WorldWideScience

Sample records for reactor physics parameters

  1. An optimization method for parameters in reactor nuclear physics

    International Nuclear Information System (INIS)

    Jachic, J.

    1982-01-01

    An optimization method for two basic problems of Reactor Physics was developed. The first is the optimization of a plutonium critical mass and the bruding ratio for fast reactors in function of the radial enrichment distribution of the fuel used as control parameter. The second is the maximization of the generation and the plutonium burnup by an optimization of power temporal distribution. (E.G.) [pt

  2. Advances in reactor physics education: Visualization of reactor parameters

    International Nuclear Information System (INIS)

    Snoj, L.; Kromar, M.; Zerovnik, G.

    2012-01-01

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for reactor operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and a typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software. (authors)

  3. Methodology and results of investigations of physical parameters of high-temperature reactors

    International Nuclear Information System (INIS)

    Cherepnin, Yu.S.; Chertkov, Yu.B.

    1995-01-01

    A physical investigations of reactors of stand complexes Baikal-1 and IGR have been carrying out more 30 years. Measuring methods of the physical investigations were divided into 2 groups: 1) methods for measuring of reactivity effects; 2) methods for measuring relative and absolute values of neutron flux and power release. The physical investigations on the reactors IVG-1 and IGR were carryied out under following conditions: during physical starts-up of regular variants of reactor cores; during energy starts-up of the reactors; before beginning of new loop chanel tests of the reactors; during research hot starts-up of the reactors the physical parameters were controled. The most full and authentic information about studied reactor have been providing by physical investigations. In 1984 physical investigations were carryied out on the IGR reactor and then the hot start-up of the mostest power and mostest large on fuel loading loop chanel was carryied out. This chanel contained 6 fuel assemblies with the summary fuel loading 3,06 kilogrammes of uranium and it was calculated for power equal to 20 MW. In 1988 the physical investigations for selection of project process chanels destined for new water cooled reactor core were carryied out. In 1993 the neutron-physical calculation on possibility of tests for the rector Nerva fuel element was carryied out. 9 refs., 4 figs

  4. Fast neutron reactor noise analysis: beginning failure detection and physical parameter estimation

    International Nuclear Information System (INIS)

    Le Guillou, G.

    1975-01-01

    The analysis of the signals fluctuations coming from a power nuclear reactor (a breeder), by correlation methods and spectral analysis has two principal applications: on line estimation of physical parameters (reactivity coefficients); beginning failures (little boiling, abnormal mechanic vibrations). These two applications give important informations to the reactor core control and permit a good diagnosis [fr

  5. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Ronen, Y.; Elias, E.

    1994-01-01

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  6. Research on physical and chemical parameters of coolant in Light-Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Isabela C.; Mesquita, Amir Z., E-mail: icr@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEM-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The coolant radiochemical monitoring of light-water reactors, both power reactor as research reactors is one most important tasks of the system safe operation. The last years have increased the interest in the coolant chemical studying to optimize the process, to minimize the corrosion, to ensure the primary system materials integrity, and to reduce the workers exposure radiation. This paper has the objective to present the development project in Nuclear Technology Development Center (CDTN), which aims to simulate the primary water physical-chemical parameters of light-water-reactors (LWR). Among these parameters may be cited: the temperature, the pressure, the pH, the electric conductivity, and the boron concentration. It is also being studied the adverse effects that these parameters can result in the reactor integrity. The project also aims the mounting of a system to control and monitoring of temperature, electric conductivity, and pH of water in the Installation of Test in Accident Conditions (ITCA), located in the Thermal-Hydraulic Laboratory at CDTN. This facility was widely used in the years 80/90 for commissioning of several components that were installed in Angra 2 containment. In the test, the coolant must reproduce the physical and chemical conditions of the primary. It is therefore fundamental knowledge of the main control parameters of the primary cooling water from PWR reactors. Therefore, this work is contributing, with the knowledge and the reproduction with larger faithfulness of the reactors coolant in the experimental circuits. (author)

  7. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  8. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  9. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  10. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  11. Reactor physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    1998-01-01

    Progress in research on reactor physics in 1997 at the Belgian Nuclear Research Centre SCK/CEN is described. Activities in the following four domains are discussed: core physics, ex-core neutron transport, experiments in Materials Testing Reactors, international benchmarks

  12. Monte Carlo simulation of core physics parameters of the Syrian MNSR reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Sulieman, I.

    2011-01-01

    A 3-D neutronic model for the Syrian Miniature Neutron Source Reactor (MNSR) was developed earlier to conduct the reactor neutronic analysis using the MCNP-4C code. The continuous energy neutron cross sections were evaluated from the ENDF/B-VI library. This model is used in this paper to calculate the following reactor core physics parameters: the clean cold core excess reactivity, calibration of the control rod and calculation its shut down margin, calibration of the top beryllium shim plate reflector, the axial neutron flux distributions in the inner and outer irradiation positions and calculations of the prompt neutron life time (ι p ) and the effective delayed neutron fraction ( β e ff). Good agreements are noticed between the calculated and the measured results. These agreements indicate that the established model is an accurate representation of Syrian MNSR core and will be used for other calculations in the future. (author)

  13. Physics of nuclear reactors

    International Nuclear Information System (INIS)

    Baeten, Peter

    2006-01-01

    This course gives an introduction to Nuclear Reactor Physics. The first chapter explains the most important parameters and concepts in nuclear reactor physics such as fission, cross sections and the effective multiplication factor. Further on, in the second chapter, the flux distributions in a stationary reactor are derived from the diffusion equation. Reactor kinetics, reactor control and reactor dynamics (feedback effects) are described in the following three chapters. The course concludes with a short description of the different types of existing and future reactors. (author)

  14. Monte Carlo simulation of core physics parameters of the Nigeria Research Reactor-1 (NIRR-1)

    Energy Technology Data Exchange (ETDEWEB)

    Jonah, S.A. [Reactor Engineering Section, Centre for Energy Research and Training, Ahmadu Bello University, Zaria, P.M.B. 1014 (Nigeria)], E-mail: jonahsa2001@yahoo.com; Liaw, J.R.; Matos, J.E. [RERTR Program, Nuclear Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2007-12-15

    The Monte Carlo N-Particle (MCNP) code, version 4C (MCNP4C) and a set of neutron cross-section data were used to develop an accurate three-dimensional computational model of the Nigeria Research Reactor-1 (NIRR-1). The geometry of the reactor core was modeled as closely as possible including the details of all the fuel elements, reactivity regulators, the control rod, all irradiation channels, and Be reflectors. The following reactor core physics parameters were calculated for the present highly enriched uranium (HEU) core: clean cold core excess reactivity ({rho}{sub ex}), control rod (CR) and shim worth, shut down margin (SDM), neutron flux distributions in the irradiation channels, reactivity feedback coefficients and the kinetics parameters. The HEU input model was validated by experimental data from the final safety analyses report (SAR). The model predicted various key neutronics parameters fairly accurately and the calculated thermal neutron fluxes in the irradiation channels agree with the values obtained by foil activation method. Results indicate that the established Monte Carlo model is an accurate representation of the NIRR-1 HEU core and will be used to perform feasibility for conversion to low enriched uranium (LEU)

  15. Dosimetry-adjusted reactor physics parameters for pressure vessel neutron exposure assessment

    International Nuclear Information System (INIS)

    McElroy, W.N.; Kellogg, L.S.

    1988-01-01

    The ASTM E706 master matrix standard describes a series of 20 American Society for Testing and Materials (ASTM) standard practices, guides, and methods for use in the prediction of neutron-induced changes in light water reactor (LWR) pressure vessel (PV) and support structure steels throughout a PV's service life. Some of these are existing ASTM standards, some are ASTM standards that have been modified, and some are new ASTM standards. These standards are periodically revised to assume their applicability during the 40-yr (32 effective full-power years) design license period for a nuclear power plant. They are now under review by two new ASTM plant life extension task groups: E10.05.11 on physics dosimetry and E10.02.11 on metallurgy. A brief review on the current application of these standards and a discussion of the status of work to verify the accuracy of derived physics-dosimetry parameter values is presented in this paper

  16. Effect of Drawer Master Modeling of ZPPR15 Phase A Reactor Physics Experiment on Integral Parameter

    International Nuclear Information System (INIS)

    Yoo, Jae Woon; Kim, Sang Ji

    2011-01-01

    As a part of an International-Nuclear Engineering Research Initiative (I-NERI) Project, KAERI and ANL are analyzing the ZPPR-15 reactor physics experiments. The ZPPR-15 experiments were carried out in support of the Integral Fast Reactor (IFR) project. Because of lack of the experimental data, verifying and validating the core neutronics analysis code for metal fueled sodium cooled fast reactors (SFR) has been one of the big concerns. KAERI is developing the metal fuel loaded SFR and plans to construct the demonstration SFR by around 2028. Database built through this project and its result of analysis will play an important role in validating the SFR neutronics characteristics. As the first year work of I-NERI project, KAERI analyzed ZPPR-15 Phase A experiment among four phases (Phase A to D). The effect of a drawer master modeling on the integral parameter was investigated. The approximated benchmark configurations for each loading were constructed to be used for validating a deterministic code

  17. Effects of space-dependent cross sections on core physics parameters for compact fast spectrum space power reactors

    International Nuclear Information System (INIS)

    Lell, R.M.; Hanan, N.A.

    1987-01-01

    Effects of multigroup neutron cross section generation procedures on core physics parameters for compact fast spectrum reactors have been examined. Homogeneous and space-dependent multigroup cross section sets were generated in 11 and 27 groups for a representative fast reactor core. These cross sections were used to compute various reactor physics parameters for the reference core. Coarse group structure and neglect of space-dependence in the generation procedure resulted in inaccurate computations of reactor flux and power distributions and in significant errors regarding estimates of core reactivity and control system worth. Delayed neutron fraction was insensitive to cross section treatment, and computed reactivity coefficients were only slightly sensitive. However, neutron lifetime was found to be very sensitive to cross section treatment. Deficiencies in multigroup cross sections are reflected in core nuclear design and, consequently, in system mechanical design

  18. Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP.

    Science.gov (United States)

    Henry, R; Tiselj, I; Snoj, L

    2015-03-01

    New computational model of the JSI TRIGA Mark II research reactor was built for TRIPOLI computer code and compared with existing MCNP code model. The same modelling assumptions were used in order to check the differences of the mathematical models of both Monte Carlo codes. Differences between the TRIPOLI and MCNP predictions of keff were up to 100pcm. Further validation was performed with analyses of the normalized reaction rates and computations of kinetic parameters for various core configurations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Physics parameter calculations for a Tandem Mirror Reactor with thermal barriers

    International Nuclear Information System (INIS)

    Boghosian, B.M.; Lappa, D.A.; Logan, B.G.

    1979-01-01

    Thermal barriers are localized reductions in potential between the plugs and the central cell, which effectively insulate trapped plug electrons from the central cell electrons. By then applying electron heating in the plug, it is possible to obtain trapped electron temperatures that are much greater than those of the central cell electrons. This, in turn, effects an increase in the plug potential and central cell confinement with a concomitant decrease in plug density and injection power. Ions trapped in the barrier by collisions are removed by the injection of neutral beams directed inside the barrier cell loss cone; these beam neutrals convert trapped barrier ions to neutrals by charge exchange permitting their escape. We describe a zero-dimensional physics model for this type of reactor, and present some preliminary results for Q

  20. Impact of moderator history on physics parameters in pressurized water reactors

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    1988-01-01

    The magnitude of differential reactivity effects that result from spectral differences in different portions of a pressurized water (PWR) core is studied, and it is shown that these effects can be correlated very well with the local moderator history. The impact of these differences on physics parameters such as axial offset, isothermal moderator temperature coefficient, and differential control rod worth is shown to be significant for two PWRs of considerably different design

  1. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  2. Parameter definition for reactor physics calculation of Obrigheim KWO PWR type reactor using the Gels and Erebus codes

    International Nuclear Information System (INIS)

    Faya, A.G.; Nakata, H.; Rodrigues, V.G.; Oosterkamp, W.J.

    1974-01-01

    The main variables for Obrigheim Reactor - KWO diffusion theory calculations, using the EREBUS code were defined. The variables under consideration were: mesh spacing for reactor description, time-step in burn-up calculation, and the temperature in both the moderator and the fuel. The best mesh spacing and time-step were defined considering the relative deviations and the computer time expended in each case. It has been verified that the error involved in the mean fuel temperature calculation (1317 0 K as given by SIEMENS and 1028 0 K as calculated by Dr. Penndorf) does not change substancially the calculation results

  3. Calculation of the neutron parameters of fast thermal reactor

    International Nuclear Information System (INIS)

    Kukuleanu, V.; Mocioiu, D.; Drutse, E.; Konstantinesku, E.

    1975-01-01

    The system of neutron calculation for fast reactors is given. This system was used for estimation of physical parameters of fast thermal reactors investigated. The results obtained and different specific problems of the reactors of this type are described. (author)

  4. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  5. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  6. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  7. Nuclear Reactor Physics

    Science.gov (United States)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  8. Criticality accident in uranium fuel processing plant. The estimation of the total number of fissions with related reactor physics parameters

    International Nuclear Information System (INIS)

    Nishina, Kojiro; Oyamatsu, Kazuhiro; Kondo, Shunsuke; Sekimoto, Hiroshi; Ishitani, Kazuki; Yamane, Yoshihiro; Miyoshi, Yoshinori

    2000-01-01

    This accident occurred when workers were pouring a uranium solution into a precipitation tank with handy operation against the established procedure and both the cylindrical diameter and the total mass exceeded the limited values. As a result, nuclear fission chain reactor in the solution reached not only a 'criticality' state continuing it independently but also an instantly forming criticality state exceed the criticality and increasing further nuclear fission number. The place occurring the accident at this time was not reactor but a place having not to form 'criticality' called by a processing process of uranium fuel. In such place, as because of relating to mechanism of chain reaction, it is required naturally for knowledge on the reactor physics, it is also necessary to understand chemical reaction in chemical process, and functions of tanks, valves and pumps mounted at the processes. For this purpose, some information on uranium concentration ratio, atomic density of nuclides largely affecting to chain reaction such as uranium, hydrogen, and so forth in the solution, shape, inner structure and size of container for the solution, and its temperature and total volume, were necessary for determining criticality volume of the accident uranium solution by using nuclear physics procedures. Here were described on estimation of energy emission in the JCO accident, estimation from analytical results on neutron and solution, calculation of various nuclear physics property estimation on the JCO precipitation tank at JAERI. (G.K.)

  9. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    Barjon, Robert

    1975-01-01

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude [fr

  10. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  11. PUSPATI Triga Reactor pulsing parameters

    Energy Technology Data Exchange (ETDEWEB)

    Auu, Gui Ah; Abu, Puad Haji; Yunus, Yaziz [PUSPATI, Selangor (Malaysia)

    1984-06-01

    The pulsing experiment was carried out as part of the commissioning activites of PUSPATI TRIGA Reactor (PTR). Several parameters of PTR were deduced from the experiment. It was found that the maximum temperature of the fuel was far below the safety limit when the maximum allowable positive reactivity of $3.00 was inserted into the core. The peak power achieved was 1354 Mw.

  12. Reactor physics of CANFLEX

    International Nuclear Information System (INIS)

    Sim, K. S.; Min, Byung Joo.

    1997-07-01

    Characteristic of reactor physics for CANFLEX-NU fuel core were calculated using final fuel design data. The results of analysis showed that there was no impact on reactor operations and safety. The above results of calculations and analysis were described in the physics design for CANFLEX-NU core. Various fuel models were evaluated for selecting high burnup fuel using recovered uranium. It is judged to be worse effects for reactor safety. Hence, the use of graphite within fuel was proposed and its results showed to be better. The analysis system of reactor physics for design and analysis of high burnup fuel was evaluated. Lattice codes and core code were reviewed. From the results, the probability of WIMS-AECL and HELIOS is known to be high for analysis of high burnup fuel. For the core code, RFSP, it was evaluated that the simplified 2 group equation should be replaced by explicit 2 group equation. This report also describes about the status of critical assemblies in other countries. (author). 58 refs., 41 tabs., 126 figs

  13. PUSPATI Triga Reactor pulsing parameters

    International Nuclear Information System (INIS)

    Gui Ah Auu; Puad Haji Abu; Yaziz Yunus

    1984-01-01

    The pulsing experiment was carried out as part of the commissioning activites of PUSPATI TRIGA Reactor (PTR). Several parameters of PTR were deduced from the experiment. It was found that the maximum temperature of the fuel was far below the safety limit when the maximum allowable positive reactivity of $3.00 was inserted into the core. The peak power achieved was 1354 Mw. (author)

  14. Reactor physics computations

    International Nuclear Information System (INIS)

    Shapiro, A.

    1977-01-01

    Those reactor-core calculations which provide the effective multiplication factor (or eigenvalue) and the stationary (or fundamental mode) neutron-flux distribution at selected times during the lifetime of the core are considered. The multiplication factor is required to establish the nuclear composition and configuration which satisfy criticality and control requirements. The steady-state flux distribution must be known to calculate reaction rates and power distributions which are needed for the thermal, mechanical and shielding design of the reactor, as well as for evaluating refueling requirements. The calculational methods and techniques used for evaluating the nuclear design information vary with the type of reactor and with the preferences and prejudices of the reactor-physics group responsible for the calculation. Additionally, new methods and techniques are continually being developed and made operational. This results in a rather large conglomeration of methods and computer codes which are available for reactor analysis. The author provides the basic calculational framework and discusses the more prominent techniques which have evolved. (Auth.)

  15. TU Electric reactor physics model verification: Power reactor benchmark

    International Nuclear Information System (INIS)

    Willingham, C.E.; Killgore, M.R.

    1988-01-01

    Power reactor benchmark calculations using the advanced code package CASMO-3/SIMULATE-3 have been performed for six cycles of Prairie Island Unit 1. The reload fuel designs for the selected cycles included gadolinia as a burnable absorber, natural uranium axial blankets and increased water-to-fuel ratio. The calculated results for both startup reactor physics tests (boron endpoints, control rod worths, and isothermal temperature coefficients) and full power depletion results were compared to measured plant data. These comparisons show that the TU Electric reactor physics models accurately predict important measured parameters for power reactors

  16. Studies on reactor physics

    International Nuclear Information System (INIS)

    1960-01-01

    Most of the peaceful applications of atomic energy are inherently dependent on advances in the science and technology of nuclear reactors, and aspects of this development are part of a major programme of the International Atomic Energy Agency. The most useful role that the Agency can play is as a co-ordinating body or central forum where the trends can be reviewed and the results assessed. Some of the basic studies are carried out by members of the Agency's own scientific staff. The Agency also convenes groups of experts from different countries to examine a particular problem in detail and make any necessary recommendations. Some of the important subjects are discussed at international scientific meetings held by the Agency. One of the subjects covered by such studies is the physics of nuclear reactors and a specific topic recently discussed was Codes for Reactor Computations, on which a seminar was held in Vienna in April this year. Another The members of the Panel described the development of heavy water reactors, the equipment and methods of research currently used, and plans for further development in their respective countries meeting of Panel of Experts on Heavy Water Lattices was held in Vienna in August 1959

  17. Reactor physics aspects of CANDU reactors

    International Nuclear Information System (INIS)

    Critoph, E.

    1980-01-01

    These four lectures are being given at the Winter Course on Nuclear Physics at Trieste during 1978 February. They constitute part of the third week's lectures in Part II: Reactor Theory and Power Reactors. A physical description of CANDU reactors is given, followed by an overview of CANDU characteristics and some of the design options. Basic lattice physics is discussed in terms of zero energy lattice experiments, irradiation effects and analytical methods. Start-up and commissioning experiments in CANDU reactors are reviewed, and some of the more interesting aspects of operation discussed - fuel management, flux mapping and control of the power distribution. Finally, some of the characteristics of advanced fuel cycles that have been proposed for CANDU reactors are summarized. (author)

  18. Reactor physics problems on HCPWR

    International Nuclear Information System (INIS)

    Ishiguro, Yukio; Akie, Hiroshi; Kaneko, Kunio; Sasaki, Makoto.

    1986-01-01

    Reactor physics problems on high conversion pressurized water reactors (HCPWRs) are discussed. Described in this report are outline of the HCPWR, expected accuracy for the various reactor physical qualities, and method for K-effective calculation in the resonance energy area. And requested further research problems are shown. The target value of the conversion ratio are also discussed. (author)

  19. Quantization of physical parameters

    International Nuclear Information System (INIS)

    Jackiw, R.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1984-01-01

    Dynamical models are described with parameters (mass, coupling strengths) which must be quantized for quantum mechanical consistency. These and related topological ideas have physical application to phenomenological descriptions of high temperature and low energy quantum chromodynamics, to the nonrelativistic dynamics of magnetic monopoles, and to the quantum Hall effect. (author)

  20. General remarks on fast neutron reactor physics

    International Nuclear Information System (INIS)

    Barre, J.Y.

    1980-01-01

    The main aspects of fast reactor physics, presented in these lecture notes, are restricted to LMFBR's. The emphasis is placed on the core neutronic balance and the burn-up problems. After a brief description of the power reactor main components and of the fast reactor chronology, the fundamental parameters of the one-group neutronic balance are briefly reviewed. Then the neutronic burn-up problems related to the Pu production and to the doubling time are considered

  1. Key physical parameters and temperature reactivity coefficients of the deep burn modular helium reactor fueled with LWRs waste

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto E-mail: alby@neutron.kth.se; Gudowski, Waclaw E-mail: wacek@neutron.kth.se; Cetnar, Jerzy E-mail: jerzy@neutron.kth.se; Venneri, Francesco E-mail: venneri@lanl.gov

    2004-11-01

    We investigated some important neutronic features of the deep burn modular helium reactor (DB-MHR) using the MCNP/MCB codes. Our attention was focused on the neutron flux and its spectrum, capture to fission ratio of {sup 239}Pu and the temperature coefficient of fuel and moderator. The DB-MHR is a graphite-moderated helium-cooled reactor proposed by General Atomic to address the need for a fast and efficient incineration of plutonium for non-proliferation purposes as well as the management of light water reactors (LWRs) waste. In fact, recent studies have shown that the use of the DB-MHR coupled to ordinary LWRs would keep constant the world inventory of plutonium for a reactor fleet producing 400 TW{sub e}/y. In the present studies, the DB-MHR is loaded with Np-Pu driver fuel (DF) with an isotopic composition corresponding to LWRs spent fuel waste. DF uses fissile isotopes (e.g. {sup 239}Pu and {sup 241}Pu), previously generated in the LWRs, and maintains criticality conditions in the DB-MHR. After an irradiation of three years, the spent DF is reprocessed and its remaining actinides are manufactured into fresh transmutation fuel (TF). TF mainly contains non-fissile actinides which undergo neutron capture and transmutation during the subsequent three-year irradiation in the DB-MHR. At the same time, TF provides control and negative reactivity feedback to the reactor. After extraction of the spent TF, irradiated for three years, over 94% of {sup 239}Pu and 53% of all actinides coming from LWRs waste will have been destroyed in the DB-MHR. In this paper we look at the operation conditions at equilibrium for the DB-MHR and evaluate fluxes and reactivity responses using state of the art 3-D Monte Carlo simulations.

  2. Statistical estimation of nuclear reactor dynamic parameters

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1962-02-01

    This report discusses the study of the noise in nuclear reactors and associated power plant. The report is divided into three distinct parts. In the first part parameters which influence the dynamic behaviour of some reactors will be specified and their effect on dynamic performance described. Methods of estimating dynamic parameters using statistical signals will be described in detail together with descriptions of the usefulness of the results, the accuracy and related topics. Some experiments which have been and which might be performed on nuclear reactors will be described. In the second part of the report a digital computer programme will be described. The computer programme derives the correlation functions and the spectra of signals. The programme will compute the frequency response both gain and phase for physical items of plant for which simultaneous recordings of input and output signal variations have been made. Estimations of the accuracy of the correlation functions and the spectra may be computed using the programme and the amplitude distribution of signals may also b computed. The programme is written in autocode for the Ferranti Mercury computer. In the third part of the report a practical example of the use of the method and the digital programme is presented. In order to eliminate difficulties of interpretation a very simple plant model was chosen i.e. a simple first order lag. Several interesting properties of statistical signals were measured and will be discussed. (author)

  3. The long-term future for civilian nuclear power generation in France: The case for breeder reactors. Breeder reactors: The physical and physical chemistry parameters, associate material thermodynamics and mechanical engineering: Novelties and issues

    International Nuclear Information System (INIS)

    Dautray, R.

    2011-01-01

    The author gives a summary overview of the knowledge base acquired since the first breeder reactors became operational in the fifties. Neutron transport theory, thermal phenomena, reactor core cooling, various coolants used and envisioned for this function, fuel fabrication from separated materials, main equipment (pumps, valves, heat exchanges...) have now attained maturity, sufficient to implement sodium cooling circuits. However, the use of metallic sodium still raises certain severe questions in terms of safe handling and security considerations. The structural components, both inside the reactor core and outside (i.e. heat exchangers) are undergoing in-depth research so as to last longer. The fuel cycle, notably the re-fabrication of fuel elements and fertile elements, the case of transuranic elements, etc., call for studies into radiation induced phenomena, chemistry separation, separate or otherwise treatments for materials that have different radioactive, physical, thermodynamical, chemical and biological properties. The concerns that surround the definitive disposal of certain radioactive wastes could be qualitatively improved with respect to the pressurized water reactors (PWRs) in service today. Lastly, the author notes that breeder reactors eliminate the need for an isotope separation facility, and this constitutes a significant contribution to contain nuclear proliferation. France was in the forefront of nuclear breeder power generation science, technological research and also in the knowledge base related to breeder reactors. It is in the country's interest to pursue these efforts. (author)

  4. Reactor parameters for European economic, safety and environmental studies

    International Nuclear Information System (INIS)

    Hancox, R.; Cooke, P.I.H.; Spears, W.R.

    1990-01-01

    Parameter sets for five 1200 MW e tokamak reactors were developed for the European Study Group on the Environmental, Safety-related and Economic Potential of Fusion Power, showing today's perception of the range of reactors likely to be available as a result of the Commission's fusion programme. On the basis of the cost of generating electricity, relative to a fission reactor, a reference set was chosen and endorsed by the Group for further studies including that on the environmental impact of fusion power. Key physics and technology parameters for the reference reactor are compared with values used in the ITER design, and with those from American studies. (author)

  5. Calculation of physical and thermo hydro-dynamic parameters of a thermal research reactor; Prorachun fizichkih i toplotno hidro-dinamichkih parametara termichkog istrazhivachkog reaktora

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M; Spasojevic, D; Jovic, V; Marinkovic, N [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1988-07-01

    The paper presents initial activities on creating a design concept of a new thermal research reactor, which should be built according to the research and development program in the field of nuclear fuel cycle technologies. For one possible type of such a reactor basic design parameters are specified and some preliminary results of nuclear, thermal and hydrodynamic design calculations are given. (author)

  6. Research on reactor physics data

    International Nuclear Information System (INIS)

    1961-01-01

    In the early years of nuclear reactor research, each national program tended to develop its own reactor physics information. The Government of Norway proposed to the Agency the undertaking of a joint program in reactor physics utilizing the facilities and staff of its zero power reactor NORA then under construction. Following the approval by the Board of Governors in February, the Agency invited Member States to submit the names and qualifications of scientists they wished to suggest for the project. All the results and information gained through the program, which is expected to last about three years, will be placed at the disposal of the Agency's Member States

  7. Reactors physics. Bases of nuclear physics

    International Nuclear Information System (INIS)

    Diop, Ch.M.

    2006-01-01

    The aim of nuclear reactor physics is to quantify the relevant macroscopic data for the characterization of the neutronic state of a reactor core and to evaluate the effects of radiations (neutrons and gamma radiations) on organic matter and on inorganic materials. This first article presents the bases of nuclear physics in the context of nuclear reactors: 1 - reactor physics and nuclear physics; 2 - atomic nucleus - basic definitions: nucleus constituents, dimensions and mass of the atomic nucleus, mass defect, binding energy and stability of the nucleus, strong interaction, nuclear momentums of nucleons and nucleus; 3 - nucleus stability and radioactivity: equation of evolution with time - radioactive decay law; alpha decay, stability limit of spontaneous fission, beta decay, electronic capture, gamma emission, internal conversion, radioactivity, two-body problem and notion of radioactive equilibrium. (J.S.)

  8. Operational reactor physics analysis codes (ORPAC)

    International Nuclear Information System (INIS)

    Kumar, Jainendra; Singh, K.P.; Singh, Kanchhi

    2007-07-01

    For efficient, smooth and safe operation of a nuclear research reactor, many reactor physics evaluations are regularly required. As part of reactor core management the important activities are maintaining core reactivity status, core power distribution, xenon estimations, safety evaluation of in-pile irradiation samples and experimental assemblies and assessment of nuclear safety in fuel handling/storage. In-pile irradiation of samples requires a prior estimation of the reactivity load due to the sample, the heating rate and the activity developed in it during irradiation. For the safety of personnel handling irradiated samples the dose rate at the surface of shielded flask housing the irradiated sample should be less than 200 mR/Hr.Therefore, a proper shielding and radioactive cooling of the irradiated sample are required to meet the said requirement. Knowledge of xenon load variation with time (Startup-curve) helps in estimating Xenon override time. Monitoring of power in individual fuel channels during reactor operation is essential to know any abnormal power distribution to avoid unsafe situations. Complexities in the estimation of above mentioned reactor parameters and their frequent requirement compel one to use computer codes to avoid possible human errors. For efficient and quick evaluation of parameters related to reactor operations such as xenon load, critical moderator height and nuclear heating and reactivity load of isotope samples/experimental assembly, a computer code ORPAC (Operational Reactor Physics Analysis Codes) has been developed. This code is being used for regular assessment of reactor physics parameters in Dhruva and Cirus. The code ORPAC written in Visual Basic 6.0 environment incorporates several important operational reactor physics aspects on a single platform with graphical user interfaces (GUI) to make it more user-friendly and presentable. (author)

  9. Nuclear reactors: physics and materials

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G

    2005-07-01

    In the form of a tutorial addressed to non-specialists, the article provides an introduction to nuclear reactor technology and more specifically to Light Water Reactors (LWR); it also shows where materials and chemistry problems are encountered in reactor technology. The basics of reactor physics are reviewed, as well as the various strategies in reactor design and the corresponding choices of materials (fuel, coolant, structural materials, etc.). A brief description of the various types of commercial power reactors follows. The design of LWRs is discussed in greater detail; the properties of light water as coolant and moderator are put in perspective. The physicochemical and metallurgical properties of the materials impose thermal limits that determine the performance and the maximum power a reactor can deliver. (author)

  10. Physical security at research reactors

    International Nuclear Information System (INIS)

    Clark, R.A.

    1977-01-01

    Of the 84 non-power research facilities licensed under 10 CFR Part 50, 73 are active (two test reactors, 68 research reactors and three critical facilities) and are required by 10 CFR Part 73.40 to provide physical protection against theft of SNM and against industrial sabotage. Each licensee has developed a security plan required by 10 CFR Part 50.34(c) to demonstrate the means of compliance with the applicable requirements of 10 CFR Part 73. In 1974, the Commission provided interim guidance for the organization and content of security plans for (a) test reactors, (b) medium power research and training reactors, and (c) low power research and training reactors. Eleven TRIGA reactors, with power levels greater than 250 kW and all other research and training reactors with power levels greater than 100 kW and less than or equal to 5,000 kW are designated as medium power research and training reactors. Thirteen TRIGA reactors with authorized power levels less than 250 kW are considered to be low power research and training reactors. Additional guidance for complying with the requirements of 73.50 and 73.60, if applicable, is provided in the Commission's Regulatory Guides. The Commission's Office of Inspection and Enforcement inspects each licensed facility to assure that an approved security plan is properly implemented with appropriate procedures and physical protection systems

  11. Physical model of reactor pulse

    International Nuclear Information System (INIS)

    Petrovic, A.; Ravnik, M.

    2004-01-01

    Pulse experiments have been performed at J. Stefan Institute TRIGA reactor since 1991. In total, more than 130 pulses have been performed. Extensive experimental information on the pulse physical characteristics has been accumulated. Fuchs-Hansen adiabatic model has been used for predicting and analysing the pulse parameters. The model is based on point kinetics equation, neglecting the delayed neutrons and assuming constant inserted reactivity in form of step function. Deficiencies of the Fuchs-Hansen model and systematic experimental errors have been observed and analysed. Recently, the pulse model was improved by including the delayed neutrons and time dependence of inserted reactivity. The results explain the observed non-linearity of the pulse energy for high pulses due to finite time of pulse rod withdrawal and the contribution of the delayed neutrons after the prompt part of the pulse. The results of the improved model are in good agreement with experimental results. (author)

  12. Fast reactor physics - an overview

    International Nuclear Information System (INIS)

    Lee, S.M.

    2004-01-01

    An introduction to the basic features of fast neutron reactors is made, highlighting the differences from the more conventional thermal neutron reactors. A discussion of important feedback reactivity mechanisms is given. Then an overview is presented of the methods of fast reactor physics, which play an important role in the successful design and operation of fast reactors. The methods are based on three main elements, namely (i) nuclear data bases, (ii) numerical methods and computer codes, and (iii) critical experiments. These elements are reviewed and the present status and future trends are summarized. (author)

  13. Carbamazepine degradation using a N-doped TiO_2 coated photocatalytic membrane reactor: Influence of physical parameters

    International Nuclear Information System (INIS)

    Horovitz, Inna; Avisar, Dror; Baker, Mark A.; Grilli, Rossana; Lozzi, Luca; Di Camillo, Daniela; Mamane, Hadas

    2016-01-01

    Highlights: • UV–vis N-doped TiO_2 was deposited by sol-gel onto Al_2O_3 microfiltration membranes. • Coating decreased permeability by 50 and 12% for 200- and 800-nm Al_2O_3 membranes. • Flow through membrane results in higher reaction rates compared to flow on top. • Higher vis photocatalytic activity for N-doped TiO_2 vs. non-doped TiO_2 membranes. • Mass transfer is a critical parameter for the design of immobilized PMR. - Abstract: Commercial α-Al_2O_3 photocatalytic membranes with a pore size of 200 and 800-nm were coated with N-doped TiO_2 photocatalytic film using a sol-gel technique for concurrent bottom-up filtration and photocatalytic oxidation. X-ray diffraction confirmed that the deposited N-doped TiO_2 films are in the form of anatase with 78–84% coverage of the membrane surface. The concentration of N found by X-ray photoelectron spectroscopy was in the range of 0.3–0.9 atomic percentage. Membrane permeability after coating decreased by 50% and 12% for the 200- and 800-nm membrane substrates, respectively. The impact of operational parameters on the photocatalytic activity (PCA) of the N-doped TiO_2-coated membranes was examined in a laboratory flow cell based on degradation of the model micropollutant carbamazepine, using a solar simulator as the light source. The significant gap in degradation rate between flow through the membrane and flow on the surface of the membrane was attributed both to the hydraulic effect and in-pore PCA. N-doped TiO_2-coated membranes showed enhanced activity for UV wavelengths, in addition to activity under visible light. Experiments of PCA under varying flow rates concluded that the process is in the mass-transfer control regime. Carbamazepine removal rate increased with temperature, despite the decrease in dissolved oxygen concentration.

  14. Carbamazepine degradation using a N-doped TiO{sub 2} coated photocatalytic membrane reactor: Influence of physical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Horovitz, Inna [School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); The Hydro-Chemistry Laboratory, Faculty of Geography and the Environment, Tel Aviv University, Tel Aviv 69978 (Israel); Avisar, Dror [The Hydro-Chemistry Laboratory, Faculty of Geography and the Environment, Tel Aviv University, Tel Aviv 69978 (Israel); Baker, Mark A.; Grilli, Rossana [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Lozzi, Luca; Di Camillo, Daniela [Department of Physical and Chemical Sciences, University of L' Aquila, Via Vetoio, I-67100 L' Aquila (Italy); Mamane, Hadas, E-mail: hadasmg@post.tau.ac.il [School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)

    2016-06-05

    Highlights: • UV–vis N-doped TiO{sub 2} was deposited by sol-gel onto Al{sub 2}O{sub 3} microfiltration membranes. • Coating decreased permeability by 50 and 12% for 200- and 800-nm Al{sub 2}O{sub 3} membranes. • Flow through membrane results in higher reaction rates compared to flow on top. • Higher vis photocatalytic activity for N-doped TiO{sub 2} vs. non-doped TiO{sub 2} membranes. • Mass transfer is a critical parameter for the design of immobilized PMR. - Abstract: Commercial α-Al{sub 2}O{sub 3} photocatalytic membranes with a pore size of 200 and 800-nm were coated with N-doped TiO{sub 2} photocatalytic film using a sol-gel technique for concurrent bottom-up filtration and photocatalytic oxidation. X-ray diffraction confirmed that the deposited N-doped TiO{sub 2} films are in the form of anatase with 78–84% coverage of the membrane surface. The concentration of N found by X-ray photoelectron spectroscopy was in the range of 0.3–0.9 atomic percentage. Membrane permeability after coating decreased by 50% and 12% for the 200- and 800-nm membrane substrates, respectively. The impact of operational parameters on the photocatalytic activity (PCA) of the N-doped TiO{sub 2}-coated membranes was examined in a laboratory flow cell based on degradation of the model micropollutant carbamazepine, using a solar simulator as the light source. The significant gap in degradation rate between flow through the membrane and flow on the surface of the membrane was attributed both to the hydraulic effect and in-pore PCA. N-doped TiO{sub 2}-coated membranes showed enhanced activity for UV wavelengths, in addition to activity under visible light. Experiments of PCA under varying flow rates concluded that the process is in the mass-transfer control regime. Carbamazepine removal rate increased with temperature, despite the decrease in dissolved oxygen concentration.

  15. Physics of pressurized water reactors

    International Nuclear Information System (INIS)

    Gruen, A.

    1980-01-01

    The objective of this lecture is to demonstrate typical problems and solutions encountered in the design and operation of PWR power plants. The examples selected for illustration refer to PWR's of KWU design and to results of KWU design methods. In order to understand the physics of a power reactor it is necessary to have some knowledge of the structure and design of the power plant system of which the reactor is a part. It is therefore assumed that the reader is familiar with the design of the more important components and systems of a PWR, such as fuel assemblies, control assemblies, core lay-out, reactor coolant system, instrumentation. (author)

  16. The long-term future for civilian nuclear power generation in France: The case for breeder reactors. Breeder reactors: The physical and physical chemistry parameters, associate material thermodynamics and mechanical engineering: Novelties and issues

    Science.gov (United States)

    Dautray, Robert

    2011-06-01

    The author firstly gives a summary overview of the knowledge base acquired since the first breeder reactors became operational in the 1950s. "Neutronics", thermal phenomena, reactor core cooling, various coolants used and envisioned for this function, fuel fabrication from separated materials, main equipment (pumps, valves, taps, waste cock, safety circuits, heat exchange units, etc.) have now attained maturity, sufficient to implement sodium cooling circuits. Notwithstanding, the use of metallic sodium still raises certain severe questions in terms of safe handling (i.e. inflammability) and other important security considerations. The structural components, both inside the reactor core and outside (i.e. heat exchange devices) are undergoing in-depth research so as to last longer. The fuel cycle, notably the refabrication of fuel elements and fertile elements, the case of transuranic elements, etc., call for studies into radiation induced phenomena, chemistry separation, separate or otherwise treatments for materials that have different radioactive, physical, thermodynamical, chemical and biological properties. The concerns that surround the definitive disposal of certain radioactive wastes could be qualitatively improved with respect to the pressurized water reactors (PWRs) in service today. Lastly, the author notes that breeder reactors eliminate the need for an isotope separation facility, and this constitutes a significant contribution to contain nuclear proliferation. Among the priorities for a fully operational system (power station - the fuel cycle - operation-maintenance - the spent fuel pool and its cooling system-emergency cooling system-emergency electric power-transportation movements-equipment handling - final disposal of radioactive matter, independent safety barriers), the author includes materials (fabrication of targets, an irradiation and inspection instrument), the chemistry of all sorting processes, equipment "refabrication" or rehabilitation

  17. The development of fast simulation program for marine reactor parameters

    International Nuclear Information System (INIS)

    Chen Zhiyun; Hao Jianli; Chen Wenzhen

    2012-01-01

    Highlights: ► The simplified physical and mathematical models are proposed for a marine reactor system. ► A program is developed with Simulink module and Matlab file. ► The program developed has the merit of easy input preparation, output processing and fast running. ► The program can be used for the fast simulation of marine reactor parameters on the operating field. - Abstract: The fast simulation program for marine reactor parameters is developed based on the Simulink simulating software according to the characteristics of marine reactor with requirement of maneuverability and acute and fast response. The simplified core physical and thermal model, pressurizer model, steam generator model, control rod model, reactivity model and the corresponding Simulink modules are established. The whole program is developed by coupling all the Simulink modules. Two typical transient processes of marine reactor with fast load increase at low power level and load rejection at high power level are adopted to verify the program. The results are compared with those of Relap5/Mod3.2 with good consistency, and the program runs very fast. It is shown that the program is correct and suitable for the fast and accurate simulation of marine reactor parameters on the operating field, which is significant to the marine reactor safe operation.

  18. Fundamentals of Nuclear Reactor Physics

    CERN Document Server

    Lewis, E E

    2008-01-01

    This new streamlined text offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation. The book includes numerous worked-out examples and end-of-chapter questions to help reinforce the knowledge presented. This textbook offers an engineering-oriented introduction to nuclear physics, with a particular focus on how those physics are put to work in the service of generating nuclear-based power, particularly the importance of neutron reactions and neutron behavior. Engin

  19. Reactors and physics education

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1992-01-01

    This paper discussed some ideas for using neutrons in physics education, including experiments which demonstrate diffraction and optical refraction, divergence imaging, Zeeman splitting, polarization, Larmor precession, and neutron spin-echo. (author)

  20. Physical experiments. Reactor theory

    International Nuclear Information System (INIS)

    Korn, H.; Werle, H.; Bluhm, H.; Fieg, G.; Kappler, F.; Kuhn, D.; Lalovic, M.; Woll, D.; Kuefner, K.; Woznicki, Z.; Buckel, G.; Stehle, B.; Borgwaldt, H.

    1975-01-01

    The γ-spectrum in SNEAK 9C-1 and 9C-2 was measured by means of Si(Li) solid state detectors for verification of methods of shielding calculation. The blanket spectra turned out to be slightly harder than the spectra in the fissile zone; the plutonium spectra are slightly harder than the respective uranium spectra. This result is expected to be explained by studies to be carried out on the basis of a γ-transport program. For reactor theoretical calculations two 2-dimensional diffusion programs were compared with each other, and a 3-dimensional diffusion program was compared with a flux synthesis program. An improved source iteration scheme was drafted for the Karlsruhe Monte Carlo code. (orig.) [de

  1. TRIGA reactor health physics considerations

    International Nuclear Information System (INIS)

    Johnson, A.G.

    1970-01-01

    The factors influencing the complexity of a TRIGA health physics program are discussed in details in order to serve as a basis for later consideration of various specific aspects of a typical TRIGA health physics program. The health physics program must be able to provide adequate assistance, control, and safety for individuals ranging from the inexperienced student to the experienced postgraduate researcher. Some of the major aspects discussed are: effluent release and control; reactor area air monitoring; area monitoring; adjacent facilities monitoring; portable instrumentation, personnel monitoring. TRIGA reactors have not been associated with many significant occurrences in the area of health physics, although some operational occurrences have had health physics implications. One specific occurrence at OSU is described involving the detection of non-fission-product radioactive particulates by the continuous air monitor on the reactor top. The studies of this particular situation indicate that most of the particulate activity is coming from the rotating rack and exhausting to the reactor top through the rotating rack loading tube

  2. Neutronic parameters calculations of a CANDU reactor

    International Nuclear Information System (INIS)

    Zamonsky, G.

    1991-01-01

    Neutronic calculations that reproduce in a simplified way some aspects of a CANDU reactor design were performed. Starting from some prefixed reactor parameters, cylindrical and uniform iron adjuster rods were designed. An appropriate refueling scheme was established, defininig in a 2 zones model their dimensions and exit burnups. The calculations have been done using the codes WIMS-D4 (cell), SNOD (reactivity device simulations) and PUMA (reactor). Comparing with similar calculations done with codes and models usually employed for CANDU design, it is concluded that the models and methods used are appropriate. (Author) [es

  3. The research reactors their contribution to the reactors physics

    International Nuclear Information System (INIS)

    Barral, J.C.; Zaetta, A.; Johner, J.; Mathoniere, G.

    2000-01-01

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  4. Operational power reactor health physics

    International Nuclear Information System (INIS)

    Watson, B.A.

    1987-01-01

    Operational Health Physics can be comprised of a multitude of organizations, both corporate and at the plant sites. The following discussion centers around Baltimore Gas and Electric's (BG and E) Calvert Cliffs Nuclear Power Plant, located in Lusby, Maryland. Calvert Cliffs is a twin Combustion Engineering 825 MWe pressurized water reactor site with Unit I having a General electric turbine-generator and Unit II having a Westinghouse turbine-generator. Having just completed each Unit's ten-year Inservice Inspection and Refueling Outge, a total of 20 reactor years operating health physics experience have been accumulated at Calvert Cliffs. Because BG and E has only one nuclear site most health physics functions are performed at the plant site. This is also true for the other BG and E nuclear related organizations, such as Engineering and Quality Assurance. Utilities with multiple plant sites have corporate health physics entity usually providing oversight to the various plant programs

  5. HTR characteristics affecting reactor physics

    International Nuclear Information System (INIS)

    Ehlers, K.

    1980-01-01

    A physical description of high-temperature has-cooled reactors is given, followed by an overview of HTR characteristics. The emphasis is placed on the HTR fuel cycle alternatives and thermohydraulics of pebble bed core. Some prospects of HTRs in the Federal Republic of Germany are also presented

  6. Safety-related parameters for the MAPLE research reactor and a comparison with the IAEA generic 10-MW research reactor

    International Nuclear Information System (INIS)

    Carlson, P.A.; Lee, A.G.; Smith, H.J.; Ellis, R.J.

    1989-07-01

    A summary is presented of some of the principle safety-related physics parameters for the MAPLE Research Reactor, and a comparison with the IAEA Generic 10-MW Reactor is given. This provides a means to assess the operating conditions and fuelling requirements for safe operation of the MAPLE Research Reactor under accepted standards

  7. Design of experiment existing parameter physics for supporting of Boron Neutron Capture Therapy (BNCT) method a t the piercing radial beam port of Kartini research reactor

    International Nuclear Information System (INIS)

    Indry Septiana Novitasari; Yosaphat Sumardi; Widarto

    2014-01-01

    The experiment existing parameters physics for supporting of in vivo and in vitro test facility of Boron Neutron Capture Therapy (BNCT) preliminary study at the piercing radial beam port has been done. The existing experiments is needed for determining that the parameter physics is fulfill the BNCT method requirement. To realize the existing experiment have been done by design analysis, methodology, calculation method and some procedure related with radiation safety analysis and environment. Preparation for existing experiment physics such as foil detector of Gold (Au) should be irradiated for 30 minute, irradiation instrument and procedure related with the experiment for radiation safety. (author)

  8. Proceedings of 2. Yugoslav symposium on reactor physics, Part 1, Herceg Novi (Yugoslavia), 27-29 Sep 1966

    International Nuclear Information System (INIS)

    1966-01-01

    This Volume 1 of the Proceedings of 2. Yugoslav symposium on reactor physics includes nine papers dealing with the following topics: reactor kinetics, reactor noise, neutron detection, methods for calculating neutron flux spatial and time dependence in the reactor cores of both heavy and light water moderated experimental reactors, calculation of reactor lattice parameters, reactor instrumentation, reactor monitoring systems; measuring methods of reactor parameters; reactor experimental facilities

  9. WWER reactor physics code applications

    International Nuclear Information System (INIS)

    Gado, J.; Kereszturi, A.; Gacs, A.; Telbisz, M.

    1994-01-01

    The coupled steady-state reactor physics and thermohydraulic code system KARATE has been developed and applied for WWER-1000 and WWER-440 operational calculations. The 3 D coupled kinetic code KIKO3D has been developed and validated for WWER-440 accident analysis applications. The coupled kinetic code SMARTA developed by VTT Helsinki has been applied for WWER-440 accident analysis. The paper gives a summary of the experience in code development and application. (authors). 10 refs., 2 tabs., 5 figs

  10. Multimedia on nuclear reactors physics

    International Nuclear Information System (INIS)

    Dies, Javier; Puig, Francesc

    2010-01-01

    The paper present an example of measures that have been found to be effective in the development of innovative educational and training technology. A multimedia course on nuclear reactor physics is presented. This material has been used for courses at master level at the universities; training for engineers at nuclear power plant as modular 2 weeks course; and training operators of nuclear power plant. The multimedia has about 785 slides and the text is in English, Spanish and French. (authors)

  11. DOE fundamentals handbook: Nuclear physics and reactor theory

    International Nuclear Information System (INIS)

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance

  12. Physical protection of power reactors

    International Nuclear Information System (INIS)

    Darby, J.L.

    1979-01-01

    Sandia Laboratories has applied a systematic approach to designing physical protection systems for nuclear facilities to commercial light-water reactor power plants. A number of candidate physical protection systems were developed and evaluated. Focus is placed on the design of access control subsystems at each of three plant layers: the protected area perimeter, building surfaces, and vital areas. Access control refers to barriers, detectors, and entry control devices and procedures used to keep unauthorized personnel and contraband out of the plant, and to control authorized entry into vital areas within the plant

  13. Communication and computer technologies for teaching physics in nuclear reactors

    International Nuclear Information System (INIS)

    Murua, C; Chautemps, A; Odetto, J; Keil, W; Trivino, S; Rossi, F; Perez Lucero, A

    2012-01-01

    In order to train personnel inn order to train personnel in Embalse Nuclear Power Plant, and provided that such training given primarily on the location of such a facility, we designed a pedagogical strategy that combined the use of conventional resources with new information technologies. Since the Nuclear Reactor RA-0 is an ideal tool for teaching Reactor Physics, priority was the use of it, both locally remotely. The teaching strategy is based on four pillar: -Lectures on the Power Plant (using a virtual classroom to support); -Remote monitoring of Ra-0 Nuclear Reactor parameters while operating (RA0REMOTO); -Use, through the Internet, of the Ra-0 Nuclear Reactor Simulator (RA0SIMUL); -Made in the Nuclear Reactor RA-0 of Reactor Physics practical. The work emphasizes RA0REMOTO and RA0SIMUL systems. The RA0REMOTO system is an appendix of the Electronic Data Acquisition System (SEAD) of the Nuclear Reactor RA-0. This system acquires signals from Reactor instrumentation and sends them to a server running the software that 'publish' the reactor parameters on the internet. Students may, during the lectures, monitor any parameter of the reactor while it operates, which allows teachers to compare theory with reality. RA0SIMUL is a simulator on the RA-0, which allows students to 'operate' a reactor analyzing the underlying physics concepts (author)

  14. Reactor physics using a microcomputer

    International Nuclear Information System (INIS)

    Murray, R.L.

    1983-01-01

    The object of the work reported is to develop educational computer modules for all aspects of reactor physics. The modules consist of a description of the theory, mathematical method, computer program listing, sample calculations, and problems for the student, along with a card deck. Modules were first written in FORTRAN for an IBM 360/75, then later in BASIC for microcomputers. Problems include: limitation of equipment, choice of format for the program, the variety of dialects of BASIC used in the different microcomputer and peripherals brands, and knowing when to quit in the process of developing a program

  15. Proceedings of the 6. National Meeting of Reactor Physics and Thermohydraulic

    International Nuclear Information System (INIS)

    1986-01-01

    The proceedings of the 6. National Meeting of Reactor Physics and Thermohydraulic - 6. ENFIR - allow to evaluate the present status of development in reactor physics and thermohydraulic fields. The mathematical models and methods for calculating neutronic of nuclear reactors, safety reactor analysis, measuring methods of neutronic parameters, computerized simulation of accidents, transients and thermohydraulic analysis are presented. (M.C.K.) [pt

  16. Physics and kinetics of TRIGA reactor

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2007-01-01

    This training module is written as an introduction to reactor physics for reactor operators. It assumes the reader has a basic, fundamental knowledge of physics, materials and mathematics. The objective is to provide enough reactor theory knowledge to safely operate a typical research reactor. At this level, it does not necessarily provide enough information to evaluate the safety aspects of experiment or non-standard operation reviews. The material provides a survey of basic reactor physics and kinetics of TRIGA type reactors. Subjects such as the multiplication factor, reactivity, temperature coefficients, poisoning, delayed neutrons and criticality are discussed in such a manner that even someone not familiar with reactor physics and kinetics can easily follow. A minimum of equations are used and several tables and graphs illustrate the text. (author)

  17. An overview of reactor physics standards: Past, present and future

    International Nuclear Information System (INIS)

    Cokinos, D.M.

    1992-07-01

    This report discusses for determining key static reactor physics parameters which have been developed by groups of experts (working groups) under the aegis of ANS-19, the ANS Reactor Physics Standards Committee. Following a series of sequential reviews, augmented by feedback from potential users, a proposed standard is brought into final form by the working group before it is adopted as a formal standard by the American National Standards Institute (ANSI); Reactor Physics standards are intended to provide guidance in the performance and qualification of complex sequences of reactor calculations and/or measurements and are regularly reviewed for possible updates and/or revisions. The reactor physics standards developed to date are listed and standards now being developed by the respective working groups are also provided

  18. Investigation of the basic reactor physics characteristics of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Khang, Ngo Phu [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    The Dalat nuclear research reactor was reconstructed from TRIGA MARK II reactor, built in 1963 with nominal power of 250 KW, and reached its planned nominal power of 500 kW for the first time in Feb. 1984. The Dalat reactor has some characteristics distinct from the former TRIGA reactor. Investigation of its characteristics is carried out by the determination of the reactor physics parameters. This paper represents the experimental results obtained for the effective fraction of the delayed photoneutrons, the extraneous neutron source left after the reactor is shut down, the lowest power levels of reactor critical states, the relative axial and radial distributions of thermal neutrons, the safe positive reactivity inserted into the reactor at deep subcritical state, the reactivity temperature coefficient of water, the temperature on the surface of the fuel elements, etc. (author). 10 refs., 10 figs., 2 tabs.

  19. Reactor physics challenges in GEN-IV reactor design

    International Nuclear Information System (INIS)

    Driscoll, Michael K.; Hejzlar, Pavel

    2005-01-01

    An overview of the reactor physics aspects of GENeration Four (GEN-IV) advanced reactors is presented, emphasizing how their special requirements for enhanced sustainability, safety and economics motivates consideration of features not thoroughly analyzed in the past. The resulting concept-specific requirements for better data and methods are surveyed, and some approaches and initiatives are suggested to meet the challenges faced by the international reactor physics community. No unresolvable impediments to successful development of any of the six major types of proposed reactors are identified, given appropriate and timely devotion of resources

  20. Reactor physics challenges in GEN-IV reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Michael K.; Hejzlar, Pavel [Massachusetts Institute of Technology, MA (United States)

    2005-02-15

    An overview of the reactor physics aspects of GENeration Four (GEN-IV) advanced reactors is presented, emphasizing how their special requirements for enhanced sustainability, safety and economics motivates consideration of features not thoroughly analyzed in the past. The resulting concept-specific requirements for better data and methods are surveyed, and some approaches and initiatives are suggested to meet the challenges faced by the international reactor physics community. No unresolvable impediments to successful development of any of the six major types of proposed reactors are identified, given appropriate and timely devotion of resources.

  1. R-matrix parameters in reactor applications

    International Nuclear Information System (INIS)

    Hwang, R.N.

    1992-01-01

    The key role of the resonance phenomena in reactor applications manifests through the self-shielding effect. The basic issue involves the application of the microscopic cross sections in the macroscopic reactor lattices consisting of many nuclides that exhibit resonance behavior. To preserve the fidelity of such a effect requires the accurate calculations of the cross sections and the neutron flux in great detail. This clearly not possible without viable resonance data. Recently released ENDF/B VI resonance data in the resolved range especially reflect the dramatic improvement in two important areas; namely, the significant extension of the resolved resonance ranges accompanied by the availability of the R-matrix parameters of the Reich-Moore type. Aside from the obvious increase in computing time required for the significantly greater number of resonances, the main concern is the compatibility of the Riech-Moore representation to the existing reactor processing codes which, until now, are based on the traditional cross section formalisms. This purpose of this paper is to summarize our recent efforts to facilitate implementation of the proposed methods into the production codes at ANL

  2. Reactor parameters and constants determination by using measurements in subcritical and exponential assembly

    International Nuclear Information System (INIS)

    Voi, Dante Luiz; Santos Bastos, Wilma dos

    1995-01-01

    Subcritical and exponential experiments are important for Reactor Physics integral parameter determinations both to validate and confirm theoretical models for reactor calculations. An exponential and subcritical facility has been constructed to be used on the internal thermal column of the Argonauta reactor at IEN-CNEN- Rio de Janeiro. An experimental research program has been developed for the determination of fundamental reactor constants as buckling, migration areas, resonance escape probabilities, thermal utilization, fast fission and fuel eta factors. (author) 23 refs

  3. Opportunities for reactor scale experimental physics

    International Nuclear Information System (INIS)

    1999-01-01

    A reactor scale tokamak plasma will exhibit three areas of physics phenomenology not accessible by contemporary experimental facilities. These are: (1) instabilities generated by energetic alpha particles; (2) self-heating phenomena; and (3) reactor scale physics, which includes integration of diverse physics phenomena, each with its own scaling properties. In each area, selected examples are presented that demonstrate the importance and uniqueness of physics results from reactor scale facilities for both inductive and steady state reactor options. It is concluded that the physics learned in such investigations will be original physics not attainable with contemporary facilities. In principle, a reactor scale facility could have a good measure of flexibility to optimize the tokamak approach to magnetic fusion energy. (author)

  4. Virtual nuclear reactor for education of nuclear reactor physics

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Narabayashi, Takashi; Shimazu, Youichiro

    2008-01-01

    As one of projects that were programmed in the cultivation program for human resources in nuclear engineering sponsored by the Ministry of Economy, Trade and Industry, the development of a virtual reactor for education of nuclear reactor physics started in 2007. The purpose of the virtual nuclear reactor is to make nuclear reactor physics easily understood with aid of visualization. In the first year of this project, the neutron slowing down process was visualized. The data needed for visualization are provided by Monte Carlo calculations; The flights of the respective neutrons generated by nuclear fissions are traced through a reactor core until they disappear by neutron absorption or slow down to a thermal energy. With this visualization and an attached supplement textbook, it is expected that the learners can learn more clearly the physical implication of neutron slowing process that is mathematically described by the Boltzmann neutron transport equation. (author)

  5. Activity report of Reactor Physics Division - 1993

    International Nuclear Information System (INIS)

    Indira, R.

    1994-01-01

    The research and development (R and D) activities of the Reactor Physics Division of Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1993 are reported. The activities are arranged under the headings: Nuclear Data Processing and validation, Core Physics and Operation Studies, Reactor Kinetics and Safety analysis, Reactor Noise Analysis and Radiation Transport and Shielding Studies. List of publication is given at the end. (author). refs., figs., tabs

  6. Activity report of Reactor Physics Division-1995

    International Nuclear Information System (INIS)

    Gopalakrishnan, V.

    1996-01-01

    The research and development (R and D) activities of the Reactor Physics Division of Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1995 are reported. The activity are arranged under the headings: Nuclear Data Processing and Validation, Core Physics and Operation Studies, Reactor Kinetics and Safety analysis, Reactor Noise Analysis and Radiation Transport and Shielding Studies. List of publication is given at the end. refs., figs., tabs

  7. Activity report of Reactor Physics Division - 1993

    Energy Technology Data Exchange (ETDEWEB)

    Indira, R [ed.; Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1994-12-31

    The research and development (R and D) activities of the Reactor Physics Division of Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1993 are reported. The activities are arranged under the headings: Nuclear Data Processing and validation, Core Physics and Operation Studies, Reactor Kinetics and Safety analysis, Reactor Noise Analysis and Radiation Transport and Shielding Studies. List of publication is given at the end. (author). refs., figs., tabs.

  8. Reactor physics methods development at Westinghouse

    International Nuclear Information System (INIS)

    Mueller, E.; Mayhue, L.; Zhang, B.

    2007-01-01

    The current state of reactor physics methods development at Westinghouse is discussed. The focus is on the methods that have been or are under development within the NEXUS project which was launched a few years ago. The aim of this project is to merge and modernize the methods employed in the PWR and BWR steady-state reactor physics codes of Westinghouse. (author)

  9. Impacts on power reactor health physics programs

    International Nuclear Information System (INIS)

    Meyer, B.A.

    1991-01-01

    The impacts on power reactor health physics programs form implementing the revised 10 CFR Part 20 will be extensive and costly. Every policy, program, procedure and training lesson plan involving health physics will require changes and the subsequent retraining of personnel. At each power reactor facility, hundreds of procedures and thousands of people will be affected by these changes. Every area of a power reactor health physics program will be affected. These areas include; ALARA, Respiratory Protection, Exposure Control, Job Coverage, Dosimetry, Radwaste, Effluent Accountability, Emergency Planning and Radiation Worker Training. This paper presents how power reactor facilities will go about making these changes and gives possible examples of some of these changes and their impact on each area of power reactor health physics program

  10. The physics of nuclear reactors

    CERN Document Server

    Marguet, Serge

    2017-01-01

    This comprehensive volume offers readers a progressive and highly detailed introduction to the complex behavior of neutrons in general, and in the context of nuclear power generation. A compendium and handbook for nuclear engineers, a source of teaching material for academic lecturers as well as a graduate text for advanced students and other non-experts wishing to enter this field, it is based on the author’s teaching and research experience and his recognized expertise in nuclear safety. After recapping a number of points in nuclear physics, placing the theoretical notions in their historical context, the book successively reveals the latest quantitative theories concerning: •   The slowing-down of neutrons in matter •   The charged particles and electromagnetic rays •   The calculation scheme, especially the simplification hypothesis •   The concept of criticality based on chain reactions •   The theory of homogeneous and heterogeneous reactors •   The problem of self-shielding �...

  11. Activity report of Reactor Physics Division - 1988

    International Nuclear Information System (INIS)

    Keshavamurthy, R.S.

    1989-01-01

    This report highlights the progress of activities carried out during the year 1988 in Reactor Physics Division in the form of brief summaries. The topics are organised under the following subject categories:(1) nuclear data evaluation , processing and validation, (2) core physics and analysis, (3) reactor kinetics and safety analysis, (4) noise analysis and (5) radiation transport and shielding. List of publications by the members of the Division and the Reactor Physics Seminars held during the year 1988, is included at the end of report. (author). refs., figs., tabs

  12. Reactor physics for non-nuclear engineers

    International Nuclear Information System (INIS)

    Lewis, E.E.

    2011-01-01

    A one-term undergraduate course in reactor physics is described. The instructional format is strongly influenced by its intended audience of non-nuclear engineering students. In contrast to legacy treatments of the subject, the course focuses on the physics of nuclear power reactors with no attempt to include instruction in numerical methods. The multi-physics of power reactors is emphasized highlighting the close interactions between neutronic and thermal phenomena in design and analysis. Consequently, the material's sequencing also differs from traditional treatments, for example treating kinetics before the neutron diffusion is introduced. (author)

  13. OKLO: Fossil nuclear reactors. Physical study

    International Nuclear Information System (INIS)

    Naudet, R.

    1991-04-01

    This book presents a study of Oklo reactors, based essentially on physics and particularly neutronics but reviewing also all what is known on this topic, regrouping observations, measurement results and interpretative calculations. A remarkable characteristic of the study is the use of sophisticated reactor calculation methods for analysis of what happened two billion years ago in a uranium deposit. 200 refs [fr

  14. Standards for reference reactor physics measurements

    International Nuclear Information System (INIS)

    Harris, D.R.; Cokinos, D.M.; Uotinen, V.

    1990-01-01

    Reactor physics analysis methods require experimental testing and confirmation over the range of practical reactor configurations and states. This range is somewhat limited by practical fuel types such as actinide oxides or carbides enclosed in metal cladding. On the other hand, this range continues to broaden because of the trend of using higher enrichment, if only slightly enriched, electric utility fuel. The need for experimental testing of the reactor physics analysis methods arises in part because of the continual broadening of the range of core designs, and in part because of the nature of the analysis methods. Reactor physics analyses are directed primarily at the determination of core reactivities and reaction rates, the former largely for reasons of reactor control, and the latter largely to ensure that material limitations are not violated. Errors in these analyses can be regarded as being from numerics, from the data base, and from human factors. For numerical, data base, and human factor reasons, then, it is prudent and customary to qualify reactor physical analysis methods against experiments. These experiments can be treated as being at low power or at high power, and each of these types is subject to an American National Standards Institute standard. The purpose of these standards is to aid in improving and maintaining adequate quality in reactor physics methods, and it is from this point of view that the standards are examined here

  15. Technical specifications: Health Physics Research Reactor

    International Nuclear Information System (INIS)

    1986-03-01

    These technical specifications define the key limitations that must be observed for safe operation of the Health Physics Research Reactor (HPRR) and an envelope of operation within which there is assurance that these limits will not be exceeded

  16. Reactor physics activities in NEA member countries

    International Nuclear Information System (INIS)

    1990-01-01

    This document is a compilation of National activity reports presented at the thirty-third Meeting of the NEA Committee on Reactor Physics, held at OECD Headquarters, Paris, from 15th - 19th October 1990

  17. Calculation of Kinetic Parameters of TRIGA Reactor

    International Nuclear Information System (INIS)

    Snoj, Luka; Kavcic, Andrej; Zerovnik, Gasper; Ravnik, Matjaz

    2008-01-01

    Modern Monte Carlo transport codes in combination of fast computer clusters enable very accurate calculations of the most important reactor kinetic parameters. Such are the effective delayed neutron fraction, β eff , and mean neutron generation time, Λ. We calculated the β eff and Λ for various realistic and hypothetical annular TRIGA Mark II cores with different types and amount of fuel. It can be observed that the effective delayed neutron fraction strongly depends on the number of fuel elements in the core or on the core size. E.g., for 12 wt. % uranium standard fuel with 20 % enrichment, β eff varies from 0.0080 for a small core (43 fuel rods) to 0.0075 for a full core (90 fuel rods). It is interesting to note that calculated value of β eff strongly depends also on the delayed neutron nuclear data set used in calculations. The prompt neutron life-time mainly depends on the amount (due to either content or enrichment) of 235 U in the fuel as it is approximately inversely proportional to the average absorption cross-section of the fuel. E.g., it varies from 28 μs for 30 wt. % uranium content fuelled core to 48 μs for 8.5 wt. % uranium content LEU fuelled core. The results are especially important for pulse mode operation and analysis of the pulses. (authors)

  18. Development of physical conceptions of fast reactors

    International Nuclear Information System (INIS)

    Khomyakov, Yu.S.; Matveev, V.I.; Moiseev, A.V.

    2013-01-01

    • Russian experience in developing fast reactors has proved clearly scientific justification of conceptual physical principles and their technical feasibility. • However, the potential of fast reactors caused by their physical features has not been fully realized. • In order to assure the real possibility of transition to the nuclear power with fast reactors by about 2030 it is necessary to consistently update fast reactor designs for solving the following key problems: - increasing of self-protection level of reactor core; - improvement of technical and economical characteristics; - solution of the problems related to the fuel supply of nuclear power and assimilation of closed nuclear fuel cycle; - disposal of long lived radioactive waste and transmutation of minor actinides. • Russian program (2010-2020) on the development of basic concepts of the new generation reactors implies successive solution of the above problems. • New technical decisions will be demonstrated by development and assimilation of the new reactors: - BN-800 – development of the fuel cycle infrastructure and mastering of the new types of fuel; - BN-1200 reactor – demonstration economical efficiency of fast reactor and new level of safety; - BREST development and demonstration new heavy liquid metal coolant technology and alternative design concept

  19. Physics and safety of advanced research reactors

    International Nuclear Information System (INIS)

    Boening, K.; Hardt, P. von der

    1987-01-01

    Advanced research reactor concepts are presently being developed in order to meet the neutron-based research needs of the nineties. Among these research reactors, which are characterized by an average power density of 1-10 MW per liter, highest priority is now generally given to the 'beam tube reactors'. These provide very high values of the thermal neutron flux (10 14 -10 16 cm -2 s -1 ) in a large volume outside of the reactor core, which can be used for sample irradiations and, in particular, for neutron scattering experiments. The paper first discusses the 'inverse flux trap concept' and the main physical aspects of the design and optimization of beam tube reactors. After that two examples of advanced research reactor projects are described which may be considered as two opposite extremes with respect to the physical optimization principle just mentioned. The present situation concerning cross section libraries and neutronic computer codes is more or less satisfactory. The safety analyses of advanced research reactors can largely be updated from those of current new designs, partially taking advantage of the immense volume of work done for power reactors. The paper indicates a few areas where generic problems for advanced research reactor safety are to be solved. (orig.)

  20. Selecting of key safety parameters in reactor nuclear safety supervision

    International Nuclear Information System (INIS)

    He Fan; Yu Hong

    2014-01-01

    The safety parameters indicate the operational states and safety of research reactor are the basis of nuclear safety supervision institution to carry out effective supervision to nuclear facilities. In this paper, the selecting of key safety parameters presented by the research reactor operating unit to National Nuclear Safety Administration that can express the research reactor operational states and safety when operational occurrence or nuclear accident happens, and the interrelationship between them are discussed. Analysis shows that, the key parameters to nuclear safety supervision of research reactor including design limits, operational limits and conditions, safety system settings, safety limits, acceptable limits and emergency action level etc. (authors)

  1. Physics of high-temperature reactors

    International Nuclear Information System (INIS)

    Massimo, L.

    1976-01-01

    The subject is covered in chapters entitled: general description of the HTR core; general considerations about reactor physics; neutron cross-sections; basic aspects of transport and diffusion theory; methods for the solution of the diffusion equation; slowing-down and thermalization in graphite; resonance absorption; spectrum calculations and cross-section averaging; burn-up; core design; fuel management and cost calculations; temperature coefficient; core dynamics and accident analysis; reactor control; peculiarities of HTR physics; analysis of calculational accuracy; sequence of reactor design calculations. (U.K.)

  2. Activity report of Reactor Physics Section - 1985

    International Nuclear Information System (INIS)

    John, T.M.

    1986-01-01

    This Activity Report contains brief summaries of different studies made in Reactor Physics Section during the year 1985. These are presented under the headings Nuclear Data Processing and Validation, Reactor Design and Analysis, Safety and Noise Analysis, Radiation Transport and Shielding, Reactor Physics Experiments and Statistical Physics. The work on nuclear data during this period comprises primarily of validation of data of 232 Th and 233 U as a part of participation in the Co-ordinated Research Programme (CRP) under IAEA research contract. The most significant event during 1985 at this centre has been the first criticality of FBTR (Fast Breeder Test Reactor), which was achieved on the 18th of October. Reactor Physics Section has played a key role in this event by carrying out the first approach to criticality with fuel loading in a safe manner and conducting some low power reactor physics experiments which are discussed. The studies made in the field reactor safety and shielding are also connected mainly with the FBTR problems in addition to some work on the PFBR (Prototype Fast Breeder Reactor) detailed design of which has been just started. Studies pertaining to the other two Co-ordinated Research Programmes (CRP) under IAEA contract, namely (1) on the comparative assessment of processing techniques for the analysis of sodium boiling noise detection and, (2) on the contribution of advanced reactors to energy supply have been continued during this year. At the end of this report, a list of publications made by the members of the section and also the sectional seminars held during this period is included. (author)

  3. Summary of the progress of reactor physics in Japan reviewing the activities related to NEA Committee on Reactor Physics

    International Nuclear Information System (INIS)

    Hirota, Jitsuya

    1984-09-01

    The progress of fast and thermal reactor physics, fusion neutronics and shielding researches in these twenty years can be clearly recognized in the reviews of reactor physics activities in Japan which had been perpared by the Special Committee on Reactor Physics: the joint committee under Atomic Energy Society of Japan and JAERI. Many topics of those discussed at the NEACRP meetings concerned fast reactor physics. Information exchange on the topics such as adjustment of group cross sections by integral data, central worth discrepancy, sodium void effect and heterogeneous core stimulated the researches in Japan. And achievements in Japan including those in the JAERI Fast Critical Facility FCA were reported and contributed largely to the international co-operation. In addition, the contribution from Japan was also made concerning a study of fusion blanket. Among various specialists' meetings recommended by NEACRP, those on nuclear data and benchmarks for reactor shielding were often held since 1973 and helpful to the progress of shielding researches in Japan. The Third Specialists' Meeting on Reactor Noise (SMORN-III) was held in Tokyo in 1981, indicating the recent progress in safety-related applications of reactor noise analysis. The NEACRP benchmark tests were quite useful to the progress of reactor physics in Japan, which included the benchmark calculations of BWR lattice cell, key parameters and burn-up characteristics of a large LMFBR, FBR and PWR shielding, and so on. It may be noted that the benchmark test on reactor noise analysis methods was successfully conducted by Japan in connection with SMORN-III. In addition, the co-operation was positively made to the compilation of light water lattice data, and the preparation of reviews on actinide production and burn-up, and blanket physics. (J.P.N.)

  4. Methodology for reactor core physics analysis - part 2

    International Nuclear Information System (INIS)

    Ponzoni Filho, P.; Fernandes, V.B.; Lima Bezerra, J. de; Santos, T.I.C.

    1992-12-01

    The computer codes used for reactor core physics analysis are described. The modifications introduced in the public codes and the technical basis for the codes developed by the FURNAS utility are justified. An evaluation of the impact of these modifications on the parameter involved in qualifying the methodology is included. (F.E.). 5 ref, 7 figs, 5 tabs

  5. Activity report of Reactor Physics Division : 1990

    International Nuclear Information System (INIS)

    Mohanakrishnan, P.

    1991-01-01

    The major Research and Development and Project activities carried out during the year 1990 in Reactor Physics Division are presented in the form of summaries in this report. The various activities are organised under the following areas : (1) Nuclear Data Evaluation, Processing and Validation, (2) Core Physics and Analysis, (3) Reactor Kinetics and Safety Analysis, (4) Noise Analysis, and (5) Radiation Transport and Shielding. FBTR was restarted in July 1990 and the power was raised upto 500 kW. A number of low power physics experiments on reactivity coefficients, kinetics and noise, neutron flux and gamma dose in B cells, were performed, which are discussed in this report. (author). figs., tabs

  6. Physics: A New Reactor Physics Analysis Toolkit

    International Nuclear Information System (INIS)

    Rabiti, C.; Wang, Y.; Palmiotti, G.; Hiruta, H.; Cogliati, J.; Alfonsi, A.

    2011-01-01

    In the last year INL has internally pursued the development of a new reactor analysis tool: PHISICS. The software is built in a modular approach to simplify the independent development of modules by different teams and future maintenance. Most of the modules at the time of this summary are still under development (time dependent transport driver, depletion, cross section I/O and interpolation, generalized perturbation theory), while the transport solver INSTANT (Intelligent Nodal and Semi-structured Treatment for Advanced Neutron Transport) has already been widely used1, 2, 3, 4. For this reason we will focus mainly on the presentation of the transport solver INSTANT

  7. Nuclear reactor safety: physics and engineering aspects

    International Nuclear Information System (INIS)

    Kinchin, G.H.

    1982-01-01

    In order to carry out the sort of probabilistic analysis referred to by Farmer (Contemp. Phys.; 22:349(1981)), it is necessary to have a good understanding of the processes involved in both normal and accident conditions in a nuclear reactor. Some of these processes, for a variety of different reactor systems, are considered in sections dealing with the neutron chain reaction, the removal of heat from the reactor, material problems, reliability of protective systems and a number of specific topics of particular interest from the point of view of physics or engineering. (author)

  8. Activity Report of Reactor Physics Division - 1997

    International Nuclear Information System (INIS)

    Singh, Om Pal

    1998-01-01

    The research and development activities of the Reactor Physics Division of the Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1997 are reported. The activities are arranged under the headings: nuclear data processing and validation, PFBR and KAMINI core physics, FBTR core physics, radioactivity and shielding and safety analysis. A list of publications of the Division and seminars delivered are included at the end of the report

  9. Fast reactor parameter optimization taking into account changes in fuel charge type during reactor operation time

    International Nuclear Information System (INIS)

    Afrin, B.A.; Rechnov, A.V.; Usynin, G.B.

    1987-01-01

    The formulation and solution of optimization problem for parameters determining the layout of the central part of sodium cooled power reactor taking into account possible changes in fuel charge type during reactor operation time are performed. The losses under change of fuel composition type for two reactor modifications providing for minimum doubling time for oxide and carbide fuels respectively, are estimated

  10. A parameter set for a double-null DEMO reactor

    International Nuclear Information System (INIS)

    Cooke, P.I.H.

    1987-01-01

    The present study is aimed at commenting on the reactor-relevance of the design principles and technology being proposed for NET. The authors propose that a double-null device serve as a basis for a NET-based demonstration reactor. Calculations are carried out to determine the parameter set for reactors based on the double-null NET design, and the results are presented in tabular form. (U.K.)

  11. Reactor physics needs in developing countries

    International Nuclear Information System (INIS)

    Solanilla, R.

    1980-01-01

    The aim of this paper the identification of needs on Reactor Physics in developing countries embarked in the installation and later on in the operation of Commercial Nuclear Power Plants. In this context the main task of Reactor Physics should be focused in the application of Physical models with inclusion of thermohydraulic process to solve the various realistic problems which appear to ensure a safe, economical and reliable core design and reactor operation. The first part of the paper deals with the scope of Reactor Physics and its interrelation with other disciplines as seen from the view point of developing countries possibilities. Needs requiring a quick response, i.e., those demands coming during the development of a specific Nuclear Power Plant Project, are summarized in the second part of the lecture. Plant startup has been chosen as reference to separate two categories of requirements: Requirements prior to startup phase include reactor core verification, licensing aspects review and study of fuel utilization alternatives; whereas the period during and after startup mainly embraces codes checkup and normalization, core follow-up and long term prediction

  12. SERPENT Monte Carlo reactor physics code

    International Nuclear Information System (INIS)

    Leppaenen, J.

    2010-01-01

    SERPENT is a three-dimensional continuous-energy Monte Carlo reactor physics burnup calculation code, developed at VTT Technical Research Centre of Finland since 2004. The code is specialized in lattice physics applications, but the universe-based geometry description allows transport simulation to be carried out in complicated three-dimensional geometries as well. The suggested applications of SERPENT include generation of homogenized multi-group constants for deterministic reactor simulator calculations, fuel cycle studies involving detailed assembly-level burnup calculations, validation of deterministic lattice transport codes, research reactor applications, educational purposes and demonstration of reactor physics phenomena. The Serpent code has been publicly distributed by the OECD/NEA Data Bank since May 2009 and RSICC in the U. S. since March 2010. The code is being used in some 35 organizations in 20 countries around the world. This paper presents an overview of the methods and capabilities of the Serpent code, with examples in the modelling of WWER-440 reactor physics. (Author)

  13. Activity report of Reactor Physics Division - 1989

    International Nuclear Information System (INIS)

    1990-01-01

    The highlights of the various studies carried out during the year 1989 in Reactor Physics Division are presented in this report in the form of summaries. The topics are organised under the following subjects: (1) nuclear data evaluation, processing and validation, (2) core physics and analysis, (3) reacto r kinetics and safety analysis, (4) noise analysis, and radiation transport and shielding. It is observed that with the restart and operation of FBTR at low power for some time, some of the low power physics experiments were completed and plans and procedures for the remaining physics experiments at intermediate and high power (upto 10 MWt) have been prepared. The lists of publications by the members of Division and the Reactor Physics Seminars held during the year 19 89, are included at the end of the report. (author). refs., figs., tabs

  14. Choosing the optimal parameters of subcritical reactors driven by accelerators

    International Nuclear Information System (INIS)

    Khudaverdyan, A.G.; Zhamkochyan, V.M.

    1998-03-01

    Physical aspects of a subcritical Nuclear Power Plants (NPP) driven by proton accelerators are considered. Estimated theoretical calculations are made for subcritical regimes of various types of reactors. It was shown that the creation of the quite effective explosion-safe NPP is real at an existing level of the accelerator technique by using available reactor units (including the serial ones). (author)

  15. Physics design of the upgraded TREAT reactor

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.; Lell, R.M.; Liaw, J.R.; Ulrich, A.J.; Wade, D.C.; Yang, S.T.

    1980-01-01

    With the deferral of the Safety Test Facility (STF), the TREAT Upgrade (TU) reactor has assumed a lead role in the US LMFBR safety test program for the foreseeable future. The functional requirements on TU require a significant enhancement of the capability of the current TREAT reactor. A design of the TU reactor has been developed that modifies the central 11 x 11 fuel assembly array of the TREAT reactor such as to provide the increased source of hard spectrum neutrons necessary to meet the functional requirements. A safety consequence of the increased demands on TU is that the self limiting operation capability of TREAT has proved unattainable, and reliance on a safety grade Plant Protection System is necessary to ensure that no clad damage occurs under postulated low-probability reactivity accidents. With that constraint, the physics design of TU provides a means of meeting the functional requirements with a high degree of confidence

  16. Nuclear Data Processing for Reactor Physics Calculation

    International Nuclear Information System (INIS)

    Suwoto; Zuhair; Pandiangan, Tumpal

    2003-01-01

    Nuclear data processing for reactor physics calculation has been done. Raw nuclear data cross-sections on file ENDF should be prepared and processed before it used in neutronic calculation. The processing code system such as NJOY-PC code has been used from linearization of nuclear cross-sections data and background contribution of resonance parameter (MF2) using RECONR module (0K) with energy range from 10 -5 to 10 7 eV. Afterward, the neutron cross-sections data should be processed and broadened to desire temperature (i.e. 293K) by using BROADR module. The Grouper and Therma modules will be applied for multi-groups calculation which suitable for WIMS/D4 (69 groups) and thermalization of nuclear constants. The final stage of processing nuclear cross-sections is updating WIMS/D4 library. The WIMSR module in NJOY-PC and WILLIE code will be applied in this stage. The evaluated nuclear data file, especially for 1 H 1 isotope, was taken from JENDL-3.2 and ENDF/B-VI for preliminary study. The results of nuclear data processing 1 H 1 shows that the old-WIMS (WIMS-lama) library have much discrepancies comparing with JENDL-3.2 or ENDF/B-VI files, especially in energy around 5 keV

  17. New trends in reactor physics design methods

    International Nuclear Information System (INIS)

    Jagannathan, V.

    1993-01-01

    Reactor physics design methods are aimed at safe and efficient management of nuclear materials in a reactor core. The design methodologies require a high level of integration of different calculational modules of many a key areas like neutronics, thermal hydraulics, radiation transport etc in order to follow different 3-D phenomena under normal and transient operating conditions. The evolution of computer hardware technology is far more rapid than the software development and has rendered such integration a meaningful and realizable proposition. The aim of this paper is to assess the state of art of the physics design codes used in Indian thermal power reactor applications with respect to meeting the design, operational and safety requirements. (author). 50 refs

  18. Reactor physics calculations in the Nordic countries

    International Nuclear Information System (INIS)

    Hoeglund, R.

    1995-01-01

    The seventh biennial meeting on reactor physics calculations in the Nordic countries was arranged by VTT Energy on May 8-9, 1995. 26 papers on different subjects in the field of reactor physics were presented by 45 participants representing research establishments, technical universities, utilities, consultants and suppliers. Resent development and verification of the program systems of ABB Atom, Risoe, Scandpower, Studsvik and VTT Energy were the main topic of the meeting. Benchmarking of the two assembly codes CASMO-4 and HELIOS is proceeding. Cross section data calculated with CASMO-HEX have been validated for the Loviisa reactors. On core analysis ABB atom gives a description on its latest core simulator version POLCA7 with the calculation Core Master 2 and the BWR core supervision system Core Watch. Transient calculations with HEXTRAN, HEXTRAN- PLIM, TRAB, RAMONA, SIMULATE-3K and a code based on PRESTO II/POLCA7 were also presented

  19. Technical specifications: Health Physics Research Reactor

    International Nuclear Information System (INIS)

    1979-02-01

    The technical specifications define the key limitations that must be observed for safe operation of the Health Physics Research Reactor (HPRR) and an envelope of operation within which there is assurance that these limits will not be exceeded. The specifications were written to satisfy the requirements of the Department of Energy (DOE) Manual Chapter 0540, September 1, 1972

  20. Physical measurements in Marcoule reactors (1962)

    International Nuclear Information System (INIS)

    Teste du Bailler, A.

    1962-01-01

    A brief description of the physical measurements in Marcoule reactors is given here. During commissioning and subsequent years of operation, various experiments ha been carried out to check design data, and improve the operating conditions and also test theoretical models for kinetic studies. (author) [fr

  1. Reactor physics calculations on HTR type configurations

    Energy Technology Data Exchange (ETDEWEB)

    Klippel, H.T.; Hogenbirk, A.; Stad, R.C.L. van der; Janssen, A.J.; Kuijper, J.C.; Levin, P.

    1995-04-01

    In this paper a short description of the ECN nuclear analysis code system is given with respect to application in HTR reactor physics calculations. First results of calculations performed on the PROTEUS benchmark are shown. Also first results of a HTGR benchmark are given. (orig.).

  2. Reactor physics calculations on HTR type configurations

    International Nuclear Information System (INIS)

    Klippel, H.T.; Hogenbirk, A.; Stad, R.C.L. van der; Janssen, A.J.; Kuijper, J.C.; Levin, P.

    1995-04-01

    In this paper a short description of the ECN nuclear analysis code system is given with respect to application in HTR reactor physics calculations. First results of calculations performed on the PROTEUS benchmark are shown. Also first results of a HTGR benchmark are given. (orig.)

  3. Machine learning of the reactor core loading pattern critical parameters

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2007-01-01

    The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employed a recently introduced machine learning technique, Support Vector Regression (SVR), which has a strong theoretical background in statistical learning theory. Superior empirical performance of the method has been reported on difficult regression problems in different fields of science and technology. SVR is a data driven, kernel based, nonlinear modelling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modelling. The starting set of experimental data for training and testing of the machine learning algorithm was obtained using a two-dimensional diffusion theory reactor physics computer code. We illustrate the performance of the solution and discuss its applicability, i.e., complexity, speed and accuracy, with a projection to a more realistic scenario involving machine learning from the results of more accurate and time consuming three-dimensional core modelling code. (author)

  4. Parameter analysis calculation on characteristics of portable FAST reactor

    International Nuclear Information System (INIS)

    Otsubo, Akira; Kowata, Yasuki

    1998-06-01

    In this report, we performed a parameter survey analysis by using the analysis program code STEDFAST (Space, TErrestrial and Deep sea FAST reactor-gas turbine system). Concerning the deep sea fast reactor-gas turbine system, calculations with many variable parameters were performed on the base case of a NaK cooled reactor of 40 kWe. We aimed at total equipment weight and surface area necessary to remove heat from the system as important values of the characteristics of the system. Electric generation power and the material of a pressure hull were specially influential for the weight. The electric generation power, reactor outlet/inlet temperatures, a natural convection heat transfer coefficient of sea water were specially influential for the area. Concerning the space reactor-gas turbine system, the calculations with the variable parameters of compressor inlet temperature, reactor outlet/inlet temperatures and turbine inlet pressure were performed on the base case of a Na cooled reactor of 40 kWe. The first and the second variable parameters were influential for the total equipment weight of the important characteristic of the system. Concerning the terrestrial fast reactor-gas turbine system, the calculations with the variable parameters of heat transferred pipe number in a heat exchanger to produce hot water of 100degC for cogeneration, compressor stage number and the kind of primary coolant material were performed on the base case of a Pb cooled reactor of 100 MWt. In the comparison of calculational results for Pb and Na of primary coolant material, the primary coolant weight flow rate was naturally large for the former case compared with for the latter case because density is very different between them. (J.P.N.)

  5. Recent BWR fuel management reactor physics advances

    International Nuclear Information System (INIS)

    Crowther, R.L.; Congdon, S.P.; Crawford, B.W.; Kang, C.M.; Martin, C.L.; Reese, A.P.; Savoia, P.J.; Specker, S.R.; Welchly, R.

    1982-01-01

    Improvements in BWR fuel management have been under development to reduce uranium and separative work (SWU) requirements and reduce fuel cycle costs, while also maintaining maximal capacity factors and high fuel reliability. Improved reactor physics methods are playing an increasingly important role in making such advances feasible. The improved design, process computer and analysis methods both increase knowledge of the thermal margins which are available to implement fuel management advance, and improve the capability to reliably and efficiently analyze and design for fuel management advances. Gamma scan measurements of the power distributions of advanced fuel assembly and advanced reactor core designs, and improved in-core instruments also are important contributors to improving 3-d predictive methods and to increasing thermal margins. This paper is an overview of the recent advances in BWR reactor physics fuel management methods, coupled with fuel management and core design advances. The reactor physics measurements which are required to confirm the predictions of performance fo fuel management advances also are summarized

  6. Ad hoc committee on reactor physics benchmarks

    International Nuclear Information System (INIS)

    Diamond, D.J.; Mosteller, R.D.; Gehin, J.C.

    1996-01-01

    In the spring of 1994, an ad hoc committee on reactor physics benchmarks was formed under the leadership of two American Nuclear Society (ANS) organizations. The ANS-19 Standards Subcommittee of the Reactor Physics Division and the Computational Benchmark Problem Committee of the Mathematics and Computation Division had both seen a need for additional benchmarks to help validate computer codes used for light water reactor (LWR) neutronics calculations. Although individual organizations had employed various means to validate the reactor physics methods that they used for fuel management, operations, and safety, additional work in code development and refinement is under way, and to increase accuracy, there is a need for a corresponding increase in validation. Both organizations thought that there was a need to promulgate benchmarks based on measured data to supplement the LWR computational benchmarks that have been published in the past. By having an organized benchmark activity, the participants also gain by being able to discuss their problems and achievements with others traveling the same route

  7. IRPhEP-handbook, International Handbook of Evaluated Reactor Physics Benchmark Experiments

    International Nuclear Information System (INIS)

    Sartori, Enrico; Blair Briggs, J.

    2008-01-01

    experimental series that were performed at 17 different reactor facilities. The Handbook is organized in a manner that allows easy inclusion of additional evaluations, as they become available. Additional evaluations are in progress and will be added to the handbook periodically. Content: FUND - Fundamental; GCR - Gas Cooled (Thermal) Reactor; HWR - Heavy Water Moderated Reactor; LMFR - Liquid Metal Fast Reactor; LWR - Light Water Moderated Reactor; PWR - Pressurized Water Reactor; VVER - VVER Reactor; Evaluations published as drafts 2 - Related Information: International Criticality Safety Benchmark Evaluation Project (ICSBEP); IRPHE/B and W-SS-LATTICE, Spectral Shift Reactor Lattice Experiments; IRPHE-JAPAN, Reactor Physics Experiments carried out in Japan ; IRPHE/JOYO MK-II, JOYO MK-II core management and characteristics database ; IRPhE/RRR-SEG, Reactor Physics Experiments from Fast-Thermal Coupled Facility; IRPHE-SNEAK, KFK SNEAK Fast Reactor Experiments, Primary Documentation ; IRPhE/STEK, Reactor Physics Experiments from Fast-Thermal Coupled Facility ; IRPHE-ZEBRA, AEEW Fast Reactor Experiments, Primary Documentation ; IRPHE-DRAGON-DPR, OECD High Temperature Reactor Dragon Project, Primary Documents; IRPHE-ARCH-01, Archive of HTR Primary Documents ; IRPHE/AVR, AVR High Temperature Reactor Experience, Archival Documentation ; IRPHE-KNK-II-ARCHIVE, KNK-II fast reactor documents, power history and measured parameters; IRPhE/BERENICE, effective delayed neutron fraction measurements ; IRPhE-TAPIRO-ARCHIVE, fast neutron source reactor primary documents, reactor physics experiments. The International Handbook of Evaluated Reactor Physics Benchmark Experiments was prepared by a working party comprised of experienced reactor physics personnel from Belgium, Brazil, Canada, P.R. of China, Germany, Hungary, Japan, Republic of Korea, Russian Federation, Switzerland, United Kingdom, and the United States of America. The IRPhEP Handbook is available to authorised requesters from the

  8. State and parameter estimation in biotechnical batch reactors

    NARCIS (Netherlands)

    Keesman, K.J.

    2000-01-01

    In this paper the problem of state and parameter estimation in biotechnical batch reactors is considered. Models describing the biotechnical process behaviour are usually nonlinear with time-varying parameters. Hence, the resulting large dimensions of the augmented state vector, roughly > 7, in

  9. Small particle bed reactors: Sensitivity to Brayton cycle parameters

    Science.gov (United States)

    Coiner, John R.; Short, Barry J.

    Relatively simple particle bed reactor (PBR) algorithms were developed for optimizing low power closed Brayton cycle (CBC) systems. These algorithms allow the system designer to understand the relationship among key system parameters as well as the sensitivity of the PBR size and mass (a major system component) to variations in these parameters. Thus, system optimization can be achieved.

  10. Design Engineering of Safety Parameter Display for Kartini Reactor

    International Nuclear Information System (INIS)

    Yoyok Dwi Setyo Pambudi; Suharyo Widagdo; Aliq Zuhdi; Darlis

    2003-01-01

    Modification information parameter of Reactor Kartini has been conducted. This program use compiler LabView 5.0 that compatible and relevant with National Instrument card. These card mostly use in reactor instrumentation and industry. The information that been display is control rod position, fuel temperature, and water pH. The development in this research is control rod figure that can move up and down as the output from reactor power. Beside this is a module-module security figure that can light if there is a warning signal. Maximum high of control rod is 100 cm. (author)

  11. Computation of nuclear reactor parameters using a stretch Kalman filtering

    International Nuclear Information System (INIS)

    Zwingelstein, G.; Poujol, A.

    1976-01-01

    A method of nonlinear stochastic filtering, the stretched Karman filter, is used for the estimation of two basic parameters involved in the control of nuclear reactor start-up. The corresponding algorithm is stored in a small Multi-8 computer and tested with data recorded for the Ulysse reactor (I.N.S.T.N.). The various practical problems involved in using the algorithm are examined: filtering initialization, influence of the model... The quality and time saving obtained in the computation make it possible for a real time operation, the computer being connected with the reactor [fr

  12. Basic concept of common reactor physics code systems. Final report of working party on common reactor physics code systems (CCS)

    International Nuclear Information System (INIS)

    2004-03-01

    A working party was organized for two years (2001-2002) on common reactor physics code systems under the Research Committee on Reactor Physics of JAERI. This final report is compilation of activity of the working party on common reactor physics code systems during two years. Objectives of the working party is to clarify basic concept of common reactor physics code systems to improve convenience of reactor physics code systems for reactor physics researchers in Japan on their various field of research and development activities. We have held four meetings during 2 years, investigated status of reactor physics code systems and innovative software technologies, and discussed basic concept of common reactor physics code systems. (author)

  13. Proceedings of 2. Yugoslav symposium on reactor physics, Part 1, Herceg Novi (Yugoslavia), 27-29 Sep 1966; 2. Jugoslovenski simpozijum iz reaktorske fizike, Deo 1, Herceg Novi (Yugoslavia), 27-29 Sep 1966

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-07-01

    This Volume 1 of the Proceedings of 2. Yugoslav symposium on reactor physics includes nine papers dealing with the following topics: reactor kinetics, reactor noise, neutron detection, methods for calculating neutron flux spatial and time dependence in the reactor cores of both heavy and light water moderated experimental reactors, calculation of reactor lattice parameters, reactor instrumentation, reactor monitoring systems; measuring methods of reactor parameters; reactor experimental facilities.

  14. A series of lectures on operational physics of power reactors

    International Nuclear Information System (INIS)

    Mohanakrishnan, P.; Rastogi, B.P.

    1982-01-01

    This report discusses certain aspects of operational physics of power reactors. These form a lecture series at the Winter College on Nuclear Physics and Reactors, Jan. - March 1980, conducted at the International Centre for Theoretical Physics, Trieste, Italy. The topics covered are (a) the reactor physics aspects of fuel burnup (b) theoretical methods applied for burnup prediction in power reactors (c) interpretation of neutron detector readings in terms of adjacent fuel assembly powers (d) refuelling schemes used in power reactors. The reactor types chosen for the discussion are BWR, PWR and PHWR. (author)

  15. Parameter study toward economical magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Yoshida, Tomoaki; Okano, Kunihiko; Nanahara, Toshiya; Hatayama, Akiyoshi; Yamaji, Kenji; Takuma, Tadashi.

    1996-01-01

    Although the R and D of nuclear fusion reactors has made a steady progress as seen in ITER project, it has become of little doubt that fusion power reactors require hugeness and enormous amount of construction cost as well as surmounting the physics and engineering difficulties. Therefore, it is one of the essential issues to investigate the prospect of realizing fusion power reactors. In this report we investigated the effects of physics and engineering improvements on the economics of ITER-like steady state tokamak fusion reactors using our tokamak system and costing analysis code. With the results of this study, we considered what is the most significant factor for realizing economical competitive fusion reactors. The results show that with the conventional TF coil maximum field (12T), physics progress in β-value (or Troyon coefficient) has the most considerable effect on the reduction of fusion plant COE (Cost of Electricity) while the achievement of H factor = 2-3 and neutron wall load =∼5MW/m 2 is necessary. The results also show that with the improvement of TF coil maximum field, reactors with a high aspect ratio are economically advantageous because of low plasma current driving power while the improvement of current density in the conductors and yield strength of support structures is indispensable. (author)

  16. Errors in determination of irregularity factor for distributed parameters in a reactor core

    International Nuclear Information System (INIS)

    Vlasov, V.A.; Zajtsev, M.P.; Il'ina, L.I.; Postnikov, V.V.

    1988-01-01

    Two types errors (measurement error and error of regulation of reactor core distributed parameters), offen met during high-power density reactor operation, are analyzed. Consideration is given to errors in determination of irregularity factor for radial power distribution for a hot channel under conditions of its minimization and for the conditions when the regulation of relative power distribution is absent. The first regime is investigated by the method of statistic experiment using the program of neutron-physical calculation optimization taking as an example a large channel water cooled graphite moderated reactor. It is concluded that it is necessary, to take into account the complex interaction of measurement error with the error of parameter profiling over the core both for conditions of continuous manual or automatic parameter regulation (optimization) and for the conditions without regulation namely at a priore equalized distribution. When evaluating the error of distributed parameter control

  17. Measurement of reactor parameters of the 'Nora' reactor by noise analysis method - power spectral density

    International Nuclear Information System (INIS)

    Jovanovic, S.; Stormark, E.

    1966-01-01

    Measurements of reactor parameters the Nora reactor by Power Spectral Density (PSD) method are described. In case of critical reactor this method was applied for direct measurement of β/l ratio, β is the effective yield of delayed neutrons and l is the neutron lifetime. In case of subcritical reactor values of α+β-ρ/l were measured, ρ is the negative reactivity. Out coming PSD was measured by a filter or by ISAC. PSD was registered by ISAC as well as the auto-correlation function [sr

  18. Introduction to nuclear power reactors and their health physics systems

    International Nuclear Information System (INIS)

    Brtis, J.S.

    1982-01-01

    This paper provides an introduction to: (1) the major systems of Boiling Water Reactors (BWR's) and Pressurized Water Reactors (PWR's), (2) the production and distribution of radiation sources in BWR's and PWR's, (3) the regulatory and functional requirements for nuclear power reactor design from a health physics standpoint, (4) the health physics systems provided to meet such requirements, and (5) a bibliography of documents germane to power reactor health physics design

  19. Reactor physics computations for nuclear engineering undergraduates

    International Nuclear Information System (INIS)

    Huria, H.C.

    1989-01-01

    The undergraduate program in nuclear engineering at the University of Cincinnati provides three-quarters of nuclear reactor theory that concentrate on physical principles, with calculations limited to those that can be conveniently completed on programmable calculators. An additional one-quarter course is designed to introduce the student to realistic core physics calculational methods, which necessarily requires a computer. Such calculations can be conveniently demonstrated and completed with the modern microcomputer. The one-quarter reactor computations course includes a one-group, one-dimensional diffusion code to introduce the concepts of inner and outer iterations, a cell spectrum code based on integral transport theory to generate cell-homogenized few-group cross sections, and a multigroup diffusion code to determine multiplication factors and power distributions in one-dimensional systems. Problem assignments include the determination of multiplication factors and flux distributions for typical pressurized water reactor (PWR) cores under various operating conditions, such as cold clean, hot clean, hot clean at full power, hot full power with xenon and samarium, and a boron concentration search. Moderator and Doppler coefficients can also be evaluated and examined

  20. Determination of reactor parameters by single rod experiments

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Zdravkovic, Z; Ivkovic, M [Department of Reactor Physics and Dynamics, Boris Kidric Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)

    1969-07-01

    A method is developed for the experimental determination of reactor parameters by using an isolated fuel element. The method is based on the consideration of the fuel element as the source and sink of neutrons when placed in a constant neutron field. By measuring the perturbation of the original field produced by insertion of the test fuel element it was possible to determine the fuel element parameters defined by the heterogeneous reactor theory of Feinberg and Galanin as thermal neutron absorption constant {gamma}, and neutron multiplication constant {eta}. Statistical error for one series of measurement amount to 2% in the values of {eta} and {gamma}. The developed method was intended for the analysis of the nuclear characteristics of the fuel element in the stage of its construction and development for a given reactor system. (author)

  1. Parameter identification in a nonlinear nuclear reactor model using quasilinearization

    International Nuclear Information System (INIS)

    Barreto, J.M.; Martins Neto, A.F.; Tanomaru, N.

    1980-09-01

    Parameter identification in a nonlinear, lumped parameter, nuclear reactor model is carried out using discrete output power measurements during the transient caused by an external reactivity change. In order to minimize the difference between the model and the reactor power responses, the parameter promt neutron generation time and a parameter in fuel temperature reactivity coefficient equation are adjusted using quasilinearization. The influences of the external reactivity disturbance, the number and frequency of measurements and the measurement noise level on the method accuracy and rate of convergence are analysed through simulation. Procedures for the design of the identification experiments are suggested. The method proved to be very effective for low level noise measurements. (Author) [pt

  2. NURESIM lecture on reactor physics (visual aids)

    International Nuclear Information System (INIS)

    Nguyen Tien Nguyen

    1998-01-01

    The purpose of the NURESIM software (NUclear REactor SIMulation) is to be used as a computer guide in quick view of the texts and pictures in the fields of nuclear reactor physics. This software is designed so that it can be used by users of different knowledge levels. Students could find here elementary concepts, researchers - important calculation codes as GRACE, PEACO, THERMOS, HEX120. The NURESIM software is composed of four parts: units, pictures, simulations and calculations. In the terminology of IAEA-TECDOC-314 (1984) the first three parts may be classified as a level 2 of sophistication IFM code package: ''Code package useful as a first introduction for nuclear engineers''. The last one (calculations) is classified as a level higher. Details about each part are explained in Paragraph 2. A users guide is in Paragraph 3. (author)

  3. Hydrogen isotopes transport parameters in fusion reactor materials

    International Nuclear Information System (INIS)

    Serra, E.; Ogorodnikova, O.V.

    1998-01-01

    This work presents a review of hydrogen isotopes-materials interactions in various materials of interest for fusion reactors. The relevant parameters cover mainly diffusivity, solubility, trap concentration and energy difference between trap and solution sites. The list of materials includes the martensitic steels (MANET, Batman and F82H-mod.), beryllium, aluminium, beryllium oxide, aluminium oxide, copper, tungsten and molybdenum. Some experimental work on the parameters that describe the surface effects is also mentioned. (orig.)

  4. Dispersion parameters: impact on calculated reactor accident consequences

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, D.C.

    1979-01-01

    Much attention has been given in recent years to the modeling of the atmospheric dispersion of pollutants released from a point source. Numerous recommendations have been made concerning the choice of appropriate dispersion parameters. A series of calculations has been performed to determine the impact of these recommendations on the calculated consequences of large reactor accidents. Results are presented and compared in this paper.

  5. IRT-type research reactor physical calculation methodology

    International Nuclear Information System (INIS)

    Carrera, W.; Castaneda, S.; Garcia, F.; Garcia, L.; Reyes, O.

    1990-01-01

    In the present paper an established physical calculation procedure for the research reactor of the Nuclear Research Center (CIN) is described. The results obtained by the method are compared with the ones reported during the physical start up of a reactor with similar characteristics to the CIN reactor. 11 refs

  6. Physics parameter space of tokamak ignition devices

    International Nuclear Information System (INIS)

    Selcow, E.C.; Peng, Y.K.M.; Uckan, N.A.; Houlberg, W.A.

    1985-01-01

    This paper describes the results of a study to explore the physics parameter space of tokamak ignition experiments. A new physics systems code has been developed to perform the study. This code performs a global plasma analysis using steady-state, two-fluid, energy-transport models. In this paper, we discuss the models used in the code and their application to the analysis of compact ignition experiments. 8 refs., 8 figs., 1 tab

  7. Neutron physics computation of CERCA fuel elements for Maria Reactor

    International Nuclear Information System (INIS)

    Andrzejewski, K.J.; Kulikowska, T.; Marcinkowska, Z.

    2008-01-01

    Neutron physics parameters of CERCA design fuel elements were calculated in the framework of the RERTR (Reduced Enrichment for Research and Test Reactors) program for Maria reactor. The analysis comprises burnup of experimental CERCA design fuel elements for 4 cycles in Maria Reactor To predict the behavior of the mixed core the differences between the CERCA fuel (485 g U-235 as U 3 Si 2 , 5 fuel tubes, low enrichment 19.75 % - LEU) and the presently used MR-6 fuel (430 g as UO 2 , 6 fuel tubes, high enrichment 36 % - HEU) had to be taken into account. The basic tool used in neutron-physics analysis of Maria reactor is program REBUS using in its dedicated libraries of effective microscopic cross sections. The cross sections were prepared using WIMS-ANL code, taking into account the actual structure, temperature and material composition of the fuel elements required preparation of new libraries.The problem is described in the first part of the present paper. In the second part the applicability of the new library is shown on the basis of the fuel core computational analysis. (author)

  8. Effect of DUPIC cycle on CANDU reactor safety parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nader M. A. [Atomic Energy Authority, ETRR-2, Cairo (Egypt); Badawi, Alya [Dept. of Nuclear and Radiation Engineering, Alexandria University, Alexandria (Egypt)

    2016-10-15

    Although, the direct use of spent pressurized water reactor (PWR) fuel in CANda Deuterium Uranium (CANDU) reactors (DUPIC) cycle is still under investigation, DUPIC cycle is a promising method for uranium utilization improvement, for reduction of high level nuclear waste, and for high degree of proliferation resistance. This paper focuses on the effect of DUPIC cycle on CANDU reactor safety parameters. MCNP6 was used for lattice cell simulation of a typical 3,411 MWth PWR fueled by UO{sub 2} enriched to 4.5w/o U-235 to calculate the spent fuel inventories after a burnup of 51.7 MWd/kgU. The code was also used to simulate the lattice cell of CANDU-6 reactor fueled with spent fuel after its fabrication into the standard 37-element fuel bundle. It is assumed a 5-year cooling time between the spent fuel discharges from the PWR to the loading into the CANDU-6. The simulation was carried out to calculate the burnup and the effect of DUPIC fuel on: (1) the power distribution amongst the fuel elements of the bundle; (2) the coolant void reactivity; and (3) the reactor point-kinetics parameters.

  9. DUPIC fuel performance from reactor physics viewpoint

    International Nuclear Information System (INIS)

    Choi, H.; Rhee, B.W.; Park, H.

    1995-01-01

    A preliminary study was performed for the evaluation of Stress Corrosion Cracking (SCC) parameters of nominal DUPIC fuel in CANDU reactor. For the reference 2-bundle shift refueling scheme, the predicted ramped power and power increase of the 43-element DUPIC fuel in the equilibrium core are below the SCC thresholds of CANDU natural uranium fuel. For 4-bundle shift refueling scheme, the envelope of element ramped power and power increase upon refueling are 8% and 44% higher than those of 2-bundle shift refueling scheme on the average, respectively, and both schemes are not expected to cause SCC failures. (author)

  10. EBR-II Reactor Physics Benchmark Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Chad L. [Idaho State Univ., Pocatello, ID (United States); Lum, Edward S [Idaho State Univ., Pocatello, ID (United States); Stewart, Ryan [Idaho State Univ., Pocatello, ID (United States); Byambadorj, Bilguun [Idaho State Univ., Pocatello, ID (United States); Beaulieu, Quinton [Idaho State Univ., Pocatello, ID (United States)

    2017-12-28

    This report provides a reactor physics benchmark evaluation with associated uncertainty quantification for the critical configuration of the April 1986 Experimental Breeder Reactor II Run 138B core configuration.

  11. Determination of reactor parameters by single rod experiments

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Zdravkovic, Z; Ivkovic, M; Sotic, O [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1968-10-15

    The objective of this work was to determine experimentally fuel element parameters using an isolated fuel element of arbitrary construction and analyzing the accuracy of their results with the aim to apply them in analysis of reactor system. The approach is based on assumption of heterogeneous reactor theory, 'source-sink' theory. The obtained experimental results have shown the possibility of obtaining data for absorption or production properties of fuel element by analyzing the thermal and epithermal neutron density distributions around a single fuel rod placed in a sufficiently large thermal hole.

  12. Space dependence of reactivity parameters on reactor dynamic perturbation measurements

    International Nuclear Information System (INIS)

    Maletti, R.; Ziegenbein, D.

    1985-01-01

    Practical application of reactor-dynamic perturbation measurements for on-power determination of differential reactivity weight of control rods and power coefficients of reactivity has shown a significant dependence of parameters on the position of outcore detectors. The space dependence of neutron flux signal in the core of a VVER-440-type reactor was measured by means of 60 self-powered neutron detectors. The greatest neutron flux alterations are located close to moved control rods and in height of the perturbation position. By means of computations, detector positions can be found in the core in which the one-point model is almost valid. (author)

  13. Physics of Plutonium Recycling in Thermal Reactors

    International Nuclear Information System (INIS)

    Kinchin, G.H.

    1967-01-01

    A substantial programme of experimental reactor physics work with plutonium fuels has been carried out in the UK; the purpose of this paper is to review the experimental and theoretical work, with emphasis on plutonium recycling in thermal reactors. Although the main incentive for some of the work may have been to study plutonium build-up in uranium-fuelled reactors, it is nevertheless relevant to plutonium recycling and no distinction is drawn between build-up and enrichment studies. A variety of techniques have been for determining reactivity, neutron spectrum and reaction rates in simple assemblies of plutonium-aluminium fuel with water, graphite and beryllia moderators. These experiments give confidence in the basic data and methods of calculation for near-homogeneous mixtures of plutonium and moderator. In the practical case of plutonium recycling it is necessary to confirm that satisfactory predictions can be made for heterogeneous lattices enriched with plutonium. In this field, experiments have been carried out with plutonium-uranium metal and oxide-cluster fuels in graphite-moderated lattices and in SGHW lattices, and the effects of 240 Pu have been studied by perturbation measurements with single fuel elements. The exponential and critical experiments have used tonne quantities of fuel with plutonium contents ranging from 0.25 to 1.2% and the perturbation experiments have extended both the range of plutonium contents and the range of isotopic compositions of plutonium. In addition to reactivity and reactivity coefficients, such as the temperature coefficients, attention has been concentrated on relative reaction rate distributions which provide evidence for variations of neutron spectrum. .Theoretical comparisons, together with similar comparisons for non-uniform lattices, establish the validity of methods of calculation which have been used to study the feasibility of plutonium recycling in thermal reactors. (author)

  14. Physics of Plutonium Recycling in Thermal Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kinchin, G. H. [Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1967-09-15

    A substantial programme of experimental reactor physics work with plutonium fuels has been carried out in the UK; the purpose of this paper is to review the experimental and theoretical work, with emphasis on plutonium recycling in thermal reactors. Although the main incentive for some of the work may have been to study plutonium build-up in uranium-fuelled reactors, it is nevertheless relevant to plutonium recycling and no distinction is drawn between build-up and enrichment studies. A variety of techniques have been for determining reactivity, neutron spectrum and reaction rates in simple assemblies of plutonium-aluminium fuel with water, graphite and beryllia moderators. These experiments give confidence in the basic data and methods of calculation for near-homogeneous mixtures of plutonium and moderator. In the practical case of plutonium recycling it is necessary to confirm that satisfactory predictions can be made for heterogeneous lattices enriched with plutonium. In this field, experiments have been carried out with plutonium-uranium metal and oxide-cluster fuels in graphite-moderated lattices and in SGHW lattices, and the effects of {sup 240}Pu have been studied by perturbation measurements with single fuel elements. The exponential and critical experiments have used tonne quantities of fuel with plutonium contents ranging from 0.25 to 1.2% and the perturbation experiments have extended both the range of plutonium contents and the range of isotopic compositions of plutonium. In addition to reactivity and reactivity coefficients, such as the temperature coefficients, attention has been concentrated on relative reaction rate distributions which provide evidence for variations of neutron spectrum. .Theoretical comparisons, together with similar comparisons for non-uniform lattices, establish the validity of methods of calculation which have been used to study the feasibility of plutonium recycling in thermal reactors. (author)

  15. Reactor physics tests of TRIGA Mark-II Reactor in Ljubljana

    International Nuclear Information System (INIS)

    Ravnik, M.; Mele, I.; Trkov, A.; Rant, J.; Glumac, B.; Dimic, V.

    2008-01-01

    TRIGA Mark-II Reactor in Ljubljana was recently reconstructed. The reconstruction consisted mainly of replacing the grid plates, the control rod mechanisms and the control unit. The standard type control rods were replaced by the fuelled follower type, the central grid location (A ring) was adapted for fuel element insertion, the triangular cutouts were introduced in the upper plate design. However, the main novelty in reactor physics and operational features of the reactor was the installation of a pulse rod. Having no previous operational experience in pulsing, a detailed and systematic sequence of tests was defined in order to check the predicted design parameters of the reactor with measurements. The following experiments are treated in this paper: initial criticality, excess reactivity measurements, control rod worth measurement, fuel temperature distribution, fuel temperature reactivity coefficient, pulse parameters measurement (peak power, prompt energy, peak temperature). Flux distributions in steady state and pulse mode were measured as well, however, they are treated only briefly due to the volume of the results. The experiments were performed with completely fresh fuel of 12 w% enriched Standard Stainless Steel type. The core configuration was uniform (one fuel element type, including fuelled followers) and compact (no irradiation channels or gaps), as such being particularly convenient for testing the computer codes for TRIGA reactor calculations. Comparison of analytical predictions, obtained with WIMS, SLXTUS, TRIGAP and PULSTRI codes to measured values showed agreement within the error of the measurement and calculation. The paper has the following contents: 1. Introduction; 2. Steady State Experiments; 2.1. Core loading and critical experiment; 2.2. Flux range determination for tests at zero power; 2.3. Digital reactivity meter checkout; 2.4. Control rod worth measurements; 2.5. Excess reactivity measurement; 2.6. Thermal power calibration; 2

  16. On use of ZPR research reactors and associated instrumentation and measurement methods for reactor physics studies

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, J.P. [CEA,DEN, DER, SPEX, Experimental Physics Service, Cadarache, F-13108 St-Paul-Lez-Durance (France); Blaise, P. [CEA, DEN, DER, SPEX Experimental Programs Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-07-01

    The French atomic and alternative energies -CEA- is strongly involved in research and development programs concerning the use of nuclear energy as a clean and reliable source of energy and consequently is working on the present and future generation of reactors on various topics such as ageing plant management, optimization of the plutonium stockpile, waste management and innovative systems exploration. Core physics studies are an essential part of this comprehensive R and D effort. In particular, the Zero Power Reactor (ZPR) of CEA: EOLE, MINERVE and MASURCA play an important role in the validation of neutron (as well photon) physics calculation tools (codes and nuclear data). The experimental programs defined in the CEA's ZPR facilities aim at improving the calculation routes by reducing the uncertainties of the experimental databases. They also provide accurate data on innovative systems in terms of new materials (moderating and decoupling materials) and new concepts (ADS, ABWR, new MTR (e.g. JHR), GENIV) involving new fuels, absorbers and coolant materials. Conducting such interesting experimental R and D programs is based on determining and measuring main parameters of phenomena of interest to qualify calculation tools and nuclear data 'libraries'. Determining these parameters relies on the use of numerous and different experimental techniques using specific and appropriate instrumentation and detection tools. Main ZPR experimental programs at CEA, their objectives and challenges will be presented and discussed. Future development and perspectives regarding ZPR reactors and associated programs will be also presented. (authors)

  17. Calculation of fundamental parameters for the dynamical study of TRIGA-3-Salazar reactor (Mixed reactor core)

    International Nuclear Information System (INIS)

    Viais J, J.

    1994-01-01

    Kinetic parameters for dynamic study of two different configurations, 8 and 9, both with standard fuel, 20% enrichment and Flip (Fuel Life Improvement Program with 70% enrichment) fuel, for TRIGA Mark-III reactor from Mexico Nuclear Center, are obtained. A calculation method using both WIMS-D4 and DTF-IV and DAC1 was established, to decide which of those two configurations has the best safety and operational conditions. Validation of this methodology is done by calculate those parameters for a reactor core with new standard fuel. Configuration 9 is recommended to be use. (Author)

  18. Calculation system for physical analysis of boiling water reactors

    International Nuclear Information System (INIS)

    Bouveret, F.

    2001-01-01

    Although Boiling Water Reactors generate a quarter of worldwide nuclear electricity, they have been only little studied in France. A certain interest now shows up for these reactors. So, the aim of the work presented here is to contribute to determine a core calculation methodology with CEA (Commissariat a l'Energie Atomique) codes. Vapour production in the reactor core involves great differences in technological options from pressurised water reactor. We analyse main physical phenomena for BWR and offer solutions taking them into account. BWR fuel assembly heterogeneity causes steep thermal flux gradients. The two dimensional collision probability method with exact boundary conditions makes possible to calculate accurately the flux in BWR fuel assemblies using the APOLLO-2 lattice code but induces a very long calculation time. So, we determine a new methodology based on a two-level flux calculation. Void fraction variations in assemblies involve big spectrum changes that we have to consider in core calculation. We suggest to use a void history parameter to generate cross-sections libraries for core calculation. The core calculation code has also to calculate the depletion of main isotopes concentrations. A core calculation associating neutronics and thermal-hydraulic codes lays stress on points we still have to study out. The most important of them is to take into account the control blade in the different calculation stages. (author)

  19. Kinetic parameters of hydroprocessing reactions in a flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Raychaudhuri, U.; Banerjee, T.S.; Ghar, R.N. (Indian Institute of Technology, Kharagpur (India))

    1994-01-01

    The change in distillation properties of a blend of light and heavy distillates over a commercial hydrotreating catalyst was studied using a small packed bed reactor. The results were interpreted assuming a pseudo-component model that took into account the physical and chemical complexity of the system. A first order series-parallel reaction mechanism was found to be valid for the operating conditions involved. Pore diffusion effects were also taken into consideration. 8 refs., 7 figs., 1 tab.

  20. Analysis of Kinetic Parameter Effect on Reactor Operation Stability of the RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Rokhmadi

    2007-01-01

    Kinetic parameter has influence to behaviour on RSG-GAS reactor operation. In this paper done is the calculation of reactivity curve, period-reactivity relation and low power transfer function in silicide fuel. This parameters is necessary and useful for reactivity characteristic analysis and reactor stability. To know the reactivity response, it was done reactivity insertion at power 1 watt using POKDYN code because at this level of power no feedback reactivity so important for reactor operation safety. The result of calculation showed that there is no change of significant a period-reactivity relation and transfer function at low power for 2.96 gU/cc, 3.55 gU/cc and 4.8 gU/cc density of silicide fuels. The result of the transfer function at low power showed that the reactor is critical stability with no feedback. The result of calculation also showed that reactivity response no change among three kinds of fuel densities. It can be concluded that from kinetic parameter point of view period-reactivity relation, transfer function at low power, and reactivity response are no change reactor operation from reactivity effect when fuel exchanged. (author)

  1. The reactor physics computer programs in PC's era

    International Nuclear Information System (INIS)

    Nainer, O.; Serghiuta, D.

    1995-01-01

    The main objective of reactor physics analysis is the evaluation of flux and power distribution over the reactor core. For CANDU reactors sophisticated computer programs, such as FMDP and RFSP, were developed 20 years ago for mainframe computers. These programs were adapted to work on workstations with UNIX or DOS, but they lack a feature that could improve their use and that is 'user friendly'. For using these programs the users need to deal with a great amount of information contained in sophisticated files. To modify a model is a great challenge. First of all, it is necessary to bear in mind all the geometrical dimensions and accordingly, to modify the core model to match the new requirements. All this must be done in a line input file. For a DOS platform, using an average performance PC system, could it be possible: to represent and modify all the geometrical and physical parameters in a meaningful way, on screen, using an intuitive graphic user interface; to reduce the real time elapsed in order to perform complex fuel-management analysis 'at home'; to avoid the rewrite of the mainframe version of the program? The author's answer is a fuel-management computer package operating on PC, 3 time faster than on a CDC-Cyber 830 mainframe one (486DX/33MHz/8MbRAM) or 20 time faster (Pentium-PC), respectively. (author). 5 refs., 1 tab., 5 figs

  2. Lessons from feedback of safety operating experience for reactor physics

    International Nuclear Information System (INIS)

    Suchomel, J.; Rapavy, S.

    1999-01-01

    Analyses of events in WWER operations as a part of safety experience feedback provide a valuable source of lessons for reactor physics. Examples of events from Bohunice operation will be shown such as events with inadequate approach to criticality, positive reactivity insertions, expulsion of a control rod from shut-down reactor, problems with reactor protection system and control rods. (Authors)

  3. Applications in nuclear data and reactor physics

    International Nuclear Information System (INIS)

    Cullen, D.E.; Muranaka, R.; Schmidt, J.

    1986-01-01

    This book presents the papers given at a conference on reactor kinetics and nuclear data collections. Topics considered at the conference included nuclear data processing, PWR core design calculations, reactor neutron dosimetry, in-core fuel management, reactor safety analysis, transients, two-phase flow, fuel cycles of research reactors, slightly enriched uranium, highly enriched uranium, reactor start-up, computer codes, and the transport of spent fuel elements

  4. Advances in Reactor Physics, Mathematics and Computation. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, Volume 2, are divided into 7 sessions bearing on: - session 7: Deterministic transport methods 1 (7 conferences), - session 8: Interpretation and analysis of reactor instrumentation (6 conferences), - session 9: High speed computing applied to reactor operations (5 conferences), - session 10: Diffusion theory and kinetics (7 conferences), - session 11: Fast reactor design, validation and operating experience (8 conferences), - session 12: Deterministic transport methods 2 (7 conferences), - session 13: Application of expert systems to physical aspects of reactor design and operation.

  5. Advances in U.S. reactor physics standards

    International Nuclear Information System (INIS)

    Cokinos, Dimitrios

    2008-01-01

    The standards for Reactor Design, widely used in the nuclear industry, provide guidance and criteria for performing and validating a wide range of nuclear reactor calculations and measurements. Advances, over the past decades in reactor technology, nuclear data and infrastructure in the data handling field, led to major improvements in the development and application of reactor physics standards. A wide variety of reactor physics methods and techniques are being used by reactor physicists for the design and analysis of modern reactors. ANSI (American National Standards Institute) reactor physics standards, covering such areas as nuclear data, reactor design, startup testing, decay heat and fast neutron fluence in the pressure vessel, are summarized and discussed. These standards are regularly undergoing review to respond to an evolving nuclear technology and are being successfully used in the U.S and abroad contributing to improvements in reactor design, safe operation and quality assurance. An overview of the overall program of reactor physics standards is presented. New standards currently under development are also discussed. (authors)

  6. A review of reactor physics uncertainties and validation requirements for the modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Baxter, A.M.; Lane, R.K.; Hettergott, E.; Lefler, W.

    1991-01-01

    The important, safety-related, physics parameters for the low-enriched Modular High-Temperature gas-Cooled Reactor (MHTGR) such as control rod worth, shutdown margins, temperature coefficients, and reactivity worths, are considered, and estimates are presented of the uncertainties in the calculated values of these parameters. The basis for the uncertainty estimate in several of the important calculated parameters is reviewed, including the available experimental data used in obtaining these estimates. Based on this review, the additional experimental data needed to complete the validation of the methods used to calculate these parameters is presented. The role of benchmark calculations in validating MHTGR reactor physics data is also considered. (author). 10 refs, 5 figs, 3 tabs

  7. Reactor physics in support of the naval nuclear propulsion programme

    International Nuclear Information System (INIS)

    Lisley, P.G.; Beeley, P.A.

    1994-01-01

    Reactor physics is a core component of all courses but in particular two postgraduate courses taught at the department in support of the naval nuclear propulsion programme. All of the courses include the following elements: lectures and problem solving exercises, laboratory work, experiments on the Jason zero power Argonaut reactor, demonstration of PWR behavior on a digital computer simulator and project work. This paper will highlight the emphasis on reactor physics in all elements of the education and training programme. (authors). 9 refs

  8. Proceedings of the symposium on the physics and technology of reactors

    International Nuclear Information System (INIS)

    1993-01-01

    The symposium aimed at providing the opportunity for promoting the subject and for developing the human resources in this important field in the Arab States. The symposium included 32 lectures on the following topics related to research reactors: design and development, training and operation, calculations of reactor parameters, nuclear reactions dynamics and control, reactor physics, neutron pyhsics, neutron activation analysis, in-core reactor radiation protection and shielding calculations. The lectures of the symposium were distributed over 7 sessions. An additional session was held by all participants for open discussion and recommendations

  9. Defining New Parameters for Green Engineering Design of Treatment Reactors

    Directory of Open Access Journals (Sweden)

    Susana Boeykens

    2016-06-01

    Full Text Available This study proposes a green way to design Plug Flow Reactors (PFR that use biodegradable polymer solutions, capable of contaminant retaining, for industrial wastewater treatment. Usually, to the design of a PFR, the reaction rate is determined by tests on a Continuous Stirred-Tank Reactor (CSTR, these generate toxic effluents and also increase the cost of the design. In this work, empirical expressions (called “slip functions”, in terms of the average concentration of the contaminant, were developed through the study of the transport behaviour of CrVI into solutions of xanthan gum. “In situ” XRµF was selected as a no-invasive micro-technique to determine local concentrations. Slip functions were used with laboratory PFR experiments planned in similar conditions, to obtain useful dimensionless parameters for the industrial design. 

  10. Tracking of nuclear reactor parameters via recursive non linear estimation

    International Nuclear Information System (INIS)

    Pages Fita, J.; Alengrin, G.; Aguilar Martin, J.; Zwingelstein, M.

    1975-01-01

    The usefulness of nonlinear estimation in the supervision of nuclear reactors, as well for reactivity determination as for on-line modelisation in order to detect eventual and unwanted changes in working operation is illustrated. It is dealt with the reactivity estimation using an a priori dynamical model under the hypothesis of one group of delayed neutrons (measurements were done with an ionisation chamber). The determination of the reactivity using such measurements appears as a nonlinear estimation procedure derived from a particular form of nonlinear filter. Observed inputs being demand of power and inside temperature, and output being the reactivity balance, a recursive algorithm is derived for the estimation of the parameters that define the actual behavior of the reactor. Example of treatment of real data is given [fr

  11. Reactor physics aspects of burning actinides in a nuclear reactor

    International Nuclear Information System (INIS)

    Hage, W.; Schmidt, E.

    1978-01-01

    A short review of the different recycling strategies of actinides other than fuel treated in the literature, is given along with nuclear data requirements for actinide build-up and transmutation studies. The effects of recycling actinides in a nuclear reactor on the flux distribution, the infinite neutron multiplication factor, the reactivity control system, the reactivity coefficients and the delayed neutron fraction are discussed considering a notional LWR or LMFBR as an Actinide Trasmutaton Reactor. Some operational problems of Actinide Transmutation reactors are mentioned, which are caused by the α-decay heat and the neutron sources of Actinide Target Elements

  12. Importance of helical pitch parameter in LHD-type heliotron reactor designs

    International Nuclear Information System (INIS)

    Goto, T.; Suzuki, Y.; Yanagi, N.; Watanabe, K.Y.; Imagawa, S.; Sagara, A.

    2010-11-01

    In the design studies of the LHD-type heliotron reactors, one of the key issues is to secure sufficient blanket spaces. In this respect, helical pitch parameter γ is quite important because it significantly affects both the coil and plasma shapes. In order to understand the effect of helical pitch parameter on the design window quantitatively, a system design code for the LHD-type heliotron reactors has been developed and parametric scans were carried out with 3 cases of γ=1.15, 1.20 and 1.25. It becomes clear that the possible design window of heliotron reactors strongly depends on the engineering constraints: stored magnetic energy of coil system, blanket space, and neutron wall load. γ=1.20 is optimum from the viewpoint of moderating the physics requirements, but γ=1.15 has a robustness to the change in the physics and engineering conditions. Since the design windows are quite sensitive to the engineering constraints and physics conditions, the further detailed study on design feasibility of advanced engineering components and the effect of γ on the physics conditions is expected to optimize the value of γ. (author)

  13. Reactor physics experiment plan using TCA

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Shoichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-06-01

    The Reduced-Moderation Water Reactor (RMWR) is one of the next generation water-cooled reactors, which aims at effective utilization of uranium resource, high burn-up, long operation cycle, and plutonium multi-recycle. For verification of the feasibility, negative void reactivity coefficient and conversion ratio more than 1.0 must be confirmed. This report is to plan critical experiments using TCA in JAERI. Critical Experiments performed so far in Europe and Japan are reviewed, and no useful data are available for RMWR development. Critical experiments using TCA (Tank Type Critical Assembly) in JAERI are planned. MOX fuel rods should be prepared for the experiments and some modifications of equipment are needed for use of MOX fuel rods. This report describes the preliminary plan of physics experiments. The number of MOX-fuel rods used in the experiments is obtained by calculations and modification of the equipment for the experiments are shown. New MOX fuel and UO{sub 2} fuel rods are necessary for the RMWR critical experiments. Number of MOX fuel rods is 1000 for Plutonium fissile enrichment of 5 wt%, 1000 for 10 wt%, 1500 for 15 wt% and 500 for 20 wt%, respectively. Depleted UO{sub 2} fuel rods for blanket/buffer region are 4000. Driver fuel rods of 4.9 wt% UO{sub 2} are 3000. Modification of TCA facility is requested to treat the large amount of MOX fuels from safety point of view. Additional shielding device at the top of the tank for loading the MOX fuels and additional safety plates to ensure safety are requested. The core is divided into two regions by inserting an inner tank to avoid criticality in MOX region only. The test region is composed by MOX fuel rods in the inner tank. Criticality is established by UO{sub 2} driver fuel rods outside of the inner tank. (Tsuchihashi, K.)

  14. The study of two, three and four dimensional nonlinear dynamics of nuclear fission reactors and effective parameters on its behaviour

    International Nuclear Information System (INIS)

    Tajik, M.; Ghasemizad, A.

    2008-01-01

    In this research, new physical fission reactor parameters which have very sensitive effects on the qualitative behavior of a reactor, are introduced. Therefore, the two, the nonlinear dynamics of two, three and four dimensional, considering almost the effective parameters are formulated for describing nuclear fission reactor systems. Using both analytical and numerical methods, the stability and instability of the given dynamical equations and the conditions of stability are studied in these systems. We have shown that the two parameters of the mean energy residence time in fuel and coolant and also their ratios have the most qualitative effects on the dynamical behaviour of a typical nuclear fission reactor. Increasing or decreasing of these parameters from a captain limit can lead to stability or un stability in a given system

  15. Real-time simulation of response to load variation for a ship reactor based on point-reactor double regions and lumped parameter model

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qiao; Zhang De [Department of Nuclear Energy Science and Engineering, Naval University of Engineering, Wuhan 430033 (China); Chen Wenzhen, E-mail: Cwz2@21cn.com [Department of Nuclear Energy Science and Engineering, Naval University of Engineering, Wuhan 430033 (China); Chen Zhiyun [Department of Nuclear Energy Science and Engineering, Naval University of Engineering, Wuhan 430033 (China)

    2011-05-15

    Research highlights: > We calculate the variation of main parameters of the reactor core by the Simulink. > The Simulink calculation software (SCS) can deal well with the stiff problem. > The high calculation precision is reached with less time, and the results can be easily displayed. > The quick calculation of ship reactor transient can be achieved by this method. - Abstract: Based on the point-reactor double regions and lumped parameter model, while the nuclear power plant second loop load is increased or decreased quickly, the Simulink calculation software (SCS) is adopted to calculate the variation of main physical and thermal-hydraulic parameters of the reactor core. The calculation results are compared with those of three-dimensional simulation program. It is indicated that the SCS can deal well with the stiff problem of the point-reactor kinetics equations and the coupled problem of neutronics and thermal-hydraulics. The high calculation precision can be reached with less time, and the quick calculation of parameters of response to load disturbance for the ship reactor can be achieved. The clear image of the calculation results can also be displayed quickly by the SCS, which is very significant and important to guarantee the reactor safety operation.

  16. Sensitivity and Uncertainty Analysis of Coupled Reactor Physics Problems : Method Development for Multi-Physics in Reactors

    NARCIS (Netherlands)

    Perkó, Z.

    2015-01-01

    This thesis presents novel adjoint and spectral methods for the sensitivity and uncertainty (S&U) analysis of multi-physics problems encountered in the field of reactor physics. The first part focuses on the steady state of reactors and extends the adjoint sensitivity analysis methods well

  17. Advances in Reactor Physics, Mathematics and Computation. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, volume one, are divided into 6 sessions bearing on: - session 1: Advances in computational methods including utilization of parallel processing and vectorization (7 conferences) - session 2: Fast, epithermal, reactor physics, calculation, versus measurements (9 conferences) - session 3: New fast and thermal reactor designs (9 conferences) - session 4: Thermal radiation and charged particles transport (7 conferences) - session 5: Super computers (7 conferences) - session 6: Thermal reactor design, validation and operating experience (8 conferences).

  18. Reactor physics special problem in 11. ENFIR

    International Nuclear Information System (INIS)

    Leszczynski, Francisco

    1997-01-01

    In this report, the computation method and the results of the work performed of the special topic on reactor physics proposed for the 11. ENFIR is presented. MCNP 4.2 has been adopted as the only code to perform the calculations. The full core of the IPEN-MB-1 critical unit has been modelled without important approximations. The specifications given by the Organizer Commission of the Special Topic were followed. The nuclear libraries adopted were those included on the MCNPDAT package, mainly from ENDF/B-V, except indium data, not included in this package. For indium, data obtained from LANL, based on ENDF/B-VI were used. The results are: critical position of the control banks assuming simultaneous movement: percent of extraction: (49±1)% ; excess of reactivity of the core: ρ =( 3590 ±50)pcm ; total reactivity of the one control rod bank: ρ= (4000±50) pcm. The reactivity curve of the control rods is included also. (author)

  19. Reactor physics and thermodynamics of a gaseous core fission reactor

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Van Dam, H.; Stekelenburg, A.J.C.; Hoogenboom, J.E.; Boersma-Klein, W.; Kistemaker, J.

    1990-01-01

    Neutron kinetics and thermodynamics of a Gaseous Core Fission Reactor with magnetical pumping are shown to have many unconventional aspects. Attention is focussed on the properties of the fuel gas, the stationary temperature distribution, the non-linear neutron kinetics and the energy balance in thermodynamical cycles

  20. Developments in Sensitivity Methodologies and the Validation of Reactor Physics Calculations

    Directory of Open Access Journals (Sweden)

    Giuseppe Palmiotti

    2012-01-01

    Full Text Available The sensitivity methodologies have been a remarkable story when adopted in the reactor physics field. Sensitivity coefficients can be used for different objectives like uncertainty estimates, design optimization, determination of target accuracy requirements, adjustment of input parameters, and evaluations of the representativity of an experiment with respect to a reference design configuration. A review of the methods used is provided, and several examples illustrate the success of the methodology in reactor physics. A new application as the improvement of nuclear basic parameters using integral experiments is also described.

  1. Annual progress report for 1982 of Theoretical Reactor Physics Section

    International Nuclear Information System (INIS)

    Rastogi, B.P.; Kumar, Vinod

    1983-01-01

    The progress of work done in the Theoretical Reactor Physics Section of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1982 is reported in the form of write-ups and summaries. The main thrust of the work has been to master the neutronic design technology of four different types of nuclear reactor types, namely, pressurized heavy water reactors, boiling light water reactors, pressurized light water reactors and fast breeder reactors. The development work for the neutronic analysis, fuel design, and fuel management of the BWR type reactors of the Tarapur Atomic Power Station has been completed. A new reactor simulator system for PHWR design analysis and core follow-up was completed. Three dimensional static analysis codes based on nodal and finite element methods for the design work of larger size (500-750 MWe) reactors have been developed. Space link kinetics codes in one, two and three dimensions for above-mentioned reactor systems have been written and validated. Fast reactor core disruptive analysis codes have been developed. In the course of R and D work concerning various types of reactor projects, investigations were also carried in the allied areas of Monte Carlo techniques, integral transform methods, path integral methods, high spin states in heavy nuclei and a hydrodynamics model for a laser driven fusion system. (M.G.B.)

  2. Twenty years of health physics research reactor operation

    International Nuclear Information System (INIS)

    Sims, C.S.; Gilley, L.W.

    1983-01-01

    The Health Physics Research Reactor at the Oak Ridge National Laboratory has been in regular use for more than two decades. Safe operation of this fast reactor over this extended period indicates that (1) fundamental design, (2) operational procedures, (3) operator training and performance, (4) maintenance activites, and (5) management have all been eminently satisfactory. The reactor and its uses are described, the operational history and significant events are reviewed, and operational improvements and maintenance are discussed

  3. Benefits of reactor physics experiments for the HTGR industrial development - an attempt to a quantitative approach

    Energy Technology Data Exchange (ETDEWEB)

    Cuniberti, R; Graziani, G; Massino, L; Rinaldini, C; Zanantoni, C

    1972-10-15

    The available results of reactor physics experiments on HTGRs and their accuracies are briefiy reviewed. The physical quantities of interest are grouped into three categories: basic nuclear data, lattice parameters and integral design data. The last two are considered and their possible improvements in accuracy by means of experimental measurements are assessed. The cost penalty on fuel cycle and capital cost due to each physical quantity is then considered, and consequently the benefits of reactor physics experiments are evaluated for a number of hypotheses concerning the foreseeable HTGR development and the delay in taking practical advantage of experimental results. It is concluded that, at the present state of knowledge of basic nuclear data and with the available calculation methods, the economic incentive to new reactor physics experiments is small, and a previous careful analysis is recommended to those intending to perform such experiments.

  4. Reactor physics activities in France. October 1983 - September 1984

    International Nuclear Information System (INIS)

    Golinelli, C.; Salvatores, M.

    1984-10-01

    The major activities of the Fast Reactor Physics Program during the period October 1983 - September 1984 are reviewed: experimental and theoretical studies, computer codes. The LWR program brought improvements in the field of the Advanced Reactors and of the plutonium re-use on French PWRs. Are reviewed experimental studies and facilities, theoretical studies (transport theory, radioactive decay library)

  5. Fast reactor physics at CEA: present studies and future prospects

    International Nuclear Information System (INIS)

    Hammer, P.

    1980-09-01

    This paper aims at giving a general survey of the fast reactor core physics and shielding studies wich are in progress at CEA (1979-1983) in order to solve the neutronic problems related to: - core design optimization, - reactor operation and fuel management, - safety, for the development of fast commercial breeders in France after the SUPER-PHENIX 1 construction is achieved

  6. Reactor Physics Behind the Chernobyl Accident

    International Nuclear Information System (INIS)

    Reisch, F.

    1999-01-01

    There are some fourteen Chernobyl type of power reactors (1000 MWe) in operation at five different sites in Eastern Europe. In Russia; in St. Petersburg (4). in Smolensk (3). and in Kursk (4) in the Ukraine in Chernobyl (l) and in Lithuania in Ignalina (2). The oldest one is west of St. Petersburg and the most powerful one is in Ignalina. The reactors at St. Petersburg and in Lithuania are near to the Baltic sea. An intricate reactor construction was the most important cause of the accident. There were other reasons too: human error. politics and economics

  7. Neutron transport. Physics and calculation of nuclear reactors with applications to pressurized water reactors and fast neutron reactors. 2 ed.

    International Nuclear Information System (INIS)

    Bussac, J.; Reuss, P.

    1985-01-01

    This book presents the main physical bases of neutron theory and nuclear reactor calculation. 1) Interactions of neutrons with matter and basic principles of neutron transport; 2) Neutron transport in homogeneous medium and the neutron field: kinetic behaviour, slowing-down, resonance absorption, diffusion equation, processing methods; 3) Theory of a reactor constituted with homogeneous zones: critical condition, kinetics, separation of variables, calculation and neutron balance of the fundamental mode, one-group and multigroup theories; 4) Study of heterogeneous cell lattices: fast fission factor, resonance absorption, thermal output factor, diffusion coefficient, computer codes; 5) Operation and control of reactors: perturbation theory, reactivity, fuel properties evolution, poisoning by fission products, calculation of a reactor and fuel management; 6) Study of some types of reactors: PWR and fast breeder reactors, the main reactor types of the present French program [fr

  8. Compilation of reactor physics data of the year 1984, AVR reactor

    International Nuclear Information System (INIS)

    Werner, H.; Bergerfurth, A.; Thomas, F.; Geskes, B.

    1985-12-01

    The 'AVR reactor physics data' is a documentation published once a year, the data presented being obtained by a simulation of reactor operation using the AVR-80 numerical model. This model is constantly updated and improved in response to new results and developments in the field of reactor theory and thermohydraulics, and in response to theoretical or practical modifications of reactor operation or in the computer system. The large variety of measured data available in the AVR reactor simulation system also makes it an ideal testing system for verification of the computing programs presented in the compilation. A survey of the history of operations in 1984 and a short explanation of the computerized simulation methods are followed by tables and graphs that serve as a source of topical data for readers interested in the physics of high-temperature pebble-bed reactors. (orig./HP) [de

  9. Compilation of reactor physics data of the year 1983, AVR reactor

    International Nuclear Information System (INIS)

    Werner, H.; Bergerfurth, A.; Thomas, F.; Geskes, B.

    1985-06-01

    The 'AVR reactor physics data' is a documentation published once a year, the data presented being obtained by a simulation of reactor operation using the AVR-80 numerical model. This model is constantly updated and improved in response to new results and developments in the field of reactor theory and thermohydraulics, and in response to theoretical or practical modifications of reactor operation or in the computer system. The large variety of measured data available in the AVR reactor simulation system also makes it an ideal testing system for verification of the computing programs presented in the compilation. A survey of the history of operations in 1983 and a short explanation of the computerized simulation methods are followed by tables and graphs that serve as a source of topical data for readers interested in the physics of high-temperature pebble-bed reactors. (orig./HP) [de

  10. Kinetic parameters of the RB and RA reactors

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, M; Obradovic, D [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-12-15

    In the paper the expressions for transfer functions of the zero power reactors, as well as power reactors of the RA reactor type are given, based on the space independent model. The modulation method for reactor transfer function measurements is explained. The results of the measurement and interpretation are given. The measurement were done on the RB and RA reactors in 'Boris Kidrich' Institute for Nuclear Sciences in Vincha (author)

  11. Progress of the DUPIC fuel compatibility analysis (I) - reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Jeong, Chang Joon; Roh, Gyu Hong; Rhee, Bo Wook; Park, Jee Won

    2003-12-01

    Since 1992, the direct use of spent pressurized water reactor fuel in CANada Deuterium Uranium (CANDU) reactors (DUPIC) has been studied as an alternative to the once-through fuel cycle. The DUPIC fuel cycle study is focused on the technical feasibility analysis, the fabrication of DUPIC fuels for irradiation tests and the demonstration of the DUPIC fuel performance. The feasibility analysis was conducted for the compatibility of the DUPIC fuel with existing CANDU-6 reactors from the viewpoints of reactor physics, reactor safety, fuel cycle economics, etc. This study has summarized the intermediate results of the DUPIC fuel compatibility analysis, which includes the CANDU reactor physics design requirements, DUPIC fuel core physics design method, performance of the DUPIC fuel core, regional overpower trip setpoint, and the CANDU primary shielding. The physics analysis showed that the CANDU-6 reactor can accommodate the DUPIC fuel without deteriorating the physics design requirements by adjusting the fuel management scheme if the fissile content of the DUPIC fuel is tightly controlled.

  12. Hybrid Reduced Order Modeling Algorithms for Reactor Physics Calculations

    Science.gov (United States)

    Bang, Youngsuk

    hybrid ROM algorithms which can be readily integrated into existing methods and offer higher computational efficiency and defendable accuracy of the reduced models. For example, the snapshots ROM algorithm is hybridized with the range finding algorithm to render reduction in the state space, e.g. the flux in reactor calculations. In another implementation, the perturbation theory used to calculate first order derivatives of responses with respect to parameters is hybridized with a forward sensitivity analysis approach to render reduction in the parameter space. Reduction at the state and parameter spaces can be combined to render further reduction at the interface between different physics codes in a multi-physics model with the accuracy quantified in a similar manner to the single physics case. Although the proposed algorithms are generic in nature, we focus here on radiation transport models used in support of the design and analysis of nuclear reactor cores. In particular, we focus on replacing the traditional assembly calculations by ROM models to facilitate the generation of homogenized cross-sections for downstream core calculations. The implication is that assembly calculations could be done instantaneously therefore precluding the need for the expensive evaluation of the few-group cross-sections for all possible core conditions. Given the generic natures of the algorithms, we make an effort to introduce the material in a general form to allow non-nuclear engineers to benefit from this work.

  13. Machine Learning of the Reactor Core Loading Pattern Critical Parameters

    Directory of Open Access Journals (Sweden)

    Krešimir Trontl

    2008-01-01

    Full Text Available The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm, and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper, we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employ a recently introduced machine learning technique, support vector regression (SVR, which is a data driven, kernel based, nonlinear modeling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modeling. We illustrate the performance of the solution and discuss its applicability, that is, complexity, speed, and accuracy.

  14. Machine Learning of the Reactor Core Loading Pattern Critical Parameters

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2008-01-01

    The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm, and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper, we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employ a recently introduced machine learning technique, support vector regression (SVR), which is a data driven, kernel based, nonlinear modeling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modeling. We illustrate the performance of the solution and discuss its applicability, that is, complexity, speed, and accuracy

  15. Hamiltonian circuited simulations in reactor physics

    International Nuclear Information System (INIS)

    Rio Hirowati Shariffudin

    2002-01-01

    In the assessment of suitability of reactor designs and in the investigations into reactor safety, the steady state of a nuclear reactor has to be studied carefully. The analysis can be done through mockup designs but this approach costs a lot of money and consumes a lot of time. A less expensive approach is via simulations where the reactor and its neutron interactions are modelled mathematically. Finite difference discretization of the diffusion operator has been used to approximate the steady state multigroup neutron diffusion equations. The steps include the outer scheme which estimates the resulting right hand side of the matrix equation, the group scheme which calculates the upscatter problem and the inner scheme which solves for the flux for a particular group. The Hamiltonian circuited simulations for the inner iterations of the said neutron diffusion equation enable the effective use of parallel computing, especially where the solutions of multigroup neutron diffusion equations involving two or more space dimensions are required. (Author)

  16. Occupational health physics at a fusion reactor

    International Nuclear Information System (INIS)

    Shank, K.E.; Easterly, C.E.; Shoup, R.L.

    1975-01-01

    Future generation of electrical power using controlled thermonuclear reactors will involve both traditional and new concerns for health protection. A review of the problems associated with exposures to tritium and magnetic fields is presented with emphasis on the occupational worker. The radiological aspects of tritium, inventories and loss rates of tritium for fusion reactors, and protection of the occupational worker are discussed. Magnetic fields in which workers may be exposed routinely and possible biological effects are also discussed

  17. Current status of fast reactor physics

    International Nuclear Information System (INIS)

    Hummel, H.H.

    1979-01-01

    The subject of calculation of reactivity coefficients for fast reactors is developed, starting with a discussion of the status of relevant nuclear data and proceeding to the subjects of group cross section generation and of methods of obtaining reactivity coefficients from group cross sections. Reactivity coefficients measured in critical experiments are compared with calculated values. Dependence of reactivity coefficients on reactor design is discussed. Finally, results of the recent international comparison of calculated reactivity coefficients are presented

  18. International Conference on Physics and Technology of Reactors and Applications

    International Nuclear Information System (INIS)

    2011-01-01

    Full text : The international conference on physics and technology of reactors is organized by the Moroccan Association for Nuclear enggineering and Reactor Technology (GMTR) with the collaboration of the Centre for Energy and Nuclear Sciences and Techniques (CNESTEN) and under the auspices of the ministry of Energy, Mining, Water and Environment. The programme of the PHYTRA2 conference covers a wide variety of topics. The conference is organised in one plenary session, eight oral technical sessions and one poster session. The oral and poster technical sessions covers the usual topics of nuclear engineering including one session on research reactors utilisation and computational methods for research reactors

  19. Experimental Equipment for Physics Studies in the Aagesta Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bernander, G; Blomberg, P E; Dubois, P O

    1967-03-15

    Comprehensive physics measurements were carried out in connection with the start up of the Agesta reactor. For this purpose special experimental equipment was constructed and installed in the reactor. Parts of this were indispensable and/or time-saving for the reactivity control during the core build-up period and during the first criticality studies. This report gives mainly a detailed description of the experimental equipment used, but also the relevant physics background and the experience gained during the performance.

  20. Predictive modeling of coupled multi-physics systems: II. Illustrative application to reactor physics

    International Nuclear Information System (INIS)

    Cacuci, Dan Gabriel; Badea, Madalina Corina

    2014-01-01

    Highlights: • We applied the PMCMPS methodology to a paradigm neutron diffusion model. • We underscore the main steps in applying PMCMPS to treat very large coupled systems. • PMCMPS reduces the uncertainties in the optimally predicted responses and model parameters. • PMCMPS is for sequentially treating coupled systems that cannot be treated simultaneously. - Abstract: This work presents paradigm applications to reactor physics of the innovative mathematical methodology for “predictive modeling of coupled multi-physics systems (PMCMPS)” developed by Cacuci (2014). This methodology enables the assimilation of experimental and computational information and computes optimally predicted responses and model parameters with reduced predicted uncertainties, taking fully into account the coupling terms between the multi-physics systems, but using only the computational resources that would be needed to perform predictive modeling on each system separately. The paradigm examples presented in this work are based on a simple neutron diffusion model, chosen so as to enable closed-form solutions with clear physical interpretations. These paradigm examples also illustrate the computational efficiency of the PMCMPS, which enables the assimilation of additional experimental information, with a minimal increase in computational resources, to reduce the uncertainties in predicted responses and best-estimate values for uncertain model parameters, thus illustrating how very large systems can be treated without loss of information in a sequential rather than simultaneous manner

  1. On the research activities in reactor and neutron physics using the first egyptian research reactor

    International Nuclear Information System (INIS)

    Hassan, A.M.

    2000-01-01

    A review on the most important research activities in reactor and neutron physics using the first Egyptian Research Reactor (ET-RR-1) is given. An out look on: neutron cross-sections, neutron flux, neutron capture gamma-ray spectroscopy, neutron activation analysis, neutron diffraction and radiation shielding experiments, is presented

  2. Global physical and numerical stability of a nuclear reactor core

    International Nuclear Information System (INIS)

    Morales-Sandoval, Jaime; Hernandez-Solis, Augusto

    2005-01-01

    Low order models are used to investigate the influence of integration methods on observed power oscillations of some nuclear reactor simulators. The zero-power point reactor kinetics with six-delayed neutron precursor groups are time discretized using explicit, implicit and Crank-Nicholson methods, and the stability limit of the time mesh spacing is exactly obtained by locating their characteristic poles in the z-transform plane. These poles are the s to z mappings of the inhour equation roots and, except for one of them, they show little or no dependence on the integration method. Conditions for stable power oscillations can be also obtained by tracking when steady state output signals resulting from reactivity oscillations in the s-Laplace plane cross the imaginary axis. The dynamics of a BWR core operating at power conditions is represented by a reduced order model obtained by adding three ordinary differential equations, which can model void and Doppler reactivity feedback effects on power, and collapsing all delayed neutron precursors in one group. Void dynamics are modeled as a second order system and fuel heat transfer as a first order system. This model shows rich characteristics in terms of indicating the relative importance of different core parameters and conditions on both numerical and physical oscillations observed by large computer code simulations. A brief discussion of the influence of actual core and coolant conditions on the reduced order model is presented

  3. Activity report of working party on reactor physics of subcritical system. October 2001 to March 2003

    International Nuclear Information System (INIS)

    2004-03-01

    Under the Research Committee on Reactor Physics, the Working Party on Reactor Physics of Subcritical System (ADS-WP) was set in July 2001 to research reactor physics of subcritical system such as Accelerator-Driven System (ADS). The WP, at the first meeting, discussed a guideline of its activity for two years and decided to perform theoretical research for the following subjects: (1) study of reactor physics for a subcritical core, (2) benchmark problems for a subcritical core and their calculations, (3) study of physical parameters affecting to set subcriticality of ADS, and (4) study of measurement and surveillance methods of subcriticality of a subcritical core. The activity of ADS-WP continued up to March 2003. In this duration, the members of the WP met together eight times, including four meetings jointly held with the Workshop on Accelerator-Driven Subcritical Reactor at Kyoto University Research Reactor Institute. This report summarizes the result obtained by the above WP activity and research. (author)

  4. Discussion of the use of the Dragon reactor as a facility for integral reactor physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gutmann, H

    1972-06-05

    The purpose and use of the Dragon Reactor Experiment (DRE) has changed considerably during the years of its operation. The original purpose was to show that the principle of a High Temperature Reactor is sound and demonstrate its operation. After this achievement, the purpose of the Dragon reactor changed to the use as a fuel testing facility. During recent years, a new use of the DRE has been added to its use as a fuel testing facility, namely Fuel Element Design Testing. The current report covers reactor physics experiments aspects.

  5. Advanced methods in teaching reactor physics

    International Nuclear Information System (INIS)

    Snoj, Luka; Kromar, Marjan; Zerovnik, Gasper; Ravnik, Matjaz

    2011-01-01

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software.

  6. Advanced methods in teaching reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Snoj, Luka, E-mail: luka.snoj@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Kromar, Marjan, E-mail: marjan.kromar@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Zerovnik, Gasper, E-mail: gasper.zerovnik@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Ravnik, Matjaz [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)

    2011-04-15

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software.

  7. Methodology for reactor core physics analysis - part 2; Metodologia de analise fisica do nucleo - etapa 2

    Energy Technology Data Exchange (ETDEWEB)

    Ponzoni Filho, P; Fernandes, V B; Lima Bezerra, J de; Santos, T I.C.

    1992-12-01

    The computer codes used for reactor core physics analysis are described. The modifications introduced in the public codes and the technical basis for the codes developed by the FURNAS utility are justified. An evaluation of the impact of these modifications on the parameter involved in qualifying the methodology is included. (F.E.). 5 ref, 7 figs, 5 tabs.

  8. Physics experiments with the operating reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cullington, G R; King, D C

    1973-09-27

    Experimental techniques have been developed and used on Dragon to give consistent information on excess reactivity and shut down margin. The reactivity measurements have been correlated with the theoretical calculations and have led to improvements in the calculations. The methods used and the results obtained are accepted by the Safety Committee as sufficient evidence for compliance with the fuel loading safety rules. Although the reactor was not designed as an experimental facility, flux and dose measurements experiments have been successfully carried out. Mass flow and negative reactivity transient measurements have been carried out. These are valuable for demonstration of the flexibility of the reactor system and for giving confidence in theoretical calculations.

  9. Physics experiment on the Dragon reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, C.

    1974-10-15

    The paper describes a set of DRAGON experiments planned to measure burn-up effects in DRAGON irradiated fuel. Irradiated fuel elements from DRAGON are to be subjected to reactivity measurements in the HECTOR experimental reactor to infer the residual U235 content followed by isotopic analyses at CEA laboratories in 1975. Fast neutron damage to DRAGON graphite is compared to fast neutron dose measurements using Ni58 (n,p) Co58 activation wires in both DRAGON and the DIDO MTR. Gamma scanning of irradiated fuel elements are used to compare axial power profiles to those derived from two-dimensional and three-dimensional calculations of the DRAGON reactor.

  10. Design parameters for sludge reduction in an aquatic worm reactor

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Temmink, B.G.; Elissen, H.J.H.; Buisman, C.J.N.

    2010-01-01

    Reduction and compaction of biological waste sludge from waste water treatment plants (WWTPs) can be achieved with the aquatic worm Lumbriculus variegatus. In our reactor concept for a worm reactor, the worms are immobilised in a carrier material. The size of a worm reactor will therefore mainly be

  11. Physical Characteristics of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Ngo Quang Huy

    1994-10-01

    The operation of the TRIGA MARK II reactor of nominal power 250 KW has been stopped as all the fuel elements have been dismounted and taken away in 1968. The reconstruction of the reactor was accomplished with Russian technological assistance after 1975. The nominal power of the reconstructed reactor is of 500 KW. The recent Dalat reactor is unique of its kind in the world: Russian-designed core combined with left-over infrastructure of the American-made TRIGA II. The reactor was loaded in November 1983. It has reached physical criticality on 1/11/1983 (without central neutron trap) and on 18/12/1983 (with central neutron trap). The power start up occurred in February 1984 and from 20/3/1984 the reactor began to be operated at the nominal power 500 KW. The selected reports included in the proceedings reflect the start up procedures and numerous results obtained in the Dalat Nuclear Research Institute and the Centre of Nuclear Techniques on the determination of different physical characteristics of the reactor. These characteristics are of the first importance for the safe operation of the Dalat reactor

  12. Study of design parameters for minimizing the cost of electricity of tokamak fusion power reactors

    International Nuclear Information System (INIS)

    Tokimatsu, K.; Yamaji, K.; Katsurai, M.; Okano, K.; Yoshida, T.

    1998-01-01

    The impact of the design parameters on the cost of electricity (COE) is studied through a parameter survey in order to minimize the COE. Three kinds of operating modes are considered; first stability (FS), second stability (SS) and reversed shear (RS). The COE is calculated by a coupled physics-engineering-cost computer system code. Deuterium-tritium type, 1000 MW(e) at electric bus bar, steady state tokamak reactors with aspect ratios A from 3 to 4.5 are assumed. Several criteria are used for the parameter survey; for example, (a) the thermal to electrical conversion efficiency is assumed to be 34.5% using water as a coolant; (b) the average neutron wall load must not exceed 5 MW/m 2 for plasma major radius R p >5 m; (c) a 2 MeV neutral beam injector (NBI) is applied. It is found that the RS operating mode most minimizes the COE among the three operating modes by reducing the cost of the current drive and the coils and structures. The cost-minimized RS reactor can attain high f bs , high β N and low q 95 at the same time, which results in a short R p of 5.1 m, a low B max of the maximum magnetic toroidal field (TF) of the TF coils of 13 T and a low A of 3.0. It can be concluded that this cost-minimized RS reactor is the most cost-minimized within the frameworks of this study. This cost-minimized RS reactor has two advantages: one is that a B max =13 T TF coil can be made by use of ITER coil technology and the other is that the same cooling technology as that of ITER (water cooling) can be used. (author)

  13. Parameter study of high-β tokamak reactors with circular and strongly elongated cross section

    International Nuclear Information System (INIS)

    Herold, H.

    1977-05-01

    A simplified reactor model is used to study the influence of critical β-values on economy parameters and dimensions of possible long time pulsed tokamak reactors. Various betas deduced from stability and equilibrium MHD theory are introduced and put into the scaling in context with technological constraints, as maximum B-field, core constraint, maximum wall loading a.o. The plasma physical concepts treated comprise circular and strongly elongated cross section and approximated FCT equilibria. The computational results are presented as plots of possible economy parameter ranges (magnet energy, wall loading, volumina, investment costs per unit power) dependent on β for suitably chosen hierarchies of the constraints. - A burn time reduction by the build ups of α-pressure may be possible for the pressure profile sensitive high-β equilibria (FCT). Burn times in the 1O sec range, resulting from simple estimates, would about cancel the economic advantages of reactors with high-β equilibria compared to a β = 5% standardreactor (UWMAK I). (orig.) [de

  14. Effect of fractional parameter on neutron transport in finite disturbed reactors with quadratic scattering

    International Nuclear Information System (INIS)

    Sallah, M.; Margeanu, C. A.

    2016-01-01

    The space-fractional neutron transport equation is used to describe the neutrons transport in finite disturbed reactors. It is approximated using the Pomraning-Eddington technique to yield two space-fractional differential equations, in terms of neutron density and net neutron flux. These resultant equations are coupled into a fractional diffusion-like equation for the neutron density whose solution is obtained by using Laplace transformation method. The solution is represented in terms of the Mittag-Leffler function and its different orders. The scattering is considered as quadratic scattering to offer a more realistic, compact representation of the system, and to increase the accuracy of the estimated neutronic parameters. The results are presented graphically to illustrate the fractional parameter effect in addition to the effect of radiative-transfer properties on the physical parameters of interest (reflection coefficient, transmission coefficient, neutron energy, and net neutron flux). The neutron transport problem in finite disturbed reactor with quadratic scattering is considered in investigating the shielding effectiveness, by using MAVRIC shielding module from SCALE6 programs package. The fractional parameter can be used to adjust the analysed data on neutron energy and flux, both for the theoretical model and the neutron transport application. (authors)

  15. Evaluation of energy collapsing effect on reactor kinetics parameters by diffusion theory

    International Nuclear Information System (INIS)

    Unesaki, Hironobu

    1989-01-01

    Reactor kinetics parameters play an important role as scaling factors between observed and calculated reactivities in the analysis of reactor physics experiments. In this report, energy collapsing errors in two kinetic parameters, the effective delayed neutron fraction and the neutron life time, are investigated by means of the diffusion theory. Coarse group calculations are made for various energy group structures. Cores of various moderator-to-fuel volume ratios are selected to investigate the influence of neutron spectrum changes on the energy collapsing error. The energy collapsing errors in the effective delayed neutron fraction and neutron life time are much larger than those in k eff . This might be because the former two parameters are functions of both the foward and adjoint flux, whereas the latter is a function of the forward flux alone. The use of coarse constants will cause errors in both fluxes, and the resulting errors in the former will be much more emphasized. As the effective delayed neutron fraction is sensitive to the treatment of an energy region in the vicinity of the fission spectrum peak, the coarse group error in it might differ between cores with different enrichment and composition. Inaccurate weighting of group constants leads to neutron spectra which do not conserve the fine group spectra, and those errors will be emphasized in calculated integral parameters. (N.K.)

  16. Brief history of the reactor physics activities at ICN Pitesti

    International Nuclear Information System (INIS)

    Dumitrache, I.

    2004-01-01

    The Institute was established 33 years ago, in April 1971. Several specialists from the Institute for Atomic Physics - Bucharest came at the new research entity and the reactor physics activities had a successful start. One can identify three distinct periods: 1971-1980, the Bucharest years, 1980-1996, solving critical problems years and 1977-present (2004), technical support years. The first period is usually seen as a training one. This is only partially true. Most of the physicists came from University in 1971 and 1972 years. A significant number of them were trained abroad, in France, Germany, Italy, USA, Canada etc., usually under IAEA Vienna fellowships. The work was really pleasant and the progress was exciting. Unfortunately, the main task (to design a thermal reactor and a fast reactor, both for research activities) was, probably, much too difficult from the technical point of view and, in addition, required an unrealistic economic effort. In the Fall of the 1976 year, most of the reactor physicists were removed from Bucharest to Pitesti. One year later, all the remaining specialists were concentrated in Pitesti. The dual core TRIGA reactors were commissioned in the last months of the 1979 year. The CYBER 720 mainframe computer was available in December 1980. Between 1980 and 1992 years, practically all the Romanian activities related to reactor physics were performed in Pitesti, Mioveni compound. The details related to critical problems will be presented in the paper. We mention here four of the problems that have a significant impact even today, namely: -Final dimensioning of the adjuster rods for the Cernavoda NPP, Unit 2. The rods were manufactured in USA and Canada, using the AECL design and the final dimensions have been specified by ICN Pitesti; -Use of the LEU fuel in TRIGA-SSR Reactor, instead of the original HEU fuel; -Design of the irradiation experiments in TRIGA cores, in order to provide the required conditions during the test, according to

  17. Research on the reactor physics and reactor safety of VVER reactors. AER Symposium 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, S.

    2017-09-15

    The selected paperscan be attributed to the following main subjects: Reactor start-up tests and use of corresponding data for code validation, code development and application, approaches for safety analyses, closure of nuclear fuel cycle, prospective reactor concepts.

  18. The research reactors their contribution to the reactors physics; Les reacteurs de recherche leur apport sur la physique des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Barral, J C [Electricite de France (EDF), 75 - Paris (France); Zaetta, A [CEA/Cadarache, Direction des Reacteurs Nucleaires, DRN, 13 - Saint-Paul-lez-Durance (France); Johner, J [CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint Paul lez Durance (France); Mathoniere, G [CEA/Saclay, DEN, 91 - Gif sur Yvette (France); and others

    2000-07-01

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  19. Pebble Bed Reactor: core physics and fuel cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Worley, B.A.

    1979-10-01

    The Pebble Bed Reactor is a gas-cooled, graphite-moderated high-temperature reactor that is continuously fueled with small spherical fuel elements. The projected performance was studied over a broad range of reactor applicability. Calculations were done for a burner on a throwaway cycle, a converter with recycle, a prebreeder and breeder. The thorium fuel cycle was considered using low, medium (denatured), and highly enriched uranium. The base calculations were carried out for electrical energy generation in a 1200 MW/sub e/ plant. A steady-state, continuous-fueling model was developed and one- and two-dimensional calculations were used to characterize performance. Treating a single point in time effects considerable savings in computer time as opposed to following a long reactor history, permitting evaluation of reactor performance over a broad range of design parameters and operating modes.

  20. Health physics in fusion reactor design

    International Nuclear Information System (INIS)

    Wong, K.Y.; Dinner, P.J.

    1984-06-01

    Experience in the control of tritium exposures to workers and the public gained through the design and operation of Ontario Hydro's nuclear stations has been applied to fusion projects and to design studies on emerging fusion reactor concepts. Ontario Hydro performance in occupational tritium exposure control and environmental impact is reviewed. Application of tritium control technologies and dose management methodology during facility design is highlighted

  1. Physical properties of organic nuclear reactor coolants

    Energy Technology Data Exchange (ETDEWEB)

    Elberg, S.; Friz, G.

    1963-03-15

    Diphenyl and terphenyls with different high-boiler content were studied up to temperatures of 450 deg C. Data from high boiler reactors show viscosity (strong influence), thermal conductivity (medium influence), density and specific heat (small influence). The vapor pressure is rn the most affected property (important influence of low boilers). Also viscosity shows an effect. Some data for pure highboilers are also presented. New results were obtained with direct measurements of the latent heat ot vaporization. (P.C.H.)

  2. Operating manual for the Health Physics Research Reactor

    International Nuclear Information System (INIS)

    1985-11-01

    This manual is intended to serve as a guide in the operation and maintenance of the Health Physics Researh Reactor (HPRR) of the Health Physics Dosimetry Applications Research (DOSAR) Facility. It includes descriptions of the HPRR and of associated equipment such as the reactor positioning devises and the derrick. Procedures for routine operation of the HPRR are given in detail, and checklists for the various steps are provided where applicable. Emergency procedures are similarly covered, and maintenance schedules are outlined. Also, a bibliography of references giving more detailed information on the DOSAR Facility is included. Changes to this manual will be approved by at least two of the following senior staff members: (1) the Operations Division Director, (2) the Reactor Operations Department Head, (3) the Supervisor of Reactor Operations TSF-HPRR Areas. The master copy and the copy of the manual issued to the HPRR Operations Supervisor will always reflect the latest revision. 22 figs

  3. Nuclear data and reactor physics activities in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Liem, P.H. [National Atomic Energy Agency, Tangerang (Indonesia). Center for Multipurpose Reactor

    1998-03-01

    The nuclear data and reactor physics activities in Indonesia, especially, in the National Atomic Energy Agency are presented. In the nuclear data field, the Agency is now taking the position of a user of the main nuclear data libraries such as JENDL and ENDF/B. These nuclear data libraries become the main sources for producing problem dependent cross section sets that are needed by cell calculation codes or transport codes for design, analysis and safety evaluation of research reactors. In the reactor physics field, besides utilising the existing core analysis codes obtained from bilateral and international co-operation, the Agency is putting much effort to self-develop Batan`s codes for reactor physics calculations, in particular, for research reactor and high temperature reactor design, analysis and fuel management. Under the collaboration with JAERI, Monte Carlo criticality calculations on the first criticality of RSG GAS (MPR-30) first core were done using JAERI continuous energy, vectorized Monte Carlo code, MVP, with JENDL-3.1 and JENDL-3.2 nuclear data libraries. The results were then compared with the experiment data collected during the commissioning phase. Monte Carlo calculations with both JENDL-3.1 and -3.2 libraries produced k{sub eff} values with excellent agreement with experiment data, however, systematically, JENDL-3.2 library showed slightly higher k{sub eff} values than JENDL-3.1 library. (author)

  4. Study of plutonium recycling physics in light water reactors

    International Nuclear Information System (INIS)

    Reuss, Paul

    1979-10-01

    A stock of plutonium from the reprocessing of thermal neutron reactor fuel is likely to appear in the next few years. The use of this plutonium as fuel replacing 235 U in thermal reactors is probably more interesting than simple stock-piling storage: immobilization of a capital which moreover would deteriorate by radioactive decay of isotope 241 also fissile and present to an appreciable extend in plutonium from reprocessing (half-life 15 years); recycling, on the other hand, will supply energy without complete degradation of the stock for fast neutron reactor loads, the burned matter having been partially renewed by conversion; furthermore the use of plutonium will meet the needs created by a temporary pressure on the naturel and/or enriched uranium market. For these two reasons the recycling of plutonium in thermal neutron reactors is being considered seriously today. The present work is confined to neutronic aspects and centres mainly on pressurized water-moderated reactors, the most highly developed at present in France. Four aspects of the problem are examined: 1. the physics of a plutonium-recycling reactor special features of neutronic phenomena with respect to the 'conventional' scheme of the 235 U burning reactor; 2. calculation of a plutonium-recycling reactor: adaptation of standard methods; 3. qualification of these calculations from the viewpoint of both data and inevitable approximations; 4. the fuel cycle and particularly the equivalence of fissile matters [fr

  5. Model description and kinetic parameter analysis of MTBE biodegradation in a packed bed reactor

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    A dynamic modeling approach was used to estimate in-situ model parameters, which describe the degradation of methyl tert-butyl ether (MTBE) in a laboratory packed bed reactor. The measured dynamic response of MTBE pulses injected at the reactor's inlet was analyzed by least squares and parameter...

  6. PHYSICS AND SAFETY ANALYSIS FOR THE NIST RESEARCH REACTOR

    International Nuclear Information System (INIS)

    CHENG, L.; HANSON, A.; DIAMOND, D.; XU, J.; CAREW, J.; RORER, D.

    2004-01-01

    Detailed reactor physics and safety analyses have been performed for the 20 MW D 2 O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analyses provide an update to the Final Safety Analysis Report (FSAR) and employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron and photon transport calculations were performed with the MCNP code to determine the safety parameters for the NBSR. The core depletion and determination of the fuel compositions were performed with MONTEBURNS. MCNP calculations were performed to determine the beginning, middle, and end-of-cycle power distributions, moderator temperature coefficient, and shim safety arm, beam tube and void reactivity worths. The calculational model included a plate-by-plate description of each fuel assembly, axial mid-plane water gap, beam tubes and the tubular geometry of the shim safety arms. The time-dependent analysis of the primary loop was determined with a RELAP5 transient analysis model that includes the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. The statistical analysis used to assure protection from critical heat flux (CHF) was performed using a Monte Carlo simulation of the uncertainties contributing to the CHF calculation. The power distributions used to determine the local fuel conditions and margin to CHF were determined with MCNP. Evaluations were performed for the following accidents: (1) the control rod withdrawal startup accident, (2) the maximum reactivity insertion accident, (3) loss-of-flow resulting from loss of electrical power, (4) loss-of-flow resulting from a primary pump seizure, (5) loss-of-flow resulting from inadvertent throttling of a flow control valve, (6) loss-of-flow resulting from failure of both shutdown cooling pumps and (7) misloading of a fuel element. In both the startup and maximum reactivity insertion accidents, the core

  7. Simulating Neutronic Core Parameters in a Research and Test Reactor

    International Nuclear Information System (INIS)

    Selim, H.K.; Amin, E.A.; Koutb, M.E.

    2011-01-01

    The present study proposes an Artificial Neural Network (ANN) modeling technique that predicts the control rods positions in a nuclear research reactor. The neutron, flux in the core of the reactor is used as the training data for the neural network model. The data used to train and validate the network are obtained by modeling the reactor core with the neutronic calculation code: CITVAP. The type of the network used in this study is the feed forward multilayer neural network with the backpropagation algorithm. The results show that the proposed ANN has good generalization capability to estimate the control rods positions knowing neutron flux for a research and test reactor. This method can be used to predict critical control rods positions to be used for reactor operation after reload

  8. XII seminar on problems of reactor physics

    International Nuclear Information System (INIS)

    Kryuchkov, Eh.F.; Naumov, V.I.

    2003-01-01

    Results of the XII seminar Physical problems of effective and safety use of nuclear materials taking place on the basis of MEPI (September, 2002) are discussed. Reports on the directions: physical problems of advanced nuclear-energetic technologies; account, control and nuclear material management; effective and safety use of nuclear materials at NPP; programming and software for the analysis of physical processes are performed. Of particular interest is reports on actual problems of nuclear energetics and fuel cycle, on ill-intentioned use of fissile materials, efficiency of long-lived isotopes transmutation and spent fuel management [ru

  9. Conceptual research on reactor core physics for accelerator driven sub-critical reactor

    International Nuclear Information System (INIS)

    Zhao Zhixiang; Ding Dazhao; Liu Guisheng; Fan Sheng; Shen Qingbiao; Zhang Baocheng; Tian Ye

    2000-01-01

    The main properties of reactor core physics are analysed for accelerator driven sub-critical reactor. These properties include the breeding of fission nuclides, the condition of equilibrium, the accumulation of long-lived radioactive wastes, the effect from poison of fission products, as well as the thermal power output and the energy gain for sub-critical reactor. The comparison between thermal and fast system for main properties are carried out. The properties for a thermal-fast coupled system are also analysed

  10. Reactor physics verification of the MCNP6 unstructured mesh capability

    International Nuclear Information System (INIS)

    Burke, T. P.; Kiedrowski, B. C.; Martz, R. L.; Martin, W. R.

    2013-01-01

    The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)

  11. Neutron physics of a high converting advanced pressurized water reactor

    International Nuclear Information System (INIS)

    Berger, H.D.

    1985-01-01

    The neutron physics of an APWR are analysed by single pin-cell calculations as well as two-dimensional whole-reactor computations. The calculational methods of the two codes employed for this study, viz. the cell code SPEKTRA and the diffusion-burnup code DIBU, are presented in detail. The APWR-investigations carried out concentrate on the void coefficient characteristics of tight UO 2 /PuO 2 -lattices, control rod worths, burnup behaviour and spatial power distributions in APWR cores. The principal physics design differences between advanced pressurized water reactors and present-day PWRs are identified and discussed. (orig./HP) [de

  12. The use of personal computers in reactor physics

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1988-01-01

    This paper points out that personal computers are now powerful enough (in terms of core size and speed) to allow them to be used for serious reactor physics applications. In addition the low cost of personal computers means that even small institutes can now have access to a significant amount of computer power. At the present time distribution centers, such as RSIC, are beginning to distribute reactor physics codes for use on personal computers; hopefully in the near future more and more of these codes will become available through distribution centers, such as RSIC

  13. Reactor physics verification of the MCNP6 unstructured mesh capability

    Energy Technology Data Exchange (ETDEWEB)

    Burke, T. P. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Kiedrowski, B. C.; Martz, R. L. [X-Computational Physics Division, Monte Carlo Codes Group, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Martin, W. R. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States)

    2013-07-01

    The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)

  14. Development of a remote monitoring system, through monitoring of key safety parameters for a nuclear research reactor

    International Nuclear Information System (INIS)

    Urcia, Agustin; Arrieta, Rolando; Baltuano, Oscar; Chan, Renzo; Tincopa, Jean Pierre; Urquizo, Rafael; Rosas, Bernick

    2014-01-01

    This paper presents the detailed development, installation and commissioning of water level sensors and exposure rate range in the 11 meters level (mouth of tank) of the RP-10 nuclear reactor used to continuously monitor these values and use them as security for the periods of no presence of operating personnel (overlooking situation) with the reactor in shutdown state. The levels of these parameters are packaged and transmitted to a controller in the control room of reactor for display and activation of alarm levels. Additionally, the design of these warning signs is shown in conjunction with the fire alarm in the building of reactor and auxiliary laboratories to be transmitted to the physical security facility, located at a distance of 500 meters. (authors).

  15. Cold fusion reactors and new modern physics

    OpenAIRE

    Huang Zhenqiang Huang Yuxiang

    2013-01-01

    The author of the "modern physics classical particle quantization orbital motion model general solution", referred to as the “new modern physics” a book. “The nuclear force constraint inertial guidance cold nuclear fusion collides” patent of invention referred to as the “cold nuclear fusion reactor” detailed technical data. Now provide to you, hope you help spread and the mainstream of modern physics of academic and fusion engineering academic communication. We work together to promote the c...

  16. Estimation of power feedback parameters of pulse reactor IBR-2M on transients

    International Nuclear Information System (INIS)

    Pepyolyshev, Yu.N.; Popov, A.K.

    2013-01-01

    Parameters of the IBR-2M reactor power feedback (PFB) on a model of the reactor dynamics by mathematical treatment of two registered transients are estimated. Frequency characteristics and the pulse transient characteristics corresponding to these PFB parameters are calculated. PFB parameters received thus can be considered as their express tentative estimation as real measurements in this case occupy no more than 30 minutes. Total PFB is negative at 1 and 2 MW. At the received estimations of PFB parameters in a self-regulation mode it is possible to consider the stability margins of the IBR-2M reactor satisfactory

  17. Determination of the TLD-100 physical parameters

    International Nuclear Information System (INIS)

    Paucar J, J.; Picon C, C.

    1998-01-01

    This study was realized in the Physics service at the Radiotherapy Department of the National Institute of Neoplasic Diseases in Lima, Peru, it was determined the activation energy, the kinetic order and the frequency factor of the fifth peak of the TLD-100 thermoluminescent spectra using different algorithms. This was carried out in parallel with the implementation and design of a software and an interface associated with the Tl lecturer which allows a semiautomatic control for a thermoluminescent lecturer process. (Author)

  18. Comparison of the parameters of the IR-8 reactor with different fuel assembly designs with LEU fuel

    International Nuclear Information System (INIS)

    Vatulin, A.; Stetsky, Y.; Dobrikova, I.

    1999-01-01

    The estimation of neutron-physical, heat and hydraulic parameters of the IR-8 research reactor with low enriched uranium (LEU) fuel was performed. Two fuel assembly (FA) designs were reviewed: IRT-4M with the tubular type fuel elements and IRT-MR with the rod type fuel elements. UO 2 -Al dispersion 19.75% enrichment fuel is used in both cases. The results of the calculations were compared with main parameters of the reactor, using the current IRT-3M FA with 90% high enriched uranium (HEU) fuel. The results of these comparisons showed that during the LEU conversion of the reactor the cycle length, excess reactivity and peak power of the IRT-MR type FA are higher than for the IRT-3M type FA and IRT-4M type FA. (author)

  19. Physics design of experimental metal fuelled fast reactor cores for full scale demonstration

    International Nuclear Information System (INIS)

    Devan, K.; Bachchan, Abhitab; Riyas, A.; Sathiyasheela, T.; Mohanakrishnan, P.; Chetal, S.C.

    2011-01-01

    Highlights: → In this study we made physics designs of experimental metal fast reactor cores. → Aim is for full-scale demonstration of fuel assemblies in a commercial power reactor. → Minimum power with adequate safety is considered. → In addition, fuel sustainability is also considered in the design. → Sodium bonded U-Pu-6%Zr and mechanically bonded U-Pu alloys are used. - Abstract: Fast breeder reactors based on metal fuel are planned to be in operation for the year beyond 2025 to meet the growing energy demand in India. A road map is laid towards the development of technologies required for launching 1000 MWe commercial metal breeder reactors with closed fuel cycle. Construction of a test reactor with metallic fuel is also envisaged to provide full-scale testing of fuel sub-assemblies planned for a commercial power reactor. Physics design studies have been carried out to arrive at a core configuration for this experimental facility. The aim of this study is to find out minimum power of the core to meet the requirements of safety as well as full-scale demonstration. In addition, fuel sustainability is also a consideration in the design. Two types of metallic fuel pins, viz. a sodium bonded ternary (U-Pu-6% Zr) alloy and a mechanically bonded binary (U-Pu) alloy with 125 μm thickness zirconium liner, are considered for this study. Using the European fast reactor neutronics code system, ERANOS 2.1, four metallic fast reactor cores are optimized and estimated their important steady state parameters. The ABBN-93 system is also used for estimating the important safety parameters. Minimum achievable power from the converter metallic core is 220 MWt. A 320 MWt self-sustaining breeder metal core is recommended for the test facility.

  20. Reactor physics computer code development for neutronic design, fuel-management, reactor operation and safety analysis of PHWRs

    International Nuclear Information System (INIS)

    Rastogi, B.P.

    1989-01-01

    This report discusses various reactor physics codes developed for neutronic design, fuel-management, reactor operation and safety analysis of PHWRs. These code packages have been utilized for nuclear design of 500 MWe and new 235 MWe PHWRs. (author)

  1. Compilation of reactor-physical data of the AVR experimental reactor for 1982

    International Nuclear Information System (INIS)

    Werner, H.; Wawrzik, U.; Grotkamp, T.; Buettgen, I.

    1983-12-01

    Since the end of 1981 the calculation model AVR-80 has been taken as a basis for compiling reactor-physical data of the AVR experimental reactor. A brief outline of the operation history of 1982 is given, including the beginning of a large-scale experiment dealing with change-over from high enriched uranium to low enriched uranium. Calculations relative to spectral shift, diffusion, temperature, burnup, and recirculation of the fuel elements are described in brief. The essential results of neutron-physical and thermodynamic calculations and the characteristical data of the various types of fuel used are shown in tables and illustrations. (RF) [de

  2. Current Reactor Physics Benchmark Activities at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Bess, John D.; Marshall, Margaret A.; Gorham, Mackenzie L.; Christensen, Joseph; Turnbull, James C.; Clark, Kim

    2011-01-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) (1) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) (2) were established to preserve integral reactor physics and criticality experiment data for present and future research. These valuable assets provide the basis for recording, developing, and validating our integral nuclear data, and experimental and computational methods. These projects are managed through the Idaho National Laboratory (INL) and the Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD-NEA). Staff and students at the Department of Energy - Idaho (DOE-ID) and INL are engaged in the development of benchmarks to support ongoing research activities. These benchmarks include reactors or assemblies that support Next Generation Nuclear Plant (NGNP) research, space nuclear Fission Surface Power System (FSPS) design validation, and currently operational facilities in Southeastern Idaho.

  3. International Conference on Physics and Technology of Reactors and Applications

    International Nuclear Information System (INIS)

    2007-01-01

    The first international conference on physics and technology of reactors and applications (PHYTRA 1) which took place in Marrakech (Morocco) from 14 to 16 March 2007, was designed to bring together scientists, teachers and students from universities, research centres and industry and other institutions to exchange knowledge and to discuss ideas and future issues. The programmes of the PHYTRA 1 conference covers a wide variety topics, the conference was organised in three plenary sessions, ten oral technical sessions and two poster sessions. The plenary sessions covers the following topics : The prospects of nuclear energy, The situation of nuclear sciences and energy in Morocco and Africa, and the new development in reactor physics and reactor design [fr

  4. An Overview of the International Reactor Physics Experiment Evaluation Project

    International Nuclear Information System (INIS)

    Briggs, J. Blair; Gulliford, Jim

    2014-01-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties associated with advanced modeling and simulation accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Data provided by those two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades. An overview of the IRPhEP and a brief update of the ICSBEP are provided in this paper.

  5. Micro-Reactor Physics of MOX-Fueled Core

    International Nuclear Information System (INIS)

    Takeda, T.

    2001-01-01

    Recently, fuel assemblies of light water reactors have become complicated because of the extension of fuel burnup and the use of high-enriched Gd and mixed-oxide (MOX) fuel, etc. In conventional assembly calculations, the detailed flux distribution, spectrum distribution, and space dependence of self-shielding within a fuel pellet are not directly taken into account. The experimental and theoretical study of investigating these microscopic properties is named micro-reactor physics. The purpose of this work is to show the importance of micro-reactor physics in the analysis of MOX fuel assemblies. Several authors have done related studies; however, their studies are limited to fuel pin cells, and they are never mentioned with regard to burnup effect, which is important for actual core design

  6. Application of the exact distribution pjk in the determination of kinetic parameters in a reactor

    International Nuclear Information System (INIS)

    Alcala Ruiz, F.

    1982-01-01

    In this report one distribution of neutron counts obtained by a detector placed in a reactor is studied in order to be used in the determination of reactor kinetic parameters such as β/Λ and reactivities. The parameters accuracy from this new method is compared with the Feynman and Mogilner method, based too in Reactor Neutron Noise Analysis. These three methods have been applied to JEN-2 reactor and the better accuracy and faster collection of experimental data give some interest to the new method which only requires a good footing code. (Author) 68 refs

  7. A sensitivity analysis and assessment on the reactivity, economics and resorce implications of reactor systems and cycles with respect to uncertainity in nuclear data and other reactor parameters

    International Nuclear Information System (INIS)

    Quan, B.L.

    1980-01-01

    A general sensitivity analysis system for analyzing the effects of uncertainity in nuclear data and reactor parameters on fuel cycle economics, resources and physics has been developed. The sensitivity analysis has been performed on various reactor systems and cycles such as the thorium cycles, plutonium cycles, CANDU reactor fuel cycles and alternate once-through LWR cycles such as the 18 month cycle. Sensitivity coefficients were generated for a variety of materials pertinent to the LWR fuel cycle using a series of fast running codes developed for this purpose and running on a local PDP-15 computer. Their relative order of importance were assessed and the reasons explaining this difference were examined. This work is a result of EPRI project in determining the data needs for the LWR industry and should be valuable in identifying areas in which data improvements are worthwhile

  8. Successful vectorization - reactor physics Monte Carlo code

    International Nuclear Information System (INIS)

    Martin, W.R.

    1989-01-01

    Most particle transport Monte Carlo codes in use today are based on the ''history-based'' algorithm, wherein one particle history at a time is simulated. Unfortunately, the ''history-based'' approach (present in all Monte Carlo codes until recent years) is inherently scalar and cannot be vectorized. In particular, the history-based algorithm cannot take advantage of vector architectures, which characterize the largest and fastest computers at the current time, vector supercomputers such as the Cray X/MP or IBM 3090/600. However, substantial progress has been made in recent years in developing and implementing a vectorized Monte Carlo algorithm. This algorithm follows portions of many particle histories at the same time and forms the basis for all successful vectorized Monte Carlo codes that are in use today. This paper describes the basic vectorized algorithm along with descriptions of several variations that have been developed by different researchers for specific applications. These applications have been mainly in the areas of neutron transport in nuclear reactor and shielding analysis and photon transport in fusion plasmas. The relative merits of the various approach schemes will be discussed and the present status of known vectorization efforts will be summarized along with available timing results, including results from the successful vectorization of 3-D general geometry, continuous energy Monte Carlo. (orig.)

  9. Advances in Reactor physics, mathematics and computation. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, volume 3, are divided into sessions bearing on: - poster sessions on benchmark and codes: 35 conferences - review of status of assembly spectrum codes: 9 conferences - Numerical methods in fluid mechanics and thermal hydraulics: 16 conferences - stochastic transport and methods: 7 conferences.

  10. Compatibility analysis of DUPIC fuel (Part II) - Reactor physics design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Choi, Hang Bok; Rhee, Bo Wook; Roh, Gyu Hong; Kim, Do Hun [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The compatibility analysis of the DUPIC fuel in a CANDU reactor has been assessed. This study includes the fuel composition adjustment, comparison of lattice properties, performance analysis of reactivity devices, determination of regional over-power (ROP) trip setpoint, and uncertainty estimation of core performance parameters. For the DUPIC fuel composition adjustment, three options have been proposed, which can produce uniform neutronic characteristics of the DUPIC fuel. The lattice analysis has shown that the characteristics of the DUPIC fuel is compatible with those of natural uranium fuel. The reactivity devices of the CANDU-6 reactor maintain their functional requirements even for the DUPIC fuel system. The ROP analysis has shown that the trip setpoint is not sacrificed for the DUPIC fuel system owing to the power shape that enhances more thermal margin. The uncertainty analysis of the core performance parameter has shown that the uncertainty associated with the fuel composition variation is reduced appreciably, which is primarily due to the fuel composition adjustment and secondly the on-power refueling feature and spatial control function of the CANDU reactor. The reactor physics calculation has also shown that it is feasible to use spent PWR fuel directly in CANDU reactors without deteriorating the CANDU-6 core physics design requirements. 29 refs., 67 figs., 60 tabs. (Author)

  11. Physics considerations in the design of liquid metal reactors for transuranium element consumption

    International Nuclear Information System (INIS)

    Khalil, H.; Hill, R.; Fujita, E.; Wade, D.

    1992-01-01

    The management of transuranic nuclides in liquid metal reactors (LMR's) is considered based on the use of the Integral Fast Reactor (IFR) concept. Unique features of the IFR fuel cycle with respect to transuranic management are identified. These features are exploited together with the hard spectrum of LMR's to demonstrate the neutronic feasibility of a wide range of transuranic management options ranging from efficient breeding to pure consumption. Core physics aspects of the development of a low sodium void worth transuranic burner concept are described. Neutronics performance parameters and reactivity feedback characteristics estimated for this core concept are presented

  12. Nuclear data and integral experiments in reactor physics

    International Nuclear Information System (INIS)

    Farinelli, U.

    1980-01-01

    The material given here broadly covers the content of the 10 lectures delivered at the Winter Course on Reactor Theory and Power Reactors, ICTP, Trieste (13 February - 10 March 1978). However, the parts that could easily be found in the current literature have been omitted and replaced with the appropriate references. The needs for reactor physics calculations, particularly as applicable to commercial reactors, are reviewed in the introduction. The relative merits and shortcomings of fundamental and semi-empirical methods are discussed. The relative importance of different nuclear data, the ways in which they can be measured or calculated, and the sources of information on measured and evaluated data are briefly reviewed. The various approaches to the condensation of nuclear data to multigroup cross sections are described. After some consideration to the sensitivity calculations and the evaluation of errors, some of the most important type of integral experiments in reactor physics are introduced, with a view to showing the main difficulties in the interpretation and utilization of their results and the most recent trends in experimentation. The conclusions try to assign some priorities in the implementation of experimental and calculational capabilities, especially for a developing country. (author)

  13. Physics and engineering aspects of the EBT reactor

    International Nuclear Information System (INIS)

    Uckan, N.A.; Bettis, E.S.; Hedrick, C.L.; Santoro, R.T.; Watts, H.L.; Yeh, H.T.

    1977-01-01

    The ELMO Bumpy Torus (EBT) reactor has the advantage of high-β, steady-state operation. The first reactor study based on the EBT confinement concept was initiated in 1976. It provided the required starting point for continued assessment of the validity of the concept. A new design based on the present physics understanding, practical design approaches, and present and near-term technologies has been established. One of the important factors in an EBT reactor is the large aspect ratio (large toroidal major radius as well). This leads to a power plant with a comparatively large total energy output, usually in the range of 2000-6000 MW(th) for a conventional neutron wall loading of 1-2 MW/m 2 (the high value of β in an EBT device provides a net cost per unit energy roughly equal to or somewhat less than that for a Tokamak system). The large aspect ratio also provides very simple engineering and design requirements because of good access and small force loading asymmetries. Another important factor is the steady-state operation. In an EBT system, less power handling, energy storage, and filtering equipment will be needed. An EBT reactor is less likely to be subject to thermal and mechanical fatigue than reactors with large pulsed magnetic fields and short bursts of fusion power. The details of the key design elements and critical scientific and technology factors which are substantially different from other fusion reactor approaches are described

  14. Artificial neural networks for dynamic monitoring of simulated-operating parameters of high temperature gas cooled engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Seker, Serhat; Tuerkcan, Erdinc; Ayaz, Emine; Barutcu, Burak

    2003-01-01

    This paper addresses to the problem of utilisation of the artificial neural networks (ANNs) for detecting anomalies as well as physical parameters of a nuclear power plant during power operation in real time. Three different types of neural network algorithms were used namely, feed-forward neural network (back-propagation, BP) and two types of recurrent neural networks (RNN). The data used in this paper were gathered from the simulation of the power operation of the Japan's High Temperature Engineering Testing Reactor (HTTR). For the wide range of power operation, 56 signals were generated by the reactor dynamic simulation code for several hours of normal power operation at different power ramps between 30 and 100% nominal power. Paper will compare the outcomes of different neural networks and presents the neural network system and the determination of physical parameters from the simulated operating data

  15. Physical parameters and biological effects of the LVR-15 epithermal neutron beam

    International Nuclear Information System (INIS)

    Burian, J.; Marek, M.; Rejchrt, J.; Viererbl, L.; Gambarini, G.; Mares, V.; Vanossi, E.; Judas, L.

    2006-01-01

    Monitoring of the physical and biological properties of the epithermal neutron beam constructed at the multipurpose LVR-15 nuclear reactor for NCT therapy of brain tumors showed that its physical and biological properties are stable in time and independent on an ad hoc reconfiguration of the reactor core before its therapeutic use. Physical parameters were monitored by measurement of the neutron spectrum, neutron profile, fast neutron kerma rate in tissue and photon absorbed dose, the gel dosimetry was used with the group of standard measurement methods. The RBE of the beam, as evaluated by 3 different biological models, including mouse intestine crypt regeneration assay, germinative zones of the immature rat brain and C6 glioma cells in culture, ranged from 1.70 to 1.99. (author)

  16. Final Physics Report for the Engineering Test Reactor

    International Nuclear Information System (INIS)

    Wolfe, I. B.

    1956-01-01

    This report is a summary of the physics design work performed on the Engineering Test Reactor. The ETR presents computational difficulties not found in other reactors because of the large number of experimental holes in the core. The physics of the ETR depends strongly upon the contents of the in-core experimental facilities. In order to properly evaluate the reactor' taking into account the experiments in the core, multi-region, two-dimensional calculations are required. These calculations require the use of a large computer such as the Remington Rand Univac and are complex and expensive enough to warrant a five-stage program: 1. In the early stages of design, only preliminary two-dimensional calculations were performed .in order to obtain a rough idea of the general behavior of the reactor and its critical mass with tentative experiments in place. 2. A large amount of work was carried out in which the reactor was approximated as one with a uniform homogeneous core. With this model, detailed studies were carried out to investigate the feasibility and to obtain general design data on such points as the design and properties of the gray and black control rods, the design of the beryllium reflector, gamma and neutron heating, the use of burnable poisons, etc. In performing these calculations, use was made of the IBM 650 PROD code obtained from KAPL. 3. With stages 1 and 2 carried out, two-dimensional calculations of the core at start-up conditions were performed on the Univac computer. 4. Detailed two-dimensional calculations of the properties of the ETR with a proposed first set of experiments in place were carried out. 5. A series of nuclear tests were performed at the reactivity measurements facility at the MTR site in order to confirm the validity of the analytical techniques in physics analysis. In performing the two-dimensional Univac calculations, the MUG code developed by KAPL and the Cuthill code developed at the David Taylor Model Basin were utilized. In

  17. Neutron physics for nuclear reactors unpublished writings by Enrico Fermi

    CERN Document Server

    Fermi, Enrico; Pisanti, O

    2010-01-01

    This unique volume gives an accurate and very detailed description of the functioning and operation of basic nuclear reactors, as emerging from yet unpublished papers by Nobel Laureate Enrico Fermi. In the first part, the entire course of lectures on Neutron Physics delivered by Fermi at Los Alamos is reported, according to the version made by Anthony P French. Here, the fundamental physical phenomena are described very clearly and comprehensively, giving the appropriate physics grounds for the functioning of nuclear piles. In the second part, all the patents issued by Fermi (and coworkers) on

  18. The review of the reactor physics experiments carried out on the LR-0 research reactor NRI Rez plc for reactors of the VVER type

    International Nuclear Information System (INIS)

    Hudec, Frantisek; Jansky, Bohumil; Juricek, Vlastimil; Mikus, Jan; Novak, Evzen; Osmera, Bohumil; Posta, Severin; Rypar, Vojtech; Svadlenkova, Marie

    2010-01-01

    LR-0 is an experimental zero power reactor mainly used for the determination of the neutron-physical characteristics of WWER and PWR type reactor lattices and shielding with UO2 or MOX fuel. Its major assets include capability to design and operate multizone cores, i.e. substituted cores, with an inner inserted part in hexagonal or square geometry (driven by LR-0 standard assemblies); Standard and special supporting plates for mock-up experiments; special supporting plates, which enables the triangular symmetrical assembly arrangement with an arbitrary pitch; Modeling neutron field parameters of power reactors; Wide range benchmarking possibilities, with high reproducibility of the benchmark design parameters; Wide range of measurement techniques including equipment and experienced personal; Flexible rearrangements of the core. The main experiments included: Pin wise flux distribution measurements; VVER-440 and VVER-1000 mock-ups; compact spent fuel storage; space kinetics experiment; core parameters experimental determination; experiment with new design fuel assembly; WWER-440 control assembly influence; and burnable absorber study. International research projects are also described. (P.A.)

  19. Assessing reactor physics codes capabilities to simulate fast reactors on the example of the BN-600 benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Vladimir [Scientific and Engineering Centre for Nuclear and Radiation Safety (SES NRS), Moscow (Russian Federation); Bousquet, Jeremy [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-11-15

    This work aims to assess the capabilities of reactor physics codes (initially validated for thermal reactors) to simulate fast sodium cooled reactors. The BFS-62-3A critical experiment from the BN-600 Hybrid Core Benchmark Analyses was chosen for the investigation. Monte-Carlo codes (KENO from SCALE and SERPENT 2.1.23) and the deterministic diffusion code DYN3D-MG are applied to calculate the neutronic parameters. It was found that the multiplication factor and reactivity effects calculated by KENO and SERPENT using the ENDF/B-VII.0 continuous energy library are in a good agreement with each other and with the measured benchmark values. Few-groups macroscopic cross sections, required for DYN3D-MG, were prepared in applying different methods implemented in SCALE and SERPENT. The DYN3D-MG results of a simplified benchmark show reasonable agreement with results from Monte-Carlo calculations and measured values. The former results are used to justify DYN3D-MG implementation for sodium cooled fast reactors coupled deterministic analysis.

  20. Multi-physical developments for safety related investigations of low moderated boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Schlenker, Markus Thomas

    2014-12-19

    The main objective of this dissertation is the development and optimization of a low moderated boiling water reactor (BWR) core with improved fuel utilization to be incorporated in a Gen II BWR nuclear power plant. The assessment of the new core design is done by comparing it with a full MOX BWR core design regarding neutron physical and thermal-hydraulic design and safety criteria (e.g. inherent reactivity coefficients) and different sustainability parameters (e.g. conversion ratio).

  1. Multi-physical Developments for Safety Related Investigations of Low Moderated Boiling Water Reactors

    OpenAIRE

    Schlenker, Markus Thomas

    2014-01-01

    The main objective of this dissertation is the development and optimization of a low moderated boiling water reactor (BWR) core with improved fuel utilization to be incorporated in a Gen II BWR nuclear power plant. The assessment of the new core design is done by comparing it with a full MOX BWR core design regarding neutron physical and thermal-hydraulic design and safety criteria (e.g. inherent reactivity coefficients) and different sustainability parameters (e.g. conversion ratio).

  2. The influence of reactor core parameters on effective breeding coefficient Keff

    Institute of Scientific and Technical Information of China (English)

    Liu Li-Po; Liu Yi-Bao; Wang Juan; Yang Bo; Zhang Tao

    2008-01-01

    The values of effective breeding coefficient Keff in a reactor core of nuclear power plant are calculated for different values of parameters (core structure, fuel assembly component) by using the Monte Carlo method. The obtained values of Keff are compared and analysed, which can provide theoretical basis for reactor design.

  3. Validation of Reactor Physics-Thermal hydraulics Calculations for Research Reactors Cooled by the Laminar Flow of Water

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K. A.; Schubring, D. [Univ. of Florida, Florida (United States); Girardin, G.; Pautz, A. [Swiss Federal Institute of Technology, Zuerich (Switzerland)

    2013-07-01

    A collaboration between the University of Florida and the Swiss Federal Institute of Technology, Lausanne (EPFL) has been formed to develop and validate detailed coupled multiphysics models of the zero-power (100 W) CROCUS reactor at EPFL and the 100 kW University of Florida Training Reactor, for the comprehensive analysis of the reactor behavior under transient (neutronic or thermal-hydraulic induced) conditions. These two reactors differ significantly in the core design and thermal power output, but share unique heat transfer and flow characteristics. They are characterized by single-phase laminar water flow at near-atmospheric pressures in complex geometries with the possibility of mechanically entrained air bubbles. Validation experiments will be designed to expand the validation domain of these existing models, computational codes and techniques. In this process, emphasis will be placed on validation of the coupled models developed to gain confidence in their applicability for safety analysis. EPFL is responsible for the design and implementation of transient experiments to generate a database of reactor parameters (flow distribution, power profile, and power evolution) to be used to validate against code predictions. The transient experiments performed at EPFL will be simulated on the basis of developed models for these tasks. Comparative analysis will be performed with SERPENT and MCNPX reference core models. UF focuses on the generation of the coupled neutron kinetics and thermal-hydraulic models, including implementation of a TRACE/PARCS reactor simulator model, a PARET model, and development of full-field computational fluid dynamics models (using OpenFOAM) for refined thermal-hydraulics physics treatments. In this subtask of the project, the aim is to verify by means of CFD the validity of TRACE predictions for near-atmospheric pressure water flow in the presence of mechanically entrained air bubbles. The scientific understanding of these multiphysics

  4. Validation of Reactor Physics-Thermal hydraulics Calculations for Research Reactors Cooled by the Laminar Flow of Water

    International Nuclear Information System (INIS)

    Jordan, K. A.; Schubring, D.; Girardin, G.; Pautz, A.

    2013-01-01

    A collaboration between the University of Florida and the Swiss Federal Institute of Technology, Lausanne (EPFL) has been formed to develop and validate detailed coupled multiphysics models of the zero-power (100 W) CROCUS reactor at EPFL and the 100 kW University of Florida Training Reactor, for the comprehensive analysis of the reactor behavior under transient (neutronic or thermal-hydraulic induced) conditions. These two reactors differ significantly in the core design and thermal power output, but share unique heat transfer and flow characteristics. They are characterized by single-phase laminar water flow at near-atmospheric pressures in complex geometries with the possibility of mechanically entrained air bubbles. Validation experiments will be designed to expand the validation domain of these existing models, computational codes and techniques. In this process, emphasis will be placed on validation of the coupled models developed to gain confidence in their applicability for safety analysis. EPFL is responsible for the design and implementation of transient experiments to generate a database of reactor parameters (flow distribution, power profile, and power evolution) to be used to validate against code predictions. The transient experiments performed at EPFL will be simulated on the basis of developed models for these tasks. Comparative analysis will be performed with SERPENT and MCNPX reference core models. UF focuses on the generation of the coupled neutron kinetics and thermal-hydraulic models, including implementation of a TRACE/PARCS reactor simulator model, a PARET model, and development of full-field computational fluid dynamics models (using OpenFOAM) for refined thermal-hydraulics physics treatments. In this subtask of the project, the aim is to verify by means of CFD the validity of TRACE predictions for near-atmospheric pressure water flow in the presence of mechanically entrained air bubbles. The scientific understanding of these multiphysics

  5. Reactor physics innovations of the advanced CANDU reactor core: adaptable and efficient

    International Nuclear Information System (INIS)

    Chan, P.S.W.; Hopwood, J.M.; Bonechi, M.

    2003-01-01

    The Advanced CANDU Reactor (ACR) is designed to have a benign, operator-friendly core physics characteristic, including a slightly negative coolant-void reactivity and a moderately negative power coefficient. The discharge fuel burnup is about three times that of natural uranium fuel in current CANDU reactors. Key features of the reactor physics innovations in the ACR core include the use of H 2 O coolant, slightly enriched uranium (SEU) fuel, and D 2 O moderator in a reduced lattice pitch. These innovations result in substantial improvements in economics, as well as significant enhancements in reactor performance and waste reduction over the current reactor design. The ACR can be readily adapted to different power outputs by increasing or decreasing the number of fuel channels, while maintaining identical fuel and fuel-channel characteristics. The flexibility provided by on-power refuelling and simple fuel bundle design enables the ACR to easily adapt to the use of plutonium and thorium fuel cycles. No major modifications to the basic ACR design are required because the benign neutronic characteristics of the SEU fuel cycle are also inherent in these advanced fuel cycles. (author)

  6. Reactor physical experimental program EROS in the frame of the molten salt applying reactor concepts development

    International Nuclear Information System (INIS)

    Hron, Miloslav; Kyncl, Jan; Mikisek, Miroslav

    2009-01-01

    After the relatively broad program of experimental activities, which have been involved in the complex R and D program for the Molten Salt Reactor (MSR) - SPHINX (SPent Hot fuel Incinerator by Neutron fluX) concept development in the Czech Republic, there has been a next stage (namely large-scale experimental verification of design inputs by use of MSR-type inserted zones into the existing light water moderated experimental reactor LR-0 called EROS project) started, which will be focused to the experimental verification of the rector physical or neutronic properties of other types of reactor concepts applying molten salts in the role of liquid fuel and/or coolant. This tendency is based on the recently accepted decision of the MSR SSC of GIF to consider for further period of its activity two baseline concepts- fast neutron molten salt reactor non-moderated (FMSR-NM) as a long-term alternative to solid fuelled fast neutron reactors and simultaneously, advanced high temperature reactor (AHTR) with pebble bed type solid fuel cooled by liquid salts. There will be a brief description of the prepared and performed experimental programs in these directions (as well as the preliminary results obtained so far) introduced in the paper. (author)

  7. Physics design of an ultra-long pulsed tokamak reactor

    International Nuclear Information System (INIS)

    Ogawa, Y.; Inoue, N.; Wang, J.; Yamamoto, T.; Okano, K.

    1993-01-01

    A pulsed tokamak reactor driven only by inductive current drive has recently revived, because the non-inductive current drive efficiency seems to be too low to realize a steady-state tokamak reactor with sufficiently high energy gain Q. Essential problems in pulsed operation mode is considered to be material fatigue due to cyclic operation and expensive energy storage system to keep continuous electric output during a dwell time. To overcome these problems, we have proposed an ultra-long pulsed tokamak reactor called IDLT (abbr. Inductively operated Day-Long Tokamak), which has the major and minor radii of 10 m and 1.87 m, respectively, sufficiently to ensure the burning period of about ten hours. Here we discuss physical features of inductively operated tokamak plasmas, employing the similar constraints with ITER CDA design for engineering issues. (author) 9 refs., 2 figs., 1 tab

  8. Influence of core model parameters on the characteristics of neutron beams of the research reactor

    Directory of Open Access Journals (Sweden)

    N. A. Khafizova

    2013-12-01

    Full Text Available IRT MEPhI reactor is equipped with a number of facilities at horizontal experimental channels (HEC. Knowing of parameters influencing spatio-angular distribution of irradiation fields is essential for each application area. The research for neutron capture therapy (NCT facility at HEC of the reactor was made. Calculation methods have been used to estimate how the reactor core parameters influence neutron beam characteristics at the HEC output. The impact of neutron source model in Monte Carlo calculations by MCNP code on the parameters of neutron and secondary photon field at the output of irradiation beam tubes of research reactor is estimated. The study shows that specifying neutron source with fission reaction rate distribution in SDEF option gives almost the same results as criticality calculation considered the most accurate. Our calculations show that changes of the core operational parameters have insignificant influence on characteristics of neutron beams at HEC output.

  9. Validation study of the reactor physics lattice transport code WIMSD-5B by TRX and BAPL critical experiments of light water reactors

    International Nuclear Information System (INIS)

    Khan, M.J.H.; Alam, A.B.M.K.; Ahsan, M.H.; Mamun, K.A.A.; Islam, S.M.A.

    2015-01-01

    Highlights: • To validate the reactor physics lattice code WIMSD-5B by this analysis. • To model TRX and BAPL critical experiments using WIMSD-5B. • To compare the calculated results with experiment and MCNP results. • To rely on WIMSD-5B code for TRIGA calculations. - Abstract: The aim of this analysis is to validate the reactor physics lattice transport code WIMSD-5B by TRX (thermal reactor-one region lattice) and BAPL (Bettis Atomic Power Laboratory-one region lattice) critical experiments of light water reactors for neutronics analysis of 3 MW TRIGA Mark-II research reactor at AERE, Dhaka, Bangladesh. This analysis is achieved through the analysis of integral parameters of five light water reactor critical experiments TRX-1, TRX-2, BAPL-UO 2 -1, BAPL-UO 2 -2 and BAPL-UO 2 -3 based on evaluated nuclear data libraries JEFF-3.1 and ENDF/B-VII.1. In integral measurements, these experiments are considered as standard benchmark lattices for validating the reactor physics lattice transport code WIMSD-5B as well as evaluated nuclear data libraries. The integral parameters of the said critical experiments are calculated using the reactor physics lattice transport code WIMSD-5B. The calculated integral parameters are compared to the measured values as well as the earlier published MCNP results based on the Chinese evaluated nuclear data library CENDL-3.0 for assessment of deterministic calculation. It was found that the calculated integral parameters give mostly reasonable and globally consistent results with the experiment and the MCNP results. Besides, the group constants in WIMS format for the isotopes U-235 and U-238 between two data files have been compared using WIMS library utility code WILLIE and it was found that the group constants are well consistent with each other. Therefore, this analysis reveals the validation study of the reactor physics lattice transport code WIMSD-5B based on JEFF-3.1 and ENDF/B-VII.1 libraries and can also be essential to

  10. Thorium cycle and molten salt reactors: field parameters and field constraints investigations toward 'thorium molten salt reactor' definition

    International Nuclear Information System (INIS)

    Mathieu, L.

    2005-09-01

    Producing nuclear energy in order to reduce the anthropic CO 2 emission requires major technological advances. Nuclear plants of 4. generation have to respond to several constraints, as safety improvements, fuel breeding and radioactive waste minimization. For this purpose, it seems promising to use Thorium Cycle in Molten Salt Reactors. Studies on this domain have already been carried out. However, the final concept suffered from serious issues and was discontinued. A new reflection on this topic is being led in order to find acceptable solutions, and to design the Thorium Molten Salt Reactor concept. A nuclear reactor is simulated by the coupling of a neutron transport code with a materials evolution code. This allows us to reproduce the reactor behavior and its evolution all along its operation. Thanks to this method, we have studied a large number of reactor configurations. We have evaluated their efficiency through a group of constraints they have to satisfy. This work leads us to a better understanding of many physical phenomena controlling the reactor behavior. As a consequence, several efficient configurations have been discovered, allowing the emergence of new points of view in the research of Molten Salt Reactors. (author)

  11. A simulated test of physical starting and reactor physics on zero power facility of PWR

    International Nuclear Information System (INIS)

    Yao Zewu; Ji Huaxiang; Chen Zhicheng; Yao Zhiquan; Chen Chen; Li Yuwen

    1995-01-01

    The core neutron economics has been verified through experiments conducted at a zero power reactor with baffles of various thickness. A simulated test of physical starting of Qinshan PWR has been introduced. The feasibility and safety of the programme are verified. The research provides a valuable foundation for developing physical starting programme

  12. Physical and technical aspects of lead cooled fast reactors safety

    International Nuclear Information System (INIS)

    Orlov, V.V.; Smirnov, V.S.; Filin, A.I.

    2001-01-01

    The safety analysis of lead-cooled fast reactors has been performed for the well-developed concept of BREST-OD-300 reactor. The most severe accidents have been considered. An ultimate design-basis accident has been defined as an event resulting from an external impact and involving a loss of leak-tightness of the lead circuit, loss of forced circulation of lead and loss of heat sink to the secondary circuit, failure of controls and of reactor scram with resultant insertion of total reactivity margin, etc. It was assumed in accident analysis that the protective feature available for accident mitigation was only reactivity feedback on the changes in the temperatures of the reactor core elements and coolant flow rate, and in some cases also actuation of passive protections of threshold action in response to low flow rate and high coolant temperature at the core outlet. It should be noted that the majority of the analyzed accidents could be overcame even without initiation of the above protections. It has been demonstrated that a combination of inherent properties of lead coolant, nitride fuel, physical and design features of fast reactors will ensure natural safety of BREST and are instrumental for avoiding by a deterministic approach the accidents associated with a significant release of radioactivity and requiring evacuation of people in any credible initiating event and a combination of events. (author)

  13. Control parameter optimization for AP1000 reactor using Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Wang, Pengfei; Wan, Jiashuang; Luo, Run; Zhao, Fuyu; Wei, Xinyu

    2016-01-01

    Highlights: • The PSO algorithm is applied for control parameter optimization of AP1000 reactor. • Key parameters of the MSHIM control system are optimized. • Optimization results are evaluated though simulations and quantitative analysis. - Abstract: The advanced mechanical shim (MSHIM) core control strategy is implemented in the AP1000 reactor for core reactivity and axial power distribution control simultaneously. The MSHIM core control system can provide superior reactor control capabilities via automatic rod control only. This enables the AP1000 to perform power change operations automatically without the soluble boron concentration adjustments. In this paper, the Particle Swarm Optimization (PSO) algorithm has been applied for the parameter optimization of the MSHIM control system to acquire better reactor control performance for AP1000. System requirements such as power control performance, control bank movement and AO control constraints are reflected in the objective function. Dynamic simulations are performed based on an AP1000 reactor simulation platform in each iteration of the optimization process to calculate the fitness values of particles in the swarm. The simulation platform is developed in Matlab/Simulink environment with implementation of a nodal core model and the MSHIM control strategy. Based on the simulation platform, the typical 10% step load decrease transient from 100% to 90% full power is simulated and the objective function used for control parameter tuning is directly incorporated in the simulation results. With successful implementation of the PSO algorithm in the control parameter optimization of AP1000 reactor, four key parameters of the MSHIM control system are optimized. It has been demonstrated by the calculation results that the optimized MSHIM control system parameters can improve the reactor power control capability and reduce the control rod movement without compromising AO control. Therefore, the PSO based optimization

  14. Sensitivity coefficients of reactor parameters in fast critical assemblies and uncertainty analysis

    International Nuclear Information System (INIS)

    Aoyama, Takafumi; Suzuki, Takayuki; Takeda, Toshikazu; Hasegawa, Akira; Kikuchi, Yasuyuki.

    1986-02-01

    Sensitivity coefficients of reactor parameters in several fast critical assemblies to various cross sections were calculated in 16 group by means of SAGEP code based on the generalized perturbation theory. The sensitivity coefficients were tabulated and the difference of sensitivity coefficients was discussed. Furthermore, the uncertainty of calculated reactor parameters due to cross section uncertainty were estimated using the sensitivity coefficients and cross section covariance data. (author)

  15. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Karsten M. [Yale Univ., New Haven, CT (United States)

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  16. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    International Nuclear Information System (INIS)

    Heeger, Karsten M.

    2014-01-01

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta . Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  17. Acceleration parameters for fluid physics with accelerating bodies

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2016-06-01

    Full Text Available to an acceleration parameter that appears to be new in fluid physics, but is known in cosmology. A selection of cases for rectilinear acceleration has been chosen to illustrate the point that this parameter alone does not govern regimes of flow about significantly...

  18. ENVIRONMENTAL AND PROCESS PARAMETERS OF METHANE FERMENTATION IN CONTINUOSLY STIRRED TANK REACTOR (CSTR

    Directory of Open Access Journals (Sweden)

    Kamil Kozłowski

    2016-12-01

    Full Text Available A key indicator of methane fermentation process which influences the cost-effectiveness of the biogas plant is efficient production of methane per 1 m3 of reactor. It depends on the proper selection of environmental and process parameters. This article present collected and analyzed the effect of the most important parameters of continuous methane fermentation (CSTR, which include temperature, pH, nutrient content and the C/N ratio in the feed medium, the presence of inhibitors, and the volume load of reactor, retention time and mixing of digestion reactor. Still, the impact of many factors remain unknown, hence there is a need for more comprehensive studies.

  19. Two-detector cross-correlation noise technique and its application in measuring reactor kinetic parameters

    International Nuclear Information System (INIS)

    Lu Guiping; Peng Feng; Yi Jieyi

    1988-01-01

    The two-detector cross-correlation noise technique is a new method of measuring reactor kinetic parameters developed in the sixties. It has the advantages of non-perturbation in core, high signal to noise ratio, low space dependent effect, and simple and reliable in measurement. A special set of cross-correlation analyzer has been prepared for measuring kinetic parameters of several reactor assemblies, such as the High Flux Engineering Test Reactor, its zero power mock up facility and a low enriched uranium light water lattice zero power facility

  20. Auxiliary control system of the safety parameters for IPR-R1 reactor

    International Nuclear Information System (INIS)

    Coura, J.G.

    1986-01-01

    This paper deals with the description for the control of three cooling water parameters (conductivity, temperature and the maximum and minimum water levels) as well as the percent power fraction of the nuclear research reactor IPR-R1. In order to keep the reactor in good operation conditions, one permanent and accurate control of the cooling water is needed. The double monitoring of a fourth parameter, part of the original design, the percent power fraction, is obtained through the control of the uncompensated ion chamber current and aims to avoid the operation of the reactor without running the cooling system. (Author) [pt

  1. Calculation of the main neutron parameters of the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Ojima, Mario Katsuhiko

    1977-01-01

    The main neutron parameters of the research reactor IEA-R1 were calculated using computer programs to generate cross sections and criticality calculations. A calculation procedure based on the programs available in the Processing Center Data of IEA was established and centered in the HAMMER and CITATION system. A study was done in order to verify the validity and accuracy of the calculation method comparing the results with experimental data. Some operating parameters of the reactor, namely the distribution of neutron flux, the critical mass, the variation of the reactivity with the burning of fuel, and the dead time of the reactor were determined

  2. Experimental investigation of the neutron physics characteristics of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang; Thong, Ha Van [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    The investigation of the neutron physics characteristics of the Dalat Reactor has obtained the results as follows: 1/ The effective fraction of delayed photoneutrons and the extraneous neutron source left after reactor shut down are measured. 2/ The lowest power levels of critical states of the reactor are determined. 3/The perturbation effect is investigated when a water column or a plexiglass rod is substituted for a fuel element. 4/ The relative axial and radial distributions of the thermal neutrons measured and the geometrical parameters of the core such as the inhomogeneous coefficients, the buckling, the effective height and radius, the extrapolated distances are obtained. 4/ The thermal neutron distributions are measured around the old graphite reflector. (author). 10 refs., 10 figs., 2 tabs.

  3. Health physics aspects of a research reactor fuel shipment

    International Nuclear Information System (INIS)

    Dodd, B.; Johnson, A.G.; Anderson, T.V.

    1984-01-01

    In June 1982, 92 irradiated fuel elements were shipped from the Oregon State University TRIGA Reactor to Westinghouse Hanford Corporation to be used in the Fuel Materials Examination Facility, This paper describes some of the health physics aspects of the planning, preparation and procedures associated with that shipment. In particular, the lessons learned are described in order that the benefits of the experience gained may be readily available to other small institutions. (author)

  4. Flux-limited diffusion coefficients in reactor physics applications

    International Nuclear Information System (INIS)

    Pounders, J.; Rahnema, F.; Szilard, R.

    2007-01-01

    Flux-limited diffusion theory has been successfully applied to problems in radiative transfer and radiation hydrodynamics, but its relevance to reactor physics has not yet been explored. The current investigation compares the performance of a flux-limited diffusion coefficient against the traditionally defined transport cross section. A one-dimensional BWR benchmark problem is examined at both the assembly and full-core level with varying degrees of heterogeneity. (authors)

  5. The development of the nuclear physics in Latvia III. The research nuclear reactor IRT begins to work in Latvia

    International Nuclear Information System (INIS)

    Ulmanis, U.

    2005-01-01

    This article is associated with the study of reactors technical parameters with specific interest on the effect the distribution of neutron and gamma radiation through the reactor's cooling systems has on the environment. Scientist began by implementing monitoring system to assist in the research of nuclear spectroscopy, neutron activation analysis, neutron diffraction, solid-state radiation physics, chemistry and radiobiology. The first sets of results are summarized with in the article. (author)

  6. Proceedings on the Second Autumn School on Reactor Physics EROEFI II

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A [ed.

    1996-12-31

    The main topics of the Reactor Physics School were neutron and reactor physical calculations, reactor safety, systems theory, simulation of accidents, reactor monitoring system, computer codes and procedures for solving specific problems in the field of nuclear reactors (especially safety). A special attention was paid to the AGNES project. Papers falling in the INIS scope have been abstracted and indexed individually for the INIS database. (K.A.).

  7. Proceedings on the Second Autumn School on Reactor Physics EROEFI II

    International Nuclear Information System (INIS)

    Racz, A.

    1995-01-01

    The main topics of the Reactor Physics School were neutron and reactor physical calculations, reactor safety, systems theory, simulation of accidents, reactor monitoring system, computer codes and procedures for solving specific problems in the field of nuclear reactors (especially safety). A special attention was paid to the AGNES project. Papers falling in the INIS scope have been abstracted and indexed individually for the INIS database. (K.A.)

  8. Summary of ORSphere critical and reactor physics measurements

    Directory of Open Access Journals (Sweden)

    Marshall Margaret A.

    2017-01-01

    Full Text Available In the early 1970s Dr. John T. Mihalczo (team leader, J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF with highly enriched uranium (HEU metal (called Oak Ridge Alloy or ORALLOY to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. This critical configuration has been evaluated. Preliminary results were presented at ND2013. Since then, the evaluation was finalized and judged to be an acceptable benchmark experiment for the International Criticality Safety Benchmark Experiment Project (ICSBEP. Additionally, reactor physics measurements were performed to determine surface button worths, central void worth, delayed neutron fraction, prompt neutron decay constant, fission density and neutron importance. These measurements have been evaluated and found to be acceptable experiments and are discussed in full detail in the International Handbook of Evaluated Reactor Physics Benchmark Experiments. The purpose of this paper is to summarize all the evaluated critical and reactor physics measurements evaluations.

  9. Summary of ORSphere Critical and Reactor Physics Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Margaret A.; Bess, John D.

    2016-09-01

    In the early 1970s Dr. John T. Mihalczo (team leader), J. J. Lynn, and J. R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. This critical configuration has been evaluated. Preliminary results were presented at ND2013. Since then, the evaluation was finalized and judged to be an acceptable benchmark experiment for the International Criticality Safety Benchmark Experiment Project (ICSBEP). Additionally, reactor physics measurements were performed to determine surface button worths, central void worth, delayed neutron fraction, prompt neutron decay constant, fission density and neutron importance. These measurements have been evaluated and found to be acceptable experiments and are discussed in full detail in the International Handbook of Evaluated Reactor Physics Benchmark Experiments. The purpose of this paper is summary summarize all the critical and reactor physics measurements evaluations and, when possible, to compare them to GODIVA experiment results.

  10. Summary of ORSphere critical and reactor physics measurements

    Science.gov (United States)

    Marshall, Margaret A.; Bess, John D.

    2017-09-01

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. This critical configuration has been evaluated. Preliminary results were presented at ND2013. Since then, the evaluation was finalized and judged to be an acceptable benchmark experiment for the International Criticality Safety Benchmark Experiment Project (ICSBEP). Additionally, reactor physics measurements were performed to determine surface button worths, central void worth, delayed neutron fraction, prompt neutron decay constant, fission density and neutron importance. These measurements have been evaluated and found to be acceptable experiments and are discussed in full detail in the International Handbook of Evaluated Reactor Physics Benchmark Experiments. The purpose of this paper is to summarize all the evaluated critical and reactor physics measurements evaluations.

  11. Study of Physical Protection System at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Ligam, A.S.; Ina, I.; Zarina Masood

    2016-01-01

    Physical protection program at PUSPATI TRIGA Reactor (RTP) which is located at Nuklear Malaysia, Bangi Complex has been strengthened and upgraded from time to time to accommodate current situation needs. However, there is always room for improvement. Hence, study have been made to look deeper into physical protection components such as delay systems, external sensors, PPS intruder alarm sensors, use of video system, personnel security or insider threats, access control operation system operation rules and security culture that may need to take into consideration. (author)

  12. Learning about physical parameters: the importance of model discrepancy

    International Nuclear Information System (INIS)

    Brynjarsdóttir, Jenný; O'Hagan, Anthony

    2014-01-01

    Science-based simulation models are widely used to predict the behavior of complex physical systems. It is also common to use observations of the physical system to solve the inverse problem, that is, to learn about the values of parameters within the model, a process which is often called calibration. The main goal of calibration is usually to improve the predictive performance of the simulator but the values of the parameters in the model may also be of intrinsic scientific interest in their own right. In order to make appropriate use of observations of the physical system it is important to recognize model discrepancy, the difference between reality and the simulator output. We illustrate through a simple example that an analysis that does not account for model discrepancy may lead to biased and over-confident parameter estimates and predictions. The challenge with incorporating model discrepancy in statistical inverse problems is being confounded with calibration parameters, which will only be resolved with meaningful priors. For our simple example, we model the model-discrepancy via a Gaussian process and demonstrate that through accounting for model discrepancy our prediction within the range of data is correct. However, only with realistic priors on the model discrepancy do we uncover the true parameter values. Through theoretical arguments we show that these findings are typical of the general problem of learning about physical parameters and the underlying physical system using science-based mechanistic models. (paper)

  13. Inverse modeling approach for evaluation of kinetic parameters of a biofilm reactor using tabu search.

    Science.gov (United States)

    Kumar, B Shiva; Venkateswarlu, Ch

    2014-08-01

    The complex nature of biological reactions in biofilm reactors often poses difficulties in analyzing such reactors experimentally. Mathematical models could be very useful for their design and analysis. However, application of biofilm reactor models to practical problems proves somewhat ineffective due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, we propose an inverse modeling approach based on tabu search (TS) to estimate the parameters of kinetic and film thickness models. TS is used to estimate these parameters as a consequence of the validation of the mathematical models of the process with the aid of measured data obtained from an experimental fixed-bed anaerobic biofilm reactor involving the treatment of pharmaceutical industry wastewater. The results evaluated for different modeling configurations of varying degrees of complexity illustrate the effectiveness of TS for accurate estimation of kinetic and film thickness model parameters of the biofilm process. The results show that the two-dimensional mathematical model with Edward kinetics (with its optimum parameters as mu(max)rho(s)/Y = 24.57, Ks = 1.352 and Ki = 102.36) and three-parameter film thickness expression (with its estimated parameters as a = 0.289 x 10(-5), b = 1.55 x 10(-4) and c = 15.2 x 10(-6)) better describes the biofilm reactor treating the industry wastewater.

  14. Numerical Simulation of Measurements during the Reactor Physical Startup at Unit 3 of Rostov NPP

    Science.gov (United States)

    Tereshonok, V. A.; Kryakvin, L. V.; Pitilimov, V. A.; Karpov, S. A.; Kulikov, V. I.; Zhylmaganbetov, N. M.; Kavun, O. Yu.; Popykin, A. I.; Shevchenko, R. A.; Shevchenko, S. A.; Semenova, T. V.

    2017-12-01

    The results of numerical calculations and measurements of some reactor parameters during the physical startup tests at unit 3 of Rostov NPP are presented. The following parameters are considered: the critical boron acid concentration and the currents from ionization chambers (IC) during the scram system efficiency evaluation. The scram system efficiency was determined using the inverse point kinetics equation with the measured and simulated IC currents. The results of steady-state calculations of relative power distribution and efficiency of the scram system and separate groups of control rods of the control and protection system are also presented. The calculations are performed using several codes, including precision ones.

  15. Reactor physics data for safety analysis of CANFLEX-NU CANDU-6 core

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Suk, Ho Chun

    2001-08-01

    This report contains the reactor physics data for safety analysis of CANFLEX-NU fuel CANDU-6 core. First, the physics parameters for time-average core have been described, which include the channel power and maximum bundle power map, channel axial power shape and bundle burnup. And, next the data for fuel performance such as relative ring power distribution and bundle burnup conversion ratio are represented. The transition core data from 0 to 900 full power day are represented by 100 full power day interval. Also, the data for reactivity devices of time-average core and 300 full power day of transition core are given.

  16. Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Paul; Evans, Thomas; Tautges, Tim

    2012-12-24

    This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well

  17. Current status of the reactor physics code WIMS and recent developments

    International Nuclear Information System (INIS)

    Lindley, B.A.; Hosking, J.G.; Smith, P.J.; Powney, D.J.; Tollit, B.S.; Newton, T.D.; Perry, R.; Ware, T.C.; Smith, P.N.

    2017-01-01

    Highlights: • The current status of the WIMS reactor physics code is presented. • Applications range from 2D lattice calculations up to 3D whole core geometries. • Gamma transport and thermal-hydraulic feedback models added. • Calculations methodologies described for several Gen II, III and IV reactor types. - Abstract: The WIMS modular reactor physics code has been under continuous development for over fifty years. This paper discusses the current status of WIMS and recent developments, in particular developments to the resonance shielding methodology and 3D transport solvers. Traditionally, WIMS is used to perform 2D lattice calculations, typically to generate homogenized reactor physics parameters for a whole core code such as PANTHER. However, with increasing computational resources there has been a growing trend for performing transport calculations on larger problems, up to and including 3D full core models. To this end, a number of the WIMS modules have been parallelised to allow efficient performance for whole core calculations, and WIMS includes a 3D method of characteristics solver with reflective and once-through tracking methods, which can be used to analyse problems of varying size and complexity. A time-dependent flux solver has been incorporated and thermal-hydraulic modelling capability is also being added to allow steady-state and transient coupled calculations to be performed. WIMS has been validated against a range of experimental data and other codes, in particular for water and graphite moderated thermal reactors. Future developments will include improved parallelization, enhancing the thermal-hydraulic feedback models and validating the WIMS/PANTHER code system for BWRs and fast reactors.

  18. Study on Reactor Physics Characteristic of the PWR Core Using UO2

    International Nuclear Information System (INIS)

    Tukiran Surbakti

    2009-01-01

    Study on reactor physics characteristic of the PWR core using UO 2 fuel it is necessary to be done to know the characteristic of geometry, condition and configuration of pin cell in the fuel assembly Because the geometry, configuration and condition of the pin cell in fuel core determine the loading strategy of in-core fuel management Calculation of k e ff is a part of the neutronic core parameter calculation to know the reactor physics characteristic. Generally, core calculation is done using computer code starts from modelling one unit fuel lattice cell, fuel assembly, reflector, irradiation facility and until core reactor. In this research, the modelling of pin cell and fuel assembly of the PWR 17 ×17 is done homogeneously. Calculation of the k-eff is done with variation of the fuel volume fraction, fuel pin diameter, fuel enrichment. The calculation is using by NITAWL and CENTRM, and then the results will be compared to KENOVI code. The result showed that the value of k e ff for pin cell and fuel assembly PWR 17 ×17 is not different significantly with homogenous and heterogenous models. The results for fuel volume fraction of 0.5; rod pitch 1.26 cm and fuel pin diameter of 9.6 mm is critical with burn up of 35,0 GWd/t. The modeling and calculation method accurately is needed to calculation the core physic parameter, but sometimes, it is needed along time to calculate one model. (author)

  19. An investigation into the equivalent parameter method for homogeneous transport equivalent parameters for use in fast reactor control assemblies

    International Nuclear Information System (INIS)

    Tullett, J.D.

    1990-01-01

    P Benoist has developed a method for calculating cross-sections for Fast Reactor control rods and their followers described by a single homogenised region (the Equivalent Parameter Method). When used in a diffusion theory calculation, these equivalent cross-sections should give the same rod worth as one would obtain from a transport theory calculation with a heterogeneous description of the control rod and the follower. In this report, Benoist's theory is described, and a comprehensive set of tests is presented. These tests show that the method gives very good results over a range of geometries and control rod positions for a model fast reactor core. (author)

  20. Efficient compliance with prescribed bounds on operational parameters by means of hypothesis testing using reactor data

    International Nuclear Information System (INIS)

    Sermer, P.; Olive, C.; Hoppe, F.M.

    2000-01-01

    - A common problem in any reactor operations is to comply with a requirement that certain operational parameters are constrained to lie within some prescribed bounds. The fundamental issue which is to be addressed in any compliance description can be stated as follows: The compliance definition, compliance procedures and allowances for uncertainties in data and accompanying methodologies, should be well defined and justifiable. To this end, a mathematical framework for compliance, in which the computed or measured estimates of process parameters are considered random variables, is described in this paper. This allows a statistical formulation of the definition of compliance with licence or otherwise imposed limits. An important aspect of the proposed methodology is that the derived statistical tests are obtained by a Monte Carlo procedure using actual reactor operational data. The implementation of the methodology requires a routine surveillance of the reactor core in order to perform the underlying statistical tests. The additional work required for surveillance is balanced by the fact that the resulting actions on the reactor operations, implemented in station procedures, make the reactor 'safer' by increasing the operating margins. Furthermore, increased margins are also achieved by efficient solution techniques which may allow an increase in reactor power. A rigorous analysis of a compliance problem using statistical hypothesis testing based on extreme value probability distributions and actual reactor operational data leads to effective solutions in the areas of licensing, nuclear safety, reliability and competitiveness of operating nuclear reactors. (author)

  1. Fusion reactors: physics and technology. Annual progress report

    International Nuclear Information System (INIS)

    Conn, R.W.

    1983-08-01

    Fusion reactors are designed to operate at full power and generally at steady state. Yet experience shows the load variations, licensing constraints, and frequent sub-system failures often require a plant to operate at fractions of rated power. The aim of this study has been to assess the technology problems and design implications of startup and fractional power operation on fusion reactors. The focus of attention has been tandem mirror reactors (TMR) and we have concentrated on the plasma and blanket engineering for startup and fractional power operation. In this report, we first discuss overall problems of startup, shutdown and staged power operation and their influence on TMR design. We then present a detailed discussion of the plasma physics associated with TMR startup and various means of achieving staged power operation. We then turn to the issue of instrumentation and safety controls for fusion reactors. Finally we discuss the limits on transient power variations during startup and shutdown of Li 17 Pb 83 cooled blankets

  2. A Parameter Study of Large Fast Reactor Nuclear Explosion Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Wiesel, J R

    1969-02-15

    An IBM-code EEM (Explosive Excursion Model) has been developed for calculating the energy releases associated with the explosive disassembly of a large fast reactor following a superprompt critical condition. The assumed failure chain of events and the possible core collapse following a fuel meltdown give the input data and initial conditions, the most important of which is the reactivity insertion rate at the moment of the explosive core disassembly. The dependence of the energy releases on the reactivity insertion rate, the Doppler reactivity feedback, the power form factor and the core size have been studied. The model enables a quick estimation of conservative values of the destructive mechanical energy releases following a nuclear explosion and gives suggestions as to how to reduce or even avoid such excursions.

  3. A Parameter Study of Large Fast Reactor Nuclear Explosion Accidents

    International Nuclear Information System (INIS)

    Wiesel, J.R.

    1969-02-01

    An IBM-code EEM (Explosive Excursion Model) has been developed for calculating the energy releases associated with the explosive disassembly of a large fast reactor following a superprompt critical condition. The assumed failure chain of events and the possible core collapse following a fuel meltdown give the input data and initial conditions, the most important of which is the reactivity insertion rate at the moment of the explosive core disassembly. The dependence of the energy releases on the reactivity insertion rate, the Doppler reactivity feedback, the power form factor and the core size have been studied. The model enables a quick estimation of conservative values of the destructive mechanical energy releases following a nuclear explosion and gives suggestions as to how to reduce or even avoid such excursions

  4. Investigation of fuel lattice pitch changes influence on reactor performance through evaluate the neutronic parameters

    International Nuclear Information System (INIS)

    Zareian Ronizi, F.; Fadaei, A.H.; Setayeshi, S.; Shahidi, A.R.

    2015-01-01

    Highlights: • One of the most complex issues that Nu-engineers deal with is the design of NR core. • Numerous factors in nuclear core design depend on Fuel-to-Moderator volume ratio. • Aim of this research is to investigate RX performance for different lattice pitches. - Abstract: Nuclear reactor core design is one of the most complex issues that nuclear engineers deal with. The number and complexity of effective parameters and their impact on reactor design, which makes the problem difficult to solve, require precise knowledge of these parameters and their influence on the reactor operation. Numerous factors in a nuclear reactor core design depend on the Fuel-to-Moderator volume ratio, V F /V M , in a fuel cell. This ratio can be modified by changing the lattice pitch which is the thickness of water channels between fuels plates while keeping fuel slab dimensions fixed. Cooling and moderating properties of water are affected by such a change in a reactor core, and hence some parameters related to these properties might be changed. The aim of this research is to provide the suitable knowledge for nuclear core designing. To reach this goal, the first operating core of Tehran Research Reactor (TRR) with different lattice pitches is simulated, and the effect of different lattice pitches on some parameters such as effective multiplication factor (K eff ), reactor life time, distribution of neutron flux and power density in the core, as well as moderator temperature and density coefficient of reactivity are evaluated. The nuclear reactor analysis code, MTR-PC package is employed to carry out the considered calculation. Finally, the results are presented in some tables and graphs that provide useful information for nuclear engineers in the nuclear reactor core design

  5. Convective parameters in fuel elements for research nuclear reactors

    International Nuclear Information System (INIS)

    Lopez Martinez, C.D.

    1992-01-01

    The study of a prototype for the simulation of fuel elements for research nuclear reactors by natural convection in water is presented in this paper. This project is carry out in the thermofluids laboratory of National Institute of Nuclear Research. The fuel prototype has already been test for natural convection in air, and the first results in water are presented in this work. In chapter I, a general description of Triga Mark III is made, paying special atention to fuel-moderator components. In chapter II and III an approach to convection subject in its global aspects is made, since the intention is to give a general idea of the events occuring around fuel elements in a nuclear reactor. In chapter II, where an emphasis on forced convection is made, some basic concepts for forced convection as well as for natural convection are included. The subject of flow through cylinders is annotated only as a comparative reference with natural convection in vertical cylinders, noting the difference between used correlations and the involved variables. In chapter III a compilation of correlation found in the bibliography about natural convection in vertical cylinders is presented, since its geometry is the more suitable in the analysis of a fuel rod. Finally, in chapter IV performed experiments in the test bench are detailed, and the results are presented in form of tables and graphs, showing the used equations for the calculations and the restrictions used in each case. For the analysis of the prototypes used in the test bench, a constant and uniform flow of heat in the whole length of the fuel rod is considered. At the end of this chapter, the work conclusions and a brief explanation of the results are presented (Author)

  6. Impact of the 37M fuel design on reactor physics characteristics

    International Nuclear Information System (INIS)

    Perez, R.; Ta, P.

    2013-01-01

    For CANDU nuclear reactors, aging of the Heat Transport System (HTS) leads to, among other effects, a reduction on the Critical Heat Flux (CHF) and dryout margin. In an effort to mitigate the impact of aging of the HTS on safety margins, Bruce Power is introducing a design change to the standard 37-element fuel bundle known as the modified 37-element fuel bundle, or 37M for short. As part of the overall design change process it was necessary to assess the impact of the modified fuel bundle design on key reactor physics parameters. Quantification of this impact on lattice cell properties, core reactivity properties, etc., was reached through a series of calculations using state-of-the-art lattice and core physics models, and comparisons against results for the standard fuel bundle. (author)

  7. Nuclear energy renaissance and reactor physics. Enlightenment of PHYSOR'08

    International Nuclear Information System (INIS)

    Peng Feng

    2010-01-01

    In relation to world's growing energy demands and concerns on global warming, nuclear energy as a sustainable resource is in its new period of renaissance. This is reflected in the record number of 447 papers on the International Conference on the Physics of Reactors--PHYSOR'08 held in Switzerland in 2008. The contents of these papers include the developments and frontiers in various directions of reactor physics. Featured by vast area of subjects, these emphasize the fact that the scope of the reactor physicist's R and D interests has expands considerably in recent years. The main keynote addresses and technical plenary lectures are briefly introduced. Some items concerned by the conference, such as: the status and perspective of nuclear energy's R and D, deployment and policy in main nuclear nations, the potential role of nuclear energy in mitigation global warming and slow down the GHG release, the sustainability of resource for nuclear energy utilization. Status and outlook about the needs of research and test facilities required in nuclear energy development, etc. are discussed. (authors)

  8. Recommendations concerning models and parameters best suited to breeder reactor environmental radiological assessments

    International Nuclear Information System (INIS)

    Miller, C.W.; Baes, C.F. III; Dunning, D.E. Jr.

    1980-05-01

    Recommendations are presented concerning the models and parameters best suited for assessing the impact of radionuclide releases to the environment by breeder reactor facilities. These recommendations are based on the model and parameter evaluations performed during this project to date. Seven different areas are covered in separate sections

  9. Physics-magnetics trade studies for tandem mirror reactors

    International Nuclear Information System (INIS)

    Campbell, R.B.; Perkins, L.J.; Blackfield, D.T.

    1985-01-01

    We describe and present results obtained from the optimization package of the Tandem Mirror Reactor Systems Code. We have found it to be very useful in searching through multidimensional parameter space, and have applied it here to study the effect of choke coil field strength and net electric power on cost of electricity (COE) and mass utilization factor (MUF) for MINIMARS type reactors. We have found that a broad optimum occurs at B/sub choke/ = 26 T for both COE and MUF. The COE economy of scale approaches saturation at quite low powers, around 600 MW(e). The saturation is mainly due to longer construction times for large plants, and the associated time related costs. The MUF economy of scale does not saturate, at least for powers up to 2400 MW(e)

  10. New applications of neutron noise theory in power reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, Vasiliy

    2000-04-01

    The present thesis deals with neutron noise theory as applied to three comparatively different topics (or problems) in power reactor physics. Namely they are: theoretical investigation of the possibility to use a newly proposed current-flux (C/F) detector in Pressurized Water Reactors (PWRs) for the localisation of anomalies; both definition and studies on the point kinetic and adiabatic approximations for the relatively recently proposed Accelerator Driven Systems (ADS); development of the general theory of linear reactor kinetics and neutron noise in systems with varying size. One important practical problem is to detect and localise a vibrating control rod pin. The significance comes from the operational experience which indicates that individual pins can execute excessive mechanical vibrations that may lead to damage. Such mechanical vibrations induce neutron noise that can be detected. While the detection is relatively easy, the localisation of a vibrating control rod is much more complicated because only one measuring position is available and one needs to have at least three measured quantities. Therefore it has currently been proposed that the fluctuations of the neutron current vector, called the current noise, can be used in addition to the scalar noise in reactor diagnostic problems. The thesis investigates the possibility of the localization of a vibrating control rod pin in a PWR control assembly by using the scalar neutron noise and the 2-D radial current noise as measured at one central point in the control assembly. An explicit localisation technique is elaborated in which the searched position is determined as the absolute minimum of a minimisation function. The technique is investigated in numerical simulations. The results of the simulation tests show the potential applicability of the method. By design accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and

  11. New applications of neutron noise theory in power reactor physics

    International Nuclear Information System (INIS)

    Arzhanov, Vasiliy

    2000-04-01

    The present thesis deals with neutron noise theory as applied to three comparatively different topics (or problems) in power reactor physics. Namely they are: theoretical investigation of the possibility to use a newly proposed current-flux (C/F) detector in Pressurized Water Reactors (PWRs) for the localisation of anomalies; both definition and studies on the point kinetic and adiabatic approximations for the relatively recently proposed Accelerator Driven Systems (ADS); development of the general theory of linear reactor kinetics and neutron noise in systems with varying size. One important practical problem is to detect and localise a vibrating control rod pin. The significance comes from the operational experience which indicates that individual pins can execute excessive mechanical vibrations that may lead to damage. Such mechanical vibrations induce neutron noise that can be detected. While the detection is relatively easy, the localisation of a vibrating control rod is much more complicated because only one measuring position is available and one needs to have at least three measured quantities. Therefore it has currently been proposed that the fluctuations of the neutron current vector, called the current noise, can be used in addition to the scalar noise in reactor diagnostic problems. The thesis investigates the possibility of the localization of a vibrating control rod pin in a PWR control assembly by using the scalar neutron noise and the 2-D radial current noise as measured at one central point in the control assembly. An explicit localisation technique is elaborated in which the searched position is determined as the absolute minimum of a minimisation function. The technique is investigated in numerical simulations. The results of the simulation tests show the potential applicability of the method. By design accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and

  12. Reactor physics calculations on the Dutch small HTR concept

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Haas, J.B.M. de; Klippel, H.T.; Hogenbirk, A.; Oppe, J.; Sciolla, C.M.; Stad, R.C.L. van der; Zhang, B.C.

    1997-06-01

    As part of the activities within the framework of the development of INCOGEN, a 'Dutch' conceptual design of a smaller HTR, the ECN reactor physics code system has been extended with the capability to perform combined neutronics and thermal hydraulics steady-state, burnup and transient core calculations on pebble-bed type HTRs, by joining the general purpose reactor code PANTHER and the HTR thermal hydraulics code THERMIX/DIREKT in the PANTHERMIX code combination. The validation of the ECN code system for HTR applications is still in progress, but some promising first calculation results on unit cell and whole core geometries are presented, which indicate that the extended ECN code system is quite suitable for performing the pebble-bed HTR core calculations, required in the INCOGEN core design and optimization process. (orig.)

  13. Reactor physics calculations on the Dutch small HTR concept

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Hass, J.B.M. De; Klippel, H.Th.; Hogenbirk, A.; Oppe, J.; Sciolla, C.; Stad, R.C.L. Van Der; Zhang, B.C.

    1997-01-01

    As part of the activities within the framework of the development of INCOGEN, a ''Dutch'' conceptual design of a small HTR, the ECN reactor physics code system has been extended with the capability to perform combined neutronics and thermal hydraulics steady-state, burnup and transient core calculations on pebble-bed type HTRS, by joining the general purpose reactor code PANTHER and the HTR thermal hydraulics code THERMIX/DIREKT in the PANTHERMIX code combination. The validation of the ECN code system for HTR applications is still in progress, but some promising first calculation results on unit cell and whole core geometries are presented, which indicate that the extended ECN code system is quite suitable for performing the pebble-bed HTR core calculations, required in the INCOGEN core design and optimization process. (author)

  14. Algorithms and parameters for improved accuracy in physics data libraries

    International Nuclear Information System (INIS)

    Batič, M; Hoff, G; Pia, M G; Saracco, P; Han, M; Kim, C H; Hauf, S; Kuster, M; Seo, H

    2012-01-01

    Recent efforts for the improvement of the accuracy of physics data libraries used in particle transport are summarized. Results are reported about a large scale validation analysis of atomic parameters used by major Monte Carlo systems (Geant4, EGS, MCNP, Penelope etc.); their contribution to the accuracy of simulation observables is documented. The results of this study motivated the development of a new atomic data management software package, which optimizes the provision of state-of-the-art atomic parameters to physics models. The effect of atomic parameters on the simulation of radioactive decay is illustrated. Ideas and methods to deal with physics models applicable to different energy ranges in the production of data libraries, rather than at runtime, are discussed.

  15. Prospects for development of an innovative water-cooled nuclear reactor for supercritical parameters of coolant

    Science.gov (United States)

    Kalyakin, S. G.; Kirillov, P. L.; Baranaev, Yu. D.; Glebov, A. P.; Bogoslovskaya, G. P.; Nikitenko, M. P.; Makhin, V. M.; Churkin, A. N.

    2014-08-01

    The state of nuclear power engineering as of February 1, 2014 and the accomplished elaborations of a supercritical-pressure water-cooled reactor are briefly reviewed, and the prospects of this new project are discussed based on this review. The new project rests on the experience gained from the development and operation of stationary water-cooled reactor plants, including VVERs, PWRs, BWRs, and RBMKs (their combined service life totals more than 15 000 reactor-years), and long-term experience gained around the world with operation of thermal power plants the turbines of which are driven by steam with supercritical and ultrasupercritical parameters. The advantages of such reactor are pointed out together with the scientific-technical problems that need to be solved during further development of such installations. The knowledge gained for the last decade makes it possible to refine the concept and to commence the work on designing an experimental small-capacity reactor.

  16. International Reactor Physics Experiment Evaluation (IRPhE) Project

    International Nuclear Information System (INIS)

    2013-01-01

    The International Reactor Physics Experiment Evaluation (IRPhE) Project aims to provide the nuclear community with qualified benchmark data sets by collecting reactor physics experimental data from nuclear facilities, worldwide. More specifically the objectives of the expert group are as follows: - maintaining an inventory of the experiments that have been carried out and documented; - archiving the primary documents and data released in computer-readable form; - promoting the use of the format and methods developed and seek to have them adopted as a standard. For those experiments where interest and priority is expressed by member countries or working parties and executive groups within the NEA provide guidance or co-ordination in: - compiling experiments into a standard international agreed format; - verifying the data, to the extent possible, by reviewing original and subsequently revised documentation, and by consulting with the experimenters or individuals who are familiar with the experimenters or the experimental facility; - analysing and interpreting the experiments with current state-of-the-art methods; - publishing electronically the benchmark evaluations. The expert group will: - identify gaps in data and provide guidance on priorities for future experiments; - involve the young generation (Masters and PhD students and young researchers) to find an effective way of transferring know-how in experimental techniques and analysis methods; - provide a tool for improved exploitation of completed experiments for Generation IV reactors; - coordinate closely its work with other NSC experimental work groups in particular the International Criticality Safety Benchmark Evaluation Project (ICSBEP), the Shielding Integral Benchmark Experiment Data Base (SINBAD) and others, e.g. knowledge preservation in fast reactors of the IAEA, the ANS Joint Benchmark Activities; - keep a close link with the working parties on scientific issues of reactor systems (WPRS), the expert

  17. Estimation of power feedback parameters of the IBR-2M reactor by square wave reactivity

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Popov, A.K.; Sumkhuu, D.

    2016-01-01

    Parameters of the IBR-2M reactor power feedback (PFB) are estimated based on the analysis of power transients caused by deliberate square wave reactivity when the pulsed reactor operates in the self-regulation mode. The PFB of the IBR-2M is described by three linear first-order differential equations. Two components of the PFB are responsible for the negative feedback and one, for the positive. The overall feedback is negative, i.e., it has a stabilizing effect for the operation of the reactor. The slowest negative component of the PFB is probably caused by heating of the fuel. Periodically repeated in the process of exploitation, estimation of the PFB parameters is one of the methods to ensure safety operation of the reactor. [ru

  18. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Science.gov (United States)

    2010-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... perform their duties. (6) Prior to entry into a material access area, packages shall be searched for...

  19. Parameter estimation for LLDPE gas-phase reactor models

    Directory of Open Access Journals (Sweden)

    G. A. Neumann

    2007-06-01

    Full Text Available Product development and advanced control applications require models with good predictive capability. However, in some cases it is not possible to obtain good quality phenomenological models due to the lack of data or the presence of important unmeasured effects. The use of empirical models requires less investment in modeling, but implies the need for larger amounts of experimental data to generate models with good predictive capability. In this work, nonlinear phenomenological and empirical models were compared with respect to their capability to predict the melt index and polymer yield of a low-density polyethylene production process consisting of two fluidized bed reactors connected in series. To adjust the phenomenological model, the optimization algorithms based on the flexible polyhedron method of Nelder and Mead showed the best efficiency. To adjust the empirical model, the PLS model was more appropriate for polymer yield, and the melt index needed more nonlinearity like the QPLS models. In the comparison between these two types of models better results were obtained for the empirical models.

  20. RA reactor kinetic parameters - Progress report; Kineticki parametri reaktora RA - Izvestaj o napredovanju -

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, M; Obradovic, D; Jevtovic, V; Velickovic, Lj [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    The objective of nuclear reactor kinetics study is to analyze the stability of reactor operation in practice. The obtained parameters should define the needed properties of automatic control system relevant for the stability of the designed reactor system. Refining the analytical models is done by using the analysis and interpretation of experimental data. Results of measured the reactor response obtained by using the reactor oscillator ROB-1 are explained by using the space independent model of the zero power reactor, by power reactor model with one feedback circuit, and by a complex model. It was assumed that the perturbations of the system are small and that linearized kinetic equations could be used. Linearized kinetic equation of the reactor system are transformed into the frequency region in order to analyze the measured values directly. The objective of this paper is to measure the RA reactor kinetics parameters, and analyze the stability of reactor operation at power levels high than nominal. Istrazivanja u oblasti kinetike nuklearnih reaktora imaju za cilj da dovedu analizu stabilnosti rada reaktora na nivo 'radne tehnologije'. Dobijeni pararametri treba da specificiraju potrebne karakteristike sistema automatske kontrole za odgovarajucu stabilnost projektovanog reaktorskog sistema. Doterivanjem analitickih modela do takvog nivoa da se zapazeni fenomeni mogu anailitcki predvideti ide preko analize i interpretacije eksperimentalnih podataka. Eksperimentalni rezultati merenja odziva reaktora, izvedeni reaktorskim oscilatorom ROB-1, interpretirani su na osnovu prostorno nezavisnog modela za reaktor nulte snage, modelom reaktora snage sa jednim kolom povratne sprege, kao i kompleksnim modelom. U ovom radu se poslo od toga da su perturbacije parametara sistema male, pa se mogu upotrebiti linearizovane kineticke jednacine. Linearizovane kineticke jednacine reaktorskog sistema transformirane su u frekventno podrucje s ciljem direktne analize mernih rezultata

  1. Evaluation of uncertainties of key neutron parameters of PWR-type reactors with slab fuel, application to neutronic conformity

    International Nuclear Information System (INIS)

    Bernard, D.

    2001-12-01

    The aim of this thesis was to evaluate uncertainties of key neutron parameters of slab reactors. Uncertainties sources have many origins, technologic origin for parameters of fabrication and physical origin for nuclear data. First, each contribution of uncertainties is calculated and finally, a factor of uncertainties is associated to key slab parameter like reactivity, isotherm reactivity coefficient, control rod efficiency, power form factor before irradiation and life-time. This factors of uncertainties were computed by Generalized Perturbations Theory in case of step 0 and by directs calculations in case of irradiation problems. One of neutronic conformity applications was about fabrication and nuclear data targets precision adjustments. Statistic (uncertainties) and deterministic (deviations) approaches were studied. Then, neutronics key slab parameters uncertainties were reduced and so nuclear performances were optimized. (author)

  2. Indexes and parameters of activity in solar-terrestrial physics

    International Nuclear Information System (INIS)

    Minasyants, G.S.; Minasyants, T.M.

    2005-01-01

    The daily variation of different indexes and parameters of the solar-terrestrial physics at the 23 cycle were considered to find the most important from them for the forecast of geomagnetic activity. The validity of application of the Wolf numbers in quality of the characteristic of solar activity at sunspots is confirmed. The best geo-effective parameter in the arrival of the interplanetary shock from coronal mass ejection to an orbit of the Earth. (author)

  3. Benchmark problem suite for reactor physics study of LWR next generation fuels

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Ikehara, Tadashi; Ito, Takuya; Saji, Etsuro

    2002-01-01

    This paper proposes a benchmark problem suite for studying the physics of next-generation fuels of light water reactors. The target discharge burnup of the next-generation fuel was set to 70 GWd/t considering the increasing trend in discharge burnup of light water reactor fuels. The UO 2 and MOX fuels are included in the benchmark specifications. The benchmark problem consists of three different geometries: fuel pin cell, PWR fuel assembly and BWR fuel assembly. In the pin cell problem, detailed nuclear characteristics such as burnup dependence of nuclide-wise reactivity were included in the required calculation results to facilitate the study of reactor physics. In the assembly benchmark problems, important parameters for in-core fuel management such as local peaking factors and reactivity coefficients were included in the required results. The benchmark problems provide comprehensive test problems for next-generation light water reactor fuels with extended high burnup. Furthermore, since the pin cell, the PWR assembly and the BWR assembly problems are independent, analyses of the entire benchmark suite is not necessary: e.g., the set of pin cell and PWR fuel assembly problems will be suitable for those in charge of PWR in-core fuel management, and the set of pin cell and BWR fuel assembly problems for those in charge of BWR in-core fuel management. (author)

  4. Steam condenser optimization using Real-parameter Genetic Algorithm for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Jayalal, M.L.; Kumar, L. Satish; Jehadeesan, R.; Rajeswari, S.; Satya Murty, S.A.V.; Balasubramaniyan, V.; Chetal, S.C.

    2011-01-01

    Highlights: → We model design optimization of a vital reactor component using Genetic Algorithm. → Real-parameter Genetic Algorithm is used for steam condenser optimization study. → Comparison analysis done with various Genetic Algorithm related mechanisms. → The results obtained are validated with the reference study results. - Abstract: This work explores the use of Real-parameter Genetic Algorithm and analyses its performance in the steam condenser (or Circulating Water System) optimization study of a 500 MW fast breeder nuclear reactor. Choice of optimum design parameters for condenser for a power plant from among a large number of technically viable combination is a complex task. This is primarily due to the conflicting nature of the economic implications of the different system parameters for maximizing the capitalized profit. In order to find the optimum design parameters a Real-parameter Genetic Algorithm model is developed and applied. The results obtained are validated with the reference study results.

  5. Steam condenser optimization using Real-parameter Genetic Algorithm for Prototype Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jayalal, M.L., E-mail: jayalal@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Kumar, L. Satish, E-mail: satish@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Jehadeesan, R., E-mail: jeha@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Rajeswari, S., E-mail: raj@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Satya Murty, S.A.V., E-mail: satya@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Balasubramaniyan, V.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India)

    2011-10-15

    Highlights: > We model design optimization of a vital reactor component using Genetic Algorithm. > Real-parameter Genetic Algorithm is used for steam condenser optimization study. > Comparison analysis done with various Genetic Algorithm related mechanisms. > The results obtained are validated with the reference study results. - Abstract: This work explores the use of Real-parameter Genetic Algorithm and analyses its performance in the steam condenser (or Circulating Water System) optimization study of a 500 MW fast breeder nuclear reactor. Choice of optimum design parameters for condenser for a power plant from among a large number of technically viable combination is a complex task. This is primarily due to the conflicting nature of the economic implications of the different system parameters for maximizing the capitalized profit. In order to find the optimum design parameters a Real-parameter Genetic Algorithm model is developed and applied. The results obtained are validated with the reference study results.

  6. NERON-Computing system for PHWR reactor cells and heterogeneous parameter calculations

    International Nuclear Information System (INIS)

    Cristian, I.; Cirstoiu, B.; Slavnicu, S.D.

    1976-04-01

    A system of codes for PHWR type reactors is presented. The system includes the cell code NERO and a code PARETE for monopolar and dipolar heterogeneous calculations. A general theory of dipolar flux is necessary for a more accurate evaluation of void coefficient and diffusion moderator coefficient is given. The determination of monopolar and dipolar heterogeneous parameters is very useful for heterogeneous methods developped especially for HWR reactors during the last years. (author)

  7. Research on reactor physics using the Very High Temperature Reactor Critical Assembly (VHTRC)

    International Nuclear Information System (INIS)

    Akino, Fujiyoshi

    1988-01-01

    The High Temperature Engineering Test Reactor (HTTR), of which the research and development are advanced by Japan Atomic Energy Research Institute, is planned to apply for the permission of installation in fiscal year 1988, and to start the construction in the latter half of fisical year 1989. As the duty of reactor physics research, the accuracy of the nuclear data is to be confirmed, the validity of the nuclear design techniques is to be inspected, and the nuclear safety of the HTTR core design is to be verified. Therefore, by using the VHTRC, the experimental data of the reactor physics quantities are acquired, such as critical mass, the reactivity worth of simulated control rods and burnable poison rods, the temperature factor of reactivity, power distribution and so on, and the experiment and analysis are advanced. The cores built up in the VHTRC so far were three kinds having different lattice forms and degrees of uranium enrichment. The calculated critical mass was smaller by 1-5 % than the measured values. As to the power distribution and the reactivity worth of burnable poison rods, the prospect of satisfying the required accuracy for the design of the HTTR core was obtained. The experiment using a new core having axially different enrichment degree is planned. (K.I.)

  8. Study of reactor parameters on the critical systems. Phase I; Ispitivanje reaktorskih parametara na kriticnim sistemima, I faza

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N et al [Boris Kidric Institute of Nuclear Sciences Vinca, Belgrade (Yugoslavia)

    1962-08-15

    Phase 1 of the report on reactor parameters study describes the preparation of the RB reactor for operation including the following tasks: Completing and verification of reactor safety system; arranging dosimetry instruments; formation of fuel elements with 2% enriched fuel and aluminium holders; improvement of the heavy water level-meter; mounting the horizontal experimental channel; formation of reactor lattice with 16 cm pitch; testing the reactor system; filling the tank with heavy water and preparing the safety report.

  9. Continuosly Stirred Tank Reactor Parameters That Affect Sludge Batch 6 Simulant Properties

    International Nuclear Information System (INIS)

    Newell, J.; Lambert, D.; Stone, M.; Fernandez, A.

    2010-01-01

    The High Level Radioactive Waste (HLW) Sludge in Savannah River Site (SRS) waste tanks was produced over a period of over 60 years by neutralizing the acidic waste produced in the F and H Separations Canyons with sodium hydroxide. The HLW slurries have been stored at free hydroxide concentrations above 1 M to minimize the corrosion of the carbon steel waste tanks. Sodium nitrite is periodically added as a corrosion inhibitor. The resulting waste has been subjected to supernate evaporation to minimize the volume of the stored waste. In addition, some of the waste tanks experienced high temperatures so some of the waste has been at elevated temperatures. Because the waste is radioactive, the waste is transforming through the decay of shorter lived radioactive species and the radiation damage that the decay releases. The goal of the Savannah River National Laboratory (SRNL) simulant development program is to develop a method to produce a sludge simulant that matches both the chemical and physical characteristics of the HLW without the time, temperature profile, chemical or radiation exposure of that of the real waste. Several different approaches have been taken historically toward preparing simulated waste slurries. All of the approaches used in the past dozen years involve some precipitation of the species using similar chemistry to that which formed the radioactive waste solids in the tank farm. All of the approaches add certain chemical species as commercially available insoluble solid compounds. The number of species introduced in this manner, however, has varied widely. All of the simulant preparation approaches make the simulated aqueous phase by adding the appropriate ratios of various sodium salts. The simulant preparation sequence generally starts with an acidic pH and ends up with a caustic pH (typically in the 10-12 range). The current method for making sludge simulant involves the use of a temperature controlled continuously stirred tank reactor (CSTR

  10. Development of a new physics data library for the SRS reactors

    International Nuclear Information System (INIS)

    Niemer, K.A.

    1993-01-01

    The Savannah River Site (SRS) reactors have historically operated at power levels of -2500 MW; thus, previous reactor physics data libraries were created based on that constant power. However, as a result of recent lower power operation, the existing physics data libraries are no longer adequate. Therefore, a new power-dependent physics library was needed to model the reactor at different power levels. The design and development of a new power-dependent physics data library is discussed in this paper

  11. Using Vega Linux Cluster at Reactor Physics Dept

    International Nuclear Information System (INIS)

    Zefran, B.; Jeraj, R.; Skvarc, J.; Glumac, B.

    1999-01-01

    Experience using a Linux-based cluster for the reactor physics calculations are presented in this paper. Special attention is paid to the MCNP code in this environment and to practical guidelines how to prepare and use the paralel version of the code. Our results of a time comparison study are presented for two sets of inputs. The results are promising and speedup factor achieved on the Linux cluster agrees with previous tests on other parallel systems. We also tested tools for parallelization of other programs used at our Dept..(author)

  12. Basic experiments of reactor physics using the critical assembly TCA

    International Nuclear Information System (INIS)

    Obara, Toru; Igashira, Masayuki; Sekimoto, Hiroshi; Nakajima, Ken; Suzaki, Takenori.

    1994-02-01

    This report is based on lectures given to graduate students of Tokyo Institute of Technology. It covers educational experiments conducted with the Tank-Type Critical Assembly (TCA) at Japan Atomic Energy Research Institute in July, 1993. During this period, the following basic experiments on reactor physics were performed: (1) Critical approach experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, (5) Measurement of safety sheet worth by the rod drop method. The principle of experiments, experimental procedure, and analysis of results are described in this report. (author)

  13. Proceedings of the 10. Meeting on Reactor Physics and Thermal Hydraulics

    International Nuclear Information System (INIS)

    Santos Bastos, W. dos

    1995-01-01

    These proceedings presents all the Meeting papers emphasizing specific aspects on reactor physics method, criticality, fuel management, nuclear data, safety analysis, simulation and shielding, neutronics, thermal hydraulics, reactor operation and computational methods

  14. Estimation of Physical Parameters in Linear and Nonlinear Dynamic Systems

    DEFF Research Database (Denmark)

    Knudsen, Morten

    variance and confidence ellipsoid is demonstrated. The relation is based on a new theorem on maxima of an ellipsoid. The procedure for input signal design and physical parameter estimation is tested on a number of examples, linear as well as nonlinear and simulated as well as real processes, and it appears...

  15. The Comparison of Some Physical and Physiological Parameters of Footballers

    Science.gov (United States)

    Ekinci, Ezgi Samar; Beyleroglu, Malik; Ulukan, Hasan; Konuklar, Ercan; Gürkan, Alper Cenk; Erbay, Adem

    2016-01-01

    In this study, it's to aim for comparison of some physical and physiological parameters of footballers at "The Erenler Sport Team" and "Didim Municipality Sport Team". Thirty volunteers sportsman from each two teams joined to this research. It measured the values of age, weight, length, flexibility, balance, power of left-right…

  16. Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)

  17. Proceedings of the 1992 topical meeting on advances in reactor physics

    International Nuclear Information System (INIS)

    1992-01-01

    This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements ampersand Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)

  18. Progress report on reactor physics research program, January 1963 - February 1964

    International Nuclear Information System (INIS)

    1964-02-01

    This progress report is a part of the annual report of the department of reactor physics prepared for the Boris Kidric Institute of nuclear sciences. It is a review of research activities in the field of theoretical and experimental reactor physics in the year 1973. A part of this program was included in the NPY Cooperative program in reactor physics. The topics covered by this report are as follows: Calculations of the thermal neutron distribution and reaction rate in a reactor cell and comparison with experiments; buckling measurements; thermalization and slowing down of neutrons; pulsed neutron source techniques; and reactor kinetics

  19. Progress report on reactor physics research program, January 1963 - February 1964

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-02-15

    This progress report is a part of the annual report of the department of reactor physics prepared for the Boris Kidric Institute of nuclear sciences. It is a review of research activities in the field of theoretical and experimental reactor physics in the year 1973. A part of this program was included in the NPY Cooperative program in reactor physics. The topics covered by this report are as follows: Calculations of the thermal neutron distribution and reaction rate in a reactor cell and comparison with experiments; buckling measurements; thermalization and slowing down of neutrons; pulsed neutron source techniques; and reactor kinetics.

  20. Engineering parameters for four ignition TNS tokamak reactor systems

    International Nuclear Information System (INIS)

    Varljen, T.C.; Gibson, G.; French, J.W.; Heck, F.M.

    1977-01-01

    The ORNL/Westinghouse program for The Next Step (TNS) tokamak beyond TFTR has examined a large number of potential configurations for D-T burning ignition tokamak systems. An objective of this work has been to quantify the trade-offs associated with the assumption of certain plasma physics criteria and toroidal field coil technologies. Four tokamak system point designs are described, each representative of the TF coil technologies considered, to illustrate the engineering features associated with each concept. Point designs, such as the ones discussed herein, have been used to develop component size, performance and cost scaling relationships which have been incorporated in a digital computer code to facilitate an examination of the total design and cost impact of candidate design approaches. The point designs which are described are typical, however, they have not been individually optimized. The options are distinguished by the TF coil technology chosen and include: (1) a high field water-cooled copper TF system, (2) a moderate field NbTi superconducting TF system, (3) a high field Nb 3 Sn superconducting TF system, and (4) a high field hybrid TF system with outer NbTi superconducting windings and inner water-cooled copper windings. Descriptions are provided for the major device components and all major support systems including power supplies, vacuum systems, fuel systems, heat transport and facility systems

  1. Importance of resonance parameters of fertile nuclei and of 239Pu isotope for fast power reactors

    International Nuclear Information System (INIS)

    Barre, J.Y.; Khairallah, A.

    1975-01-01

    The importance of resonance parameters of fertile nuclei and of 239 Pu isotope for fast power reactors will be restricted, in this presentation, to mixed oxide-uranium-plutonium fuelled sodium-cooled and uranium-oxide-sodium reflected fast reactors. The power range lies between 200 and 2000 MWe. Among the topics of this specialist meeting, the isotopes to be considered are, primarly 239 Pu then 238 U and 240 Pu. Resonance parameters are mainly used in fast power reactor calculations through the well-known concept of self shielding factors. After a short description of the determination and the use of these self-shielding factors, their sensitivities to resonance parameters are characterized from some specific examples: those sensitivities are small. Then, the main design parameters sensitive to the amplitude of self-shielding factors are considered: critical enrichment, global breeding gain. The relative importance of isotope, reaction rate and energy range are mentionned. In a third part, the Doppler effect, sensitive to the temperature variation of self-shielding factors, is considered in the same way. Finally, it is concluded that the present knowledge of resonance parameters for 238 U, 239 Pu and 240 Pu is sufficient for fast power reactors from a designer point of view [fr

  2. Proceedings of the nineteenth symposium of atomic energy research on WWER reactor physics and reactor safety

    International Nuclear Information System (INIS)

    Vidovszky, I.

    2009-10-01

    The present volume contains 55 papers, presented on the nineteenth symposium of atomic energy research, held in Varna, Bulgaria, 21-25 September 2009. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Fuel Management, Spectral and Core Calculations, Core Surveillance and Monitoring, CFD Analysis, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning and Radwaste, Actinide Transmutation and Spent Fuel Disposal, Core Operation, Experiments and Code Validation - according to the presentation sequence on the Symposium. (Author)

  3. International Thermonuclear Experimental Reactor: Physics issues, capabilities and physics program plans

    International Nuclear Information System (INIS)

    Wesley, J.C.

    1997-01-01

    Present status and understanding of the principal plasma-performance determining physics issues that affect the physics design and operational capabilities of the International Thermonuclear Experimental Reactor (ITER) [ITER EDA Agreement and Protocol 2 (International Atomic Energy Agency, Vienna, 1994)] are presented. Emphasis is placed on the five major physics-basis issues emdash energy confinement, beta limit, density limit, impurity dilution and radiation loss, and the feasibility of obtaining partial-detached divertor operation emdash that directly affect projections of ITER fusion power and burn duration performance. A summary of these projections is presented and the effect of uncertainties in the physics-basis issues is examined. ITER capabilities for experimental flexibility and plasma-performance optimization are also described, and how these capabilities may enter into the ITER physics program plan is discussed. copyright 1997 American Institute of Physics

  4. Preparing the construction of a school reactor

    International Nuclear Information System (INIS)

    Matejka, K.

    1977-01-01

    The possibilities are discussed of teaching and training nuclear reactor operation and control, teaching experimental reactor physics and investigating reactor lattice parameters using a training reactor to be installed at the Faculty of Nuclear Science and Physical Engineering in Prague. Requirements are indicated for the reactor's technical design and the Faculty's possibilities to contribute to its construction. (J.B.)

  5. Prediction of changes in important physical parameters during composting of separated animal slurry solid fractions

    DEFF Research Database (Denmark)

    Chowdhury, Md Albarune; de Neergaard, Andreas; Jensen, Lars Stoumann

    2014-01-01

    Solid-liquid separation of animal slurry, with solid fractions used for composting, has gained interest recently. However, efficient composting of separated animal slurry solid fractions (SSFs) requires a better understanding of the process dynamics in terms of important physical parameters...... and their interacting physical relationships in the composting matrix. Here we monitored moisture content, bulk density, particle density and air-filled porosity (AFP) during composting of SSF collected from four commercially available solid-liquid separators. Composting was performed in laboratory-scale reactors...... for 30 days (d) under forced aeration and measurements were conducted on the solid samples at the beginning of composting and at 10-d intervals during composting. The results suggest that differences in initial physical properties of SSF influence the development of compost maximum temperatures (40...

  6. Methods for reactor physics calculations for control rods in fast reactors

    International Nuclear Information System (INIS)

    Grimstone, M.J.; Rowlands, J.L.

    1988-12-01

    The IAEA Specialists' Meeting on ''Methods for Reactor Physics Calculations for Control Rods in Fast Reactors'' was held in Winfrith, United Kingdom, on 6-8 December, 1988. The meeting was attended by 23 participants from nine countries. The purpose of the meeting was to review the current calculational methods and their accuracy as assessed by theoretical studies and comparisons with measurements, and then to identify the requirements for improved methods or additional studies and comparisons. The control rod properties or effects to be considered were their reactivity worths, their effect on the power distribution through the core, and the reaction rates and energy deposition both within and adjacent to the rods. The meeting was divided into five sessions, in the first of which each national delegation presented a brief overview of their programme of work on calculational methods for fast reactor control rods. In the next three sessions a total of seventeen papers were presented describing calculational methods and assessments of their accuracy. The final session was a discussion to draw conclusions regarding the current status of methods and the further developments and validation work required. A separate abstract was prepared for each of the 23 papers presented at the meeting. Refs, figs and tabs

  7. Genetic Algorithms for Estimating Effective Parameters in a Lumped Reactor Model for Reactivity Predictions

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico

    2001-01-01

    The control system of a reactor should be able to predict, in real time, the amount of reactivity to be inserted (e.g., by control rod movements and boron injection and dilution) to respond to a given electrical load demand or to undesired, accidental transients. The real-time constraint renders impractical the use of a large, detailed dynamic reactor code. One has, then, to resort to simplified analytical models with lumped effective parameters suitably estimated from the reactor data.The simple and well-known Chernick model for describing the reactor power evolution in the presence of xenon is considered and the feasibility of using genetic algorithms for estimating the effective nuclear parameters involved and the initial nonmeasurable xenon and iodine conditions is investigated. This approach has the advantage of counterbalancing the inherent model simplicity with the periodic reestimation of the effective parameter values pertaining to each reactor on the basis of its recent history. By so doing, other effects, such as burnup, are automatically taken into account

  8. Design of Safety Parameter Monitoring Function in a Research Reactor Facility

    International Nuclear Information System (INIS)

    Park, Jaekwan; Suh, Yongsuk

    2014-01-01

    The primary purpose of the safety parameter monitoring system (SPDS) is to help operating personnel in the control room make quick assessments of the plant safety status. Thus, the basic function of the SPDS is a provision of a continuous indication of plant parameters or derived variables representative of the safety status of the plant. NUREG-0737 Supplement 1 provides details of the functional criteria for the SPDS, as one of the action plan requirements from TMI accident. The system provides various functions as follows: · Alerting based on safety function decision logics, · Success path analysis to achieve the integrity of the safety functions, · 3 layer display architecture - safety function, success path display for each safety function, system summary and equipment details for each safety function, · Integration with computer-based procedure. According to a Notice of the NSSC No. 2012-31, a research reactor facility generating more than 2 MW of power should also be furnished with the SPDS for emergency preparedness. Generally, a research reactor is a small size facility, and its number of instrumentations is fewer than that of NPPs. In particular, it is actually hard to have various and powerful functions from an economic perspective. Therefore, a safety parameter display system optimized for a research reactor facility must be proposed. This paper provides the requirement analysis results and proposes the design of safety parameter monitoring function for a research reactor. The safety parameter monitoring function supporting control room personnel during emergency conditions should be designed in a research reactor facility. The facility size and number of signals are smaller than that of the power plants. Also, it is actually hard to have various and powerful functions of nuclear power plants from an economic perspective. Thus, a safety parameter display system optimized to a research reactor must be proposed. First, we found important design items

  9. Design of Safety Parameter Monitoring Function in a Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaekwan; Suh, Yongsuk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The primary purpose of the safety parameter monitoring system (SPDS) is to help operating personnel in the control room make quick assessments of the plant safety status. Thus, the basic function of the SPDS is a provision of a continuous indication of plant parameters or derived variables representative of the safety status of the plant. NUREG-0737 Supplement 1 provides details of the functional criteria for the SPDS, as one of the action plan requirements from TMI accident. The system provides various functions as follows: · Alerting based on safety function decision logics, · Success path analysis to achieve the integrity of the safety functions, · 3 layer display architecture - safety function, success path display for each safety function, system summary and equipment details for each safety function, · Integration with computer-based procedure. According to a Notice of the NSSC No. 2012-31, a research reactor facility generating more than 2 MW of power should also be furnished with the SPDS for emergency preparedness. Generally, a research reactor is a small size facility, and its number of instrumentations is fewer than that of NPPs. In particular, it is actually hard to have various and powerful functions from an economic perspective. Therefore, a safety parameter display system optimized for a research reactor facility must be proposed. This paper provides the requirement analysis results and proposes the design of safety parameter monitoring function for a research reactor. The safety parameter monitoring function supporting control room personnel during emergency conditions should be designed in a research reactor facility. The facility size and number of signals are smaller than that of the power plants. Also, it is actually hard to have various and powerful functions of nuclear power plants from an economic perspective. Thus, a safety parameter display system optimized to a research reactor must be proposed. First, we found important design items

  10. Design and Development of Data Acquisition System Process Parameters of Kartini Reactor

    International Nuclear Information System (INIS)

    Prajitno

    2009-01-01

    Design and development of computer program for data acquisition system of process parameters of the Kartini reactor have been done. System was designed using industrial computer which equipped with electronic module PCL-812PG. The function of computer is to take parameter data of reactor process, processing the data and displaying on the numeric form and bar graphic. Electronics module PCL- 12PG was installed in one of computer slot, functions to convert from analog signal to digital, received digital status signal and produce digital output. The analog signal and digital status got from logarithmic power channel, linear power channel dan three control rod. Result of data acquisition is merged in the form of ASCII characters block, send to the master computer serially with communications protocols RS-232. Computer program which has been developed was tested and used for monitoring Kartini reactor operation and give good performance result. (author)

  11. Experimental estimations of the kinetics parameters of the IBR-2M reactor by stochastic noises

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Tajybov, L.A.; Garibov, A.A.; Mekhtieva, R.N.

    2012-01-01

    Experimental investigations of stochastic fluctuations of pulse energy of the IBR-2M reactor have been carried out which allowed us to obtain some of the parameters of the reactor kinetics. At different levels of average power a sequence of values of pulse energy was recorded with the calculation of the distribution parameters. An ionization chamber with boron installed near the active zone was used as a neutron detector. The research results allowed us to estimate the average lifetime of prompt neutrons τ = (6.53±0.2)·10 -8 s, absolute power of the reactor and intensity of the source of spontaneous neutrons S sp ≤(6.72±0.12)·10 6 s -1 . It was shown that the experimental results are close to the calculated ones

  12. Sensitivity functions for uncertainty analysis: Sensitivity and uncertainty analysis of reactor performance parameters

    International Nuclear Information System (INIS)

    Greenspan, E.

    1982-01-01

    This chapter presents the mathematical basis for sensitivity functions, discusses their physical meaning and information they contain, and clarifies a number of issues concerning their application, including the definition of group sensitivities, the selection of sensitivity functions to be included in the analysis, and limitations of sensitivity theory. Examines the theoretical foundation; criticality reset sensitivities; group sensitivities and uncertainties; selection of sensitivities included in the analysis; and other uses and limitations of sensitivity functions. Gives the theoretical formulation of sensitivity functions pertaining to ''as-built'' designs for performance parameters of the form of ratios of linear flux functionals (such as reaction-rate ratios), linear adjoint functionals, bilinear functions (such as reactivity worth ratios), and for reactor reactivity. Offers a consistent procedure for reducing energy-dependent or fine-group sensitivities and uncertainties to broad group sensitivities and uncertainties. Provides illustrations of sensitivity functions as well as references to available compilations of such functions and of total sensitivities. Indicates limitations of sensitivity theory originating from the fact that this theory is based on a first-order perturbation theory

  13. A study on physics parameters and flux behaviour for a fast critical facility using ''Baker'' model

    International Nuclear Information System (INIS)

    Abu-Leilah, M.M.; Hussein, A.Z.; Gaafar, M.A.; Hamouda, I.F.

    1983-01-01

    Comparative study was performed to emphasize the effects of using different nuclear data systems and methods on the various parameters of the fast reactor. Multigroup libraries as 11 (ANL-5800) and 26 (BNAB-64) energy group systems of nuclear data constants were used in the present work. The calculations were carried out for both infinite dilution (self-shielding factor F= 1) and self-shielded cross sections. Various computer codes were elaborated and derived to meet the conditional requirements for such calculations. The important output of these calculations are the neutron spectra, neutron balance, fission and capture rate distributions, critical mass, breeding ratio in each region and total breeding ratio of the reactor. Five different cases of study were considered employing two systems of constants, infinite dilution and self-shielded cross-sections and treating stainless steel of the reactor as to be substituted by iron. Moreover, calculations have been concerned for averaged one group nuclear data constants which were condensed from the 11 and 26 group systems. Comparisons of the multigroup results with those of the group were made. The condensation process for averaging to one group was done to estimate the effect of such physical simplification on the calculated parameters. The present work results have been compared with many published works. Fair agreements are obtained, which varified the consistance and completeness of the methods implemented and used

  14. HTGR reactor physics, thermal-hydraulics and depletion uncertainty analysis: a proposed IAEA coordinated research project

    International Nuclear Information System (INIS)

    Tyobeka, Bismark; Reitsma, Frederik; Ivanov, Kostadin

    2011-01-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis and uncertainty analysis methods. In order to benefit from recent advances in modeling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Uncertainty and sensitivity studies are an essential component of any significant effort in data and simulation improvement. In February 2009, the Technical Working Group on Gas-Cooled Reactors recommended that the proposed IAEA Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modeling be implemented. In the paper the current status and plan are presented. The CRP will also benefit from interactions with the currently ongoing OECD/NEA Light Water Reactor (LWR) UAM benchmark activity by taking into consideration the peculiarities of HTGR designs and simulation requirements. (author)

  15. Influence of geometrical parameters of the VVER-1000 reactor construction elements to internals irradiation conditions

    Directory of Open Access Journals (Sweden)

    О. M. Pugach

    2015-07-01

    Full Text Available Investigations to determine the influences of geometrical parameters of the calculational VVER-1000 reactor model to the results of internal irradiation condition determination are carried out. It is shown that the values of appropriate sensitivity matrix elements are not dependent on a height coordinate for any core level, but there is their azimuthal dependence. Maximum possible relative biases of neutron fluence due to inexact knowledge of internal geometrical parameters are obtained for the baffle and the barrel.

  16. The development of a computer technique for the investigation of reactor lattice parameters

    International Nuclear Information System (INIS)

    Joubert, W.R.

    1982-01-01

    An integrated computer technique was developed whereby all the computer programmes needed to calculate reactor lattice parameters from basic neutron data, could be combined in one system. The theory of the computer programmes is explained in detail. Results are given and compared with experimental values as well as those calculated with a standard system

  17. Experimental determination of lattice parameters for 2% enriched uranium heavy water reactor cores

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Takac, S; Markovic, H; Bosevski, T [Boris Kidric Institute of Nuclear Sciences Vinca, Belgrade (Yugoslavia)

    1963-04-15

    Systematic measurements of the buckling, infinite multiplication factor and the thermal utilization factor were made on a series of lattices for 2% enriched uranium tubular fuel elements in heavy water. This work represents the first phase of experimental verification of standard theoretical methods used for the determination of reactor parameters.

  18. Propagation of uncertainties from basic data to key parameters of nuclear reactors

    International Nuclear Information System (INIS)

    Kodeli, I.

    2010-01-01

    The author reports the development of a set of computing software (SUSD3D) and of libraries of nuclear data covariance matrices to assess sensitivities of parameters with respect to basic nuclear data, and the corresponding uncertainties, notably for radiation transport for which uncertainty has various origins: reactivity coefficients or neutron and gamma ray flows. He reports the application to fusion and fission reactors

  19. Action plan for the task: Physical measurements at the RA reactor related to VISA-2 project, '0' program, Reactor start-up and measurement of basic parameters of the new core; Plan rada po zadatku: Fizicka merenja na reaktoru RA u vezi projekta VISA-2, '0' program, Pustanje u rad reaktora RA i merenje osnovnih parametara novog jezgra

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, H; Raisic, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1962-07-01

    This report consists of two parts. Part one describes the RA reactor start-up, measurements of thermal neutron flux distribution, measurements of epithermal flux, fast neutron flux distribution, absolute values of both thermal and fast neutron fluxes, calibration of regulating rods, and measurements of neutron flux inside the fuel elements. All the mentioned measurements were done at low power level. Part two includes description of the reactor power increase up to nominal value of 6.5 MW, and measurements of thermal neutron flux distribution under xenon poisoning conditions, measurements of epithermal neutrons, absolute values of both thermal and fast neutron fluxes, and measurements of thermal and epithermal neutron fluxes at the exit of the horizontal experimental channel HK-d.

  20. International Reactor Physics Experiment Evaluation (IRPhE) Project. IRPhE Handbook - 2015 edition

    International Nuclear Information System (INIS)

    Bess, John D.; Gullifor, Jim

    2015-03-01

    The purpose of the International Reactor Physics Experiment Evaluation (IRPhE) Project is to provide an extensively peer-reviewed set of reactor physics-related integral data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next-generation reactors and establish the safety basis for operation of these reactors. This work of the IRPhE Project is formally documented in the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments', a single source of verified and extensively peer-reviewed reactor physics benchmark measurements data. The evaluation process entails the following steps: Identify a comprehensive set of reactor physics experimental measurements data, Evaluate the data and quantify overall uncertainties through various types of sensitivity analysis to the extent possible, verify the data by reviewing original and subsequently revised documentation, and by talking with the experimenters or individuals who are familiar with the experimental facility, Compile the data into a standardized format, Perform calculations of each experiment with standard reactor physics codes where it would add information, Formally document the work into a single source of verified and peer reviewed reactor physics benchmark measurements data. The International Handbook of Evaluated Reactor Physics Benchmark Experiments contains reactor physics benchmark specifications that have been derived from experiments that were performed at nuclear facilities around the world. The benchmark specifications are intended for use by reactor designers, safety analysts and nuclear data evaluators to validate calculation techniques and data. Example calculations are presented; these do not constitute a validation or endorsement of the codes or cross-section data. The 2015 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments contains data from 143 experimental series that were

  1. Image quality - physical and diagnostic parameters. The radiologist's viewpoint

    International Nuclear Information System (INIS)

    Stender, H.St.

    1985-01-01

    The quality of a radiograph is determined by the diagnostic information it provides. This depends upon the visual detection of diagnostically relevant structures. The technical radiographic requirements are dependent upon the physical measurements and the physiological and optical conditions. Such physical factors as spatial resolution, contrast and noise are quantitative measurements, which must be oriented to the qualitative visual characteristics of the radiograph. The influence of subjective perception and complexity of structural noise on the detectability of details and structures particularly demands attention. Since radiographic quality depends upon the detection of diagnostically relevant structure and features, it is important to define these parameters on the basis of extensive radiographic analysis and the corresponding clinical findings. The diagnostically relevant radiographic parameters and image details and critical structures have been worked out for the examination of the lungs, colon, stomach, urinary tract and skeleton. Good image quality requires coordination of the physical-technical parameters with the visual ability of the observer, since only in this way can the diagnostic information be represented with sufficient clarity. (author)

  2. Physically - engineering problems of the Salaspils Nuclear reactor: Solutions and their topicality

    International Nuclear Information System (INIS)

    Mozgirs, Z.V.

    2005-01-01

    The paper generalizes technical solutions of physically-engineering problems of the Salaspils nuclear research reactor, experience of its modernization and exploitation. New equipment and the related technical solutions have been tested at the Salaspils reactor during its operation time and are now recommended for further use at nuclear reactors. (author)

  3. Computational analysis of neutronic parameters of CENM TRIGA Mark II research reactor

    International Nuclear Information System (INIS)

    El Younoussi, C.; El Bakkari, B.; Boulaich, Y.; Riyach, D.; Otmani, S.; Marrhich, I.; Badri, H.; Htet, A.; Nacir, B.; El Bardouni, T.; Boukhal, H.; Zoubair, M.; Ossama, M.; Chakir, E.

    2010-01-01

    The CENM TRIGA MARK II reactor is part of the National Center for Energy, Sciences and Nuclear Techniques (CNESTEN). It's a standard design 2MW, natural-convection-cooled reactor with a graphite reflector containing 4 beam tubes and a thermal column. The reactor has several applications in different fields as industry, agriculture, medicine, training and education. In the present work a computational study has been carried out in the framework of neutronic parameters studies of the reactor. A detailed MCNP model that include all elements of the core and surrounding structures has been developed to calculate different parameters of the core (The effective multiplication factor, reactivity experiments comprising control rods worth, excess reactivity and shutdown margin). Further calculations have been carried out to calculate the neutron flux profiles at different locations of the reactor core. The cross sections used are processed from the library provided with MCNP5 and based on the ENDF/B-VII with continuous dependence in energy and special treatment of thermal neutrons in lightweight materials. (author)

  4. Evaluation of thermal-hydraulic parameter uncertainties in a TRIGA research reactor

    International Nuclear Information System (INIS)

    Mesquita, Amir Z.; Costa, Antonio C.L.; Ladeira, Luiz C.D.; Rezende, Hugo C.; Palma, Daniel A.P.

    2015-01-01

    Experimental studies had been performed in the TRIGA Research Nuclear Reactor of CDTN/CNEN to find out the its thermal hydraulic parameters. Fuel to coolant heat transfer patterns must be evaluated as function of the reactor power in order to assess the thermal hydraulic performance of the core. The heat generated by nuclear fission in the reactor core is transferred from fuel elements to the cooling system through the fuel-cladding (gap) and the cladding to coolant interfaces. As the reactor core power increases the heat transfer regime from the fuel cladding to the coolant changes from single-phase natural convection to subcooled nucleate boiling. This paper presents the uncertainty analysis in the results of the thermal hydraulics experiments performed. The methodology used to evaluate the propagation of uncertainty in the results was done based on the pioneering article of Kline and McClintock, with the propagation of uncertainties based on the specification of uncertainties in various primary measurements. The uncertainty analysis on thermal hydraulics parameters of the CDTN TRIGA fuel element is determined, basically, by the uncertainty of the reactor's thermal power. (author)

  5. Physical and geometrical parameters of VCBS XIII: HIP 105947

    Science.gov (United States)

    Gumaan Masda, Suhail; Al-Wardat, Mashhoor Ahmed; Pathan, Jiyaulla Khan Moula Khan

    2018-06-01

    The best physical and geometrical parameters of the main sequence close visual binary system (CVBS), HIP 105947, are presented. These parameters have been constructed conclusively using Al-Wardat’s complex method for analyzing CVBSs, which is a method for constructing a synthetic spectral energy distribution (SED) for the entire binary system using individual SEDs for each component star. The model atmospheres are in its turn built using the Kurucz (ATLAS9) line-blanketed plane-parallel models. At the same time, the orbital parameters for the system are calculated using Tokovinin’s dynamical method for constructing the best orbits of an interferometric binary system. Moreover, the mass-sum of the components, as well as the Δθ and Δρ residuals for the system, is introduced. The combination of Al-Wardat’s and Tokovinin’s methods yields the best estimations of the physical and geometrical parameters. The positions of the components in the system on the evolutionary tracks and isochrones are plotted and the formation and evolution of the system are discussed.

  6. A lumped parameter core dynamics model for MTR type research reactors under natural convection regime

    International Nuclear Information System (INIS)

    Ardaneh, Kazem; Zaferanlouei, Salman

    2013-01-01

    Highlights: ► A model is presented to simulate the reactivity insertion transient in MTR reactors. ► Transient dynamics of IAEA 10 MW MTR type research reactor are evaluated. ► Maximum unprotected reactivity insertion for safe condition is calculated. ► The model predictions are validated with corresponding results in the literature. - Abstract: On the basis of lumped parameter modeling of both the kinetic and thermal–hydraulic effects, a reasonably accurate simplified model has been developed to predict the dynamic response of MTR reactors following to an unprotected reactivity insertion under natural convection regime. By this model the reactor transient behavior at a given initial steady-state can be solved by a set of ordinary differential equations. The model predictions have an acceptable consent with corresponding results of reactivity insertion transients analyzed in the literature. The inherent safety characteristics of MTR research reactors utilizing natural convection is clearly demonstrated by the expanded model. The safety margin of reactor operating is selected ONB condition and thereby the proposed model determines that any slight increase in the value of $0.73 for inserted reactivity will cause the maximum cladding surface temperature to exceed the ONB condition

  7. A methodology for modeling photocatalytic reactors for indoor pollution control using previously estimated kinetic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Passalia, Claudio; Alfano, Orlando M. [INTEC - Instituto de Desarrollo Tecnologico para la Industria Quimica, CONICET - UNL, Gueemes 3450, 3000 Santa Fe (Argentina); FICH - Departamento de Medio Ambiente, Facultad de Ingenieria y Ciencias Hidricas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000 Santa Fe (Argentina); Brandi, Rodolfo J., E-mail: rbrandi@santafe-conicet.gov.ar [INTEC - Instituto de Desarrollo Tecnologico para la Industria Quimica, CONICET - UNL, Gueemes 3450, 3000 Santa Fe (Argentina); FICH - Departamento de Medio Ambiente, Facultad de Ingenieria y Ciencias Hidricas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000 Santa Fe (Argentina)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Indoor pollution control via photocatalytic reactors. Black-Right-Pointing-Pointer Scaling-up methodology based on previously determined mechanistic kinetics. Black-Right-Pointing-Pointer Radiation interchange model between catalytic walls using configuration factors. Black-Right-Pointing-Pointer Modeling and experimental validation of a complex geometry photocatalytic reactor. - Abstract: A methodology for modeling photocatalytic reactors for their application in indoor air pollution control is carried out. The methodology implies, firstly, the determination of intrinsic reaction kinetics for the removal of formaldehyde. This is achieved by means of a simple geometry, continuous reactor operating under kinetic control regime and steady state. The kinetic parameters were estimated from experimental data by means of a nonlinear optimization algorithm. The second step was the application of the obtained kinetic parameters to a very different photoreactor configuration. In this case, the reactor is a corrugated wall type using nanosize TiO{sub 2} as catalyst irradiated by UV lamps that provided a spatially uniform radiation field. The radiative transfer within the reactor was modeled through a superficial emission model for the lamps, the ray tracing method and the computation of view factors. The velocity and concentration fields were evaluated by means of a commercial CFD tool (Fluent 12) where the radiation model was introduced externally. The results of the model were compared experimentally in a corrugated wall, bench scale reactor constructed in the laboratory. The overall pollutant conversion showed good agreement between model predictions and experiments, with a root mean square error less than 4%.

  8. Physics analysis of the Apollo D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Santarius, J.F.; Emmert, G.A.

    1990-01-01

    Recent developments in the analysis and conceptual design of Apollo, a D- 3 He Tokamak Reactor are presented. Encouraging experimental results on TEXT motivated a key change in the Apollo concept utilization of an ergodic magnetic limiter for impurity control instead of a divertor. Parameters for the updated Apollo design and an analysis of the ergoidc magnetic limiter are given. The Apollo reference case uses direct conversion of synchrotron radiation to electricity by rectifying antennas (rectennas) for its power conversion system. Previous analyses of this concept are expanded, including further details of the rectennas and of the loss of synchrotron power to the waveguides and walls. Although Apollo will burn D- 3 He fuel, a significant amount of unburned tritium will be generated by D4D reactions. The possibility of operating a short, dedicated, T+ 3 He burn phase to eliminate this tritium will be examined

  9. Educational reactor-physics experiments with the critical assemble TCA

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki [Tokyo Inst. of Tech. (Japan); Horiki, Oichiro; Suzaki, Takenori

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for (1) Critical approach and Exponential experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, and (5) Measurement of safety plate worth by the rod drop method. (author)

  10. Educational reactor-physics experiments with the critical assembly TCA

    International Nuclear Information System (INIS)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki; Horiki, Oichiro; Suzaki, Takenori.

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for 1) Critical approach and Exponential experiment, 2) Measurement of neutron flux distribution, 3) Measurement of power distribution, 4) Measurement of fuel rod worth distribution, and 5) Measurement of safety plate worth by the rod drop method. (author)

  11. SILOETTE, a training centre for reactor physics at the Nuclear Research Centre of Grenoble

    International Nuclear Information System (INIS)

    Destot, M.

    1983-10-01

    The Reactor Department of Grenoble has created, based on Siloette, an activity of training in reactor physics, wich is running since 1975 to meet the important needs generated by the development of electronuclear power stations. Its essential goal is to provide an initiation to the basic physical phenomena which determine the operation of the reactors. For that purpose, a rather comprehensive program of practical works on reactor (SILOETTE) and on nuclear power station simulators (PWR, UNGG) is proposed besides lectures and conferences, general and specialized teaching on the reactor operation principle, kinetics, dynamics and thermics

  12. Opportunities for physics research at Australia's replacement research reactor

    International Nuclear Information System (INIS)

    Robinson, R.A.

    2003-01-01

    Full text: The 20-MW Australian Replacement Research Reactor represents possibly the greatest single research infrastructure investment in Australia's history. Construction of the facility has commenced, following award of the construction contract in July 2000, and the construction licence in April 2002. The project includes a large state-of-the-art liquid deuterium cold-neutron source and supermirror guides feeding a large modern guide hall, in which most of the instruments are placed. Alongside the guide hall, there is good provision of laboratory, office and space for support activities. While the facility has 'space' for up to 18 instruments, the project has funding for an initial set of 8 instruments, which will be ready when the reactor is fully operational in January 2006. Instrument performance will be competitive with the best research-reactor facilities anywhere, and our goal is to be in the top 3 such facilities worldwide. Staff to lead the design effort and man these instruments have been hired on the international market from leading overseas facilities, and from within Australia, and 6 out of 8 instruments have been specified and costed. At present the instrumentation project carries ∼15% contingency. An extensive dialogue has taken place with the domestic user community and our international peers, via various means including a series of workshops over the last 2 years covering all 8 instruments, emerging areas of application like biology and the earth sciences, and computing infrastructure for the instruments. In December 2002, ANSTO formed the Bragg Institute, with the intent of nurturing strong external partnerships, and covering all aspects of neutron and X-ray scattering, including research using synchrotron radiation. I will discuss the present status and predicted performance of the neutron-beam facilities at the Replacement Reactor, synergies with the synchrotron in Victoria, in-house x-ray facilities that we intend to install in the Bragg

  13. Validation of the VTT's reactor physics code system

    International Nuclear Information System (INIS)

    Tanskanen, A.

    1998-01-01

    At VTT Energy several international reactor physics codes and nuclear data libraries are used in a variety of applications. The codes and libraries are under constant development and every now and then new updated versions are released, which are taken in use as soon as they have been validated at VTT Energy. The primary aim of the validation is to ensure that the code works properly, and that it can be used correctly. Moreover, the applicability of the codes and libraries are studied in order to establish their advantages and weak points. The capability of generating program-specific nuclear data for different reactor physics codes starting from the same evaluated data is sometimes of great benefit. VTT Energy has acquired a nuclear data processing system based on the NJOY-94.105 and TRANSX-2.15 processing codes. The validity of the processing system has been demonstrated by generating pointwise (MCNP) and groupwise (ANISN) temperature-dependent cross section sets for the benchmark calculations of the Doppler coefficient of reactivity. At VTT Energy the KENO-VI three-dimensional Monte Carlo code is used in criticality safety analyses. The KENO-VI code and the 44GROUPNDF5 data library have been validated at VTT Energy against the ZR-6 and LR-0 critical experiments. Burnup Credit refers to the reduction in reactivity of burned nuclear fuel due to the change in composition during irradiation. VTT Energy has participated in the calculational VVER-440 burnup credit benchmark in order to validate criticality safety calculation tools. (orig.)

  14. Effects of different SSI parameters on the floor response spectra of a nuclear reactor building

    International Nuclear Information System (INIS)

    Kabir, A.F.; Bolourchi, S.; Maryak, M.E.

    1991-01-01

    The effects of several critical soil-structure interaction (SSI) parameters on the floor response spectra (FRS) of a typical nuclear reactor building have been examined. These parameters are computation of soil impedance functions using different approaches, scattering effects (reductions in ground motion due to embedment and rigidity of building foundation) and strain dependency of soil dynamic properties. This paper reports that the significant conclusions of the study, which are applicable to a deeply embedded very rigid nuclear reactor building, are as follows: FRS generated without considering scattering effects are highly conservative; differences between FRS, generated considering strain-dependency of soil dynamic properties, and those generated suing low-strain values, are not significant; and the lumped-parameter approach of SSI calculations, which only uses a single value of soil shear modulus in impedance calculations, may not be able to properly compute the soil impedances for a soil deposit with irregularly varying properties with depth

  15. Comparison of Instrumentation and Control Parameters Based on Simulation and Experimental Data for Reactor TRIGA PUSPATI

    International Nuclear Information System (INIS)

    Anith Khairunnisa Ghazali; Mohd Sabri Minhat

    2015-01-01

    Reactor TRIGA PUSPATI (RTP) undergoes safe operation for more than 30 years and the only research reactor in Malaysia. The main safety feature of Instrumentation and Control (I and C) system design is such that any failure in the electronic, or its associated components, does not lead to an uncontrolled rate of reactivity. There are no best models for RTP simulation was designed for study and research. Therefore, the comparison for I&C parameters are very essential, to design the best RTP model using MATLAB/ Simulink as close as the RTP. The simulation of TRIGA reactor type already develop using desktop reactor simulator such as Personal Computer Transient Analyzer (PCTRAN). The experimental data from RTP and simulation of PCTRAN shows some similarities and differences due to certain limitation. Currently, the structured RTP simulation was designed using MATLAB and Simulink tool that consist of ideal fission chamber, controller, control rod position, height to worth and RTP model. The study on this paper focus on comparison between real data from RTP and simulation result from PCTRAN on I&C parameters such as water level, fuel temperature, bulk temperature, power rated and rod position. The error analysis due to some similarities and differences of I&C parameters shall be obtained and analysed. The result will be used as reference for proposed new structured of RTP model. (author)

  16. Reactor thermal behaviors under kinetics parameters variations in fast reactivity insertion

    Energy Technology Data Exchange (ETDEWEB)

    Abou-El-Maaty, Talal [Reactors Department, Atomic Energy Authority, Cairo 13759 (Egypt)], E-mail: talal22969@yahoo.com; Abdelhady, Amr [Reactors Department, Atomic Energy Authority, Cairo 13759 (Egypt)

    2009-03-15

    The influences of variations in some of the kinetics parameters affecting the reactivity insertion are considered in this study, it has been accomplished in order to acquire knowledge about the role that kinetic parameters play in prompt critical transients from the safety point of view. The kinetics parameters variations are limited to the effective delayed neutron fraction ({beta}{sub eff}) and the prompt neutron generation time ({lambda}). The reactor thermal behaviors under the variations in effective delayed neutron fraction and prompt neutron generation time included, the reactor power, maximum fuel temperature, maximum clad temperature, maximum coolant temperature and the mass flux variations at the hot channel. The analysis is done for a typical swimming pool, plate type research reactor with low enriched uranium. The scram system is disabled during the accidents simulations. Calculations were done using PARET code. As a result of simulations, it is concluded that, the reactor (ETRR2) thermal behavior is considerably more sensitive to the variation in the effective delayed neutron fraction than to the variation in prompt neutron generation time and the fast reactivity insertion in both cases causes a flow expansion and contraction at the hot channel exit. The amplitude of the oscillated flow is a qualitatively increases with the decrease in both {beta}{sub eff} and {lambda}.

  17. Stochastic estimation approach for the evaluation of thermal-hydraulic parameters in pressurized water reactors

    International Nuclear Information System (INIS)

    Shieh, D.J.; Upadhyaya, M.G.

    1986-01-01

    A method based on the extended Kalman filter is developed for the estimation of the core coolant mass flow rate in pressurized water reactors. The need for flow calibration can be avoided by a direct estimation of this parameter. A reduced-order neutronic and thermal-hydraulic model is developed for the Loss-of-Fluid Test (LOFT) reactor. The neutron detector and core-exit coolant temperature signals from the LOFT reactor are used as measurements in the parameter estimation algorithm. The estimation sensitivity to model uncertainties was evaluated using the ambiguity function analysis. This also provides a lower bound on the measurement sample size necessary to achieve a certain estimation accuracy. A sequential technique was developed to minimize the computational effort needed to discretize the continuous time equations, and thus achieve faster convergence to the true parameter value. The performance of the stochastic approximation method was first evaluated using simulated random data, and then applied to the estimation of coolant flow rate using the operational data from the LOFT reactor at 100 and 65% flow rate conditions

  18. Transfer parameters of fission and activation products present in effluents of nuclear power reactors

    International Nuclear Information System (INIS)

    Cancio, D.; Menossi, C.A.; Ciallella, N.R.

    1978-01-01

    The paper presents results of research carried out in Argentina on transfer parameters of fission and activation products which may be present in the effluents of nuclear power reactors. For some nuclides, as Sr-90, Co-137 and I-131, the parameters were obtained by studies of the fallout, from measurements of integrated levels in the environment and in the food chains. Other values are concentration factors derived from laboratory and field experiments. They refer to fish, molluscs, crustaces and fresh water plants, for several fission and activation nuclides. Transfer parameters obtained have been of significant importance for environmental assessments, relating to nuclear installations in Argentina. (author)

  19. A critical experimental study of integral physics parameters in simulated LMFBR meltdown cores

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.; Wade, D.C.; Bucher, R.G.; Smith, D.M.; McKnight, R.D.; Lesage, L.G.

    1978-01-01

    Integral physics parameters of several representative, idealized meltdown LMFBR configurations were measured in mockup critical assemblies on the ZPR-9 reactor at Argonne National Laboratory. The experiments were designed to provide data for the validation of analytical methods used in the neutronics part of LMFBR accident analysis. Large core distortions were introduced in these experiments (involving 18.5% core volume) and the reactivity worths of configuration changes were determined. The neutronics parameters measured in the various configurations showed large changes upon core distortion. Both diffusion theory and transport theory methods were shown to mispredict the experimental configuration eigenvalues. In addition, diffusion theory methods were shown to result in a non-conservative misprediction of the experimental configuration change worths. (author)

  20. The past, present, and future of test and research reactor physics

    International Nuclear Information System (INIS)

    Ryskamp, J.M.

    1992-01-01

    Reactor physics calculations have been performed on research reactors since the first one was built 50 yr ago under the University of Chicago stadium. Since then, reactor physics calculations have evolved from Fermi-age theory calculations performed with slide rules to three-dimensional, continuous-energy, coupled neutron-photon Monte Carlo computations performed with supercomputers and workstations. Such enormous progress in reactor physics leads us to believe that the next 50 year will be just as exciting. This paper reviews this transition from the past to the future

  1. Development of a remote monitoring system, through monitoring of key safety parameters for a nuclear research reactor; Desarrollo de un sistema de vigilancia remota, por medio del monitoreo de parametros claves de seguridad, para un reactor nuclear de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Urcia, Agustin; Arrieta, Rolando [Direccion de Produccion, Instituto Peruano de Energia Nuclear, Lima (Peru); Baltuano, Oscar; Chan, Renzo [Direccion de Investigacion y Desarrollo, Instituto Peruano de Energia Nuclear, Lima (Peru); Tincopa, Jean Pierre [Facultad de Ingenieria Electrica y Electronica, Universidad Nacional del Callao, Callao (Peru); Urquizo, Rafael [Facultad de Ingenieria Electronica, Universidad Tecnologica del Peru, Lima (Peru); Rosas, Bernick [Facultad de Ingenieria Electronica, Universidad Nacional de Ingenieria, Lima (Peru)

    2014-07-01

    This paper presents the detailed development, installation and commissioning of water level sensors and exposure rate range in the 11 meters level (mouth of tank) of the RP-10 nuclear reactor used to continuously monitor these values and use them as security for the periods of no presence of operating personnel (overlooking situation) with the reactor in shutdown state. The levels of these parameters are packaged and transmitted to a controller in the control room of reactor for display and activation of alarm levels. Additionally, the design of these warning signs is shown in conjunction with the fire alarm in the building of reactor and auxiliary laboratories to be transmitted to the physical security facility, located at a distance of 500 meters. (authors).

  2. Resonance self-shielding effect in uncertainty quantification of fission reactor neutronics parameters

    International Nuclear Information System (INIS)

    Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi

    2014-01-01

    In order to properly quantify fission reactor neutronics parameter uncertainties, we have to use covariance data and sensitivity profiles consistently. In the present paper, we establish two consistent methodologies for uncertainty quantification: a self-shielded cross section-based consistent methodology and an infinitely-diluted cross section-based consistent methodology. With these methodologies and the covariance data of uranium-238 nuclear data given in JENDL-3.3, we quantify uncertainties of infinite neutron multiplication factors of light water reactor and fast reactor fuel cells. While an inconsistent methodology gives results which depend on the energy group structure of neutron flux and neutron-nuclide reaction cross section representation, both the consistent methodologies give fair results with no such dependences.

  3. RESONANCE SELF-SHIELDING EFFECT IN UNCERTAINTY QUANTIFICATION OF FISSION REACTOR NEUTRONICS PARAMETERS

    Directory of Open Access Journals (Sweden)

    GO CHIBA

    2014-06-01

    Full Text Available In order to properly quantify fission reactor neutronics parameter uncertainties, we have to use covariance data and sensitivity profiles consistently. In the present paper, we establish two consistent methodologies for uncertainty quantification: a self-shielded cross section-based consistent methodology and an infinitely-diluted cross section-based consistent methodology. With these methodologies and the covariance data of uranium-238 nuclear data given in JENDL-3.3, we quantify uncertainties of infinite neutron multiplication factors of light water reactor and fast reactor fuel cells. While an inconsistent methodology gives results which depend on the energy group structure of neutron flux and neutron-nuclide reaction cross section representation, both the consistent methodologies give fair results with no such dependences.

  4. Job analysis of nuclear power reactor health physics technicians

    International Nuclear Information System (INIS)

    Davis, L.T.; Mazour, T.J.; Clark, P.V.; Todd, R.C.; Marotta, F.J.

    1984-06-01

    This report describes a project, an industry-wide Job Analysis of Nuclear Power Reactor Health Physics Technicians (HPTs), conducted by Brookhaven National Laboratory and Analysis and Technology, Inc. to provide the industry with job-performance data that can be used in systematically defining training programs in terms of required job functions responsibilities, and performance standards. The job-analysis methodology is consistent with that used by the Institute of Nuclear Power Operations (INPO) in similar industry-wide projects and includes administration of over 850 job task questionnaires to utility and contractor Health Physics Technicians throughout the country. Data collected includes task performance (difficulty, importance, and frequency) and industry-wide demographics (job levels, experience, education, and training). The results of this project discussed herein include model job descriptions for HPT positions, summaries of HPT experience, education, and training, industry-wide task listings with task-performance characteristics, and recommendations of selected tasks as a basis for HPT training development. Finally, potential future applications of the data base by utility and contractor organizations in training program development and evaluation and personnel qualifications are discussed

  5. Physical aspects of liquid-impelled loop reactors

    NARCIS (Netherlands)

    Sonsbeek, van H.

    1992-01-01

    The liquid-impelled loop reactor (LLR) is a reactor that consists of two parts : the main tube and the circulation tube. Both parts are in open connection at the bottom and at the top. The reactor is filled with a liquid phase: the continuous phase. Another liquid phase is injected in the

  6. Parameter study of a screw-pinch reactor with circular cross-section

    International Nuclear Information System (INIS)

    Bustraan, M.; Franken, W.M.P.; Klippel, H.Th.; Muysken, M.; Verschuur, K.A.

    1977-04-01

    In the framework of system studies on pulsed high-β fusion reactors, a parameter study of a reactor based on a screw pinch with a circular cross-section has been performed. The plasma is heated to ignition in two stages. First, the cold plasma is heated by fast implosion in order to guarantee pitch conservation of the inward moving magnetic field lines. The relevant implosion theory has been generalized to a β<1 plasma. In the second stage, an adiabatic compression heats the plasma to the ignition temperature at which point α-particle heating takes over. For stability reasons, β is kept below 0.25. The choice of a particular set of basic parameter values is justified by global design considerations of the reactor. These considerations, e.g. on blanket design and electrotechnical requirements, are presented in some detail. A computer program searches for optimal reactors, i.e. for which at a given thermal output the net efficiency is a maximum. The parameters of a Reference Screw-Pinch Reactor and some other numerical examples are given. The main conclusions are: the net efficiency, although increasing with output energy, is low because of ohmic losses in the compression coil system; the application of sustained fields generated by superconducting coils to reduce these ohmic losses is problematical; a belt-shaped screw pinch in which higher values of β may be reached, improves the net efficiency and alleviates the technical requirements; heating by implosion and adiabatic compression of a plasma with values of β as low as considered here, is inefficient. Therefore, other means of heating the plasma to ignition may be attractive

  7. The scaling of economic and performance parameters of DT and advanced fuel fusion reactors

    International Nuclear Information System (INIS)

    Roth, J.R.

    1983-01-01

    In this study, the plasma stability index beta and the fusion power density in the plasma were treated as independent variables to determine how they influenced three economic performance parameters of fusion reactors burning the DT and four advanced fusion fuel cycles. The economic/performance parameters included the total power produced per unit length of reactor; the mass per unit length, and the specific mass in kilograms/kilowatt. The scaling of these parameters with beta and fusion power density was examined for a common set of engineering assumptions on the allowable wall loading limits, the maximum magnetic field existing in the plasma, average blanket mass density, etc. It was found that the power per unit length decreased as the plasma power density and beta increased. This is a consequence of the fact that the first wall is a bottleneck in the energy flow from the plasma to the generating equipment, and the wall power flux will exceed wall loading limits if the plasma radius exceeds a critical value. If one wished to build an engineering test reactor which produced a burning plasma at the lowest possible initial cost, and without regard to whether such a reactor would ultimately produce the cheapest power, then one would minimize the mass per unit length. The mass per unit length decreases with increasing plasma power density and beta, with the DT reaction being the most expensive at a fixed plasma power density (because of its thicker blanket), and the least expensive at a fixed value of beta, at least up to values of beta of 50%. The specific mass, in kg/kw, which is a rough measure of the cost of the power generated by the reactor, shows an opposite trend. It increases with increasing plasma power density and beta. At a given plasma power density and low beta, the DT reaction gives the lowest specific mass, but at a fixed beta above 10%, the advanced fuel cycles have the lowest specific mass

  8. Neutronic and thermal hydraulic assessment of fast reactor cooling by water of super critical parameters

    International Nuclear Information System (INIS)

    Baranaev, Yu. D.; Glebov, A. P.; Ukraintsev, V. F.; Kolesov, V. V.

    2007-01-01

    Necessity of essential improvement of competitiveness for reactors on light water determines development of new generation power reactors on water of super critical parameters. The main objective of these projects is reaching of high efficiency coefficients while decreasing of investment to NPP and simplification of thermal scheme and high safety level. International programme of IV generation in which super critical reactors present is already started. In the frame of this concept specific Super Critical Fast Reactor with tight lattice of pitch is developing by collaboration of the FEI and IATE. In present article neutronic and thermal hydraulic assessment of fast reactor with plutonium MOX fuel and a core with a double-path of super critical water cooling is presented (SCFR-2X). The scheme of double path of coolant via the core in which the core is divided by radius on central and periphery parts with approximately equal number of fuel assemblies is suggested. Periferia part is cooling while down coming coolant movement. At the down part of core into the mix chamber flows from the periphery assemblies joining and come to the inlet of the central part which is cooling by upcoming flow. Eight zone of different content of MOX fuel are used (4 in down coming and 4 in upcoming) sub zones. Calculation of fuel burn-up and approximate scheme of refueling is evaluated. Calculation results are presented and discussed

  9. Study of reactor parameters of on critical systems, Phase I: Safety report for RB zero power reactor

    International Nuclear Information System (INIS)

    Raisic, N.

    1962-09-01

    In addition to the safety analysis for the zero power RB reactor, this report contains a general description of the reactor, reactor components, auxiliary equipment and the reactor building. Reactor Rb has been reconstructed during 1961-1962 and supplied with new safety-control system as well as with a complete dosimetry instrumentation. Since RB reactor was constructed without shielding special attention is devoted to safety and protection of the staff performing experiments. Due to changed circumstances in the Institute ( start-up of the RA 7 MW power reactor) the role of the RB reactor was redefined

  10. Global and photospheric physical parameters of active dwarf stars

    International Nuclear Information System (INIS)

    Pettersen, B.R.

    1983-01-01

    Physical parameters (temperature, luminosity, radius, mass and chemical abundance) of the photospheres of red dwarf flare stars and spotted stars are determined for quiescent conditions. The interrelations between these quantities are compared to the results of theoretical investigation for low mass stars. The evolutionary state of flare stars is discussed. Observational results from spectroscopic and photometric methods to determine the rotation of active dwarfs are reviewed. The possibilities of global oscillations in dwarf stars are considered and preliminary results of a photometric search for oscillation in red dwarf luminosities are presented. (orig.)

  11. IRPhE - International Reactor Physics Experiments database

    International Nuclear Information System (INIS)

    Sartori, E.

    2004-01-01

    The OECD/NEA Nuclear Science Committee (NSC) has identified the need to establish international databases containing all the important experiments that are available for sharing among the specialists and has set up or sponsored specific activities to achieve this. The aim is to preserve them in an agreed standard format in computer accessible form, to use them for international activities involving validation of current and new calculational schemes including computer codes and nuclear data libraries, for assessing uncertainties, confidence bounds and safety margins, and to record measurement methods and techniques. It is a significant saving results from disseminating a standard benchmark set to be used worldwide. A framework for professionals that use the standard benchmark set to validate and verify modeling codes and data for radiation transport, criticality safety and reactor physics applications guarantees a comparative set of analyses. It represents also a good basis for pinpointing important gaps and where efforts should be concentrated and ensures knowledge and competence preservation, management and transfer in nuclear science and engineering. A large number of experimentalists, physicists, evaluators, modelers have devoted large amounts of their efforts and competencies to produce the data on which the methods we are using today are based. These data are far from having been exploited fully for the different nuclear and radiation technologies. This wealth of information needs to be preserved in a form more easily exploitable by modern information technology and for use in connection with novel and refined computational models with limitations of the past removed. These data will form the basis for the studies of more advanced nuclear technology, will be instrumental in identifying areas where there is a lack of knowledge and thus provide support to justifying new experiments that would reduce design uncertainties and consequently costs. Improvement of

  12. Development of graphic display program of reactor operating parameters for emergency exercise at nuclear power plants

    International Nuclear Information System (INIS)

    Okuda, Yasunori; Yoshida, Yoshitaka; Gotou, Kazuko

    2001-01-01

    A scenario of nuclear emergency exercise based on the result of accident progress analysis is expected to ensure effective training. Thereupon a new graphic display program for reactor operating parameters has been developed to present real-time of plant process values (parameters), released radioactivities from the plant, and dose rate data around the site calculated by using the accident analysis code MAAP4 and other codes. This system has a trend graph screen displaying reactor operating parameters, an environmental dose rate summary screen indicating dose rate distribution around the site on the map, and a plant parameters summary screen showing important plant parameters on a simplified plant system diagram. One screen can be switched to another any time. It also has a jump-function easily accessing any stage during the exercise scenario in accordance with progress of the exercise. As a result of the application of this system to a real nuclear emergency exercise, it has been verified that this system is quite useful for confirming the parameters when the nuclear emergency exercise starts and the licensee reports the plant conditions to related bodied. (author)

  13. Development of graphic display program of reactor operating parameters for emergency exercise at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Yasunori; Yoshida, Yoshitaka [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan); Gotou, Kazuko [Kansai Electric Power Co., Inc., Osaka (Japan)

    2001-09-01

    A scenario of nuclear emergency exercise based on the result of accident progress analysis is expected to ensure effective training. Thereupon a new graphic display program for reactor operating parameters has been developed to present real-time of plant process values (parameters), released radioactivities from the plant, and dose rate data around the site calculated by using the accident analysis code MAAP4 and other codes. This system has a trend graph screen displaying reactor operating parameters, an environmental dose rate summary screen indicating dose rate distribution around the site on the map, and a plant parameters summary screen showing important plant parameters on a simplified plant system diagram. One screen can be switched to another any time. It also has a jump-function easily accessing any stage during the exercise scenario in accordance with progress of the exercise. As a result of the application of this system to a real nuclear emergency exercise, it has been verified that this system is quite useful for confirming the parameters when the nuclear emergency exercise starts and the licensee reports the plant conditions to related bodied. (author)

  14. Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions

    Directory of Open Access Journals (Sweden)

    Yu-Feng Li

    2014-11-01

    Full Text Available We discuss reactor antineutrino oscillations with non-standard interactions (NSIs at the neutrino production and detection processes. The neutrino oscillation probability is calculated with a parametrization of the NSI parameters by splitting them into the averages and differences of the production and detection processes respectively. The average parts induce constant shifts of the neutrino mixing angles from their true values, and the difference parts can generate the energy (and baseline dependent corrections to the initial mass-squared differences. We stress that only the shifts of mass-squared differences are measurable in reactor antineutrino experiments. Taking Jiangmen Underground Neutrino Observatory (JUNO as an example, we analyze how NSIs influence the standard neutrino measurements and to what extent we can constrain the NSI parameters.

  15. Effect of important operating parameters on product properties and operation of HDPE slurry reactor

    International Nuclear Information System (INIS)

    Soltanieh, M.; Remezani Saadat Abadi, A.; Dashti, A.; Mokhtari, J.

    2007-01-01

    In this article, a complete model for the mixed flow slurry reactor for polymerization of ethylene to high density polyethylene in the presence of Ziegler-Natta catalyst is presented. In addition to the effects of the multiple active sites, the effect of other important parameters such as the catalyst concentration, co-catalyst, hydrogen, monomer, impurities and pressure on the mass-average and number-average polymer product chain length, the average product distribution index and the required residence time for the reactor were investigated. The simulation results show that as the catalyst, hydrogen and solvent concentrations increase, the mass and number-average polymer chain length decrease, whereas with increasing monomer concentration and pressure, the average molecular weight increases. The effects of these parameters on the polydispersity index and residence time do not follow the same trend and their relationship changes in some of these variables

  16. Measurements for kinetic parameters estimation in the RA-0 research reactor

    International Nuclear Information System (INIS)

    Gomez, A; Bellino, P A

    2012-01-01

    In the present work, measurements based on the neutron noise technique and the inverse kinetic method were performed to estimate the different kinetic parameters of the reactor in its critical state. By means of the neutron noise technique, we obtained the current calibration factor of the ionization chamber M6 belonging to the power range channels of the reactor instrumentation. The maximum current allowed compatible with the maximum power authorized by the operation license was also obtained. Using the neutron noise technique, the reduced mean reproduction time (Λ*) was estimated. This parameter plays a fundamental role in the deterministic analysis of criticality accidents. Comparison with previous values justified performing new measurements to study systematic trends in the value of Λ*. Using the inverse kinetics method, the reactivity worth of the control rods was estimated, confirming the existence of spatial effects and trends previously observed (author)

  17. Neutronic calculation of safety parameters for the RP-0 and RP-10 nuclear reactors

    OpenAIRE

    Lázaro, Gerardo; Deen, James R.; Woodruff, William L.

    2002-01-01

    Theoretical safety calculations were done with proved codes utilized by the staff of the RERTR program in the HEU to LEU core conversions. The studies were designed to evaluate the reactivity coefficients and kinetics parameters of the reactor involved in the evolution of peak power transients by reactivity insertion accidents. It was done to show the trend of these reactivity coefficients as a function of the core size and fuel depletion for RP10 cores. It was useful to get a better underst...

  18. Nuclear engineering laboratory self regulated power oscillation experiments at the Health Physics Research Reactor

    International Nuclear Information System (INIS)

    Miller, L.F.; Mihalczo, J.T.; Bailiff, E.G.; Woody, N.D.; Gardner, G.D.

    1983-01-01

    Self regulated power oscillation experiments with a variety of initial conditions have been performed with the ORNL Health Physics Research Reactor (HPRR) by undergraduate nuclear engineering students from The University of Tennessee for several years. These experiments demonstrate the coupling between reactor kinetics and heat transfer and show how the temperature coefficient of reactivity affects reactor behavior. A model that consists of several coupled first order nonlinear differential equations is used to calculate the temperature of the core center and surface and power as a function of time which are compared with the experimental data; also, the model is also used to study the effects of various model parameters and initial conditions on the amplitude, frequency and damping of the power and temperature oscillations. A previous paper presented some limited experimental results and demonstrated the correspondence between a simple point model and the experimental data. This paper presents the results of experiments for: (1) the initial power fixed at 9 kW with central core temperatures of 300 0 F and 500 0 F, annd (2) the initial central core temperature fixed at 500 0 F with initial powers of 6 and 8 kW

  19. Hardrock Elastic Physical Properties: Birch's Seismic Parameter Revisited

    Science.gov (United States)

    Wu, M.; Milkereit, B.

    2014-12-01

    Identifying rock composition and properties is imperative in a variety of fields including geotechnical engineering, mining, and petroleum exploration, in order to accurately make any petrophysical calculations. Density is, in particular, an important parameter that allows us to differentiate between lithologies and estimate or calculate other petrophysical properties. It is well established that compressional and shear wave velocities of common crystalline rocks increase with increasing densities (i.e. the Birch and Nafe-Drake relationships). Conventional empirical relations do not take into account S-wave velocity. Physical properties of Fe-oxides and massive sulfides, however, differ significantly from the empirical velocity-density relationships. Currently, acquiring in-situ density data is challenging and problematic, and therefore, developing an approximation for density based on seismic wave velocity and elastic moduli would be beneficial. With the goal of finding other possible or better relationships between density and the elastic moduli, a database of density, P-wave velocity, S-wave velocity, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio was compiled based on a multitude of lab samples. The database is comprised of isotropic, non-porous metamorphic rock. Multi-parameter cross plots of the various elastic parameters have been analyzed in order to find a suitable parameter combination that reduces high density outliers. As expected, the P-wave velocity to S-wave velocity ratios show no correlation with density. However, Birch's seismic parameter, along with the bulk modulus, shows promise in providing a link between observed compressional and shear wave velocities and rock densities, including massive sulfides and Fe-oxides.

  20. ANALYSIS THE DIURNAL VARIATIONS ON SELECTED PHYSICAL AND PHYSIOLOGICAL PARAMETERS

    Directory of Open Access Journals (Sweden)

    A. MAHABOOBJAN

    2010-12-01

    Full Text Available The purpose of the study was to analyze the diurnal variations on selected physical and physiological parameters such as speed, explosive power, resting heart rate and breath holding time among college students. To achieve the purpose of this study, a total of twenty players (n=20 from Government Arts College, Salem were selected as subjects To study the diurnal variation of the players on selected physiological and performance variables, the data were collected 4 times a day with every four hours in between the times it from 6.00 to 18.00 hours were selected as another categorical variable. One way repeated measures (ANOVA was used to analyze the data. If the obtained F-ratio was significant, Seheffe’s post-hoc test was used to find out the significant difference if anyamong the paired means. The level of significance was fixed at.05 level. It has concluded that both physical and physiological parameters were significantly deferred with reference to change of temperature in a day

  1. Modelling of slaughterhouse solid waste anaerobic digestion: determination of parameters and continuous reactor simulation.

    Science.gov (United States)

    López, Iván; Borzacconi, Liliana

    2010-10-01

    A model based on the work of Angelidaki et al. (1993) was applied to simulate the anaerobic biodegradation of ruminal contents. In this study, two fractions of solids with different biodegradation rates were considered. A first-order kinetic was used for the easily biodegradable fraction and a kinetic expression that is function of the extracellular enzyme concentration was used for the slowly biodegradable fraction. Batch experiments were performed to obtain an accumulated methane curve that was then used to obtain the model parameters. For this determination, a methodology derived from the "multiple-shooting" method was successfully used. Monte Carlo simulations allowed a confidence range to be obtained for each parameter. Simulations of a continuous reactor were performed using the optimal set of model parameters. The final steady-states were determined as functions of the operational conditions (solids load and residence time). The simulations showed that methane flow peaked at a flow rate of 0.5-0.8 Nm(3)/d/m(reactor)(3) at a residence time of 10-20 days. Simulations allow the adequate selection of operating conditions of a continuous reactor. (c) 2010 Elsevier Ltd. All rights reserved.

  2. Multi-objective genetic algorithm parameter estimation in a reduced nuclear reactor model

    Energy Technology Data Exchange (ETDEWEB)

    Marseguerra, M.; Zio, E.; Canetta, R. [Polytechnic of Milan, Dept. of Nuclear Engineering, Milano (Italy)

    2005-07-01

    The fast increase in computing power has rendered, and will continue to render, more and more feasible the incorporation of dynamics in the safety and reliability models of complex engineering systems. In particular, the Monte Carlo simulation framework offers a natural environment for estimating the reliability of systems with dynamic features. However, the time-integration of the dynamic processes may render the Monte Carlo simulation quite burdensome so that it becomes mandatory to resort to validated, simplified models of process evolution. Such models are typically based on lumped effective parameters whose values need to be suitably estimated so as to best fit to the available plant data. In this paper we propose a multi-objective genetic algorithm approach for the estimation of the effective parameters of a simplified model of nuclear reactor dynamics. The calibration of the effective parameters is achieved by best fitting the model responses of the quantities of interest to the actual evolution profiles. A case study is reported in which the real reactor is simulated by the QUAndry based Reactor Kinetics (Quark) code available from the Nuclear Energy Agency and the simplified model is based on the point kinetics approximation to describe the neutron balance in the core and on thermal equilibrium relations to describe the energy exchange between the different loops. (authors)

  3. Multi-objective genetic algorithm parameter estimation in a reduced nuclear reactor model

    International Nuclear Information System (INIS)

    Marseguerra, M.; Zio, E.; Canetta, R.

    2005-01-01

    The fast increase in computing power has rendered, and will continue to render, more and more feasible the incorporation of dynamics in the safety and reliability models of complex engineering systems. In particular, the Monte Carlo simulation framework offers a natural environment for estimating the reliability of systems with dynamic features. However, the time-integration of the dynamic processes may render the Monte Carlo simulation quite burdensome so that it becomes mandatory to resort to validated, simplified models of process evolution. Such models are typically based on lumped effective parameters whose values need to be suitably estimated so as to best fit to the available plant data. In this paper we propose a multi-objective genetic algorithm approach for the estimation of the effective parameters of a simplified model of nuclear reactor dynamics. The calibration of the effective parameters is achieved by best fitting the model responses of the quantities of interest to the actual evolution profiles. A case study is reported in which the real reactor is simulated by the QUAndry based Reactor Kinetics (Quark) code available from the Nuclear Energy Agency and the simplified model is based on the point kinetics approximation to describe the neutron balance in the core and on thermal equilibrium relations to describe the energy exchange between the different loops. (authors)

  4. Calculation of kinetic parameters of Caliban metallic core experimental reactor from stochastic neutron measurements

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N.; Baud, J. [Commissariat a l' energie Atomique, Centre de Valduc, 21120 Is-sur-Tille (France)

    2009-07-01

    Several experimental devices are operated by the Criticality and Neutron Science Research Department of the CEA Valduc Laboratory. One of these is the metallic core reactor Caliban. The knowledge of the fundamental kinetic parameters of the reactor is very useful, indeed necessary, to the operator. The purpose of this study was to develop and perform experiments allowing to determinate some of these parameters. The prompt neutron decay constant and particularly its value at criticality can be measured with reactor noise techniques such as the interval-distribution, the Feynman variance-to-mean, and the Rossi-{alpha} methods. By introducing the Nelson number, the effective delayed neutron fraction and the average neutron lifetime can also be calculated with the Rossi-{alpha} method. Subcritical, critical, and even supercritical experiments were performed. With the Rossi-{alpha} technique, it was found that the prompt neutron decay constant at criticality was (6.02*10{sup 5} {+-} 9%). Experiments also brought out the limitations of the used experimental parameters. (authors)

  5. Optimization of operating parameters in polysilicon chemical vapor deposition reactor with response surface methodology

    Science.gov (United States)

    An, Li-sha; Liu, Chun-jiao; Liu, Ying-wen

    2018-05-01

    In the polysilicon chemical vapor deposition reactor, the operating parameters are complex to affect the polysilicon's output. Therefore, it is very important to address the coupling problem of multiple parameters and solve the optimization in a computationally efficient manner. Here, we adopted Response Surface Methodology (RSM) to analyze the complex coupling effects of different operating parameters on silicon deposition rate (R) and further achieve effective optimization of the silicon CVD system. Based on finite numerical experiments, an accurate RSM regression model is obtained and applied to predict the R with different operating parameters, including temperature (T), pressure (P), inlet velocity (V), and inlet mole fraction of H2 (M). The analysis of variance is conducted to describe the rationality of regression model and examine the statistical significance of each factor. Consequently, the optimum combination of operating parameters for the silicon CVD reactor is: T = 1400 K, P = 3.82 atm, V = 3.41 m/s, M = 0.91. The validation tests and optimum solution show that the results are in good agreement with those from CFD model and the deviations of the predicted values are less than 4.19%. This work provides a theoretical guidance to operate the polysilicon CVD process.

  6. Sensitiveness Analysis of Neutronic Parameters Due to Uncertainty in Thermo-hydraulic parameters on CAREM-25 Reactor

    International Nuclear Information System (INIS)

    Serra, Oscar

    2000-01-01

    Some studies were done about the effect of the uncertainty in the values of several thermo-hydraulic parameters on the core behaviour of the CAREM-25 reactor.By using the chain codes CITVAP-THERMIT and the perturbation the reference states, it was found that concerning to the total power, the effects were not very important, but were much bigger for the pressure.Furthermore were hardly significant in the presence of any perturbation on the void fraction calculation and the fuel temperature.The reactivity and the power peaking factor had highly important changes in the case of the coolant flow.We conclude that the use of this procedure is adequate and useful to our purpose

  7. Development of nuclear methods for determining fluid-dynamic parameters in fluid catalyst cracking reactors

    International Nuclear Information System (INIS)

    Santos, V.A. dos; Dantas, C.C.

    1986-01-01

    Flow parameters of circulating fluidized bed in a simulated Fluid Catalyst Cracking reactor were determined by means of nuclear methods. The parameters were: residence time, density, inventory, circulation rate and radial distribution, for the catalyst; residence time for the gaseous phase. The nuclear methods where the gamma attenuation and the radiotracer. Two tracer techniques were developed, one for tagging of the catalyst by the 59 Fe as intrinsic tracer and another for tagging of the gaseous phase by the CH 3 82 Br as tracer. A detailed description of each measuring technique for all the investigated parameters is included. To carry out the determination for some of parameters a combination of the two methods was also applied. The results and the nuclear data are given in a table. (Author) [pt

  8. Reactor physics tests and benchmark analyses of STACY

    International Nuclear Information System (INIS)

    Miyoshi, Yoshinori; Umano, Takuya

    1996-01-01

    The Static Experiment Critical Facility, STACY in the Nuclear Fuel Cycle Safety Engineering Research Facility, NUCEF is a solution type critical facility to accumulate fundamental criticality data on uranyl nitrate solution, plutonium nitrate solution and their mixture. A series of critical experiments have been performed for 10 wt% enriched uranyl nitrate solution using a cylindrical core tank. In these experiments, systematic data of the critical height, differential reactivity of the fuel solution, kinetic parameter and reactor power were measured with changing the uranium concentration of the fuel solution from 313 gU/l to 225 gU/l. Critical data through the first series of experiments for the basic core are reported in this paper for evaluating the accuracy of the criticality safety calculation codes. Benchmark calculations of the neutron multiplication factor k eff for the critical condition were made using a neutron transport code TWOTRAN in the SRAC system and a continuous energy Monte Carlo code MCNP 4A with a Japanese evaluated nuclear data library, JENDL 3.2. (J.P.N.)

  9. Physics methods for calculating light water reactor increased performances

    International Nuclear Information System (INIS)

    Vandenberg, C.; Charlier, A.

    1988-01-01

    The intensive use of light water reactors (LWRs) has induced modification of their characteristics and performances in order to improve fissile material utilization and to increase their availability and flexibility under operation. From the conceptual point of view, adequate methods must be used to calculate core characteristics, taking into account present design requirements, e.g., use of burnable poison, plutonium recycling, etc. From the operational point of view, nuclear plants that have been producing a large percentage of electricity in some countries must adapt their planning to the need of the electrical network and operate on a load-follow basis. Consequently, plant behavior must be predicted and accurately followed in order to improve the plant's capability within safety limits. The Belgonucleaire code system has been developed and extensively validated. It is an accurate, flexible, easily usable, fast-running tool for solving the problems related to LWR technology development. The methods and validation of the two computer codes LWR-WIMS and MICROLUX, which are the main components of the physics calculation system, are explained

  10. Modelling of thermalhydraulics and reactor physics in simulators

    International Nuclear Information System (INIS)

    Miettinen, J.

    1994-01-01

    The evolution of thermalhydraulic analysis methods for analysis and simulator purposes has brought closer the thermohydraulic models in both application areas. In large analysis codes like RELAP5, TRAC, CATHARE and ATHLET the accuracy for calculating complicated phenomena has been emphasized, but in spite of large development efforts many generic problems remain unsolved. For simulator purposes fast running codes have been developed and these include only limited assessment efforts. But these codes have more simulator friendly features than large codes, like portability and modular code structure. In this respect the simulator experiences with SMABRE code are discussed. Both large analysis codes and special simulator codes have their advances in simulator applications. The evolution of reactor physical calculation methods in simulator applications has started from simple point kinetic models. For analysis purposes accurate 1-D and 3-D codes have been developed being capable for fast and complicated transients. For simulator purposes capability for simulation of instruments has been emphasized, but the dynamic simulation capability has been less significant. The approaches for 3-dimensionality in simulators requires still quite much development, before the analysis accuracy is reached. (orig.) (8 refs., 2 figs., 2 tabs.)

  11. KAMCCO, a reactor physics Monte Carlo neutron transport code

    International Nuclear Information System (INIS)

    Arnecke, G.; Borgwaldt, H.; Brandl, V.; Lalovic, M.

    1976-06-01

    KAMCCO is a 3-dimensional reactor Monte Carlo code for fast neutron physics problems. Two options are available for the solution of 1) the inhomogeneous time-dependent neutron transport equation (census time scheme), and 2) the homogeneous static neutron transport equation (generation cycle scheme). The user defines the desired output, e.g. estimates of reaction rates or neutron flux integrated over specified volumes in phase space and time intervals. Such primary quantities can be arbitrarily combined, also ratios of these quantities can be estimated with their errors. The Monte Carlo techniques are mostly analogue (exceptions: Importance sampling for collision processes, ELP/MELP, Russian roulette and splitting). Estimates are obtained from the collision and track length estimators. Elastic scattering takes into account first order anisotropy in the center of mass system. Inelastic scattering is processed via the evaporation model or via the excitation of discrete levels. For the calculation of cross sections, the energy is treated as a continuous variable. They are computed by a) linear interpolation, b) from optionally Doppler broadened single level Breit-Wigner resonances or c) from probability tables (in the region of statistically distributed resonances). (orig.) [de

  12. Redundant and physical black hole parameters: Is there an independent physical dilaton charge?

    Directory of Open Access Journals (Sweden)

    K. Hajian

    2017-05-01

    Full Text Available Black holes as solutions to gravity theories, are generically identified by a set of parameters. Some of these parameters are associated with black hole physical conserved charges, like ADM charges. There can also be some “redundant parameters.” We propose necessary conditions for a parameter to be physical. The conditions are essentially integrability and non-triviality of the charge variations arising from “parametric variations,” variation of the solution with respect to the chosen parameters. In addition, we prove that variation of the redundant parameters which do not meet our criteria do not appear in the first law of thermodynamics. As an interesting application, we show that dilaton moduli are redundant parameters for black hole solutions to Einstein–Maxwell–(Axion–Dilaton theories, because variations in dilaton moduli would render entropy, mass, electric charges or angular momenta non-integrable. Our results are in contrast with modification of the first law due to scalar charges suggested in Gibbons–Kallosh–Kol paper [1] and its follow-ups. We also briefly discuss implications of our results for the attractor behavior of extremal black holes.

  13. Redundant and physical black hole parameters: Is there an independent physical dilaton charge?

    Energy Technology Data Exchange (ETDEWEB)

    Hajian, K., E-mail: kamalhajian@ipm.ir; Sheikh-Jabbari, M.M., E-mail: jabbari@theory.ipm.ac.ir

    2017-05-10

    Black holes as solutions to gravity theories, are generically identified by a set of parameters. Some of these parameters are associated with black hole physical conserved charges, like ADM charges. There can also be some “redundant parameters.” We propose necessary conditions for a parameter to be physical. The conditions are essentially integrability and non-triviality of the charge variations arising from “parametric variations,” variation of the solution with respect to the chosen parameters. In addition, we prove that variation of the redundant parameters which do not meet our criteria do not appear in the first law of thermodynamics. As an interesting application, we show that dilaton moduli are redundant parameters for black hole solutions to Einstein–Maxwell–(Axion)–Dilaton theories, because variations in dilaton moduli would render entropy, mass, electric charges or angular momenta non-integrable. Our results are in contrast with modification of the first law due to scalar charges suggested in Gibbons–Kallosh–Kol paper and its follow-ups. We also briefly discuss implications of our results for the attractor behavior of extremal black holes.

  14. Health physics aspects of advanced reactor licensing reviews

    International Nuclear Information System (INIS)

    Hinson, C.S.

    1995-01-01

    The last Construction Permit to be issued by the U.S. Nuclear Regulatory Commission (NRC) for a U.S. light water reactor (LWR) was granted in the late 1970s. In 1989 the NRC issued 10 CFR Part 52 which is intended to serve as a framework for the licensing of future reactor designs. The NRC is currently reviewing four different future on open-quotes next-generationclose quotes reactor designs. Two of these designs are classified as evolutionary designs (modified versions of current generation LWRs) and two are advanced designs (reactors incorporating simplified designs and passive means for accident mitigation). These open-quotes next-generationclose quotes reactor designs incorporate many innovative design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four open-quotes next-generationclose quotes reactor designs incorporate many innovative design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four open-quotes next-generationclose quotes reactor designs currently being reviewed by the NRC

  15. Health physics aspects of advanced reactor licensing reviews

    Energy Technology Data Exchange (ETDEWEB)

    Hinson, C.S. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-03-01

    The last Construction Permit to be issued by the U.S. Nuclear Regulatory Commission (NRC) for a U.S. light water reactor (LWR) was granted in the late 1970s. In 1989 the NRC issued 10 CFR Part 52 which is intended to serve as a framework for the licensing of future reactor designs. The NRC is currently reviewing four different future on {open_quotes}next-generation{close_quotes} reactor designs. Two of these designs are classified as evolutionary designs (modified versions of current generation LWRs) and two are advanced designs (reactors incorporating simplified designs and passive means for accident mitigation). These {open_quotes}next-generation{close_quotes} reactor designs incorporate many innovative design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four {open_quotes}next-generation{close_quotes} reactor designs incorporate many innovative design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four {open_quotes}next-generation{close_quotes} reactor designs currently being reviewed by the NRC.

  16. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bostelmann, F. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on

  17. Operational parameters study of IPR-R1 TRIGA research reactor using virtual instruments

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Lameiras, Fernando Soares, E-mail: ajp@cdtn.br, E-mail: amir@cdtn.br, E-mail: fsl@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The instrumentation of nuclear reactors is designed with the principle of reliability, redundancy and diversification of control systems. Reliable monitoring of the parameters involved in the chain reaction is of great importance regarding efficiency and operational safety of the installation. The main goal of the simulation system in this proposed paper is to provide the study and improvement in understanding how these operational variables are interrelated and their behavior especially those related to neutronic and thermohydraulics. The work will be developed using the software LabVIEW ® (Laboratory Virtual Instruments Engineering Workbench). The program will enable the study of the variables involved in the operation of the installation throughout its operating range, for instance, a few mW up to 250 kW. The IPR-R1 TRIGA is a research nuclear reactor placed in open pool and cooled by light water with natural circulation. It is located at the Nuclear Technology Development Center (CDTN), in Belo Horizonte Brazil. The developing system employs the modern concept of virtual instruments (VIs), using microprocessors and visual interface on video monitors. LabVIEW ® breaks the paradigm of text-based programming language, for programming based on icons. The system will enable the use of this reactor in training and personnel training in the nuclear field. The work follows the recommendations of the International Atomic Energy Agency (IAEA), which has encouraged its members to develop strategic plans in order to use their research reactors. (author)

  18. Operational parameters study of IPR-R1 TRIGA research reactor using virtual instruments

    International Nuclear Information System (INIS)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Lameiras, Fernando Soares

    2013-01-01

    The instrumentation of nuclear reactors is designed with the principle of reliability, redundancy and diversification of control systems. Reliable monitoring of the parameters involved in the chain reaction is of great importance regarding efficiency and operational safety of the installation. The main goal of the simulation system in this proposed paper is to provide the study and improvement in understanding how these operational variables are interrelated and their behavior especially those related to neutronic and thermohydraulics. The work will be developed using the software LabVIEW ® (Laboratory Virtual Instruments Engineering Workbench). The program will enable the study of the variables involved in the operation of the installation throughout its operating range, for instance, a few mW up to 250 kW. The IPR-R1 TRIGA is a research nuclear reactor placed in open pool and cooled by light water with natural circulation. It is located at the Nuclear Technology Development Center (CDTN), in Belo Horizonte Brazil. The developing system employs the modern concept of virtual instruments (VIs), using microprocessors and visual interface on video monitors. LabVIEW ® breaks the paradigm of text-based programming language, for programming based on icons. The system will enable the use of this reactor in training and personnel training in the nuclear field. The work follows the recommendations of the International Atomic Energy Agency (IAEA), which has encouraged its members to develop strategic plans in order to use their research reactors. (author)

  19. Determination of the kinetic parameters of the CALIBAN metallic core reactor from stochastic neutron measurements

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N.; Chapelle, A. [Commissariat a l' Energie Atomique et Aux Energies Alternatives, CEA, DAM, F-21120 Is sur Tille (France)

    2012-07-01

    Several experimental devices are operated by the Criticality and Neutron Science Research Dept. of the CEA Valduc Laboratory. One of these is the Caliban metallic core reactor. The purpose of this study is to develop and perform experiments allowing to determinate some of fundamental kinetic parameters of the reactor. The prompt neutron decay constant and particularly its value at criticality can be measured with reactor noise techniques such as Rossi-{alpha} and Feynman variance-to-mean methods. Subcritical, critical, and even supercritical experiments were performed. Fission chambers detectors were put nearby the core and measurements were analyzed with the Rossi-{alpha} technique. A new value of the prompt neutron decay constant at criticality was determined, which allows, using the Nelson number method, new evaluations of the effective delayed neutron fraction and the in core neutron lifetime. As an introduction of this paper, some motivations of this work are given in part 1. In part 2, principles of the noise measurements experiments performed at the CEA Valduc Laboratory are reminded. The Caliban reactor is described in part 3. Stochastic neutron measurements analysis techniques used in this study are then presented in part 4. Results of fission chamber experiments are summarized in part 5. Part 6 is devoted to the current work, improvement of the experimental device using He 3 neutron detectors and first results obtained with it. Finally, conclusions and perspectives are given in part 7. (authors)

  20. Heavy water reactors physics; Physique des reacteurs a eau lourde

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Y; Lourme, P; Naudet, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    An important research programme on heavy water reactor physics has been carried out in France for quite a few years. The decision to build the EL 4 prototype and so to choose the heavy water gas cooled type has renewed the interest in this programme and at the same time given to it a more specific orientation A summary of the results gained in this field is presented in this paper. In the first part are described the experimental investigations, most of them were carried out in the criticality facility AQUILON II. The experiments are grouped in four parts - Systematic studies of lattices Buckling measurements. - Specific studies of gas-cooled lattices. - Fine structure, spectral indices measurements etc... - Measurements on lattices or samples containing Uranium of various enrichment or Plutonium. The second part is devoted to a summary of the theoretical studies. The whole results have allowed an improvement of the calculation methods, have led to a better understanding of the neutron balance in lattices, and have permitted the establishment of a set of formula to predict not only the clean fuel conditions but also the evolution of the nuclear properties with irradiation. Some specific studies on power reactor are quoted. (authors) [French] Un important programme d'etudes sur la physique des reacteurs a eau lourde est mene en France depuis assez longtemps. La decision de construire le prototype EL 4 et de s'engager ainsi dans la filiere des reacteurs a eau lourde refroidis par gaz a redonne un nouvel interet a ce programme et l'a en meme temps oriente dans une direction plus particuliere. La presente communication, rassemble les resultats des etudes faites dans ce domaine depuis la derniere conference de Geneve. Dans la premiere partie on decrit les etudes experimentales dont la plupart ont ete effectuees dans la pile d'experiences critiques Aquilon II. Les experiences sont groupees en quatre ensembles: etude systematique de reseaux (mesures de laplaciens) etudes

  1. Status Report on Scoping Reactor Physics and Sensitivity/Uncertainty Analysis of LR-0 Reactor Molten Salt Experiments

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Mueller, Donald E.; Patton, Bruce W.; Powers, Jeffrey J.

    2016-01-01

    Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 "7LiF-BeF_2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.

  2. Status Report on Scoping Reactor Physics and Sensitivity/Uncertainty Analysis of LR-0 Reactor Molten Salt Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Mueller, Donald E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-08-31

    Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 7LiF-BeF2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.

  3. Sensitivity analysis of reactor safety parameters with automated adjoint function generation

    International Nuclear Information System (INIS)

    Kallfelz, J.M.; Horwedel, J.E.; Worley, B.A.

    1992-01-01

    A project at the Paul Scherrer Institute (PSI) involves the development of simulation models for the transient analysis of the reactors in Switzerland (STARS). This project, funded in part by the Swiss Federal Nuclear Safety Inspectorate, also involves the calculation and evaluation of certain transients for Swiss light water reactors (LWRs). For best-estimate analyses, a key element in quantifying reactor safety margins is uncertainty evaluation to determine the uncertainty in calculated integral values (responses) caused by modeling, calculational methodology, and input data (parameters). The work reported in this paper is a joint PSI/Oak Ridge National Laboratory (ORNL) application to a core transient analysis code of an ORNL software system for automated sensitivity analysis. The Gradient-Enhanced Software System (GRESS) is a software package that can in principle enhance any code so that it can calculate the sensitivity (derivative) to input parameters of any integral value (response) calculated in the original code. The studies reported are the first application of the GRESS capability to core neutronics and safety codes

  4. On Input Vector Representation for the SVR model of Reactor Core Loading Pattern Critical Parameters

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2008-01-01

    Determination and optimization of reactor core loading pattern is an important factor in nuclear power plant operation. The goal is to minimize the amount of enriched uranium (fresh fuel) and burnable absorbers placed in the core, while maintaining nuclear power plant operational and safety characteristics. The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. Recently, we proposed a new method for fast loading pattern evaluation based on general robust regression model relying on the state of the art research in the field of machine learning. We employed Support Vector Regression (SVR) technique. SVR is a supervised learning method in which model parameters are automatically determined by solving a quadratic optimization problem. The preliminary tests revealed a good potential of the SVR method application for fast and accurate reactor core loading pattern evaluation. However, some aspects of model development are still unresolved. The main objective of the work reported in this paper was to conduct additional tests and analyses required for full clarification of the SVR applicability for loading pattern evaluation. We focused our attention on the parameters defining input vector, primarily its structure and complexity, and parameters defining kernel functions. All the tests were conducted on the NPP Krsko reactor core, using MCRAC code for the calculation of reactor core loading pattern critical parameters. The tested input vector structures did not influence the accuracy of the models suggesting that the initially tested input vector, consisted of the number of IFBAs and the k-inf at the beginning of the cycle, is adequate. The influence of kernel function specific parameters (σ for RBF kernel

  5. Standard model parameters and the search for new physics

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1988-04-01

    In these lectures, my aim is to present an up-to-date status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows: I discuss the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also briefly commented on. In addition, because these lectures are intended for students and thus somewhat pedagogical, I have included an appendix on dimensional regularization and a simple computational example that employs that technique. Next, I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, supersymmetry, extra Z/prime/ bosons, and compositeness are also discussed. I discuss weak neutral current phenomenology and the extraction of sin/sup 2/ /theta//sub W/ from experiment. The results presented there are based on a recently completed global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, and implications for grand unified theories (GUTS). The potential for further experimental progress is also commented on. I depart from the narrowest version of the standard model and discuss effects of neutrino masses and mixings. I have chosen to concentrate on oscillations, the Mikheyev-Smirnov- Wolfenstein (MSW) effect, and electromagnetic properties of neutrinos. On the latter topic, I will describe some recent work on resonant spin-flavor precession. Finally, I conclude with a prospectus on hopes for the future. 76 refs

  6. Comparison of nuclear irradiation parameters of fusion breeder materials in high flux fission test reactors and a fusion power demonstration reactor

    International Nuclear Information System (INIS)

    Fischer, U.; Herring, S.; Hogenbirk, A.; Leichtle, D.; Nagao, Y.; Pijlgroms, B.J.; Ying, A.

    2000-01-01

    Nuclear irradiation parameters relevant to displacement damage and burn-up of the breeder materials Li 2 O, Li 4 SiO 4 and Li 2 TiO 3 have been evaluated and compared for a fusion power demonstration reactor and the high flux fission test reactor (HFR), Petten, the advanced test reactor (ATR, INEL) and the Japanese material test reactor (JMTR, JAERI). Based on detailed nuclear reactor calculations with the MCNP Monte Carlo code and binary collision approximation (BCA) computer simulations of the displacement damage in the polyatomic lattices with MARLOWE, it has been investigated how well the considered HFRs can meet the requirements for a fusion power reactor relevant irradiation. It is shown that a breeder material irradiation in these fission test reactors is well suited in this regard when the neutron spectrum is well tailored and the 6 Li-enrichment is properly chosen. Requirements for the relevant nuclear irradiation parameters such as the displacement damage accumulation, the lithium burn-up and the damage production function W(T) can be met when taking into account these prerequisites. Irradiation times in the order of 2-3 full power years are necessary for the HFR to achieve the peak values of the considered fusion power Demo reactor blanket with regard to the burn-up and, at the same time, the dpa accumulation

  7. Inspection methods for physical protection Task III review of other agencies' physical security activities for research reactors

    International Nuclear Information System (INIS)

    In Task I of this project, the current Nuclear Regulatory Commission (NRC) position-on physical security practices and procedures at research reactors were reviewed. In the second task, a sampling of the physical security plans was presented and the three actual reactor sites described in the security plans were visited. The purpose of Task III is to review other agencies' physical security activities for research reactors. During this phase, the actions, procedures and policies of two domestic and two foreign agencies other than the NRC that relate to the research reactor community were examined. The agencies examined were: International Atomic Energy Agency; Canadian Atomic Energy Control Board; Department of Energy; and American Nuclear Insurers

  8. Dark energy and key physical parameters of clusters of galaxies

    Science.gov (United States)

    Bisnovatyi-Kogan, G. S.; Chernin, A. D.

    2012-04-01

    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.

  9. Berkeley Nuclear Laboratories Reactor Physics Mk. III Experimental Programme. Description of facility and programme for 1971

    Energy Technology Data Exchange (ETDEWEB)

    Nunn, R M; Waterson, R H; Young, J D

    1971-01-15

    Reactor physics experiments have been carried out at Berkeley Nuclear Laboratories during the past few years in support of the Civil Advanced Gas-Cooled Reactors (Mk. II) the Generating Board is building. These experiments are part of an overall programme whose objective is to assess the accuracy of the calculational methods used in the design and operation of these reactors. This report provides a description of the facility for the Mk. III experimental programme and the planned programme for 1971.

  10. Study of Fuel Rods Axial Enrichment Distribution Effect on the Neutronic Parameters of the Reactor Core

    International Nuclear Information System (INIS)

    Pazirandeh, A.; Nasiri, S. H.

    2012-01-01

    Optimization of the fuel burn up is an important issue in nuclear reactor fuel management and technology. Radial enrichment distribution in the reactor core is a conventional method and axial enrichment is constant along the fuel rod. In this article, the effects of axial enrichment distribution variation on neutronic parameters of PWR core are studied. The axial length of the core is divided into ten sections, considering axial enrichment variation and leaving the existing radial enrichment distribution intact. This study shows that the radial and axial power peaking factors are decreased as compared with the typical conventional core. In addition, the first core lifetime lasts 30 days longer than normal PWR core. Moreover, at the same time boric acid density is 0.2 g/kg at the beginning of the cycle. The flux shape is also flat at the beginning of the cycle for the proposed configuration of the axially enrichment distribution.

  11. Measures of the zero power nuclear reactor's kinetic parameters with application of noise analysis

    International Nuclear Information System (INIS)

    Martins, F.R.

    1992-01-01

    The purpose of this work was to establish an experimental technique based on noise analysis for measuring the ratio of kinetic parameters β/ Λ and the power of the Zero Power Nuclear Reactor IPEN-MB 01. A through study of the microscopic and macroscopic noise analysis techniques has been carried out. The Langevin technique and the point kinetic model were chosen to describe the stochastic phenomena that occur in the zero power reactor. Measurements have been made using two compensated ionization chambers localized in the water reflector at symmetric positions in order to minimize spatial effects on the neutron flux fluctuation. Power calibrations based on the low frequency plateau of the cross-power spectral density has also been carried out. (author)

  12. Safety Parameters for the Recycled Uranium Loaded into a CANDU Reactor

    International Nuclear Information System (INIS)

    Park, Chang Je; Kang, Kweon Ho; Na, Sang Ho; Kim, Young Hee; Ryu, Ho Jin; Park, Geun Il; Song, Kee Chan

    2008-01-01

    In order to recover uranium and TRU from spent nuclear fuels, a pyroprocessing has been developed through a dry and metallurgical reprocess technology using a series of electrolyses such as an electro-reduction, an electro-refining, and an electro-winning. When the spent fuel is being fed into the pyroprocess, most of the uranium is gathered in metallic form around a solid cathode during an electro-refining process. It is expected that the recovered uranium will be sent to a spent fuel storage site after converting it into a metal ingot form to reduce its storage space and transportation burden. However, the weight percent of U-235 in the recovered uranium is about 0.9 wt% and it is sufficiently re-utilized in a heavy water reactor which uses a natural uranium fuel. The reuse of recovered uranium will bring not only a huge economical profit and save of uranium resources but also an alleviation of burden on the management and disposal of the spent fuel. A previous research on recycling of recovered uranium was carried out and most of the recovered uranium was assumed to be imported from abroad at that time. The preliminary results showed there is a sufficient possibility to recycle recovered uranium in terms of a reactor's characteristics as well as the fuel performance. And the DUPIC (direct use of spent pressurized water reactor fuel into CANDU reactor) program has also been performed and demonstrated the fundamental technologies. The recovered uranium from a pyroprocess contains some TRU as an impurity and it will exhibit a slightly different behavior from the previous recycling options. In this paper, the reactor's characteristics including safety parameters are investigated based on the lattice calculations which are performed for the CANFELX bundle

  13. Blackness coefficients, effective diffusion parameters, and control rod worths for thermal reactors - Methods

    Energy Technology Data Exchange (ETDEWEB)

    Bretscher, M M [Argonne National Laboratory, Argonne, IL 60439 (United States)

    1985-07-01

    Simple diffusion theory cannot be used to evaluate control rod worths in thermal neutron reactors because of the strongly absorbing character of the control material. However, reliable control rod worths can be obtained within the framework of diffusion theory if the control material is characterized by a set of mesh-dependent effective diffusion parameters. For thin slab absorbers the effective diffusion parameters can be expressed as functions of a suitably-defined pair of 'blackness coefficients'. Methods for calculating these blackness coefficients in the P1, P3, and P5 approximations, with and without scattering, are presented. For control elements whose geometry does not permit a thin slab treatment, other methods are needed for determining the effective diffusion parameters. One such method, based on reaction rate ratios, is discussed. (author)

  14. 78 FR 50313 - Physical Protection of Irradiated Reactor Fuel in Transit

    Science.gov (United States)

    2013-08-19

    ... Irradiated Reactor Fuel in Transit AGENCY: Nuclear Regulatory Commission. ACTION: Orders; rescission. SUMMARY... the NRC published a final rule, ``Physical Protection of Irradiated Fuel in Transit,'' on May 20, 2013... of Irradiated Reactor Fuel in Transit'' (RIN 3150-AI64; NRC-2009-0163). The final rule incorporates...

  15. 78 FR 69139 - Physical Security-Design Certification and Operating Reactors

    Science.gov (United States)

    2013-11-18

    ... Operating Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Standard review plan--draft section..., ``Physical Security--Design Certification and Operating Reactors.'' The public comment period was originally....regulations.gov and search for Docket ID NRC-2013-0225. Address questions about NRC dockets to Carol Gallagher...

  16. The development of the physical conceptions of the FBR type reactors control methods

    International Nuclear Information System (INIS)

    Matveev, V.I.; Ivanov, A.P.

    1984-01-01

    The physical concepts and specific problems of the control elements for LMFBR type reactors are discussed in this paper. Typical temperature coefficient of reactivity, its dependency on reactor power and burnup level are given. The authors give us the most advisable methods of the reactivity coefficient compensation

  17. Determination of welding parameters for execution of weld overlayer on PWR nuclear reactor nozzles

    International Nuclear Information System (INIS)

    Ribeiro, Gabriela M.; Lima, Luciana I.; Quinan, Marco A.; Schvartzman, Monica M.

    2009-01-01

    In the PWR reactors, nickel based dissimilar welds have been presented susceptibilities the stress corrosion (S C). For the mitigation the problem a deposition of weld layers on the external surface of the nozzle is an alternative, viewing to provoke the compression of the region subjected to S C. This paper presents a preliminary study on the determination of welding parameters to obtain these welding overlayers. Welding depositions were performed on a test piece welded with nickel 182 alloy, simulating the conditions of a nozzle used in a PWR nuclear power plant. The welding process was the GTAW (Gas Tungsten Arc Welding), and a nickel 52 alloy as addition material. The overlayers were performed on the base metals, carbon steel an stainless steel, changing the welding parameters and verifying the the time of each weld filet. After that, the samples were micro structurally characterized. The macro structures and the microstructures obtained through optical microscopy and Vickers microhardness are presented. The preliminary results make evident the good weld quality. However, a small weld parameters influence used in the base material microstructure (carbon steel and stainless steel). The obtained results in this study will be used as reference in the construction of a mock up which will simulate all the conditions of a pressurizer nozzle of PWR reactor

  18. Sensitivity Analysis of Core Neutronic Parameters in Electron Accelerator-driven Subcritical Advanced Liquid Metal Reactor

    Directory of Open Access Journals (Sweden)

    Marziye Ebrahimkhani

    2016-02-01

    Full Text Available Calculation of the core neutronic parameters is one of the key components in all nuclear reactors. In this research, the energy spectrum and spatial distribution of the neutron flux in a uranium target have been calculated. In addition, sensitivity of the core neutronic parameters in accelerator-driven subcritical advanced liquid metal reactors, such as electron beam energy (Ee and source multiplication coefficient (ks, has been investigated. A Monte Carlo code (MCNPX_2.6 has been used to calculate neutronic parameters such as effective multiplication coefficient (keff, net neutron multiplication (M, neutron yield (Yn/e, energy constant gain (G0, energy gain (G, importance of neutron source (φ∗, axial and radial distributions of neutron flux, and power peaking factor (Pmax/Pave in two axial and radial directions of the reactor core for four fuel loading patterns. According to the results, safety margin and accelerator current (Ie have been decreased in the highest case of ks, but G and φ∗ have increased by 88.9% and 21.6%, respectively. In addition, for LP1 loading pattern, with increasing Ee from 100 MeV up to 1 GeV, Yn/e and G improved by 91.09% and 10.21%, and Ie and Pacc decreased by 91.05% and 10.57%, respectively. The results indicate that placement of the Np–Pu assemblies on the periphery allows for a consistent keff because the Np–Pu assemblies experience less burn-up.

  19. 10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.

    Science.gov (United States)

    2010-01-01

    ... fuel in transit. 73.37 Section 73.37 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.37 Requirements for physical protection of irradiated reactor fuel in transit. (a) Performance objectives. (1...

  20. Benchmarking lattice physics data and methods for boiling water reactor analysis

    International Nuclear Information System (INIS)

    Cacciapouti, R.J.; Edenius, M.; Harris, D.R.; Hebert, M.J.; Kapitz, D.M.; Pilat, E.E.; VerPlanck, D.M.

    1983-01-01

    The objective of the work reported was to verify the adequacy of lattice physics modeling for the analysis of the Vermont Yankee BWR using a multigroup, two-dimensional transport theory code. The BWR lattice physics methods have been benchmarked against reactor physics experiments, higher order calculations, and actual operating data

  1. Environmental parameters of the Tennessee River in Alabama. 2: Physical, chemical, and biological parameters. [biological and chemical effects of thermal pollution from nuclear power plants on water quality

    Science.gov (United States)

    Rosing, L. M.

    1976-01-01

    Physical, chemical and biological water quality data from five sites in the Tennessee River, two in Guntersville Reservoir and three in Wheeler Reservoir were correlated with climatological data for three annual cycles. Two of the annual cycles are for the years prior to the Browns Ferry Nuclear Power Plant operations and one is for the first 14 months of Plant operations. A comparison of the results of the annual cycles indicates that two distinct physical conditions in the reservoirs occur, one during the warm months when the reservoirs are at capacity and one during the colder winter months when the reservoirs have been drawn-down for water storage during the rainy months and for weed control. The wide variations of physical and chemical parameters to which the biological organisms are subjected on an annual basis control the biological organisms and their population levels. A comparison of the parameters of the site below the Power plant indicates that the heated effluent from the plant operating with two of the three reactors has not had any effect on the organisms at this site. Recommendations given include the development of prediction mathematical models (statistical analysis) for the physical and chemical parameters under specific climatological conditions which affect biological organisms. Tabulated data of chemical analysis of water and organism populations studied is given.

  2. Future view of total energy system and reactor engineering and reactor physics

    International Nuclear Information System (INIS)

    Ozawa, T.

    1974-01-01

    This paper outlines the present status of fission reactors and fusion reactors. The conversion ratio of light water reactors is 0.5, and the efficiency is 32% because of relatively low temperature. Both pressurized water reactors and boiling water reactors are technically well developed, their performances are well known, and the fuel cycle is well developed, so that both reactors have monopolized power reactor market. But the reprocessing of spent fuel and the treatment of their hazards are inevitable, and the construction and enlargement of reprocessing facilities are indispensable. In LMFBR's tight sealing is easy because they are non-pressurized, and the efficiency is 41%. But liquid sodium is strongly activated and recirculated, so that chemical obstruction due to the breakage of recirculating pumps, pipings, and heat exchangers may occur, and the hazard of plutonium is large. Regarding controlled thermo-nuclear fusion reactors, because Lawson criterion must be satisfied, two methods of plasma confinement are now experimented. One is the plasma confinement by strong magnetic field of 50 KG to 100 KG, and the other is the confinement by the implosion method with high-power laser beam. The latter has much more uncertainties than the former, but recently both methods have made much progress. (Tai, I)

  3. Research on acceleration method of reactor physics based on FPGA platforms

    International Nuclear Information System (INIS)

    Li, C.; Yu, G.; Wang, K.

    2013-01-01

    The physical designs of the new concept reactors which have complex structure, various materials and neutronic energy spectrum, have greatly improved the requirements to the calculation methods and the corresponding computing hardware. Along with the widely used parallel algorithm, heterogeneous platforms architecture has been introduced into numerical computations in reactor physics. Because of the natural parallel characteristics, the CPU-FPGA architecture is often used to accelerate numerical computation. This paper studies the application and features of this kind of heterogeneous platforms used in numerical calculation of reactor physics through practical examples. After the designed neutron diffusion module based on CPU-FPGA architecture achieves a 11.2 speed up factor, it is proved to be feasible to apply this kind of heterogeneous platform into reactor physics. (authors)

  4. Summary record of the 33. Meeting of NEA committee on reactor physics

    International Nuclear Information System (INIS)

    Martinelli, R.

    1991-01-01

    This paper is the summary record of the thirty-third meeting (Technical session) of the Nuclear Energy Agency Committee on Reactor Physics. A complete list of all the papers presented at this meeting is given in annex 4

  5. Design of data sampler in intelligent physical start-up system for nuclear reactor

    International Nuclear Information System (INIS)

    Wang Yinli; Ling Qiu

    2007-01-01

    It introduces the design of data sampler in intelligent physical start-up system for nuclear reactor. The hardware frame taking STμPSD3234A as the core and the firmware design based on USB interface are discussed. (authors)

  6. Reactor physics activities in NEA member countries October 1990-September 1991

    International Nuclear Information System (INIS)

    1991-01-01

    This document is a compilation of National Activity Reports presented at the Thirty-Fourth Meeting of the NEA Committee on Reactor Physics, held at the Paul Scherrer Institute, Wuerenlingen, Switzerland, from 3rd-5th September 1991

  7. Coast-down model based on rated parameters of reactor coolant pump

    International Nuclear Information System (INIS)

    Jiang Maohua; Zou Zhichao; Wang Pengfei; Ruan Xiaodong

    2014-01-01

    For a sudden loss of power in reactor coolant pump (RCP), a calculation model of rotor speed and flow characteristics based on rated parameters was studied. The derived model was verified by comparing with the power-off experimental data of 100D RCP. The results indicate that it can be used in preliminary design calculation and verification analysis. Then a design criterion of RCP was described based on the calculation model. The moment of inertia in AP1000 RCP was verified by this criterion. (authors)

  8. Usage properties of special steels for presurrized water reactors: influence of composition and of manufacturing parameters

    International Nuclear Information System (INIS)

    Seraphin, L.; Mathern, G.; Crolet, J.-L.; Tricot, R.

    1977-01-01

    The development of pressurized water reactor power stations has led to the choice of suitable materials either for the vessels or for the heat exchangers and auxiliary equipment (pumps for example). The most important problems to be solved, considering the low temperatures involved, concern embrittlement with time, and the different forms of corrosion. The quality of the tubes and plates is of primary importance, in particular as regards the absence of defects, the chemical integrity of the surface and the working properties such as weldability. The efforts of manufacturers to meet these different requirements are examined as regards analysis as well as manufacturing parameters and testing procedures [fr

  9. Calculation of neutronic parameters of IEA-R1 reactor and purpose of a new configuration

    International Nuclear Information System (INIS)

    Kosaka, N.; Fanaro, L.C.C.B.; Yamaguchi, M.

    1989-01-01

    The program for reducing the fuel enrichment of the IEA-R1 reactor considers fuel plates containing U308-AL with 19,9% of U-235. The geometry of the new 18 fuel plate fuel elements has been kept the same. This work describes the calculation methods utilized at IPEN-CNEN/SP and some neutronic parameters of the present configuration of IEA-R1 as well as for a new configuration porposed with a new LEU fuel element are shown. (author) [pt

  10. Health physics aspects of activation products from fusion reactors

    International Nuclear Information System (INIS)

    Shoup, R.L.; Poston, J.W.; Easterly, C.E.; Jacobs, D.G.

    1975-01-01

    A review of the activation products from fusion reactors and their attendant impacts is discussed. This includes a discussion on their production, expected inventories, and the status of metabolic data on these products

  11. The physics of accelerator driven sub-critical reactors

    Indian Academy of Sciences (India)

    Accelerator driven systems (ADS) are attracting worldwide attention .... The region of interest (or the entire reactor core) is divided into a suitable number ..... have also presented the status of the theoretical and experimental activities being.

  12. Impact of confinement physics on reactor design and economics

    International Nuclear Information System (INIS)

    DeFreece, D.A.; Campbell, R.B.; Waganer, L.M.

    1977-01-01

    A variety of confinement laws were employed in a transient, zero dimensional plasma code, which was coupled to the TOCOMO systems code. The purpose was to determine the impact of the confinement laws on reactor design, power costs and changes in the utility interface. A satisfactory reactor and power plant has been defined for the large majority of combinations of confinement law, power plant size and plasma shape. Trapped ion mode (TIM) has been the easiest to work with, since the plasma is thermally stable with a good power density and minimal alpha particle build up. Neoclassical and pseudoclassical along with TEMII result in satisfactory reactor performance, but require active feedback control (by injecting impurities) to prevent plasma temperature excursions. These laws also require some form and degree of confinement time spoiling to allow long burn times, otherwise, alpha particles build up to an unacceptable level. TEM I results in thermal equilibrium at 5 keV and must be driven to provide a reactor quality plasma. The continuous injected power required for a 4300 MW thermal reactor is 540 MW. This added to the other circulating loads results in a net power output of 600 MWe at a very high relative cost. Daughney (empirical) confinement results in a satisfactory, competitive reactor

  13. Test on the reactor with the portable digital reactivity meter for physical experiment

    International Nuclear Information System (INIS)

    Huang Liyuan

    2010-01-01

    Test must be performed on the zero power reactor During the development of portable digital reactivity meter for physical experiment, in order to check its measurement function and accuracy. It describes the test facility, test core, test methods, test items and test results. The test results show that the instrument satisfy the requirements of technical specification, and satisfy the reactivity measurement in the physical experiments on reactors. (authors)

  14. Study and application of digital physical start-up system for nuclear reactor

    International Nuclear Information System (INIS)

    Qu Ronghong; Li Baoxiang; Xu Xiaolin

    2004-01-01

    The digital physical start-up system for nuclear reactor is introduced. The system was used successfully in physical start-up experiment of 10 MW high-temperature gas-cooled reactor. It is proved practically that the system not only runs reliably and calculates both rapidly and correctly and relieves the loads of operators, but also has the better characters of monitoring and showing the real-time results of experiments than the analog systems. (author)

  15. Development of a compact digital reactivity meter and a reactor physics data processor

    International Nuclear Information System (INIS)

    Shimazu, Y.; Nakano, Y.; Tahara, Y.; Okayama, T.

    1987-01-01

    Reactor physics tests at initial startup and after refuelings are performed to verify the nuclear design and to assure safe operation. Analog computers and instruments are widely used for the acquisition of data, and these data are reduced by hand. These conventional procedures, however, require much time and labor. Since there has been great progress in the development of digital computers and devices, these procedures are digitalized, which successfully reduces the time and labor required for reactor physics tests

  16. Physical characteristics of GE [General Electric] BWR [boiling-water reactor] fuel assemblies

    International Nuclear Information System (INIS)

    Moore, R.S.; Notz, K.J.

    1989-06-01

    The physical characteristics of fuel assemblies manufactured by the General Electric Company for boiling-water reactors are classified and described. The classification into assembly types is based on the GE reactor product line, the Characteristics Data Base (CDB) assembly class, and the GE fuel design. Thirty production assembly types are identified. Detailed physical data are presented for each assembly type in an appendix. Descriptions of special (nonstandard) fuels are also reported. 52 refs., 1 fig., 6 tabs

  17. Sensitivity of risk parameters to human errors in reactor safety study for a PWR

    International Nuclear Information System (INIS)

    Samanta, P.K.; Hall, R.E.; Swoboda, A.L.

    1981-01-01

    Sensitivities of the risk parameters, emergency safety system unavailabilities, accident sequence probabilities, release category probabilities and core melt probability were investigated for changes in the human error rates within the general methodological framework of the Reactor Safety Study (RSS) for a Pressurized Water Reactor (PWR). Impact of individual human errors were assessed both in terms of their structural importance to core melt and reliability importance on core melt probability. The Human Error Sensitivity Assessment of a PWR (HESAP) computer code was written for the purpose of this study. The code employed point estimate approach and ignored the smoothing technique applied in RSS. It computed the point estimates for the system unavailabilities from the median values of the component failure rates and proceeded in terms of point values to obtain the point estimates for the accident sequence probabilities, core melt probability, and release category probabilities. The sensitivity measure used was the ratio of the top event probability before and after the perturbation of the constituent events. Core melt probability per reactor year showed significant increase with the increase in the human error rates, but did not show similar decrease with the decrease in the human error rates due to the dominance of the hardware failures. When the Minimum Human Error Rate (M.H.E.R.) used is increased to 10 -3 , the base case human error rates start sensitivity to human errors. This effort now allows the evaluation of new error rate data along with proposed changes in the man machine interface

  18. Kinetic parameters of biomass growth in a UASB reactor treating wastewater from coffee wet processing (WCWP

    Directory of Open Access Journals (Sweden)

    Claudio Milton Montenegro Campos

    2014-10-01

    Full Text Available This study evaluated the treatment of wastewater from coffee wet processing (WCWP in an anaerobic treatment system at a laboratory scale. The system included an acidification/equalization tank (AET, a heat exchanger, an Upflow Anaerobic Sludge Blanket Reactor (UASB, a gas equalization device and a gas meter. The minimum and maximum flow rates and volumetric organic loadings rate (VOLR were 0.004 to 0.037 m 3 d -1 and 0.14 to 20.29 kgCOD m -3 d -1 , respectively. The kinetic parameters measured during the anaerobic biodegradation of the WCWP, with a minimal concentration of phenolic compounds of 50 mg L - ¹, were: Y = 0.37 mgTVS (mgCODremoved -1 , Kd = 0.0075 d-1 , Ks = 1.504mg L -1 , μmax = 0.2 d -1 . The profile of sludge in the reactor showed total solids (TS values from 22,296 to 55,895 mg L -1 and TVS 11,853 to 41,509 mg L -1 , demonstrating a gradual increase of biomass in the reactor during the treatment, even in the presence of phenolic compounds in the concentration already mentioned.

  19. Estimation of mass transfer parameters in a Taylor-Couette-Poiseuille heterogeneous reactor

    Directory of Open Access Journals (Sweden)

    Resende M. M.

    2004-01-01

    Full Text Available A bench-scale, continuous vortex flow reactor (VFR, with a radius ratio, h, equal to 0.48 and an aspect ratio, G, equal to 11.19 was studied. This reactor may be used in the enzymatic hydrolysis of polypeptides obtained from sweet cheese whey with enzymes immobilized on agarose gel. Operational conditions were 2410 < Re q < 11793 and 30-min residence time for glycerol-water, 14% w/w, 27ºC (Re ax = 1.1 and for water, 38ºC (Re ax = 1.5. Residence time distributions (RTDs were obtained after pulse injections of different tracers (including dyed solid particles. Mass transfer coefficients of a lumped-parameter model of the reactor were estimated from these data. Model fitting to experimental data was accurate. Working conditions were selected so that transport properties of the fluids would be similar to the ones in the actual process at the final stages of whey hydrolysis.

  20. A prospective study of power cycles based on the expected sodium fast reactor parameters

    International Nuclear Information System (INIS)

    Herranz, L. E.; Linares, J. I.; Moratilla, B. Y.; Perez, G. D.

    2010-01-01

    One of the main issues that has not been solved yet in the frame of Sodium Fast Reactors (SFR) is to choose the most appropriate power conversion system. This paper explores the performance of different power cycles, from traditional to innovative layouts trying to find the optimized solution. Based on the expected reactor parameters (i.e., inlet and outlet coolant temperatures, 395 deg.C and 545 deg.C, respectively), a subcritical Rankine similar to those of fossil power plant cycles has been proposed as a reference layout. Then, alternative layouts based on innovative Rankine and Brayton cycles have been investigated. Two Rankine supercritical layouts have been modeled and analyzed: one of them, adopted from the Supercritical Water Reactor of GIV (one reheater, nine pre-heaters and one moisture separator) and the other similar to some fossil plants (two reheaters, nine pre-heaters with no moisture separator). Simple Brayton cycle configurations based on Helium has been also studied. Several layouts have been modeled to study the effects of: inter-cooling between compression stages, absence of an intermediate loop and coupling of an organic Rankine cycle (ORC). (authors)

  1. Determination of a test section parameters for Iris nuclear reactor pressurizer

    International Nuclear Information System (INIS)

    Silva, Mario A.B. da; Lira, Carlos A.B. de O.

    2009-01-01

    An integral, modular and medium size nuclear reactor, known as IRIS, is being developed by Westinghouse and by research centers. IRIS is characterized by having most of its components inside the pressure vessel, eliminating the probability of accidents. Due to its integral configuration, there is no spray system for boron homogenization, which may cause power transients. Thus, boron mixing must be investigated. The aim of this paper is to establish the conditions under which a test section has to be built for boron dispersion analysis inside IRIS reactor pressurizer. Through Fractional Scaling Analysis, which is a new methodology of similarity, the main parameters for a test section are obtained. By combining Fractional Scaling Analysis with local scaling for the densimetric Froude number and a previously established volumetric scale factor, the values of recirculation orifices, inlet water temperature, time scale factor and recirculation flow for the test section (model) are determined so that boron distribution is well represented in IRIS reactor pressurizer (prototype). Analytical solutions were used to validate the adopted methodology and when the results simulated in the model are compared to those that characterize the prototype, the agreement for both systems is absolute. The thermal power also influences boron distribution inside the test section. This power is determined by condensation laws in the vapor region and by suitable correlations for free convection. The fractions for rising inlet recirculation water enthalpy and vapor formation are also considered. (author)

  2. Change in physical properties of high density isotropic graphites irradiated in the ?JOYO? fast reactor

    Science.gov (United States)

    Maruyama, T.; Kaito, T.; Onose, S.; Shibahara, I.

    1995-08-01

    Thirteen kinds of isotropic graphites with different density and maximum grain size were irradiated in the experimental fast reactor "JOYO" to fluences from 2.11 to 2.86 × 10 26 n/m 2 ( E > 0.1 MeV) at temperatures from 549 to 597°C. Postirradiation examination was carried out on the dimensional changes, elastic modulus, and thermal conductivity of these materials. Dimensional change results indicate that the graphites irradiated at lower fluences showed shrinkage upon neutron irradiation followed by increase with increasing neutron fluences, irrespective of differences in material parameters. The Young's modulus and Poisson's ratio increased by two to three times the unirradiated values. The large scatter found in Poisson's ratio of unirradiated materials became very small and a linear dependence on density was obtained after irradiation. The thermal conductivity decreased to one-fifth to one-tenth of unirradiated values, with a negligible change in specific heat. The results of postirradiation examination indicated that the changes in physical properties of high density, isotropic graphites were mainly dominated by the irradiation condition rather than their material parameters. Namely, the effects of irradiation induced defects on physical properties of heavily neutron-irradiated graphites are much larger than that of defects associated with as-fabricated specimens.

  3. Change in physical properties of high density isotropic graphites irradiated in the ''JOYO'' fast reactor

    International Nuclear Information System (INIS)

    Maruyama, T.; Kaito, T.; Onose, S.; Shibahara, I.

    1995-01-01

    Thirteen kinds of isotropic graphites with different density and maximum grain size were irradiated in the experimental fast reactor ''JOYO'' to fluences from 2.11 to 2.86x10 26 n/m 2 (E>0.1 MeV) at temperatures from 549 to 597 C. Postirradiation examination was carried out on the dimensional changes, elastic modulus, and thermal conductivity of these materials. Dimensional change results indicate that the graphites irradiated at lower fluences showed shrinkage upon neutron irradiation followed by increase with increasing neutron fluences, irrespective of differences in material parameters. The Young's modulus and Poisson's ratio increased by two to three times the unirradiated values. The large scatter found in Poisson's ratio of unirradiated materials became very small and a linear dependence on density was obtained after irradiation. The thermal conductivity decreased to one-fifth to one-tenth of unirradiated values, with a negligible change in specific heat. The results of postirradiation examination indicated that the changes in physical properties of high density, isotropic graphites were mainly dominated by the irradiation condition rather than their material parameters. Namely, the effects of irradiation induced defects on physical properties of heavily neutron-irradiated graphites are much larger than that of defects associated with as-fabricated specimens. (orig.)

  4. Proceedings of 2. Yugoslav symposium on reactor physics, Part 3, Herceg Novi (Yugoslavia), 27-29 Sep 1966

    International Nuclear Information System (INIS)

    1966-01-01

    This Volume 3 of the Proceedings of 2. Yugoslav symposium on reactor physics includes three papers describing the following: model for spatial synthesis of automated control system of the GCR type reactor; model for analysis of hydrodynamic processes at the BHWR type reactors; mathematical model for safety analysis of heavy water power reactor

  5. Monte-Carlo Modeling of Parameters of a Subcritical Cascade Reactor Based on MSBR and LMFBR Technologies

    CERN Document Server

    Bznuni, S A; Zhamkochyan, V M; Polanski, A; Sosnin, A N; Khudaverdyan, A H

    2001-01-01

    Parameters of a subcritical cascade reactor driven by a proton accelerator and based on a primary lead-bismuth target, main reactor constructed analogously to the molten salt breeder (MSBR) reactor core and a booster-reactor analogous to the core of the BN-350 liquid metal cooled fast breeder reactor (LMFBR). It is shown by means of Monte-Carlo modeling that the reactor under study provides safe operation modes (k_{eff}=0.94-0.98), is apable to transmute effectively radioactive nuclear waste and reduces by an order of magnitude the requirements on the accelerator beam current. Calculations show that the maximal neutron flux in the thermal zone is 10^{14} cm^{12}\\cdot s^_{-1}, in the fast booster zone is 5.12\\cdot10^{15} cm^{12}\\cdot s{-1} at k_{eff}=0.98 and proton beam current I=2.1 mA.

  6. Monte-Carlo modeling of parameters of a subcritical cascade reactor based on MSBR and LMFBR technologies

    International Nuclear Information System (INIS)

    Bznuni, S.A.; Zhamkochyan, V.M.; Khudaverdyan, A.G.; Barashenkov, V.S.; Sosnin, A.N.; Polanski, A.

    2001-01-01

    Parameters are investigated of a subcritical cascade reactor driven by a proton accelerator and based on a primary lead-bismuth target, main reactor constructed analogously to the molten salt breeder (MSBR) reactor core and a booster-reactor analogous to the core of the BN-350 liquid metal cooled fast breeder reactor (LMFBR). It is shown by means of Monte-Carlo modeling that the reactor under study provides safe operation modes (k eff = 0.94 - 0.98), is capable to transmute effectively radioactive nuclear waste and reduces by an order of magnitude the requirements on the accelerator beam current. Calculations show that the maximal neutron flux in the thermal zone is 10 14 cm 12 · s -1 , in the fast booster zone is 5.12 · 10 15 cm 12 · s -1 at k eff = 0.98 and proton beam current I = 2.1 mA. (author)

  7. A preliminary definition of the parameters of an experimental natural - uranium, graphite - moderated, helium - cooled power reactor

    International Nuclear Information System (INIS)

    Baltazar, O.

    1978-01-01

    A preliminary study of the technical characteristic of an experiment at 32 MWe power with a natural uconium, graphite-moderated, helium cooled reactor is described. The national participation and the use of reactor as an instrument for the technological development of future high temperature gas cooled reactor is considered in the choice of the reactor type. Considerations about nuclear power plants components based in extensive bibliography about similar english GCR reactor is presented. The main thermal, neutronic an static characteristic and in core management of the nuclear fuel is stablished. A simplified scheme of the secondary system and its thermodynamic performance is determined. A scheme of parameters calculation of the reactor type is defined based in the present capacity of calculation developed by Coordenadoria de Engenharia Nuclear and Centro de Processamento de Dados, IEA, Brazil [pt

  8. Development of Reactor Console Simulator for PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Nufarhana Ayuni Joha; Mohd Sabri Minhat

    2012-01-01

    The Reactor Console Simulator will be an interactive tool for operator training and teaching of PUSPATI TRIGA Reactor. Behaviour and characteristic for reactor console and reactor itself can be evaluated and understand. This Simulator will be used as complement for actual present reactor console. Implementation of man-machine interface is using computer screens, keyboard and mouse. Multiple screens are used to match the physical of present reactor console. LabVIEW software are using for user interface and mathematical calculation. Polynomial equation based on control rods calibration data as well as operation parameters record was used to calculate the estimated reactor console parameters. (author)

  9. Overview of Experiments for Physics of Fast Reactors from the International Handbooks of Evaluated Criticality Safety Benchmark Experiments and Evaluated Reactor Physics Benchmark Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bess, J. D.; Briggs, J. B.; Gulliford, J.; Ivanova, T.; Rozhikhin, E. V.; Semenov, M. Yu.; Tsibulya, A. M.; Koscheev, V. N.

    2017-07-01

    Overview of Experiments to Study the Physics of Fast Reactors Represented in the International Directories of Critical and Reactor Experiments John D. Bess Idaho National Laboratory Jim Gulliford, Tatiana Ivanova Nuclear Energy Agency of the Organisation for Economic Cooperation and Development E.V.Rozhikhin, M.Yu.Sem?nov, A.M.Tsibulya Institute of Physics and Power Engineering The study the physics of fast reactors traditionally used the experiments presented in the manual labor of the Working Group on Evaluation of sections CSEWG (ENDF-202) issued by the Brookhaven National Laboratory in 1974. This handbook presents simplified homogeneous model experiments with relevant experimental data, as amended. The Nuclear Energy Agency of the Organization for Economic Cooperation and Development coordinates the activities of two international projects on the collection, evaluation and documentation of experimental data - the International Project on the assessment of critical experiments (1994) and the International Project on the assessment of reactor experiments (since 2005). The result of the activities of these projects are replenished every year, an international directory of critical (ICSBEP Handbook) and reactor (IRPhEP Handbook) experiments. The handbooks present detailed models of experiments with minimal amendments. Such models are of particular interest in terms of the settlements modern programs. The directories contain a large number of experiments which are suitable for the study of physics of fast reactors. Many of these experiments were performed at specialized critical stands, such as BFS (Russia), ZPR and ZPPR (USA), the ZEBRA (UK) and the experimental reactor JOYO (Japan), FFTF (USA). Other experiments, such as compact metal assembly, is also of interest in terms of the physics of fast reactors, they have been carried out on the universal critical stands in Russian institutes (VNIITF and VNIIEF) and the US (LANL, LLNL, and others.). Also worth mentioning

  10. Computational Analysis of Nuclear Safety Parameters of 3 MW TRIGA Mark-II Research Reactor Based on Evaluated Nuclear Data Libraries JENDL-3.3 and ENDF/B-VII.0

    International Nuclear Information System (INIS)

    Khan, Jahirul Haque

    2013-01-01

    The objective of this study is to explain the main nuclear safety parameters of 3 MW TRIGA Mark-II Research Reactor at AERE, Savar, Dhaka, Bangladesh from the viewpoint of reactor safety and also reactor operator. The most important nuclear reactor physics safety parameters are power distribution, power peaking factors, shutdown margin, control rod worth, excess reactivity and fuel temperature reactivity coefficient. These parameters are calculated using the chain of the computer codes the SRAC-PIJ for cell calculation based on neutron transport theory and the SRAC-CITATION for core calculation based on neutron diffusion equation. To achieve this objective the TRIGA model is developed by the 3-D diffusion code SRAC-CITATION based on the group constants that come from the collision probability transport code SRAC-PIJ. In this study the evaluated nuclear data libraries JENDL-3.3 and ENDF/B-VII.0 are used. The calculated most important reactor physics parameters are compared to the safety analysis report (SAR) values as well as earlier published MCNP results (numerically benchmark). It was found that the calculated results show a good agreement between the said libraries. Besides, in most cases the calculated results reveal a reasonable agreement with the SAR values (by General Atomic) as well as the MCNP results. In addition, this analysis can be used as the inputs for thermal-hydraulic calculations of the TRIGA fresh core in the steady state and pulse mode operation. Because of power peaking factors, power distributions and temperature reactivity coefficients are the most important reactor safety parameters for normal operation and transient safety analysis in research as well as in power reactors. They form the basis for technical specifications and limitations for reactor operation such as loading pattern limitations for pulse operation (in TRIGA). Therefore, this analysis will be very important to develop the nuclear safety parameters data of 3 MW TRIGA Mark

  11. Optimization of process parameters in flash pyrolysis of waste tyres to liquid and gaseous fuel in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Edwin Raj, R.; Robert Kennedy, Z.; Pillai, B.C.

    2013-01-01

    Highlights: ► Non-recyclable, hazards, under-utilized waste tyre was converted to useful fuel. ► Design of experiment was used to optimize the process parameters. ► Fuel compatibility for IC engines was tested by standard fuel testing procedures. ► Optimized process parameters were tested and the empirical model validated. - Abstract: Pyrolysis process offers solution to utilize huge quantity of worn out automobile tyres to produce fuel for energy needs. Shredded tyre wastes were subjected to pyrolysis at atmospheric pressure under inert gas atmosphere in a fluidized bed combustion setup. The shredded tyre particle size, the feed rate of the feed stock, and the pyrolysis temperature were varied systematically as per the designed experiment to study their influence on product yield. Maximizing the oil yield and subduing the gas and char yield is the objective to optimize the process parameters. A low pyrolysis temperature of 440 °C with low feed rate increases the residence time in the combustion reactor yielding maximum oil. The physical properties of raw pyrolysis oil, distilled oil and the evolved gases were done to find its suitability to utilize them as alternatives to the conventional fuels

  12. Modeling the spatial distribution of the parameters of the coolant in the reactor volume

    International Nuclear Information System (INIS)

    Nikonov, S.P.

    2011-01-01

    In this paper the approach to the question about the spatial distribution of the parameters of the coolant in-reactor volume. To describe the in-core space is used specially developed preprocessor. When the work of the preprocessor in the first place, is recreated on the basis of available information (mostly-the original drawings) with high accuracy three-dimensional description of the structures of the reactor volume and, secondly, are prepared on this basis blocks input to the nodal system code improved estimate ATHLET, allows to take into account the hydrodynamic interaction between the spatial control volumes. As an example the special case of solutions of international standard problem on the reconstruction of the transition process in the third unit of the Kalinin nuclear power plant, due to the shutdown of one of the four Main Coolant Pumps in operation at the rated capacity (first download). Model-core area consists of approximately 58 000 control volumes and spatial relationships. It shows the influence of certain structural units of the core to the distribution of the mass floe rate of its height. It is detected a strong cross-flow coolant in the area over the baffle. Moreover, we study the distribution of the coolant temperature at the assembly head of WWER-1000 reactor. It is shown that in the region of the top of the assembly head, where we have installation of thermocouples, the flow coolant for internal assemblies core is formed by only from guide channel Reactor control and protected system Control rod flow, or a mixture of the guide channel flow and flow from the area in front of top grid head assembly (the peripheral assemblies). It is shown that the magnitude of the flow guide channels affects not only the position of control rods, but also the presence of a particular type of measuring channels (Self powered neutron detector sensors or Temperature control sensors) in the cassette. (Author)

  13. Fusion reactor physics and technology. Progress report, October 1, 1978-June 30, 1979

    International Nuclear Information System (INIS)

    Conn, R.W.; Kulcinski, G.L.; Maynard, C.W.

    1979-01-01

    During the present contract period, work has been carried out in the following areas: (a) The NUWMAK tokamak reactor design was completed and distributed throughout the community. In particular, specific work was completed on divertorless tokamak operation in NUWMAK, Ti alloy assessment, materials resource implications of NUWMAK style reactors, and an economic analysis; (b) Tandem mirror reactor technology studies were carried out on tandem mirror physics, the role of rf heating, power balance studies, the design of high field magnets, and blanket/shield design in TMR's; (c) work at Wisconsin is contributing to the evolving picture of an optimum TMR; (d) the WHIST tokamak reactor plasma transport code developed at Wisconsin has been extended in two directions; (e) Work on ICRF heating in tokamak reactors, both in terms of physics and launching structure design, has been completed and published

  14. Data base of reactor physics experimental results in Kyoto University critical assembly experimental facilities

    International Nuclear Information System (INIS)

    Ichihara, Chihiro; Fujine, Shigenori; Hayashi, Masatoshi

    1986-01-01

    The Kyoto University critical assembly experimental facilities belong to the Kyoto University Research Reactor Institute, and are the versatile critical assembly constructed for experimentally studying reactor physics and reactor engineering. The facilities are those for common utilization by universities in whole Japan. During more than ten years since the initial criticality in 1974, various experiments on reactor physics and reactor engineering have been carried out using many experimental facilities such as two solidmoderated cores, a light water-moderated core and a neutron generator. The kinds of the experiment carried out were diverse, and to find out the required data from them is very troublesome, accordingly it has become necessary to make a data base which can be processed by a computer with the data accumulated during the past more than ten years. The outline of the data base, the data base CAEX using personal computers, the data base supported by a large computer and so on are reported. (Kako, I.)

  15. The spectroscopic orbits and physical parameters of GG Carinae

    Science.gov (United States)

    Marchiano, P.; Brandi, E.; Muratore, M. F.; Quiroga, C.; Ferrer, O. E.; García, L. G.

    2012-04-01

    Aims: GG Car is an eclipsing binary classified as a B[e] supergiant star. The aims of our study are to improve the orbital elements of the binary system in order to obtain the actual orbital period of this system. We also compare the spectral energy distribution of the observed fluxes over a wide wavelength range with a model of a circumstellar envelope composed of gas and dust. This fitting allows us to derive the physical parameters of the system and its environment, as well as to obtain an estimation of the distance to GG Car. Methods: We analyzed about 55 optical and near infrared spectrograms taken during 1996-2010. The spectroscopic orbits were obtained by measuring the radial velocities of the blueshifted absorptions of the He I P-Cygni profiles, which are very representative of the orbital motion of both stars. On the other hand, we modeled the spectral energy distribution of GG Car, proposing a simple model of a spherical envelope consisting of a layer close to the central star composed of ionized gas and other outermost layers composed of dust. Its effect on the spectral energy distribution considering a central B-type star is presented. Comparing the model with the observed continuum energy distribution of GG Car, we can derive fundamental parameters of the system, as well as global physical properties of the gas and dust envelope. It is also possible to estimate the distance taking the spectral regions into account where the theoretical data fit the observational data very well and using the set of parameters obtained and the value of the observed flux for different wavelengths. Results: For the first time, we have determined the orbits for both components of the binary through a detailed study of the He I lines, at λλ4471, 5875, 6678, and 7065 Å, thereby obtaining an orbital period of 31.033 days. An eccentric orbit with e = 0.28 and a mass ratio q = 2.2 ± 0.9 were calculated. Comparing the model with the observed continuum energy distribution of

  16. Status of computer codes available in AEOI for reactor physics analysis

    International Nuclear Information System (INIS)

    Karbassiafshar, M.

    1986-01-01

    Many of the nuclear computer codes available in Atomic Energy Organization of Iran AEOI can be used for physics analysis of an operating reactor or design purposes. Grasp of the various methods involved and practical experience with these codes would be the starting point for interesting design studies or analysis of operating conditions of presently existing and future reactors. A review of the objectives and flowchart of commonly practiced procedures in reactor physics analysis of LWRs and related computer codes was made, extrapolating to the nationally and internationally available resources. Finally, effective utilization of the existing facilities is discussed and called upon

  17. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    International Nuclear Information System (INIS)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-01-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean/US/laboratory/university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program

  18. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    Energy Technology Data Exchange (ETDEWEB)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  19. A WIMS-NESTLE reactor physics model for an RBMK reactor

    International Nuclear Information System (INIS)

    Perry, R.T.; Meriwether, G.H.

    1996-01-01

    This work describes the static neutronic calculations made for a three-dimensional model of an RBMK (Russian) reactor. Future work will involve the use of this neutronic model and a thermal-hydraulic model in coupled calculations. The lattice code, WIMS-D, was used to obtain the cross sections for the static neutronic calculations. The static reactor neutronic calculations were made with NESTLE, a three-dimensional nodal diffusion code. The methods used to establish an RBMK reactor model for use in these codes are discussed, and the cross sections calculated are given

  20. A WIMS-NESTLE reactor physics model for an RBMK reactor

    International Nuclear Information System (INIS)

    Perry, R.T.; Meriwether, G.H.

    1996-01-01

    This work describes the static neutronic calculations made for a three-dimensional model of an RBMK (Russian) reactor. Future work will involve the use of this neutronic model and a thermal-hydraulic model in coupled calculations. The lattice code, WIMS-D, was used to obtain the cross sections for the static neutronic calculations. The static reactor neutronic calculations were made with NESTLE, a three-dimensional nodal diffusion code. The methods used to establish an RBMK reactor model for use in these codes are discussed, and the cross sections calculated are given. (author)

  1. Optimal relations of the parameters ensuring safety during reactor start-up

    International Nuclear Information System (INIS)

    Yurkevich, G.P.

    2004-01-01

    Procedure and equations for the determination of optimal ratio between parameters allowing safe removal of reactor in critical state are suggested. Initial pulse frequency of pulsed start-up channel and power of neutron source are decreased by reduced rate of changing reactivity during automatic start-up, disposition of pulsed neutron detector in the range with neutron flux density to 5·10 12 s -1 cm -2 at standard power, separate signal of period for the use in chains of automatic start-up and emergency protection, reduction of pulses frequency of the start-up channel (the frequency is equal to 4000 c -1 ). Procedure and equations for the determination of optimal parameters are effected with the account of statistic character of pulsed detector frequency and false outlet signal [ru

  2. Implementation of safety parameter display system on Russian NPPs with WWER reactors

    International Nuclear Information System (INIS)

    Dounaev, V.G.; Neboyan, V.T.

    1996-01-01

    This report gives a short overview of the status of safety parameter display systems (SPDS) implementation on Russian NPPs with WWER reactors and also discusses the SPDS, which is being developed for Kalinin NPP. The assessment of the safety status of the plant is done by the continuous monitoring of six critical safety functions and the corresponding status trees. Besides, a number of additional functions are realized within the scope of KlnNPP, aimed at providing the operator and the safety engineer in the main control room with more detailed information in accidental situation as well as during the normal operation. In particular, these functions are: archiving, data logs and alarm handling, safety actions monitoring, mnemonic diagrams indicating the state of main technological equipment and basic plant parameters, reference data, etc. Also, the operator support function ''computerized procedures'' is included in the scope of SPDS. The basic SPDS implementation platform is ADACS of SEMA GROUP design. The system architecture includes two workstations in the main control room: one is for reactor operator and the other one for safety engineer. Every station has two CRT screens which ensures computerized procedures implementation and provides for extra services for the operator. Also, the information from the SPDS is transmitted to the local crisis centre and to the crisis centre of the State utility organization concern ''Rosenergoatom''. (author). 3 refs

  3. Integration of neural networks with fuzzy reasoning for measuring operational parameters in a nuclear reactor

    International Nuclear Information System (INIS)

    Ikonomopoulos, A.; Tsoukalas, L.H.

    1993-01-01

    A novel approach is described for measuring variables with operational significance in a complex system such as a nuclear reactor. The methodology is based on the integration of artificial neural networks with fuzzy reasoning. Neural networks are used to map dynamic time series to a set of user-defined linguistic labels called fuzzy values. The process takes place in a manner analogous to that of measurement. Hence, the entire procedure is referred to as virtual measurement and its software implementation as a virtual measuring device. An optimization algorithm based on information criteria and fuzzy algebra augments the process and assists in the identification of different states of the monitored parameter. The proposed technique is applied for monitoring parameters such as performance, valve position, transient type, and reactivity. The results obtained from the application of the neural network-fuzzy reasoning integration in a high power research reactor clearly demonstrate the excellent tolerance of the virtual measuring device to faulty signals as well as its ability to accommodate noisy inputs

  4. The effect of uncertainty of reactor parameters obtained using k0-NAA on result of analysis

    International Nuclear Information System (INIS)

    Sasajima, Fumio

    2006-01-01

    Neutron Activation Analysis using the k 0 method is a useful method allowing convenient and accurate simultaneous analysis of plural elements, eliminating the need for the use of comparative reference samples. As already well known, it is essential for the correct result of an analysis to obtain the α-factor and f-factor for a neutron spectrum in an irradiation field accurately when an attempt is made to use the k 0 method. For this reason, based on data obtained from the experiment conducted in the JRR-3 PN-3 system, how uncertainty of the measured values for α-factor and f-factor affects the result of an analysis was evaluated. The process of evaluation involved intentionally varying the values for reactor parameters followed by making an analysis of environmental reference samples (NIST SRM-1632c) using the k 0 method to examine the effect of these factors on the concentrations of 19 elements. The result of the evaluation revealed that the degree of the effect of uncertainty on the concentrations of 19 elements was at best approx. 1% under the condition of this experiment assuming that the factor α, a reactor parameter, had uncertainty of approx. 200%. (author)

  5. Core management and reactor physics aspects of the conversion of the NRU reactor to LEU

    International Nuclear Information System (INIS)

    Atfield, M.D.

    1985-01-01

    Results of work done to assess the effects of converting the NRU reactor to LEU are presented. The effects are small, and the operational rules and safety analysis, appropriate to the HEU core, will still apply. (author)

  6. The under-critical reactors physics for the hybrid systems

    International Nuclear Information System (INIS)

    Schapira, J.P.; Vergnes, J.; Zaetta, A.

    1998-01-01

    This day, organized by the SFEN, took place at Paris the 12 march 1998. Nine papers were presented. They take stock on the hybrid systems and more specifically the under-critical reactors. One of the major current preoccupation of nuclear industry is the problems of the increase of radioactive wastes produced in the plants and the destruction of the present stocks. To solve these problems a solution is the utilisation of hybrid systems: the coupling of a particle acceleration to an under-critical reactor. Historical aspects, advantages and performances of such hybrid reactors are presented in general papers. More technical papers are devoted to the spallation, the MUSE and the TARC experiments. (A.L.B.)

  7. Preliminary analysis of basic reactor physics of the Dual Fluid Reactor - 15270

    International Nuclear Information System (INIS)

    Wang, X.; Macian-Juan, R.; Seidl, M.

    2015-01-01

    The Dual Fluid Reactor (DFR) is a novel fast nuclear reactor concept invented by the IFK based on the Generation IV Molten Salt Reactor and the Liquid Metal Cooled Reactor. The DFR uses a chloride based molten fuel salt in order to harden the neutron spectrum. The molten fuel salt is cooled with a separated liquid lead loop, which in principle allows for higher power densities and better breeding performance. The DFR does not combine heat removal and breeding into a single circuit but separates the two functions into two independent circuits. Since there are attractive features mentioned in this design, the main task of this paper is to verify the model of the whole reactor based on this concept. For this purpose several calculations are presented, including steady state calculations, sensitivity calculations with regard to the nuclide cross sections, the temperature and geometry coefficient of k eff as well as the burnup calculation. The Monte Carlo calculation codes MCNP, SERPENT and SCALE are used for the analysis. As expected the study shows a significant negative reactivity feedback with temperature in the overall fission zone. For the coupled coolant and reflector design the temperature feedback is rather small for practical purposes such as reactor control during normal operation. In the view of these results the DFR in principle can be self-regulated totally by the temperature change of its own fuel salt and consequently can rely on fully passive safety systems for accident management

  8. Design of a digital system for operational parameters simulation of IPR-R1 TRIGA nuclear research reactor

    International Nuclear Information System (INIS)

    Lage, Aldo M.F.; Mesquita, Amir Z.; Felippe, Adriano de A.M.

    2017-01-01

    The instrumentation of nuclear reactors is designed based on the reliability, redundancy and diversification of control systems. The monitoring of the parameters is of crucial importance with regard to the operational efficiency and safety of the installation. Since the first criticality of a nuclear reactor, achieved by Fermi et al. in 1942, there has been concern about the reliable monitoring of the parameters involved in the chain reaction. This paper presents the current stage of the system of simulation, which is under development at the CDTN, which intends to simulate the operation of the TRIGA IPR-R1 nuclear reactor, involving the evolution of neutron flux and reactor power related events. The system will be developed using LabVIEW® software, using the modern concept of virtual instruments (VIs) that are visualized in a video monitor. For the implementation of this model, computational tools and systems analysis are necessary, which help and facilitate the implementation of the simulator. In this article we will show some of these techniques and the initial design of the model to be implemented. The design of a computational system is of great importance, since it guides in the implementation stages and generates the documentation for later maintenance and updating of the computational system. It is noteworthy that the innovations developed in research reactors are normally used in power reactors. The relatively low costs enable research reactors to be an excellent laboratory for developing techniques for future reactors. (author)

  9. Design of a digital system for operational parameters simulation of IPR-R1 TRIGA nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo M.F.; Mesquita, Amir Z.; Felippe, Adriano de A.M., E-mail: aldo@cdtn.br, E-mail: amir@cdtn.br, E-mail: adrianoamfelippe@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN /CNEN-MG), Belo Horizonte, MG (Brazil); Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The instrumentation of nuclear reactors is designed based on the reliability, redundancy and diversification of control systems. The monitoring of the parameters is of crucial importance with regard to the operational efficiency and safety of the installation. Since the first criticality of a nuclear reactor, achieved by Fermi et al. in 1942, there has been concern about the reliable monitoring of the parameters involved in the chain reaction. This paper presents the current stage of the system of simulation, which is under development at the CDTN, which intends to simulate the operation of the TRIGA IPR-R1 nuclear reactor, involving the evolution of neutron flux and reactor power related events. The system will be developed using LabVIEW® software, using the modern concept of virtual instruments (VIs) that are visualized in a video monitor. For the implementation of this model, computational tools and systems analysis are necessary, which help and facilitate the implementation of the simulator. In this article we will show some of these techniques and the initial design of the model to be implemented. The design of a computational system is of great importance, since it guides in the implementation stages and generates the documentation for later maintenance and updating of the computational system. It is noteworthy that the innovations developed in research reactors are normally used in power reactors. The relatively low costs enable research reactors to be an excellent laboratory for developing techniques for future reactors. (author)

  10. Applications of Oregon State University's TRIGA reactor in health physics education

    International Nuclear Information System (INIS)

    Higginbotham, J.F.

    1990-01-01

    The Oregon State University TRIGA reactor (OSTR) is used to support a broad range of traditional academic disciplines, including anthropology, oceanography, geology, physics, nuclear chemistry, and nuclear engineering. However, it also finds extensive application in the somewhat more unique area of health physics education and research. This paper summarizes these health physics applications and briefly describes how the OSTR makes important educational contributions to the field of health physics

  11. Physical events that occur in the reactor core during load changes; Les effets physiques sur le coeur mis en jeu lors des variations de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Paulin, Ph. [Electricite de France (EDF/DPN/UNIE/GECC), 93 - Saint-Denis (France); Golfier, H. [CEA Saclay (DEN-DANS/DM2S/SERMA/LPEC), 91 - Gif-sur-Yvette (France)

    2007-05-15

    The reactor core control aims at mastering 2 important parameters that are relevant for reactor availability and safety. First, the reactivity that sets the power output and secondly, the power map in order to handle hot spots. In PWR-type reactors, physical events such as moderator or fuel temperature changes, xenon concentration, that are important for both parameters, evolve during load changes but also during power plateaus and are dependent on burn-up. In this article temperature effect and xenon poisoning are analysed and their impact are assessed along an irradiation campaign through a core neutronic simulation and data from instrumentation. Xenon oscillations are particularly well illustrated. The counter-reactions of the means used for reactor controlling: soluble boron and control rods, are also analysed. (A.C.)

  12. Chemical abundances and physical parameters of RR Lyrae stars

    International Nuclear Information System (INIS)

    Manduca, A.

    1980-01-01

    A grid of model stellar atmospheres has been calculated with a range of physical parameters which effectively cover RR Lyrae stars over all phases of their pulsation cycle. The models, calculated with the computer program MARCS, are flux-constant and include the effects of convection and line blanketing. Synthetic spectra were calculated for these models from 3000 A to 9600 A at 0.1 A resolution using the computer program SSG. These spectra were used directly in the applications below and were also used to computer theoretical colors on the UBVR, Stromgren uvby, and Walraven systems for the models. The uvby colors were used in determinations of effective temperature and surface gravity from photometry by various observers. The models, synthetic spectra, and colors were then applied to the problems detailed below. The data collected by Freeman and Rodgers (1975) for 25 RR Lyrae stars in ω Cen was reanalyzed with an alternative, synthetic spectrum approach to the calibration of their theoretical relations. The results confirm a wide range in calcium abundance for the stars in the cluster but at much lower values than reported by Freeman and Rodgers: a range of [Ca/H] = -1.0 to -1.9 was found. A theoretical calibration was performed for the ΔS system of determining metal abundances for RR Lyrae stars. The results support the existing empirical calibration of Butler in the range [Fe/H] = -0.6 to -2.2 and indicate how the calibration should be extrapolated to even lower metal abundances. For higher metal abundances, however, our calibration yields [Fe/H] values lower than Butler by as much as 0.4. Possible explanations of this discrepancy are investigated and the implications are discussed

  13. Chemical and physical parameters of dried salted pork meat

    Directory of Open Access Journals (Sweden)

    Petronela Cviková

    2016-07-01

    Full Text Available The aim of the present study was analysed and evaluated chemical and physical parameters of dried salted pork neck and ham. Dried salted meat is one of the main meat products typically produced with a variety of flavors and textures. Neck (14 samples and ham (14 samples was salted by nitrite salt mixture during 1week. The nitrite salt mixture for salting process (dry salting was used. This salt mixture contains: salt, dextrose, maltodextrin, flavourings, stabilizer E316, taste enhancer E621, nitrite mixture. The meat samples were dried at 4 °C and relative humudity 85% after 1 week salting. The weight of each sample was approximately 1 kg. After salting were vacuum-packed and analysed after 1 week. The traditional dry-cured meat such as dry-cured ham and neck obtained after 12 - 24 months of ripening under controlled conditions. The average protein content was significantly (p <0.001 lower in dried pork neck in comparison with dried salted pork ham. The average intramuscular fat was significantly (p <0.001 lower in dried pork ham in comparison with dried salted pork neck. The average moisture was significantly lower (p ≤0.05 in dried salted ham in comparison with dried pork neck. The average pH value was 5.50 in dried salted pork ham and 5.75 in dried salted pork neck. The content of arginine, phenylalanine, isoleucine, leucine and threonine in dried salted ham was significantly lower (p <0.001 in comparison with dried salted pork neck. The proportion of analysed amino acids from total proteins was 56.31% in pork salted dried ham and 56.50% in pork salted dried neck.  Normal 0 21 false false false EN-GB X-NONE X-NONE Normal 0 21 false false false SK X-NONE X-NONE

  14. Identification of Physical Parameters for A Hydraulic Robot

    DEFF Research Database (Denmark)

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik

    1997-01-01

    This paper describes a case study of identifying the physical model of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application of the laws of physics...

  15. Development of a three dimension multi-physics code for molten salt fast reactor

    International Nuclear Information System (INIS)

    Cheng Maosong; Dai Zhimin

    2014-01-01

    Molten Salt Reactor (MSR) was selected as one of the six innovative nuclear reactors by the Generation IV International Forum (GIF). The circulating-fuel in the can-type molten salt fast reactor makes the neutronics and thermo-hydraulics of the reactor strongly coupled and different from that of traditional solid-fuel reactors. In the present paper: a new coupling model is presented that physically describes the inherent relations between the neutron flux, the delayed neutron precursor, the heat transfer and the turbulent flow. Based on the model, integrating nuclear data processing, CAD modeling, structured and unstructured mesh technology, data analysis and visualization application, a three dimension steady state simulation code system (MSR3DS) for the can-type molten salt fast reactor is developed and validated. In order to demonstrate the ability of the code, the three dimension distributions of the velocity, the neutron flux, the delayed neutron precursor and the temperature were obtained for the simplified MOlten Salt Advanced Reactor Transmuter (MOSART) using this code. The results indicate that the MSR3DS code can provide a feasible description of multi-physical coupling phenomena in can-type molten salt fast reactor. Furthermore, the code can well predict the flow effect of fuel salt and the transport effect of the turbulent diffusion. (authors)

  16. System of Modelling and Calculation Analysis of Neutron- Physical Experiments at Fast Reactors

    International Nuclear Information System (INIS)

    Moiseyev, A.V.

    2008-01-01

    There is an actual task on storage, processing and analysis of the unique experimental data received on power fast reactors for their subsequent use in projects of fast reactors of new (4.) generation. For modeling and carrying out analysis of experiments the integrated computing system MODEXSYS has been developed. In this system the mechanism for consecutive calculation of a fast reactor states with the detailed description of its components is created. The system includes the database describing fast reactor states, results of neutron-physical characteristics measurements at fast reactor, calculation and benchmark models of experiments and calculation results. In system convenient search means and the special graphics shell are provided. It has Interfaces for processing of calculation results and their analysis. MODEXSYS system has been applied for analysis of three types of experiments at fast reactor: k eff , control rod worth and energy release distribution. The most important results of this analysis are described. Application of MODEXSYS system will raise accuracy and reliability of forecasting of fast reactors neutron-physical characteristics; for BN-600 reactor recommended level of accuracy is resulted. (authors)

  17. System of Modelling and Calculation Analysis of Neutron- Physical Experiments at Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Moiseyev, A.V. [SSC RF - IPPE, 1 Bondarenko Square, Obninsk, Kaluga Region 249033 (Russian Federation)

    2008-07-01

    There is an actual task on storage, processing and analysis of the unique experimental data received on power fast reactors for their subsequent use in projects of fast reactors of new (4.) generation. For modeling and carrying out analysis of experiments the integrated computing system MODEXSYS has been developed. In this system the mechanism for consecutive calculation of a fast reactor states with the detailed description of its components is created. The system includes the database describing fast reactor states, results of neutron-physical characteristics measurements at fast reactor, calculation and benchmark models of experiments and calculation results. In system convenient search means and the special graphics shell are provided. It has Interfaces for processing of calculation results and their analysis. MODEXSYS system has been applied for analysis of three types of experiments at fast reactor: k{sub eff}, control rod worth and energy release distribution. The most important results of this analysis are described. Application of MODEXSYS system will raise accuracy and reliability of forecasting of fast reactors neutron-physical characteristics; for BN-600 reactor recommended level of accuracy is resulted. (authors)

  18. Reactor physics and reactor strategy investigations into the fissionable material economy of the thorium and uranium cycle in fast breeder reactors and high temperature reactors

    International Nuclear Information System (INIS)

    Schikorr, W.M.

    In this work the properties governing the fissionable material economy of the uranium and thorium cycles are investigated for the advanced reactor types currently under development - the fast breeder reactor (FBR) and the high temperature reactor (HTR) - from the point of view of the optimum utilization of the available nuclear fuel reserves and the continuance of supply of these reserves. For this purpose, the two reactor types are first of all considered individually and are subsequently discussed as a complementary overall system

  19. Complementarity of integral and differential experiments for reactor physics purposes

    International Nuclear Information System (INIS)

    Tellier, Henry.

    1981-04-01

    In this paper, the following topics are studied: uranium 238 effective integral; thermal range uranium 238 capture cross section; Americium 242 m capture cross section. The mentioned examples show that differential and integral experiments are both useful to the reactor physicists

  20. Fast Reactor Physics. Vol. II. Proceedings of a Symposium on Fast Reactor Physics and Related Safety Problems

    International Nuclear Information System (INIS)

    1968-01-01

    Proceedings of a Symposium organized by the IAEA and held in Karlsruhe, 30 October - 3 November 1967. The meeting was attended by 183 scientists from 23 countries and three international organizations. Contents: (Vol.1) Review of national programmes (5 papers); Nuclear data for fast reactors (12 papers); Experimental methods (3 papers); Zoned systems (7 papers); Kinetics (7 papers). (Vol.11) Fast critical experiments (8 papers); Heterogeneity in fast critical experiments (5 papers); Fast power reactors (13 papers); Fast pulsed reactors (3 papers); Panel discussion. Each paper is in its original language (50 English, 11 French and 3 Russian) and is preceded by an abstract in English with a second one in the original language if this is not English. Discussions are in English. (author)