabotinskii reaction where we utilize a concentration-dependent diffusivity tensor $\\mathscr{D}_{ij}(...

  12. Contribution to the study of several chemical hazards in the Centre d'Etudes Nucleaires of Fontenay-aux-Roses; Contribution a l'etude de quelques nuisances chimiques au centre d'etudes nucleaires de Fontenay-aux-Roses

    Energy Technology Data Exchange (ETDEWEB)

    Megemont, C.; Grau, C. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-10-01

    From the checking of 2750 index cards of hazards, the study relates the distribution of the chemical hazards in the Centre d'Etudes Nucleaires of Fontenay-aux-Roses. Those concerning the greatest number of agents in the Centre are classified according to the categories corresponding to the different conditions of working. Thus, the most important are put forward. Then, the authors rapidly make a review of hazards which may have some special interest because they appear more specific of the nuclear energy or because they are the most frequently noted on the index cards of hazards. The case of the tributylphosphate is studied more precisely. (authors) [French] A partir de l'examen de 2750 fiches de nuisances, l'etude porte sur la repartition des nuisances chimiques au Centre d'Etudes Nucleaires de Fontenay-aux-Roses. Celles qui concernent le plus grand nombre d'agents du Centre sont classees selon les categories correspondant aux differentes conditions de travail. Les plus importantes d'entre elles sont ainsi mises en evidence. | Les auteurs passent ensuite en revue, rapidement, les nuisances qui peuvent presenter un interet particulier soit parce qu'elles semblent plus specifiques de l'Energie Nucleaire, soit parce qu'on les rencontre le plus frequemment sur les fiches de nuisances. Le cas du tributylphosphate est envisage de facon plus detaillee. (auteurs)

  13. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    Science.gov (United States)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  14. Reactor monitoring using antineutrino detectors

    Science.gov (United States)

    Bowden, N. S.

    2011-08-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactor as part of International Atomic Energy Agency (IAEA) and/or other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway worldwide.

  15. Reactor vessel support system. [LMFBR

    Science.gov (United States)

    Golden, M.P.; Holley, J.C.

    1980-05-09

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  16. Methanogenesis in Thermophilic Biogas Reactors

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1995-01-01

    Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process...... as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in a thermophilic pilot-plant biogas reactor fed with a mixture of cow and pig manure reflected the stability of the reactor. The numbers of methanogens counted by the most...... against Methanothrix soehngenii or Methanothrix CALS-I in any of the thermophilic biogas reactors examined. Studies using 2-14C-labeled acetate showed that at high concentrations (more than approx. 1 mM) acetate was metabolized via the aceticlastic pathway, transforming the methyl-group of acetate...

  17. Compact fusion reactors

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  18. MEANS FOR COOLING REACTORS

    Science.gov (United States)

    Wheeler, J.A.

    1957-11-01

    A design of a reactor is presented in which the fuel elements may be immersed in a liquid coolant when desired without the necessity of removing them from the reactor structure. The fuel elements, containing the fissionable material are in plate form and are disposed within spaced slots in a moderator material, such as graphite to form the core. Adjacent the core is a tank containing the liquid coolant. The fuel elements are mounted in spaced relationship on a rotatable shaft which is located between the core and the tank so that by rotation of the shaft the fuel elements may be either inserted in the slots in the core to sustain a chain reaction or immersed in the coolant.

  19. Integrated Microfluidic Reactors.

    Science.gov (United States)

    Lin, Wei-Yu; Wang, Yanju; Wang, Shutao; Tseng, Hsian-Rong

    2009-12-01

    Microfluidic reactors exhibit intrinsic advantages of reduced chemical consumption, safety, high surface-area-to-volume ratios, and improved control over mass and heat transfer superior to the macroscopic reaction setting. In contract to a continuous-flow microfluidic system composed of only a microchannel network, an integrated microfluidic system represents a scalable integration of a microchannel network with functional microfluidic modules, thus enabling the execution and automation of complicated chemical reactions in a single device. In this review, we summarize recent progresses on the development of integrated microfluidics-based chemical reactors for (i) parallel screening of in situ click chemistry libraries, (ii) multistep synthesis of radiolabeled imaging probes for positron emission tomography (PET), (iii) sequential preparation of individually addressable conducting polymer nanowire (CPNW), and (iv) solid-phase synthesis of DNA oligonucleotides. These proof-of-principle demonstrations validate the feasibility and set a solid foundation for exploring a broad application of the integrated microfluidic system.

  20. Reactor Neutrino Spectra

    OpenAIRE

    Hayes, A. C.; Vogel, Petr

    2016-01-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these spectra and their associated uncertainties is crucial for neutrino oscillation studies. The spectra used to date have been determined either by converting measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that make up the spectra, using modern databases as input. The uncertainties in the subdominant corrections to β-decay plague both methods, and we ...

  1. REACTOR MODERATOR STRUCTURE

    Science.gov (United States)

    Greenstreet, B.L.

    1963-12-31

    A system for maintaining the alignment of moderator block structures in reactors is presented. Integral restraining grids are placed between each layer of blocks in the moderator structure, at the top of the uppermost layer, and at the bottom of the lowermost layer. Slots are provided in the top and bottom surfaces of the moderator blocks so as to provide a keying action with the grids. The grids are maintained in alignment by vertical guiding members disposed about their peripheries. (AEC)

  2. BOILER-SUPERHEATED REACTOR

    Science.gov (United States)

    Heckman, T.P.

    1961-05-01

    A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)

  3. The OPAL reactor

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.; Irwin, T. [Australian Nuclear Science and Technology Organisation, Sydney (Australia); Ordonez, J.P. [INVAP SE, Bariloche (Argentina)

    2007-07-01

    The project to provide a replacement for Australia's HIFAR reactor began with governmental approval in September 1997 and reached its latest milestone with the achievement of the first full power operation of the OPAL reactor in November 2006. OPAL is a pool-type reactor with a thermal power of 20 MW and a fuel enrichment maximum of 20 per cent. This has been a successful project for both ANSTO (Australian Nuclear Science and Technology Organisation) and the contractor INVAP SE. This project was characterised by extensive interaction with the project's stake-holders during project definition and the use of a performance-based turnkey contract which gave the contractor the maximum opportunity to optimise the design to achieve performance and cost effectiveness. The contactor provided significant in-house resources as well as capacity to manage an international team of suppliers and sub-contractors. A key contributor to the project's successful outcomes has been the development and maintenance of an excellent working relationship between ANSTO and INVAP project teams. Commissioning was undertaken in accordance with the IAEA recommended stages. This paper presents the approaches used to define the project requirements, to choose the supplier and to deliver the project. The main results of hot commissioning are reviewed and the problems encountered examined. Operational experience since hot commissioning is also reviewed.

  4. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  5. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  6. Thermionic Reactor Design Studies

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1994-06-01

    During the 1960's and early 70's the author performed extensive design studies, analyses, and tests aimed at thermionic reactor concepts that differed significantly from those pursued by other investigators. Those studies, like most others under Atomic Energy Commission (AEC and DOE) and the National Aeronautics and Space Administration (NASA) sponsorship, were terminated in the early 1970's. Some of this work was previously published, but much of it was never made available in the open literature. U.S. interest in thermionic reactors resumed in the early 80's, and was greatly intensified by reports about Soviet ground and flight tests in the late 80's. This recent interest resulted in renewed U.S. thermionic reactor development programs, primarily under Department of Defense (DOD) and Department of Energy (DOE) sponsorship. Since most current investigators have not had an opportunity to study all of the author's previous work, a review of the highlights of that work may be of value to them. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling. Where the author's concepts differed from the later Topaz-2 design was in the relative location of the emitter and the collector. Placing the fueled emitter on the outside of the cylindrical diodes permits much higher axial conductances to reduce ohmic

  7. New reactors for laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Berty, J.M.

    1978-02-01

    Recent developments in design of laboratory and bench-scale reactors reflect mostly the developments in reaction engineering; that is the improved understanding of physical and chemical rate limiting processes, their interactions, and their effects on commercial-scale reactor performance. Whether a laboratory reactor is used to study the fundamentals of a commercial process or for pure scientific interest, it is important to know what physical or chemical process is limiting or influencing the rate and selectivity. To clarify this, a definition is required of the regime where physical influences exist, and study the intrinsic kinetics at conditions where physical processes do not affect the rate. Reactors are illustrated whose design was influenced by the above considerations. These reactors produce results which are independent of the reactors in which they were measured, and which can be scaled up with up-to-date reaction engineering techniques.

  8. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, Noreddine

    2015-08-20

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body is configured to receive water and a disinfectant at the inlet such that the water is exposed to the disinfectant as the water flows through the spiral flow path. Also disclosed are processes for disinfecting water in such disinfection reactors.

  9. Turning points in reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-09-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems.

  10. Acceptability of reactors in space

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1981-04-01

    Reactors are the key to our future expansion into space. However, there has been some confusion in the public as to whether they are a safe and acceptable technology for use in space. The answer to these questions is explored. The US position is that when reactors are the preferred technical choice, that they can be used safely. In fact, it dies not appear that reactors add measurably to the risk associated with the Space Transportation System.

  11. Hydrogen Production in Fusion Reactors

    OpenAIRE

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M; Uenosono, C.

    1993-01-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated.

  12. Fast reactor programme in India

    Indian Academy of Sciences (India)

    P Chellapandi; P R Vasudeva Rao; Prabhat Kumar

    2015-09-01

    Role of fast breeder reactor (FBR) in the Indian context has been discussed with appropriate justification. The FBR programme since 1985 till 2030 is highlighted focussing on the current status and future direction of fast breeder test reactor (FBTR), prototype fast breeder reactor (PFBR) and FBR-1 and 2. Design and technological challenges of PFBR and design and safety targets with means to achieve the same are the major highlights of this paper.

  13. Neutrino Oscillation Studies with Reactors

    CERN Document Server

    Vogel, Petr; Zhang, Chao

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  14. Accelerator based fusion reactor

    Science.gov (United States)

    Liu, Keh-Fei; Chao, Alexander Wu

    2017-08-01

    A feasibility study of fusion reactors based on accelerators is carried out. We consider a novel scheme where a beam from the accelerator hits the target plasma on the resonance of the fusion reaction and establish characteristic criteria for a workable reactor. We consider the reactions d+t\\to n+α,d+{{}3}{{H}\\text{e}}\\to p+α , and p+{{}11}B\\to 3α in this study. The critical temperature of the plasma is determined from overcoming the stopping power of the beam with the fusion energy gain. The needed plasma lifetime is determined from the width of the resonance, the beam velocity and the plasma density. We estimate the critical beam flux by balancing the energy of fusion production against the plasma thermo-energy and the loss due to stopping power for the case of an inert plasma. The product of critical flux and plasma lifetime is independent of plasma density and has a weak dependence on temperature. Even though the critical temperatures for these reactions are lower than those for the thermonuclear reactors, the critical flux is in the range of {{10}22}-{{10}24}~\\text{c}{{\\text{m}}-2}~{{\\text{s}}-1} for the plasma density {ρt}={{10}15}~\\text{c}{{\\text{m}}-3} in the case of an inert plasma. Several approaches to control the growth of the two-stream instability are discussed. We have also considered several scenarios for practical implementation which will require further studies. Finally, we consider the case where the injected beam at the resonance energy maintains the plasma temperature and prolongs its lifetime to reach a steady state. The equations for power balance and particle number conservation are given for this case.

  15. Biparticle fluidized bed reactor

    Science.gov (United States)

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  16. FAST NEUTRONIC REACTOR

    Science.gov (United States)

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  17. Licensed reactor nuclear safety criteria applicable to DOE reactors

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

  18. Fast Reactor Fuel Type and Reactor Safety Performance

    Energy Technology Data Exchange (ETDEWEB)

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and

  19. Reactor Physics Analysis Models for a CANDU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok

    2007-10-15

    Canada deuterium uranium (CANDU) reactor physics analysis is typically performed in three steps. At first, macroscopic cross-sections of the reference lattice is produced by modeling the reference fuel channel. Secondly macroscopic cross-sections of reactivity devices in the reactor are generated. The macroscopic cross-sections of a reactivity device are calculated as incremental cross-sections by subtracting macroscopic cross-sections of a three-dimensional lattice without reactivity device from those of a three-dimensional lattice with a reactivity device. Using the macroscopic cross-sections of the reference lattice and incremental cross-sections of the reactivity devices, reactor physics calculations are performed. This report summarizes input data of typical CANDU reactor physics codes, which can be utilized for the future CANDU reactor physics analysis.

  20. Reactor Physics Analysis Models for a CANDU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok

    2007-10-15

    Canada deuterium uranium (CANDU) reactor physics analysis is typically performed in three steps. At first, macroscopic cross-sections of the reference lattice is produced by modeling the reference fuel channel. Secondly macroscopic cross-sections of reactivity devices in the reactor are generated. The macroscopic cross-sections of a reactivity device are calculated as incremental cross-sections by subtracting macroscopic cross-sections of a three-dimensional lattice without reactivity device from those of a three-dimensional lattice with a reactivity device. Using the macroscopic cross-sections of the reference lattice and incremental cross-sections of the reactivity devices, reactor physics calculations are performed. This report summarizes input data of typical CANDU reactor physics codes, which can be utilized for the future CANDU reactor physics analysis.

  1. Etude de la variation de transmission optique dans l'UltraViolet du quartz "Nippon Silica Glass" après expositions à des rayonnements - Etude du système d'acquisition de données et du système de contrôle de Hautes Tensions appliquées aux chambres à fils du BARREL RICH de DELPHI

    CERN Document Server

    Delorme, Sophie

    1992-01-01

    Etude de la variation de transmission optique dans l'UltraViolet du quartz "Nippon Silica Glass" après expositions à des rayonnements - Etude du système d'acquisition de données et du système de contrôle de Hautes Tensions appliquées aux chambres à fils du BARREL RICH de DELPHI

  2. Etude spectroscopique des noyaux riches en protons dans la region 22 < Z < 28 et T$_(Z)$ < -3/2

    OpenAIRE

    Dossat, Cedric

    2004-01-01

    La region des noyaux riches en protons tels que 22 < Z < 28 et T$_(Z)$ < -3/2 a pu etre etudiee de maniere tres detaillee grace a trois experiences menees au GANIL entre 1999 et 2002 : cette etude porte sur 23 isotopes allant du $^(39)$Ti au $^(53)$Ni. Nous avons mesure pour la premiere fois les durees de vie du $^(43)$V, du $^(51)$Ni et du $^(51)$Co, et considerablement ameliore la precision de celles deja connues. De nouvelles transitions par emission de protons et de rayonnement $\\gamma$ o...

  3. Chemical-vapor-deposition reactor

    Science.gov (United States)

    Chern, S.

    1979-01-01

    Reactor utilizes multiple stacked trays compactly arranged in paths of horizontally channeled reactant gas streams. Design allows faster and more efficient deposits of film on substrates, and reduces gas and energy consumption. Lack of dead spots that trap reactive gases reduces reactor purge time.

  4. Thermochemical reactor systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, Wojciech; Davidson, Jane Holloway; Chase, Thomas Richard

    2016-11-29

    Thermochemical reactor systems that may be used to produce a fuel, and methods of using the thermochemical reactor systems, utilizing a reactive cylindrical element, an optional energy transfer cylindrical element, an inlet gas management system, and an outlet gas management system.

  5. Test reactor risk assessment methodology

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R.H.; Rawlins, J.K.; Stewart, M.E.

    1976-04-01

    A methodology has been developed for the identification of accident initiating events and the fault modeling of systems, including common mode identification, as these methods are applied in overall test reactor risk assessment. The methods are exemplified by a determination of risks to a loss of primary coolant flow in the Engineering Test Reactor.

  6. Studies on a membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, K.; Govind, R.

    1988-10-01

    Simulation is used to evaluate the performance of a catalytic reactor with permeable wall (membrane reactor) in shifting the equilibrium of three reversible reactions (cyclohexane dehydrogenation, hydrogen iodide decomposition, and propylene disproportionation). It is found that the preferred choice of cocurrernt or countercurrent operation is dependent on the physical properties and operating conditions. Methods of enhancing conversion are suggested and temperature effects are discussed.

  7. Thermochemical reactor systems and methods

    Science.gov (United States)

    Lipinski, Wojciech; Davidson, Jane Holloway; Chase, Thomas Richard

    2016-11-29

    Thermochemical reactor systems that may be used to produce a fuel, and methods of using the thermochemical reactor systems, utilizing a reactive cylindrical element, an optional energy transfer cylindrical element, an inlet gas management system, and an outlet gas management system.

  8. Brookhaven leak reactor to close

    CERN Multimedia

    MacIlwain, C

    1999-01-01

    The DOE has announced that the High Flux Beam Reactor at Brookhaven is to close for good. Though the news was not unexpected researchers were angry the decision had been taken before the review to assess the impact of reopening the reactor had been concluded (1 page).

  9. Reactor G1: high power experiments; Experiences a forte puissance

    Energy Technology Data Exchange (ETDEWEB)

    Laage, F. de; Teste du Baillet, A.; Veyssiere, A.; Wanner, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Retel, H. [Societe Rateau, D.E.A. (France)

    1957-07-01

    The experiments carried out in the starting-up programme of the reactor G1 comprised a series of tests at high power, which allowed the following points to be studied: 1- Effect of poisoning by Xenon (absolute value, evolution). 2- Temperature coefficients of the uranium and graphite for a temperature distribution corresponding to heating by fission. 3- Effect of the pressure (due to the coiling system) on the reactivity. 4- Calibration of the security rods as a function of their position in the pile (1). 5- Temperature distribution of the graphite, the sheathing, the uranium and the air leaving the canals, in a pile running normally at high power. 6- Neutron flux distribution in a pile running normally at high power. 7- Determination of the power by nuclear and thermodynamic methods. These experiments have been carried out under two very different pile conditions. From the 1. to the 15. of August 1956, a series of power increases, followed by periods of stabilisation, were induced in a pile containing uranium only, in 457 canals, amounting to about 34 tons of fuel. A knowledge of the efficiency of the control rods in such a pile has made it possible to measure with good accuracy the principal effects at high temperatures, that is, to deal with points 1, 2, 3, 5. Flux charts giving information on the variations of the material Laplacian and extrapolation lengths in the reflector have been drawn up. Finally the thermodynamic power has been measured under good conditions, in spite of some installation difficulties. On September 16, the pile had its final charge of 100 tons. All the canals were loaded, 1,234 with uranium and 53 (i.e. exactly 4 per cent of the total number) with thorium uniformly distributed in a square lattice of 100 cm side. Since technical difficulties prevented the calibration of the control rods, the measurements were limited to the determination of the thermodynamic power and the temperature distributions (points 5 and 7). This report will

  10. Metallic fuels for advanced reactors

    Science.gov (United States)

    Carmack, W. J.; Porter, D. L.; Chang, Y. I.; Hayes, S. L.; Meyer, M. K.; Burkes, D. E.; Lee, C. B.; Mizuno, T.; Delage, F.; Somers, J.

    2009-07-01

    In the framework of the Generation IV Sodium Fast Reactor Program, the Advanced Fuel Project has conducted an evaluation of the available fuel systems supporting future sodium cooled fast reactors. This paper presents an evaluation of metallic alloy fuels. Early US fast reactor developers originally favored metal alloy fuel due to its high fissile density and compatibility with sodium. The goal of fast reactor fuel development programs is to develop and qualify a nuclear fuel system that performs all of the functions of a conventional fast spectrum nuclear fuel while destroying recycled actinides. This will provide a mechanism for closure of the nuclear fuel cycle. Metal fuels are candidates for this application, based on documented performance of metallic fast reactor fuels and the early results of tests currently being conducted in US and international transmutation fuel development programs.

  11. A model of reactor kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.S.; Thompson, B.R.

    1988-09-01

    The analytical model of nuclear reactor transients, incorporating both mechanical and nuclear effects, simulates reactor kinetics. Linear analysis shows the stability borderline for small power perturbations. In a stable system, initial power disturbances die out with time. With an unstable combination of nuclear and mechanical characteristics, initial disturbances persist and may increase with time. With large instability, oscillations of great magnitude occur. Stability requirements set limits on the power density at which particular reactors can operate. The limiting power density depends largely on the product of two terms: the fraction of delayed neutrons and the frictional damping of vibratory motion in reactor core components. As the fraction of delayed neutrons is essentially fixed, mechanical damping largely determines the maximum power density. A computer program, based on the analytical model, calculates and plots reactor power as a nonlinear function of time in response to assigned values of mechanical and nuclear characteristics.

  12. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Vivek V Ranade

    2014-03-01

    Catalytic reactions are ubiquitous in chemical and allied industries. A homogeneous or heterogeneous catalyst which provides an alternative route of reaction with lower activation energy and better control on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies and recent advances in process intensification/ multifunctional reactors are discussed to illustrate the approach.

  13. Unsteady processes in catalytic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Matros, Yu.Sh.

    1985-01-01

    In recent years a realization has occurred that reaction and reactor dynamics must be considered when designing and operating catalytic reactors. In this book, the author has focussed on both the processes occurring on individual porous-catalyst particles as well as the phenomena displayed by collections of these particles in fixed-bed reactors. The major topics discussed include the effects of unsteady-state heat and mass transfer, the influence of inhomogeneities and stagnant regions in fixed beds, and reactor operation during forced cycling of operating conditions. Despite the title of the book, attention is also paid to the determination of the number and stability of fixed-bed steady states, with the aim of describing the possibility of controlling reactors at unstable steady states. However, this development is somewhat dated, given the recent literature on multiplicity phenomena and process control.

  14. Antineutrino Monitoring of Thorium Reactors

    CERN Document Server

    Akindele, Oluwatomi A; Norman, Eric B

    2015-01-01

    Various groups have demonstrated that antineutrino monitoring can be successful in assessing the plutonium content in water-cooled nuclear reactors for nonproliferation applications. New reactor designs and concepts incorporate nontraditional fuels types and chemistry. Understanding how these properties affect the antineutrino emission from a reactor can extend the applicability of antineutrino monitoring.Thorium molten salt reactors (MSR) breed U-233, that if diverted constitute an IAEA direct use material. The antineutrino spectrum from the fission of U-233 has been determined, the feasibility of detecting the diversion of a significant quantity, 8 kg of U-233, within the IAEA timeliness goal of 30 days has been evaluated. The antineutrino emission from a thorium reactor operating under normal conditions is compared to a diversion scenario at a 25 meter standoff by evaluating the daily antineutrino count rate and the energy spectrum of the detected antineutrinos. It was found that the diversion of a signifi...

  15. Preparation and study of dialkyl nitroxide radicals; Preparation et etude de radicaux nitroxydes diacyles

    Energy Technology Data Exchange (ETDEWEB)

    Chenavas, P. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    These radicals are obtained by oxidation of N-hydroxy-imides with lead tetracetate or p-nitro-perbenzoic acid. These imides are prepared by heating dicarboxylic acids anhydrides with benzyloxy-amine followed by catalytic hydrogenation of N-benzyloxy-imides so obtained. Two series of radicals have mainly been studied, the first concerning five-membered cyclic imides, the second six-membered cyclic imides, these molecules having methyls substituents or no on the carbon ring. N. M. R. spectra of some O-benzyl-imides have been analysed. These different results have made it possible to study the conformation and stereochemistry of these imides. (author) [French] Ces radicaux sont obtenus par oxydation d'imides N-hydroxyles par le tetracetate de plomb ou l'acide p-nitroperbenzoique; ces imides sont prepares par chauffage d'anhydrides de diacides en presence de benzyloxyamine suivie d'une hydrogenation catalytique des N-benzyloxyimides ainsi obtenus. Deux series de radicaux ont principalement ete etudies: la premiere relative a des imides cycliques a cinq chainons, la seconde a des imides cycliques a six chainons, ces molecules ayant des substituants methyles ou non sur la chaine carbonee. Les derives O-benzyles de quelques-uns de ces imides ont ete analyses en R. M. N. Ces differents resultats ont permis une etude de la conformation et de la stereochimie de ces imides. (auteur)

  16. Alecto 2 - interaction studies; Alecto 2 - etudes d'interaction

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, J.P.; Clouet d' Orval, Ch.; Mougniot, J.C.; Penet, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    Weak interactions were experimentally studies with the tank of the critical assembly Alecto II and one, two or three bottles containing solutions of various concentrations. In particular, was studied the validity of certain classical assumptions, shielding effects, screening and semi-reflexion effects, importance of thermal coupling. The method of the 'k{sub eff}, solid angle' is shown to apply to such a system. The determination by divergence and pulsed neutron technique of the reactivity related to a millimeter of solution level affords the obtention of critical heights in terms of reactivity. (authors) [French] Une etude experimentale d'interactions faibles a ete faite entre la cuve de l'experience critique ALECTO II et une, deux ou trois bouteilles contenant des concentrations variees. On etudie, en particulier, la validite de certaines hypotheses classiques, effets d'ombre, d'ecrans, de semi-reflexion, importance du couplage thermique. On montre d'autre part que la methode du 'K{sub eff}, angle solide' peut s'appliquer a un tel systeme. La determination par divergence et neutrons pulses de la reactivite liee au millimetre de solution permet de traduire les hauteurs critiques obtenues, en terme de reactivite. (auteurs)

  17. 练习曲中的童话画面%The Fairy Tale Pictures in Etudes

    Institute of Scientific and Technical Information of China (English)

    刘铭

    2011-01-01

    The two sets of Etudes-Tableaux op33 and op39 are the most important and most repre- sentative works in Rachmaninoff's piano music as well as a perfect eornbination of art and technique. Selecting the well-known and most representative op39no6 Little Red Riding Hood and the Wolf, this paper analyses the visualization of pictures from the music and its playing techniques, hoping to shed light on its performance and teaching.%音画练习曲op33和op39是拉赫玛尼诺夫钢琴音乐创作中最重要且最具代表性的作品之一.也是艺术性和技术性的完美结合体。选取著名的并最有代表性的op39n06《小红帽与野狼》,从音乐的画面性和演奏的技巧性两方面进行分析,以期在演奏与教学方面得到启发。

  18. Contribution to the studies on the mineral content of plant material through radioactivation analysis; Contribution a l'etude de la composition minerale des matieres vegetales au moyen de l'analyse par radioactivation

    Energy Technology Data Exchange (ETDEWEB)

    Fourcy, A. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-03-15

    Radioactivation analysis is by its great sensibility or its rapidity quite helpful in plant biology and agronomy. Specific composition of plants and results to obtain in biological experimentation have needed a practical research on analytical methods for plant materials, using for radioactivation swimming-pool reactor neutrons and 14 MeV neutrons from a generator. Dosage process for 25 elements is exposed, taking account of the interest of the analysis for each element, the average amount occurring in plants and the result obtained. Many applications are developed, concerning nutrition physiology, genetics, parasitology, toxicology, control of manufactured agricultural and pharmaceutical products industrial and pesticides residues, ecology, radioecology and biochemistry. (author) [French] L'analyse par radioactivation, par sa grande sensibilite ou sa rapidite, est susceptible de rendre de nombreux services en biologie vegetale et en agronomie. La composition particuliere des plantes et les buts recherches dans l'experimentation ont exige une etude concrete des methodes d'analyse propres a la matiere vegetale en utilisant, pour la radioactivation, soit un reacteur de type piscine a eau legere, soit un accelerateur generateur de neutrons de 14 MeV. Le mode de dosage de 25 elements est expose en tenant compte de l'interet de l'analyse de chaque element, des teneurs moyennes rencontrees dans les plantes, et du resultat atteint. De nombreuses applications sont developpees qui touchent a la physiologie de la nutrition, la genetique, la parasitologie, la toxicologie, le controle des fabrications, les pollutions industrielles, l'ecologie, la radioecologie et la biochimie. (auteur)

  19. Study of the long-term values and prices of plutonium; a simplified parametrized model; Etude des valeurs et des prix du plutonium a long terme; un modele parametre simplifie

    Energy Technology Data Exchange (ETDEWEB)

    Gaussens, J.; Paillot, H. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The authors define the notions of use values and price of plutonium. They give a 'simplified parametrized model' simulating the equilibrium of the offer and the demand in time, concerning the plutonium and the price deriving from the relative scarcity of this metal, taking into account the technical and economic operating parameters of the various reactors confronted. This model is simple enough to allow direct computations and establish clear relations between the various parameters. The use of the linear programmes method allows on the other hand a wide extension of the model. This report includes three main parts: I - General description of the study (without detailed calculations) II - Mathematical development of the simplified parametrized model and application (the basic data and the results of the calculations are given) III - Appendices (giving the detailed computations of part II). (authors) [French] Les auteurs definissent les notions de valeurs d'usage et de prix du plutonium. Ils donnent un 'modele parametre simplifie' simulant l'equilibre de l'office et de la demande dans le temps concernant le plutonium et le prix qui decoule de la rarete relative de ce metal, compte tenu des parametres techniques et economiques de fonctionnement des divers reacteurs en presence. Ce modele est suffisamment simple pour permettre des calculs manuels et etablir des liaisons claires entre les divers parametres. L'utilisation de la technique des programmes lineaires permet par ailleurs une extension considerable du modele. Cette note comprend trois parties: I - Expose general de l'etude (sans expose du detail des calculs) II - Developpement mathematique du modele parametre simplifie et application (on precise les donnees de base et le resultat des calculs) III - Annexes (donnant le detail des calculs de la partie II). (auteurs)

  20. Abelpris til Pierre Deligne for banebrydende matematisk rapsodi om de algebraiske ligningers geometri

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard; Hjorth, Poul G.

    2013-01-01

    Matematikkens “nobelpris” – Abelprisen – gik i 2013 til den belgiske matematiker Pierre Deligne, ikke mindst for hans løsning af en berømt formodning af André Weil fra 1949. Vi kigger her nærmere på prismodtageren og hans arbejde.......Matematikkens “nobelpris” – Abelprisen – gik i 2013 til den belgiske matematiker Pierre Deligne, ikke mindst for hans løsning af en berømt formodning af André Weil fra 1949. Vi kigger her nærmere på prismodtageren og hans arbejde....

  1. Licensed reactor nuclear safety criteria applicable to DOE reactors

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

  2. University Reactor Conversion Lessons Learned Workshop for Purdue University Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Eric C. Woolstenhulme; Dana M. Hewit

    2008-09-01

    The Department of Energy’s Idaho National Laboratory, under its programmatic responsibility for managing the University Research Reactor Conversions, has completed the conversion of the reactor at Purdue University Reactor. With this work completed and in anticipation of other impending conversion projects, the INL convened and engaged the project participants in a structured discussion to capture the lessons learned. The lessons learned process has allowed us to capture gaps, opportunities, and good practices, drawing from the project team’s experiences. These lessons will be used to raise the standard of excellence, effectiveness, and efficiency in all future conversion projects.

  3. Neutronic Reactor Shield

    Science.gov (United States)

    Fermi, Enrico; Zinn, Walter H.

    The argument of the present Patent is a radiation shield suitable for protection of personnel from both gamma rays and neutrons. Such a shield from dangerous radiations is achieved to the best by the combined action of a neutron slowing material (a moderator) and a neutron absorbing material. Hydrogen is particularly effective for this shield since it is a good absorber of slow neutrons and a good moderator of fast neutrons. The neutrons slowed down by hydrogen may, then, be absorbed by other materials such as boron, cadmium, gadolinium, samarium or steel. Steel is particularly convenient for the purpose, given its effectiveness in absorbing also the gamma rays from the reactor (both primary gamma rays and secondary ones produced by the moderation of neutrons). In particular, in the present Patent a shield is described, made of alternate layers of steel and Masonite (an hydrolized ligno-cellulose material). The object of the present Patent is not discussed in any other published paper.

  4. Neutrino Experiments at Reactors

    Science.gov (United States)

    Reines, F.; Gurr, H. S.; Jenkins, T. L.; Munsee, J. H.

    1968-09-09

    A description is given of the electron-antineutrino program using a large fission reactor. A search has been made for a neutral weak interaction via the reaction (electron antineutrino + d .> p + n + electron antineutrino), the reaction (electron antineutrino + d .> n + n + e{sup +}) has now been detected, and an effort is underway to observe the elastic scattering reaction (electron antineutrino + e{sup -} .> electron antineutrino + e{sup -}) as well as to measure more precisely the reaction (electron antineutrino + p .> n + e{sup+}). The upper limit on the elastic scattering reaction which we have obtained with our large composite NaI, plastic, liquid scintillation detector is now about 50 times the predicted value.

  5. Study of some ion exchange minerals which can be used in water at high temperature; Etude de quelques echangeurs mineraux utilisables dans l'eau a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hure, J.; Platzer, R.; Bittel, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Fourre, J. [Societe le Carbone Lorraine, 75 - Paris (France); Wey, R. [Faculte des Sciences de Strasbourg, Lab. de Mineralogie, 67 (France)

    1958-07-01

    The study of the use of ion exchangers at high temperature has been carried out mainly with a view to purifying water in reactor circuits. The advantages of keeping high resistivity (from many hundreds to a few million ohm-cm) water within a reactor circuit are known; the decreased corrosion reduction in the amount of radiolysis, decreased radioactivity in the circuits and piping, the elements other than those forming water which are carried with the water usually becoming radioactive as they pass through the reactor. If the water circulation takes place at temperatures less than 75 deg. C continuous purification can be easily carried out by using organic ion exchange resins in agitated beds. However at higher temperatures particularly those above 100 deg. C it is not possible to use these media because of the rapid degradation of the high polymers used. Also the action of the radiation, for example that emanating from the products fixed on the ion exchange media permanently destroys the organic chains making up the skeleton of the resins. We have therefore sought after other compounds which are efficient demineralizer, but which have a structure such that high temperature and radiation do not bring about deterioration. We have especially investigated t main types: - natural ion exchangers having an inorganic structure (montmorillonite type clays); - natural inorganic compounds which have been treated to give them ion exchange properties (activated carbons); - synthetic inorganic compounds (salts having a low solubility such as zirconium and thorium phosphates and hydroxides). In this research we have endeavoured to obtain products which are stable in the presence of water at high temperatures, insoluble and not broken down into fine particles (that is to say not polluting the high resistivity water) and which are capable of giving up H{sup +} or OH{sup -} ions in exchange for the ions contained in the water or at least capable of forming insoluble compounds with

  6. Reactor service life extension program

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, G.R.; Sindelar, R.L.; Ondrejcin, R.S.; Baumann, E.W.

    1990-12-31

    A review of the Savannah River Site production reactor systems was initiated in 1980 and led to implementation of the Reactor Materials Program in 1984 to assess reactor safety and reactor service life. The program evaluated performance of the reactor tanks, primary coolant piping, and thermal shields, components of welded construction that were fabricated from Type 304 stainless steel. The structural integrity analysis of the primary coolant system has shown that the pressure boundary is not susceptible to gross rupture, including a double ended guillotine break or equivalent large area bank. Residual service life is potentially limited by two material degradation modes, irradiation damage and intergranular stress corrosion cracking. Analysis of the structural integrity of the tanks and piping has shown that continued safe operation of the reactors for several additional decades is not limited by the material performance of the primary coolant system. Although irradiation damage has not degraded material behavior to an unacceptable level, past experience has revealed serious difficulties with repair welding on irradiated stainless steel. Stress corrosion can be mitigated by newly identified limits on impurity concentrations in the coolant water and by stress mitigation of weld residual stresses. Work continues in several areas: the effects of helium on mechanical behavior of irradiated stainless steel; improved weld methods for piping and the reactor tanks; and a surveillance program to track irradiation effects on the tank walls.

  7. Reactor service life extension program

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, G.R.; Sindelar, R.L.; Ondrejcin, R.S.; Baumann, E.W.

    1990-01-01

    A review of the Savannah River Site production reactor systems was initiated in 1980 and led to implementation of the Reactor Materials Program in 1984 to assess reactor safety and reactor service life. The program evaluated performance of the reactor tanks, primary coolant piping, and thermal shields, components of welded construction that were fabricated from Type 304 stainless steel. The structural integrity analysis of the primary coolant system has shown that the pressure boundary is not susceptible to gross rupture, including a double ended guillotine break or equivalent large area bank. Residual service life is potentially limited by two material degradation modes, irradiation damage and intergranular stress corrosion cracking. Analysis of the structural integrity of the tanks and piping has shown that continued safe operation of the reactors for several additional decades is not limited by the material performance of the primary coolant system. Although irradiation damage has not degraded material behavior to an unacceptable level, past experience has revealed serious difficulties with repair welding on irradiated stainless steel. Stress corrosion can be mitigated by newly identified limits on impurity concentrations in the coolant water and by stress mitigation of weld residual stresses. Work continues in several areas: the effects of helium on mechanical behavior of irradiated stainless steel; improved weld methods for piping and the reactor tanks; and a surveillance program to track irradiation effects on the tank walls.

  8. Etude des etats electroniques en champ magnetique dans le niveau de Landau N=0 de la tricouche ABC de graphene

    Science.gov (United States)

    Rondeau, Maxime

    Dans cet ouvrage nous etudions les phases du gaz d'electrons bidimensionnel dans la tricouche de graphene en empilement ABC. En partant du modele des liaisons fortes et en faisant l'approximation du continuum autour des vallees K +, K-, nous obtenons un modele effectif a deux bandes qui permet de decrire la physique de basse energie des electrons en champ magnetique dans cette structure. Ce modele contient trois orbitales degenerees dans le niveau de Landau N = O. Ce dernier est donc 12N φ, fois degeneres en incluant les degres de liberte de spin et de vallee. En ajoutant l'interaction de Coulomb au systeme et en considerant seulement les remplissages v = -5, -4, -4, 5 afin d'avoir un systeme a trois niveaux, nous etudions le diagramme de phase du gaz d'electrons en fonction d'un biais electrique entre les couches externes. Nous trouvons une phase d'onde de densite de charge bidimensionnelle (ODC2D) comme etat fondamental du systeme. Cette ODC2D se nomme cristal dans ce memoire et nous derivons ses proprietes de transports et ses modes collectifs. Nous discutons egalement du caractere topologique de ce cristal. Notre etude englobe aussi les phases liquides avec ou sans coherence orbitale. Nous concluons notre memoire par l'etude de quelques signatures experimentales des phases du gaz d'electrons dans la tricouche.

  9. Assessment of torsatrons as reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, J.F. (Oak Ridge National Lab., TN (United States)); Painter, S.L. (Australian National Univ., Canberra, ACT (Australia))

    1992-12-01

    Stellarators have significant operational advantages over tokamaks as ignited steady-state reactors because stellarators have no dangerous disruptions and no need for continuous current drive or power recirculated to the plasma, both easing the first wall, blanket, and shield design; less severe constraints on the plasma parameters and profiles; and better access for maintenance. This study shows that a reactor based on the torsatron configuration (a stellarator variant) could also have up to double the mass utilization efficiency (MUE) and a significantly lower cost of electricity (COE) than a conventional tokamak reactor (ARIES-I) for a range of assumptions. Torsatron reactors can have much smaller coil systems than tokamak reactors because the coils are closer to the plasma and they have a smaller cross section (higher average current density because of the lower magnetic field). The reactor optimization approach and the costing and component models are those used in the current stage of the ARIES-I tokamak reactor study. Typical reactor parameters for a 1-GW(e) Compact Torsatron reactor example are major radius R[sub 0] = 6.6-8.8 m, on-axis magnetic field B[sup 0] = 4.8-7.5 T, B[sub max] (on coils) = 16 T, MUE 140-210 kW(e)/tonne, and COE (in constant 1990 dollars) = 67-79 mill/kW(e)h. The results are relatively sensitive to assumptions on the level of confinement improvement and the blanket thickness under the inboard half of the helical windings but relatively insensitive to other assumptions.

  10. Safety of VVER-440 reactors

    CERN Document Server

    Slugen, Vladimir

    2011-01-01

    Safety of VVER-440 Reactors endeavours to promote an increase in the safety of VVER-440 nuclear reactors via the improvement of fission products limitation systems and the implementation of special non-destructive spectroscopic methods for materials testing. All theoretical and experimental studies performed the by author over the last 25 years have been undertaken with the aim of improving VVER-440 defence in depth, which is one of the most important principle for ensuring safety in nuclear power plants. Safety of VVER-440 Reactors is focused on the barrier system through which the safety pri

  11. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  12. Reactor neutrons in nuclear astrophysics

    Science.gov (United States)

    Reifarth, René; Glorius, Jan; Göbel, Kathrin; Heftrich, Tanja; Jentschel, Michael; Jurado, Beatriz; Käppeler, Franz; Köster, Ulli; Langer, Christoph; Litvinov, Yuri A.; Weigand, Mario

    2017-09-01

    The huge neutron fluxes offer the possibility to use research reactors to produce isotopes of interest, which can be investigated afterwards. An example is the half-lives of long-lived isotopes like 129I. A direct usage of reactor neutrons in the astrophysical energy regime is only possible, if the corresponding ions are not at rest in the laboratory frame. The combination of an ion storage ring with a reactor and a neutron guide could open the path to direct measurements of neutron-induced cross sections on short-lived radioactive isotopes in the astrophysically interesting energy regime.

  13. Concept for LEU Burst Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kimpland, Robert Herbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-07

    Design and performance of a proposed LEU burst reactor are sketched. Salient conclusions reached are the following: size would be ~1,500 kg or greater, depending on the size of the central cavity; internal stresses during burst require split rings for relief; the reactor would likely require multiple control and safety rods for fine control; the energy spectrum would be comparable to that of HEU machines; and burst yields and steady-state power levels will be significantly greater in an LEU reactor.

  14. Nuclear reactor downcomer flow deflector

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Charles B. (Greensburg, PA); Altman, David A. (Pittsburgh, PA); Singleton, Norman R. (Murrysville, PA)

    2011-02-15

    A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

  15. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  16. Nuclear reactor PBMR and cogeneration; Reactor nuclear PBMR y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  17. Breeder Reactors, Understanding the Atom Series.

    Science.gov (United States)

    Mitchell, Walter, III; Turner, Stanley E.

    The theory of breeder reactors in relationship to a discussion of fission is presented. Different kinds of reactors are characterized by the cooling fluids used, such as liquid metal, gas, and molten salt. The historical development of breeder reactors over the past twenty-five years includes specific examples of reactors. The location and a brief…

  18. Evolution of the tandem mirror reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, G.A.; Logan, B.G.

    1982-03-09

    We discuss the evolution of the tandem mirror reactor concept from the original conceptual reactor design (1977) through the first application of the thermal barrier concept to a reactor design (1979) to the beginning of the Mirror Advanced Reactor Study (1982).

  19. FASTER Test Reactor Preconceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-31

    The FASTER test reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  20. FASTER test reactor preconceptual design report summary

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, Steven [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-29

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  1. ADAPTIVE CONTROL SYSTEM OF INDUSTRIAL REACTORS

    Directory of Open Access Journals (Sweden)

    Vyacheslav K. Mayevski

    2014-01-01

    Full Text Available This paper describes a mathematical model of an industrial chemical reactor for production of synthetic rubber. During reactor operation the model parameters vary considerably. To create a control algorithm performed transformation of mathematical model of the reactor in order to obtain a dependency that can be used to determine the model parameters are changing during reactor operation.

  2. Nuclear research reactors activities in INVAP

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, Juan Pablo [INVAP, Bariloche (Argentina)

    2013-07-01

    This presentation describes the different activities in the research reactor field that are being carried out by INVAP. INVAP is presently involved in the design of three new research reactors in three different countries. The RA-10 is a multipurpose reactor, in Argentina, planned as a replacement for the RA-3 reactor. INVAP was contracted by CNEA for carrying out the preliminary engineering for this reactor, and has recently been contracted by CNEA for the detailed engineering. CNEA groups are strongly involved in the design of this reactor. The RMB is a multipurpose reactor, planned by CNEN from Brazil. CNEN, through REDETEC, has contracted INVAP to carry out the preliminary engineering for this reactor. As the user requirements for RA-10 and RMB are very similar, an agreement was signed between Argentina and Brasil governments to cooperate in these two projects. The agreement included that both reactors would use the OPAL reactor in Australia, design and built by INVAP, as a reference reactor. INVAP has also designed the LPRR reactor for KACST in Saudi Arabia. The LPRR is a 30 kw reactor for educational purposes. KACST initially contracted INVAP for the engineering for this reactor and has recently signed the contract with INVAP for building the reactor. General details of these three reactors will be presented.

  3. Advanced Carbothermal Electric Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the Phase 1 effort was to demonstrate the technical feasibility of the Advanced Carbothermal Electric (ACE) Reactor concept. Unlike...

  4. Thermal Analysis for Mobile Reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Mobile reactor design in the paper is consisted of two grades of thermal electric conversion. The first grade is the thermionic conversion inside the core and the second grade is thermocouple conversion

  5. Advanced Carbothermal Electric Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop the Advanced Carbothermal Electric (ACE) reactor to efficiently extract oxygen from lunar regolith. Unlike state-of-the-art carbothermal...

  6. Teaching About Nature's Nuclear Reactors

    CERN Document Server

    Herndon, J M

    2005-01-01

    Naturally occurring nuclear reactors existed in uranium deposits on Earth long before Enrico Fermi built the first man-made nuclear reactor beneath Staggs Field in 1942. In the story of their discovery, there are important lessons to be learned about scientific inquiry and scientific discovery. Now, there is evidence to suggest that the Earth's magnetic field and Jupiter's atmospheric turbulence are driven by planetary-scale nuclear reactors. The subject of planetocentric nuclear fission reactors can be a jumping off point for stimulating classroom discussions about the nature and implications of planetary energy sources and about the geomagnetic field. But more importantly, the subject can help to bring into focus the importance of discussing, debating, and challenging current thinking in a variety of areas.

  7. Reactor containment research and development

    Energy Technology Data Exchange (ETDEWEB)

    Weil, N. A.

    1963-06-15

    An outline is given of containment concepts, sources and release rates of energy, responses of containment structures, effects of projectiles, and leakage rates of radioisotopes, with particular regard to major reactor accidents. (T.F.H.)

  8. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, L.R.; Hayes, D.W.; Hunter, C.H.; Marter, W.L.; Moyer, R.A.

    1989-12-01

    This volume is a reactor operation environmental information document for the Savannah River Plant. Topics include meteorology, surface hydrology, transport, environmental impacts, and radiation effects. 48 figs., 56 tabs. (KD)

  9. Advanced Catalytic Hydrogenation Retrofit Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reinaldo M. Machado

    2002-08-15

    Industrial hydrogenation is often performed using a slurry catalyst in large stirred-tank reactors. These systems are inherently problematic in a number of areas, including industrial hygiene, process safety, environmental contamination, waste production, process operability and productivity. This program proposed the development of a practical replacement for the slurry catalysts using a novel fixed-bed monolith catalyst reactor, which could be retrofitted onto an existing stirred-tank reactor and would mitigate many of the minitations and problems associated with slurry catalysts. The full retrofit monolith system, consisting of a recirculation pump, gas/liquid ejector and monolith catalyst, is described as a monolith loop reactor or MLR. The MLR technology can reduce waste and increase raw material efficiency, which reduces the overall energy required to produce specialty and fine chemicals.

  10. Unique features of space reactors

    Science.gov (United States)

    Buden, David

    Space reactors are designed to meet a unique set of requirements; they must be sufficiently compact to be launched in a rocket to their operational location, operate for many years without maintenance and servicing, operate in extreme environments, and reject heat by radiation to space. To meet these restrictions, operating temperatures are much greater than in terrestrial power plants, and the reactors tend to have a fast neutron spectrum. Currently, a new generation of space reactor power plants is being developed. The major effort is in the SP-100 program, where the power plant is being designed for seven years of full power, and no maintenance operation at a reactor outlet operating temperature of 1350 K.

  11. Jules Horowitz Reactor, basic design

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, Y.; Bouilloux, Y.; Chantoin, P.; Guigon, B.; Bravo, X.; Germain, C.; Rommens, M.; Tremodeux, P

    2003-07-01

    Since the shutdown of the SILOE reactor in 1997, the OSIRIS reactor has ensured the needs regarding technological irradiation at CEA including those of its industrial partners and customers. The Jules Horowitz Reactor will replace it. It has the ambition to provide the necessary nuclear data and maintain a fission research capacity in Europe after 2010. This capacity should be service-oriented. It will be established in Cadarache. The Jules Horowitz reactor will also: - represent a significant step in term of performances and experimental capabilities, - be designed with a high flexibility, in order to satisfy the current demand from European industry, research and be able to accommodate future requirements, - reach a high level of safety, according to the best current practice. This paper will present the main functionalities and the design options resulting from the 'preliminary design' studies. (authors)

  12. Solid State Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas

  13. Reactor antineutrinos and nuclear physics

    Science.gov (United States)

    Balantekin, A. B.

    2016-11-01

    Short-baseline reactor neutrino experiments successfully measured the neutrino parameters they set out to measure, but they also identified a shape distortion in the 5-7 MeV range as well as a reduction from the predicted value of the flux. Nuclear physics input into the calculations of reactor antineutrino spectra needs to be better refined if this anomaly is to be interpreted as due to sterile neutrino states.

  14. Microchannel Reactors for ISRU Applications

    Science.gov (United States)

    Carranza, Susana; Makel, Darby B.; Blizman, Brandon; Ward, Benjamin J.

    2005-02-01

    Affordable planning and execution of prolonged manned space missions depend upon the utilization of local resources and the waste products which are formed in manned spacecraft and surface bases. Successful in-situ resources utilization (ISRU) will require component technologies which provide optimal size, weight, volume, and power efficiency. Microchannel reactors enable the efficient chemical processing of in situ resources. The reactors can be designed for the processes that generate the most benefit for each mission. For instance, propellants (methane) can be produced from carbon dioxide from the Mars atmosphere using the Sabatier reaction and ethylene can be produced from the partial oxidation of methane. A system that synthesizes ethylene could be the precursor for systems to synthesize ethanol and polyethylene. Ethanol can be used as a nutrient for Astrobiology experiments, as well as the production of nutrients for human crew (e.g. sugars). Polyethylene can be used in the construction of habitats, tools, and replacement parts. This paper will present recent developments in miniature chemical reactors using advanced Micro Electro Mechanical Systems (MEMS) and microchannel technology to support ISRU of Mars and lunar missions. Among other applications, the technology has been demonstrated for the Sabatier process and for the partial oxidation of methane. Microchannel reactors were developed based on ceramic substrates as well as metal substrates. In both types of reactors, multiple layers coated with catalytic material are bonded, forming a monolithic structure. Such reactors are readily scalable with the incorporation of extra layers. In addition, this reactor structure minimizes pressure drop and catalyst settling, which are common problems in conventional packed bed reactors.

  15. The resonance absorption controlled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Caro, R.

    1977-07-01

    In this report a new method of reactor control based on tho isotopic moderator composition variation is studied, taking as a reference a D{sub 2}O/H{sub 2}O system. With this method an spectacular increment in the burn-up degree and a sensible reduction of the conventional control system is obtained. An important part of this work has been the detailed analysis of the parameters affecting the neutron spectrum in a heterogeneous reactor. (Author) 50 refs.

  16. Contribution to the study of french pitchblendes; Contribution a l'etude des pechblendes francaises

    Energy Technology Data Exchange (ETDEWEB)

    Geffroy, J. [Commissariat a l' Energie Atomique, Lab. de Mineralogie, Centre de Chatillon (France). Centre d' Etudes Nucleaires; Sarcia, J.A. [Commissariat a l' Energie Atomique, Div. de la Crouzille, Haute Vienne (France). Centre d' Etudes Nucleaires

    1955-07-01

    The authors first review the characteristics of uraninite-pitchblende, as deduced of present literature. They set apart from typical pitchblende a black oxide aspect, which probably corresponds to neo-formations, and a 'para-pitchblende' aspect, which they relate to deep sur-oxidation of normal pitchblende. They insist on the easy replacement of pitchblende by silica. and give indications as to changes in vein stones (fluorite, quartz, etc...). A detailed study of paragenesis and successions in french uranium districts follows (including discussion of uranium of uranium-bearing coals). The authors attempt to classify french pitchblende veins. They are chiefly epithermal and poor in satellite ores. Three types of deposits are identified: massive - pitchblende type, silica type, fluorite type. These deposits, as those of Portugal, are included in granite, Central-European peri-batholitic types where uranium associates which Ni, Co, Bi and Ag, are in France both rare and poor. Finally, the authors attempt to bring out in the european Hercynian area a particular distribution of paragenetic types. (authors) [French] Les auteurs recapitulent d'abord les caracteres et les occurences de l'uraninite - pechblende, tels qu'ils peuvent etre degages de l'actuelle bibliographie. Ils exposent ensuite les faits qui du point de vue mineralogique seulement ressortent de l'etude mineralogique et chalcographique des pechblendes francaises et de leurs satellites. Ils distinguent de la pechblende-type un facies oxyde noir; correspondant probablement a une neoformation, et un facies parapechblende, qui est rapporte a une sur oxydation hypogene de la pechblende proprement dite. Ils insistent sur le facile remaniement de la pechblende par la slice; et donnent quelques precisions sur les modifications des gangues (fluorine, quartz, etc...). Suit l'etude detaillee des parageneses et des successions dans les districts uraniferes francais: Divisions du

  17. Calculation of reactor antineutrino spectra in TEXONO

    CERN Document Server

    Chen Dong Liang; Mao Ze Pu; Wong, T H

    2002-01-01

    In the low energy reactor antineutrino physics experiments, either for the researches of antineutrino oscillation and antineutrino reactions, or for the measurement of abnormal magnetic moment of antineutrino, the flux and the spectra of reactor antineutrino must be described accurately. The method of calculation of reactor antineutrino spectra was discussed in detail. Furthermore, based on the actual circumstances of NP2 reactors and the arrangement of detectors, the flux and the spectra of reactor antineutrino in TEXONO were worked out

  18. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iwashige, Kengo

    1996-06-21

    In an LMFBR type reactor, partitions are disposed to a coolant channel at positions lower than the free liquid level, and the width of the partitions is adapted to have a predetermined condition. Namely, when low temperature fluid overflowing the wall of the coolant channel, flows down and collided against the free liquid surface in the coolant channel, since the dropping speed thereof is reduced abruptly, large pressure waves are caused by kinetic force of the low temperature fluid. However, if appropriate numbers of partitions having an appropriate shape are formed, the dropping speed of the low temperature fluid is moderated to reduce the pressure waves. In addition, since the pressure waves are dispersed to the circumferential and lateral directions of the coolant flow channel respectively, the propagation of the pressure waves can be prevented effectively. Further, when the flow of the low temperature fluid is changed to the circumferential direction, for example, by earthquakes, since the partitions act as members resisting against the circumferential change of the low temperature fluid, the change of the direction can be suppressed. (N.H.)

  19. Reactor Simulator Testing

    Science.gov (United States)

    Schoenfeld, Michael P.; Webster, Kenny L.; Pearson, Boise J.

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator test loop (RxSim) was design & built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing was to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V since the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This paper summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. The annular linear induction pump (ALIP) tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  20. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  1. Tritium management in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, T.R.

    1978-05-01

    This is a review paper covering the key environmental and safety issues and how they have been handled in the various magnetic and inertial confinement concepts and reference designs. The issues treated include: tritium accident analyses, tritium process control, occupational safety, HTO formation rate from the gas-phase, disposal of tritium contaminated wastes, and environmental impact--each covering the Joint European Tokamak (J.E.T. experiment), Tokamak Fusion Test Reactor (TFTR), Russian T-20, The Next Step (TNS) designs by Westinghouse/ORNL and General Atomic/ANL, the ANL and ORNL EPR's, the G.A. Doublet Demonstration Reactor, the Italian Fintor-D and the ORNL Demo Studies. There are also the following full scale plant reference designs: UWMAK-III, LASL's Theta Pinch Reactor Design (RTPR), Mirror Fusion Reactor (MFR), Tandem Mirror Reactor (TMR), and the Mirror Hybrid Reactor (MHR). There are four laser device breakeven experiments, SHIVA-NOVA, LLL reference designs, ORNL Laser Fusion power plant, the German ''Saturn,'' and LLL's Laser Fusion EPR I and II.

  2. Etude de la dynamique des porteurs dans des nanofils de silicium par spectroscopie terahertz

    Science.gov (United States)

    Beaudoin, Alexandre

    Ce memoire presente une etude des proprietes de conduction electrique et de la dynamique temporelle des porteurs de charges dans des nanofils de silicium sondes par rayonnement terahertz. Les cas de nanofils de silicium non intentionnellement dopes et dopes type n sont compares pour differentes configurations du montage experimental. Les mesures de spectroscopie terahertz en transmission montre qu'il est possible de detecter la presence de dopants dans les nanofils via leur absorption du rayonnement terahertz (˜ 1--12 meV). Les difficultes de modelisation de la transmission d'une impulsion electromagnetique dans un systeme de nanofils sont egalement discutees. La detection differentielle, une modification au systeme de spectroscopie terahertz, est testee et ses performances sont comparees au montage de caracterisation standard. Les instructions et des recommendations pour la mise en place de ce type de mesure sont incluses. Les resultats d'une experience de pompe optique-sonde terahertz sont egalement presentes. Dans cette experience, les porteurs de charge temporairement crees suite a l'absorption de la pompe optique (lambda ˜ 800 nm) dans les nanofils (les photoporteurs) s'ajoutent aux porteurs initialement presents et augmentent done l'absorption du rayonnement terahertz. Premierement, l'anisotropie de l'absorption terahertz et de la pompe optique par les nanofils est demontree. Deuxiemement, le temps de recombinaison des photoporteurs est etudie en fonction du nombre de photoporteurs injectes. Une hypothese expliquant les comportements observes pour les nanofils non-dopes et dopes-n est presentee. Troisiemement, la photoconductivite est extraite pour les nanofils non-dopes et dopes-n sur une plage de 0.5 a 2 THz. Un lissage sur la photoconductivite permet d'estimer le nombre de dopants dans les nanofils dopes-n. Mots-cles: nanofil, silicium, terahertz, conductivite, spectroscopie, photoconductivite.

  3. Etude theorique et experimentale des evaporateurs de dioxyde de carbone operant dans des conditions de givrage

    Science.gov (United States)

    Bendaoud, Adlane Larbi

    Les evaporateurs de refrigeration sont surtout du type tube a ailettes, appeles serpentins, et fonctionnent dans l'une des conditions suivantes: seche, humide ou avec formation de givre. Il a ete demontre que la formation du givre sur la paroi exterieure de l'echangeur engendre une surconsommation energetique a cause des operations de degivrage puisque 15 a 20% seulement de la chaleur produite sert au degivrage tandis que le reste est dissipee dans l'environnement [1]. Avec l'avenement des nouveaux refrigerants, moins nocifs envers l'environnement, l'industrie du froid se trouve penalisee du fait que peu ou pas de composantes mecaniques (compresseur, pompe, echangeur...etc.) adaptees sont disponibles [3]. Il s'agit pour la communaute des frigoristes de combler ce retard technologique en redeveloppant ces composantes mecaniques afin qu'elles soient adaptees aux nouveaux refrigerants. Dans cette optique, et afin de mieux comprendre le comportement thermique des evaporateurs au CO2 fonctionnant dans des conditions seches, qu'un groupe de chercheurs du CanmetENERGIE avaient lance, en 2000, un programme de R & D. Dans le cadre de programme un outil de simulation des evaporateurs au CO2 a ete developpe et un banc d'essai contenant une boucle secondaire de refrigeration utilisant le CO2 comme refrigerant a ete construit. Comme continuite de ce travail de recherche, en 2006 ce meme groupe de recherche a lance un nouveau projet qui consiste a faire une etude theorique et experimentale des evaporateurs au CO2 operants dans des conditions de givrage. Et, c'est exactement dans le cadre de ce projet que se positionne ce travail de these. Ce travail de recherche a ete entrepris pour mieux comprendre le comportement thermique et hydrodynamique des serpentins fonctionnant dans des conditions de givrage, l'effet des circuits de refrigerant ainsi que celui des parametres geometriques et d'operation. Pour cela, un travail theorique supporte par une etude experimentale a ete effectue

  4. Innovative hybrid biological reactors using membranes; Reactores biologico hibrido innovadores utilizando membranas

    Energy Technology Data Exchange (ETDEWEB)

    Diez, R.; Esteban-Garcia, A. L.; Florio, L. de; Rodriguez-Hernandez, L.; Tejero, I.

    2011-07-01

    In this paper we present two lines of research on hybrid reactors including the use of membranes, although with different functions: RBPM, biofilm reactors and membranes filtration RBSOM, supported biofilm reactors and oxygen membranes. (Author) 14 refs.

  5. Establishment of licensing process for development reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Yune, Young Gill; Kim, Woong Sik (and others)

    2006-02-15

    A study on licensing processes for development reactors has been performed to prepare the licensing of development reactors developed in Korea. The contents and results of the study are summarized as follows. The licensing processes for nuclear reactors in Korea, U.S.A., Japan, France, U.K., Canada, and IAEA were surveyed and analyzed to obtain technical bases necessary for establishing licensing processes applicable to development reactors in Korea. Based on the technical bases obtained the above analysis, the purpose, power output, and design characteristics of development reactors were analyzed in detail. The analysis results suggested that development reactors should be classified as a new reactor category (called as 'development reactor') separated from the current reactor categories such as the research reactor and the power reactor. Therefore, it is proposed to establish a new reactor category classified as 'development reactor' for the development reactors. And licensing processes, including licensing technical requirements, licensing document requirements, and other regulatory requirements, were also proposed for the development reactors. In order to institutionalize the licensing processes developed in this study, it is necessary to revise the current laws. Therefore, draft provisions of Atomic Energy Act, Enforcement Decree of the Atomic Energy Act, and Enforcement Regulation of the Atomic Energy Act have been developed for the preparation of the future legalization of the licensing processes proposed for the development reactors. Conclusively, a proposal of licensing processes and draft provisions of laws have been developed for the development reactors. The results proposed in this study can be applied directly to the licensing of the future development reactors. Furthermore, they will also contribute to establishing successfully the licensing processes of the development reactors.

  6. EL3 reactor description and safety analysis report; Pile EL3, rapport descriptif et de surete

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-02-01

    The EL-3 reactor is an experimental pile. Heterogenous type reactor, water moderated and cooled it uses slightly enriched uranium oxide as fuel (4.5 percent) distributed in vertical cells that constitute the core (the maximum number of cells is 99). It is conceived to function at a maximal thermal power of 20 MW. It supplies a maximum thermal neutron flux of 10{sup 14} neutrons/cm{sup 2}/sec. It has several experimental devices. The EL-3 reactor is surrounded by auxiliary circuits of fluids, in a sealed containment, slightly depressed. The primary heavy water coolant circuit is completely included in this containment. Its cooling is made by the intermediary of a light water secondary circuit by atmospheric refrigerants. The ventilation circuits of the sealed containment and the reactor block do not release air outside, under nornal functioning, by a particularly studied chimney only after filtering and eventually dilution. The eventual contamination of the light water or air by active products is permanently monitored to allow the reactor shutdown and avoid the release in atmosphere of dangerous products. The EL-3 reactor, laying down in may 1955, has diverged in july 1957, made its first ascending in power in december 1957 and reached its complete power in april 1958. The positioning of actual fuel (snow crystal) was made during summer 1964. Reactor with an experimental aim, it is used for theoretical and technological studies by material irradiation in the experimental channels and the core cells, with possibilities to constitute independent loops (relative to the cooling fluids). Thirty vertical channels are devoted to the fabrication of artificial radioelements. [French] La pile EL-3 est une pile experimentale. Du type heterogene, moderee et refroidie a l'eau lourde elle utilise comme combustible de l'oxygene d'uranium faiblement enrichi (4,5 p.cent) reparti en cellules verticales qui constituent le coeur (le nombre maximal de cellules est de, 99

  7. Repairing liner of the reactor; Reparacion del liner del reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-07-15

    Due to the corrosion problems of the aluminum coating of the reactor pool, a periodic inspections program by ultrasound to evaluate the advance grade and the corrosion speed was settled down. This inspections have shown the necessity to repair some areas, in those that the slimming is significant, of not making it can arrive to the water escape of the reactor pool. The objective of the repair is to place patches of plates of 1/4 inch aluminum thickness in the areas of the reactor 'liner', in those that it has been detected by ultrasound a smaller thickness or similar to 3 mm. To carry out this the fuels are move (of the core and those that are decaying) to a temporary storage, the structure of the core is confined in a tank that this placed inside the pool of the reactor, a shield is placed in the thermal column and it is completely extracted the water for to leave uncover the 'liner' of the reactor. (Author)

  8. Reactor Simulator Testing

    Science.gov (United States)

    Schoenfeld, Michael P.; Webster, Kenny L.; Pearson, Boise Jon

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator test loop (RxSim) was design & built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing was to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V since the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This paper summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. The annular linear induction pump (ALIP) tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz. Keywords: fission, space power, nuclear, liquid metal, NaK.

  9. Reactivity determination in accelerator driven reactors using reactor noise analysis

    Directory of Open Access Journals (Sweden)

    Kostić Ljiljana 1

    2002-01-01

    Full Text Available Feynman-alpha and Rossi-alpha methods are used in traditional nuclear reactors to determine the subcritical reactivity of a system. The methods are based on the measurement of the mean value, variance and the covariance of detector counts for different measurement times. Such methods attracted renewed attention recently with the advent of the so-called accelerator driven reactors (ADS proposed some time ago. The ADS systems, intended to be used either in energy generation or transuranium transmutation, will use a subcritical core with a strong spallation source. A spallation source has statistical properties that are different from those traditionally used by radioactive sources. In such reactors the monitoring of the subcritical reactivity is very important, and a statistical method, such as the Feynman-alpha method, is capable of resolving this problem.

  10. Thermonuclear Reflect AB-Reactor

    CERN Document Server

    Bolonkin, Alexander

    2008-01-01

    The author offers a new kind of thermonuclear reflect reactor. The remarkable feature of this new reactor is a three net AB reflector, which confines the high temperature plasma. The plasma loses part of its energy when it contacts with the net but this loss can be compensated by an additional permanent plasma heating. When the plasma is rarefied (has a small density), the heat flow to the AB reflector is not large and the temperature in the triple reflector net is lower than 2000 - 3000 K. This offered AB-reactor has significantly less power then the currently contemplated power reactors with magnetic or inertial confinement (hundreds-thousands of kW, not millions of kW). But it is enough for many vehicles and ships and particularly valuable for tunnelers, subs and space apparatus, where air to burn chemical fuel is at a premium or simply not available. The author has made a number of innovations in this reactor, researched its theory, developed methods of computation, made a sample computation of typical pr...

  11. Heterogeneous Transmutation Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Bays

    2007-09-01

    The threshold-fission (fertile) nature of Am-241 is used to destroy this minor actinide by capitalizing upon neutron capture instead of fission within a sodium fast reactor. This neutron-capture and its subsequent decay chain leads to the breeding of even neutron number plutonium isotopes. A slightly moderated target design is proposed for breeding plutonium in an axial blanket located above the active “fast reactor” driver fuel region. A parametric study on the core height and fuel pin diameter-to-pitch ratio is used to explore the reactor and fuel cycle aspects of this design. This study resulted in both non-flattened and flattened core geometries. Both of these designs demonstrated a high capacity for removing americium from the fuel cycle. A reactivity coefficient analysis revealed that this heterogeneous design will have comparable safety aspects to a homogeneous reactor of comparable size. A mass balance analysis revealed that the heterogeneous design may reduce the number of fast reactors needed to close the current once-through light water reactor fuel cycle.

  12. Entropy Production in Chemical Reactors

    Science.gov (United States)

    Kingston, Diego; Razzitte, Adrián C.

    2017-06-01

    We have analyzed entropy production in chemically reacting systems and extended previous results to the two limiting cases of ideal reactors, namely continuous stirred tank reactor (CSTR) and plug flow reactor (PFR). We have found upper and lower bounds for the entropy production in isothermal systems and given expressions for non-isothermal operation and analyzed the influence of pressure and temperature in entropy generation minimization in reactors with a fixed volume and production. We also give a graphical picture of entropy production in chemical reactions subject to constant volume, which allows us to easily assess different options. We show that by dividing a reactor into two smaller ones, operating at different temperatures, the entropy production is lowered, going as near as 48 % less in the case of a CSTR and PFR in series, and reaching 58 % with two CSTR. Finally, we study the optimal pressure and temperature for a single isothermal PFR, taking into account the irreversibility introduced by a compressor and a heat exchanger, decreasing the entropy generation by as much as 30 %.

  13. Simplifying Microbial Electrosynthesis Reactor Design

    Directory of Open Access Journals (Sweden)

    Cloelle G.S. Giddings

    2015-05-01

    Full Text Available Microbial electrosynthesis, an artificial form of photosynthesis, can efficiently convert carbon dioxide into organic commodities; however, this process has only previously been demonstrated in reactors that have features likely to be a barrier to scale-up. Therefore, the possibility of simplifying reactor design by both eliminating potentiostatic control of the cathode and removing the membrane separating the anode and cathode was investigated with biofilms of Sporomusa ovata, which reduces carbon dioxide to acetate. In traditional ‘H-cell’ reactors, where the anode and cathode chambers were separated with a proton-selective membrane, the rates and columbic efficiencies of microbial electrosynthesis remained high when electron delivery at the cathode was powered with a direct current power source rather than with a poteniostat-poised cathode utilized in previous studies. A membrane-less reactor with a direct-current power source with the cathode and anode positioned to avoid oxygen exposure at the cathode, retained high rates of acetate production as well as high columbic and energetic efficiencies. The finding that microbial electrosynthesis is feasible without a membrane separating the anode from the cathode, coupled with a direct current power source supplying the energy for electron delivery, is expected to greatly simplify future reactor design and lower construction costs.

  14. Hanford reactor and separations facility advantages

    Energy Technology Data Exchange (ETDEWEB)

    1963-06-27

    This document describes the advantages and limitations of Hanford production facilities. In addition to summarizing the technical parameters of the reactors and separations plants and their mechanical features, the unique aspects of these facilities to the production of special materials in which the Commission may be interested have been discussed. As the primary difference between the B-C-D-DR-F-H reactors and the K reactors and the K reactors is in the number and length of process channels. This report is addressed primarily to the 2000-tube reactors. K reactor characteristics are within the range of lattice and flexibility parameters described.

  15. Imaging Fukushima Daiichi reactors with muons

    Directory of Open Access Journals (Sweden)

    Haruo Miyadera

    2013-05-01

    Full Text Available A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  16. Fast breeder reactors an engineering introduction

    CERN Document Server

    Judd, A M

    1981-01-01

    Fast Breeder Reactors: An Engineering Introduction is an introductory text to fast breeder reactors and covers topics ranging from reactor physics and design to engineering and safety considerations. Reactor fuels, coolant circuits, steam plants, and control systems are also discussed. This book is comprised of five chapters and opens with a brief summary of the history of fast reactors, with emphasis on international and the prospect of making accessible enormous reserves of energy. The next chapter deals with the physics of fast reactors and considers calculation methods, flux distribution,

  17. A study of the aptitude of soils under natural conditions to retain radiostrontium; Etude de la vocation des sols en place a la retention du radiostrontium

    Energy Technology Data Exchange (ETDEWEB)

    Bovard, P.; Grauby, A. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Independently of the theoretical study of the propagation of radioactivity in the soil as a result of submersions or of radioactive rain, the authors have studied directly and practically how this radioactivity can vary in the actual soil. To this end a simple, rapid method has been perfected; it makes it possible to maintain for each soil sample the natural parameters (structure, humidity, etc.) without introducing boundary effects. In the laboratory, after charging the soil samples, part of the study of the propagation of radioactivity is done by autoradiography; finally, as a practical application, the study of an atomic site illustrates the methods described. (author) [French] Independamment de l'etude theorique de la propagation de la radioactivite dans le sol a la suite de submersions ou de pluies radioactives, les auteurs ont etudie directement et pratiquement comment pourrait evoluer cette radioactivite dans les sols en place. Pour cela, une methode simple et rapide a ete mise au point; elle permet de conserver pour chaque echantillon de sol, les parametres naturels (structure, humidite, etc...), sans introduire d'effets de paroi. En laboratoire, apres mise en charge des massifs preleves, une partie de l'etude de la propagation des radioelements est realisee par autoradiographie; enfin, une application pratique, l'etude d'un site atomique, illustre l'expose. (auteur)

  18. The development of a very high stability electrostatic generator (1962); Etude et realisation d'un generateur electrostatique a tres haute stabilite (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Jonckheere, R.E.L. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1962-07-01

    This thesis deals with the study of an electrostatic high voltage generator having a voltage stability of the order of 10{sup -6} per minute. This equipment should be very useful in electron microscopy. The electrostatic generator is studied as a control system element: transfer function, parasitic signals and noise are determined and a mathematical model is proposed. A theoretical study of the open loop transfer function, stability, transient response, voltage stabilization of five different control systems shows which one should be able to fulfill the requirements There follows a detailed study of drift, a description of the actual system and performance data. (author) [French] Cette etude concerne un generateur electrostatique capable de fournir une tres haute tension continue dont la stabilite relative est de l'ordre de 10{sup -6} pendant une minute. Une telle performance rend cet appareillage tres utile en microscopie electronique. La generatrice electrostatique est etudiee en tant qu'element d'un systeme asservi: on determine successivement la fonction de transfert, les perturbations, le bruit de fond et le modele mathematique. L'etude de cinq differents circuits de regulation en ce qui concerne leur fonction de transfert, stabilite, reponse en regime transitoire, attenuation des perturbations, permettra de choisir le systeme qui semble le mieux repondre aux exigences. Viennent ensuite une etude detaillee de la derive, la description de la realisation pratique et les resultats de mesure. (auteur)

  19. A tubular focused sonochemistry reactor

    Institute of Scientific and Technical Information of China (English)

    ZHOU GuangPing; LIANG ZhaoFeng; LI ZhengZhong; ZHANG YiHui

    2007-01-01

    This paper presents a new sonochemistry reactor, which consists of a cylindrical tube with a certain length and piezoelectric transducers at tube's end with the longitudinal vibration. The tube can effectively transform the longitudinal vibration into the radial vibration and thereby generates ultrasound. Furthermore, ultrasound can be focused to form high-intensity ultrasonic field inside tube. The reactor boasts of simple structure and its whole vessel wall can radiate ultrasound so that the electroacoustic transfer efficiency is high. The focused ultrasonic field provides good condition for sonochemical reaction. The length of the reactor can be up to 2 meters, and liquids can pass through it continuously, so it can be widely applied in liquid processing such as sonochemistry.

  20. A compact Tokamak transmutation reactor

    Institute of Scientific and Technical Information of China (English)

    QiuLi-Jian; XiaoBing-Jia

    1997-01-01

    The low aspect ration tokamak is proposed for the driver of a transmutation reactor.The main parameters of the reactor core,neutronic analysis of the blanket are given>the neutron wall loading can be lowered from the magnitude order of 1 MW/m2 to 0.5MW/m2 which is much easier to reach in the near future,and the transmutation efficiency (fission/absorption ratio)is raised further.The blanket power density is about 200MW/m3 which is not difficult to deal with.The key components such as diverter and center conductor post are also designed and compared with conventional TOkamak,Finally,by comparison with the other drivers such as FBR,PWR and accelerator,it can be anticipated that the low aspect ratio transmutation reactor would be one way of fusion energy applications in the near future.

  1. Plasma reactor waste management systems

    Science.gov (United States)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  2. Investigation of KW reactor incident

    Energy Technology Data Exchange (ETDEWEB)

    Sturges, D G [USAEC Hanford Operations Office, Richland, WA (United States); Hauff, T W; Greager, O H [General Electric Co., Richland, WA (United States). Hanford Atomic Products Operation

    1955-02-11

    The new KW reactor was placed in operation on January 4, 1955, and had been running at relatively low power levels for only 17 hours when it was shut down because of a process tube water leak which appeared to be associated with a slug rupture. After several days of unrewarding effort to remove the slugs and tube by customary methods, it developed that considerable melting of the tube and slugs had taken place. It was then evident that removal of the stuck mass and repairs to the damaged tube channel would require unusual measures that were certain to extend the reactor outage for several weeks. This report documents the work and findings of the Committee which investigated the KW reactor incident. Its content represents unanimous agreement among the three Committee members.

  3. Gaseous fuel nuclear reactor research

    Science.gov (United States)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  4. Nuclear Reactor Engineering Analysis Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-12-31

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels.

  5. Utilisation of thorium in reactors

    Science.gov (United States)

    Anantharaman, K.; Shivakumar, V.; Saha, D.

    2008-12-01

    India's nuclear programme envisages a large-scale utilisation of thorium, as it has limited deposits of uranium but vast deposits of thorium. The large-scale utilisation of thorium requires the adoption of closed fuel cycle. The stable nature of thoria and the radiological issues associated with thoria poses challenges in the adoption of a closed fuel cycle. A thorium fuel based Advanced Heavy Water Reactor (AHWR) is being planned to provide impetus to development of technologies for the closed thorium fuel cycle. Thoria fuel has been loaded in Indian reactors and test irradiations have been carried out with (Th-Pu) MOX fuel. Irradiated thorium assemblies have been reprocessed and the separated 233U fuel has been used for test reactor KAMINI. The paper highlights the Indian experience with the use of thorium and brings out various issues associated with the thorium cycle.

  6. External fuel thermionic reactor system.

    Science.gov (United States)

    Mondt, J. F.; Peelgren, M. L.

    1971-01-01

    Thermionic reactors are prime candidates for nuclear electric propulsion. The national thermionic reactor effort is concentrated on the flashlight concept with the external-fuel concept as the backup. The external-fuel concept is very adaptable to a completely modular power subsystem which is attractive for highly reliable long-life applications. The 20- to 25-cm long, externally-fueled converters have been designed, fabricated, and successfully tested with many thermal cycles by electrical heating. However, difficulties have been encountered during encapsulation for nuclear heated tests and none have been started to date. These nuclear tests are required to demonstrate the concept feasibility.

  7. Analysis of Adiabatic Batch Reactor

    Directory of Open Access Journals (Sweden)

    Erald Gjonaj

    2016-05-01

    Full Text Available A mixture of acetic anhydride is reacted with excess water in an adiabatic batch reactor to form an exothermic reaction. The concentration of acetic anhydride and the temperature inside the adiabatic batch reactor are calculated with an initial temperature of 20°C, an initial temperature of 30°C, and with a cooling jacket maintaining the temperature at a constant of 20°C. The graphs of the three different scenarios show that the highest temperatures will cause the reaction to occur faster.

  8. PITR: Princeton Ignition Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    The principal objectives of the PITR - Princeton Ignition Test Reactor - are to demonstrate the attainment of thermonuclear ignition in deuterium-tritium, and to develop optimal start-up techniques for plasma heating and current induction, in order to determine the most favorable means of reducing the size and cost of tokamak power reactors. This report describes the status of the plasma and engineering design features of the PITR. The PITR geometry is chosen to provide the highest MHD-stable values of beta in a D-shaped plasma, as well as ease of access for remote handling and neutral-beam injection.

  9. Reactor shutdown delays medical procedures

    Science.gov (United States)

    Gwynne, Peter

    2008-01-01

    A longer-than-expected maintenance shutdown of the Canadian nuclear reactor that produces North America's entire supply of molybdenum-99 - from which the radioactive isotopes technetium-99 and iodine-131 are made - caused delays to the diagnosis and treatment of thousands of seriously ill patients last month. Technetium-99 is a key component of nuclear-medicine scans, while iodine-131 is used to treat cancer and other diseases of the thyroid. Production eventually resumed, but only after the Canadian government had overruled the Canadian Nuclear Safety Commission (CNSC), which was still concerned about the reactor's safety.

  10. Fundamentals of Nuclear Reactor Physics

    CERN Document Server

    Lewis, E E

    2008-01-01

    This new streamlined text offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation. The book includes numerous worked-out examples and end-of-chapter questions to help reinforce the knowledge presented. This textbook offers an engineering-oriented introduction to nuclear physics, with a particular focus on how those physics are put to work in the service of generating nuclear-based power, particularly the importance of neutron reactions and neutron behavior. Engin

  11. Scaledown of a methanol reactor

    Energy Technology Data Exchange (ETDEWEB)

    Berty, J.M.

    1983-07-01

    This article shows how it is possible to define operating conditions for pilot plants and development labs by scaling down a commercial reactor. Points out that scaledown consideration and experiment planning can be done in a similar manner for the boiling water-cooled, Lurgi-type reactor. Explains that although the design of large, single-train plants to produce methanol for fuel use has different economic objectives, product specifications, and technical constraints from the traditional commercial methanol plants, the same fundamental laws of thermodynamics and reaction kinetics apply to both types of operation.

  12. Reactor Antineutrino Signals at Morton and Boulby

    CERN Document Server

    Dye, Steve

    2016-01-01

    Increasing the distance from which an antineutrino detector is capable of monitoring the operation of a registered reactor, or discovering a clandestine reactor, strengthens the Non-Proliferation of Nuclear Weapons Treaty. This report presents calculations of reactor antineutrino interactions, from quasi-elastic neutrino-proton scattering and elastic neutrino-electron scattering, in a water-based detector operated >10 km from a commercial power reactor. It separately calculates signal from the proximal reactor and background from all other registered reactors. The main results are interaction rates and kinetic energy distributions of charged leptons scattered from quasi-elastic and elastic processes. Comparing signal and background distributions evaluates reactor monitoring capability. Scaling the results to detectors of different sizes, target media, and standoff distances is straightforward. Calculations are for two examples of a commercial reactor (P_th~3 GW) operating nearby (L~20 km) an underground facil...

  13. Oregon State University TRIGA Reactor annual report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.V.; Johnson, A.G.; Bennett, S.L.; Ringle, J.C.

    1979-08-31

    The use of the Oregon State University TRIGA Reactor during the year ending June 30, 1979, is summarized. Environmental and radiation protection data related to reactor operation and effluents are included.

  14. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    Energy Technology Data Exchange (ETDEWEB)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

  15. The electronuclear scenario, tools and studies; Les scenarios electronucleaires, outils et etudes

    Energy Technology Data Exchange (ETDEWEB)

    Grouiller, J.P.; Faure, C.; Doriath, J.Y.; Giacometti, A.; Pavageau, J.; Arnaud, G.; Dumas, M

    2000-07-01

    The strategical decisions need a global vision of the fuel cycle. The based options as fuel, reactors, fuel plants, disposal and storage, must be evaluated in the implementing and the management of a nuclear park. To define the nuclear policy tools, as physical models and codes, and prospective studies are necessary. They are developed in this paper. (A.L.B.)

  16. Transmutation of actinides in power reactors.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  17. Heavy Water Reactor; Reacteurs a eau lourde

    Energy Technology Data Exchange (ETDEWEB)

    Yu, St.; HOpwood, J.; Meneley, D. [Energie Atomique du Canada (Canada)

    2000-04-01

    This document deals with the Heavy Water Reactor (HWR) technology and especially the Candu (Canada Deuterium Uranium) reactor. This reactors type offers many advantages that promote them for the future. General concepts, a description of the Candu nuclear power plants, the safety systems, the fuel cycle and economical and environmental aspects are included. (A.L.B.)

  18. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...

  19. Some new viewpoints in reactor noise analysis

    Institute of Scientific and Technical Information of China (English)

    罗征培; 李富; 等

    1996-01-01

    It is propsed that the linearity criterion and order criterion via frequency spectrum features without any limitation of the model's phase can be used in reactor noise analysis.The time constant,natural frequency as well as the recovered transfer function of reactors can bhe obtained via the analyzable model based on reactor noise.

  20. Operating Modes Of Chemical Reactors Of Polymerization

    Directory of Open Access Journals (Sweden)

    Meruyert Berdieva

    2012-05-01

    Full Text Available In the work the issues of stable technological modes of operation of main devices of producing polysterol reactors have been researched as well as modes of stable operation of a chemical reactor have been presented, which enables to create optimum mode parameters of polymerization process, to prevent emergency situations of chemical reactor operation in industrial conditions.

  1. Laminar Entrained Flow Reactor (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-02-01

    The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

  2. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    immobilized artificial membrane chromatography and lysophospholipid micellar electrokinetic chromatography . J. Chromatogr. A 1998, 810, 95-103. 50...Journal of Liquid Chromatography and Related Technologies. Air Force Research Laboratory Materials and Manufacturing Directorate Airbase...immobilized enzyme reactors (IMERs) can also be integrated directly to further analytical methods such as liquid chromatography or mass spectrometry.[6] In

  3. Nozzle for electric dispersion reactor

    Science.gov (United States)

    Sisson, Warren G.; Basaran, Osman A.; Harris, Michael T.

    1995-01-01

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  4. A Simple Tubular Reactor Experiment.

    Science.gov (United States)

    Hudgins, Robert R.; Cayrol, Bertrand

    1981-01-01

    Using the hydrolysis of crystal violet dye by sodium hydroxide as an example, the theory, apparatus, and procedure for a laboratory demonstration of tubular reactor behavior are described. The reaction presented can occur at room temperature and features a color change to reinforce measured results. (WB)

  5. High temperature catalytic membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

  6. Nuclear Reactors and Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  7. British high flux beam reactor.

    Science.gov (United States)

    Egelstaff, P A

    1970-10-24

    The neutron scattering technique has become an accepted method for the study of condensed matter. Because of the great scientific and technical value of neutron experiments and the growing body of users, several proposals have been made during the past decade for a nuclear reactor devoted primarily to this technique. This article reviews the reasons for and history behind these proposals.

  8. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  9. A new MTR fuel for a new MTR reactor: UMo for the Jules Horowitz reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guigon, B. [CEA Cadarache, F-13108 Saint Paul lez Durance (France); Vacelet, H. [CERCA, Romans (France); Dornbusch, D. [Technicatome, Aix en Provence (France)

    2000-07-01

    Within some years, the Jules Horowitz Reactor will be the only working experimental reactor (material and fuel testing reactor) in France. It will have to provide facilities for a wide range of needs from activation analysis to power reactor fuel qualification. In this paper the main characteristics of the Jules Horowitz Reactor are presented. Safety criteria are explained. Finally, merits and disadvantages of UMo compared to the standard U{sub 3}Si{sub 2} fuel are discussed. (author)

  10. Heterogeneous Recycling in Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  11. Reactor monitoring and safeguards using antineutrino detectors

    CERN Document Server

    Bowden, N S

    2008-01-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactors, as part of International Atomic Energy Agency (IAEA) and other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway across the globe.

  12. Neutrino Mixing Discriminates Geo-reactor Models

    CERN Document Server

    Dye, S T

    2009-01-01

    Geo-reactor models suggest the existence of natural nuclear reactors at different deep-earth locations with loosely defined output power. Reactor fission products undergo beta decay with the emission of electron antineutrinos, which routinely escape the earth. Neutrino mixing distorts the energy spectrum of the electron antineutrinos. Characteristics of the distorted spectrum observed at the earth's surface could specify the location of a geo-reactor, discriminating the models and facilitating more precise power measurement. The existence of a geo-reactor with known position could enable a precision measurement of the neutrino oscillation parameter delta-mass-squared.

  13. Reactor assessments of advanced bumpy torus configurations

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, N.A.; Owen, L.W.; Spong, D.A.; Miller, R.L.; Ard, W.B.; Pipkins, J.F.; Schmitt, R.J.

    1983-01-01

    Recently, several configurational approaches and concept improvement schemes were introduced for enhancing the performance of the basic ELMO Bumpy Torus (EBT) concept and for improving its reactor potential. These configurations include planar racetrack and square geometries, Andreoletti coil systems, and bumpy torus-stellarator hybrids (which include twisted racetrack and helical axis stellarator-snakey torus). Preliminary evaluations of reactor implications of each of these configurations have been carried out based on magnetics (vacuum) calculations, transport and scaling relationships, and stability properties. Results indicate favorable reactor projections with a significant reduction in reactor physical size as compared to conventional EBT reactor designs carried out in the past.

  14. Refurbishment of existing research reactors for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Jatuff, F.E.; Gessaghi, V. [INVAP S.E., de Bariloche (Argentina)

    1997-12-01

    Some research reactors have been selected for the development of boron neutron capture therapy (BNCT) in the United States like the Massachusetts Institute of Technology research reactor, the University of Missouri research reactor 2 or the Brookhaven Medical Research Reactor, among others. These reactors have received excellent analyses and designs to accommodate extremely optimized beam shaping assemblies (BSAs) for the proper tuning of neutron spectra and absorption of undesired particles such as photons and fast neutrons. Due to the importance of BNCT in these facilities, the physicists and engineers have used many degrees of freedom for the optimization process.

  15. Tandem Mirror Reactor Systems Code (Version I)

    Energy Technology Data Exchange (ETDEWEB)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  16. Savannah River Site production reactor technical specifications. K Production Reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    These technical specifications are explicit restrictions on the operation of the Savannah River Site K Production Reactor. They are designed to preserve the validity of the plant safety analysis by ensuring that the plant is operated within the required conditions bounded by the analysis, and with the operable equipment that is assumed to mitigate the consequences of an accident. Technical specifications preserve the primary success path relied upon to detect and respond to accidents. This report describes requirements on thermal-hydraulic limits; limiting conditions for operation and surveillance for the reactor, power distribution control, instrumentation, process water system, emergency cooling and emergency shutdown systems, confinement systems, plant systems, electrical systems, components handling, and special test exceptions; design features; and administrative controls.

  17. CFD Simulation on Ethylene Furnace Reactor Tubes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Different mathematical models for ethylene furnace reactor tubes were reviewed. On the basis of these models a new mathematical simulation approach for reactor tubes based on computational fluid dynamics (CFD) technique was presented. This approach took the flow, heat transfer, mass transfer and thermal cracking reactions in the reactor tubes into consideration. The coupled reactor model was solved with the SIMPLE algorithm. Some detailed information about the flow field, temperature field and concentration distribution in the reactor tubes was obtained, revealing the basic characteristics of the hydrodynamic phenomena and reaction behavior in the reactor tubes. The CFD approach provides the necessary information for conclusive decisions regarding the production optimization, the design and improvement of reactor tubes, and the new techniques implementation.

  18. Etude d'un concept de coeur hybride refroidi a l'eau supercritique

    Science.gov (United States)

    Delattre, Baptiste

    Facing the current weather and energy global problem, Canada chose to develop a reactor cooled by water at supercritical conditions (SCWR). Inspired by the current CANDU-6 pressure tube technology, this concept should allow to save a substantial amount of efforts for developping a brand new kind of reactor by using the well-known pressure tube CANDU design. In fact, this type of reactor should be able to reach a better energy efficiency as well as other essential criteria about safety, security, non-proliferation... Nevertheless, there are still a lot of technology challenges to be dealt with to satisfy the differents obligations related to the use of supercritical water (SCW). Thus, materials to use remain undetermined because of a 25 MPa operating pressure and a 650.C temperature for the SCW coolant. Actually, materials in presence of SCW should be able to avoid too much corrosion and remain low neutrons absorbers. Additionnaly, the use of a light water coolant makes the neutronic absorption more important than in CANDU heavy-water cooled reactors. Additionally, a positive coolant void reactivity (CVR) and safety related problem remains among the challenges to overcome for developping a SCWR. Bringing about a solutions to all these problems remains very difficult and that's why some concessions on these criteria have to be made in order to achieve a viable reactor. This study presents some thougts and works in that direction. Originally developped in early studies about thermodynamic cycle optimization for a SCW power plant, a new hybrid reactor concept with two channels types has arise. To this purpose, we imagine a pressure tube core design but with two different types of channels: . Some channels have thermodynamic conditions where water goes through a supercritical state. . The other channels have "CANDU like" thermodynamic conditions allowing the flow of pressurized light water under sub-critical conditions. These two kinds of features should mitigate the

  19. Advanced reactor physics methods for heterogeneous reactor cores

    Science.gov (United States)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  20. Reactor pulse repeatability studies at the annular core research reactor

    Energy Technology Data Exchange (ETDEWEB)

    DePriest, K.R. [Applied Nuclear Technologies, Sandia National Laboratories, Mail Stop 1146, Post Office Box 5800, Albuquerque, NM 87185-1146 (United States); Trinh, T.Q. [Nuclear Facility Operations, Sandia National Laboratories, Mail Stop 0614, Post Office Box 5800, Albuquerque, NM 87185-1146 (United States); Luker, S. M. [Applied Nuclear Technologies, Sandia National Laboratories, Mail Stop 1146, Post Office Box 5800, Albuquerque, NM 87185-1146 (United States)

    2011-07-01

    The Annular Core Research Reactor (ACRR) at Sandia National Laboratories is a water-moderated pool-type reactor designed for testing many types of objects in the pulse and steady-state mode of operations. Personnel at Sandia began working to improve the repeatability of pulse operations for experimenters in the facility. The ACRR has a unique UO{sub 2}-BeO fuel that makes the task of producing repeatable pulses difficult with the current operating procedure. The ACRR produces a significant quantity of photoneutrons through the {sup 9}Be({gamma}, n){sup 8}Be reaction in the fuel elements. The photoneutrons are the result of the gammas produced during fission and in fission product decay, so their production is very much dependent on the reactor power history and changes throughout the day/week of experiments in the facility. Because the photoneutrons interfere with the delayed-critical measurements required for accurate pulse reactivity prediction, a new operating procedure was created. The photoneutron effects at delayed critical are minimized when using the modified procedure. In addition, the pulse element removal time is standardized for all pulse operations with the modified procedure, and this produces less variation in reactivity removal times. (authors)

  1. In-reactor performance of pressure tubes in CANDU reactors

    Science.gov (United States)

    Rodgers, D. K.; Coleman, C. E.; Griffiths, M.; Bickel, G. A.; Theaker, J. R.; Muir, I.; Bahurmuz, A. A.; Lawrence, S. St.; Resta Levi, M.

    2008-12-01

    The pressure tubes in CANDU reactors have been operating for times up to about 25 years. The in-reactor performance of Zr-2.5Nb pressure tubes has been evaluated by sampling and periodic inspection. This paper describes the behaviour and discusses the factors controlling the behaviour of these components in currently operating CANDU reactors. The mechanical properties (such as ultimate tensile strength, UTS, and fracture toughness), and delayed-hydride-cracking properties (crack growth rate Vc, and threshold stress intensity factor, KIH) change with irradiation; the former reach a limiting value at a fluence of Pressure tubes exhibit elongation and diametral expansion. The deformation behaviour is a function of operating conditions and material properties that vary from tube-to-tube and as a function of axial location. Semi-empirical predictive models have been developed to describe the deformation response of average tubes as a function of operating conditions. For corrosion and, more importantly deuterium pickup, semi-empirical predictive models have also been developed to represent the behaviour of an average tube. The effect of material variability on corrosion behaviour is less well defined compared with other properties. Improvements in manufacturing have increased fracture resistance by minimising trace elements, especially H and Cl, and reduced variability by tightening controls on forming parameters, especially hot-working temperatures.

  2. Etude par spectroscopie de Coulomb de points quantiques lateraux individuels et couples

    Science.gov (United States)

    Pioro-Ladriere, Michel

    Des points quantiques contenant un nombre discret et variable d'electrons sont formes dans un gaz bi-dimensionnel d'electrons a l'aide de grilles metalliques. Le transport electrique, le blocage de spin et la detection de charge sont employes comme outils spectroscopiques permettant de sonder les proprietes de ces nanostructures. Ces techniques permettent aussi de controler exactement le nombres d'electrons confines dans des points quantiques individuels et couples en utilisant un patron de grille judicieux. Une technique de refroidissement en tension est developpee afin de minimiser les effets parasites du bruit telegraphique. Ce type de bruit de charge deteriore la stabilite des nanostructures laterales par l'activation d'un minuscule courant de fuite entre les grilles et le gaz bi-dimensionnel. Un modele expliquant le role du refroidissement en tension sur le courant de fuite est presente. L'activation du courant de fuite est confirmee par detection de charge. Les effets des interactions entre les electrons pieges dans un point quantique sont ensuite etudies dans un regime ou il est possible de comparer les resulats experimentaux avec ceux obtenus par diagonalisation exacte. L'etude demontre que la phase associee au facteur de remplissage nu = 2 est instable au-dessus d'un nombre critique d'electrons. Cette instabilite est confirmee experimentalement par blocage de spin. On demontre aussi l'existence d'etats correles dans le regime des renversements de spin, associe au passage de la phase nu = 2 a nu = 1. Les etats correles sont identifies par spectroscopie en transport non lineaire. Cette caracterisation du diagramme de phase de points individuels permet de coupler deux points quantiques configures a nu = 2. Pour ce regime, la nanostructure se comporte comme un systeme a deux niveaux pouvant contenir entre un et quatre electrons de valence et ce, meme si le nombre total d'electrons est plus eleve. Les degres de liberte de charge et de spin des deux points

  3. La structure de l'eau liquide: Une etude thermique par spectroscopie infrarouge

    Science.gov (United States)

    Larouche, Pascal

    Le probleme de la structure de l'eau liquide est important car l'eau est le liquide le plus present sur Terre, et complexe, la quete d'un modele precis pour decrire comment fonctionne ce liquide ayant debute des la fin du dix-neuvieme siecle. Cette etude aborde ce probleme en etudiant l'effet de l'augmentation de la temperature sur H2O et D 2O purs a l'aide de la spectroscopie infrarouge. L'intervalle de temperatures scrute est 29--93.1°C. Les spectres enregistres sont des spectres MIR-ATR entre 650 et 6000 cm-1 . L'analyse par facteurs de ces donnees permet de montrer que deux et seulement deux facteurs principaux sont necessaires pour decomposer tous les spectres experimentaux. Ces resultats sont confirmes grace a l'analyse par facteurs de spectres de la region FIR. Par la suite, la transformation en spectres de la partie reelle n et imaginaire k de l'indice de refraction permet de combiner les donnees des regions MIR et FIR. Une fois ce calcul termine, les spectres de transmission complets de H 2O et D2O entre 25 et 90°C sont connus. Ils sont ensuite utilises pour calculer par extrapolation le spectre des especes constituant l'eau liquide, puis leur abondance en fonction de la temperature. L'extrapolation de ces abondances montre que les especes correspondent a des temperatures limites de --18 et 122°C. Par la suite, la decomposition gaussienne des spectres d'especes met en evidence la riche structure de ces objets et permet de demontrer que l'apparent deplacement du massif d'absorption OH (OD) est produit par une variation de l'intensite des bandes et non pas de leur deplacement. L'examen attentif des spectres des especes prouve qu'il n'y a pas de OH libres crees par l'augmentation de la temperature: meme a 93.1°C, chaque molecule possede quatre liens-H. Ces conclusions sont de plus confirmees par une analyse thermodynamique du passage des molecules de la phase solide a la phase gazeuse. Pour diversifier la nature des resultats experimentaux utilises, des

  4. Gas-liquid autoxidation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morbidelli, M.; Paludetto, R.; Carra, S.

    1986-01-01

    A procedure for the simulation of autoxidation gas-liquid reactors has been developed based both on mathematical models and laboratory experiments. It has been shown that the complex radical chain mechanism of the autoxidation process can be simulated through two global parallel reactions, whose rates are obtained by assuming pseudo-steady-state concentration values for all the radical species involved. Using ethylbenzene autoxidation as a model reaction, an experimental analysis has been performed in order to estimate all the kinetic parameters of the model. The effect of the interaction between gas-liquid mass-transfer phenomena and the complex kinetic mechanism on the overall performance of an autoxidation reactor has been examined in detail within the framework of the liquid film model.

  5. Transport simulation for EBT reactor

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, T.; Uckan, N.A.; Jaeger, E.F.

    1983-08-01

    Transport simulation and modeling studies for the ELMO Bumpy Torus (EBT) reactor are carried out by using zero-dimensional (0-D) and one-and-one-half-dimensional (1 1/2-D) transport calculations. The time-dependent 0-D model is used for global analysis, whereas the 1 1/2-D radial transport code is used for accurate determination of density, temperature, and ambipolar potential profiles and of the role of these profiles in reactor plasma performance. Analysis with the 1 1/2-D transport code shows that profile effects near the outer edge of the hot electron ring lead to enhanced confinement by at least a factor of 2 to 5 beyond the simple scaling that is obtained from the global analysis. The radial profiles of core plasma density and temperatures (or core pressure) obtained from 1 1/2-D transport calculations are found to be similar to those theoretically required for stability.

  6. Nuclear reactor alignment plate configuration

    Energy Technology Data Exchange (ETDEWEB)

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  7. Fluidized bed coal combustion reactor

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  8. Fast breeder reactor protection system

    Science.gov (United States)

    van Erp, J.B.

    1973-10-01

    Reactor protection is provided for a liquid-metal-fast breeder reactor core by measuring the coolant outflow temperature from each of the subassemblies of the core. The outputs of the temperature sensors from a subassembly region of the core containing a plurality of subassemblies are combined in a logic circuit which develops a scram alarm if a predetermined number of the sensors indicate an over temperature condition. The coolant outflow from a single subassembly can be mixed with the coolant outflow from adjacent subassemblies prior to the temperature sensing to increase the sensitivity of the protection system to a single subassembly failure. Coherence between the sensors can be required to discriminate against noise signals. (Official Gazette)

  9. Reactor vessel lower head integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, A.M.

    1997-02-01

    On March 28, 1979, the Three Mile Island Unit 2 (TMI-2) nuclear power plant underwent a prolonged small break loss-of-coolant accident that resulted in severe damage to the reactor core. Post-accident examinations of the TMI-2 reactor core and lower plenum found that approximately 19,000 kg (19 metric tons) of molten material had relocated onto the lower head of the reactor vessel. Results of the OECD TMI-2 Vessel Investigation Project concluded that a localized hot spot of approximately 1 meter diameter had existed on the lower head. The maximum temperature on the inner surface of the reactor pressure vessel (RPV) in this region reached 1100{degrees}C and remained at that temperature for approximately 30 minutes before cooling occurred. Even under the combined loads of high temperature and high primary system pressure, the TMI-2 RPV did not fail. (i.e. The pressure varied from about 8.5 to 15 MPa during the four-hour period following the relocation of melt to the lower plenum.) Analyses of RPV failure under these conditions, using state-of-the-art computer codes, predicted that the RPV should have failed via local or global creep rupture. However, the vessel did not fail; and it has been hypothesized that rapid cooling of the debris and the vessel wall by water that was present in the lower plenum played an important role in maintaining RPV integrity during the accident. Although the exact mechanism(s) of how such cooling occurs is not known, it has been speculated that cooling in a small gap between the RPV wall and the crust, and/or in cracks within the debris itself, could result in sufficient cooling to maintain RPV integrity. Experimental data are needed to provide the basis to better understand these phenomena and improve models of RPV failure in severe accident codes.

  10. Effect of nutritional intervention on the prevalence of metabolic syndrome and heart disease risk factors in urban Tehran /Effet d'une intervention nutritionnelle sur la prevalence du syndrome metabolique et sur les facteurs de risque de cardiopathie dans l'agglomeration de Teheran (etude sur le glucose et les lipides realisee a Teheran)

    National Research Council Canada - National Science Library

    Ramezankhani, A; Mirmiran, P; Azizi, F

    2011-01-01

    Dans une etude cas-temoins, une intervention nutritionnelle consistant en un programme educatif fonde sur les directives du regime de changement therapeutique de style de vie a ete mise en ceuvre dans...

  11. The ARIES tokamak reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D{sup 3}He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions.

  12. Actinide transmutation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bultman, J.H.

    1995-01-17

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP).

  13. Assessment of the thorium fuel cycle in power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Homan, F.J.; Allen, E.J.

    1977-01-01

    A study was conducted at Oak Ridge National Laboratory to evaluate the role of thorium fuel cycles in power reactors. Three thermal reactor systems were considered: Light Water Reactors (LWRs); High-Temperature Gas-Cooled Reactors (HTGRs); and Heavy Water Reactors (HWRs) of the Canadian Deuterium Uranium Reactor (CANDU) type; most of the effort was on these systems. A summary comparing thorium and uranium fuel cycles in Fast Breeder Reactors (FBRs) was also compiled.

  14. Determination of local boiling in light water reactors by correlation of the neutron noise; Determination de l'ebullition locale dans les reacteurs a eau legere par correlation du bruit neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Zwingelstein, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    The power limit of swimming-pool type reactors depends on the phenomenon of the appearance of burn-out. In order to determine this limit we have attempted to detect the local boiling which usually occurs before the burn out. Local boiling has been simulated by an electrically heated plate placed in the core of the reactor Siloette. The study of local boiling, which is based on the properties of the correlation functions for the neutron noise of detectors placed in the core, shows that a privileged frequency occurs in the power spectrum of the noise. It is intended in the future to determine the influence of various parameters on this characteristic frequency. (author) [French] La limitation de la puissance des reacteurs nucleaires de type piscine est due au phenomene d'apparition de 'burn out'. Pour determiner cette limitation, nous nous sommes proposes dans ce rapport de detecter l'ebullition locale qui apparait generalement avant le 'burn out'. L'ebullition locale a ete simulee par une plaque chauffee electriquement et placee dans le coeur du reacteur SILOETTE. L'etude de l'ebullition locale, qui est basee sur les proprietes des fonctions de correlation du bruit neutronique de detecteurs places clans le coeur, fait apparaitre une frequence privilegiee dans le spectre de puissance du bruit. On envisage dans l'avenir, de determiner l'influence des divers parametres sur cette frequence caracteristique. (auteur)

  15. Advanced Safeguards Approaches for New Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  16. Investigation of molten salt fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Kenichi; Konomura, Mamoru [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2002-05-01

    On survey research for practicability strategy of fast reactor (FR) (phase 1), to extract future practicability image candidates of FR from wide options, in addition to their survey and investigation objects of not only solid fuel reactors of conventional research object but also molten salt reactor as a flowing fuel reactor, investigation on concept of molten salt FR plant was carried out. As a part of the first step of the survey research for practicability strategy, a basic concept on plant centered at nuclear reactor facility using chloride molten salt reactor capable of carrying out U-Pu cycle was examined, to perform a base construction to evaluate economical potential for a practical FBR. As a result, a result could be obtained that because of inferior fuel inventory and heat transmission to those in Na cooling reactor in present knowledge, mass of reactor vessel and intermediate heat exchanger were to widely increased to expect reduction of power generation unit price even on considering cheapness of its fuel cycle cost. Therefore, at present step further investigation on concept design of the chloride molten salt reactor plant system is too early in time, and it is at a condition where basic and elementary researches aiming at upgrading of economical efficiency such as wide reduction of fuel inventory, a measure expectable for remarkable rationalization effect of reprocessing system integrating a reactor to a processing facility, and so on. (G.K.)

  17. Performance of a multipurpose research electrochemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Henquin, E.R. [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina); Bisang, J.M., E-mail: jbisang@fiq.unl.edu.ar [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2011-07-01

    Highlights: > For this reactor configuration the current distribution is uniform. > For this reactor configuration with bipolar connection the leakage current is small. > The mass-transfer conditions are closely uniform along the electrode. > The fluidodynamic behaviour can be represented by the dispersion model. > This reactor represents a suitable device for laboratory trials. - Abstract: This paper reports on a multipurpose research electrochemical reactor with an innovative design feature, which is based on a filter press arrangement with inclined segmented electrodes and under a modular assembly. Under bipolar connection, the fraction of leakage current is lower than 4%, depending on the bipolar Wagner number, and the current distribution is closely uniform. When a turbulence promoter is used, the local mass-transfer coefficient shows a variation of {+-}10% with respect to its mean value. The fluidodynamics of the reactor responds to the dispersion model with a Peclet number higher than 10. It is concluded that this reactor is convenient for laboratory research.

  18. Molten-Salt Depleted-Uranium Reactor

    CERN Document Server

    Dong, Bao-Guo; Gu, Ji-Yuan

    2015-01-01

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

  19. Sulfide toxicity kinetics of a uasb reactor

    Directory of Open Access Journals (Sweden)

    D. R. Paula Jr.

    2009-12-01

    Full Text Available The effect of sulfide toxicity on kinetic parameters of anaerobic organic matter removal in a UASB (up-flow anaerobic sludge blanket reactor is presented. Two lab-scale UASB reactors (10.5 L were operated continuously during 12 months. The reactors were fed with synthetic wastes prepared daily using glucose, ammonium acetate, methanol and nutrient solution. One of the reactors also received increasing concentrations of sodium sulfide. For both reactors, the flow rate of 16 L.d-1 was held constant throughout the experiment, corresponding to a hydraulic retention time of 15.6 hours. The classic model for non-competitive sulfide inhibition was applied to the experimental data for determining the overall kinetic parameter of specific substrate utilization (q and the sulfide inhibition coefficient (Ki. The application of the kinetic parameters determined allows prediction of methanogenesis inhibition and thus the adoption of operating parameters to minimize sulfide toxicity in UASB reactors.

  20. Introduction to the neutron kinetics of nuclear power reactors

    CERN Document Server

    Tyror, J G; Grant, P J

    2013-01-01

    An Introduction to the Neutron Kinetics of Nuclear Power Reactors introduces the reader to the neutron kinetics of nuclear power reactors. Topics covered include the neutron physics of reactor kinetics, feedback effects, water-moderated reactors, fast reactors, and methods of plant control. The reactor transients following faults are also discussed, along with the use of computers in the study of power reactor kinetics. This book is comprised of eight chapters and begins with an overview of the reactor physics characteristics of a nuclear power reactor and their influence on system design and

  1. Development of a slow mono-kinetic electron source; Etude et realisation d'une source d'electrons lents monocinetiques

    Energy Technology Data Exchange (ETDEWEB)

    Ballu, Y. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    A comparative study of already existing slow mono-kinetic electron guns shows that those using a 127 degrees electrostatic selector can be improved still further to arrive at the performances obtained with spherical 180 degrees selectors for example. For this reason we have examined the 127 degrees selector theoretically in more detail; it appears that it should be possible to obtain a resolving power better than 30 mV for a current of about 10{sup -10} A, on condition that certain improvements be made to the instrument as normally designed, in particular concerning the entrance and exit slides. As a result, the usual suppressors for the scattered electrons are no longer necessary. The development of this apparatus has been carried out with particular care: the dimensional characteristics are fixed to an accuracy of a few microns, although the instrument can be baked out at 300 C. The experimental results are in excellent agreement with the theoretical predictions: for a current of 10{sup -10} A, the measured resolving power is 24 {+-} 4 mV. The easy detection of the He{sup -} resonance line at 19.3 eV has confirmed the advantages of this apparatus for the study of atomic collisions. (author) [French] L'etude comparative des canons a electrons lents monocinetiques realises jusqu'a present montre que ceux qui utilisent un selecteur electrostatique a 127 degres peuvent etre encore perfectionnes en vue de parvenir aux performances obtenues avec les selecteurs spheriques a 180 degres par exemple. D'ou notre etude theorique approfondie du selecteur a 127 degres qui nous a conduit a esperer une resolution meilleure que 30 mV pour un courant de l'ordre de 10{sup -10} A a condition d'apporter certaines ameliorations a la conception usuelle de cet instrument notamment au niveau des fentes d'entree et de sortie. Par voie de consequence les suppresseurs habituels d'electrons parasites deviennent inutiles. L'etude et la mise au point de

  2. Microstructured reactors for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Aartun, Ingrid

    2005-07-01

    Small scale hydrogen production by partial oxidation (POX) and oxidative steam reforming (OSR) have been studied over Rh-impregnated microchannel Fecralloy reactors and alumina foams. Trying to establish whether metallic microchannel reactors have special advantages for hydrogen production via catalytic POX or OSR with respect to activity, selectivity and stability was of special interest. The microchannel Fecralloy reactors were oxidised at 1000 deg C to form a {alpha}-Al2O3 layer in the channels in order to enhance the surface area prior to impregnation. Kr-BET measurements showed that the specific surface area after oxidation was approximately 10 times higher than the calculated geometric surface area. Approximately 1 mg Rh was deposited in the channels by impregnation with an aqueous solution of RhCl3. Annular pieces (15 mm o.d.,4 mm i.d., 14 mm length) of extruded {alpha}-Al2O3 foams were impregnated with aqueous solutions of Rh(NO3)3 to obtain 0.01, 0.05 and 0.1 wt.% loadings, as predicted by solution uptake. ICP-AES analyses showed that the actual Rh loadings probably were higher, 0.025, 0.077 and 0.169 wt.% respectively. One of the microchannel Fecralloy reactors and all Al2O3 foams were equipped with a channel to allow for temperature measurement inside the catalytic system. Temperature profiles obtained along the reactor axes show that the metallic microchannel reactor is able to minimize temperature gradients as compared to the alumina foams. At sufficiently high furnace temperature, the gas phase in front of the Rh/Al2O3/Frecralloy microchannel reactor and the 0.025 wt.% Rh/Al2O3 foams ignites. Gas phase ignition leads to lower syngas selectivity and higher selectivity to total oxidation products and hydrocarbon by-products. Before ignition of the gas phase the hydrogen selectivity is increased in OSR as compared to POX, the main contribution being the water-gas shift reaction. After gas phase ignition, increased formation of hydrocarbon by

  3. Reactor Bolshoi Moshchnosti Kalani; Reacteurs RBMK

    Energy Technology Data Exchange (ETDEWEB)

    Bastien, D. [Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)

    2000-01-01

    The Reactor Bolshoi Molshchnosti Kalani (RBMK) are pressure tubes reactor, boiling light water cooled. Exported since 1990 from the ex-USSR, they are today in three independent countries: Russian, Ukraine and Lithuania. Since this date, data exchange with the occident allowed the better knowledge of this reactor type. The design, the technical description (core, fuel, primary system), the safety and the improvement since Chernobyl are detailed. (A.L.B.)

  4. D-D tokamak reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Evans, K.E. Jr.; Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Finn, P.A.; Jung, J.; Mattas, R.F.; Misra, B.; Smith, D.L.; Stevens, H.C.

    1980-11-01

    A tokamak D-D reactor design, utilizing the advantages of a deuterium-fueled reactor but with parameters not unnecessarily extended from existing D-T designs, is presented. Studies leading to the choice of a design and initial studies of the design are described. The studies are in the areas of plasma engineering, first-wall/blanket/shield design, magnet design, and tritium/fuel/vacuum requirements. Conclusions concerning D-D tokamak reactors are stated.

  5. NASA Reactor Facility Hazards Summary. Volume 1

    Science.gov (United States)

    1959-01-01

    The Lewis Research Center of the National Aeronautics and Space Administration proposes to build a nuclear research reactor which will be located in the Plum Brook Ordnance Works near Sandusky, Ohio. The purpose of this report is to inform the Advisory Committee on Reactor Safeguards of the U. S. Atomic Energy Commission in regard to the design Lq of the reactor facility, the characteristics of the site, and the hazards of operation at this location. The purpose of this research reactor is to make pumped loop studies of aircraft reactor fuel elements and other reactor components, radiation effects studies on aircraft reactor materials and equipment, shielding studies, and nuclear and solid state physics experiments. The reactor is light water cooled and moderated of the MTR-type with a primary beryllium reflector and a secondary water reflector. The core initially will be a 3 by 9 array of MTR-type fuel elements and is designed for operation up to a power of 60 megawatts. The reactor facility is described in general terms. This is followed by a discussion of the nuclear characteristics and performance of the reactor. Then details of the reactor control system are discussed. A summary of the site characteristics is then presented followed by a discussion of the larger type of experiments which may eventually be operated in this facility. The considerations for normal operation are concluded with a proposed method of handling fuel elements and radioactive wastes. The potential hazards involved with failures or malfunctions of this facility are considered in some detail. These are examined first from the standpoint of preventing them or minimizing their effects and second from the standpoint of what effect they might have on the reactor facility staff and the surrounding population. The most essential feature of the design for location at the proposed site is containment of the maximum credible accident.

  6. Plasma spark discharge reactor and durable electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young I.; Cho, Daniel J.; Fridman, Alexander; Kim, Hyoungsup

    2017-01-10

    A plasma spark discharge reactor for treating water. The plasma spark discharge reactor comprises a HV electrode with a head and ground electrode that surrounds at least a portion of the HV electrode. A passage for gas may pass through the reactor to a location proximate to the head to provide controlled formation of gas bubbles in order to facilitate the plasma spark discharge in a liquid environment.

  7. Heat for industry from nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Novikov, V.M.

    Two factors which incline nations toward the use of heat from nuclear reactors for industrial use are: 1) exhaustion of cheap fossil fuel resources, and 2) ecological problems associated both with extraction of fossil fuel from the earth and with its combustion. In addition to the usual problems that beset nuclear reactors, special problems associated with using heat from nuclear reactors in various industries are explored.

  8. Experimental Breeder Reactor I Preservation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun

    2006-10-01

    Experimental Breeder Reactor I (EBR I) is a National Historic Landmark located at the Idaho National Laboratory, a Department of Energy laboratory in southeastern Idaho. The facility is significant for its association and contributions to the development of nuclear reactor testing and development. This Plan includes a structural assessment of the interior and exterior of the EBR I Reactor Building from a preservation, rather than an engineering stand point and recommendations for maintenance to ensure its continued protection.

  9. Initiating Events for Multi-Reactor Plant Sites

    Energy Technology Data Exchange (ETDEWEB)

    Muhlheim, Michael David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    Inherent in the design of modular reactors is the increased likelihood of events that initiate at a single reactor affecting another reactor. Because of the increased level of interactions between reactors, it is apparent that the Probabilistic Risk Assessments (PRAs) for modular reactor designs need to specifically address the increased interactions and dependencies.

  10. Advances in light water reactor technologies

    CERN Document Server

    Saito, Takehiko; Ishiwatari, Yuki; Oka, Yoshiaki

    2010-01-01

    ""Advances in Light Water Reactor Technologies"" focuses on the design and analysis of advanced nuclear power reactors. This volume provides readers with thorough descriptions of the general characteristics of various advanced light water reactors currently being developed worldwide. Safety, design, development and maintenance of these reactors is the main focus, with key technologies like full MOX core design, next-generation digital I&C systems and seismic design and evaluation described at length. This book is ideal for researchers and engineers working in nuclear power that are interested

  11. High Performance Photocatalytic Oxidation Reactor System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Pioneer Astronautics proposes a technology program for the development of an innovative photocatalytic oxidation reactor for the removal and mineralization of...

  12. NCSU reactor sharing program. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Perez, P.B.

    1997-01-10

    The Nuclear Reactor Program at North Carolina State University provides the PULSTAR Research Reactor and associated facilities to eligible institutions with support, in part, from the Department of Energy Reactor Sharing Program. Participation in the NCSU Reactor Sharing Program continues to increase steadily with visitors ranging from advance high school physics and chemistry students to Ph.D. level research from neighboring universities. This report is the Final Technical Report for the DOE award reference number DE-FG05-95NE38136 which covers the period September 30, 1995 through September 30, 1996.

  13. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  14. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  15. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V. [ed.; Feinberg, O.; Morozov, A. [Russian Research Centre `Kurchatov Institute`, Moscow (Russian Federation); Devell, L. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  16. Neutron imaging on the VR-1 reactor

    Science.gov (United States)

    Crha, J.; Sklenka, L.; Soltes, J.

    2016-09-01

    Training reactor VR-1 is a low power research reactor with maximal thermal power of 1 kW. The reactor is operated by the Faculty of Nuclear Science and Physical Engineering of the Czech Technical University in Prague. Due to its low power it suits as a tool for education of university students and training of professionals. In 2015, as part of student research project, neutron imaging was introduced as another type of reactor utilization. The low available neutron flux and the limiting spatial and construction capabilities of the reactor's radial channel led to the development of a special filter/collimator insertion inside the channel and choosing a nonstandard approach by placing a neutron imaging plate inside the channel. The paper describes preliminary experiments carried out on the VR-1 reactor which led to first radiographic images. It seems, that due to the reactor construction and low reactor power, the neutron imaging technique on the VR-1 reactor is feasible mainly for demonstration or educational and training purposes.

  17. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  18. BOILING SLURRY REACTOR AND METHOD FO CONTROL

    Science.gov (United States)

    Petrick, M.; Marchaterre, J.F.

    1963-05-01

    The control of a boiling slurry nuclear reactor is described. The reactor consists of a vertical tube having an enlarged portion, a steam drum at the top of the vertical tube, and at least one downcomer connecting the steam drum and the bottom of the vertical tube, the reactor being filled with a slurry of fissionabie material in water of such concentration that the enlarged portion of the vertical tube contains a critical mass. The slurry boils in the vertical tube and circulates upwardly therein and downwardly in the downcomer. To control the reactor by controlling the circulation of the slurry, a gas is introduced into the downcomer. (AEC)

  19. Sodium fast reactors with closed fuel cycle

    CERN Document Server

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti

  20. Microchannel Methanation Reactors Using Nanofabricated Catalysts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and the Pennsylvania State University (Penn State) propose to develop and demonstrate a microchannel methanation reactor based on...

  1. Phosphorus removal in aerated stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghigliazza, R.; Lodi, A.; Rovatti, M. [Inst. of Chemical and Process Engineering ``G.B. Bonino``, Univ. of Genoa (Italy)

    1999-03-01

    The possibility to obtain biological phosphorus removal in strictly aerobic conditions has been investigated. Experiments, carried out in a continuous stirred tank reactor (CSTR), show the feasibility to obtain phosphorus removal without the anaerobic phase. Reactor performance in terms of phosphorus abatement kept always higher then 65% depending on adopted sludge retention time (SRT). In fact increasing SRT from 5 days to 8 days phosphorus removal and reactor performance increase but overcoming this SRT value a decreasing in reactor efficiency was recorded. (orig.) With 6 figs., 3 tabs., 18 refs.

  2. Savannah River Site reactor safety assessment. Draft

    Energy Technology Data Exchange (ETDEWEB)

    Woody, N.D.; Brandyberry, M.D. [eds.] [Westinghouse Savannah River Co., Aiken, SC (United States); Baker, W.H.; Brandyberry, M.D.; Kearnaghan, D.P.; O`Kula, K.R.; Woody, N.D. [Westinghouse Savannah River Co., Aiken, SC (United States); Amos, C.N.; Weingardt, J.J. [Science Applications International Corp., San Diego, CA (United States)

    1991-02-28

    This report gives the results of a Savannah River Site (SRS) Production Reactor risk assessment. Measures of adverse consequences to health and safety resulting from representations of severe accidents in SRS reactors are presented. In addition, the report gives a summary of the methods employed to represent these accidents and to assess the resultant consequences. The report is issued to provide timely information to the US Department of Energy (DOE) on the risk of operation of SRS reactors, for insights into severe accident phenomena that contribute to this risk, and in support of improved bases for other Site programs in Heavy Water Reactor safety.

  3. History of fast reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, J.H.; Frost, B.R.T. (Argonne National Lab., IL (United States)); Mustelier, J.P. (COGEMA, Velizy-Villacoublay (France))

    1992-01-01

    Most of the first generation of fast reactors that were operated at significant power levels employed solid metal fuels. They were constructed in the United States and United Kingdom in the 1950s and included Experimental Breeder Reactor (EBR)-I and -II operated by Argonne National Laboratory, United States, the Enrico Fermi Reactor operated by the Atomic Power Development Associates, United States and DFR operated by the U.K. Atomic Energy Authority (UKAEA). Their paper tracer pre-development of fast reactor fuel from these early days through the 1980s including ceramic fuels.

  4. Plant maintenance and advanced reactors, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotri, Newal (ed.)

    2006-09-15

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Advanced plants to meet rising expectations, by John Cleveland, International Atomic Energy Agency, Vienna; A flexible and economic small reactor, by Mario D. Carelli and Bojan Petrovic, Westinghouse Electric Company; A simple and passively safe reactor, by Yury N. Kuznetsov, Research and Development Institute of Power Engineering (NIKIET), Russia; Gas-cooled reactors, by Jeffrey S. Merrifield, U.S. Nuclear Regulatory Commission; ISI project managment in the PRC, by Chen Chanbing, RINPO, China; and, Fort Calhoun refurbishment, by Sudesh Cambhir, Omaha Public Power District.

  5. Usage of burnable poison on research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Villarino, Eduardo Anibal [INVAP S.E., San Carlos de Bariloche (Argentina)

    2002-07-01

    The fuel assemblies with burnable poison are widely used on power reactors, but there are not commonly used on research reactors. This paper shows a neutronic analysis of the advantages and disadvantages of the burnable poison usage on research reactors. This paper analyses both burnable poison design used on research reactors: Boron on the lateral wall and Cadmium wires. Both designs include a parametric study on the design parameters like the amount and geometry of the burnable poison. This paper presents the design flexibility using burnable poisons, it does not find an optimal or final design, which it will strongly depend on the core characteristics and fuel management strategy. (author)

  6. Autonomous Control of Space Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation....

  7. Continuous steroid biotransformations in microchannel reactors.

    Science.gov (United States)

    Marques, Marco P C; Fernandes, Pedro; Cabral, Joaquim M S; Znidaršič-Plazl, Polona; Plazl, Igor

    2012-01-15

    The use of microchannel reactor based technologies within the scope of bioprocesses as process intensification and production platforms is gaining momentum. Such trend can be ascribed a particular set of characteristics of microchannel reactors, namely the enhanced mass and heat transfer, combined with easier handling and smaller volumes required, as compared to traditional reactors. In the present work, a continuous production process of 4-cholesten-3-one by the enzymatic oxidation of cholesterol without the formation of any by-product was assessed. The production was carried out within Y-shaped microchannel reactors in an aqueous-organic two-phase system. Substrate was delivered from the organic phase to aqueous phase containing cholesterol oxidase and the product formed partitions back to the organic phase. The aqueous phase was then forced through a plug-flow reactor, containing immobilized catalase. This step aimed at the reduction of hydrogen peroxide formed as a by-product during cholesterol oxidation, to avoid cholesterol oxidase deactivation due to said by-product. This setup was compared with traditional reactors and modes of operation. The results showed that microchannel reactor geometry outperformed traditional stirred tank and plug-flow reactors reaching similar conversion yields at reduced residence time. Coupling the plug-flow reactor containing catalase enabled aqueous phase reuse with maintenance of 30% catalytic activity of cholesterol oxidase while eliminating hydrogen peroxide. A final production of 36 m of cholestenone was reached after 300 hours of operation.

  8. For a return to the Etudes sur les sciences sociales. Local autonomy and territorial wealth according to Sismondi

    Directory of Open Access Journals (Sweden)

    Giuseppe Pioletti

    2015-12-01

    Full Text Available The article aims to analyse the Etudes sur les sciences sociales, published by Sismondi between 1836 and 1838, conducted in the light of the theses not only of the historians of Italian thinking who have determined the revival of interest in the Genevan’s doctrine, but also of very relevant works on issues of the growth and degrowth of the world economy. In particular, Pioletti focuses attention on the question of the territories: for the social scientist Sismondi at the end of the 1830s, they are functional and ideally constitutional units, where rules and customs apply that alone can deal with the risks of haphazard economic growth. Small localities, small estates: from these elements Sismondi also draws inspiration for an original theory of government – and for the national and local relations in the modern States – which, albeit presenting itself in 1836, was clearly affected by an interest that had been manifested in the historiographic field from 1807.

  9. Method of research and study of uranium deposits; Methode de recherches et d'etude des gites uraniferes

    Energy Technology Data Exchange (ETDEWEB)

    Lenoble, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    In a first part, the author gives a fast retrospective of the evaluations of the uranium deposits in the French Union. The author established a method of prospecting and studying, modifiable at all times following the experiences and the results, permitting to make the general inventory of uranium resources on the territory. The method is based on: 1 - the determination of geological guides in order to mark the most promising deposits, 2 - the definition of a methodology adapted to every steps of the research, 3 - the choice of the material adapted for each of the steps. This method, originally established for the prospecting in crystalline massifs, is adaptable to the prospecting of the sedimentary formations. (M.B.) [French] Dans une premiere partie, l'auteur donne une retrospective rapide des estimations des gites uraniferes dans l'Union Francaise. L'auteur a etabli une methode de prospection et d'etude, modifiable a tout instant suivant les experiences et les resultats, permettant de faire l'inventaire general des ressources en uranium du territoire. La methode est base sur: 1 - la determination de guides geologiques afin de reperer les gisements les plus prometteurs, 2 - la definition d'une methodologie adaptee a chaque stade de la recherche, 3 - le choix du materiel adapte pour chacun des stades. Cette methode, a l'origine etablie pour la prospection en massifs cristallins, est adaptable a la prospection des formations sedimentaires. (M.B.)

  10. Spheromak reactor-design study

    Energy Technology Data Exchange (ETDEWEB)

    Les, J.M.

    1981-06-30

    A general overview of spheromak reactor characteristics, such as MHD stability, start up, and plasma geometry is presented. In addition, comparisons are made between spheromaks, tokamaks and field reversed mirrors. The computer code Sphero is also discussed. Sphero is a zero dimensional time independent transport code that uses particle confinement times and profile parameters as input since they are not known with certainty at the present time. More specifically, Sphero numerically solves a given set of transport equations whose solutions include such variables as fuel ion (deuterium and tritium) density, electron density, alpha particle density and ion, electron temperatures.

  11. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  12. Automation of nonlinear calculations in the theory of fusion reactor; Automatisation des calculs non lineaires dans la theorie des reacteurs a fusion

    Energy Technology Data Exchange (ETDEWEB)

    Braffort, P.; Chaigne, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    1) Introduction: The difficulties of the formulation of the equations of phenomena occurring during the operation of a fusion reactor are underlined. 2) The possibilities presented by analog computation of the solution of nonlinear differential equations are enumerated. The accuracy and limitations of this method are discussed. 3) The analog solution in the stationary problem of the measurement of the discharge confinement is given and comparison with experimental results. 4) The analog solution of the dynamic problem of the evolution of the discharge current in a simple case is given and it is compared with experimental data. 5) The analog solution of the motion of an isolated ion in the electromagnetic field is given. A spatial field simulator used for this problem (bidimensional problem) is described. 6) The analog solution of the preceding problem for a tridimensional case for particular geometrical configurations using simultaneously 2 field simulators is given. 7) A method of computation derived from Monte Carlo method for the study of dynamic of plasma is described. 8) Conclusion: the essential differences between the analog computation of fission reactors and fusion reactors are analysed. In particular the theory of control of a fusion reactor as described by SCHULTZ is discussed and the results of linearized formulations are compared with those of nonlinear simulation. (author)Fren. [French] 1) Introduction. On souligne les difficultes que presente la mise en equation des phenomenes mis en jeu lors du fonctionnement d'un reacteur a fusion. On selectionne un certain nombre d'equations generalement utilisees et on montre les impossibilites analytiques auxquelles on se heurte alors. 2) On rappelle les possibilites du calcul analogique pour la resolution des systemes differentiels non lineaires et on indique la precision de la methode ainsi que ses limitations. 3) On decrit esolution analogique du probleme statique de la mesure du confinement de la

  13. Etude des phenomenes dynamiques ultrarapides et des caracteristiques impulsionnelles d'emission terahertz du supraconducteur YBCO

    Science.gov (United States)

    Savard, Stephane

    Les premieres etudes d'antennes a base de supraconducteurs a haute temperature critique emettant une impulsion electromagnetique dont le contenu en frequence se situe dans le domaine terahertz remontent a 1996. Une antenne supraconductrice est formee d'un micro-pont d'une couche mince supraconductrice sur lequel un courant continu est applique. Un faisceau laser dans le visible est focalise sur le micro-pont et place le supraconducteur dans un etat hors-equilibre ou des paires sont brisees. Grace a la relaxation des quasiparticules en surplus et eventuellement de la reformation des paires supraconductrices, nous pouvons etudier la nature de la supraconductivite. L'analyse de la cinetique temporelle du champ electromagnetique emis par une telle antenne terahertz supraconductrice s'est averee utile pour decrire qualitativement les caracteristiques de celle-ci en fonction des parametres d'operation tels que le courant applique, la temperature et la puissance d'excitation. La comprehension de l'etat hors-equilibre est la cle pour comprendre le fonctionnement des antennes terahertz supraconductrices a haute temperature critique. Dans le but de comprendre ultimement cet etat hors-equilibre, nous avions besoin d'une methode et d'un modele pour extraire de facon plus systematique les proprietes intrinseques du materiau qui compose l'antenne terahertz a partir des caracteristiques d'emission de celle-ci. Nous avons developpe une procedure pour calibrer le spectrometre dans le domaine temporel en utilisant des antennes terahertz de GaAs bombarde aux protons H+ comme emetteur et detecteur. Une fois le montage calibre, nous y avons insere une antenne emettrice dipolaire de YBa 2Cu3O7-delta . Un modele avec des fonctions exponentielles de montee et de descente du signal est utilise pour lisser le spectre du champ electromagnetique de l'antenne de YBa 2Cu3O7-delta, ce qui nous permet d'extraire les proprietes intrinseques de ce dernier. Pour confirmer la validite du modele

  14. K-East and K-West Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — Hanford's "sister reactors", the K-East and the K-West Reactors, were built side-by-side in the early 1950's. The two reactors went operational within four months of...

  15. Research on plasma core reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, G.A.; Barton, D.M.; Helmick, H.H.; Bernard, W.; White, R.H.

    1977-01-01

    Experiments and theoretical studies are being conducted for NASA on critical assemblies with 1-m-diam by 1-m-long low-density cores surrounded by a thick beryllium reflector. These assemblies make extensive use of existing nuclear propulsion reactor components, facilities, and instrumentation. Due to excessive porosity in the reflector, the initial critical mass was 19 kg U(93.2). Addition of a 17-cm-thick by 89-cm-diam beryllium flux trap in the cavity reduced the critical mass to 7 kg when all the uranium was in the zone just outside the flux trap. A mockup aluminum UF/sub 6/ container was placed inside the flux trap and fueled with uranium-graphite elements. Fission distributions and reactivity worths of fuel and structural materials were measured. Finally, an 85,000-cm/sup 3/ aluminum canister in the central region was fueled with UF/sub 6/ gas and fission density distributions determined. These results will be used to guide the design of a prototype plasma core reactor which will test energy removal by optical radiation.

  16. Compound cryopump for fusion reactors

    CERN Document Server

    Kovari, M; Shephard, T

    2013-01-01

    We reconsider an old idea: a three-stage compound cryopump for use in fusion reactors such as DEMO. The helium "ash" is adsorbed on a 4.5 K charcoal-coated surface, while deuterium and tritium are adsorbed at 15-22 K on a second charcoal-coated surface. The helium is released by raising the first surface to ~30 K. In a separate regeneration step, deuterium and tritium are released at ~110 K. In this way, the helium can be pre-separated from other species. In the simplest design, all three stages are in the same vessel, with a single valve to close the pump off from the tokamak during regeneration. In an alternative design, the three stages are in separate vessels, connected by valves, allowing the stages to regenerate without interfering with each other. The inclusion of the intermediate stage would not affect the overall pumping speed significantly. The downstream exhaust processing system could be scaled down, as much of the deuterium and tritium could be returned directly to the reactor. This could reduce ...

  17. Dissecting Reactor Antineutrino Flux Calculations

    Science.gov (United States)

    Sonzogni, A. A.; McCutchan, E. A.; Hayes, A. C.

    2017-09-01

    Current predictions for the antineutrino yield and spectra from a nuclear reactor rely on the experimental electron spectra from 235U, 239Pu, 241Pu and a numerical method to convert these aggregate electron spectra into their corresponding antineutrino ones. In the present work we investigate quantitatively some of the basic assumptions and approximations used in the conversion method, studying first the compatibility between two recent approaches for calculating electron and antineutrino spectra. We then explore different possibilities for the disagreement between the measured Daya Bay and the Huber-Mueller antineutrino spectra, including the 238U contribution as well as the effective charge and the allowed shape assumption used in the conversion method. We observe that including a shape correction of about +6 % MeV-1 in conversion calculations can better describe the Daya Bay spectrum. Because of a lack of experimental data, this correction cannot be ruled out, concluding that in order to confirm the existence of the reactor neutrino anomaly, or even quantify it, precisely measured electron spectra for about 50 relevant fission products are needed. With the advent of new rare ion facilities, the measurement of shape factors for these nuclides, for many of which precise beta intensity data from TAGS experiments already exist, would be highly desirable.

  18. A new MTR fuel for a new MTR reactor: UMo for the Jules Horowitz reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guigon, B. [CEA Cadarache, Dir. de l' Energie Nucleaire DEN, Reacteur Jules Horowitz, 13 - Saint-Paul-lez-Durance (France); Vacelet, H. [Compagnie pour l' Etude et la Realisation de Combustibles Atomiques, CERCA, Etablissement de Romans, 26 (France); Dornbusch, D. [Technicatome, Service d' Architecture Generale, 13 - Aix-en-Provence (France)

    2003-07-01

    Within some years, the Jules Horowitz Reactor will be the only working experimental reactor (material and fuel testing reactor) in France. It will have to provide facilities for a wide range of needs: from activation analysis to power reactor fuel qualification. In this paper will be presented the main characteristics of the Jules Horowitz Reactor: its total power, neutron flux, fuel element... Safety criteria will be explained. Finally merits and disadvantages of UMo compared to the standard U{sub 3}Si{sub 2} fuel will be discussed. (authors)

  19. Annual report on JEN-1 reactor; Informe periodico del Reactor JEN-1 correspondiente al ano 1971

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J.

    1972-07-01

    In the annual report on the JEN-1 reactor the main features of the reactor operations and maintenance are described. The reactor has been critical for 1831 hours, what means 65,8% of the total working time. Maintenance and pool water contamination have occupied the rest of the time. The maintenance schedule is shown in detail according to three subjects. The main failures and reactor scrams are also described. The daily maximum values of the water activity are given so as the activity of the air in the reactor hall. (Author)

  20. Mathematical Modeling for Simulation of Nuclear Reactor Analysis

    OpenAIRE

    Salah Ud-Din Khan; Shahab Ud-Din Khan

    2013-01-01

    In this paper, we have developed a mathematical model for the nuclear reactor analysis to be implemented in the nuclear reactor code. THEATRe is nuclear reactor analysis code which can only work for the cylindrical type fuel reactor and cannot applicable for the plate type fuel nuclear reactor. Therefore, the current studies encompasses on the modification of THEATRe code for the plate type fuel element. This mathematical model is applicable to the thermal analysis of the reactor which is ver...

  1. Parametric sensitivity and runaway in tubular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morbidelli, M.; Varma, A.

    1982-09-01

    Parametric sensitivity of tubular reactors is analyzed to provide critical values of the heat of reaction and heat transfer parameters defining runaway and stable operations for all positive-order exothermic reactions with finite activation energies, and for all reactor inlet temperatures. Evaluation of the critical values does not involve any trial and error.

  2. Design of an organic simplified nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shirvan, Koroush [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge (United States); Forrest, Eric [Primary Standards Laboratory, Sandia National Laboratories, Albuquerque (United States)

    2016-08-15

    Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

  3. Helix reactor: great potential for flow chemistry

    NARCIS (Netherlands)

    Geerdink, P.; Runstraat, A. van den; Roelands, C.P.M.; Goetheer, E.L.V.

    2009-01-01

    The Helix reactor is highly suited for precise reaction control based on good hydrodynamics. The hydrodynamics are controlled by the Dean vortices, which create excellent heat transfer properties, approach plug flow and avoid turbulence. The flexibility of this reactor has been demonstrated using a

  4. Startup of an industrial adiabatic tubular reactor

    NARCIS (Netherlands)

    Verwijs, J.W.; Berg, van den H.; Westerterp, K.R.

    1992-01-01

    The dynamic behaviour of an adiabatic tubular plant reactor during the startup is demonstrated, together with the impact of a feed-pump failure of one of the reactants. A dynamic model of the reactor system is presented, and the system response is calculated as a function of experimentally-determine

  5. Rotor for a pyrolysis centrifuge reactor

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a rotor for a pyrolysis centrifuge reactor, said rotor comprising a rotor body having a longitudinal centre axis, and at least one pivotally mounted blade being adapted to pivot around a pivot axis under rotation of the rotor body around the longitudinal centre axis....... Moreover, the present invention relates to a pyrolysis centrifuge reactor applying such a rotor....

  6. Technical features of the MR reactor decommissioning

    Directory of Open Access Journals (Sweden)

    Craig David

    2008-01-01

    Full Text Available This paper presents a preliminary technical design for the dismantling of the MR reactor. The goal of the design is the removal of reactor components allowing the re-use of the building for a different nuclear related purpose. The sequence of segmentation procedures is established. Considerations on the size reduction and tooling are presented.

  7. University of Virginia Reactor Facility Decommissioning Results

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, P. F.; Lundberg, L. A.; Benneche, P. E.; Mulder, R. U.; Steva, D. P.

    2003-02-24

    The University of Virginia Reactor Facility started accelerated decommissioning in 2002. The facility consists of two licensed reactors, the CAVALIER and the UVAR. This paper will describe the progress in 2002, remaining efforts and the unique organizational structure of the project team.

  8. Advanced tokamak concepts and reactor designs

    NARCIS (Netherlands)

    Oomens, A. A. M.

    2000-01-01

    From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described, some examples

  9. The Design of a Nuclear Reactor

    Indian Academy of Sciences (India)

    2016-09-01

    The aim of this largely pedagogical article is toemploy pre-college physics to arrive at an understanding of a system as complex as a nuclear reactor. We focus on three key issues: the fuelpin, the moderator, and lastly the dimensions ofthe nuclear reactor.

  10. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    Science.gov (United States)

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  11. Selective purge for hydrogenation reactor recycle loop

    Science.gov (United States)

    Baker, Richard W.; Lokhandwala, Kaaeid A.

    2001-01-01

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  12. The First Reactor, 40th Anniversary (rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Allardice, Corbin; Trapnell, Edward R; Fermi, Enrico; Fermi, Laura; Williams, Robert C

    1982-12-01

    This booklet, an updated version of the original booklet describing the first nuclear reactor, was written in honor of the 40th anniversary of the first reactor or "pile". It is based on firsthand accounts told to Corbin Allardice and Edward R. Trapnell, and includes recollections of Enrico and Laura Fermi.

  13. The First Reactor, 40th Anniversary (rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Allardice, Corbin; Trapnell, Edward R; Fermi, Enrico; Fermi, Laura; Williams, Robert C

    1982-12-01

    This booklet, an updated version of the original booklet describing the first nuclear reactor, was written in honor of the 40th anniversary of the first reactor or "pile". It is based on firsthand accounts told to Corbin Allardice and Edward R. Trapnell, and includes recollections of Enrico and Laura Fermi.

  14. Radiochemical problems of fusion reactors. 1. Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M.B.A.

    1984-02-01

    A list of fusion reactor candidate materials is given, for use in connection with blanket structure, breeding, moderation, neutron multiplication, cooling, magnetic field generation, electrical insulation and radiation shielding. The phenomena being studied for each group of materials are indicated. Suitable irradiation test facilities are discussed under the headings (1) accelerator-based neutron sources, (2) fission reactors, and (3) ion accelerators.

  15. Nuclear data requirements for fusion reactor nucleonics

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, M.R.; Abdou, M.A.

    1980-01-01

    Nuclear data requirements for fusion reactor nucleonics are reviewed and the present status of data are assessed. The discussion is divided into broad categories dealing with data for Fusion Materials Irradiation Test Facility (FMIT), D-T Fusion Reactors, Alternate Fuel Cycles and the Evaluated Data Files that are available or would be available in the near future.

  16. Design of an Organic Simplified Nuclear Reactor

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-08-01

    Full Text Available Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

  17. Naval reactors physics handbook. Volume 3: The physics of intermediate spectrum reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stehn, J.R. [ed.] [Knolls Atomic Power Lab., Schenectady, NY (United States)

    1958-09-01

    The present volume has been prepared for persons with some knowledge of the physics of nuclear reactors. It is intended to make available the accumulated physics experience of the Knolls Atomic Power Laboratory in its work on intermediate spectrum reactors. Only those portions have been selected which were deemed to be most useful and significant to other physicists concerned with the problems of reactor design. The volume is divided into four parts which are more or less independent of one another. Part 1 (Chaps. 2--9), Investigation of Reactor Characteristics by Critical Assemblies, reflects the importance of the properties of critical assemblies and of the techniques for obtaining experimental information about such assemblies. Part 2 (Chaps. 10--20), Reactivity Effects Associated with Reactor Operation, details the use of both critical assemblies and reactor theory to make and test predictions of the manner in which the reactivity of an intermediate power reactor will vary during operation. Part 3 (Chaps. 21--26), Heat Generation and Nuclear Materials Problems, considers how reactor heat generation is spread out in space and time, and what nuclear effects result from the presence of beryllium or sodium in the reactor. Part 4 (Chaps. 27--38), Reactor Kinetics and Temperature Coefficients, relates to the transient or near-transient behavior of intermediate reactors.

  18. State space modeling of reactor core in a pressurized water reactor

    Science.gov (United States)

    Ashaari, A.; Ahmad, T.; Shamsuddin, Mustaffa; M, Wan Munirah W.; Abdullah, M. Adib

    2014-07-01

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  19. State space modeling of reactor core in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ashaari, A.; Ahmad, T.; M, Wan Munirah W. [Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Shamsuddin, Mustaffa [Institute of Ibnu Sina, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Abdullah, M. Adib [Swinburne University of Technology, Faculty of Engineering, Computing and Science, Jalan Simpang Tiga, 93350 Kuching, Sarawak (Malaysia)

    2014-07-10

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  20. Verification of Remote Inspection Techniques for Reactor Internal Structures of Liquid Metal Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Sang; Lee, Jae Han

    2007-02-15

    The reactor internal structures and components of a liquid metal reactor (LMR) are submerged in hot sodium of reactor vessel. The division 3 of ASME code section XI specifies the visual inspection as major in-service inspection (ISI) methods of reactor internal structures and components. Reactor internals of LMR can not be visually examined due to opaque liquid sodium. The under-sodium viewing techniques using an ultrasonic wave should be applied for the visual inspection of reactor internals. Recently, an ultrasonic waveguide sensor with a strip plate has been developed for an application to the under-sodium inspection. In this study, visualization technique, ranging technique and monitoring technique have been suggested for the remote inspection of reactor internals by using the waveguide sensor. The feasibility of these remote inspection techniques using ultrasonic waveguide sensor has been evaluated by an experimental verification.

  1. Verification of Remote Inspection Techniques for Reactor Internal Structures of Liquid Metal Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Sang; Lee, Jae Han

    2007-02-15

    The reactor internal structures and components of a liquid metal reactor (LMR) are submerged in hot sodium of reactor vessel. The division 3 of ASME code section XI specifies the visual inspection as major in-service inspection (ISI) methods of reactor internal structures and components. Reactor internals of LMR can not be visually examined due to opaque liquid sodium. The under-sodium viewing techniques using an ultrasonic wave should be applied for the visual inspection of reactor internals. Recently, an ultrasonic waveguide sensor with a strip plate has been developed for an application to the under-sodium inspection. In this study, visualization technique, ranging technique and monitoring technique have been suggested for the remote inspection of reactor internals by using the waveguide sensor. The feasibility of these remote inspection techniques using ultrasonic waveguide sensor has been evaluated by an experimental verification.

  2. Methods for studying the radioactive contamination of plants (1963); Methodes d'etude de la contamination radioactive des vegetaux (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R.; Jeanmaire, L.; Michon, G. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1963-07-01

    The authors first define the doctrine which led to the devising of a method for studying the radioactive pollution of plants, based on the use of simple techniques, having the possibility of being adapted for routine work, and so devised that each stage is proceeded with only if the preceding one justifies it. For each stage a study is effected comparing the results obtained by the use of more exact techniques. The second part describes in detail the techniques used. (authors) [French] Dans une premiere partie lea auteurs definissent la doctrine qui leur a permis d'elaborer une methode d'etude de la pollution radioactive des vegetaux, basee sur l'utilisation de techniques simples, se pretant au travail de serie et concues de telle maniere que chaque etape n'est abordee que si la precedente le justifie. Chaque etape fait l'objet d'une etude qui compare les resultats a ceux obtenue par des techniques plus precises. La deuxieme partie decrit dans le detail les techniques utilisees. (auteurs)

  3. Scanning tunneling microscope assembly, reactor, and system

    Science.gov (United States)

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  4. Dynamic model of Fast Breeder Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, G., E-mail: vaidya@igcar.gov.i [Fast Reactor Technology Group, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Kasinathan, N.; Velusamy, K. [Fast Reactor Technology Group, Indira Gandhi Center for Atomic Research, Kalpakkam (India)

    2010-04-15

    Fast Breeder Test Reactor (FBTR) is a 40 M Wt/13.2 MWe sodium cooled reactor operating since 1985. It is a loop type reactor. As part of the safety analysis the response of the plant to various transients is needed. In this connection a computer code named DYNAM was developed to model the reactor core, the intermediate heat exchanger, steam generator, piping, etc. This paper deals with the mathematical model of the various components of FBTR, the numerical techniques to solve the model, and comparison of the predictions of the code with plant measurements. Also presented is the benign response of the plant to a station blackout condition, which brings out the role of the various reactivity feedback mechanisms combined with a gradual coast down of reactor sodium flow.

  5. Reactivity control assembly for nuclear reactor. [LMFBR

    Science.gov (United States)

    Bollinger, L.R.

    1982-03-17

    This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

  6. Power Control Method for Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Baang, Dane; Suh, Yongsuk; Park, Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Considering safety-oriented design concept and other control environment, we developed a simple controller that provides limiting function of power change- rate as well as fine tracking performance. The design result has been well-proven via simulation and actual application to a TRIGA-II type research reactor. The proposed controller is designed to track the PDM(Power Demand) from operator input as long as maintaining the power change rate lower than a certain value for stable reactor operation. A power control method for a TRIGA-II type research reactor has been designed, simulated, and applied to actual reactor. The control performance during commissioning test shows that the proposed controller provides fine control performance for various changes in reference values (PDM), even though there is large measurement noise from neutron detectors. The overshoot at low power level is acceptable in a sense of reactor operation.

  7. Precision spectroscopy with reactor anti-neutrinos

    CERN Document Server

    Huber, P; Huber, Patrick; Schwetz, Thomas

    2004-01-01

    In this work we present an accurate parameterization of the anti-neutrino flux produced by the isotopes 235U, 239Pu and 241Pu in nuclear reactors. We determine the coefficients of this parameterization, as well as their covariance matrix, by performing a fit to spectra inferred from experimentally measured beta spectra. Subsequently we show that flux shape uncertainties play only a minor role in the KamLAND experiment, however, we find that future reactor neutrino experiments to measure the mixing angle $\\theta_{13}$ are sensitive to the fine details of the reactor neutrino spectra. Finally, we investigate the possibility to determine the isotopic composition in nuclear reactors through an anti-neutrino measurement. We find that with a 3 month exposure of a one ton detector the isotope fractions and the thermal reactor power can be determined at a few percent accuracy, which may open the possibility of an application for safeguard or non-proliferation objectives.

  8. Reactor assessments of advanced bumpy torus configurations

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, N.A.; Owen, L.W.; Spong, D.A.; Miller, R.L.; Ard, W.B.; Pipkins, J.F.; Schmitt, R.J.

    1984-02-01

    Recently, several innovative approaches were introduced for enhancing the performance of the basic ELMO Bumpy Torus (EBT) concept and for improving its reactor potential. These include planar racetrack and square geometries, Andreoletti coil systems, and bumpy torus-stellarator hybrids (which include twisted racetrack and helical axis stellarator - snakey torus). Preliminary evaluations of reactor implications of each approach have been carried out based on magnetics (vacuum) calculations, transport and scaling relationships, and stability properties deduced from provisional configurations that implement the approach but are not necessarily optimized. Further optimization is needed in all cases to evaluate the full potential of each approach. Results of these studies indicate favorable reactor projections with a significant reduction in reactor physical size as compared to conventional EBT reactor designs carried out in the past.

  9. Testing commercial catalysts in recycle reactors

    Energy Technology Data Exchange (ETDEWEB)

    Berty, J.M.

    1979-01-01

    Recycle reactors for quality control of catalyst production and for testing new catalysts for known or new processes have the following advantages over tubular reactors: they can reproduce the physical and chemical regime which surrounds the catalyst in a commercial reactor; they can achieve high mass and heat transfer; they exhibit uniform coke deposit; and they provide independence of mass velocity and space velocity. Their disadvantage is the unconventional specification of experiments in terms of discharge concentration which derives from the implicit nature of the basic mathematical relationships. Recycle reactor test methods are outlined for quality control and for testing catalysts, e.g., supported nickel from different manufacturers, for processes whose chemistry is well known. Approaches for testing catalysts for new processes are discussed. The standard recycle reactor developed at Union Carbide Corp. and manufactured by Autoclave Engineers, and several of its modifications are described.

  10. Ceramic oxygen transport membrane array reactor and reforming method

    Science.gov (United States)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-11-08

    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.

  11. Ceramic oxygen transport membrane array reactor and reforming method

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-11-08

    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.

  12. Fast Spectrum Molten Salt Reactor Options

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  13. The research reactors their contribution to the reactors physics; Les reacteurs de recherche leur apport sur la physique des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Barral, J.C. [Electricite de France (EDF), 75 - Paris (France); Zaetta, A. [CEA/Cadarache, Direction des Reacteurs Nucleaires, DRN, 13 - Saint-Paul-lez-Durance (France); Johner, J. [CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint Paul lez Durance (France); Mathoniere, G. [CEA/Saclay, DEN, 91 - Gif sur Yvette (France)] [and others

    2000-07-01

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  14. Etude des performances de solveurs deterministes sur un coeur rapide a caloporteur sodium

    Science.gov (United States)

    Bay, Charlotte

    The reactors of next generation, in particular SFR model, represent a true challenge for current codes and solvers, used mainly for thermic cores. There is no guarantee that their competences could be straight adapted to fast neutron spectrum, or to major design differences. Thus it is necessary to assess the validity of solvers and their potential shortfall in the case of fast neutron reactors. As part of an internship with CEA (France), and at the instigation of EPM Nuclear Institute, this study concerns the following codes : DRAGON/DONJON, ERANOS, PARIS and APOLLO3. The precision assessment has been performed using Monte Carlo code TRIPOLI4. Only core calculation was of interest, namely numerical methods competences in precision and rapidity. Lattice code was not part of the study, that is to say nuclear data, self-shielding, or isotopic compositions. Nor was tackled burnup or time evolution effects. The study consists in two main steps : first evaluating the sensitivity of each solver to calculation parameters, and obtain its optimal calculation set ; then compare their competences in terms of precision and rapidity, by collecting usual quantities (effective multiplication factor, reaction rates map), but also more specific quantities which are crucial to the SFR design, namely control rod worth and sodium void effect. The calculation time is also a key factor. Whatever conclusion or recommendation that could be drawn from this study, they must first of all be applied within similar frameworks, that is to say small fast neutron cores with hexagonal geometry. Eventual adjustments for big cores will have to be demonstrated in developments of this study.

  15. Radiation protection at new reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brissaud, A. [EDF INDUSTRY, Basic Design Department, EDF-SEPTEN, VILLEURBANNE Cedex (France)

    2000-05-01

    The theoritical knowledge and the feedback of operating experience concerning radiations in reactors is now considerable. It is available to the designer in the form of predictive softwares and data bases. Thus, it is possible to include the radiation protection component throughout all the design process. In France, the existing reactors have not been designed with quantified radiation protection targets, although considerable efforts have been made to reduce sources of radiation illustrated by the decrease of the average dose rates (typically a factor 5 between the first 900 MWe and the last 1300 MWe units). The EDF ALARA PROJECT has demonstrated that good practises, radiation protection awareness, careful work organization had a strong impact on operation and maintenance work volume. A decrease of the average collective dose by a factor 2 has been achieved without noticeable modifications of the units. In the case of new nuclear facilities projects (reactor, intermediate storage facility,...), or special operations (such as steam generator replacement), quantified radiation protection targets are included in terms of collective and average individual doses within the frame of a general optimization scheme. The target values by themselves are less important than the application of an optimization process throughout the design. This is because the optimization process requires to address all the components of the dose, particularly the work volume for operation and maintenance. A careful study of this parameter contributes to the economy of the project (suppression of unecessary tasks, time-saving ergonomy of work sites). This optimization process is currently applied to the design of the EPR. General radiation protection provisions have been addressed during the basic design phase by applying general rules aiming at the reduction of sources and dose rates. The basic design optimization phase has mainly dealt with the possibility to access the containment at full

  16. Membrane reactor technology for ultrapure hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Patil, C.S.

    2005-11-17

    The main objectives of this thesis are (1) to compare different reactor types and assess the feasibility of operation; (2) to develop and design a novel reactor concept based on the integration of perm-selective hydrogen and oxygen membranes; and (3) to give an experimental proof of principle of the developed reactor concept. In Chapter 2, available perm-selective hydrogen and oxygen membranes are reviewed. The focus is on the reactor concepts using these membranes and commercial developments that have taken place. In Chapter 3, the feasibility of performing autothermal membrane reforming in a packed bed membrane reactor with perm-selective hydrogen membrane is investigated based on detailed two-dimensional non-isothermal reactor modelling. In Chapter 4, an alternative reactor concept is developed for the autothermal reforming of methane integrating both hydrogen and oxygen perm-selective membranes. In Chapter 5, experimental work on the perm-selective hydrogen membranes that are used in the top section of the proposed reactor concept has been elaborated. These membranes, procured from a commercial supplier, are tested for their perm-selectivity and the permeability of hydrogen at different temperature and hydrogen partial pressures. Using the flux data a lumped flux expression is developed which is subsequently used in the pilot scale reactor design (Chapter 7). In Chapter 6, the kinetic rate measurements for SRM on a highly active Shell CPO catalyst are described. A kinetic rate expression for the steam reforming/ water gas shift top section of the proposed novel reactor concept is developed. The bottom section of this reactor is essentially at thermodynamic equilibrium because of highly active CPO catalyst and high temperatures and hence a detailed kinetic investigation for this section is not undertaken. In Chapter 7, a single membrane prototype of the top section is tested experimentally followed by a scale-up and design to a pilot scale unit with 10 Pd

  17. (Meeting on fusion reactor materials)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.H. (Pacific Northwest Lab., Richland, WA (USA)); Klueh, R.L.; Rowcliffe, A.F.; Wiffen, F.W. (Oak Ridge National Lab., TN (USA)); Loomis, B.A. (Argonne National Lab., IL (USA))

    1990-11-01

    During his visit to the KfK, Karlsruhe, F. W. Wiffen attended the IEA 12th Working Group Meeting on Fusion Reactor Materials. Plans were made for a low-activation materials workshop at Culham, UK, for April 1991, a data base workshop in Europe for June 1991, and a molecular dynamics workshop in the United States in 1991. At the 11th IEA Executive Committee on Fusion Materials, discussions centered on the recent FPAC and Colombo panel review in the United States and EC, respectively. The Committee also reviewed recent progress toward a neutron source in the United States (CWDD) and in Japan (ESNIT). A meeting with D. R. Harries (consultant to J. Darvas) yielded a useful overview of the EC technology program for fusion. Of particular interest to the US program is a strong effort on a conventional ferritic/martensitic steel for fist wall/blanket operation beyond NET/ITER.

  18. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Wike, L.D.; Specht, W.L.; Mackey, H.E.; Paller, M.H.; Wilde, E.W.; Dicks, A.S.

    1989-12-01

    The Savannah River Site (SRS) is a large United States Department of Energy installation on the upper Atlantic Coastal Plain of South Carolina. The SRS contains diverse habitats, flora, and fauna. Habitats include upland terrestrial areas, varied wetlands including Carolina Bays, the Savannah River swamp system, and impoundment related and riparian wetlands, and the aquatic habitats of several stream systems, two large cooling reservoirs, and the Savannah River. These diverse habitats support a large variety of plants and animals including many commercially or recreational valuable species and several rare, threatened or endangered species. This volume describes the major habitats and their biota found on the SRS, and discuss the impacts of continued operation of the K, L, and P production reactors.

  19. Coacervates as prebiotic chemical reactors

    Science.gov (United States)

    Kolb, Vera M.; Swanson, Mercedes; Menger, Fredric M.

    2012-10-01

    Coacervates are colloidal systems that are comprised of two immiscible aqueous layers, the colloid-rich layer, so-called coacervate, and the colloid-poor layer, so-called equilibrium liquid. Although immiscible, the two phases are both water-rich. Coacervates are important for prebiotic chemistry, but also have various practical applications, notably as transport vehicles of personal care products and pharmaceuticals. Our objectives are to explore the potential of coacervates as prebiotic chemical reactors. Since the reaction medium in coacervates is water, this creates a challenge, since most organic reactants are not water-soluble. To overcome this challenge we are utilizing recent Green Chemistry examples of the organic reactions in water, such as the Passerini reaction. We have investigated this reaction in two coacervate systems, and report here our preliminary results.

  20. Dynamic analysis of process reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shadle, L.J.; Lawson, L.O.; Noel, S.D.

    1995-06-01

    The approach and methodology of conducting a dynamic analysis is presented in this poster session in order to describe how this type of analysis can be used to evaluate the operation and control of process reactors. Dynamic analysis of the PyGas{trademark} gasification process is used to illustrate the utility of this approach. PyGas{trademark} is the gasifier being developed for the Gasification Product Improvement Facility (GPIF) by Jacobs-Siffine Engineering and Riley Stoker. In the first step of the analysis, process models are used to calculate the steady-state conditions and associated sensitivities for the process. For the PyGas{trademark} gasifier, the process models are non-linear mechanistic models of the jetting fluidized-bed pyrolyzer and the fixed-bed gasifier. These process sensitivities are key input, in the form of gain parameters or transfer functions, to the dynamic engineering models.

  1. Replacement reactor to revolutionise magnets

    CERN Document Server

    Atkins, G

    2002-01-01

    Electric motors, hearing aids and magnetic resonance imaging are only some of the applications that will benefit from the first advances in magnets in a quarter of a century. Magnets achieve their characteristics when electrons align themselves to produce a unified magnetic field. Neutrons can probe these magnetic structures. The focus is not just on making more powerful magnets, but also identifying the characteristics that make magnets cheaper and easier for industry to manufacture. Staff from the ANSTO's Neutron Scattering Group have already performed a number of studies on the properties of magnets using using HIFAR, but the Replacement Research Reactor that will produce cold neutrons would allow scientists to investigate the atomic properties of materials with large molecules. A suite of equipment will enable studies at different temperatures, pressures and magnetic fields

  2. Nuclear reactor composite fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Donn M. (Richland, WA); Marr, Duane R. (West Richland, WA); Cappiello, Michael W. (Richland, WA); Omberg, Ronald P. (Richland, WA)

    1980-01-01

    A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  3. PCCF flow analysis -- DR Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Calkin, J.F.

    1961-04-26

    This report contains an analysis of PCCF tube flow and Panellit pressure relations at DR reactor. Supply curves are presented at front header pressures from 480 to 600 psig using cold water and the standard 0.236 inch orifice with taper down stream and the pigtail valve (plug or ball) open. Demand curves are presented for slug column lengths of 200 inches to 400 inches using 1.44 inch O.D. solid poison pieces (either Al or Pb-Cd) and cold water with a rear header pressure of 50 psig. Figure 1 is a graph of Panellit pressure vs. flow with the above supply and demand curves and clearly shows the effect of front header pressure and charge length on flow.

  4. The Swedish Zero Power Reactor R0

    Energy Technology Data Exchange (ETDEWEB)

    Landergaard, Olof; Cavallin, Kaj; Jonsson, Georg

    1961-05-15

    The reactor R0 is a critical facility built for heavy water and natural uranium or fuel of low enrichment,, The first criticality was achieved September 25, 1959. During a first period of more than two years the R0 will be operated as a bare reactor in order to simplify interpretation of results. The reactor tank is 3. 2 m high and 2. 25 m in diameter. The fuel suspension system is quite flexible in order to facilitate fuel exchange and lattice variations. The temperature of the water can be varied between about 10 and 90 C by means of a heater and a cooler placed in the external circulating system. The instrumentation of the reactor has to meet the safety requirements not only during operation but also during rearrangements of the core in the shut-down state. Therefore, the shut-down state is always defined by a certain low 'safe' moderator level in the reactor tank. A number of safety rods are normally kept above the moderator ready for action. For manual or automatic control of the reactor power a specially designed piston pump is needed, by which the moderator level is varied. The pump speed is controlled from the reactor power error by means of a Ward-Leonard system. Moderator level measurement is made by means of a water gauge with an accuracy of {+-} 0. 1 mm.

  5. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  6. Bottom-mounted Reactor Shutdown Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sanghaun; Lee, Jin Haeng; Cho, Yeonggarp; Yoo, Yeonsik; Kim, Dongmin; Kim, Jongin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The CRDM acts as the first reactor shutdown mechanism and reactor regulating as well. The SSDM provides an alternate and independent means of reactor shutdown. The second shutdown rods (SSRs) of the SSDM are poised at the top of the core by the hydraulic system during the normal operation and drop by gravity within the specific time for a reactor trip. The SSR drop is actuated by the Reactor Protection System (RPS), Alternate Protection System (APS), Automatic Seismic Trip System (ASTS), or by the reactor operator in KJRR. Based on the proven technology of the design, operation and maintenance for HANARO and JRTR (Jordan Research and Training Reactor), the SSDM for the KJRR has been optimized by the design improvement from the experience and test. This paper aims for the introduction of the BM SSDM in the process of the basic design. The major differences of the shutdown mechanisms are comparatively analyzed between HANARO and KJRR. And the design features, system, structure and future works are also suggested. A basic design of the BM SSDM for the KJRR has been completed on the basis of the HANARO's SO unit or JRTR's SSDM. The SSR and its guide tube are designed and optimized according to the geometrical core configuration.

  7. Advanced Demonstration and Test Reactor Options Study

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Gehin, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States); Qualls, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Croson, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power’s share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercialization of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy’s (DOE’s) broader commitment to pursuing an “all of the above” clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate “advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy

  8. Preliminary studies on the Marcoule site, using a wind-tunnel; Etude preliminaire en soufflerie du site de Marcoule

    Energy Technology Data Exchange (ETDEWEB)

    Chassany, J.Ph. [Commissariat a l' Energie Atomique, Service de Protection contre les Radiations, Marcoule (France). Centre d' Etudes Nucleaires; Parigi, H. [Institut de Mecanique des Fluides, 13 - Marseille (France); Salaun-Penquer, G. [Centre National de la Recherche Scientifique (CNRS), 13 - Marseille (France)

    1961-07-01

    The tests were carried out in the 3.30 x 2.20 subsonic elliptical wind-tunnel of the Marseille Institute of fluid mechanics, on a 1/1000 scale model measuring 3 m x 3 m. The aerodynamic field developing above the site, made visible by ammonium, hydro-chlorate fumes, and the residues were observed and filmed by means of a synchronised cine-camera with stroboscopic lighting for 4 wind directions. The fall-out from the various waste products was obtained from a spraying of lead acetate solution on the model and hydrogen sulphide emissions. The zones of maximum pollution can be determined from a study of the film taken during the blackening of the spots. (author) [French] Les essais ont ete effectues dans la soufflerie elliptique subsonique de 3,30 x 2,20 de l'Institut de Mecanique des fluides de Marseille, sur une maquette, a l'echelle 1/1000, de 3 m x 3 m. Le champ aerodynamique se developpant au-dessus du Site, visualise par des fumees de chlorydrate d'ammoniaque ainsi que les rejets ont ete observes et filmes avec une camera synchronisee avec un eclairage stroboscopique pour 4 directions du vent. Les retombees au sol provenant des differents rejets ont ete obtenues a partir de la pulverisation d'une solution d'acetate de plomb sur la maquette et d'emissions de sulfure d'hydrogene. L'etude du film pris au cours du noircissement des taches permet de determiner les zones de pollution maximales. (auteur)

  9. Systematic study of plasma and serum proteins in the pig; Etude systematique des proteines plasmatiques et seriques du porc

    Energy Technology Data Exchange (ETDEWEB)

    Daburon, F.; Nizza, P.; Hatchikian, C.; Schmidt, J.-P. [Commissariat a l' Energie Atomique (France)

    1966-07-01

    This work has been carried out in the framework of the determination of the physiological constants of a normal pig. The aim was to study the serum and plasma proteins of this animal species, the ultimate object being to discover whether the qualitative and quantitative changes in these proteins can make a significant contribution to the establishment of a biological dosimetry for irradiated pigs. The serum and plasma from a normal pig were analyzed first by various simple electrophoretic methods and then by immuno-electrophoresis. As a result of the particular characteristics of pig serum we have gradually been led to make numerous modifications to the techniques used for human serums or for those of small laboratory animals. Much careful work and patience were required in order to obtain reproducible results. (authors) [French] Ce travail se situe dans le cadre de la determination des constantes physiologiques du porc normal. il s'agissait de proceder a l'etude des proteines seriques et plasmatiques de cette espece animale, le but ulterieur etant de savoir si les modifications qualitatives et quantitatives de ces proteines pourront representer une contribution valable a l'etablissement d'une dosimetrie biologique chez le porc irradie. Le serum et le plasma du porc normal ont ete analyses d'abord par diverses methodes electrophoretiques simples puis par immunoelectrophorese. Les caracteristiques particulieres du serum de porc nous ont conduits a apporter progressivement de nombreuses modifications aux techniques utilisees pour des serums humains ou de petits animaux de laboratoire. L'obtention de resultats reproductible a exige beaucoup de patience et de minutie. (auteurs)

  10. Composes inter-halogenes sous pression: etude des transformations structurales dans le monobromure d'iode sous forme dense

    Science.gov (United States)

    Bouchard, Alexandre

    La famille des composes halogenes et inter-halogenes representent des solides moleculaires adoptant des phases denses communes avec des solides moleculaires diatomiques comme l'azote et l'hydrogene. Parmi les transformations structurales et electroniques induites sous haute pression et observees dans ces solides, on note, entre autres, la dissociation moleculaire et la metallisation. De plus, l'etude des phases denses de l'iode a permis recemment l'observation d'une structure cristalline possedant une modulation dite incommensurable, c'est-a-dire une modulation possedant une periodicite differente de celle de la structure cristalline, jetant ainsi une lumiere nouvelle sur le processus de dissociation moleculaire dans les solides halogenes. Dans ce memoire, on propose d'etudier les changements structuraux dans monobromure d'iode (IBr), un compose inter-halogene possedant des proprietes structurales semblables a celles de deux composes halogenes, soit l'iode (I 2) et le brome (Br2) sous leur forme solide. Des experiences de diffraction des rayons X de poudres en utilisant un rayonnement synchrotron ont ete realisees a temperature ambiante sur l'IBr en variant la pression jusqu'aux environs de 60 GPa. La nature chimique particuliere du compose IBr a necessite la mise au point de techniques de chargement d'echantillon destinees a preserver l'integrite chimique de la substance utilisee. On rapporte egalement l'observation d'une phase de l'IBr presentant une modulation incommensurable. Les phases observees dans l'IBr permettent d'etablir des paralleles avec les phases denses rapportees dans I2 et Br2 par le biais d'un modele phenomenologique decrivant la sequence structurale des solides halogenes sous forme condensee.

  11. Oxidation performance of graphite material in reactors

    Institute of Scientific and Technical Information of China (English)

    Xiaowei LUO; Xinli YU; Suyuan YU

    2008-01-01

    Graphite is used as a structural material and moderator for high temperature gas-cooled reactors (HTGR). When a reactor is in operation, graphite oxida-tion influences the safety and operation of the reactor because of the impurities in the coolant and/or the acci-dent conditions, such as water ingress and air ingress. In this paper, the graphite oxidation process is introduced, factors influencing graphite oxidation are analyzed and discussed, and some new directions for further study are pointed out.

  12. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær;

    2003-01-01

    measurements are reviewed in detail. In the sequel, possible manipulated variables, such as the hydraulic retention time, the organic loading rate, the sludge retention time, temperature, pH and alkalinity are evaluated with respect to the two main reactor types: high-rate and low-rate. Finally, the different......The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...

  13. Reactor and method for production of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sunkara, Mahendra Kumar; Kim, Jeong H.; Kumar, Vivekanand

    2017-04-25

    A reactor and method for production of nanostructures, including metal oxide nanowires or nanoparticles, are provided. The reactor includes a regulated metal powder delivery system in communication with a dielectric tube; a plasma-forming gas inlet, whereby a plasma-forming gas is delivered substantially longitudinally into the dielectric tube; a sheath gas inlet, whereby a sheath gas is delivered into the dielectric tube; and a microwave energy generator coupled to the dielectric tube, whereby microwave energy is delivered into a plasma-forming gas. The method for producing nanostructures includes providing a reactor to form nanostructures and collecting the formed nanostructures, optionally from a filter located downstream of the dielectric tube.

  14. Packed fluidized bed blanket for fusion reactor

    Science.gov (United States)

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  15. Pyrometric fuel particle measurements in pressurised reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Joutsenoja, T. [Tampere Univ. of Technology (Finland)

    1996-12-01

    A fiberoptic two-colour pyrometric technique for fuel particle temperature and size measurement is modified and applied to three pressurized reactors of different type in Finland, Germany and France. A modification of the pyrometric method for simultaneous in situ measurement of the temperature and size of individual pulverized coal particles at the pressurized entrained flow reactor in Jyvaeskylae was developed and several series of measurements were made. In Orleans a fiberoptic pyrometric device was installed to a pressurised thermogravimetric reactor and the two-colour temperatures of fuel samples were measured. Some results of these measurements are presented. The project belongs to EU`s Joule 2 extension research programme. (author)

  16. ADVANCED CONTROL FOR A ETHYLENE REACTOR

    Directory of Open Access Journals (Sweden)

    Dumitru POPESCU

    2017-06-01

    Full Text Available The main objective of this work is the design and implementation of control solutions for petrochemical processes, namely the control and optimization of a pyrolysis reactor, the key-installation in the petrochemical industry. We present the technological characteristics of this petrochemical process and some aspects about the proposed control system solution for the ethylene plant. Finally, an optimal operating point for the reactor is found, considering that the process has a nonlinear multi-variable structure. The results have been implemented on an assembly of pyrolysis reactors on a petrochemical platform from Romania.

  17. Facility for a Low Power Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chalker, R. G.

    1949-09-14

    Preliminary investigation indicates that a reactor facility with ample research provisions for use by University or other interested groups, featuring safety in design, can be economically constructed in the Los Angeles area. The complete installation, including an underground gas-tight reactor building, with associated storage and experiment assembly building, administration offices, two general laboratory buildings, hot latoratory and lodge, can be constructed for approxinately $1,500,000. This does not include the cost of the reactor itself or of its auxiliary equipment,

  18. Sistemas de salvaguardia en reactores EPR

    OpenAIRE

    2015-01-01

    En este documento se describe brevemente el funcionamiento de los diversos sistemas de una planta nuclear operada con un reactor de tipo PWR. Más concretamente, el proyecto se centra en una descripción exhaustiva de los sistemas de salvaguardia y seguridad que regulan el funcionamiento de un reactor de tipo EPR, así como la central nuclear que contiene a dicho reactor. El proceso ha consistido en clasificar y resumir los distintos sistemas que operan en dicha planta, estudiando sus caracterís...

  19. Transients in reactors for power systems compensation

    Science.gov (United States)

    Abdul Hamid, Haziah

    This thesis describes new models and investigations into switching transient phenomena related to the shunt reactors and the Mechanically Switched Capacitor with Damping Network (MSCDN) operations used for reactive power control in the transmission system. Shunt reactors and MSCDN are similar in that they have reactors. A shunt reactor is connected parallel to the compensated lines to absorb the leading current, whereas the MSCDN is a version of a capacitor bank designed as a C-type filter for use in the harmonic-rich environment. In this work, models have been developed and transient overvoltages due to shunt reactor deenergisation were estimated analytically using MathCad, a mathematical program. Computer simulations used the ATP/EMTP program to reproduce both single-phase and three-phase shunt reactor switching at 275 kV operational substations. The effect of the reactor switching on the circuit breaker grading capacitor was also examined by considering various switching conditions.. The main original achievement of this thesis is the clarification of failure mechanisms occurring in the air-core filter reactor due to MSCDN switching operations. The simulation of the MSCDN energisation was conducted using the ATP/EMTP program in the presence of surge arresters. The outcome of this simulation shows that extremely fast transients were established across the air-core filter reactor. This identified transient event has led to the development of a detailed air-core reactor model, which accounts for the inter-turn RLC parameters as well as the stray capacitances-to-ground. These parameters are incorporated into the transient simulation circuit, from which the current and voltage distribution across the winding were derived using electric field and equivalent circuit modelling. Analysis of the results has revealed that there are substantial dielectric stresses imposed on the winding insulation that can be attributed to a combination of three factors. (i) First, the

  20. Assessing Pretreatment Reactor Scaling Through Empirical Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lischeske, James J.; Crawford, Nathan C.; Kuhn, Erik; Nagle, Nicholas J.; Schell, Daniel J.; Tucker, Melvin P.; McMillan, James D.; Wolfrum, Edward J.

    2016-12-01

    Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/d continuous reactor. The reactor systems examined were an Automated Solvent Extractor (ASE), Steam Explosion Reactor (SER), ZipperClave(R) reactor (ZCR), and Large Continuous Horizontal-Screw Reactor (LHR). To our knowledge, this is the first such study performed on pretreatment reactors across a range of reaction conditions (time and temperature) and at different reactor scales. The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest-scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. A reaction severity factor modeling approach was shown to inadequately describe the optimal conditions in the ASE, incorrectly identifying a large set of sub-optimal conditions (as defined by the RSM) as optimal. The maximum total sugar yields for the ASE and LHR were 95%, while 89% was the optimum observed in the ZipperClave. The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was

  1. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    Energy Technology Data Exchange (ETDEWEB)

    Harto, Andang Widi [Engineering Physics Department, Faculty of Engineering, Gadjah Mada University (Indonesia)

    2012-06-06

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  2. Progress of China Experimental Fast Reactor in 2011

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    1 Background Fast reactor is the reactor which realized the chain fission with fast neutron.As an optional type of generation Ⅳ reactor,fast reactor has three characters:1) It can change 238U to 239Pu and raise the uranium resource utilization

  3. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    OpenAIRE

    Djurcic, Z.(Argonne National Laboratory, Argonne, Illinois, 60439, U.S.A.); Detwiler, J. A.; Piepke, A.; Foster Jr., V. R.; Miller, L.; Gratta, G.

    2008-01-01

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in electron anti-neutrino detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties and their relevance to reactor anti-neutrino experiments.

  4. Hydrodynamics of multi-phase packed bed micro-reactors

    NARCIS (Netherlands)

    Márquez Luzardo, N.M.

    2010-01-01

    Why to use packed bed micro-reactors for catalyst testing? Miniaturized packed bed reactors have a large surface-to-volume ratio at the reactor and particle level that favors the heat- and mass-transfer processes at all scales (intra-particle, inter-phase and inter-particle or reactor level). If the

  5. Hydrodynamics of multi-phase packed bed micro-reactors

    NARCIS (Netherlands)

    Márquez Luzardo, N.M.

    2010-01-01

    Why to use packed bed micro-reactors for catalyst testing? Miniaturized packed bed reactors have a large surface-to-volume ratio at the reactor and particle level that favors the heat- and mass-transfer processes at all scales (intra-particle, inter-phase and inter-particle or reactor level). If the

  6. Stable isotope separation; Separations physicochimiques d'isotopes stables realisations et etudes de petites productions

    Energy Technology Data Exchange (ETDEWEB)

    Botter, F.; Molinari, Ph.; Dirian, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    type, de capacite totale environ 2 litres, il a ete realise un appareil preparatif, de faible volume mort, permettant de produire 1 litre de D{sub 2} pur a partir des melange 50 p.100 D{sub 2}, 50 p.100 H{sub 2} en 12 minutes environ. Sur le plan theorique, en premiere approximation, nous assimilions la chromatographie a un fractionnement contre courant en negligeant resistance superficielle a l'echange ainsi que diffusions longitudinale et laterale. On etablit graphiquement ou par calcul, le nombre de plateaux theoriques necessires a un certain enrichissement de la phase gazeuse ce qui permet de comparer l'efficacite de colonnes qui different par leur masse palladiee. DIFFUSION THERMIQUE: Afin d'assurer une separation des isotopes de l'hydrogene, on a realise une installation de diffusion thermique construite en acier inoxydable et entierement telecommandee. La cascade de separation se compose de deux couples identiques de colonnes a fil central chaud. Chaque couple peut travailler isolement ou etre relie par thermosyphon. La temperature du fil chaud est de l'ordre de 1000 deg C entretenue par courant redresse. Avec cette installation, des echantillons d'hydrogene a la teneur isotopique en deuterium inferieure a 0,5 ppm. ont ete obtenus a partir d'un gaz initial a 32 ppm. Il a ainsi ete possible de preparer du tritium a la teneur de 99,3 p. 100 a partir d'un gaz d'une teneur initale de 6 p. 100. Pour la separation quantitative du Xenon enrichi cinq fois en {sup 124}Xe par thermodiffusion on a construit deux cascades identiques de 5 colonnes fonctionnant en parallele, reliees par thermosyphon ou par tube capillaire lie a un oscillateur thermique de gaz. Le fil central en tungstene fonctionne a 1200 deg C. Les colonnes sont groupees a la facon d'un faisceau tubulaire d'un echangeur de chaleur dans une virole de 30 cm de diametre ou circule l'eau de refroidissement. Des etudes sont en cours pour augmenter le

  7. Ex-vessel Steam Explosion Analysis for Pressurized Water Reactor and Boiling Water Reactor

    OpenAIRE

    Matjaž Leskovar; Mitja Uršič

    2016-01-01

    A steam explosion may occur during a severe accident, when the molten core comes into contact with water. The pressurized water reactor and boiling water reactor ex-vessel steam explosion study, which was carried out with the multicomponent three-dimensional Eulerian fuel–coolant interaction code under the conditions of the Organisation for Economic Co-operation and Development (OECD) Steam Explosion Resolution for Nuclear Applications project reactor exercise, is presented and discussed. In ...

  8. Advanced research reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Kyu; Pak, H. D.; Kim, K. H. [and others

    2000-05-01

    The fabrication technology of the U{sub 3}Si fuel dispersed in aluminum for the localization of HANARO driver fuel has been launches. The increase of production yield of LEU metal, the establishment of measurement method of homogeneity, and electron beam welding process were performed. Irradiation test under normal operation condition, had been carried out and any clues of the fuel assembly breakdown was not detected. The 2nd test fuel assembly has been irradiated at HANARO reactor since 17th June 1999. The quality assurance system has been re-established and the eddy current test technique has been developed. The irradiation test for U{sub 3}Si{sub 2} dispersed fuels at HANARO reactor has been carried out in order to compare the in-pile performance of between the two types of U{sub 3}Si{sub 2} fuels, prepared by both the atomization and comminution processes. KAERI has also conducted all safety-related works such as the design and the fabrication of irradiation rig, the analysis of irradiation behavior, thermal hydraulic characteristics, stress analysis for irradiation rig, and thermal analysis fuel plate, for the mini-plate prepared by international research cooperation being irradiated safely at HANARO. Pressure drop test, vibration test and endurance test were performed. The characterization on powders of U-(5.4 {approx} 10 wt%) Mo alloy depending on Mo content prepared by rotating disk centrifugal atomization process was carried out in order to investigate the phase stability of the atomized U-Mo alloy system. The {gamma}-U phase stability and the thermal compatibility of atomized U-16at.%Mo and U-14at.%Mo-2at.%X(: Ru, Os) dispersion fuel meats at an elevated temperature have been investigated. The volume increases of U-Mo compatibility specimens were almost the same as or smaller than those of U{sub 3}Si{sub 2}. However the atomized alloy fuel exhibited a better irradiation performance than the comminuted alloy. The RERTR-3 irradiation test of nano

  9. Study of transient states in thermo-ionic converters; Etude des regimes transitoires des convertisseurs thermoioniques

    Energy Technology Data Exchange (ETDEWEB)

    Landrot, J. [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    In order to control a thermo-ionic reactor, it is necessary to know the dynamic influence of four fundamental parameters: the injected thermal power, the electrical charge resistance, the temperature of the cesium and the thermal exchange coefficient of the collector cooling circuit. The principles of the thermo-ionic converter are briefly exposed. The over-riding influence of the first two parameters is shown with the help of experimental static readings. These two parameters are then made to vary in turn. The laws of variation as a function of the time, of the electrical power produced and of the temperature of the various parts of the converter are deduced. (author) [French] Pour envisager le controle et la regulation d'un reacteur thermoionique, il est necessaire de connaitre l'influence dynamique de quatre parametres fondamentaux: puissance thermique injectee, resistance electrique de charge, temperature de cesium et coefficient d'echange thermique du circuit de refroidissement du collecteur. On rappelle brievement les principes du convertisseur thermoionique. A l'aide de releves statiques experimentaux, on montre l'influence preponderante des deux premiers parametres. On fait ensuite varier successivement ces deux parametres. On met en evidence les lois de variation en fonction du temps de la puissance electrique produite et de la temperature des differents points du convertisseur. (auteur)

  10. Studies and modeling of cold neutron sources; Etude et modelisation des sources froides de neutron

    Energy Technology Data Exchange (ETDEWEB)

    Campioni, G

    2004-11-15

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources.

  11. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors

    Science.gov (United States)

    Recktenwald, Geoff; Deinert, Mark

    2010-03-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks.

  12. Development of technology for next generation reactor - Development of next generation reactor in Korea -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1993-09-01

    The project, development of next generation reactor, aims overall related technology development and obtainment of related license in 2001. The development direction is to determine the reactor type and to build up the design concept in 1994. For development trend analysis of foreign next generation reactor, level-1 PSA, fuel cycle analysis and computer code development are performed on System 80+ and AP 600. Especially for design characteristics analysis and volume upgrade of AP 600, nuclear fuel and reactor core design analysis, coolant circuit design analysis, mechanical structure design analysis and safety analysis etc. are performed. (Author).

  13. Steady State Analysis of Small Molten Salt Reactor : Effect of Fuel Salt Flow on Reactor Characteristics

    OpenAIRE

    Yamamoto, Takahisa; MITACHI, Koshi; Suzuki, Takashi

    2005-01-01

    The Molten Salt Reactor (MSR) is a thermal neutron reactor with graphite moderation and operates on the thorium-uranium fuel cycle. The feature of the MSR is that fuel salt flows inside the reactor during the nuclear fission reaction. In the previous study, the authors developed numerical model with which to simulate the effects of fuel salt flow on the reactor characteristics. In this study, we apply the model to the steady-state analysis of a small MSR system and estimate the effects of fue...

  14. A Preliminary Analysis of Reactor Performance Test (LOEP) for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeonil; Park, Su-Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The final phase of commissioning is reactor performance test, which is to prove the integrated performance and safety of the research reactor at full power with fuel loaded such as neutron power calibration, Control Absorber Rod/Second Shutdown Rod drop time, InC function test, Criticality, Rod worth, Core heat removal with natural mechanism, and so forth. The last test will be safety-related one to assure the result of the safety analysis of the research reactor is marginal enough to be sure about the nuclear safety by showing the reactor satisfies the acceptance criteria of the safety functions such as for reactivity control, maintenance of auxiliaries, reactor pool water inventory control, core heat removal, and confinement isolation. After all, the fuel integrity will be ensured by verifying there is no meaningful change in the radiation levels. To confirm the performance of safety equipment, loss of normal electric power (LOEP), possibly categorized as Anticipated Operational Occurrence (AOO), is selected as a key experiment to figure out how safe the research reactor is before turning over the research reactor to the owner. This paper presents a preliminary analysis of the reactor performance test (LOEP) for a research reactor. The results showed how different the transient between conservative estimate and best estimate will look. Preliminary analyses have shown all probable thermal-hydraulic transient behavior of importance as to opening of flap valve, minimum critical heat flux ratio, the change of flow direction, and important values of thermal-hydraulic parameters.

  15. Hysteresis phenomenon in nuclear reactor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pirayesh, Behnam; Pazirandeh, Ali [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering, Science and Research Branch; Akbari, Monireh [Shahid Rajaee Teacher Training Univ., Tehran (Iran, Islamic Republic of). Dept. of Mathematics

    2017-05-15

    This paper applies a nonlinear analysis method to show that hysteresis phenomenon, due to the Saddle-node bifurcation, may occur in the nuclear reactor. This phenomenon may have significant effects on nuclear reactor dynamics and can even be the beginning of a nuclear reactor accident. A system of four dimensional nonlinear ordinary differential equations was considered to study the hysteresis phenomenon in a typical nuclear reactor. It should be noted that the reactivity was considered as a nonlinear function of state variables. The condition for emerging hysteresis was investigated using Routh-Hurwitz criterion and Sotomayor's theorem for saddle node bifurcation. A numerical analysis is also provided to illustrate the analytical results.

  16. Optimization of a sequence of reactors

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    1991-01-01

    Concerns the optimal production of sulphuric acid in a sequence of reactors. Using a suitable approximation to the objective function, this problem can easily be solved using the maximum principle. A numerical example documents the applicability of the suggested approach...

  17. Interactions of Pellet with Reactor Relevant Plasma

    Institute of Scientific and Technical Information of China (English)

    PENGLilin; DENGBaiquan; YANJiancheng

    2003-01-01

    Extended algorithm has been developed for ablation rate calculations of Li, Be, B impurity pellets and five combinations of solid isotopic hydrogenic H2, HD, D2, DT, T2 pellets. Numerical calculations have been performed for reactor relevant plasma.

  18. Gas pollutant cleaning by a membrane reactor

    Directory of Open Access Journals (Sweden)

    Kaldis Sotiris

    2006-01-01

    Full Text Available An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al2O3 catalyst was prepared by the dry and wet impregnation method and characterized by the inductively coupled plasma method, scanning electron microscopy, X-ray diffraction, and N2 adsorption before and after activation. Commercially available a-Al2O3 membranes were also characterized and the permeabilities and permselectivities of H2, N2, and CO2 were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. .

  19. Autonomous Control of Space Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear reactors to support future lunar and Mars robotic and manned missions impose new and innovative technological requirements for their control and protection...

  20. EMERGING TECHNOLOGY BULLETIN: SPOUTED BED REACTOR

    Science.gov (United States)

    The Spouted Bed Reactor (SBR) technology utilizes the unique attributes of the "spouting " fluidization regime, which can provide heat transfer rates comparable to traditional fluid beds, while providing robust circulation of highly heterogeneous solids, concurrent with very agg...

  1. Molten salt reactors - safety options galore

    Energy Technology Data Exchange (ETDEWEB)

    Gat, U. [Oak Ridge National Lab., TN (United States); Dodds, H.L. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-03-01

    Safety features and attributes of molten salt reactors (MSR) are described. The unique features of fluid fuel reactors of on-line continuous processing and the ability for so-called external cooling result in simple and safe designs with low excess reactivity, low fission product inventory, and small source term. These, in turn, make a criticality accident unlikely and reduce the severity of a loss of coolant to where they are no longer severe accidents. A melt down is not an accident for a reactor that uses molten fuel. The molten salts are stable, non-reactive and efficient heat transfer media that operate at high temperatures at low pressures and are highly compatible with selected structural materials. All these features reduce the accident plethora. Freeze valves can be used for added safety. An ultimate safe reactor (U.S.R) is described with safety features that are passive, inherent and non-tamperable (PINT).

  2. Dismantling decontamination of research reactor equipment

    Energy Technology Data Exchange (ETDEWEB)

    Voronik, N. I.; Davydov, Yu. P.; Shatilo, N. N. [Institute of Radioecological Problems Belarus Ac. Sci., Minsk-Sosny (Belarus)

    1999-07-01

    The purpose of the work was to check applicability of the existing and new compositions for decontamination and their adjustment to the specific conditions dealing with operation of the research reactor. (author)

  3. Chemical reactor modeling multiphase reactive flows

    CERN Document Server

    Jakobsen, Hugo A

    2014-01-01

    Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics.  The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling, and in a post graduate course in modern reactor m...

  4. Reactor Antineutrinos: From Confusion to Clarity

    Science.gov (United States)

    Dwyer, Dan

    2016-09-01

    Antineutrinos emitted by nuclear reactors have been a powerful tool for particle physics, demonstrating the existence of these weakly-interacting particles as well as their flavor oscillation. Despite these successes, our understanding of the total flux and energy spectra of reactor antineutrinos has been fraught with problems. I will give a brief overview of the unexpected developments in this field, and discuss upcoming measurements of antineutrinos, beta decays, and nuclear fission which are relevant to these questions. These measurements are expected to clarify many currently murky issues, including the hypothetical oscillation of reactor antineutrinos to sterile states. The results should also provide a unique perspective into the nuclear physics of fission reactors. DOE OHEP DE-AC02-05CH11231.

  5. The Bifurcation Behavior of CO Coupling Reactor

    Institute of Scientific and Technical Information of China (English)

    徐艳; 马新宾; 许根慧

    2005-01-01

    The bifurcation behavior of the CO coupling reactor was examined based on the one-dimensional pseudohomogeneous axial dispersion dynamic model. The method of finite difference was used for solving the boundary value problem; the continuation technique and the direct method were applied to determine the bifurcation diagram.The effects of dimensionless adiabatic temperature rise, Damkoehler number, activation energy, heat transfer coefficient and feed ratio on the bifurcation behavior were investigated. It was shown that there existed static bifurcation and the oscillations did not occur in the reactor. The result also revealed that the reactor exhibited at most 1-3-1 multiplilicity patterns within the range of practical possible parameters and the measures, such as weakening the axial dispersion of reactor, enhancing heat transfer, decreasing the concentration of ethyl nitrite, were efficient for avoiding the possible risk of multiple steady states.

  6. Heat pipe reactors for space power applications

    Science.gov (United States)

    Koenig, D. R.; Ranken, W. A.; Salmi, E. W.

    1977-01-01

    A family of heat pipe reactors design concepts has been developed to provide heat to a variety of electrical conversion systems. Three power plants are described that span the power range 1-500 kWe and operate in the temperature range 1200-1700 K. The reactors are fast, compact, heat-pipe cooled, high-temperature nuclear reactors fueled with fully enriched refractory fuels, UC-ZrC or UO2. Each fuel element is cooled by an axially located molybdenum heat pipe containing either sodium or lithium vapor. Virtues of the reactor designs are the avoidance of single-point failure mechanisms, the relatively high operating temperature, and the expected long lifetimes of the fuel element components.

  7. Corrosion Minimization for Research Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Eric Shaber; Gerard Hofman

    2005-06-01

    Existing university research reactors are being converted to use low-enriched uranium fue to eliminate the use of highly-enriched uranium. These conversions require increases in fuel loading that will result in the use of elements with more fuel plates, resulting in a net decrease in the water annulus between fuel plates. The proposed decrease in the water annulus raises questions about the requirements and stability of the surface hydroxide on the aluminum fuel cladding and the potential for runaway corrosion resulting in fuel over-temperature incidents. The Nuclear Regulatory Commission (NRC), as regulator for these university reactors, must ensure that proposed fuel modifications will not result in any increased risk or hazard to the reactor operators or the public. This document reviews the characteristics and behavior of aluminum hydroxides, analyzes the drivers for fuel plate corrosion, reviews relevant historical incidents, and provides recommendations on fuel design, surface treatment, and reactor operational practices to avoid corrosion issues.

  8. µ-reactors for Heterogeneous Catalysis

    DEFF Research Database (Denmark)

    Jensen, Robert

    catalyst surface area by reacting off an adsorbed layer of oxygen with CO. This procedure can be performed at temperatures low enough that sintering of Pt nanoparticles is not an issue. Some results from the reactors are presented. In particular an unexpected oscillation phenomenon of CO-oxidation on Pt...... nanoparticles are presented in detail. The sensitivity of the reactors are currently being investigated with CO oxidation on Pt thin films as a test reaction, and the results so far are presented. We have at this point shown that we are able to reach full conversion with a catalyst area of 38 µm2 with a turn......This thesis is the summary of my work on the µ-reactor platform. The concept of µ-reactors is presented and some of the experimental challenges are outlined. The various experimental issues regarding the platform are discussed and the actual implementation of three generations of the setup...

  9. Microbial degradation of MTBE in reactors

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2007-01-01

    findings were: membrane bioreactors and fluidized bed reactors had the highest volumetric removal rates of all reactors studied, in the order of 1 000 mg/(l d); competition for oxygen, nutrients and occupancy between MTBE degraders and oxidisers of co-contaminants such as, ammonium and the group of benzene......, toluene, ethylbenzene and xylenes, may reduce the removal rates of MTBE, or prevent its removal in reactors. With mathematical modelling, the long startup time required for some MTBE degrading reactors could be predicted. Long startup times of up to 200 days were due to the low maximum growth rate...... of the MTBE degraders, in the order of 0.1 d−1 or less, at 25 °C. However, despite this, high volumetric MTBE removal rates were found to be possible after the startup period when the biomass concentration reached a steady state....

  10. Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  11. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these ...... specific nucleic acid probes are discussed and exemplified by studies of anaerobic granular sludge, biofilm and digester systems......Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... and malfunctions of anaerobic digesters occasionally experienced, leading to sub-optimal methane production and wastewater treatment. Using a variety of molecular techniques, we are able to determine which microorganisms are active, where they are active, and when they are active, but we still need to determine...

  12. Reconstruction de la surface de Fermi dans l'etat normal d'un supraconducteur a haute Tc: Une etude du transport electrique en champ magnetique intense

    Science.gov (United States)

    Le Boeuf, David

    Des mesures de resistance longitudinale et de resistance de Hall en champ magnetique intense transverse (perpendiculaire aux plans CuO2) ont ete effectuees au sein de monocristaux de YBa2Cu3Oy (YBCO) demacles, ordonnes et de grande purete, afin d'etudier l'etat fondamental des supraconducteurs a haute Tc dans le regime sous-dope. Cette etude a ete realisee en fonction du dopage et de l'orientation du courant d'excitation J par rapport a l'axe orthorhombique b de la structure cristalline. Les mesures en champ magnetique intense revelent par suppression de la supraconductivite des oscillations magnetiques des resistances longitudinale et de Hall dans YBa2Cu 3O6.51 et YBa2Cu4O8. La conformite du comportement de ces oscillations quantiques au formalisme de Lifshitz-Kosevich, apporte la preuve de l'existence d'une surface de Fermi fermee a caractere quasi-2D, abritant des quasiparticules coherentes respectant la statistique de Fermi-Dirac, dans la phase pseudogap d'YBCO. La faible frequence des oscillations quantiques, combinee avec l'etude de la partie monotone de la resistance de Hall en fonction de la temperature indique que la surface de Fermi d'YBCO sous-dope comprend une petite poche de Fermi occupee par des porteurs de charge negative. Cette particularite de la surface de Fermi dans le regime sous-dope incompatible avec les calculs de structure de bande est en fort contraste avec la structure electronique presente dans le regime surdope. Cette observation implique ainsi l'existence d'un point critique quantique dans le diagramme de phase d'YBCO, au voisinage duquel la surface de Fermi doit subir une reconstruction induite par l'etablissement d'une brisure de la symetrie de translation du reseau cristallin sous-jacent. Enfin, l'etude en fonction du dopage de la resistance de Hall et de la resistance longitudinale en champ magnetique intense suggere qu'un ordre du type onde de densite (DW) est responsable de la reconstruction de la surface de Fermi. L'analogie de

  13. Developments and Tendencies in Fission Reactor Concepts

    Science.gov (United States)

    Adamov, E. O.; Fuji-Ie, Y.

    This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC

  14. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  15. Design of an Organic Simplified Nuclear Reactor

    OpenAIRE

    Koroush Shirvan; Eric Forrest

    2016-01-01

    Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attr...

  16. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær;

    2003-01-01

    control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks.......The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...

  17. COUPLED FAST-THERMAL POWER BREEDER REACTOR

    Science.gov (United States)

    Avery, R.

    1961-07-18

    A nuclear reactor having a region operating predominantly on fast neutrons and another region operating predominantly on slow neutrons is described. The fast region is a plutonium core and the slow region is a natural uranium blanket around the core. Both of these regions are free of moderator. A moderating reflector surrounds the uranium blanket. The moderating material and thickness of the reflector are selected so that fissions in the uranium blanket make a substantial contribution to the reactivity of the reactor.

  18. Environmental Information Document: L-reactor reactivation

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, H.E. Jr. (comp.)

    1982-04-01

    Purpose of this Environmental Information Document is to provide background for assessing environmental impacts associated with the renovation, restartup, and operation of L Reactor at the Savannah River Plant (SRP). SRP is a major US Department of Energy installation for the production of nuclear materials for national defense. The purpose of the restart of L Reactor is to increase the production of nuclear weapons materials, such as plutonium and tritium, to meet projected needs in the nuclear weapons program.

  19. Short-baseline reactor neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Mariani, C. [Department of Physics, Columbia University, New York, NY 10027 (United States)

    2011-08-15

    The neutrino mixing angle {theta}13 is currently a high-priority topic in the field of neutrino physics, with three different reactor neutrino experiments under way, searching for neutrino oscillations induced by this angle. A description of the reactor experiments searching for a non-zero value of {theta}13 is given, together with a discussion of their sensitivity within the next few years.

  20. The Daya Bay Reactor Neutrino Experiment

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    On Aug.15, 201l, a new large-scale scientific facility in China, Daya Bay Reactor Neutrino Experiment, started to operate. It is located in Daya Bay Nuclear Power Plant in Guangdong Province, around 50kin to both Hong Kong and Shenzhen City. The main scientific goal is to precisely determine the neutrino mixing angle 013 by detecting neutrinos from the reactors at different distances.

  1. Automatic safety rod for reactors. [LMFBR

    Science.gov (United States)

    Germer, J.H.

    1982-03-23

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  2. Optimization of a sequence of reactors

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    1991-01-01

    Concerns the optimal production of sulphuric acid in a sequence of reactors. Using a suitable approximation to the objective function, this problem can easily be solved using the maximum principle. A numerical example documents the applicability of the suggested approach......Concerns the optimal production of sulphuric acid in a sequence of reactors. Using a suitable approximation to the objective function, this problem can easily be solved using the maximum principle. A numerical example documents the applicability of the suggested approach...

  3. Oscillation Parameters with forthcoming Reactor Neutrino Experiments

    CERN Document Server

    Lasserre, Thierry

    2010-01-01

    I review the status of the forthcoming reactor neutrino experiments that toe the cutting edge of neutrino oscillation research. Kilometer baseline oscillation experiments (Double Chooz, Daya Bay, and Reno) will soon play a relevant role providing clean information on the last undetermined neutrino mixing angle !13. A 50-70 km baseline reactor neutrino experiment could later provide the best sensitivity to the !12 mixing angle.

  4. Strengthening IAEA Safeguards for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Bruce D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anzelon, George A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Budlong-Sylvester, Kory [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half a dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors, for example, such characteristics include rapid on-line refueling, and a core design with room for such a large number of assemblies or targets that it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors, such as hot cells, where plutonium could be separated, could pose a safeguards challenge because, in some cases, they are not declared (because they are not located in the facility or because nuclear materials are not foreseen to be processed inside) and may not be accessible to inspectors in States without an Additional Protocol in force.

  5. Current status of fast reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, H.H.

    1979-01-01

    The subject of calculation of reactivity coefficients for fast reactors is developed, starting with a discussion of the status of relevant nuclear data and proceeding to the subjects of group cross section generation and of methods of obtaining reactivity coefficients from group cross sections. Reactivity coefficients measured in critical experiments are compared with calculated values. Dependence of reactivity coefficients on reactor design is discussed. Finally, results of the recent international comparison of calculated reactivity coefficients are presented.

  6. Advanced Reactors Transition Program Resource Loaded Schedule

    Energy Technology Data Exchange (ETDEWEB)

    GANTT, D.A.

    2000-01-12

    The Advanced Reactors Transition (ART) Resource Loaded Schedule (RLS) provides a cost and schedule baseline for managing the project elements within the ART Program. The Fast Flux Test Facility (FETF) activities are delineated through the end of FY 2000, assuming continued standby. The Nuclear Energy (NE) Legacies and Plutonium Recycle Test Reactor (PRTR) activities are delineated through the end of the deactivation process. This revision reflects the 19 Oct 1999 baseline.

  7. Advanced Reactors Transition Program Resource Loaded Schedule

    Energy Technology Data Exchange (ETDEWEB)

    BOWEN, W.W.

    1999-11-08

    The Advanced Reactors Transition (ART) Resource Loaded Schedule (RLS) provides a cost and schedule baseline for managing the project elements within the ART Program. The Fast Flux Test Facility (FFTF) activities are delineated through the end of FY 2000, assuming continued standby. The Nuclear Energy (NE) Legacies and Plutonium Recycle Test Reactor (PRTR) activities are delineated through the end of the deactivation process. This document reflects the 1 Oct 1999 baseline.

  8. Optimally moderated nuclear fission reactor and fuel source therefor

    Science.gov (United States)

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  9. Development of computer simulator for coal liquefaction reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yawata, T.; Kobayashi, M.; Ohi, S.; Itho, H.; Hiraide, M. [Nippon Oil Co., Ltd., Tokyo (Japan)

    1995-12-31

    The computer simulator for a coal liquefaction reactor is a useful engineering tool to analyse the data of such reactors. The authors applied this technique to a reactor in the NEDOL process to predict the performance of the reactor, and to assist in the design of a reactor for demonstration plant. The development program of the simulator and its utilization plan are discussed. 4 figs., 2 tabs.

  10. Thermal-hydraulic interfacing code modules for CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Gold, M.; Sills, H. [Ontario Hydro Nuclear, Toronto (Canada)] [and others

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  11. Reactor Simulator Integration and Testing

    Science.gov (United States)

    Schoenfield, M. P.; Webster, K. L.; Pearson, J. B.

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator (RxSim) test loop was designed and built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing were to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V because the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This Technical Memorandum summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained, which was lower than the predicted 750 K but 156 K higher than the cold temperature, indicating the design provided some heat regeneration. The annular linear induction pump tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  12. Generic Magnetic Fusion Reactor Revisited

    Science.gov (United States)

    Sheffield, John; Milora, Stanley

    2015-11-01

    The original Generic Magnetic Fusion Reactor paper was published in 1986. This update describes what has changed in 30 years. Notably, the construction of ITER is providing important benchmark numbers for technologies and costs. In addition, we use a more conservative neutron wall flux and fluence. But these cost-increasing factors are offset by greater optimism on the thermal-electric conversion efficiency and potential availability. The main examples show the cost of electricity (COE) as a function of aspect ratio and neutron flux to the first wall. The dependence of the COE on availability, thermo-electric efficiency, electrical power output, and the present day's low interest rates is also discussed. Interestingly, at fixed aspect ratio there is a shallow minimum in the COE at neutron flux around 2.5 MW/m2. The possibility of operating with only a small COE penalty at even lower wall loadings (to 1.0 MW/m2 at larger plant size) and the use of niobium-titanium coils are also investigated. J. Sheffield was supported by ORNL subcontract 4000088999 with the University of Tennessee.

  13. Enzymatic processing in microfluidic reactors.

    Science.gov (United States)

    Miyazaki, Masaya; Honda, Takeshi; Yamaguchi, Hiroshi; Briones, Maria Portia P; Maeda, Hideaki

    2008-01-01

    Microreaction technology is an interdisciplinary area of science and engineering. It has attracted the attention of researchers from different fields in the past few years and consequently, several microreactors have been developed. Enzymes are organic catalysts used for the production useful substances in an environmentally friendly way, and have high potential for analytical applications. However, relatively few enzymatic processes have been commercialized because of problems in the stability of enzyme molecule, and the cost and efficiency of the reactions. Thus, there have been demands for innovation in process engineering particularly for enzymatic reactions, and microreaction devices can serve as efficient tools for the development of enzyme processes. In this review, we summarize the recent advances of microchannel reaction technologies and focus our discussion on enzyme microreactors. We discuss the manufacturing process of microreaction devices and the advantages of microreactors compared with the conventional reactors. Fundamental techniques for enzyme microreactors and important applications of this multidisciplinary technology in chemical processing are also included in our topics.

  14. Solid oxide electrochemical reactor science.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  15. Decommissioning of the Salaspils Research Reactor

    Directory of Open Access Journals (Sweden)

    Abramenkovs Andris

    2011-01-01

    Full Text Available In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor and to dispense with nuclear energy in the future. The reactor has been out of operation since July 1998. A conceptual study on the decommissioning of the Salaspils Research Reactor was drawn up by Noell-KRC-Energie- und Umwelttechnik GmbH in 1998-1999. On October 26th, 1999, the Latvian government decided to start the direct dismantling to “green-field” in 2001. The upgrading of the decommissioning and dismantling plan was carried out from 2003-2004, resulting in a change of the primary goal of decommissioning. Collecting and conditioning of “historical” radioactive wastes from different storages outside and inside the reactor hall became the primary goal. All radioactive materials (more than 96 tons were conditioned for disposal in concrete containers at the radioactive wastes depository “Radons” at the Baldone site. Protective and radiation measurement equipment of the personnel was upgraded significantly. All non-radioactive equipment and materials outside the reactor buildings were released for clearance and dismantled for reuse or conventional disposal. Contaminated materials from the reactor hall were collected and removed for clearance measurements on a weekly basis.

  16. Uncertainty quantification approaches for advanced reactor analyses.

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, L. L.; Nuclear Engineering Division

    2009-03-24

    The original approach to nuclear reactor design or safety analyses was to make very conservative modeling assumptions so as to ensure meeting the required safety margins. Traditional regulation, as established by the U. S. Nuclear Regulatory Commission required conservatisms which have subsequently been shown to be excessive. The commission has therefore moved away from excessively conservative evaluations and has determined best-estimate calculations to be an acceptable alternative to conservative models, provided the best-estimate results are accompanied by an uncertainty evaluation which can demonstrate that, when a set of analysis cases which statistically account for uncertainties of all types are generated, there is a 95% probability that at least 95% of the cases meet the safety margins. To date, nearly all published work addressing uncertainty evaluations of nuclear power plant calculations has focused on light water reactors and on large-break loss-of-coolant accident (LBLOCA) analyses. However, there is nothing in the uncertainty evaluation methodologies that is limited to a specific type of reactor or to specific types of plant scenarios. These same methodologies can be equally well applied to analyses for high-temperature gas-cooled reactors and to liquid metal reactors, and they can be applied to steady-state calculations, operational transients, or severe accident scenarios. This report reviews and compares both statistical and deterministic uncertainty evaluation approaches. Recommendations are given for selection of an uncertainty methodology and for considerations to be factored into the process of evaluating uncertainties for advanced reactor best-estimate analyses.

  17. Supply of enriched uranium for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H. [NUKEM GmbH, Alzenau (Germany)

    1997-08-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.

  18. A nanoliter-scale open chemical reactor.

    Science.gov (United States)

    Galas, Jean-Christophe; Haghiri-Gosnet, Anne-Marie; Estévez-Torres, André

    2013-02-01

    An open chemical reactor is a container that exchanges matter with the exterior. Well-mixed open chemical reactors, called continuous stirred tank reactors (CSTR), have been instrumental for investigating the dynamics of out-of-equilibrium chemical processes, such as oscillations, bistability, and chaos. Here, we introduce a microfluidic CSTR, called μCSTR, that reduces reagent consumption by six orders of magnitude. It consists of an annular reactor with four inlets and one outlet fabricated in PDMS using multi-layer soft lithography. A monolithic peristaltic pump feeds fresh reagents into the reactor through the inlets. After each injection the content of the reactor is continuously mixed with a second peristaltic pump. The efficiency of the μCSTR is experimentally characterized using a bromate, sulfite, ferrocyanide pH oscillator. Simulations accounting for the digital injection process are in agreement with experimental results. The low consumption of the μCSTR will be advantageous for investigating out-of-equilibrium dynamics of chemical processes involving biomolecules. These studies have been scarce so far because a miniaturized version of a CSTR was not available.

  19. Moving hot cell for LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Mitsuru

    1994-09-16

    A moving hot cell for an LMFBR type reactor is made movable on a reactor operation floor between a position just above the reactor container and a position retreated therefrom. Further, it comprises an overhung portion which can incorporate a spent fuel just thereunder, and a crane for moving a fuel assembly between a spent fuel cask and a reactor container. Further, an opening/closing means having a shielding structure is disposed to the bottom portion and the overhung portion thereof, to provide a sealing structure, in which only the receiving port for the spent fuel cask faces to the inner side, and the cask itself is disposed at the outside. Upon exchange of fuels, the movable hot cell is placed just above the reactor to take out the spent fuels, so that a region contaminated with primary sodium is limited within the hot cell. On the other hand, upon maintenance and repair for equipments, the hot cell is moved, thereby enabling to provide a not contaminated reactor operation floor. (N.H.).

  20. MOX in reactors: present and future

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Marc; Gros, Jean Pierre [AREVA NC - 33 rue La Fayette, 75009 Paris (France); Niquille, Aurelie; Marincic, Alexis [AREVA NP - Tour AREVA, 1 Place Jean Millier 92084 Paris La Defense (France)

    2010-07-01

    In Europe, MOX fuel has been supplied by AREVA for more than 30 years, to 36 reactors: 21 in France, 10 in Germany, 3 in Switzerland, 2 in Belgium. For the present and future, recycling is compulsory in the frame of sustainable development of nuclear energy. By 2030 the overall volume of used fuel will reach about 400 000 t worldwide. Their plutonium and uranium content represents a huge resource of energy to recycle. That is the reason why, the European Utilities issued an EUR (European Utilities Requirement) demanding new builds reactors to be able of using MOX Fuel Assemblies in up to 50 % of the core. AREVA GEN3+ reactors, like EPR{sup TM} or ATMEA{sup TM} designed with MHI partnership, are designed to answer any utility need of MOX recycling. The example of the EPR{sup TM} reactor operated with 100 % MOX core optimized for MOX recycling will be presented. A standard EPR{sup TM} can be operated with 100 % MOX core using an advanced homogeneous MOX (single Pu content) with highly improved performances (burn-up and Cycle length). The adaptations needed and the main operating and safety reactor features will be presented. AREVA offers the utilities throughout the world, fuel supply (UO{sub 2}, ERU, MOX), and reactors designed with all the needed capability for recycling. For each country and each utility, an adapted global solution, competitive and non proliferant can be proposed. (authors)

  1. Antineutrino reactor safeguards - a case study

    CERN Document Server

    Christensen, Eric; Jaffke, Patrick

    2013-01-01

    Antineutrinos have been proposed as a means of reactor safeguards for more than 30 years and there has been impressive experimental progress in neutrino detection. In this paper we conduct, for the first time, a case study of the application of antineutrino safeguards to a real-world scenario - the North Korean nuclear crisis in 1994. We derive detection limits to a partial or full core discharge in 1989 based on actual IAEA safeguards access and find that two independent methods would have yielded positive evidence for a second core with very high confidence. To generalize our results, we provide detailed estimates for the sensitivity to the plutonium content of various types of reactors, including most types of plutonium production reactors, based on detailed reactor simulations. A key finding of this study is that a wide class of reactors with a thermal power of less than 0.1-1 GWth can be safeguarded achieving IAEA goals for quantitative sensitivity and timeliness with detectors right outside the reactor ...

  2. FBR and RBR particle bed space reactors

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Botts, T.E.

    1983-01-01

    Compact, high-performance nuclear reactor designs based on High-Temperature Gas Reactors (HTGRs) particulate fuel are investigated. The large surface area available with the small-diameter (approx. 500 microns) particulate fuel allows very high power densities (MW's/liter), small temperature differences between fuel and coolant (approx. 10/sup 0/K), high coolant-outlet temperatures (1500 to 3000/sup 0/K, depending on design), and fast reactor startup (approx. 2 to 3 seconds). Two reactor concepts are developed - the Fixed Bed Reactor (FBR), where the fuel particles are packed into a thin annular bed between two porous cylindrical drums, and the Rotating Bed Reactor (RBR), where the fuel particles are held inside a cold rotating (typically approx. 500 rpm) porous cylindrical drum. The FBR can operate steady-state in the closed-cycle He-cooled mode or in the open-cycle H/sub 2/-cooled mode. The RBR will operate only in the open-cycle H/sub 2/-cooled mode.

  3. Design options for a bunsen reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles

    2013-10-01

    This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project. Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.

  4. Lessons Learned From Gen I Carbon Dioxide Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    David E. Shropshire

    2004-04-01

    This paper provides a review of early gas cooled reactors including the Magnox reactors originating in the United Kingdom and the subsequent development of the Advanced Gas-cooled Reactors (AGR). These early gas cooled reactors shared a common coolant medium, namely carbon dioxide (CO2). A framework of information is provided about these early reactors and identifies unique problems/opportunities associated with use of CO2 as a coolant. Reactor designers successfully rose to these challenges. After years of successful use of the CO2 gas cooled reactors in Europe, the succeeding generation of reactors, called the High Temperature Gas Reactors (HTGR), were designed with Helium gas as the coolant. Again, in the 21st century, with the latest reactor designs under investigation in Generation IV, there is a revived interest in developing Gas Cooled Fast Reactors that use CO2 as the reactor coolant. This paper provides a historical perspective on the 52 CO2 reactors and the reactor programs that developed them. The Magnox and AGR design features and safety characteristics were reviewed, as well as the technologies associated with fuel storage, reprocessing, and disposal. Lessons-learned from these programs are noted to benefit the designs of future generations of gas cooled nuclear reactors.

  5. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbrock, N. G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated

  6. Reactor performances and microbial communities of biogas reactors: effects of inoculum sources.

    Science.gov (United States)

    Han, Sheng; Liu, Yafeng; Zhang, Shicheng; Luo, Gang

    2016-01-01

    Anaerobic digestion is a very complex process that is mediated by various microorganisms, and the understanding of the microbial community assembly and its corresponding function is critical in order to better control the anaerobic process. The present study investigated the effect of different inocula on the microbial community assembly in biogas reactors treating cellulose with various inocula, and three parallel biogas reactors with the same inoculum were also operated in order to reveal the reproducibility of both microbial communities and functions of the biogas reactors. The results showed that the biogas production, volatile fatty acid (VFA) concentrations, and pH were different for the biogas reactors with different inocula, and different steady-state microbial community patterns were also obtained in different biogas reactors as reflected by Bray-Curtis similarity matrices and taxonomic classification. It indicated that inoculum played an important role in shaping the microbial communities of biogas reactor in the present study, and the microbial community assembly in biogas reactor did not follow the niche-based ecology theory. Furthermore, it was found that the microbial communities and reactor performances of parallel biogas reactors with the same inoculum were different, which could be explained by the neutral-based ecology theory and stochastic factors should played important roles in the microbial community assembly in the biogas reactors. The Bray-Curtis similarity matrices analysis suggested that inoculum affected more on the microbial community assembly compared to stochastic factors, since the samples with different inocula had lower similarity (10-20 %) compared to the samples from the parallel biogas reactors (30 %).

  7. Beach sediments drift study by means of radioactive tracers; L'etude du transport littoral par la methode des traceurs radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Hours, R. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Jaffry, P. [Electricite de France (EDF), 78 - Chatou (France). Lab. National d' Hydraulique

    1959-07-01

    The present state of the sediments drift studies by means of radioactive tracers is exposed. Various processes of labelling, immersion and detection, used in France and other countries, are reviewed. A more extended analysis of some aspects of the problem by the same authors can be found in 'La Houille Blanche', number 3, may-june 1959 (Rapport C.E.A. number 1269). (author) [French] L'etude du transport littoral des sediments et galets par la methode des traceurs radioactifs est en plein developpement. Le present rapport precise l'etat actuel de la question. Les techniques de marquage, d'immersion et de detection utilisees en France et a l'etranger sont decrites; une analyse plus detaillee de certains aspects de la question est presentee par les memes auteurs dans 'La Houille Blanche', numero 3, mai-juin 1959 (Rapport C.E.A. numero 1269). (auteur)

  8. Contribution to the study of the vertical molten zone process (1963); Contribution a l'etude du procede de la zone fondue verticale (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Lenzin, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    Construction and use of several molten zone apparatuses operating either vertically or horizontally. Efficient purification of uranyl nitrate hexahydrate but less successful in the case of other hydrated double salts and of zirconyl chloride in the hydrochloric gel form. Demonstration and study of the dissymmetry in the direction of the transport of the impurity during, the purification by a vertical molten zone process. (author) [French] Construction et utilisation de plusieurs appareils de zone fondue travaillant soit en vertical, soit en horizontal. Purification efficace du nitrate d'uranyle hexahydrate mais peu significative dans le cas des autres couples de sels hydrates et du chlorure de zirconyle a l'etat de gel chlorhydrique. Mise en evidence et etude de la dissymetrie sur le sens de transport de l'impurete au cours de la purification par zone fondue verticale. (auteur)

  9. Etude expérimentale des composés fluores et des phosphogypses rejetes en Baie de Seine-Rapport de synthèse

    OpenAIRE

    1983-01-01

    Au cours de la deuxième phase du programme d'étude sur les lésions des poissons et mammifères marins, et dans le cadre de ce programme, les effets de divers effluents industriels rejetés en Baie de Seine ont été recherchés. Le présent rapport rassemble les résultats obtenus d'une part au terme des travaux effectués sur les composés fluorés et sur les phosphogypses et présentés en détail dans chacun des documents suivants : 1. Etude expérimentale chez Salmo gairdneri, des effets toxiques du fl...

  10. A fly-wheel drive with controlled-torque clutch for a reactors cooling circuit pumps; Entrainement des pompes du circuit de refrigeration d'un reacteur par volant a embrayage sous couple controle

    Energy Technology Data Exchange (ETDEWEB)

    Riettini, A. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-10-15

    After a theoretical study on the slowing down of a centrifugal pump, the motion equations have been checked by means of experimental tests. In order to have important slowing down times (which is the case of the cooling pumps of a research reactor) it is necessary to add a fly-wheel. To prevent troubles when starting, a block pump-fly-wheel with clutch under controlled torque was developed. It is so possible to start the fly-wheel progressively without increasing too much power of the driving motor. (author) [French] Apres une etude theorique sur le mouvement de ralentissement d'une pompe centrifuge, les equations du mouvement ont ete verifiees par des essais pratiques. Pour obtenir des temps de ralentissement importants (cas des pompes de refrigeration d'un reacteur de recherche) il est necessaire d'y adjoindre un volant d'inertie. Pour eviter les inconvenients au demarrage, on a etudie un ensemble pompe-volant avec embrayage sous couple controle. Cette solution permet de lancer progressivement le volant sans augmentation appreciable de la puissance du moteur d'entrainement. (auteur)

  11. Strengthening IAEA Safeguards for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Bruce D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anzelon, George A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Budlong-Sylvester, Kory [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half a dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan (AIP). To

  12. Materials issues in fusion reactors

    Science.gov (United States)

    Suri, A. K.; Krishnamurthy, N.; Batra, I. S.

    2010-02-01

    The world scientific community is presently engaged in one of the toughest technological tasks of the current century, namely, exploitation of nuclear fusion in a controlled manner for the benefit of mankind. Scientific feasibility of controlled fusion of the light elements in plasma under magnetic confinement has already been proven. International efforts in a coordinated and co-operative manner are presently being made to build ITER - the International Thermonuclear Experimental Reactor - to test, in this first step, the concept of 'Tokamak' for net fusion energy production. To exploit this new developing option of making energy available through the route of fusion, India too embarked on a robust fusion programme under which we now have a working tokamak - the Aditya and a steady state tokamak (SST-1), which is on the verge of functioning. The programme envisages further development in terms of making SST-2 followed by a DEMO and finally the fusion power reactor. Further, with the participation of India in the ITER program in 2005, and recent allocation of half - a - port in ITER for placing our Lead - Lithium Ceramic Breeder (LLCB) based Test Blanket Module (TBM), meant basically for breeding tritium and extracting high grade heat, the need to understand and address issues related to materials for these complex systems has become all the more necessary. Also, it is obvious that with increasing power from the SST stages to DEMO and further to PROTOTYPE, the increasing demands on performance of materials would necessitate discovery and development of new materials. Because of the 14.1 MeV neutrons that are generated in the D+T reaction exploited in a tokamak, the materials, especially those employed for the construction of the first wall, the diverter and the blanket segments, suffer crippling damage due to the high He/dpa ratios that result due to the high energy of the neutrons. To meet this challenge, the materials that need to be developed for the tokamaks

  13. Thermal and hydrodynamic study of a whirling liquid hydrogen layer under high heat flux; Etude thermique et hydrodynamique d'une couche tourbillonnaire d'hydrogenen liquide sous flux de chaleur eleve

    Energy Technology Data Exchange (ETDEWEB)

    Ewald, R. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-03-01

    In order to achieve a cold neutrons source ({lambda} {>=} 4.10{sup -10} m) in a high flux reactor ({approx} 10{sup 15} neutrons/cm{sup 2}.s), a whirling liquid hydrogen layer (145 mm OD, effective thickness 15 mm, height about 180 mm) was formed, out-of-pile, in a cylindrical transparent glass vessel. The whirling motion was obtained by tangential injection of the liquid, near the wall. Thermal and hydrodynamical conditions of formation and laws of similarity of such a layer were studied. The characteristics of this whirling flow were observed as a function of mass flow rate (5 to 27 g/s; 4.3 to 23 l/mn), and of spillway width (18 and 25 mm). Six different nozzles were used : 1.0; 1.5; 1.9; 2.25; 2.65 and 3.0 mm ID. The total heat influx was found between 8.6 and 10.4 kW. The heat flux density was about 9.4 W/cm{sup 2} and the mean layer density around 80 per cent of that of the liquid hydrogen at 20.4 Kelvin. High speed movies were used to analyze the boiling regime. (author) [French] En vue de realiser une source de neutrons froids ({lambda} {>=} 4.10{sup -10} m) dans un reacteur a haut flux ({approx} 10{sup 15} neutrons thermiques/cm{sup 2}.s), on a forme dans un vase cylindrique transparent en verre, hors-pile, une couche tourbillonnaire ('vortex') d'hydrogene liquide (diametre exterieur 145 mm, epaisseur effective 15 mm, hauteur 180 mm environ). Le mouvement giratoire est obtenu par injection tangentielle du liquide pres de la paroi. L'etude porte sur la determination des conditions thermiques et hydrodynamiques de la formation d'une telle couche et sur les regles de similitude de ce phenomene. On a observe les caracteristiques de l'ecoulement giratoire en fonction du debit (de 5 a 27 g/s, soit de 4.3 a 23 1/mn), de la vitesse d'injection (entre 10 et 110 m/s) et de la largeur du deversoir (18 et 25 mm), ceci pour six diametres differents d'injecteur (1.0 ; 1.5; 1.9; 2.25; 2.65 et 3.0 mm). Le flux de chaleur total mesure

  14. Technological status of reactor coolant pumps in generation III+ pressurized nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, Bernhard; Bross, Stephan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2016-05-15

    KSB has been developing and producing pumps for thermal power plants for nearly 90 years. Consequently, KSB also started to develop and manufacture pumps for all kinds of nuclear power plants from the very beginning of the civil use of nuclear energy. This is especially true for reactor coolant pumps for pressurized water reactors. For the generation of advanced evolutionary reactors (Generation III+ reactors), KSB developed an advanced shaft seal system which is also able to fulfill the requirements of station blackout conditions. The tests in the KSB test rigs, which were successfully completed in December 2015, proved the full functionality of the new design. For generation III+ passive plant reactors KSB developed a new reactor coolant pump type called RUV, which is based on the experience of classic reactor coolant pumps and reactor internal pumps. It is a very compact, hermetically sealed vertical pump-motor unit with a wet winding motor. A full scale prototype successfully passed the 1st stage qualification test program in October 2015.

  15. Power distribution control of CANDU reactors based on modal representation of reactor kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Lingzhi, E-mail: lxia4@uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Jiang, Jin, E-mail: jjiang@eng.uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Luxat, John C., E-mail: luxatj@mcmaster.ca [Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2014-10-15

    Highlights: • Linearization of the modal synthesis model of neutronic kinetic equations for CANDU reactors. • Validation of the linearized dynamic model through closed-loop simulations by using the reactor regulating system. • Design of a LQR state feedback controller for CANDU core power distribution control. • Comparison of the results of this new controller against those of the conventional reactor regulation system. - Abstract: Modal synthesis representation of a neutronic kinetic model for a CANDU reactor core has been utilized in the analysis and synthesis for reactor control systems. Among all the mode shapes, the fundamental mode of the power distribution, which also coincides with the desired reactor power distribution during operation, is used in the control system design. The nonlinear modal models are linearized around desired operating points. Based on the linearized model, linear quadratic regulator (LQR) control approach is used to synthesize a state feedback controller. The performance of this controller has been evaluated by using the original nonlinear models under load-following conditions. It has been demonstrated that the proposed reactor control system can produce more uniform power distribution than the traditional reactor regulation systems (RRS); in particular, it is more effective in compensating the Xenon induced transients.

  16. Control of SHARON reactor for autotrophic nitrogen removal in two-reactor configuration

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON reactor. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine the optimal operating...

  17. REVIEW OF REACTOR SAFETY ANALYSES OF FAST AND LIQUID METAL COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Shaver, R. E.; Wittenbrock, N. G.

    1967-11-01

    Safety analysis reports on United States fast and liquid metal cooled reactors were reviewed to gain a better understanding of the safety philosophy applied to the design of these facilities. This information was compiled to help guide the design and safety analysis of the Fast Flux Test Facility. No attempt was made to draw conclusions concerning the relative merit of different approaches and philosophies used by different reactor design teams. The facilities reviewed were; Enrico Fermi Atomic Power Plant (FERMI) Hallam Nuclear Power Facility (HALLAM) Southwest Experimental Fast Oxide Reactor (SEFOR) Fast Reactor Test Facility (FARET) Experimental Breeder Reactor No. 1 (EBR-I) Experimental Breeder Reactor No. 2 (EBR-II) Fast Reactor Zero Power Experiment (ZPR - III). The information gathered from the safety analysis reports is tabulated under these headings: Control and Safety Systems; Reactor Protection Systems; Backup Systems; Containment or Confinement Systems; Inherent Reactivity Effects and Important Physics Parameters; Fuel and Fuel Handling; Accidents Considered and Chemical Problems; Site; Exhaust Ventilation System; and Waste Effluents.

  18. Nuclear Energy Enabling Technologies (NEET) Reactor Materials: News for the Reactor Materials Crosscut, May 2016

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science in Radiation and Dynamics Extremes

    2016-09-26

    In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.

  19. Randomized control trial for the assessment of the anti-albuminuric effects of topiroxostat in hyperuricemic patients with diabetic nephropathy (the ETUDE study).

    Science.gov (United States)

    Kato, Sawako; Ando, Masahiko; Mizukoshi, Toshihiro; Nagata, Takanobu; Katsuno, Takayuki; Kosugi, Tomoki; Tsuboi, Naotake; Maruyama, Shoichi

    2016-05-01

    Proteinuria is an established risk factor for diabetic nephropathy. Recent studies indicate that some xanthine oxidase inhibitors have a renoprotective effect. The aim of this study was to assess whether topiroxostat reduces albuminuria in hyperuricemic patients with diabetic nephropathy and overt proteinuria. The ETUDE study is an ongoing 24-week, multicenter, open-label, randomized (1:1), parallel group study involving hyperuricemic patients with diabetic nephropathy (estimated glomerular filtration rate [eGFR] ≥ 20 mL/min/1.73 m(2)) and overt proteinuria (0.3 ≤ urine protein to creatinine ratio (UPCR) < 3.5 g/g Cr). Patients are randomly assigned to high dose (topiroxostat 160 mg daily) or low dose (topiroxostat 40 mg daily) on top of standard of care. The primary endpoint is the change in albuminuria indicated by urine albumin-to-creatinine ratio after 24 treated weeks relative to the baseline values. This trial was registered at the Japanese University Hospital Medical Information Network Clinical Trials Registry (UMIN-CTR: UMIN 000015403). The background, rationale, and study design of this trial are presented here. Seventy-six patients from four registered facilities have already been enrolled and received at least one dose of topiroxostat. This trial will end in 2017. The ETUDE trial is the first randomized controlled study of topiroxostat in hyperuricemic patients with diabetic nephropathy and overt proteinuria. We will clarify the pleiotropic function of topiroxostat including an anti-albumiuric effect as well as its effects on safely decreasing serum uric acid levels.

  20. Contribution to the study of deformed heavy nuclei by means of nuclear reactions; Contribution a l'etude des noyaux lourds deformes au moyen de reactions nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Gastebois, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    The experimental results obtained in the study of the (d,p) reactions, at E{sub d} = 12 MeV, on the three even-even deformed nuclei {sup 170}Yb, {sup 172}Yb and {sup 174}Yb have been analysed in terms of DWBA calculations. The spectroscopic information relative to the odd final nuclei have been compared with the predictions of the collective model and of the Nilsson's model. The effect of various parameters used in the DWBA analysis (form factors, optical wave functions) has been carefully studied. The observed differences between the three final nuclei are qualitatively reproduced in the experimental study of resonances, seen in excitation functions of elastically and inelastically scattered protons on the same target nuclei, and corresponding to analogue states in the three nuclei {sup 171}Lu, {sup 173}Lu and {sup 175}Lu. (author) [French] Les resultats experimentaux de l'etude des reactions (d.p) a E{sub d} = 12 MeV, sur les noyaux deformes pairs-pairs {sup 170}Yb, {sup 172}Yb et {sup 174}Yb ont ete interpretes dans le cadre de l'approximation de Born des ondes deformees. Les informations spectroscopiques relatives aux noyaux impairs finals ont ete comparees aux predictions du modele collectif et du modele de Nilsson, apres avoir examine avec soin l'influence des differents parametres (facteurs de forme, fonctions d'onde 'optiques') utilises lors de l'analyse. Les differences observees entre les trois noyaux finals sont qualitativement reproduites par les resultats experimentaux de l'etude de resonances dans les fonctions d'excitation de diffusion elastique et inelastique de protons sur les memes noyaux-cibles, lors de la recherche d'etats analogues dans les noyaux {sup 171}Lu, {sup 173}Lu et {sup 175}Lu. (auteur)